Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Studies of electron transfer in self-assembled monolayers and bilayer lipid membranes

CAMPOS, RUI (2012) Studies of electron transfer in self-assembled monolayers and bilayer lipid membranes. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
83Mb

Abstract

The work presented on this thesis is focused on studies of the kinetics of electron transfer in bilayer lipid membranes (BLMs). Three different types of BLM were studied: i) tethered, ii) pore suspended (commonly known as ‘black’) and iii) based on the avidin – biotin interaction (these are part of the wider group of polymer cushioned BLMs).
In order to produce tethered BLMs (tBLMs) of the best quality possible, self – assembled monolayers (SAMs) of a thiolipid (1,2 dipalmitoyl-sn-glycero-phosphothioethanol (DPPTE)) and of the same thiolipid mixed with L α phosphatidylcholine (EggPC) were characterised and their behaviour compared to that of SAMs of two alkanethiols (1 – heptanethiol and 1 – dodecanethiol). The SAMs that were formed by a mixture of lipids (DPPTE+EggPC) presented better kinetic parameters and were the chosen to produce tBLMs.
Tethered BLMs were made by using the SAM described above as the lower leaflet; the second leaflet was deposited by vesicle fusion, the vesicles were made of EggPC. tBLMs are commonly used as model membranes, however in biophysical studies free-standing membranes or ‘black’ lipid membranes are more realistic models of cellular processes. The rates of electron transfer in both types of bilayer lipid membranes are compared. These BLMs were modified using two very important mitochondrial membrane associated molecules – ubiquinone-10 (UQ10) and α-tocopherol (VitE). The studies involved the use three redox couples, Fe(CN)_6^(3-/4-), Ru(NH_3 )_6^(3+/2+) and NAD+/NADH using cyclic voltammetry and electrochemical impedance spectroscopy. The NAD+/NADH couple is of particular interest as it is the key to several important biochemical processes.
The last type of BLM that was studied was the BLMs based on the avidin – biotin interaction. Avidin was deposited on a platinum surface by electrodeposition and then vesicles composed of EggPC and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (sodium salt) (DOPE(B)) are burst by applying +0.7V (vs. Ag/AgCl, KCl 3.5M), leading to the formation of a supported BLM. The vesicles used had methylene blue (MB) inside; its release, when the vesicles burst, was monitored by cyclic voltammetry and UV-Vis. The kinetic parameters were determined based on the EIS measurements using Fe(CN)_6^(3-/4-) and Ru(NH_3 )_6^(3+/2+) as redox couples.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:self-assembled monolayer, bilayer lipid membrane, cyclic voltammetry, electrochemistry, electrochemical impedance spectroscopy
Faculty and Department:Faculty of Science > Chemistry, Department of
Thesis Date:2012
Copyright:Copyright of this thesis is held by the author
Deposited On:03 Jul 2012 10:58

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter