Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

The effect of fluorine substituents in conjugated polymers

Lӧvenich, Peter Wilfried (2001) The effect of fluorine substituents in conjugated polymers. Doctoral thesis, Durham University.

[img]
Preview
PDF
5Mb

Abstract

A new route to a well-defined block copolymer with alternating PEO-solubilising groups and fluorinated distyrylbenzene units was established. The Horner Wittig reaction was used as the polycondensation reaction. The non-fluorinated analogue of this block copolymer was prepared via the Wittig reaction. Both polymers were soluble in chloroform and free-standing films could be cast from solution. The position of the HOMO and LUMO energy levels of these two materials were determined by a combination of cyclic voltammetry, UV photoelectron spectroscopy and UV/Vis absorption spectroscopy. The presence of fluorine substituents on the distyrylbenzene unit had no influence on the HOMO-LUMO band-gap (3.0 eV). However, the position of these two energy levels relative to the vacuum level was shifted to higher energies (0.85 eV shift) in the case of the fluorinated block copolymer. The photoluminescence quantum efficiency of the fluorinated block copolymer was 17%, that of the non-fluorinated block copolymer was 34%. The former was used as the electron conducting layer in a light emitting diode with poly(p-phenylene vinylene) as the emissive layer. The latter was used as the emissive layer in light emitting diodes. Luminances over 2000 cd/m(^2) were observed for devices based on the non-fluorinated block copolymer using indium tin oxide as the anode and aluminium as the cathode. The luminescence efficiency of such devices was as high as 0.5 cd/A, corresponding to an internal quantum efficiency of 1.1%.Furthermore, an oligo(p-phenylene vinylene) was synthesised that contained two terminal fluorinated benzene rings and two central non-fluorinated benzene rings, all connected by vinylene bridges. This material aggregated in a 'brickwall' motif, where each molecule overlaps with two halves of molecules in the row above and below. The structure of this J aggregate is due to aryl-fluoroaryl-interactions and was demonstrated by X-ray crystal structure analysis.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2001
Copyright:Copyright of this thesis is held by the author
Deposited On:26 Jun 2012 15:25

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter