Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Social Media Analysis for Social Good

ADURAGBA, OLANREWAJU,MOHAMMED,TAHIR (2023) Social Media Analysis for Social Good. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
3077Kb

Abstract

Data on social media is abundant and offers valuable information that can be utilised for a range of purposes. Users share their experiences and opinions on various topics, ranging from their personal life to the community and the world, in real-time. In comparison to conventional data sources, social media is cost-effective to obtain, is up-to-date and reaches a larger audience. By analysing this rich data source, it can contribute to solving societal issues and promote social impact in an equitable manner. In this thesis, I present my research in exploring innovative applications using \ac{NLP} and machine learning to identify patterns and extract actionable insights from social media data to ultimately make a positive impact on society.

First, I evaluate the impact of an intervention program aimed at promoting inclusive and equitable learning opportunities for underrepresented communities using social media data. Second, I develop EmoBERT, an emotion-based variant of the BERT model, for detecting fine-grained emotions to gauge the well-being of a population during significant disease outbreaks. Third, to improve public health surveillance on social media, I demonstrate how emotions expressed in social media posts can be incorporated into health mention classification using an intermediate task fine-tuning and multi-feature fusion approach. I also propose a multi-task learning framework to model the literal meanings of disease and symptom words to enhance the classification of health mentions. Fourth, I create a new health mention dataset to address the imbalance in health data availability between developing and developed countries, providing a benchmark alternative to the traditional standards used in digital health research. Finally, I leverage the power of pretrained language models to analyse religious activities, recognised as social determinants of health, during disease outbreaks.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Computer Science, Department of
Thesis Date:2023
Copyright:Copyright of this thesis is held by the author
Deposited On:04 Sep 2023 08:21

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter