Dando, Owen Robert (1999) Topological defects in low-energy string gravity. Doctoral thesis, Durham University.
| PDF 2834Kb |
Abstract
Cosmologists are interested in topological defects as a possible source for the primordial density perturbations which seeded structure formation through gravitational instability. In this thesis, the gravitational properties of various topological defects are studied in the context of low-energy string theory, a likely modification of Einstein gravity at the high energy scales prevalent in the early universe. We consider in turn global monopole, local monopole, global cosmic string and global texture defects, allowing for an arbitrary coupling of defects to the string theory dilaton. For global defects we find the following behaviour. If the dilaton is massless, this modification to general relativity generically destroys the global good behaviour of the monopole and cosmic string, making their spacetimes singular. For the texture non-singular spacetimes exist, but only for certain values of the matter-dilaton coupling, dependent on the gravitational strength of the defect; in addition, this non-singular behaviour exists only in a certain frame. In the case of a massive dilaton, the metric behaviour of these defects is similar to that found in Einstein gravity, though we find they generically induce a long-range dilaton cloud. For the local monopole, which we study only in the presence of a massless dilaton, a rich variety of behaviour is found. For particular parameter values the local monopole spacetime approximates that of an extremal dilaton black hole.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Thesis Date: | 1999 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 13 Sep 2012 15:45 |