Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Techniques for evaluating one-loop feynman diagrams and their application

Miller, David J. (1996) Techniques for evaluating one-loop feynman diagrams and their application. Doctoral thesis, Durham University.

[img]
Preview
PDF
3451Kb

Abstract

For a full understanding of QCD and a precise comparison of the theory with experiment, QCD observables must be calculated to next-to-leading order in the strong coupling constant. This thesis will discuss some of the techniques used for calculating the one-loop Feynman diagrams which are required for such calculations, and their associated tensor integrals. In particular, conventional methods introduce Gram determinants. This can lead to unnecessarily complicated expressions and numerical instabilities in the limit of vanishing Gram determinant. An alternative method is presented which removes these problems by gathering together scalar integrals in combinations which are finite as the Gram determinant vanishes. These combinations are related to the corresponding scalar integrals in higher dimensions. This method is applied to the evaluation of the one-loop QcD corrections for the decay of an off-shell vector boson with vector couplings into two pairs of quarks of equal or unequal flavours. These matrix elements are required for the next-to-leading order corrections to four jet production in electron-positron annihilation, the production of a gauge boson and two jets in hadron-hadron collisions, and three jet production in lepton- nucleon scattering.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1996
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Oct 2012 11:50

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter