YU, ZHENGDI (2023) 3D Representation Learning for Shape Reconstruction and Understanding. Masters thesis, Durham University.
| PDF (MRes thesis) - Accepted Version 52Mb |
Abstract
The real world we are living in is inherently composed of multiple 3D objects. However, most of the existing works in computer vision traditionally either focus on images or videos where the 3D information inevitably gets lost due to the camera projection. Traditional methods typically rely on hand-crafted algorithms and features with many constraints and geometric priors to understand the real world. However, following the trend of deep learning, there has been an exponential growth in the number of research works based on deep neural networks to learn 3D representations for complex shapes and scenes, which lead to many cutting-edged applications in augmented reality (AR), virtual reality (VR) and robotics as one of the most important directions for computer vision and computer graphics.
This thesis aims to build an intelligent system with dynamic 3D representations that can change over time to understand and recover the real world with semantic, instance and geometric information and eventually bridge the gap between the real world and the digital world. As the first step towards the challenges, this thesis explores both explicit representations and implicit representations by explicitly addressing the existing open problems in these areas. This thesis starts from neural implicit representation learning on 3D scene representation learning and understanding and moves to a parametric model based explicit 3D reconstruction method. Extensive experimentation over various benchmarks on various domains demonstrates the superiority of our method against previous state-of-the-art approaches, enabling many applications in the real world. Based on the proposed methods and current observations of open problems, this thesis finally presents a comprehensive conclusion with potential future research directions.
Item Type: | Thesis (Masters) |
---|---|
Award: | Master of Science |
Keywords: | 3D Reconstruction; Representation Learning; Implicit Representation; Hand Pose Estimation; Scene Understanding |
Faculty and Department: | Faculty of Science > Computer Science, Department of |
Thesis Date: | 2023 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 16 Aug 2023 15:04 |