Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Oxidative modifications of polymer surfaces

Boyd, Robert Deric (1996) Oxidative modifications of polymer surfaces. Doctoral thesis, Durham University.

[img]
Preview
PDF
6Mb

Abstract

Non-equilibrium plasma modification of polymer surfaces in an oxygen atmosphere provides a highly efficient, solventless method of raising the surface energy. The chemical and physical effects of non-equilibrium plasma treatment on polymer surfaces have been investigated. Oxygen glow discharge and silent discharge treatment of several polymers (polypropylene, polystyrene, polyphenylene oxide and polycarbonate) has been shown to cause both surface oxidation and chain scission at the polymer surface. This generates low molecular weight oxidised material on the polymer surface which conglomerates into globular features due to the difference in surface energy between the oxidised material and the untreated polymer. These features can be removed by solvent washing. Generally silent discharge treatment generates more low molecular weight oxidised material whereas oxygen glow discharge treatment generates more non-soluble oxidised material. Crystalline polymers react at a slower rate than amorphous material. During the treatment of a model crystalline polymer (hexatriacontane) the plasma attacks the edges of the crystal, rather than the surface, due to the greater chain mobility at the edge. Non-equilibrium plasma treatment of both miscible and immiscible polymer blends were investigated. The size and distribution of the globular features formed were found to be dependent on the blend composition. For the immicible polymer blend, non-equilibrium plasma treatment reveals the blend morphology mi sing from the difference in reaction rates of the parent polymers.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1996
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Oct 2012 11:49

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter