Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Emulsion-derived (PolyHIPE) foams: optimization of properties and morphology for fluid flow applications

Barbetta, Andrea (2002) Emulsion-derived (PolyHIPE) foams: optimization of properties and morphology for fluid flow applications. Doctoral thesis, Durham University.

[img]
Preview
PDF
5Mb

Abstract

The aim of the work described in this thesis is the development of highly porous materials (PolyHIPEs) which could find wide applications in separation science and in solid phase synthesis. Two systems were developed and studied. In the first one, PolyHIPE materials from divinylbenzene were synthesised in the presence of porogens of different chemical structures. These materials possess two levels of porosity: large pores ( 1 - 20 µm) which guarantee the flow of fluids under the application of small pressures and a fine porosity (1 - 100 nm) present in the walls of the foams which confer to the materials high surface areas (up to 700 m(^2)g(^-1)). The chemical nature of the porogens employed has a significant influence on the morphologies of the foams affecting both the dimension of the cavities and the fine porous structure. It was shown that the mechanisms operating at the emulsion stage and thus determining the characteristics of the final foams are the co-adsorption at the oil/water interface of the porogens and/or monomers together with the primary surfactant, and diffusion of the dispersed aqueous phase through the continuous organic phase. The latter phenomenon can be minimized by the appropriate choice of the surfactant system. The second system consisted of styrene/4-vinylbenzylchloride/divinylbenzene foams. The presences of a chloromethyl group render these PolyHIPE foams amenable to functionalization. Also in this case, the morphologies of the resulting foams were studied. It was shown that emulsion composition is the relevant variable affecting via the interfacial tension and viscosity not only foam morphologies but also their mechanical properties

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2002
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Aug 2012 11:38

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter