Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Interaction of Chiral Lanthanide complexes with nucleic acids

Bobba, Gabriella (2002) Interaction of Chiral Lanthanide complexes with nucleic acids. Doctoral thesis, Durham University.

[img]
Preview
PDF
4Mb

Abstract

Enantiopure A and A lanthanide complexes, bearing a phenanthridinium or a dipyridoquinoxaline chromophore as a sensidser, have been designed with the aim of developing structural and reactive probes for nucleic acids. Their interaction with DNA was studied using various spectroscopic techniques. A certain degree of stereoselectivity in DNA binding was discerned. The A enantiomers of the Eu tetramide and of the EuPh(_3)dpq complexes interacted with nucleic acids in a predominantly intercalative binding mode, by inserting their planar aromatic chromophore between the base-pairs. The former showed a preference for C-G sites, while the latter bound preferentially to A-T base-pairs. A rather different binding mode, probably involving the minor groove, was revealed in the interaction of the A enantiomer of the EuPh(_3)dpq complex with nucleic acids, with a higher affinity for C and G bases. In the presence of nucleic acid, a charge transfer process occurred in each case, which quenched the singlet excited state of the phenanthridinium moiety or the lanthanide excited state (in Ph(_3)dpq complexes). In the unique case of the EuNp(_3)dpq complexes, the interaction resulted in an increase in the metal emission intensity and lifetime, as a consequence of the protection of the molecule, probably accommodated in the DNA minor groove, from a quenching process. This light switch' effect can be exploited in the development of spectroscopic probes. The TbNp(_3)dpq, on the other hand, was found to generate singlet oxygen efficiently and could therefore act as a reactive probe. Moreover, the EuPh(_3)dpq and TbPh(_3)dpq complexes showed extraordinarily high emission quantum yields in aqueous media, due to the favourable photophysical properties of the dpq antenna as well as the nonadentate nature of the Ph(_3)dpq ligand. This makes them valuable luminescent probes.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2002
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Aug 2012 11:39

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter