Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Moduli of symplectic bundles over curves

Hitching, George H. (2005) Moduli of symplectic bundles over curves. Doctoral thesis, Durham University.

[img]
Preview
PDF
3191Kb

Abstract

Let Х be a complex projective smooth irreducible curve of genus g. We begin by giving background material on symplectic vector bundles and principal bundles over X and introduce the moduli spaces we will be studying, In Chapter 2 we describe the stable singular locus and semistable boundary of the moduli space Mx(Sp2 C) of semistable principal Sp2 C-bundles over X. In Chapter 3 we give results on symplectic extensions and Lagrangian subbundles. In Chapter 4, we assemble some results on vector bundles of rank 2 and degree 1 over a curve of genus 2, which are needed in what follows. Chapter 5 describes a generically finite cover of Aix(Sp2C) for a curve of genus 2. In the last chapter, we give some results on theta-divisors of rank 4 symplectic vector bundles over curves: we prove that the general such bundle over a curve of genus 2 possesses a theta-divisor, and characterise those stable bundles with singular theta-divisors. Many results on symplectic bundles admit analogues in the orthogonal case, which we have outlined where possible.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2005
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Sep 2011 18:30

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter