Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

ELECTROCHEMICAL ANALYSIS SUPPORTED BY MACRO AND MICROELECTRODE ARRAY

DELCOURT-LANCON, ALICE (2011) ELECTROCHEMICAL ANALYSIS SUPPORTED BY MACRO AND MICROELECTRODE ARRAY. Doctoral thesis, Durham University.

[img]
Preview
PDF (PhD Thesis Alice Delcourt Lancon Dpt. of Chemistry) - Accepted Version
5Mb

Abstract

The purpose of this project was to investigate cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analytical techniques for enantioselective sensing at both a macroelectrode and a microelectrode array. The scale of the electrochemical cell was reduced from macro to micro dimensions to improve both the electroanalytical detection and the efficient use of chemicals. A microdevice was fabricated using photolithography and plasma bonding and consisting of a microelectrode array (MEA) of 306 microelectrodes, each with a diameter of 45 µm supported by a polydimethylsiloxane (PDMS) slab engraved with microfluidic channels. The electroanalytical performances of the microdevice were characterised using cyclic voltammetry and it was established that the metallisation process influenced the surface roughness of the electrode, and also affected the final response of the array. The microdevice was used for flow injection analysis using chronoamperometry and provided the capability to detect small changes of analyte concentration. The selective electro-oxidation of phenylethanol catalysed by TEMPO and (-)-sparteine at a macroelectrode and MEA was investigated. The CV analysis showed a reproducible selective oxidation in favour of the (-)-phenylethanol enantiomer. The performances of the electrodes were enhanced to improve their enantioselective capability, and to extend their application to biosensors by functionalising their surface with Self-Assembled Monolayers (SAM). The electrodes were modified with glutathione and cysteine chiral molecules to investigate their ability to recognise the proline enantiomers using EIS analysis. The electron transfer rate of the ferricyanide analyte at the cysteine monolayer was less in the presence of D proline than it was in the presence of L-proline, indicating the selective penetration of the enantiomer through the monolayer. The properties of the macroelectrode and MEA were extended to biological applications by modifying their surfaces with thiolated single stranded DNA.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Keywords:Electroanalysis, Enantioselectivity, Microelectrode Array, Microfabrication, Phenylethanol, Proline, Self Assembled Monolayer, Impedance Spectroscopy
Faculty and Department:Faculty of Science > Chemistry, Department of
Thesis Date:2011
Copyright:Copyright of this thesis is held by the author
Deposited On:28 May 2012 11:45

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter