ROSA-DE-ARAUJO, LUIZA (2018) Synthesis and structural characterisation of SnMo2O8. Doctoral thesis, Durham University.
| PDF - Accepted Version 109Mb |
Abstract
Tin molybdate (SnMoO) is a member of the well-known cubic AMO family of materials which are famous for displaying negative thermal expansion. Remarkably, SnMoO is the only member that shows the opposite behaviour and "normal" positive thermal expansion. It also shows more complex oxygen-ordering phases than other cubic AMO materials. In this thesis, we explore its synthesis, phase transitions and the local structures of each known phase. We hope that studying this NTE counter-example will help us and others to gain a better understanding of how the negative thermal expansion phenomenon occurs in this family, and how it might be exploited in applications.
Chapter 1 reviews the basic ideas and concepts related to thermal expansion and describes materials that display the counter-intuitive negative thermal expansion property. Particular emphasis is given on the AMO family of materials which is of relevance to the materials studied in this thesis.
Chapter 2 describes the characterisation techniques used to investigate the materials studied in this project.
Chapter 3 discusses the synthesis of SnMoO using a precursor and a gas-solid method. The precursor method was investigated in detail and optimum conditions to obtain large samples of SnMoO were found. This allows large quantities of bulk materials to be prepared for the first time. This in turn enables some of the experiments to probe and understand its properties described in later chapters. One significant feature of the work is the difficulty in reproducibility performing chemically-controlled routes to a metastable phase.
Chapter 4 investigates the conversion of the amorphous precursor obtained via the precursor method of Chapter 3 into cubic SnMoO. Reports on the crystallisation of amorphous precursors of SnO, MoO, SnZrMoO and ZrMoO are also given. The amorphous phase is not a simple mixture of its amorphous constituent oxides. We follow key changes in local coordination from precursor to crystalline material using PDF methods. Moreover, the conversion is kinetically controlled, and thus temperature and time are key parameters in order to obtain the cubic phases instead of other polymorphs in the AMO family. Finally, a methodology for enriching SnMoO samples with O is reported for the first time.
Chapter 5 investigates the kinetics of phase transformation from to -SnMoO for materials prepared via the precursor and gas-solid methods under different temperatures at ambient pressure. Understanding this process helps us understand the origins of controllable negative, zero and positive thermal expansion in the SnMoO family.
Chapter 6 reports the phase behaviour and thermoelastic properties of SnMoO, derived from variable temperature and pressure synchrotron powder diffraction data. The bulk modulus and the pressure dependence of the thermal expansion for each known phase of SnMoO are reported. We report the counter-intuitive property of warm hardening for the high-temperature phase.
Chapter 7 investigates the differences in the local structures of the different phases of SnMoO by means of total scattering analysis using the reverse Monte Carlo method. The difference in the local structures of each phase is used to explain and rationalise the behaviour of all SnMoO phases. Overall, SnMoO behaves as a quasi-rigid unit structure with highly rigid MoO tetrahedra and less rigid SnO octahedra. The local structure of room-temperature phase deviates heavily from its average structure.
Chapter 8 summarises the work discussed in the previous chapters.
Item Type: | Thesis (Doctoral) |
---|---|
Award: | Doctor of Philosophy |
Keywords: | Negative thermal expansion; Tin molybdate; AM2O8 materials; Diffraction, Total scattering; Rietveld refinement; Pair distribution function; |
Faculty and Department: | Faculty of Science > Chemistry, Department of |
Thesis Date: | 2018 |
Copyright: | Copyright of this thesis is held by the author |
Deposited On: | 13 Sep 2018 12:27 |