Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham e-Theses
You are in:

"Whiter than white": interactions between optical brighteners and surfactants in detergents

RAMSEY, HELEN,ELIZABETH (2016) "Whiter than white": interactions between optical brighteners and surfactants in detergents. Doctoral thesis, Durham University.

Full text not available from this repository.
Author-imposed embargo until 31 May 2021.

Abstract

The interactions between an optical brightener and surfactants commonly found in laundry detergents were studied. Three techniques were used; fluorescence spectroscopy was used to determine the effect of the addition of surfactants on the rate of brightener deposition, while small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations were used to determine the effect of the brightener on the micellar structure pre-deposition. In addition, the effect of calcium ions on micellar structure was studied using these techniques. The effect of surfactant addition on CaCO3 crystallisation was also studied.
It was found that the addition of nonionic surfactants inhibited the deposition of brightener onto fabric surfaces, whereas the addition of anionic surfactants aided this deposition process. This was correlated to the micellar structures found using SAXS and MD simulations; the anionic surfactant system formed ellipsoidal structures, in which the brightener was incorporated onto the surface of the hydrocarbon core, whereas the nonionic surfactant formed spherical structures where the brightener was held within the outer shell, which appeared to hamper its ability to be deposited. In addition, the brightener was shown to affect micellar radius and aggregation number of the nonionic surfactant, in a manner similar to the addition of anionic surfactant to nonionic surfactant.
The addition of calcium ions at concentrations up to 0.36 g L-1 Ca2+ (for SAXS) and 0.77 g L-1 Ca2+ (for MD simulations) to nonionic and anionic surfactant systems was not seen to significantly affect their micellar structure, although a greater affinity was seen between the calcium and the anionic surfactant than between the calcium and the nonionic surfactant. The effect of the addition of surfactants on the rate of CaCO3 crystallisation and the polymorphs produced was determined.

Item Type:Thesis (Doctoral)
Award:Doctor of Philosophy
Faculty and Department:Faculty of Science > Chemistry, Department of
Thesis Date:2016
Copyright:Copyright of this thesis is held by the author
Deposited On:01 Jun 2016 11:02

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitter