We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

X-ray scattering in giant magneto-resistive multilayers

Fulthorpe, Brian David (1999) X-ray scattering in giant magneto-resistive multilayers. Doctoral thesis, Durham University.



The scattering mechanisms responsible for Giant Magneto-Resistance (OMR) in magnetic multilayers are believed to be related to many aspects of the multilayer structure. X-ray scattering techniques provide a powerful method with which to study the bulk and interface morphology in these systems, and are therefore crucial in developing an understanding of the dominant factors influencing the magnitude of the OMR. Reflectivity measurements performed on a series of Co/Cu multilayers, sputter deposited onto etched silicon, reveal no variation in the interface roughness with etching voltage, the thickness of the individual layers also remaining constant. The observed decrease in the OMR cannot, therefore, be attributed to variations in spacer thickness or interfacial spin-independent scattering. Electron and X-ray Diffraction measurements suggest the reduction in GMR is due to a loss of antiferromagnetic coupling associated with a transformation of the texture from a randomly oriented to well oriented (111) polycrystalline texture, and subsequent reduction in the volume fraction of (100) oriented grains. Interfaces within Co/Cu are found to propagate with a high degree of conformality with increasing bilayer number, with an out-of-plane correlation length well in excess of 300Å. In contrast, the Co/Pt system exhibits a limiting out-of-plane correlation length of the order of 350Å arising from a columnar growth mode. X-ray Reflectivity and Diffraction measurements provide no structural interpretation for the 3-fold enhancement in the rate of increase of the saturation conductivity, as a function of spacer thickness, in Fe/Au (100) compared to Fe/Au (111), or why large oscillations in the GMR occur for the (100) orientation only. Such observations are, however, consistent with the existence of a channelling mechanism in Fe/Au (100). Grazing Incidence Fluorescence data indicates that Nb acts as a surfactant in Fe/Au (111) growth on sapphire. The influence of different defect types within multilayers has also been observed.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:1999
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Aug 2012 11:45

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter