Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Frequency-magnitude distribution and spatial fractal dimension of seismicity at the geysers geothermal area and long valley caldera, California

Barton, David J. (1998) Frequency-magnitude distribution and spatial fractal dimension of seismicity at the geysers geothermal area and long valley caldera, California. Doctoral thesis, Durham University.

[img]
Preview
PDF
15Mb

Abstract

Although there is no obvious reason why seismic 6-value and the spatial fractal dimension of earthquakes, D, should be related, there are several reports of observed empirical correlations between these two quantities. In order to investigate this phenomenon, and attempt to relate it to different types of earthquakes, industrially induced seismicity in The Geysers geothermal area, California and earthquake swarms in Long Valley caldera, California were analysed. Raw seismograms from the Unocal-NEC-Thermal network in The Geysers were processed automatically, calculating magnitudes from coda lengths and locating them using a three-dimensional velocity model. Seismicity correlated with the locations of commercial wells and surface fault locations. The entire Geysers dataset was too complex for clear correlations between b, D, seismicity and injection to be observed. In several cases, short pulses of injection induced bursts of seismicity of either small-magnitude, clustered events or large-magnitude diffuse seismicity, resulting always in a transient anomaly of negative b/D. However, sometimes pulses of injection were not accompanied by b/D transients and sometimes b/D transients were not accompanied by known injection. The latter cases may or may not indicate undisclosed injection activity. A seismic crisis in Long Valley caldera was associated with major b/D anomalies that accompanied migration of the activity from a hydrothermal zone on the south edge of the resurgent dome to the right-lateral, blind, near-vertical South Moat fault to the immediate south. The results indicated that the hydrothermal zone is an inhomogeneous structure whereas the South Moat has a mature, coherent fault plane, capable of generating magnitude M = 6 earthquakes and posing a threat to the town of Mammoth Lakes.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1998
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Oct 2012 11:44

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter