We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Convection in fluid and porous media

Carr, Magda (2003) Convection in fluid and porous media. Doctoral thesis, Durham University.



The subject of convection in fluid and porous media is investigated. Particular attention is paid to penetrative convection. The first two chapters are devoted to penetrative convection when fluid overlies and saturates a porous medium. Penetrative convection is described by a quadratic equation of state in the first instance and via internal heating in the second. Linear instability analyses are performed in both cases. A surprising and striking array of streamlines are presented at the onset of convection. The streamlines exhibit novel behaviour when physical parameters of the problem are varied. Penetrative convection in a horizontally isotropic porous layer is discussed next. Again penetrative convection is described by a quadratic equation of state and internal heating. The internally heated model is dealt with primarily as it yields a global nonlinear stability bound. The two models are shown to be mathematically adjoint and the nonlinear stability results compared with previously published linear ones. Good agreement between the two is seen. The effect of convection on the evolution of under-ice meltponds is investigated next. Linear and nonlinear analyses are employed to yield instability and global stability results respectively. Discrepancy between the two is found and the region of possible subcritical instabilities is presented. Finally convection in a porous medium is investigated via a cubic equation of state. It is found that unconditional nonlinear stability results can be established if Forchheimer theory is introduced. The results are compared to previously published linear ones and it is shown that the linear theory essentially captures the physics involved.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2003
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Aug 2012 11:36

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter