Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

On the combinatorics of quivers, mutations and cluster algebra exchange graphs

LAWSON, JOHN,WILLIAM (2017) On the combinatorics of quivers, mutations and cluster algebra exchange graphs. Doctoral thesis, Durham University.

[img]
Preview
PDF - Accepted Version
1534Kb

Abstract

Over the last 20 years, cluster algebras have been widely studied, with numerous links to different areas of mathematics and physics. These algebras have a cluster structure given by successively mutating seeds, which can be thought of as living on some graph or tree. In this way one can use various combinatorial tools to discover more about these cluster structures and the cluster algebras themselves.

This thesis considers some of the combinatorics at play here. Mutation-finite quivers have been classified, with links to triangulations of surfaces and semi-simple Lie algebras, while comparatively little is known about mutation-infinite quivers. We introduce a classification of the minimal types of these mutation-infinite quivers before studying their properties. We show that these minimal mutation-infinite quivers admit a maximal green sequence and that the cluster algebras which they generate are equal to their related upper cluster algebras.

Automorphisms of skew-symmetric cluster algebras are known to be linked to automorphisms of their exchange graphs. In the final chapter we discuss how this idea can be extended to skew-symmetrizable cluster algebras by using the symmetrizing weights to add markings to the exchange graphs. This opens possible opportunities to study orbifold mapping class groups using combinatoric graph theory.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Mathematical Sciences, Department of
Thesis Date:2017
Copyright:Copyright of this thesis is held by the author
Deposited On:05 May 2017 14:32

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter