Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Manipulation of ultracold atoms using magnetic and optical fields

Pritchard, Matthew J. (2006) Manipulation of ultracold atoms using magnetic and optical fields. Doctoral thesis, Durham University.

[img]
Preview
PDF
7Mb

Abstract

The loading and guiding of a launched cloud of cold atoms with the optical dipole force are theoretically and numerically modelled. A far-off resonance trap can be realised using a high power Gaussian mode laser, red-detuned with respect to the principal atomic resonance (Rb 5s-5p). The optimum strategy for loading typically 30% of the atoms from a Magneto optical trap and guiding them vertically through 22 cm is discussed. During the transport the radial size of the cloud is confined to a few hundred microns, whereas the unconfined axial size grows to be approximately 1 cm. It is proposed that the cloud can be focused in three dimensions at the apex of the motion by using a single magnetic impulse to achieve axial focusing. A theoretical study of six current-carrying coil and bar arrangements that generate magnetic lenses is made. An investigation of focusing aberrations show that, for typical experimental parameters, the widely used assumption of a purely harmonic lens is often inaccurate. A new focusing regime is discussed: isotropic 3D focusing of atoms with a single magnetic lens. The baseball lens offers the best possibility for isotropically focusing a cloud of weak-field-seeking atoms in 3D.A pair of magnetic lens pulses can also be used to create a 3D focus (the alternate-gradient method). The two possible pulse sequences are discussed and it is found that they are ideal for loading both 'pancake' and 'sausage’ shaped magnetic/optical microtraps. It is shown that focusing aberrations are considerably smaller for double-impulse magnetic lenses compared to single- impulse magnetic lenses. The thesis concludes by describing the steps taken towards creating a 3D quasi- electrostatic lattice for 85Ilb, using a CՕշ laser. The resulting lattice of trapped atoms will have a low decoherence, and with resolvable lattice sites, it therefore provides a useful system to implement quantum information processing.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2006
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Sep 2011 18:30

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter