We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Bayes linear covariance matrix adjustment

Wilkinson, Darren James (1995) Bayes linear covariance matrix adjustment. Doctoral thesis, Durham University.



In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of belief about the relationships between covariance matrices of interest, providing a structure rich enough to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated by examples for some common problems. The difficulties of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1995
Copyright:Copyright of this thesis is held by the author
Deposited On:24 Oct 2012 15:07

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter