Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Recognizing Human-Object Interactions in Videos

ALMUSHYTI, MUNA,IBRAHIM,M (2023) Recognizing Human-Object Interactions in Videos. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
25Mb

Abstract

Understanding human actions that involve interacting with objects is very important due to the wide range of real-world applications, such as security surveillance and healthcare. In this thesis, three different approaches are presented for addressing the problem of human-object interactions (HOIs) recognition in videos.
Firstly, we propose a hierarchical framework for analyzing human-object interactions in a video sequence. The framework comprises Long Short-Term Memory (LSTM) networks that capture human motion and temporal object information independently. These pieces of information are then combined through a bilinear layer and fed into a global deep LSTM to learn high-level information about HOIs. To concentrate on the key components of human and object temporal information, the proposed approach incorporates an attention mechanism into LSTMs.
Secondly, we aim to achieve a holistic understanding of human-object interactions
(HOIs) by exploiting both their local and global contexts through knowledge
distillation. The local context graphs are used to learn the relationship between
humans and objects at the frame level by capturing their co-occurrence at a specific time step. On the other hand, the global relation graph is constructed based on the video-level of human and object interactions, identifying their long-term relations throughout a video sequence. We investigate how knowledge from these context graphs can be distilled to their counterparts to improve HOI recognition.
Lastly, we propose the Spatio-Temporal Interaction Transformer-based (STIT)
network to reason about spatio-temporal changes of humans and objects. Specifically, the spatial transformers learn the local context of humans and objects at specific frame times. The temporal transformer then learns the relations at a higher level between spatial context representations at different time steps, capturing long-term dependencies across frames. We further investigate multiple hierarchy designs for learning human interactions.
The effectiveness of each of the proposed methods mentioned above is evaluated
using various video action datasets that include human-object interactions, such as Charades, CAD-120, and Something-Something V1.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Computer Science, Department of
Thesis Date:2023
Copyright:Copyright of this thesis is held by the author
Deposited On:11 Sep 2023 11:07

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter