Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

Paper-based Screen-printed Passive Electronic Components

SHENTON, SAMANTHA,ANN (2018) Paper-based Screen-printed Passive Electronic Components. Doctoral thesis, Durham University.

[img]
Preview
PDF
95Mb

Abstract

This thesis investigates paper-based electronics in terms of various substrates, fabrication methods and example devices, including touch sensors and microwave resonators. The term ‘paper’ is very broad and covers a wide range of substrates. A decision matrix has been created to determine the optimum paper for an application, based on a range of properties. Thermal evaporation and screen printing are compared for their use as fabrication methods for paper-based electronics and a second decision matrix has been compiled. Based on these decision matrices, screen printing onto a thicker matt paper was determined to be optimal. The printing process was further optimised to achieve the best results from the in-house process.

Using this well-developed screen-printing method, passive components (including inductors and interdigitated capacitive touch sensors) were fabricated and found to be comparable with state-of-the- art results reported in the literature. Measurements from the touch pads were compared to modelling, with little variation between the two, and were confirmed to work under a wide range of conditions, showing that they are compatible with any user.

The microwave characteristics, up to 3GHz, of both the chosen substrate and silver-flake ink were investigated through production of screen-printed transmission lines. These characteristics were then used to create microwave resonators. The frequency range is important for applications as the industrial, scientific and medical radio band (ISM band) lies between 2.45 and 2.55 GHz which includes Wi-Fi and Bluetooth. Initially, stub resonators were considered to determine the cause of differences between theoretical and measured results. Then spiral defected ground structures were made, with multiple resonances, and sensitivity to touch and humidity demonstrated.

As paper is hygroscopic, the effect of humidity on paper-based electronics is of key importance. This has been considered for all the devices fabricated in this work and it has been determined that the change in permittivity of the substrate, as a result of absorbed water within paper, is the most dominant factor.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Engineering, Department of
Thesis Date:2018
Copyright:Copyright of this thesis is held by the author
Deposited On:12 Jun 2018 12:42

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter