Durham e-Theses
You are in:

Localised conduction electrons in carbon nanotubes and related structures

Watson, Michael J. (2005) Localised conduction electrons in carbon nanotubes and related structures. Doctoral thesis, Durham University.

[img]
Preview
PDF
4Mb

Abstract

Single localized polaron (quasiparticle) States are considered in structures relating to carbon nanotubes. The hamiltonian is derived in the tight-binding approximation first on a hexagonal lattice and later on a general carbon nanotube with specifiable chirality, and shares close links with the Davydov model of excitations of a one-dimensional molecular chain. First-order interactions of the lattice degrees of freedom with the electron on-site and exchange terms are included. The system equations are shown, under certain approximations, to share a close relationship with the nonlinear Schrödinger equation - an equation that is known to possess localised solutions. The ground state of system is investigated numerically and is found to depend crucially upon the strengths of the electron-phonon interactions.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2005
Copyright:Copyright of this thesis is held by the author
Deposited On:09 Sep 2011 09:54

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter