Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Measurement and modelling of spectrum occupancy

Wang, Zhe (2009) Measurement and modelling of spectrum occupancy. Doctoral thesis, Durham University.

[img]
Preview
PDF
5Mb

Abstract

Based on the conception of spectrum sharing, cognitive Radio as a promising technology for optimizing utilization of the radio spectrum has emerged to revolutionize the next generation wireless communications industry. In order to adopt this technology, the current spectrum allocation strategy has to be reformed and the real spectrum occupancy information has to be systemically investigated. To assess the feasibility of cognitive radio technology, the statistical information of the present spectral occupancy needs to be examined thoroughly, which forms the basis of the spectrum occupancy project. We studied the 100-2500 MHz spectrum with the traditional radio monitoring systems whose technical details have been fully recorded in this thesis. In order to detect the frequency agile signals, a channel sounder, which is capable of scanning 300 MHz spectrum within 4 ms with multiple channel inputs, was used as a dedicated radio receiver in our measurements. The conclusion of the statistical information from the spectrum monitoring experiments shows that the spectrum occupancy range from 100-2500 MHz are low indeed in the measuring locations and period. The average occupancies for most bands are less than 20%. Especially, the average occupancies in the 1 GHz to 2.5GHz spectrum are less than 5%. Time series analysis was initially introduced in spectrum occupancy analysis as a tool to model spectrum occupancy variations with time. For instance, the time series Airline model fits well the GSM band occupancy data. In this thesis, generalized linear models were used as complementarily solutions to model occupancy data into other parameters such as signal amplitude. The validation of the direction of arrival algorithms (EM and SAGE) was verified with the anechoic chamber, by which we can determine the spectrum occupancy in space domain.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Thesis Date:2009
Copyright:Copyright of this thesis is held by the author
Deposited On:08 Sep 2011 18:23

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter