Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Classical and quantum mechanics with chaos

Borgan, Sharry (1999) Classical and quantum mechanics with chaos. Doctoral thesis, Durham University.

[img]
Preview
PDF
7Mb

Abstract

This thesis is concerned with the study, classically and quantum mechanically, of the square billiard with particular attention to chaos in both cases. Classically, we show that the rotating square billiard has two regular limits with a mixture of order and chaos between, depending on an energy parameter, E. This parameter ranges from -2w(^2) to oo, where w is the angular rotation, corresponding to the two integrable limits. The rotating square billiard has simple enough geometry to permit us to elucidate that the mechanism for chaos with rotation or curved trajectories is not flyaway, as previously suggested, but rather the accumulation of angular dispersion from a rotating line. Furthermore, we find periodic cycles which have asymmetric trajectories, below the value of E at which phase space becomes disjointed. These trajectories exhibit both left and right hand curvatures due to the fine balance between Centrifugal and Coriolis forces. Quantum mechanically, we compare the spectral analysis results for the square billiard with three different theoretical distribution functions. A new feature in the study is the correspondence we find, by utilising the Berry-Robnik parameter q, between classical E and a quantum rotation parameter w. The parameter q gives the ratio of chaotic quantum phase volume which we can link to the ratio of chaotic phase volume found classically for varying values of E. We find good correspondence, in particular, the different values of q as w is varied reflect the births and subsequent destructions of the different periodic cycles. We also study wave packet dynamics, necessitating the adaptation of a one dimensional unitary integration method to the two dimensional square billiard. In concluding we suggest how this work may be used, with the aid of the chaotic phase volumes calculated, in future directions for research work.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1999
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Oct 2012 11:40

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter