Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Runoff production in blanket peat covered catchments

Holden, Joseph (2000) Runoff production in blanket peat covered catchments. Doctoral thesis, Durham University.

[img]
Preview
PDF
13Mb

Abstract

Although blanket peat covers many major headwater areas in Britain, runoff production within these upland catchments is poorly understood. This thesis examines runoff production mechanisms within the blanket peat catchments of the Moor House National Nature Reserve, North Pennines, UK. Catchments ranging from 11.4 km^ down to the hillslope and plot-scale are examined. Runoff from the monitored catchments was flashy. Lag times are short and rainwater is efficiently transported via quickflow- generating mechanisms such that flood peaks are high and low flows poorly maintained. Hillslope and plot-scale runoff measurements show that the flashy catchment response is the result of the dominance of overland flow. Typically 80 % of runoff is produced as overland flow. This occurs both on bare and vegetated surfaces. Most of the remaining runoff is generated from the upper 10 cm of the peat, except where well-connected macropore and pipe networks transfer flow through the lower layers. Below 10 cm depth the blanket peat matrix fails to contribute any significant runoff Thus most groundwater-based models of peat hydrological process are not readily applicable to these catchments.Suggestions that infiltration-excess overland flow may be largely responsible for the flashy regime of these upland catchments are not substantiated by the blanket peat infiltration data presented in this thesis. Monitoring of hillslope runoff mechanisms combined with rainfall simulation (at realistic intensities of 3-12 mm hr(^-1)) and tension- infiltrometer experiments shows that saturation-excess mechanisms dominate the response. Infiltration is relatively rapid in the upper peat layers until they become saturated and overland flow begins. High water tables result in rapid saturation of the peat mass such that even at low rainfall intensity runoff production is just as efficient as during high intensity events. While macropores have largely been ignored in blanket peat, results presented suggest that up to 30 % of runoff may be generated through them. Occasionally these macropore networks develop through the deeper peat such that runoff bypasses the matrix and runs off at depth from small outlets and larger pipe networks. Seasonal variations in runoff- generating processes can be exacerbated by drought which causes structural changes to the near-surface of the peat. This was found to result in enhanced infiltration and macropore flow which may encourage pipe network development. Flow has been monitored simultaneously from several natural pipes in a 0.4 km(^2) headwater catchment of the Tees. This catchment provides one of the few examples of pipeflow monitoring outside the shallow peaty-podzols of mid-Wales. Natural pipes are found throughout the soil profile and can be at depths of up to three metres. Ground penetrating radar was useful in identifying deep subsurface piping and suggestions are made for improvements to the application. The pipe networks were found to be complex and results demonstrate that outlet location and size may bear little relation to the form and depth of the pipe a short distance upslope. Pipes generally contribute less than 10 % to catchment runoff but on the rising and falling hydrograph limbs can contribute over 30 % to streamflow. Pipeflow lag times are short suggesting that both the shallow and deep pipes may be well connected to the surface. Thus while matrix runoff contributions at depth within the peat may be low, macropore flow mechanisms can be significant.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2000
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Aug 2012 11:43

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter