We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Studies on main group and transition metal compounds containing a sterically demanding, electron-withdrawing ligand

Sequeira, L.J. (1996) Studies on main group and transition metal compounds containing a sterically demanding, electron-withdrawing ligand. Doctoral thesis, Durham University.



The studies described herein relate to the co-ordination chemistry of l,3,5-tris(trifluoromethyl)benzene, Ar(^F)H. The unique combination of steric bulk and a highly electron-withdrawing nature found in the a- bound Ar(^F) ligand has already been exploited to stabilise a variety of unusual main group compounds including the surprisingly air- and moisture-stable diphosphene Ar(^F)P=Par(^F). Other examples are discussed in the introductory chapter, as is the increasingly active area of diphosphene research. Chapter 2 describes the synthesis and structural characterisation of six early σ-Ar(^F) transition metal complexes, Mo(N(^t)Bu)(_2)(Ar(^F))2, Cr(NAd)(_2)(Ar(^F))(_2), [Mo(NAr)(_2)(Ar(^F))Cl-LiCl(dme)](_2), V(Ar(^F))(_2)Cl(thf), V(Ar(^F))(_3)-O -Li(thf)(_3) and Cr(Ar(^F))(_2)(PMe(_3))(_2). The first five of these compounds exhibit the rare phenomenon of weak metal-fluorine interactions, which is discussed in terms of several structural factors such as tilting of the aryl ring towards the direction of the M-F interaction The co-ordination chemistry of the diphosphenes Ar(^F)p=PArF, Ar*P=PAr* and Ar*P=PArF (Ar* = 2,4,6-(^t)BuC6H3) is reported in chapter 3. Ar(^F)p=Par(^F) is shown to displace olefins from a bis(imido)molybdenum centre to generate complexes such as Mo(NR)(_2)(PMe)(_3)(Ti2-ArFp=PArF) (R = tBu, 2,6-iPr2C6H3). The crystal structure of Mo(NtBu)2(PMe)3(Ti2- ArFp=PArF) has been elucidated. Related investigations have focused on the co-ordination mode of the diphosphenes Ar*P=PAr* and Ar*P=PArFwith [Pt(PEt3)Cl2]2/ and a variety of Til-complexes has been spectroscopically observed. The development of phosphorus based analogue of the industrially important olefin metathesis reaction is detailed in chapter 4. The reaction of ArPCl2, [Ar = Ar(^F), Ar* and 2,6-(CF3)2-C6H3 (Ar(^f1)] with the halide abstractor W(PMe3)6 leads to the generation of ArP=PAr via a postulated [W]=PAr phosphinidene intermediate. The unsymmetrical diphosphene ArFp=PAr* has been synthesised analogously from a mixture of ArFPCl2 and Ar*PCl2 with W(PMe3)6- When Ar is small (2,4,6-iPr3C6H2, 2,4,6- Me3C6H2), ArPCl2 reacts with W(PMe3)6 to give three-membered tricyclophosphanes, [ArP](_3) π-bound complexes of the Ar(^F)H ligand have been synthesised via metal vapour synthesis experiments, carried out in collaboration with Prof. F.G.N. Cloke at Sussex University. Chapter 5 describes the preparation of the bis-arene complexes M(T|6-ArFH)2 (M=Cr, V, Nb) and Ru(Ti6-ArFH)(Ti4-ArFH).Full experimental details and characterising data for chapters 2-5 are collected in chapter 6.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1996
Copyright:Copyright of this thesis is held by the author
Deposited On:24 Oct 2012 15:11

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter