Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Thermoreponsive behaviour of AM(_2)O(_8) materials

Allen, Simon (2003) Thermoreponsive behaviour of AM(_2)O(_8) materials. Doctoral thesis, Durham University.

[img]
Preview
PDF
14Mb
[img]Archive (ZIP) (One CD)
21Mb

Abstract

This thesis investigates the synthesis and structural characterisation of AM(_2)O(_8) phases, many of which show negative thermal expansion (NTE); relevant literature is reviewed in Chapter One. Chapter Two describes the synthesis, structure solution, and mechanistic role of a new family of low-temperature (LT) orthorhombic AM(_2)O(_8) polymorphs (A(^TV) = Zr, Hf; M(^VI) = Mo, W). These materials are key intermediates in the preparation of cubic AM(_2)O(_8) phases from AM(_2)O(_7)(OH)(_2)(H(_2)O)(_2). The structure of LT-AM(_2)O(_8) has been elucidated by combined laboratory X-ray and neutron powder diffraction. Variable temperature X-ray diffraction (VTXRD) studies have shown LT- AM(_2)O(_8) phases exhibit anisotropic NTE. LT-ZrMo(_2)O(_8) has been shown to undergo spontaneous rehydration, allowing preparation of ZrMo(_2)O(_7)(OD)(_2)(D(_2)O)(_2) and assignment of D(_2)O/OD positions within the structure by neutron diffraction. Using this result, a reversible topotactic dehydration pathway from AM(_2)O(_7)(OH)(_2)(H(_2)O)(_2) to LT-AM(_2)O(_8)s is proposed.Chapter Three investigates the order-disorder phase transition with concurrent oxygen mobility in cubic AM(_2)O(_8) materials; studies include comprehensive VT neutron diffraction of cubic ZrMo(_2)O(_8) to reveal a static to dynamic transition at 215 K, and novel quench-anneal/quench-warm variable temperature/time diffraction experiments on ZrMo(_2)O(_8) which lead to an activation energy of 40 kJmol(^-1) for oxygen migration. In Chapter Four (^17)O-labelled cubic ZrW(_2)O(_8) has been prepared to understand the oxygen migration process by VT MAS NMR. In situ hydrothermal studies of cubicZrMo(_2)O(_8) using synchrotron radiation have shown direct hydration to ZrMo(_2)O(_7)(OH)(_2)(H(_2)O)(_2).. In Chapter Five VTXRD of trigonal a-AMo(_2)O(_8) phases reveals a previously unknown second-order phase transition at 487 K (A = Zr) or 463 K (A = Hf) from P31c to P3ml. Rigid-body Rietveld refinements have shown this is due to alignment of apical Mo-O groups with the c axis in the high-temperature, a' phase.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2003
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Aug 2012 11:35

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter