We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Dependability analysis of web services

Looker, Nik (2006) Dependability analysis of web services. Doctoral thesis, Durham University.



Web Services form the basis of the web based eCommerce eScience applications so it is vital that robust services are developed. Traditional validation and verification techniques are centred around the concept of removing all faults to guarantee correct operation whereas Dependability gives an assessment of how dependably a system can deliver the required functionality by assessing attributes, and by eliminating threats via means attempts to improve dependability. Fault injection is a well-proven dependability assessment method. Although much work has been done in the area of fault injection and distributed systems in general, there appears to have been little research carried out on applying this to middleware systems and Web Services in particular. There are additional problems associated with applying existing fault injection technologies to Web Services running in a virtual machine environment since most are either invasive or work at a machine level. The Fault Injection Technology (FIT) method has been devised to address these problems for middleware systems. The Web Service-Fault Injection Technology (WS-FIT) implementation applies the FIT method, based on network level fault injection, to Web Services to create a non-invasive dependability assessment method. It allows targeted perturbation of Web Service RFC parameters as well as more traditional network level fault injection operations. The WS-FIT tool includes taxonomies that define a system under test, fault models to apply and failure modes to be detected, and uses these taxonomies to generate fault injection campaigns. WS-FIT has been applied to a number of case studies and has successfully demonstrated its effectiveness. It has also been successfully applied to a third-party system to evaluate dependability means. It performed this dependability assessment as well as allowing debugging of the means to be undertaken uncovering unknown faults.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2006
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Sep 2011 09:56

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter