We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham e-Theses
You are in:

Localised conduction electrons in carbon nanotubes and related structures

Watson, Michael J. (2005) Localised conduction electrons in carbon nanotubes and related structures. Doctoral thesis, Durham University.



Single localized polaron (quasiparticle) States are considered in structures relating to carbon nanotubes. The hamiltonian is derived in the tight-binding approximation first on a hexagonal lattice and later on a general carbon nanotube with specifiable chirality, and shares close links with the Davydov model of excitations of a one-dimensional molecular chain. First-order interactions of the lattice degrees of freedom with the electron on-site and exchange terms are included. The system equations are shown, under certain approximations, to share a close relationship with the nonlinear Schrödinger equation - an equation that is known to possess localised solutions. The ground state of system is investigated numerically and is found to depend crucially upon the strengths of the electron-phonon interactions.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2005
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Sep 2011 09:54

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter