

Durham E-Theses

The teaching of electronics in schools and further education: a case study in curriculum change

Hunter, Donald William

How to cite:

Hunter, Donald William (1985) The teaching of electronics in schools and further education: a case study in curriculum change, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9308/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

ABSTRACT OF CONTENTS

THE TEACHING OF ELECTRONICS IN SCHOOLS AND FURTHER EDUCATION: A CASE STUDY IN CURRICULUM CHANGE DONALD WILLIAM HUNTER B.Sc., Grad. F.R. Inst

This case study describes the development of Electronics within the curriculum in line with how both (Reid and Walker 1975, Case Studies in Curriculum Change) and (Goodson 1983, School Subjects and Curriculum Change) discussed changes in terms of theories of curriculum change.

Alternative definitions of the term innovation are reviewed and for the purpose of this study a definition is adopted which includes syllabus change and major changes of scale and strategy. The study gives an outline of the major theories of innovation and implementation strategy. Features of centralisation and rationalisation are described insofar as these features led to current educational initiatives. An account is given of how Electronics developed as a topic within 'A' level Physics, a subject within B.E.T.E.C. (previously Q.N.C./T.E.C.) and as a separate G.C.E. subject. Data on examination entries in G.C.E. and C.S.E. Electronics are presented. These data are related to the size of L.E.A.s, the type of centre, and also to explore the viability of G.C.E./G.C.S.E. provision in Electronics.

Initiatives such as M.E.P., T.V.E.I., C.P.V.E., S.S.C.R. are described as they are expected to have a significant impact on the growth of Electronics. The position of Electronics within the curriculum and its educational value are discussed. Comment is made on the Systems and Components approaches to Electronics and on the importance of project work. Teacher difficulties with project work are noted and suggestions are made on the use and range of equipment available so that a suitable teaching style may be developed.

THE TEACHING OF ELECTRONICS IN SCHOOLS AND FURTHER EDUCATION: A CASE STUDY IN CURRICULUM CHANGE

BY

DONALD WILLIAM HUNTER

submitted for M.A.(Ed) Degree

at

UNIVERSITY OF DURHAM SCHOOL OF EDUCATION

The copyright of this thesis rests with the author.

No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

1985

2

TABLE OF CONTENTS

		PAGE
L	ABSTRACT OF CONTENTS	1
2	TABLE OF CONTENTS	3
3	INTRODUCTION	12
1	INNOVATION	16
	INNOVATION: ALTERNATIVE DEFINITIONS MODELS OF INNOVATION THEORY.	17 19
	4.2.1 - Mort, Rogers, Clark and Guba, 4.2.6 Carlson, Williams and Watson. 4.2.7 Rogers and Shoesmith 4.2.8 Havelock 4.2.9 Schon 4.2.10 House	19 23 23 24 27 30
4.3	INDIVIDUAL PARTICPANTS WITHIN THE EDUCATIONAL MODEL	32
	4.3.1 The Local Government 4.3.2 The Public 4.3.3 The Innovators, Change-agents 4.3.4 The Head Teacher 4.3.5 The Teachers	32 36 37 39 44
4.4.	SURVEY OF IMPLEMENTATION STRATEGIES TO THE LATE 1970's	52
	4.4.1 Miles 4.4.2 Rogers and Shoesmith 4.4.3/4 Rudduck and Kelly 4.4.5 House 4.4.6/7 MacDonald and Walker 4.4.8 Pitman 4.4.9 Chin and Benne	52 54 54 56 56 58 59
4.5	CONCLUSION	62

		PAGE		
5	CENTRAL CONTROL AND RATIONALISATION	63		
5.1	FAILURE OF THE TRIPARTITE CONTROL OF THE CURRICULUM 1972 - 1977	64		
	5.1.1 Criticism of Education Provision	64		
	5.1.2 The 'undermining' of the L.E.A.s	66		
	5.1.3 The demise of the Schools Council 5.1.4 The Teacher's Status is weakened	68 71		
5.2	THE GREAT DEBATE AND IT'S AFTERMATH	72		
	5.2.1 The role of the D.E.S.	72		
	5.2.2 The Inspectorate	73		
	5.2.3 Criticism of the D.E.S.	74		
	5.2.4 The D.T.I. challenge to the D.E.S.	75		
	5.2.5. A Basis for Choice	77 78		
	5.2.6. National Policies 5.2.7 Recent changes	78 79		
5.3	RATIONALISATION OF EXAMINATIONS	80		
	5.3.1 The 16+ Examination debate	80.		
	5.3.2 The 16+ Provision	81		
	5.3.3 G.C.E. 'A' Level	82		
5.4	CONCLUSION	82		
6	ELECTRONICS IN THE SYLLABUS 84			
6.1	THE FORM OF THE CURRICULUM	85		
	6.1.1 The view of the sociologists	85		
	6) 2 - Dhonist Wisch Toxtlow	85		
	6.1.2 - Filentik, Hirst, Taylor, 6.1.6 Eggleston and Holt 6.1.7 Action and Interaction Concept	87 88		
6.2	WHY ELECTRONICS SHOULD BE IN THE CURRICULUM	90		
6.3	ELECTRONIC SYLLABUSES AT '18+'			
	6.3.1 0.N.C. and T.E.C.	102		
	6.3.1 O.N.C. and T.E.C. 6.3.2 A.E.B. 'A' Level Electronic			
	Systems, 658	112		
	6.3.3 A.E.B. 'A' Level Electronics Endorsement, 810	121		
6.4	ELECTRONIC SYLLABUSES AT '16+'	124		
	6.4.1 A.E.B 'A' Level Electronics, 080	124		

		PAGE
	6.4.2 A teaching approach 6.4.3 Modification to A.E.B. 080 6.4.4 Project work 6.4.5 Analysis of A.E.B. 080 examination entries	126 128 129 132
6.5	ELECTRONICS SYLLABUSES AT '17+'	133
	6.5.1 Courses available 6.5.2 London AO 813 6.5.3 J.M.B. Electronics AO 6.5.4 Oxford AO 8859 6.5.5 Analysis of AO entries	133 136 137 137
6.6	ELECTRONICS IN 'A' LEVEL G.C.E. PHYSICS SYLLABUS	139
	6.6.1 Nuffield Physics 6.6.2 J.M.B. Physics 6.6.3 London Physics 6.6.4 Summary	139 140 141 142
6.7	OTHER EXAMINATION BOARDS	. 143
	6.7.1 City and Guilds 6.7.2 C.S.E. and C.E.E. 6.7.3 Oxford Delagacy of Local Examinations 6.7.4 Cambridge Local Examination Syndicate 6.7.5 Craft, Design and Technology 6.7.6 AS Levels	143 143 144 145 146 148
6.8.	ANALYSIS OF ENTRIES	149
6.9	CONCLUSION	
	RECENT INITIATIVES IN EDUCATION RELEVANT TO ELECTRONICS	152
7.1	MODERN INNOVATION THEORY	15 2
	7.1.1 - Guba and Clark, Berg and Ostergen,7.1.4 House, and Miles	15 2 155
7.2	GENERAL FEATURES OF CURRICULUM CHANGE	156
7.3	MICROELECTRONICS EDUCATION PROGRAMME	15 7
	7.3.1 McMahon and Anderson 7.3.2 Aims of M.E.P. 7.3.3 Changed Scope of M.E.P.	15 7 15 8 159

7

				PAGE
		7.3.4 7.3.5 7.3.6 7.3.7 7.3.8	Teacher Training Information Dissemination	160 160 167 169 169
		7.3.9	Conclusion	171
	7.4	SECONDA	RY SCIENCE CURRICULUM REVIEW	172
	7.5	TECHNICAL AND VOCATIONAL EDUCATION INITIATIVE		
			Aims of T.V.E.I. Sunderland T.V.E.I. Electronics General Comment	176 178 179
	7.6	GENERAL CERTIFICATE OF SECONDARY EDUCATION		182
		7.6.1 7.6.2 7.6.3	Examianing groups Proposals re Electronics Potential Strength of Examining Groups	182 183 185
	7.7	CERTIFIC	CATE OF PREVOCATIONAL EDUCATION	187
	7.8	7.8 OTHER INITIATIVES		
		7.8.1 7.8.2 7.8.3 7.8.4	Southern Regional "Course of Prevocational Study at 17+" Y.T.S. I.T.E.C. Centres Open Learning	191 191 192 192
	7.9	CONCLUS	ION	192
8		THE PRO	VISION AND USE OF RESOURCES	194
	8.1	A PLACE FOR ELECTRONICS IN THE CURRICULUM		195
		8.1.1 8.1.2 8.1.3	In Physics In C.D.T. Servicing role	195 199 200
	8.2	TEACHERS' PROBLEMS		
	8.3	ASPECTS	OF SAFETY	202
		8.3.2	Electric Shock E.L.C.B.s Transformers	202 203 204

		PAGE
	8.3.4 Power supplies 8.3.5 Other hazards	204 205
8.4	LABORATORY EQUIPMENT	208
	8.4.1 Analogue and digital meters 8.4.2 Matching 8.4.3 Scales, overloading 8.4.4 C.R.O., general comment 8.4.5 Ring Oscillator, C.R.O. frequency limits 8.4.6 C.R.O., use of probes	208 210 212 212 213 214
8.5	PROGRAMMABLE AND MEMORY DEVICES 8.5.1 V.E.L.A. 8.5.2 M.E.P. Analogue Sensor Manual 8.5.3 BBC B, experiments 8.5.4 ZX81 and SPECTRUM, experiments 8.5.6 Alternatives and costs	216 218 218 218 221 222
8.6	USE OF SIMPLE COMPONENTS	223
8.7	JOURNALS AND TEXT-BOOKS	225
8.8	CONCLUSION	227
	CONCLUSION	228

9

Diagrams, Graphs and Maps

			PAGE
Diagram	4.1	Carlson: S-shape adoption	19
Diagram	6.1	Taylor: 'total intended curriculum' in matrix form	87
Diagram	6.2	Driver and Worsley: representation of curriculum	87
Diagram	6.3	Eggleston : re-structured perspective of curriculum	87
Diagram	6.4	Transistor configurations discussed by Cuthbert	I24
Diagram	6.5	Non-Inverting Op-Amp: Notes for Guidance	124
Diagram	6.6	Non-Inverting Op-Amp: Lovelace	I24
Diagram	7.1	A.S.E. 14 - 19 Sub-committee: The Curriculum Influences - 14 to 18	I5 7
Diagram	8.1	Test Circuit for Mains Socket (8.3.3)	205
Diagram	8.2	Summing Op-Amp (8.5.1)	205
Diagram	8.3	Op-Amp feedback configurations (8.5.2)	2I I
Diagram	8.4	Ring Oscillator (8.5.5)	213
Diagram	8.5	Representation of C.R.O	213
		(a) normally(b) with alternatives(c) with capacitive loading(8.5.6)	

PAGE

Graph	6.1	A.E.B. 'A' Level Electronic Systems and Electronics Endorsement. Number of Entrants against Year of Examination	119
Graph	6.2	A.E.B. '0' Level Electronics. Number of Entrants against year of Examination.	I24
Graph	6.3	Total number of AO Entrants against Year of Examination	138
Graph	6.4	Number of Centres, taking G.C.E. Electronics against the L.E.A. population	150
Graph	6.5	Number of Entrants taking G.C.E. Electronics against the L.E.A. population	I 50
Graph	6.6	Number of Entrants taking G.C.E. Electronics against the L.E.A. population for GREATER LONDON BOROUGHS and TYNE & WEAR.	150
Graph	8.1	Total Circulation figures for Electronics Journals shown in Table 8.1 against Year of Sale (Excluding Sinclair User)	225
Мар	6.1	Location of Centres for the A.E.B. '0' Level Electronics, 080	I32
Map	6.2	Location of Centres for the Cambridge '0' Level Electricity and Electronics, 7060	I32
Map		Location of Centres for the J.M.B. 'AO' Level Electronics	I 36
Мар	6.4	Location of Centres for the London 'AO' Level Electricity and Electronics, 813	I 36

			PAGE
Мар	6.5	Location of Centres for the Oxford and Cambridge 'AO' Level Electronics, 8670	I36
Йар	6.6	Location of Centres for the Oxford 'AO' Level Electricity and Electronics, 850	136
Map	6.7	Location of Centres for the J.M.B. Section E, Electronics of the 'A' Level Physics	140
Мар ∽	6.8	Location of Centres for the A.E.B. 'A' Level Electronics Endorsement, 810	I22
Map -	6.9	Location of Centres for the A.E.B. 'A' Level Electronic Systems, 658.	II7
Table	6.I	Tables of Centre Entries A	ppendix
Table	6.2	Examination Boards and Number of Entrants with Year of Examination	133
Table	6.3	Details of 'AO' Electronics Examinations	I 38
Table	7.I	Approximate Totals for G.C.S.E./G.C.E. Electronics Examinations at I6+, I7+, I8+	184
Table	7.2	S.S.C.R. Electronics Initiatives	174

APPENDIX

- 1. C.P.V.E., Category: Technical Services.
- 2. Ordinary National Certificate. Basic and Elective Physics Syllabuses.
- 3. T.E.C. Electronic Systems Levels II and III.
- 4. List of Abbreviations used.
- 5. Plastics Institute: call for papers.
- 6. Details of relevant journals.
- 7. Reference sources of electronics journals.
- 8. U.S.A. addresses.
- 9. Assessment scheme for project work: Armstead. D.E.F.
- 10. M.E.P.: Reasons for Electronics in the Curriculum.
- 11. A.E.B. (080 Notes for Guidance) Addendum.
- 12. Safety: The use of E.L.C.B.s and Transformers.
- 13. A.E.B. 080 '0' level Electronics Syllabus and Notes for Guidance.
- 14. A.E.B. 658 'A' level Electronic Systems Syllabus and Notes for Guidance.
- 15. Centre entry lists.
- 16. Bibliography.

SECTION 3. INTRODUCTION AND ACKNOWLEDGEMENTS

This case study describes the development of Electronics as a subject within the curriculum relating this development to the theory of innovation, implementation strategy and rationalisation of educational provision. This interpretation is in line with both (Reid and Walker 1975), and (Goodson 1983) and the manner in which they discussed changes in terms of theories of curriculum change.

The study reflects my own views formed on the basis of my experience as a lecturer in Physics and Electronics. During the last eighteen year, I have taught Electronics to several different courses vis: O.N.C., T.E.C., G.C.E. 'O', 'A', and Endorsement. In this time, I have been involved with O.N.C., T.E.C. Mode 3 type assessment, and as an Assistant Examiner A.E.B. 'A' level Electronics Systems and Project Moderator A.E.B. 'O' level Electronics.

Throughout the study the term Electronics is used to embrace transistors, I.C.'s, microprocessors etc., rather than the term Microelectronics as the latter term is too frequently immediately equated with Computing, programming and key-board skills. The abbreviations commonly used and given in the study are summarised in the Appendix.

Within the scope of the case study, there was insufficient space

to consider computer assisted learning, simulation of processes, C.D.T. etc., and it is recognised that features such as growth in C.D.T. and Computer Science may be significant in terms of the statistics developed.

As the study was restricted to the regions covered by the Microelectronics Education Programme (M.E.P.) the statistics omit Scotland, the Channel Isles, and Overseas Centres. Also Independent Schools were omitted from the data when L.E.A.'s were compared as the activities of such schools is not affected by L.E.A. policy. It is expected that there will be some minor errors as some data may refer to provisional entrants rather than Where the number of entrants for to actual entrants. centre was not specified an average figure was assumed; as the Boards concerned involved small number of candidates usually within a limited geographical area the effect of averaging is considered insignificant on the final graphs.

The copyright of this thesis rests with the author. No quotations from it should be published without his prior written consent and information derived from it should be acknowledged.

ACKNOWLEDGEMENTS

I wish to acknowledge the assistance given by the many Examination Boards who kindly provided the data collated in the Appendix, especially the University of London Schools Examination Council and the Associated Examining Board for the access provided to data. In this context the conclusions drawn from the use of the data, also the ideas and opinions expressed are those of the writer and not the Examination Boards.

Thanks are also due to the Audit Bureau of Circulation limited by Guarantee for the circulation figures which they kindly provided, the conclusions drawn from the use of the data are those of the writer.

I would like to express my thanks to many people who discussed with me their experiences and opinions of Electronics within the curriculum, provided literature etc. Although it may be invidious to name only a few, special thanks are due to:

Mr. A. Ashman for his advice on the style and scope of the case study.

Mr. G.W. Pilliner, and Mr. R.J. Hughes for their many comments.

Mr. J. Mee for allowing me access to data which he had collected.

The library staff at both the School of Education, and Monkwearmouth C.F.E. who assisted me in obtaining journals, texts etc.

Ann Smith who typed the thesis; my sister June Gustard who corrected the proofs; and to my wife, Marjorie, for her patience while I filled the house with paper.

SECTION 4: INNOVATION

Several alternative definitions of the term 'innovation' which are relevant to the scope of this thesis are considered. The emerging themes of innovation from the 1930s are then described leading to detailed accounts of the themes which were given about 1970 by Rogers and Shoesmith, Havelock, Schon and House. The themes are followed by a consideration of some of the many factors which influence the attitudes of Local Government, Public, Teachers etc. to innovation. The Section concludes with a review of the various implementation strategies described in the literature to take account of the various attitudes so that an innovation may be successfully achieved.

"The price of the employment of models is eternal vigilance" R. B. Braithwaite, p93, <u>Scientific Explaining</u> (Cambridge University Press 1953)

4.1 INNOVATION Alternative Definitions

- 4.1.1 Literature reviews such as those of (Dalin 1973) and 33-41) showed that in defining the Nicholls 1983. there were conflicting views involving concepts of 'innovation' scale and control. (Miles 1964, 14) limited the scope for the his book: "it would seem helpful to consider purpose of innovation as being willed and planned for rather than occurring haphazardly"; (Rudduck and Kelly 1976, 11) wrote of a "deliberate attempt to improve practise in relation to schools". Вy excluding haphazard changes, such as those which occur despite attention was focussed on those deliberate changes, legislation, which are conscious practices, presumably capable of control. (Nicholls 1983, 4-6) reviewed alternative definitions of the term 'innovation' and she submitted: "An innovation is an idea, object, practise perceived as new by an individual which is intended to bring about improvement in relation to desired objectives, which is fundamental in nature, and which is planned and deliberate."
- (House 1979,1) quoted R.G. Paulston "Innovation is 4.1.2 relatively isolated technical or programmable viewed as low level change whereas reform involves alteration or normative notional and broad structural change." In doing House touched upon his earlier work: (House 1974, 57-58) and to

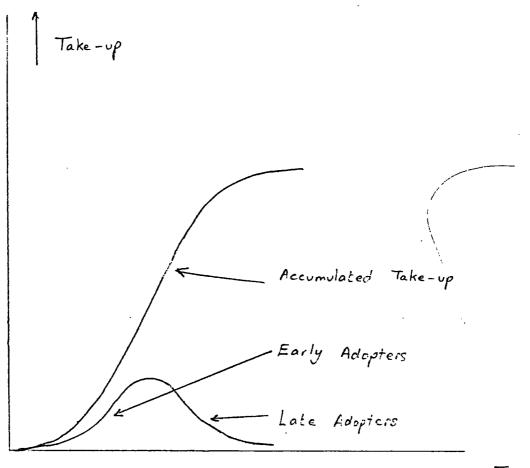
the two types of innovation identified by Norman: the variation and the re-orientation. The variation requires no drastic shifts within the existing framework, whereas re-orientation involves "new goals, new values, new, as well as realigned, power structure, and shift in cognitive structure." The re-orientative innovations make it more necessary "to gain resources politically, support skills technically, propogate new values emotionally, and teach new cognition intellectually."

(Rich 1981, 2-39) also made a distinction in the terms innovation and reform. He distinguished between two types of reformer: involving curricula (Sic) programmes programmable, and innovation; systematic, involving authority relationships, power Rich stated a "programmatic reformer" is an and resources. much more, and described innovator and an "Innovative Establishment Educator" as someone who accepting what is best in the existing system believed "when problems arise innovations should be introduced and effectively implemented."

For the purposes of this study innovations are considered to be:

New or improved practices deliberately brought about by

individuals acting either in the role of teacher or of


administrator. These changes include 'the variation' seen as a

syllabus change and 'the re-orientation' seen as a major change

of scale and strategy.

4.2 MODELS OF INNOVATION THEORY

- Early work on education innovation was carried out by Mort at Columbia University in the late 1930's. (Hoyle 1969, 383) wrote "Mort's studies were focussed on financial rather than sociological variables." In this work Mort made a comparison with agricultural innovations and he observed a considerable time lag for the widespread adoption of new educationbal ideas. then the rate of educational innovations has accelerated: typically (Marsh 1964, 249) stated that the P.S.S.C. Project adoption time, 1956 - 1963, "Makes a shambles of Mort's earlier schedule of curriculum innovation"; (Rogers and Shoesmith 1971, 60) made a similar point by reference to Driver Training 1930's -1950's, and Modern Math, 1950's - 1960's. (Mort 1964) himself had forecast that as earlier ideas were assimilated a faster rate of development would occur. His awareness of assimilation was shown when he wrote (p.324) "Not all innovations spring fully armed from the brow of some Jove. Some of them are old strands in new patterns."
- 4.2.2 Following the contribution of Mort several other writers made early contributions to innovation theory:
- i) The 'Modern Math' was investigated by (Carlson 1965) who replaced Mort's financial approach with a sociological one. (Carlson 1965, 5) saw an innovation as having a life cycle: adoption, diffusion and unanticipated consequences. He suggested a step-flow mechanism with an S-curve adoption similar to that of a chain mechanism. (Diagram 4.1)

-> Time

- ii) When making his first contribution (Rogers 1962) proposed stages of awareness, interest, evaluation, trial and adoption in the process of innovation; at this time he omitted "design". Rogers later made further contributions (4.2.7).
- (Clark and Guba 1965) extended an original conception by iii) Clark analysed four aspects of educational change: research, development, diffusion, and adoption. This basic Research, Development and Diffusion (R D and D) model was referred to by (House 1973, 3) who admitted that decentralisation, as well as social and political forces may not have been given the attention Clark and Guba required. (House 1974, 217) commented on the evaluation study of (House, Kerins and Steele 1972) which indicated that the "follow up" stage is highly significant compared to the "demonstration", he described the conflict with the views of Clark, and Guba and "contended that Clark, and Guba had already changed their own conception of their Schema on the basis of later experience (p. 220). (House 1979, 2) credited Clark and Guba with the "finest conceptualisation" of the R D and D model.

- Whereas Mort, Carlson, Rogers, Clark and Guba wrote on the basis of their experience in U.S.A. (Williams 1966) of N.F.E.R. gave a general strategy affecting educational change: preparatory, select pilot school, sustain new approach, teachertraining and evaluation. He foresaw problems of staff turnover when suggesting staff duplication in pilot schools; other features suggested were that the pilot school should be located near to an advisory centre and other pilot schools, and that the larger schools could most probably provide resources in the form of apparatus, accomodation, time table capacity etc. strategy remains relevant as do the requirements he gave to sustain a new approach: in-service training to instill philosophy, providing a group identity through social support and stimulus, getting teachers involved, allowing teachers a freedom of approach such as choice and development of topics within the preferences and strengths of individual teachers, continuing the free time required to set up the course, and providing relevant the later problems of the evaluation. Williams foresaw, evaluator of the innovation when he wrote "Too often reform movements pay more regard to fashion than fact"; a comment similar to that of (Kerr 1964, 24) "It is easier to form opinions than to make judgements."
 - 4.2.4 (Nicholls 1983, 36-37) reviewed attempts by (Trump 1967), (Watson 1967) and (Rubin 1968) to identify the stages in innovation. (Trump 1967) described procedures for initiating innovation:

- i) Analayse co-operatively reasons for present practices;
- ii) Discover what people want that is different from what they are doing;
- iii) Make tentative decisions about the priority of proposed changes;
- iv) Plan the innovation carefully in terms of teacher preparation, student preparation, procedures to be followed and the anticipated effects of the innovation;
 - v) Determine the times and technques for evaluation.
- 4.2.5 (Watson 1967, 110) after an analysis proposed a model with ten stages: sensing. screening, diagnosing, inventing, weighing, deciding, introducing, operating, evaluating and revising. Some of these features resembled those given by (Rubin 1968, 159-162) who subdivided three sequential operations as follows:

4.2.5.1 Preliminary analysis

- i) Diagnosis of a weakness
- ii) Analysis of the responsible factors
- iii) Comparison of alternative correctives
 - iv) Selection of the best corrective

4.2.5.2 Strategy Selection

- i) What kind of innovation was to be installed?
- ii) Who will engineer the installation?

iii) What conditions characterised the target environment?

4.2.5.3 Action

- i) Analysis of the innovation's requirements in training, material, and linkage to existing systems.
- ii) Initiation of motivating pressures through inducing dissatisfaction and illuminating the reward.
- iii) Initiation of the influencing strategy.
 - iv) Initiation of the preparatory activities.
 - v) Installing the innovation.
 - vi) Supporting the transition from old to new.
- vii) Linking the innovation to the permanant system.
- 4.2.6 The suggestions given by Williams, Trump, Watson and Rubin etc. may have features in common and in total they embrace much of the subsequent work. However, any single approach is rather crude and simplistic, not individually capable of preventing what (Hoyle 1969, 16) referred to as the "unplanned drift" of curriculum.

(Kerr 1968, 15) commented about the absence of a coherent theoretical framework and the need for more theory, research and evaluation. Similarly (House 1974, 228) wrote "Rivlin labels the strategy of the 1960's 'random innovation'."

Almost simultaneously as if to answer this criticism theoretical contributions were made in the form of three studies of models.

4.2.7 (Rogers and Shoesmith, 1971) writing (on the basis of limited empirical studies to an academic audience) recognised

that any model would be limited by a deficient research tradition. They identified three major division, (p. 103): Antecedents, Process, and Consequences; and they gave the stages in the process of Adoption: Knowledge, Persuasion, Decision, and Confirmation. (Nicholls 1983, 34) suggested that this analysis of adoption had much in common with the 'life-cycle' proposed by Carlson (4.2.2).

(House 1979, 2) described Rogers as "The master sythesizer of cross disciplinary research on innovation", and he made reference to a lecture given in 1975 by Rogers, in which Rogers criticised his own earlier work in three points:

- i) it was process orientated with a consequent lack of identity to events;
- ii) it was biased towards the view that innovation implies good;
- iii) the unit of analysis was not necessarily the individual.

It was criticism of this nature which led writers such as Clark and Guba to change their conception, (4.2.2 (iii) and 7.1.1).

- 4.2.8 (Havelock 1969, 1971) reviewed 4,000 studies in many fields including education and suggested three models.
- 4.2.8.1 Research, Development and Diffusion Model (R D and D). This is innovator determined, who prescribes to a presumed need of a receiver (target) group. This initiative is with the Researchers, Developers Disseminators and the receiver is passive.

(Havelock 1971) identified the major characteristic as:

- i) It assumes a rational sequence of activities from research to development to dissemination.
- ii) It implies that planning on a large scale has taken place.
- iii) It involves a division of labour with a clear separation of roles and functions.
- iv) It assumes a passive consumer who is willing to accept the innovation.
- v) It involves a high level of initial development costs before dissemination takes place.

This model was criticised by (House 1974) for not taking into account social effects.

(MacDonald and Walker 1976, 38) referred to the change agent, central innovator agency, preparing and disseminating a packaged solution, however, (Nicholl 1983, 15) suggested that given, what is often a radical approach, teachers will not remain passive, but will impose their own opinions. Indeed this occured to such an extent that (MacDonald and Walker 1976, 26) cited the case where to retain control in U.S.A. the centre mounted an attack on the periphery.

4.2.8.2 Social Interaction Model (S.I)

This is sender determined, receiver reaction being assumed. The sender assesses the reaction of the receiver and the sender determines subsequent changes. Diffusion is through a process of social interaction. The model emphasises the need for linkage mechanisms, Becher's change agents who are able to identify and strengthen the diffusion network and exchange.

Havelock 1971, 85-86) gave the characteristics of the model as:

- i) The individual user or adopter belongs to a network of social relations which largely influences his adopter behaviour.
- ii) His place in the network (centrality, peripherality, isolation) is a good predictor of his rate of acceptance of new ideas.
- iii) Informal personal contact is a vital part of the influence and adoption process.
- iv) Group membership and reference group identifications are major predictors of individual adoption.
- v) The rate of diffusion through a social system follows a predicatable S-curve pattern (very slow rate at the beginning, followed by a long late-adopter or 'laggard' period). (4.2.2).

4.2.8.3 Problem-Solving Model (P.S.)

In this model the receiver perceives a problem and seeks a solution wherever available from the sender (change agent). The change agent functions as a resource consultant in collaboration with the receiver.

According to (Nicholl 1983, 17) the advocates of this model usually emphasised five points:

- i) User need is the paramount consideration, this being the only acceptable value-stance for the change-agent; what the user needs and what the user thinks he needs are the primary concern of any would-be helper.
- ii) Diagnosis of need always has to be an integral part of the total process.
- iii) The outside change agent should be non-directive, rarely if

ever, violating the integrity of the user by setting himself up as the 'expert'.

- iv) Internal resources, that is, those resources already existing and easily accessible within the client system itself, should always be fully utilised.
 - v) Self-initiated and self-applied innovation will have the strongest user commitment, and the best chances for long term survival.

Many of the professional and social factors discussed later are relevant to this model.

In his publication (Havelock 1971) interacted these three models to formulate a link model. (House 1979, 3) later stated that "in practise the R D and D model has not worked very well" yet it "still dominates much government thinking". This comment applied not only in U.S.A. but also to many U.K. programmes such as those of Nuffield and the Schools Council.

- 4.2.9 (Schon 1971) foresaw a phase of rapid, uncontrollable unpredictable changes in which outward spread was a key idea and speed of response was important.
- 4.2.9.1 The basic model is Centre-Periphery and involves three assumptions:
- i) The innovation to be diffused exists, fully realised, in its essentials, prior to its diffusion.
- ii) Diffusion is the movement of an innovation from a centre

out to its eventual users.

- iii) Directed diffusion is a centrally managed process of dissemination, training, and provision of resources and inventions.
- 4.2.9.2 Schon argued that the effectiveness of this model depended on four features:
 - i) The level of resources at the centre.
 - ii) The number of points on the periphery.
- iii) The length of the radii, or spokes, through which diffusion takes place.
 - iv) The energy needed to gain a new adoption.
- (Whitehead 1980, 3) argued that these features were irrelevant in schools as the L.E.A. was the centre; (MacDonald and Walker 1976, 48) observed that "The developers command no-one and can afford to offend very few." This model was a linear model which Schon identified with Rogers within this framework he dismissed as simple minded Rogers equation of diffusion with communication: (MacDonald and Walker 1976, 14). Schon himself modified his presentation of the centre-periphery mode by substituting 'infrastructure technology' for 'spoke length'.

4.2.9.3 Schon proposed two variants of this model:

i) Johnny Appleseed in which a dreamer (bard) roams his area spreading a message; this variant has overtones Social-Interaction and the bard is close to being an innovator-entrepreneur hybrid.

This model allows adoption to special conditions but not to the

development of a centre.

ii) A 'Magnet' at the centre attracts agents of diffusion. Schon saw this as the more attractive variant as it had the advantages of tighter control of teaching and greater efficiency in the use of teachers; it's disadvantages were that it had less control over what happened afterwards, and less variation in adaption to the particular needs of the outposts.

4.2.9.4 Proliferation-of-Centres Model

Schon extended his first model to overcome inherent sources failure by clearly distinguishing primary and secondary centres. The primary centre supports and manages the secondary centre; the secondary centre represents the scope of the whole system in the is in the secondary centre that diffusion earlier model. It Each new secondary centre provides an exponential occurs. increase of the primary. This remains a linear model. predicted failure due to resource limitation and conflict between the central and regional philosophies. Although this model was attributed to various schools council projects, (Whitehead 1980, 3) commented that the centre comprised the innovator and team usually appointed for four years whereas appointments at the teacher centres within the secondary stages are usually permanent so that the model could not be applied to Great Britain.

Whitehead (p.4) further commented on another Schon variant-the Periphery Centre Model. This model required two way communication to improve ideas/matrials. Failure was predicted

here as teachers/parents reject innovation. In this model cyclical elements were being recognised.

4.2.9.5 Shifting centres model

Schon proposed a model in which there was no clearly established centre and which involved a changing message. Although this differs from the centre periphery model diffusion still occurred. (Whitehead 1980, 5) referring to (Shipman 1974, 122) likened the support from a centre to the aid given to less developed countries, could the support lead to accumulated resources that the secondary centres become self-sustaining engendering (Nicholls 1983, 21) commented "It is clear their own momentum. that there are certain similarities between Schon's centreperiphery model and Havelock's R D and D model and so some of the strengths and weaknesses already mentioned in connection with educational innovations developed in the latter would also apply to those developed in the former." The present economics of less developed countries puts Whiteheads optimism into a stark perspective.

4.2.10 (House 1974) made a contribution which was discussed in (MacDonald and Walker 1976) also (Kelly 1982). (MacDonald and Walker 1976, 18) wrote of House "His focus is firmly on educational innovation, and to a large extent arises out of personal experience of the curriculum reform movement. He is able to take into account nearly a decade of attempts to implement one major variant of the centre-periphery model, the RD and DD paradigm first identified by Havelock." Schon had already indicated the significance of socio-economic factors.

(House 1974, Chap.2) extended some earlier work, reviewed by (MacDonald and Walker 1976, 19) to form a social model composing two kinds of social groups.

4.2.10.1 Rural, a homogenous society. Ideas are communicated by personal contact between individuals of comparable social status and the spread of ideas is affected by distance. Within this society innovations are accepted by individuals being referred to as 'household' innovations and spread as waves. (p.16): "Each new adoption increases the speed of diffusion The snowball effect is powerful."

4.2.10.2 Urban, a heterogenous society. Distance is now less significant as barriers of social status are the significant. House proposes that within this society innovations leap from one urban complex to the next largest in size, distance. Such innovations are referred to as independant of 'entrepreneurial' innovation (p.16): "Entrepreneurial risk often involves a higher social, economic, or political risk." Within education the spread of P.S.S.C. materials had already been noted by (Marsh 1964, 263), he observed that the spread was in the form of clusters, independent of authority boundaries reflecting professional contacts. It was also noted that staff who employment either stop the use of the innovative practise or However, (Peterson and Emrich 1983, 232) start a new cluster. wrote of a 1974 T.A.G. project in U.S.A. which reported few "ripple" effects were evident.

4.3 INDIVIDUAL PARTICIPANTS WITHIN THE EDUCATIONAL MODEL

(Bolam et al 1978, 222) describing the changing eductional climate in the 1970's wrote "First successive cutbacks in public expenditure following the 1973 oil and economic crisis have led to strong lay and political demands for cost-effectiveness and accountability: dirigism is now in the air. Second, there is now much greater public scepticism and debate about what are unusually termed modern methods..." (Kelly 1982, 21) wrote "economic recession has resulted in serious reductions in the amounts of public money available for education" and gives this as a factor of increasing significance in education.

(Nicholls 1983, 9) referred to Coombs who suggested that if a steady flow of clients was assured within schools then interest in innovation was reduced, there was no equating of funds to performance.

The climate of falling roles, economic recession and a changing social attitude increasingly impinged on education and were features affecting innovation from the later 1960's. Such features can obviously lead to conflict over the direction and nature of educational change.

4.3.1. THE LOCAL GOVERNMENT

4.3.1.1 L.E.A.s may be subject to the whims and vagaries of elections, consequently long term funding cannot be assured (Saran 1979, 39) attempts to fund major capital projects over a

short term may not be feasible. So although the administration "has the authority to precipitate a decision": (Brickell 1964, 503), it may not have the will. (MacDonald and Walker 1976, 44) referring to curriculum development work wrote "The rhetoric is premised on an unexamined assumption: that all of us concerned with the education of pupils - teachers, administrators, advisers, researchers, theorists - basically share the same educational values and have overlapping visions of excellence." Perhaps local councillors have other values and priorities! Other than capital expenditure on buildings and the support required for the provision of staff, capital equipment and consumables there can be further hidden costings. (Nicholss 1983, 5) commented on the costs incurred as staff are released for initial and on-going planning, the scale of such costs not always being apparent as "they tend to underestimate the time needed" (they = teachers). (House 1974, 19) wrote "For innovations there will be a threshold unit below which an innovation cannot be adopted or sustained" there is an "economic and technical feasibility of an innovation for a given town." Albeit the financial structure in the U.K. differs from the U.S.A. but the comments of House still apply: a local authority cannot gain limitless funding from central government, it must determine it's priorities. If an innovation is to succeed an L.E.A. can make a major contribution by allocation of resources, selection of staff, and guidance given: (Peterson and Emrick 1983, 223 and 228). (Hoyle 1974) stated "More broadly the local Authority can make a significant contribution in the provision of

social and community facilities such as libraries." (Eggleston 1977, 47) similarly noted the crucial role of publishers. (House 1974, 45) indicated how authorities controlled one resource, that of staff appointments by "stacking the deck" and "lining up the ducks."

4.3.1.2 (Schmuck 1974) recognised that on the part the L.E.A. changes will be required in the status groupings and communication networks there is incompatibility as οf organisational arrangements with innovations. (MacDonald and Walker 1976, 122) wrote "curriculum projects usually nurse ideologies of reform in the organisation of the school and the nature of education itself." Such a view was expressed by Coombs and given in (Nicholls 1983, 8): "widespread transformation of attitude towards change in education." If an innovation is to gain support from the administration then the changes required must not threaten the power wielders especially the "informal (House 1974, 47). (Gross et al 1971, elite" and their control: related failure of innovations in many cases administration, they refer to weaknesses in role identity, lack of resources, and poor appreciation of the skills and knowledge of teaching staff. The work of (Dickinson 1975) suggested that may be opportunist and often related to innovations reorganisations involving pupil intake.

4.3.1.3 (Bolam et al 1978, 228) in a survey carried out in 1973-75 for the DES, made several criticisms of L.E.A. advisers with respect to monitoring procedures, analysis of benefits, application of management theory, and consultancy role. A survey

(p.178), revealed the level of advisery follow up to be poor; and (p.180), dependent on the experience and background of the adviser. (Bolam et al 1978, 163) "showed that half of the innovations, with which the advisers were associated, derived from policy changes at a higher level." In conclusion training and an advisery role were recommended for L.E.A. advisers.

4.3.1.4 The importance of the Chief Administrator was reflected by Proposition 5 of (Griffiths 1964, 434) "The number of innovations is inversely proportional to the tenure of the chief administrator" also Proposition 6 "The more hierarchial structure of an organisation the less the possibility of change." (Carlson 1965, 10) in a study of School Superintendants noted their influence as a source of ideas from outside; the role of School Superintendant in U.S.A. is equivalent to that of Chief Administrative Officer in the U.K., and Carlson's comment was incompatible with that of (Bolam et al 1978, 163). Charts in Bolam et al do not support the concept of the administrator promoting an idea! In U.S.A. Carlson was able to relate the rate of innovation adoption to the social status of the superintendant and stated (p.330) the "School superintendant is neither a helpless victim of his local budget, nor a powerless officer dominated by a superordinate school board." holder (Griffiths 1964, 435) gave Proposition 7: "when change organisation does not occur it will tend to occur from the down not the bottom up" may not this suggest tacit approval formal provision of resources being given to what is already 'routine'? (Peterson and Emrich 1983, 247) accepted this point

but continued to stress the importance of Adminstrators in establishing suitable conditions.

4.3.1.5 (Hooper 1969, 420) on the topic of funding wrote "It had led to innovations being pushed to the outside of an educational institution: when the grant money runs out, the innovation is carefully peeled off without damaging the structure, and thrown away."

The significance of innovation to higher management was indicated when (House 1974, 256) asking "why innovate?" referred to (Travers 1973) ".... to make education more efficient and more productive so that it will cost less", also the materials and equipment of such a technology can carry conservative political messages, either explicitally or implicitally, that favour those House added "If the school becomes receptive to a in power." constant stream of innovations, each replacing the last, and each 'improvement' one has created an eternal market for an Such a step is seen as an important innovation products." attitude in industry, commerce, and re-training. The process of innovation within education was seen as having far ranging implications involving features outside of education; House continued "Education thus becomes more dependent on external controls - on those who control the flow of innovations."

4.3.2. THE PUBLIC

Parental influence other than via elections is increasing. In general (Brickell 1964, 502) thought a "climate of interest" can

be created. (Brickell 1971, 404) considered that although public neutrality was harmless "The public must be informed about a change so that it will not come as a surprise and arouse opposition for that reason alone." (Kelly 1982, 190) touched on parental influence when he suggested that many projects have been aimed at pupils of "average ability" to avoid conflict over the nature of associated exams. Other evidence of increasing parental participation was shown by their involvement as school governors towards the end of the time period involved. (Becher et al 1981, 4-6) and (Taylor Report 1977) gave details of interested groups. (See 5.1.5)

4.3.3 THE INNOVATORS, CHANGE-AGENTS

4.3.3.1 The innovator, change-agent, and opinion leaders have many of the motivations of teachers; they are often themselves teachers on secondment. In general innovators etc. have leadership qualities, areas of special knowledge and the ensuing professional aspirations. The importance of field agents as a link was stressed several times by (Paisley and Butler 1983, 221-229 and 75-78).

Within the central team there may be role definition, (Nicholls 1983, 39), (Rogers 1962) indicated that the innovator was not always the most respected member of his social system. Indeed, (Miles 1964, 642) referred to the "less heroic characteristics" of the innovator and suggested that one characteristic was the inability to cope with the problem of survival of the innovating team. A project leader was seen as being charismatic, pragmatic,

and able to function within the various constraints, even to the acceptance of scaling down innovation to hold it within a budget. the project leader was seen as an entrepreneur trades off. (House 1974, 71) wrote pragmatically "The entrepreneurial group can bargain for increased formal rewards, shifting the reward structure within the thus organisation." (MacDonald and Walker, 59-74) considered that trade offs may lead two images concept giving a detailed example from the Geography for the Young School Leaver project; elsewhere it was suggsted that concept adulteration couple with institutional conservatism also helped to promote two images. (House 1974, 56) noted the administrative entrepreneur "can operate best when there is a fragmented or loose bureaucratic structure" this is in accordance with (Griffiths 1964) Proposition 6 and was suggestive of the need to trade-off. More alarmingly it was suggested that trade-offs may extend to evaluation.

4.3.3.2 Innovations were described as affording career opportunity, although (MacDonald and Walker 1976, 39 and 47) doubted the reality of the concept of career optimists joining a 'band-wagon'. Instead (MacDonald and Walker 1976, 46) noted that in seeking some self-improvement it was possible to become "unwittingly the spearhead of an institutional confrontation." Staff seeking for career advancement were unlikely to engage in conflict with the system so diluting feedback, indeed there was a greater danger that they formed an inward looking elitist group further inhibiting communication. (Whitehead 1980, 21) doubted that promotion prospects would be enhanced by association with

recent developments and wrote "Another consideration which is undoubtedly avoided in the United Kingdom literature, is that of financial incentive." (House 1974, 73) mentioned "the flatness of the reward structure", "more material extrinsic rewards are scarce", and gave student enthusiasm as an acceptable reward.

4.3.4 THE HEAD TEACHER

The Head Teacher can help to assist innovations but far as some would expect; 53) perhaps not as (House suggested a conservatism within the school when he wrote "Any innovation has meaning only within a particular social structure social structure of schools is such that an innovation unlikely." pandemic The structure. climate. 1S organisational health of a school was consequent upon the L.E.A. appointment of a Head Teacher even though as (Nicholls 1983, observed there may be doubt as to how to create a suitable (House 1974, 40) generally saw educational management as having a conservative attitude there being two types of career-bound and place-bound. appointment: The career-bound appointment was more likely to accept an innovation 'band-wagon' this afforded an opportunity for attention seeking. An appointment from outside an authority was free of the restraints identified by (Carlson 1965, Chap.2) and could be considered to have a mandate for change. (House 1974, not develop this aspect of a career-bound man unfreezing a social structure other than reference to a health programme, (p.43). observed that the career-bound, more mobile, of the officers supported easy to adopt innovations and were orientated towards

their professional group; those innovations which were difficult to adopt were supported by place-bound locally orientated officers.

4.3.4.2 (Nicholls 1983) devoted a chapter to the function of the Head Teacher in innovation and she wrote (p.12) "Two research studies suggest that while the Head Teacher is frequently the initiator of innovation in his own school, it is doubtful if he is the source of innovative ideas." She referred to (Brown 1971) who in a study of innovations in primary schools observed that the Headmaster was greatly influenced by H.M.I.s, the mass media official publications. (Carlson 1965, 10) saw the Superintendent as a source of ideas from outside which he needed to actively promote. Earlier reference to (Bolam et al 1978) indicated that a range of links must be operative. An H.M.I. study 'Ten Good Schools', 1977, identified the most important single factor in good practice as the leadership of the Head Teacher; however, good practice and innovativeness need not be Indeed (Dickenson 1975) reported that innovations synonimous. introduced to solve the Head Teachers were often immediate problems.

4.3.4.3 (Hoyles 1968) saw the Head Teacher as having the necessary freedom but accepted that he was limited by the quality and stability of his staff. The autonomy of the teacher within the classroom according to Hoyles, presented the Head Teacher with a complex and difficult task to affect organisational changes to accommodate innovators.

- 4.3.4.4 (Nevermann 1974) identified four types of school structure:
- i) The authoritarian-bureaucratic type in which the principal takes decisions autocratically in a hierarchial structure.
- ii) The consultative type in which the principal retains final authority though he delegates more and uses consultative procedures.
- iii) The collegiate type in which authority rests with the professional staff, and the principal acting as an executive, and on which pupils and parents may be consulted.
- iv) The full participatory type in which authority rests with professional staff, students, and perhaps parents and non-professional staff.

(Taylor 1968, 89) referred to somewhat similar work by Lippit and White in their investigation of leadership roles and social climates in Youth Clubs.

4.3.4.5 Obviously the character of the Head Teacher may determine which structure was closest to that of the school. (Hoyle 1969), (Nicholls 1983), and (Kelly 1982) referred to Halpin who investigated organisational climates identifying six climates, of these the open climate was described as: "There is a high level of morale and teachers will work together. These tasks are facilitated by the Principal's policies. Group members enjoy friendly relations but do not feel the need for a high degree of intimacy. The Principal sets a good example by working hard and he either criticizes or helps teachers according to the

circumstances. He provides subtle direction and control but does not monitor the work of his staff too closely. He is in full control and provides leadership for his staff": (Hoyle 1971, 387).

4.3.4.6 (Kelly 1982, 138) wrote "The more open a school is the more likely it is to absorb innovations"; (Nicholls 1983. 67) added a less positive note quoting Hughes, "only certain aspects of organisational climate may be related to innovativeness." 67) wrote "Using a different measure (Nicholls 1983. organisational climate, another study (Hilfiker 19709) also found a relationship between innovativeness and openness (characterised by ready accessibility, co-operative attitudes, tolerance of internal change and permissiveness of diversity in social and trust (the degree to which an individual situations) perceives interpersonal relationships as characterised by an assured reliance or confident dependance on the character, ability, or truthfulness of others)."

The necessary climate and organisational health is complex. (Bullock 1980, 23) stated "any activity within an institution can mean different things to different people, depending on their expectation of the activity, their pre-conceived ideas and assumptions about the system and their expectation of the personnel in it."

4.3.4.7 Should a school be successful in establishing an innovation then as some staff are career orientated they will take advantage of the success and move to more senior

appointments. (MacDonald and Walker 1976, 39) indicated that Shipman suggested staff changes made the Social Interaction "very vunerable", whereas (Whitehead 20) mechanism 1980. considered that this problem of atrophy was "rarely mentioned." Even more in contrast is the view of (MacDonald and Walker implicitly doubted the permanance of the Interaction network writing "The enduring achievements of the project have been less in the generations of networks individuals and more in the creation of organisations institutions." Thus external contacts can be re-established and staff atrophy may not be critical but within a school staffing stability can create the necessary climate and in consensus it is better to have committed staff within the school rather than to graft on or add experience from external staff.

4.3.4.8 Teachers will expect the Head Teacher to be aware problems and (Nicholls 1983, 52) noted that innovators, Heads of Departments, would look for prompt support. Such support would be analysed by staff, those involved with the innovation and being asked to work harder will view the Head's approach to both 'lazy' and 'weak' teachers with keen interest: (Becher et al 1981, 93). 22) suggested two models of Head Teacher which (Bernbaum 1976. may be affective "skilled and trained adminstrators capable of a decision-making scientific and detailed control of processes" and "a non-directive role....cannot possibly be the essentially dominant figure of the past." (Hargreaves 1982, 255) echoed the last point by goting Razzel's comments about the the autocratic Head imposing his thumb print, being almost

over.

(Nicholls 1983, 87) writing of the Head Teacher stated 4.3.4.9 "His position is a difficult one because he carried the ultimate legal responsibility for the curriculum. While he cannot, and some would argue should not, carry out all the tasks associated with the management of innovation, it would be reasonable for his teachers (and governors or managers) to expect him to have sufficient knowledge and expertise to undertake certain leaderships roles.", adding "The increasing number of in-service courses in educational management is a recognition of this fact."

4.3.5. THE TEACHERS

Teachers have a crucial role in educational innovation, considerable attention was given to their problems in the class-(Nicholls 1983. 41) room by several writers. wrote innovation frequently requires teachers to give up practises in which they feel secure and display high levels of competence and to adopt new practises in which, at least temporarily, they feel secure and where possibly be less competent. There are expectations that teachers should be competent and some may be willing or able to tolerate even a temporary incompetence or to tolerate feelings of insecurity." (House 1974, 73) commented necessity of relearning acts as a deterrent. New old skills obsolete, and there comes a time when it is longer worth the effort of learning new skills to master innovation." (Marsh 1964, 251) wrote "even innovators within the limits of their experience." The consequent

of some teachers can then give rise to the administrative view expressed by (Miles 1964, 11) "that the teachers who will do this teching are an ineducatable lot of dunderheads who are the main barrier to innovation."

is this attitude which led to the concept of 4.3.5.2 It the (House 1974, 70) referred to teacher as a resistor. the isolation and resistance of the teacher within the classroom and wrote (p.13) "....they adopt only bits and pieces, worrying about how even these will fit into the local setting. As always they concerned about their social group and this has profound implication for educational change." (Miles 1964, 634) saw the identity of the teacher as resisting change. professional (Brickell 1964, 505) was less emphatic "The early questions, doubts and hesitance expressed should be distinguished from outright resistance to change." Similarly (Gross et al 1971, 196-7) questioned the concept of resistance to change and suggested that the failure and opposition lay in inadequate clarity of role, lack of skills and knowledge, lack of resources, and an inadequate school schedule: all management failures. They recommended that the teachers view of problems be accepted. The view given by (Klein 1976, 41) of resistors was in a sense questioned by (Olsen 1980, 3) who doubted the existence of insofar as the teachers can work well resistors in well (Holt 1981, 10) referring to teacher functioning systems. initiative in new, open, schools wrote of "teachers personal committments to openness and change", with administrative protection initiative functions more smoothly. (Marsh 1964, 267)

on the subject of the P.S.S.C. project in U.S.A. rather than write of resistance instead wrote "Ultimately then it was the physics teachers ignoring the tendency class-room exclusiveness of both scientists and educators, who reconciled strategy and educational practise and made scientific P.S.S.C. viable." (Mort 1964, 327) went so far as to suggest that when innovation was very slow it's authenticty should be (Atwood 1964. Chap.2) used anthropological questioned. interaction theory to explain why involvement-initiative causes less resistance.

4.3.5.3 The importance of early involvement was stressed by many workers: (Petersons and Emrick 1983, 228), (Rogers and Eichholtz 1964, 313) indicated the importance of predisposition which they suggested depends on social mixing, the reading of the teacher, and the resources available. Predisposition could be affected by the public climate of interest noted earlier. (Brickell 1964, 524) also suggsted that staff could be involved at all stages through professional organisation.

The need for teacher involvement was recognised by (Nicholls 1983, 74) who criticised the use of the teacher in a merely supportive role but "unable to act as a critic at the level of ideas." It was suggested that to regard the teacher as conservative and an impediment was naive, management should "devise implementation strategies for action-research to account for and circumvent this influence."

4.3.5.4 (House 1974, 254) identified that "The teacher's

behaviour is learned by imitation and tradition..."; the structure of teacher selection training etc., was described as leading to a conservative attitude on innovation. 194) suggested that in the 60's and 70's teachers were relatively unprepared to challenge convention thus reinforcing young, (House 1974. 64) identified this conservative tradition. attitude as leading to a low level of entrepreneurism if not taken into account in the structure calling for "more structural flexibility, lack of specificity, and less rigorous definition." To the latter end (Musgrove 1968) used the term Such a flexible role was a major shift from role-hybrid. that which (Brickell 1964, 504) saw as normal when the teacher can only alter instructional procedure, relocate curriculum content within a teacher group, and following recent training introduce special courses. (Hoyle 1968, 389) expressed a similar view "Within his classroom the teacher has a high degree of autonomy if not over what he teachers at least how he teaches it, but terms of the overall policy of the school he has relatively little influence."

4.3.5.5 To function as a role-hybrid retraining may be involved. (Johnson 1964, 178) suggested "participants are paid for attending, a recognition of the importance of the task to which the teacher has been called." (Brickell 1967, 405) went further and suggested that to encourage staff not only should they be paid for time at the meeting, but also meals and travel incurred and salary credit for training. These were more positive steps than those given when (House 1974, 75) noted the

work of Cohen which suggested that the informal reward structure can increase morale and job satisfaction, a similar point being made by (Peterson and Emrick 1983, 224). (Munro 1977. writing of a C.E.R.E. report referred to a lock of understanding of the in-built reward and punishment structure. (Nicholls 1983, saw those teachers with special skills adopting a leadership function and gave an ominous warning "If they are not able to do so there is always the danger that those activities might be agencies outside the school. In undertaken by these circumstances teachers would become no more than technicians carrying out the ideas of others, with Head Teachers acting as adminstrators."

There is evidence given earlier that the resistor role 4.3.5.6 needs to be questioned. A measure of interest was expressed by in the way in which they do attempt to assimilate (Anderson 1979. 77) suggested "local innovation. that information is not available nor is innovator interested in local (Johnson 1964, 177) went so far as to suggest practise." local factors should be taken into acount in legislation, and wrote (p.179) "Consideration of flexibility demands that each school district be provided freedom to proceed on the process of change at its own rate." (Mort 1964, 326) and (Berman and McLaughlin 1975 and 1977 and 1978) also noted the importance of (Kohl 1981, 11) in reference to new schools wrote local effects. they "can also be orientated around the development of knowledge of the local community." (Louis 1983, 82) noted that the emerging demands in such an instance will probably not be met.

(Munro 1977, 53) was not in absolute agreement with Anderson stating "several projects have emphasised the need to match the function of schooling to different settings", he criticised the 'A' level Biology and 'Maths for the Majority' for not looking outside the school context. It was noteworthy that Munro mentioned that materials could not be teacher proof as the "specific situation" was significant whereas early Nuffield projects were orientated to the production of packaged materials.

- 4.3.5.7 Another criticism afforded by teachers was 1977) pointed out the need to see teacher (Olsen language. problems in teacher language. (Nicholls 1983, 74) referred to the comment of (Jackson 1968) on the conceptual simplicity of (Taylor 1982, 55) wrote "We have paid too little teachers talk. attention to the language teachers use." (Beauchamp 1963) found "no logical and consciously identified set of constructs behind the language being used by curriculum workers". (Munro 1977, 50) referred to the work of Core and Schroeder to make a similar point "....writings were often incomprehensibly biased in their presentation or of a limited applicability." An example of this was (MacDonald and Walker 1976, 12) writing of "a consensual process of melioration under benevolent overarching management."
- 4.3.5.8 (MacDonald and Walker 1970, 49) suggested that to survive, a project must have:
 - i) a 'non-divisive' view of the curriculum needs of the pupil;
- ii) a high estimate of the ability of the low-achieving pupil;
- iii) a fully articulated theory of pedogogy in its control area;

iv) a new curriculum that embodies the 'latest' conceptions of the subject held by University scholars.

They suggested that such conditions would satisfy educational establishments, educational sociologists and philosophers, also subject specialists.

But what of the teacher with his divisive local needs, lack of resources, skills and knowledge? Olsen doubted whether presentation of innovation in working parties was effective: "discussion was not an educational construction familiar Science teachers." (Nicholls 1983, 19) wrote "A more practical problem was that of limitation of technical skill in course construction" and "teachers gave no attention at all educational principles underlying the major dimensions the innovation." (Whitehead 1980, Chap.7) identified many of these problems in the Humanities and General Studies Schools project: "teachers are not used to the idea of stating objectives nor they have appropriate training." "Lack of observation and assessment techniques necessary before individual pupils can be 'matched'", "it should not be possible to ignore those sections of the unit which are particularly closely related to the project", and the curriculum package "should adequately correctly reflect project philosophy."

The curriculum package as was stated previously must be 'sold' in advance and relate philosophy to practise. If this was not done then teachers may over-emphasise familiar components: (Brickell

1971, 405). With the various deficiencies noted it was not surprising that it was often reported teachers buy the materials but not the concept. (Nicholls 1983, 15) referred to a lack of rigour and superficiality. (Paterson and Emrick 1983, 226) made a similar comment drawing on the work of (Stearns M.S. et al 1975 and 1977). (House 1974, 71) referred to delay in adoption even though time-tabling is provided and (p.78) to the tendency of staff to "transform program intents."

The challenge of the expertise of the central team can 4.3.5.9 be daunting and even if the innovation was accepted by teacher once the novelty has worn off there is a reassurance reverting to familiar established processes, similarly if funding Those staff, who were attracted to a project as an was removed. escape from a boring job or domestic circumstances may find project stimulating and exciting at first. (Whitehead 1980, 11) reported that trial teachers may find greater involvement schools other than their own; a natural escape from boredom. However, the attitude of such staff was hardly likely to influence the long term effect of innovation in terms of their in-depth/influence on expectation and relationships within a school: (Malone and Crone 1978, 84).

4.3.5.10 Various works reviewed by (Nicholls 1983, 44) suggested that there were two types of teacher in terms of decision involvement; obviously those who have lowest job satisfaction and opportunity to be involved in decisions may find attractions in projects. (Olsen 1980, 2) drew on the work of Sieber who identified three types of teacher:

- i) rational, uses the best information available to form a decision;
- ii) co-operator, only needs to be shown a direction;
- iii) powerless, inert and must be instructed.

and the work of Doyle and Ponder who described three similar types: rational, pragmatic sceptic, and obstructionist. On the basis of this work (Olsen 1980, 2) proposed that any approach should recognise negative inducements to change and be based on a combination of these three types to suit all teachers.

4.4 SURVEY OF IMPLEMENTATION STRATEGIES TO THE LATE 1970'S

4.4.1 (Miles 1964, 2) wrote "A very wide variety of strategies for creating and controlling educational change is being employed - polemical, manipulative, technological, prestige -based, experimental, moralistic - with varying degrees of success." Of these strategies he broadly identified, (p.655), those as good which allow the teacher autonomy, freedom, involvement and spontaneity; and those as bad which involve newness, ambiguity, and unrealistic goal. It is significant that (Miles 1964, 648) was aware that a strategy may cause further innovation beyond the goal, especially as the mechanism of new feedback and added counselling become mechanisms of potential change.

(Miles 1964,) gave six types of intervention:

- Team teaching,

 the whole team outside of the school setting discusses a problem to improve working relationships.
- ii) Survey feedback, with the purpose of improving attitudes and opinions.
- iii) Role-workshop, staff of equal status meet and discuss their role on the basis of questionnaire data.
 - iv) Target setting, the Head and individual staffmeet, say six monthly.
 - v) Organisational diagnosis the team in a residential setting discuss specific problems.
 - vi) Organisational experiment following an innovation trial data is evaluated to formulate further policy.

Later (Miles 1965) introduced the term 'organisational health' to describe how receptive a school environment was to innovation. The emphasis was on structure not people: goal focus, communication inadequacy, optimal power equalisation, resource utilization, cohesiveness, morale, innovativeness, autonomy, adoption and problem-solving capacity. (Stephouse 1975) suggested these dimensions had a non-reality, he was doubtful if innovative schools had clear goals: (Holt 1980, 105).

- 4.4.2 (Rogers and Shoemaker 1971, 22) implicitly provided a strategy when they gave five factors which applied to the acceptance of an innovation:
 - i) Relative advantage what benefits are there economically, socially etc., is the innovation better than what existed previously?
 - ii) Compatibility is the innovation consistent with those values acceptable economically, socially, professionally etc?
- iii) Complexity to what degree is the innovation difficult to understand and use?
- iv) Trialability can the innovation be tried out in
 its separate parts?
 - v) Observability are the results of the innovation visible to others?

These models of strategy were as deficient as were the models of innovation of the same period, (4.2.1), and as evidence was evaluated from work initiated throughout the 1960's, more sophisticated observations emerged in the mid 1970's.

- 4.4.3 (Rudduck and Kelly 1976, 98) isolated four factors in the dissemination process:
- i) Translocation: the movements of people and materials necessary to implement new aspects of the curriculum;

- ii) Communication: how information about an innovation is transmitted from one person to another;
- iii) Animation: the need to arouse teacher's interest in the project, and to provide some motivation for them to involve themselves in it;
- iv) Re-education: implies that considerable understanding and committment are required in the effective implementation of an innovation.

Writing in 1976 Rudduck and Kelly surveyed earlier strategies and experience, reaching the conclusion that 'Re-education has seldom been achieved, and that only recently has the importance of motivating teachers been appreciated. They considered that past neglect might be accounted for by concentration on changing the content of the curriculum. Emphasis now centred on the need for changing the way in which the teacher performed his role, since most new projects involved him in many unorthodox teaching techniques and other classroom activities.

4.4.4

In addition Ruddick and Kelly divided the dissemination process into three time phases:

- i) Receptivity likened by Whitehead to a softening up process.
- ii) Adoption the project is taken up, its new ideas are received.
- iii) Implementation how the project is used in practise, how the innovation is maintained.

These phases were described as being complementary to the components of dissemination eg. Receptivity.

4.4.5 (House 1979, 8) referred to later work of Rudduck in which she saw dissemination as the meeting of two distinct cultures, the research population and the teaching population. (House 1979, 9) also referred to Wolcott, who divided the population into technocrats and teachers overlapping in a 'moiety' system. Wolcott saw the two groups as exhibiting complementarity, reciprocity, conceptual antithesis and rivalry.

The teacher culture was means orientated and

- i) Teachers are autonomous
- ii) Teaching is sacrosant
- iii) Only teachers understand teaching
 - iv) Teaching has a tradition not easily changed
 - v) Teachers are vulnerable

The Technocrats were ends orientated; and information, rational planning, projects, management setting and command knowledge were valued. Many of these factors were implicit in Pitmans extended negotiation model, (4.4.3), and identify with on the one hand the conservative attitudes of teachers to innovations, (4.3.5), and on the other of failure of the technocrat to be able to effectively and efficiently communicate with the practitioner.

4.4.6 (MacDonald and Walker 1976, -40) concluded "the myth of

receiver has been nailed." They considered take-over bids for the social system would fail giving two reasons:

- i) the take over strikes at the self_esteem of those to be coopted.
- ii) power is distributed more widely than those at the centre realise.
- 4.4.7 They made three propositions (p.42) about Curriculum Negotiations: propositions which (House 1979, 6) described as an original contribution.
- i) Projects are subordinate to the school system and can only seek their ends within the limitations and constraints of that system.
- ii) Projects engage in image manipulation in order to disguise discrepancies between their own educational convictions and the convictions held by others, particularly teachers on the one hand and academic critics on the other.
- iii) There is a constant generation of two distinct and conflicting views held outside a project concerning what the project actually 'is', one view is held by teachers, the other by critics, concerned with the way an innovation is to be introduced. Further they observed:
- iv) The so-called gap between intent and practise is in part a function of the differences between these two views of the project. The gap is therefore partly planned.
- v) The process of curriculum dissemination, in so far as it assumes a stable message, does not occur. The process to which

the term 'dissemination' is conventionally applied would be more accurately described by the term 'curriculum negotiation'.

1981) suggsted that the MacDonald and Walker 4.4.8 (Pitman negotiation model needed to be extended as changes looked for not in the teacher but in the student subjected innovation, also it should be recognised that the developer the and teacher have different motivations. The use of the term 'developer' by Pitman to replace 'innovator' more frequently used by other authors suggested that the centre functioned as a team with division of labour. (Rogers and Shoemaker 1971) had 'change-agents' and 'opinion-leaders' in a somewhat described similar complementary role. Pitman required negotiation to take place otherwise the teacher would intercept the message, imposing their own philosophy; (Nicholls 1983, 14) suggested that innovations as determined within a school would have a "lack of rigour".

Four types of negotiation are described:

- i) Dis-equalisation, essentially a range of options are offered so that in accepting one of these the practitioner has a closer identity with what is to be put into practice. Acceptance is facilitated by more contact.
- ii) Swamping, essentially in giving too much emphasis on an issue, 'overkill' occurs and the practice may be adopted on the basis that it can be identified to the problem as perceived.
- iii) Conciliation, in this form the basic differences in stance are avoided so the practictioner takes away a superificial

adoption.

- iv) Suppression, this involves a refusal on the part of the practictioner to accept any part of the proposal.
- 4.4.9 (Chin and Benne 1976) identified three groups of strategies, considered by (Hoyle 1970, 3) to be similar to those of other writers on the subject.
- **i**) Empirical-Rational Strategies, an agent assumed to be of the receiver circumstances and of the possible effects of an innovation communicates to a receiver assumed to be both rational and capable of reacting. This simplistic approach assumed knowledge is power, it took no account of behavioural changes required and needed strengthening by improved general education, choice of staffing, applied research, and linkage These suggestions and the concept of a systems analyst system. as Staff Consultant were thought by (Nicholls 1983, 29) to have problems in relation to innovation in schools. (Hoyle 1971, 392) saw the consultants concerned with content rather than the mechanisms and processes of change especially as this applies to schools.
- ii) Normative Re-educative Strategies, when identified with an innovation this strategy changes in social constraints and the concept of the "socio-cultural norm" (Chin and Benne 1976, 23) wrote "... changes in normative orientations involve changes in attitudes, values, skills, and significant relationships, not just changes in knowledge, information or intellectual rationales for action and practice." (Hoyle 1971, 392) identified two

approaches to this strategy: a problem solving method examined the situation from outside to determine how the system behaved, the alternative method required more involvement with the system to determine how ones development would impinge on the system.

(Nicholls 1973) thought that the use of school based in-service education and external consultants might make this strategy more acceptable, but she dealt particularly with the spirit of approach. Of the approaches to this strategy she wrote (p.31) "Both emphasise experience-based learning as a feature for lasting changes in human systems, and both accept the principle that people must learn to learn from their experience if selfchange is to be maintained and continued." directed The innovator was being called on for certain features, (p.31): "Openness of communication, trust between persons, lowering of status barriers between parts of the system, and mutuality between parts." These and other factors make this strategy "more difficult, complex, and time consuming" and consequently not widely applied. (House 1979) described a model of a technocrat with his management setting and command knowledge; the use of the Normative-Re-educative strategy would certainly afford challenge to such a person.

iii) Power-Coercive Strategies, such strategies according to (Nicholls 1983, 32) "emphasise political and economic sanction and the use of moral power playing on feelings of guilt and shame." Chin and Benne considered that such strategies were widespread and not always perceived by those out of power.

(Nicholls 1983, 32) gave references to the use of this strategy in schools in spite of current thinking about staff employment. (Brickell 1971, 503) made a somewhat similar point when he wrote "The language used almost universally in discussing administration - 'shared decision making', 'the team approach', 'full staff involvement' was not descriptive of the actual process. More often than not these euphemisms were intentional disguises."

(House 1979, 11-12) thought that the early innovation process saw teaching as a craft and that later a technology role was identified. He suggested that for those who see teaching as a craft, political controversy over their role and function was unavoidable, whereas the technologist became involved in the controversy of the evaluation and organisational structures. The controversy, he suggested required "coercion and pressure, bargaining, and compromise."

Writing of Power-coercive strategies (Hoyle 1971, 392) stated "But within education there is a strong sentiment against such strategies founded on the assumption that because of their very nature educational ends cannot be achieved without the committment of the participant, both teacher and taught." This latter reference to the 'taught' is significant as it is made in 1969 and is currently relevant in 16+, FE etc., proposals concerning curriculum.

4.5 CONCLUSION

The Schools Council at an early stage recognised the need for inservice training, provision of liaison staff, setting up of local centres and the need for alterable and on-going evaluation of the dissemination. These features and the tendency of management models to include Social Interaction and Periphery-Centre modes to be implemented by means of appropriate strategies could significantly achieve many of the purposes of innovation. However, as (Rudduck and Kelly 1976, 103) noted when referring to models and their hybridisation "This is not to say that such theoretical issues play a large part in official thinking."

SECTION 5. CENTRAL CONTROL AND RATIONALISATION;

(Havelock 1969,) wrote "....the government should be in a position to see one system. Government capacity to monitor whole, check on standard of research, development and diffusion..."

This section describes how the D.E.S. achieved it's pre-eminence over L.E.A.s and teachers, in matters of educational policy; also how the D.T.I. became increasingly involved in education and training. The activities of both D.E.S. and D.T.I. are shown to offer the Central Control described by Havelock and the impact of their policies is described. A brief account of the rationalisation of examination provision is given as this is relevant to changes in syllabus structure which are still to be announced.

- 5.1 FAILURE OF THE TRIPARTITE CONTROL OF THE CURRICULUM 1972 77.
- 5.1.1. CRITICISM OF EDUCATION PROVISION.

(Richards 1978, 1) wrote of 1963-73 as being a 'golden age' for education, "there was an emphasis on innovation, enterprise, autonomy, and diversity fostered by belief in the value of education for economic, social and intrinsic reasons." This period which could be said to have begun with the launching of Sputnik I, October 1957, ended abruptly with the oil crisis and it's economic consequences in 1973. Other factors such as falling rolls, unemployment: (Salter and Tapper 1981, 192), pressure, unanswered problems of inequality underachievement: (Chessum 1980, 115) and political philosophies to question the attitudes of the 'golden age'. combined According to (Richards 1978) "... awkward questions have been raised about the role of education, the effects of curriculum reform, the intervention of central government, the desirability of teacher autonomy, the significance of 'hidden curriculum", and supposedly non-political nature of education in general and the curriculum in particular."

Criticisms of the curriculum implied in the famous phrase made in 1960 by David Eccles about the 'secret garden' of the curriculum could no longer be ignored. (Weaver 1979, 67) writing of Policy Analysis and Review noted the new 'machinery', "led, in 1971 and 1972, to a wider and deeper re-appraisal of education policies than the Department had ever previously attempted." (Salter and

Tapper 1981, 194) indicated that "By 1975 something of a gap had developed between the implications of the D.E.S.'s internal planning arrangements and the reality of it's external power or lack of it." Various writers made reference to the significance of the 10th Report of the House of Commons Expenditure Committee which (Lawton 1980, 24) maintained was produced "... partly as a demand that Education should give value for money but partly as a criticism of the fact that D.E.S. appeared to condone the view that teachers alone should have control of the curriculum." Further criticism of the D.E.S. for not being open in it's dealing was made by a 1976 Select Committee: (Kogan 1978, 119).

In 1976 the Prime Minister, James Callaghan, in his Ruskin College speech drew attention to the failure of the Secondary School Curriculum, its failure to innovate and especially the failure of schools to encourage students to continue on to study in the sixth form. Not surprisingly industrialists such as Weinstock and Meltoer now commented publically on the education system, whereas previously comment was made privately: (Ahier and Flude 1983, 225).

Following the various criticisms the D.E.S. abandonded its previous passive role (Holt 1980, 9) and according to (Salter and Tapper 1981, 39) "... ever since the D.E.S. has led to a purposeful quest for a new experience of schooling geared more closely to the needs of the labour market." The appointment of James Hamilton as Permanent Secretary marked the beginning of this changed role: (Hammersley and Hargreaves 1983, 46-47) in which the D.E.S. used its power (Weaver 1979, 22-24) to establish

its pre-eminent credibility partly by destroying the credibility of its esrtwhile partners in the golden age.

5.1.2 THE 'UNDERMINING' OF THE L.E.A.s

A request, D.E.S. 1978a, was issued to L.E.A.s in November 1977 information of L.E.A. education provision. This led to a 'Report on the Circular: D.E.S. 14/77' in 1979; writing in the foreword to this report the Secretary of State observed, Government is deeply committed to the maintenance and improvement of educational standards in the schools. This does not mean looking for more resources, which are not available, but getting better value for the resources which can be afforded. Concern about educational standards can not be divorced from concern about the curriculum offered." This D.E.S. review revealed that 70% of the L.E.A.s retained central funds although for curriculum development only 20% were able to provide limited funding for projects and only 40% referred to actual work on science etc. Whether the poor picture was a consequence of the Local Government re-organistion in 1974: (Hunter 1983, 100-101), was speculative; the report did however afford an opportunity for a central control: (Pile 1979, 236).

Further opportunity of central intrusion was offered when the L.E.A.'s found it would be inefficient for them to face individually in isolation the common problem of future educational provision 16-19: (Ahier and Flude 1983, 72), and they sought a central solution leading to the (MacFarlane Committee Report 1981). The Secretary of State used his power relative to

that of the L.E.A.'s: (Weaver 1979, 38-39) also (Pile 1979, 29-30), in line with the foreword mentioned above, and "MacFarlanes keynotes were rationalisation, resource management and cost-effectiveness": (Edwards 1983, 61).

The White Paper of March 1981 'The Government's Expenditure Plans 1981-2 to 1983-4' stated "The Government remain committed to the objective of maintaining and improving the quality of education." For 'standards' in 1979 read 'quality', in 1981 an interesting amendment in view of socio-economic changes. The White Paper also mentioned financial restrictions suggesting that education ".. can serve as the foundation for further educational development and improvements, not all of which need more resources." Sir Keith Joseph was more explicit on this point in January 1982: (Hunter 1983, 93-4).

In response to falling rolls and the avoidance of duplicating small classes with specialist Staff, Manchester proposed a scheme involving sixth form Colleges and Further Education (F.E.) which was envisaged to develop into a Tertiary System. This was Sir Keith Joseph as "only in rejected by exceptional circumstances can it be right to reduce good schools from 11-18 (Edwards 1983, 73) observed the 11-16." decision As to contradicted MacFarlane's support for treating 16-19 provision as Shortly afterwards the Croydon Tertiary proposals a totality. were rejected as the remaining 11-16 schools were considered too small for appropriate curricula and sufficient teaching groups. (Hunter 1983, 97) wrote "By siding with particular

interests against the elected Authority the Secretary of State undermines the Authority, and therefore it could be argued diminishes the reponsibility of Local Government. It is an example of 'centralism' with the D.E.S. or Government taking on more responsibility and negotiating local decisions when it suits them."

5.1.3 THE DEMISE OF THE SCHOOLS COUNCIL

The Schools Council comprised a tripatite structure involving D.E.S., L.E.A.s and Teachers providing the teachers with a legitimate authority in matters affecting the curriculum etc. However, whatever authority the School Council had was weakened by its own 1978 Report which:

- i) criticised the R D and D model, (4.2.8.1), which was the model adopted by the Schools Council for many of its projects.
- ii) Showed that features of its own 1972/73 report were still not implemented. The Dissemination phase widely held to be important: (Whitehead 1980, 58) was added to the Humanities, General Studies Schools Project (H.G.S.S) as late as 1984.

Many other factors contributed to the declining influence of the Schools Council:

i) In the Black papers (Cox and Dyson 1971) the Schools Council was associated with progressive methods when there was a growing call from many for a return to the '3R's': (Dcle 1983, 242). (West 1984, 182) considered that the complaint of falling standards 'never stuck' and he attributed the problem to a lack of definition of curriculum aims and objectives. (Salter and

Tapper, 1981 119) commented that the constitution of the Schools Concil outlawed such concepts as 'intervention' and 'direction' and (Becher et al 1981, 146) showed that in the face of criticism the Schools Council found solace in their 'professional wisdoms'.

- ii) The Schools Council was identified with teacher unions and teacher politicians and their petty policies by several writers: (Kogan 1978, Chap.6) and (Becher et al 1981, 147).
- weak. (Galton 1970, 139) identified a weakness insofar as the election of teachers onto the Council was via the official unions and professional organisations. (Mann 1979, 127) stated that the diffusion strategy was 'cumbersome' and 'ill-designed' to gain co-operation at a time of rapid change. Other writers such as (Salter and Tapper 1981, 125) suggested that by making appointments on short term contracts that any advantage of fresh-blood was far outweighed by a failure to accumulate expertise.
- iv) Since 1964 the Schools Council was committed to broaden the sixth form, yet its Q and F proposals were found unacceptable in 1969, and its N and F proposals were dropped in 1979 (Holt 1980, 48-52 and 166-168), (Kelly 1982, 124) wrote of the limited effectiveness of the Schools Council in promoting curricula change, and when it did encourage change it was criticised for the use of policies which could lead either to indoctrination: (Kelly 1982, 125-7) or to an extension of teacher power through the use of Mode 3 examinations (Whitty 1983, 170-71). In fact the control of C.S.E. examinations was effectively in the hands of "... senior members of the professions rather than a major devolution of power to teachers on the class-room floor":

(Whitty 1983, 168) and Whitty suggested that Mode 3 was relatively conventional rather than subversive. Nevertheless the C.S.E. was not considered an effective means of curriculum control (Hurford 1979) and there was criticism of teacherassessment from Universities and traditional University based G.C.E. boards which extended into a further criticism of teacher autonomy: (Whitty 1983, 176); (Bowe and Whitty 1981, Chap.11).

(Pile 1979, 99) wrote of examination and curricula aims at 16, "This was a problem that could only be tackled by a body with a wider remit than the supervision of examinations" and the reponsibility for developing a new common system of examining was not given to the Schools Council: (Holt 1980, 140).

iv) The Schools Council was an easy target for financial saving.

Many of the criticisms were moderated as being made either in hindsight: (Kelly 1982, 127) or without regard to the valuable practises stimulated by the Schools Council: (Lawton 1980, 160); indeed many of the Schools Councils initiatives such as the proposals for sixth form review made in 1972 were later followed through. (Holt 1980, 182) summed up the activities of the Schools Council as either doing the right thing at the wrong time or the wrong thing at the right time.

The Schools Council announced its own intention of a constituted review: (Mann 1979, 128) but in effect Shirley Williams initiated a review in 1977-78. This led to a reconstituted Schools Council

in 1978 and new guidelines in 1979 so that the Government and the L.E.A.s had the greatest control as they dominated the influential Financial Committee. (Varney 1985) described how the Trenamane inquiry, announced in 1981, criticised the Schools Council but suggested no further review for five years. However, within a short time the Schools Council lost its status and the Schools Examination Council (S.E.C.) and Schools Council Curriculum Review were formed; the latter continuing the policy of the Schools Council of moving from national projects to local curriculum development: (Salter and Tapper 1981, 126).

5.1.4 THE TEACHERS STATUS IS WEAKENED.

The status of techers relative to the D.E.S. and the L.E.A. in curriculum control was weakened by the D.E.S. initiatives against the Schools Council. (Salter and Tapper 1981) also made several references to how the teachers unions were outmanouvered by the D.E.S. Other writers such as (Mann 1979, 127) and (Holt 1980, 132) described how the teachers case was weakened as they did not take a sufficently wide view to form their judgements. This decline in influence was not opposed by the public who at that identified teachers with the findings of the (Auld Report time 1976) into the William Tyndale School.

(Salter and Tapper, 1981, 209) described the further erosion of teacher power when the Taylor Report (the Composition of School Governing Bodies 1977f) was issued. In F.E. Sector (Cantor and Roberts, 1979, 22-3) considered that the creation of Governors 1. (Pages 54, 62, 208, 224)

weakened the Principals role and the formation of an Academic Board weakened the role of the L.E.A. However, the changing membership of the Academic Board allowed the Principal to take the initiative and the L.E.A. retained a financial control.

- 5.2 THE GREAT DEBATE AND IT'S AFTERMATH.
- 5.2.1 THE ROLE OF THE D.E.S.

The changed role of the D.E.S. became more evident following release of the 1977 Yellow Book and the 1977 Green paper, and the ensuing Great Debate. Basically the D.E.S. sought for:

- i) an increase in the work of the Assessment of Performance Unit (A.P.U.), a unit set up in August 1974 and criticised by (Lawton 1980, Chap.4) because of its secrecy. A measure of its low profile was that (Pile 1979, 103) noted "an extensive programme of research" but never mentioned A.P.U.
- ii) financial control as afforded by the Training Services
 Agency (T.S.A.) and Manpower Services Commission (M.S.C.).
- iii) a common curriculum core.

Ten regional conferences for selected audiences were held in 1977 followed by the issue of the Red Book 1977, in which reference was made to the eight areas of experience to be included in the curriculum.

(Lawton 1980, vii) wrote "there are faint but discernable signs that D.E.S. is attempting to exert more central influence". He saw (p.9) the 1977 Green Paper and the Red Book as suggesting a desire from the centre for control of the curriculum. Within the climate of opinion created by the Great Debate. (Salter and

Tapper, 1981, 41 and 91) stated that D.E.S. was prepared to state its own view as in 'A framework for the School Curriculum 1980', and then gauge the reaction before modifying their perspective to 'The School Curriculum 1980'. Both documents were considered to be significant as they offered definitive guidance on the curriculum: (Kelly 1982, 239) and they put down in 'black and white' several important statements including that there should be a core: (Kogan 1984, 129). (Salter and Tapper 1981, 34) noted the "... repeated pronouncements to the effect that school should serve the needs of industry more effectively", a policy viewed by (West 1981, 229) with strong reservations.

5.2.2 THE INSPECTORATE.

The H.M.I.'s who in Curriculum 11-12 had according to (Kogan 1984, 129) argued the case for a common curriculum with not too many options as they ".. may prevent the right of access of pupils to certain kinds of knowledge", in 1980 issued 'A view of the Curriculum 1980'. Whereas the former document was criticised as it did not appreciate the practical aspects of the whole curriculum innovation: (Holt 1980, 49-50), Kogan thought the latter document perfectly sensible.

Other writers such as (Salter and Tapper, , 231-2), (Broadfoot 1983, 254-258), and (Becher et al 1981, 149) described the H.M.I. publications as a continuity of theme leading to a situation in which a dominant D.E.S. could specify curricular policy. However, (Kogan 1978, 139) thought the "D.E.S./H.M.I. would be reluctant to take centralization too far", a view repeated:

(Kogan 1984, 124) when he wrote ".... fears of a strong prescription are exaggerated." The latter view was obviously shared by the Schools Council as in the introduction to Working Paper 70 'The Practical Curriuculum', they noted the Government "... did not intend to alter the statuatory relationship between the various partners."

5.2.3 CRITICISM OF THE D.E.S.

Although the D.E.S. was successful in damaging the credibility of the Schools Council, L.E.A.'s and Teachers it was itself open to criticism because of delays in policy implementation etc.

- i) (Holt 1980, 7) noted that while the D.E.S. criticised the Schools Council, the D.E.S. was substantially represented on the Schools Council committees.
- ii) The Plowden recommendations were not made obligatory until after a 13 year delay when the 1980 Education Act was passed: (Becher et al 1981, 41).
- iii) (Cantor and Roberts 1979, 13) commented on the 4 year delay after the report from the 1969 Haslegreave Committee before setting up the Technician Examinations Council (T.E.C.) and the Business Examinations Council (B.E.C.).

Similar comment was made by (Moor et al 1983, Chap.1).

- iv) (Weaver 1979, 84) gave a list of D.E.S. ad hoc working parties which showed that since 1970 their findings were often never implemented.
- v) The M.S.C. in 1977 were able to seize an initiative in 1977 with the publication of the Holland report which led to the Youth Opportunities Programme (Y.O.P.); (Salter and Tapper 1981,

204) described the D.E.S. as needing protection from further encroachments and a strong platform for lauching co-operative ventures. A previous co-operative venture led to a pilot Unified Vocational Preparation Course in 1976 which flopped due to employers apathy and reluctance to accept costings.

vi) (Cantor and Roberts 1979, 179) criticised the D.E.S. for allowing F.E. to drift before taking account of an internal review: (Hammersley and Hargreaves 1983, 45-46) and setting up the Further Education Unit in 1977. Although it must be noted that in F.E. the H.M.I. always had a more prescriptive role than in schools: (Pile 1979, 138) and (Kogan 1984, 128).

5.2.4 THE D.T.I. CHALLENGE TO THE D.E.S.

The changing status of D.T.I. relative to D.E.S. can be traced the 1964 Industrial training Act which led to the formation of Industrial Training Boards (I.T.B.s) for approximately half of the U.K. Subsequently following a Government review workforce. 1972 a consultative document 'Training for the Future' was released which led to the 1973 Employment and Training Act. legislation simplified the requirements of the earlier 1964 Act with respect to the levey system and the responsibility for administration costs. The 1973 legislation also resulted in the setting up of the M.S.C. in 1974 to oversee the Employment Services Agency (E.S.A.) and the Training Services Agency In the opinion of (Lewis 1982) since 1974 (T.S.A.). the Government's intervention led to changes in employment and training patterns and to programmes designed to smooth the transition from school to work.

One such programme was the Work Experience Programme (W.E.E.P.) introduced in 1976, this was to include a basic element in Life and Social Skills with either Literacy and/or Numeracy over a six month period. According to (Fiddy 1982, 20) the "weighty implication in W.E.E.P. is that there is a fault with the unemployed school leaver if he needs extra schooling to make him employable."

1977 the Holland report published 'Young People at Work' In and 1978 the Y.O.P. scheme appeared through a merger of in the W.E.E.P. and Job Creation Programmes. The scheme was aimed at the unemployed under 19 years of age and cocentrated on the less well-qualified. A similar scheme was the Training Opportunities Scheme (T.O.P.S.) which afforded 1 year full-time training or retraining in Skill Centres, F.E., etc., for those who were employed or wished to change their employment. (Raffe 1981) thought the objectives of the schemes were in a large part educational writing "... the programme aims to enhance the skills and personality of employed young people and to compensate them for any deficiency in their education.... (Salter and Tapper 1981, 18) noted that many of the skills were "... perhaps of a more social than educational nature", and that the end result of the schemes was to close the gap in educational attainment school leavers.

Further criticism of student achievement at age 16 was made in a 1978 report 'One Year Pre-employment Courses for Students age 16;'; this report also criticised the tangle of F.E. provision

offered to such students.

5.2.5 A BASIS FOR CHOICE.

The F.E.U. was set up in 1977 and in 1979 'A Basis for Choice' This continues to be an authoritive (A.B.C.) was published. document on pre-employment and vocational courses which was cited approvingly by several organisations concerned with education: Avis described the A.B.C. curriculum framework (Avis 1983,23). for part-time 1 year education of pre-employment groups as being "aimed both to rationalise provision and to gain national currency for the qualification acquired from such courses." criticisms offered by Avis were answered by (Mansell 34) who suggested that Vocational Preparation 1981, was nearer to what would be published now, this placed A.B.C. within context of vocational preparation. Mansell wished to avoid student resistance by making a course relevant and he required profiling to emphasise success rather than the failure of alternative examinations.

Attention to pre-16 curriculum issues and the traditional separation of education and training was made in 'Foundation for Working Life, Education and Training 16-19' (Venn Report) issued 1980 by the Standing Council of Regional Advisory Courses. The Venn Report hoped that A.B.C. would rationalise the plethora of courses. Another report issued at the same time by the Secretary of State: 'Examinations 16-18' suggested the replacement of C.E.E. with a further education validated course as in A.B.C.

5.2.6 NATIONAL POLICIES

- 5.2.6.1 Thus the demands for vocational directions within the curriculum were increasingly made an in an economy where unemployment was rising, further policy statements were soon forthcoming: On the 15th December 1981 two documents were published simultaneously.
- i) National Training Initative: Programme for Action a White Paper from the Secretary of State for Employment, this followed a consultation paper 1981.
- ii) National Training Initiative: Agenda for Action by M.S.C.

These documents were described by (Vincent 1983, 64) as an antithesis in spirit. The proposals of the White Paper were seen as another raising of the school leaving age (R.O.S.L.A.) and included some contentious financial implications for students and parents as well as a suggestion to develop an Open Tech. programme.

- 5.2.6.2 Following a report of M.S.C. in 1982: Institute of Manpower Studies Report 39 Foundation Teaching Issues there appeared to be three alternative strategies:
- i) Pluralist, to allow a variety of approaches allowing the best to become obvious to the majority.
- ii) Concerted incremented change of M.S.C. and I.M.S. proposals.

iii) Major Blue-Print, of which it could be asked 'is N.T.I. that Blueprint?

5.2.7 RECENT CHANGES.

After 1982 there was continued rationalisation of educational and training provision:

- i) In 1982-3 seventeen of the twenty-four I.T.B.s were wound up on the basis that M.S.C. would be less bureaucratic and more cost efficient. This also reflects a criticism of British Industry for its failure to modernise its training: (Maclure 1982, 109).
- In 1983 the various components of Y.O.P. and U.V.P. were merged into Y.T.S. and as a full-time counterpart to Y.T.S. a 17+ provision was formed: Certificate of Prevocational Education (C.P.V.E.). The C.P.V.E. was to replace the C & G Foundation Course, the R.S.A. Vocational Preparation Course etc., by providing a one year course of unified and specialised vocational preparation for students of modest 16+ exam achievements: (Edwards 1983, 67). This theme of rationalisation and provision of certification was in line with general changes in the schools sector and was encouraged to lead to the same syllabus for the common core: (F.E.U. 1982, 68), being course based rather than subject based, student centred and not formed. The changes were line with '17+ a New Qualification' produced by the Government in 1982 following the (Keohane Report 1979). Later in 1984 the F.E.U. considered th A.B.C. core for its use in a 17+ scheme. Both the A.B.C. and C.P.V.E. require recording and profiling rather than formal examinations alone and in the F.E.

sector B.T.E.C. had introduced profiling.

- 5.3 RATIONALISATION OF EXAMINATIONS.
- 5.3.1 THE 16+ EXAMINATION 'DEBATE'.

The Schools Council first proposed a 16+ in its 1971a publication making further mention in Bulletin No. 23, proposals for which 141) thought they should have got wider (Holt 1980. Another proposal made by the Schools Council that "... national criteria be established for syllabuses and assessment bv the Governments Waddell Committee 1978. endorsed in Consequently the Government issued a directorate to the G.C.E. and C.S.E. Baords Joint Council and the process of establishing a common 16+ was set in motion. Also in 1982 'Examinations at 16+: Statement of Policy' was published, in which Ministerial approval of the national criteria was stressed.

Speaking in an address to A.S.E. in 1983, Sir James Hamilton, Permanent Secretary at D.E.S. said "... I am wholly prepared to use reforms of the examination system to bring about much needed changes in national attitudes towards curriculum." Two reasons were given for the 16+ review.

- i) to rationalise the administrative procedures of the G.C.E. and C.S.E. examinations.
- ii) To put some sense into a framework for curriculum and syllabus which had become increasingly convoluted and in many cases out of touch with the needs of the child, the parent, and the employer.

Note the second point had a vocational significance and it was

not explicit about a common core whereas the 1977 Green paper referred to a 'core' or 'protected part'.

The procedure adopted for the 16+ debate was that groups G.C.E. and C.S.E. Boards would prepare their own syllabuses to The drafts after consideration by schools agreed guidelines. return to the original would working party; parallel consideration was also made by the Schools Council and H.M.I.s (Kelly 1982, 195) criticised this process as it limited teachers influence and (Phillips 1982) suggested that the working parties did not consult widely perhaps due to constraining time demands. Phillips criticised the assessment style and the way in which working parties were formed writing, "experience or connection with examining boards seemed to be the only criteria for it's membership." This is not surprising as according to (Beck 1983, 226) the University dominated boards had successfully resisted industrial lobby during the Great Debate and shown their the resilience in the new phase. (Whitty 1983, 176-180) described how the G.C.E. Boards regained influence ceeded to the teaching profession during the 1960's. Whitty further described the Boards competing for favour by being seen to uphold standards through "the extension of increasingly dominant technical modes control from the capatilist labour process into schools", especially tighter statistical control over Mode 3. Similar comments were made by (Bowe and Whitty 1981, Chap.11).

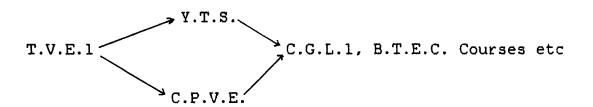
5.3.2 THE 16+ PROVISION.

Following the consultative process Sir Keith Joseph made a speech on 6th January 1984 which contained the following points:

- i) The 16+ examinations would become criteria referenced.
- ii) The School Curriculum should have breadth, relevance, differentation and balance.
- iii) The minimum level of attainment in Science should include: observation, appropriate measurement, sensible prediction, a practical approach to problems, acting on instructions, following safety precautions, and effective communications.

5.3.3 G.C.E. 'A' LEVEL.

Although not as prescriptive at 'A' level as at 16+, the Secretary of State for Education did establish in 1980 the conditions of clarification and rationalisation of syllabuses for 'A' level G.C.E. (Adkins 1984) indicated that in the case of Physics these conditions will be adopted from 1985.


5.4 CONCLUSION

In consequence of the organisational changes described in this section the framework of examination provision changed; (Fairbrother 1984) in an account "with some speculation" attempted to identify a pattern in examination provision and he submitted:

i) An academic route,

G.C.S.E. grades 1,2,3 \longrightarrow A.S levels \longrightarrow A levels

ii) An alternative route to Adult working life,

An (A.S.E. Subcommittee 1985) identified a similar pattern in which ii) was subdivided into 'Prevocational' and 'Vocational'. Also it should be noted that the T.V.E.I. scheme will extend to include G.C.E. 'A' levels.

At present the view of the B.I.M. is that youngsters opt for Y.T.S. and a guaranteed minimum wage rather than continue a formal education, but there is a body of opinion which seeks a party of esteem between the C.P.V.E. and the Y.T.S. with a 21 hour provision for C.P.V.E. Any legislation to give parity will affect the range of courses being taken up by youngsters, this would be significant within the scope of this thesis as some C.P.V.E. schemes could include provision for the inclusion of Electronics.

SECTION 6. ELECTRONICS IN THE SYLLABUS

An outline is given of the factors affecting the curriculum, and the interrelationship between the curriculum and assessment. Reasons in favour of Electronics appearing in the Curriculum in some form are then discussed.

The changing form and content of Electronics syllabuses at 16+, 17+, and 18+ are described with reference to Section 6. In view of restrictions of time and space the emphasis is placed on the A.E.B. and B.T.E.C. (previously 0.N.C., T.E.C.) examinations. The modular form of B.T.E.C. and the assessment techniques are described insofar as they are pertinent to proposals being made in T.V.E.I. schemes etc., Section 7. Features contributing to the growth and acceptability of these syllabuses are identified.

"The simplest schoolboy is now familiar with truths for which Archimedes would have sacrificed his life."

Ernest Renan in Souvenirs d'enfance et de Jeunesse (1883)

6.1 THE FORM OF THE CURRICULUM

- Writing of the content and form of education in terms social heirarchy (Lukacs 1923) stated "knowledge is a product of interest." interaction of reality and Similarly man. sociologists in the modern tradition: Young, Esland, proposed that all knowledge was socially constructed; their reflexive perspective was that education was negotiable being essentially and necessarily political. "Thus rationality itself becomes merely a convention, and the rules of logic and argument shaped and selected in accordance with the purpose of argument or the intentions of the arguer": (Mills 1939) expressed the same view more briefly: the "rules of the game change, with a change of interest!"
- 6.1.2 The perspective of philosophies was described by Phenix and Hirst. (Phenix 1964) described knowledge as being organised into realms of meaning which were non negotiable. He identified nine generics which students were required to understand and employ, and he formed these generics into six realms: symbolics, empirics, aesthetics, ethics, synoptics, and synoitics.

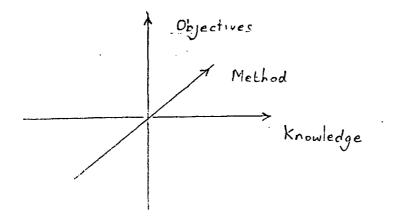
Phenix considered that within the curriculum disciplines were rarely assignable to a single mode of thought or realm of meaning. (Eggleston 1977, 59) considered the concept of Phenix

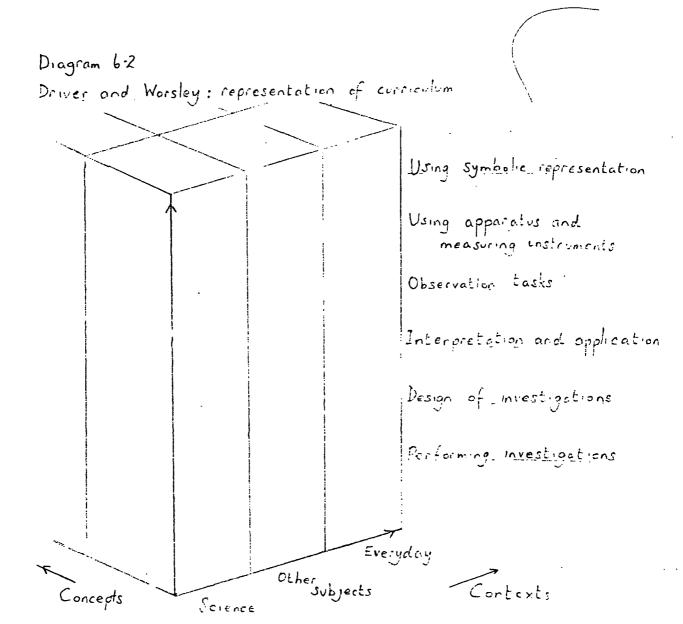
as that "of a real objective world which we can discover, clarify and make meaningful."

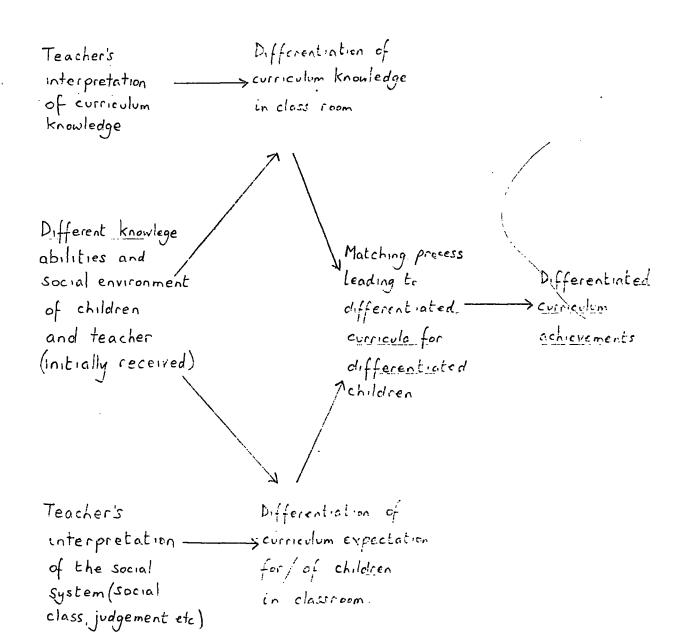
6.1.3 (Hirst 1965) identified forms on knowledge, and of understanding; his work showed that the case for a balanced curriculum was implicit so that children were introduced to various ways of knowing. The forms given by Hirst were: Mathematics and formal logic; Physical Science; Human Science (including History); Moral understanding; Religious form; Philosophy; and Aesthetics. Eggleston considered the work of Hirst as "one of the most coherent and highly developed theories of curriculum."

Writers such as (Eggleston 1977, 59) observed that Hirst's view may be too narrow, not allowing room for sub-groups and different abilities. Such a view is not consistent however, with Hirst's statement: "decisions about the context of courses can not be taken without special regard to the abilities and interests of students for which they are designed." Indeed, Eggleston himself included quotes (p.59), from Hirst vis "Mind is an instrument allowing individual to understand the fundamental nature of knowledge." and (p.58) writing of the use of the objectives approach "unique, no one formula being suitable for all achievements", "each individual result can not be pre-sepcified." Thus it would seem that Hirst's view would allow the view proposed by the sociologist (Holt J, 1976) that "children learn what they want to know!"

6.1.4 The relationship between the views of sociologists and


philosophers was placed in a somewaht polar form by (Taylor 1971, 161): Diagram 6.1


Taylor suggested that the matrix defined a 'total intended curriculum' writing "at no one moment is the pupil experiencing more than part of it though through his educational career he may experience much of it."


The form of the curriculum offered by Taylor was an early representation of the Social interacting school as advocated by (Musgrove 1968), (Eggleston 1977) et al. (Driver and Worsley 1979) used a similar polar form: Diagram 6.2.

- 6.1.5 (Eggleston 1977, 72) later suggested that the earlier polar curriculum theories were open to criticism and he offered a restructured perspective: Diagram 6.3.
- Thus the socialogical-philosophical debate evolved into 6.1.6 a debate about whole curriculum planning, a system approach than a subject approach such as those of the Schools rather Council and Nuffield. According to (Holt 1980, 176) "Instead of viewing the curriculum as the sum of subject combinations 'whole curriculum change' takes an organic holistic view.. " (Holt suggested that a "common curriculum, unifying key curriculum experiences for all pupils is now acquiring normative Insofar as (Macdonald and Ross 1975) defined normative states". planning to be about deciding what ought to be achieved according to the prevailing value system, then Holt's use of the term normative in his comments on the common curriculum implies a

Diagram 6.1
Taylor: total intended curriculum in matrix form

dynamic situation. Thus the various proposals for sciences as a core component of general education may be seen as attempts to keep pace with and to identify with the emerging views of whole curriculum planning.

(Kogan 1980, 130) wrote "But ultimately the curriculum is going to be a compromise between such traditional concepts as the accumulation of knowledge and cognitive skills, an ability to adapt to the needs of Society and work, the need for individual development, and the need to make sure that we are all part of a Society that becomes productive and well balanced again."

The point of compromise will itself change and Kelly warned against searching for "some once-for-all, God-given criteria". Indeed Eggleston considered that with improved storage and rate of change there would be a shift of emphasis of the individual from knowledge storage to a 'knowledge developer', others see the changes as requiring 'humanity' in each syllabus.

6.1.7 Writers such as (Taba 1962), (Kerr 1968) included evaluation in their models of curriculum planning whereas (Taylor 1971) did not. Recently (West 1983, 409) placed teaching and assessment in juxta portions:

Teaching/ Aims - Objectives - Content - Pedgogy - Evaluation Learning - Assessment

assessment

Assessment/ Aims - - Content - Technique - Assessment

examining objectives

Such a representation is suggestive of an Action-Reaction mechanism in Sciences eq. Inductive and motor effects. The latter are illustrated by Fleming's Right hand and Left hand Rules, these rules include mutually perpendicular axes such as those proposed by Taylor.

Thus Taylor's model could be complemented with a holistic mirror image of evaluation/assessment. As such traditional examinations are seen to be polar and the further development of assessment procedures complementary to the position of the curriculum core can be anticipated. (Cadd 1981) suggested a holistic appraoch to evaluation in which interviews were used to determine a behaviour pattern. Also (Kelly 1971) called for a standard profile in recognition of the complex behavioural system.

If the Action-Reaction analogy is continued then it can be anticipated that the teaching/Learning - Assessment/Examining/ Evaluation relationships will involve a time lag:

Consequently an instantaneous relationship between the total curriculum and an equally holistic view of assessment etc., may observe a relationship which is seen to be simple in the long term.

6.1.8 It is against this complex shifting system that the contribution of Electronics within the syllabus needs to be evaluated. The subject must contribute to the present view of the curriculum if it is to be acceptable and also the subject must allow assessment by techniques currently acceptable.

- 6.2 WHY ELECTRONICS SHOULD BE IN THE CURRICULUM.

 Reasons in favour of electronics appearing in the curriculum are given by M.E.P. in their information files, see appendix.
- 6.2.1The first reason has а long-term sociological significance as by creating a public awareness of electronics, future relationship between the public and scientists may be shaped. Electronics offers an opportunity to teach concepts and skills using up-to-date materials in such a way that the general gains an awareness of technological-social-political public both in terms of present-orientated knowledge e.g. issues: microprocessors; future-orientated knowledge e.g. rate of change and new to acquire new skills: (Meighan and Brown 1980, 142) The experiences given to students will form a basis for a decision forming process in later life. (Maskill 1982) suggested that "If effective problem-solving Wallis activities are to be taught in schools , the most sensible place to begin would seem to be in problem-solving activities familiar to the pupils, rather than in the science lesson". However, many uses of electronics vis: door bells, automatic door opening, simple alarms, etc. are a part of everyday life and accordingly electronics offers a usable basis for introducing problemsolving. The link between practical work, project work and everyday applications of electronics enables the curriculum to include experience from outside school consistent with the views expressed in Schools Council Working Paper 70, and in a current discussion paper by D.E.S. on Homework.

It would seem possible that such links may be developed thus adding to public awareness and continuing education outside school. (Whitfield 1979) referred to the importance of the family as an educational resource, perhaps projects in electronics are more likely to draw on family resources insofar as was noted above, electronics have several everyday applications.

Arising from the tentative link to the public through schools there is the further point that if there is interest within family, then as electronics will allow humanitarian and social aspects to be developed at an early stage, it may be possible to encourage girls to participate in the subject. This would be significant in enabling "all citizens" to contribute usefully to society which constantly needs to adjust to socialogical and political consequences of change. (C.Dunn 1984) reported that as a practising teacher, in her experience girls like the systems approach and working with models. A further aspect of the family link is that the link touches on the concept of deschooling: (Illich) which if devloped would require that the tools and components..." were "... within reach of all...". This significance should be considered in future syllabus developments.

6.2.2. The second M.E.P. reason is very broad, perhaps a keyword is motivation. In discussing 'Readability' (Johnson 1979) wrote " A young electronics enthusiast may read and persevere with a complex electronics magazine but quickly abandon the simplest history text-book. This internal motivation is very powerful, but not easily modified by a teacher ". Such motivation

is generally noted by electronics teachers and it provides a potential stimulus to both boys and girls to continue their study to a more advanced level. It is this motivation which enables students to readily accept ideas foreign to an older generation with confidence, it is this motivation which is observed to encourage adults in their F.E. studies. However it should be stressed at this point that there is no immediate correlation between attitude and achievement; (Fraser 1982) observed a poor correlation and suggested that what was important was that which enabled the student to grasp the problem.

The practical work in electronics can enhance this motivation and contribute to student enjoyment and satisfaction as they gain understanding of the relationship between practice and theory: (Davies and Fenton 1976); note that in the context of this study, practice is placed before theory as suggested by (Woolnough) enjoyment is facilitated by the use of modern 1983). The which allow work to be and components, done quickly with versatility and reliability. As (Palacio 1984) noted reproduceable observations are a " necessary requirement science ", also "There is a 'bonus' for pupils if they encouraged to use their observations to, for example, identify make predictions as opposed to simply patterns and/or obtained from precision practical skills. It observations conceptual using observations in this way that development can take place which in turn may lead to a general improvement of the observations the pupils make ". This view is consistent with (Bruner 1966) who pointed out that the process of discovery can lead to an appreciation and understanding of the nature and art of inquiry.

6.2.3. (Smith 1978) observed that " most school science courses give children little training in the information-processing aspects of scientific works...". Electronics readily provides such 'training', as experimental data can be compared with published values and the students are increasingly encouraged to published information from a wide variety of sources as more formal practical work leads into project work. Students can introduced to the use of catalogues etc. to gain a basic appreciation of costs and then to cost out their own Project work is perhaps the strength of electronics as it extends the practical and thoory work allowing the development of skills in specification, planning and problem solving in context. The paper work is not tied by subject boundaries as in many other subjects and the project work offers such a wide range of problem that electronics is not open to critisism 'spontaneous' as that given by A.S.E. 1979 "...many of the Nuffield such have spawned contrivances to produce the right courses answer nearly every time ". Other than offering students the opportunity it will work as intended, the project allows if the explore and find out' what else it will do, quite to often not only inside the laboratory, but also outside of school.

That skills are developed as a realistic context is important.
(Woolnough 1983, 61) criticised the 'artificial game' of

experiments as leading to the destruction of pupil enthusiasm. (Smith 1978, 147) observed it is highly likely that some sort of direct participation in realistic scientific work might give a more meaningful impression of 'scientific method' than much of the partour magic which still passes currency as experiment..."; further the choice of realistic practicals may encourage children to follow science if "...they can percieve scientific disciplines as appropriate activities for normal adults ". The inclusion of data references other than those from conventional text-books can relate the work of students to a more adult level and adds purpose to the information-processing referred to above.

Thus the student motivation can be increased by relating their individual work to a range of disciplines, interests and situations. Conventional laboratory work affords skills in the interpretation of constructions both written and verbal. The project work builds on motivation and considerably extends those basic skills acquired in the formal practical work.

6.2.4 The project work is nearer to an individual learning situation than most situations and it can lead to a better teacher-student relationship: (Green 1982). The teacher can show an encouraging 'warmth' by using the pupils ideas and giving an encouraging feedback. This situation can encourage and allow the student more creative thought and self-realisation, which can be developed at the students own pace. Findings from the A.P.U. certainly suggest that given the opportunity and encouragement the students can manipulate circuits and at their own pace more students may be successful. Many students find that at their own

pace they can 'learn how to learn', perhaps they do not phrase it as Bruner did, but it is not unusual during project work for a student to comment on their emerging 'self appreciation'. observations are consistent with the opinion of writers such 1968. 82) who suggested that subjects other than those (Taylor normally on the time-table may be more appropriate to the student the range and scope of learning required. The project allow a concentration to be given to the student teacher and the electronics core allows the students to integrate their own interests, hobbies, subject strengths. Certainly the improvement in student academic progress often rated during project work tends to be a broadening educational experience rather than a narrow specialisation.

6.2.5 (Armstead 1979) in his case in support of project work noted that project work allowed assessment of factors on student development otherwise ignored. One unexpected bonus of project work is the spirit of co-operation which can develop within a class: if students are made aware of each other's activity they will readily interchange relevant references and make due allowance for the sharing of equipment as work proceeds. It is not usual for such a life skill to appear in team and group activities but not at such a personal level as this in a science subject. Indeed in terms of compiling a student profile this characteristic of co-operation may be usefully included:

(See A.S.E. discussion of the Aim 2 of 'A Basis for Choice'. 1982).

- (Whitfield 1979, 423) identified 'teacher traits' which he described as critical in the development of the teacherstudent relationship, one being 'demand', noted also by (Lord 1984, 36). The use of Notes for Guidance and Marking Schemes by some Examination Boards allows students to be issued introduced to practical work in such a way that they try to achieve a high level of planning, presentation etc. (See 4.3.5.8.) As students progress through the experience of forming verbal decisions as the work proceeds to the formation of written decisions in their report, they can be gradually introduced to related experiences of conceptual clarity. The use of B.S. symbols, necessary related work, use of language etc., introduced in a way that is relevant to both the project and the written examination. Concepts and detail introduced in this way can enable the students to have better recall over a wide range of topics.
- 6.2.7 Armstead observed three weaknesses associated with project work:
 - i) inadequate laboratory facilities.
- ii) difficult for students to formulate projects in Chemistry and Phsyics.

ζ.

iii) difficult to define and access projects objectively.

The first of these weaknesses continues to be a major problem; (Green 1982) also referred to the need for resources including books if students were to work individually. Further comment is

made in Section 8.

On the second point by contrast with Chemistry and Physics, Electronics allows a very wide range of projects to be developed often of intriguing practical applications, often relevant to everyday applications rather than abstract applications. It is this wide range which prevents an emphasis on standard routines "which are unrelated to pupils' everyday experiences" too often found in examination orientated subjects: (Scarth 1983).

Armstead himself provided a basis for assessment, which, (See Appendix), was similar in general form to that adopted by several Examination Boards. In general the way in which such assessments are applied allows the student to gain credit for work that was spoilt by jumping to conclusions, so that an error at a critical stage does not detract from those skills and concepts shown.

Many involved with project work may suggest that 6.2.8 masks a further weakness: the role the teacher activity expected to play lies outside their experience in many cases. Students need to be introduced to the scope and form of projects in a professional manner by the teacher; in Ausubels terms the teacher is an 'organiser'. (Ausubel 1978) considered learning was only meaningful if it was related to relevant concepts and ideas acquired previously. The importance Ausubel attached to the related work was shown by his use of the term 'anchor' as alternative to 'subsumer' to describe it. A similar requirement was given by (Bruner 1966). Writers such as (Kuble 1983) and (Summers 1983) considered that the view of Ausubel

consistent with Piagets concept of stages where each stage was not simply a biological stage rather an interweaving of several concepts.

The importance of the underlying concepts was supported by work of (Kempa and Nicholls 1983) who showed that although both 'good' 'bad' students have a similar awareness and and strategies it is those students who have appreciation of the appropriate cognitive structure who were able to implement the strategies. Where the project would involve a student to a concept or skill too early the teacher may need to leave an idea open-ended to avoid a conflict between expectation and reality. It is insufficient for the teacher to allow the student to merely correct components and/or systems together and record observations, such a procedure is not making effective use of Electronics. The students need to appreciate the whole situation so that "meaningful observation can take place": (Woolnough 1983, (Working Paper 70 p.22) made the point that knowledge without skill has a long sad history, but it is not enough just to introduce the two without due consideration.

(Wellington 1981) pointed out that there is danger in students learning within their own context, a view also expressed by (Summers 1982); the way in which students use language may not be appropriate to project work and they may require assistance from the teacher in the interpretation and use of words: (Osbourne et al 1983). The student may need to be directed without being given specific assistance. Also the student may need to be shown that their observations in their context are not valid as other

considerations were overlooked.

When several students are proceeding simultaneously the teacher will be faced with many novel and conflicting situations, which if not dealt with efficiently, will detract from the value of the project within the curriculum. On one hand the teacher must allow students imagination and on the other hand be conscious of Wellington's concern that the students may be deceived into thinking they are at the frontier of Scientific research.

Further aspects of the teachers problem are discussed in Section 8.

- The range of activities described so far in this Section 6.2.9 are capable of embracing both a wide range of Hirst's forum knowledge and many sociological, political and economic features. Not all students will be at the same stage of development awareness and they will each benefit individually from the 'total curriculum'. As intended in other subjects, the teacher guide the students as noted earlier and the teacher must be aware of the danger of trying to satisfy too many undistinguished aims: (Summers 1982). (Mee 1982) showed that alternative arguments may used to justify the inclusion of Electronics into the curriculum showing in his thesis that Electronics meets the criteria suggested by (Raths: 1971).
- 6.2.10 The remaining M.E.P. reason why Electronics should appear in the curriculum raises two separate issues:
 - i) what is the manufacturing and economic future of the

U.K.?, a feature outside the scope of this thesis!

can the 'special' pupils be identified? ii) Reference was to the complexity of education and the tentaive being made. (Hilton 1984) proposed that the profiling of skills may be usefully applied: this technique "can give credit for the variety of skills included in Science activities", and can based on the students own activities. The checklist given by Hilton has a similar form to the A.E.B. '0' level Electronics project marking scheme but the profiling differs as it going summative. Also Hilton includes an oral assessment suggested by Armstead, (Schools Examination 1978, 75) etc., and similar to the F.E.U. style of profiling.

However, whether or not knowledge and skills can be distinguished is contentious: (Thompson 1984). What is equally contentious is whether those with particular abilities have a sufficiently broad range of abilities to be able to continue their studies in higher education to gain qualifications as Scientists and Technicians, and whether industry and commerce will otherwise employ them. There is a danger that present broad traditional evaluation patterns will continue to be used as a basis for entry into certain courses and employment: As (Blaug 1983) observed educational qualifications "Screening by is economically efficient not because 'good' students are always 'good' workers because educational credentialism avoids the conflict of interests between workers and employers".

6.2.11 Conclusion

It would seem that the subject of Electronics could usefully

contribute to the present conception of the curriculum especially if a project is included, regarded as a learning process in its own right (Mansell 1984, 12), and supported with adequate resources. Also the range of assessment techniques used with Electronics can be broader than in many other subjects. Any contentious debate over the purpose of the curriculum and the value of assessment techniques such as 'who is the profile for?', would apply to any other subject.

Where in the curriculum Electronics should be offered will be considered in Section 7.

6.3 ELECTRONIC SYLLABUSES AT '18+'

The introduction of Electronics into the curriculum will now be considered with particular reference to B.T.E.C. and A.E.B. G.C.E. Electronics courses. The origin, context and growth of the subjects offered by these examination bodies will be traced in relation to the theories of innovation discussed in Section 4 and in relationship to the changing pattern of education discussed in Section 5.

A general view was expressed by (Galton and Eggleston 1979):
"Each subject curriculum had its own philosophy embedded in a statement of aims, they had in common the intention of moving away from the traditional view of Science as taught in schools as a set of received facts and principles."

Both G.C.E., B.T.E.C. and other bodies are seen to move from a traditional stance to present new ideas and explore new ideas

rather as suggested by Egglestone (6.1.6).

6.3.1 Ordinary National Certificate (0.N.C.) - Technicians Examinations Council (T.E.C.) - Business and Technicians Examinations Council (B.T.E.C.)

6.3.1.1 The O.N.C. in Sciences Scheme 1965-66 replaced the S1 - S4 Applied Sciences examinations. Students were required to study three Basic subjects and one Elective subject for a minimum of 120 hours with English and General Studies as Additional Subjects. Various criteria were specified for the award of a certificate.

The General Notes for Guidance advocated integration of subject teaching in breadth to provide a broad foundation; practical work would take one-third of the total time available at basic level and two-thirds at elective level. The syllabus used could either be that nationally established or that approved on behalf of a centre; examinations could either be externally set and marked through a Regional Council or internally set and marked with external moderation.

Teachers were given no assistance in analysis of the syllabus and only those staff on moderator panels could reasonably gain access to marking schemes to determine the relative importance of topics. Thus the teacher approach tended to be that identified by (Scarth 1980): "a tendency to emphasise standard routines and concepts which are unrelated to pupil's everyday experiences."

addition to the introduction of the liberalising influence of

In

English and General Studies the syllabuses made other innovations: In physics the transistor and solid-state diode were introduced and the Elective syllabus broadly covered several areas of Applied Science.

In 1975 a revised syllabus was issued. This required that in Basic Physics the examination paper included "Section A consisting of compulsory objective type questions requiring short answers on which candidates will be advised to spend about one hour, and Section B consisting of seven traditional type questions, from which candidates will be required to answer four." Also time allocations were suggested for the teaching of Sections of the syllabus; supposedly this feature related to the emphasis of the examination questions.

The content on semi-conduction was extended at Basic level to include the transistor and the photo-conductor. The Elective syllabus was extensively revised losing much of its Applied Science character, this syllabus now included more detail on transistor amplifiers, transistor oscillators and switch, and zener. (See Appendix)

These gradual changes in content conform to the process identified by (Miles 1964, 638) "familiar processes near the present pattern were likely accepted."

As noted in 5.1.6, T.E.C. was introduced to replace Regional Boards and the T.E.C. examinations commenced 1980. The T.E.C. syllabuses were highly structured using Bloom's terminology, the assessment being based on specific objectives. Unit lengths were

sixty hours and to gain a certificate a student was required to gain credits in fifteen units either by exemption or examination involving Level II and Level III units which loosely corresponded to the previous Basic and Elective levels. Centres could design both their own Units and Programmes to suit local needs rather than use the models offered by T.E.C.; writers such as (Russell and Latcham 1979) of the F.E. Staff College gave advice on the writing of Units etc.

Internal assessment was continuous with an visiting external moderator. Those students who met the admission requirements were expected to "be successful in their studies" if they studied "reasonably hard and well.", the purpose being to reduce student wastage.

(Halliday 1981) later questioned the vagueness of the T.E.C. Notes for Guidance on this point suggesting a lack of clarity as many teachers gave the interpretation that 'all students get an award!'

General aims of the T.E.C. programme were given also specific aims for Units, these were intended to "reflect the analysis of the function and future development of the technician." The formulation of learning objectives in their structured form was designed to:

- i) facilitate the assessment.
- ii) minimise ambiguities and difficulties of interpretation.
- iii) assist in selecting teaching/learning strategies.

iv) provide a framework for the guidance of students, teachers and others.

Thus the 'hidden-curriculum' was to be avoided - if the staff and students had the opportunity to read and appreciate the regulations!

(Roberts 1976, 21) noted that (Stenhouse 1975) had considered the use of objectives as being more appropriate to training. Many would consider technician 'education' to be 'training' so the use of objectives may be acceptable. However, (Pope 1983, 29) noted the creational curriculum of T.E.C. and suggested that planning by objectives does not allow a mix of assessment styles involving illumination etc. (MacRory et al, 1977) advised that the use of objectives may not improve practise, a point touched on by (Williams and Panton 1977) who criticised staff and institutions for not getting further involved.

The introduction of a 60 hr unit allowed a wider range of units to be offered. An innovation was the introduction of a Unit in Safety and Laboratory Practise Level I. Compared with the O.N.C. syllabus additional topics were Op-Amps., Logic, F.E.T. devices otherwise the objectives given in the T.E.C. Electronics Units were generally consistent with the content of Elective Physics examination questions.

6.3.1.2 However, despite the intentions of the T.E.C. scheme in general, many criticisms were made. (Wilson 1983, 30) wrote "T.E.C. has avoided the issue of the relationship between what is taught and how it is learned, and has failed to give guidance on

how its courses should be tauight." This is a criticism similar that made by (Russell 1975) of the Schools Council Nuffield projects. Wilson further suggested, p.31, that T.E.C. its associated body B.E.C. attached even less importance to the effects of classroom changes due to innovation than those other bodies had, making no attempt to help the teacher by the Similar criticism was made production of teaching aids. (MacRory et al, 1977, 5-6) and (Roberts 1976, 21-22). (Halliday 1981) observed that in the assessment the teacher was required to judge both the measuring instrument ie. the examination style etc., and the student performance, he doubted the viability of the assessment procedures to relate to objectives considered to be being assessed. Halliday asked that:

- i) Aims were selected so that direction was given to the curriculum.
- ii) More guidance was given on how to promote the aims.

Further criticism of T.E.C. policy was made by (F.E.V. 1981) who identified three main issues:

- i) Isolation of curriculum issues from those of organisation and resources.
 - ii) methods of dissemination.
- iii) need to trial test and evaluate.

Similar points were made by (Roberts 1976) and (MacRory et al, 1977).

- 6.3.1.3 The F.E.V. report considered the six modes of interaction identified by Eraut:
- i) Printed materials: syllabuses, circulars, guidelines, books, exam papers and reports, non-personal letters, journals etc.
- ii) Information/advice: (via correspondance or telephone) from the secretary, adviser, moderator, examiner, representative, officer or any other members of staff in an organisation.
- iii) Conferences or gathering where speakers and audience are clearly defined and where matters discussed are general ones as opposed to;
- iv) Courses where those who attend are more likely to make a contribution or to find at least part of the work more tailored to individual interests and needs.
- v) Face to face contacts: discussions, interviews etc. with staff such as those mentioned in ii) above.
- vi) Working Parties or Workshops: discussions groups, simulation exercise or meetings to plan, draft etc.

In general these models were not entirely successful either giving only bare facts in jargon or being limited by expense, holidays, L.E.A. policy etc. There was general approval of the contact with the moderator.

6.3.1.4 T.E.C. themselves did send officers to other disseminating agencies eg. Coombe Lodge, Colleges of Technical Education and stressed the need for an intermediate body. However, major weaknesses were apparent:

- i) Guidance Notes were issued with "motivated practising teacher in mind."
- ii) With respect to (Gronlund, N.E. 1970), (Bloom et al, 1956), (Mayer 1962) it was thought resourceful of staff "... able to pick things up and make something of them."

(Wilson 1983, 33) suggested T.E.C./B.E.C. relied on power-coercion. The F.E.V. survey indicates staff resented being told what to do rather than being "positively involved in decisions."

The report identified "the chronic problem of updating subject matter and skills, often linked with the need to acquire new skills and knowledge in planning, designing, implementing and evaluating curricular along the lines required by the validatory bodies." A 1985 H.M.I. report made similar comments: (Lodge 1985).

- 6.3.1.5 After T.E.C. and B.E.C. merged in October 1983 to form B.T.E.C. a set of tactics were identified:
- 1. Consideration of the professional and pedagogic background of the message receiver.
- Designing different messages for different groupings of staff.
- 3. Providing illustrative examples of new concepts and practises.
- 4. Identifying sources of complementary explanation.
- 5. Publicising examples of good practise.
- 6. Assuming the availability of other agencies who could aid

message interpretation and, where possible, working with them.

- Providing a 'message querying' service for message receivers.
- 8. Providing a glossary of terms for each new curriculum venture especially where new concepts are being introduced using terms which already have an established meaning.

Unfortunately resources would not allow the implementation of these policies even though they would have made the total exercise more cost effective, (House 1974, 9) wrote of innovative failures "Financial and interpersonal costs are so high that sponsors usually resort to impersonal communication modes like the dissemination of materials." Certainly the T.E.C. programme seems to support this view. (Stenhouse 1975) stated "Education is not in practise very sophisticated or efficient." The theory may be sophisticated but the practise is not!

Nevertheless whatever criticism could be made of efficiency etc., in terms of electronics, as (Dean 1981, 12) commented B.E.C. and T.E.C. gave an impetus "just when it was needed." A study of the developments of T.E.C. Electronic units from 1976 to 1981 show how syllabus content changed radically.

6.3.1.6 Since the standard units appeared 1976 in several changes in content and form have taken place. At Monkwearmouth C.F.E. the T.E.C. Science programme was introduced and Electronics and Material Science units were included. The Level Electronics was derived from Electronics II U76/029 in the Engineering programme by omitting Thermionics and moving towards The Level III Electronics was the standard solid state devices.

unit U76/009, (See Appendix). The decisions were taken so that the units offered could be related to the resources either already available or being developed for both 'A' level Physics and 'A' level Electronics Endorsement. The decision was in line with the H.N.C. Physics Technician Programme March 1979, T.E.C. code 09-016-T, published later.

In 1981 standard units U81/848 Electronics System II and U81/849 Electronics System III were included in the Science Programme. At Level II several changes were made:

- i) All work on semi-conductor physics, p-u junctions, use of diodes in rectification was omitted.
- ii) The treatment of transistor characteristics and small signal amplifier was considerably simplified.
- iii) Waveform generator was omitted.
 - iv) Transducers and Display were added.

The changes of Level III were:

- v) Amplifiers, feedback and R-C networks were omitted.
- vi) Bistables, Registers, RAM, ROM, etc., were added.
- vii) More details on the Op.Amp. were added.
- viii) An Assignment was added.

The effects of these changes were to move from thermionic and/or transistor devices to integrated circuit devices and towards interfacing. At Level II the number of specific objectives changed from 97 to 37, at Level III the number of specific objectives changed from 59 to 51. The policy of reduction in the

number of specific objectives is currently being considered by a working party; the present policy seems to require more cross referencing of specific objectives to other activities as a "knowledge-developer": (6.1.6). In this context the inclusion of an assignment and T.E.C. encouragement to do so at Validation gives the opportunity of cross-referencing. Also the assignment offers the opportunity of extending the assessment outside of the Cognitive domain to the Affective domain in terms of "enthusiasm, diligence, ability to work successfully with other people." T.E.C. Assignments and Assessment 83/3 E.C. March 1983. These features are discussed in 6.2.5.

- Electronics and Telecommunications Programme 6.3.1.7 The A2 includes Electronics II U81/743 which is similar to Unit U76/009, and Electrical and Electronic Principles II U81/747. The latter 1½ units and differs considerably from U76.029 giving a much broader basis in 'physics' concepts. The A2 programme contrast with the Science programme includes three half units on Digital techniques so that in either programme a similar course content will be followed. An added feature of the A2 programme is Microelectronics emphasising the shift towards integrated circuits and interfacing to microprocessors.
- 6.3.1.8 A Technicians Studies course designed by B.T.E.C. was successfully piloted within Y.O.P. provision in nearly fifty centres during 1982 and 1983. Subsequently the scheme revised to meet Y.T.S. requirements and the scheme is now being offered within T.V.E.I. Schemes, it could also be used on C.P.V.E. Schemes. Further reference is made in Section 7 to both the

Technicians course and to the Microelectronics Programme designed by (Neale and Wilson 1984) and released by F.E.U. in response to the Alvey Committee recommendations.

Both of these recent B.T.E.C. initiatives show clear signs of central directions in response to D.T.I., and D.E.S. policies.

At present B.T.E.C. proposals include a qualification for 17 - 18 year olds in full time education not as an alternative to C.P.V.E. at 17+, the main areas of study do not as yet include Science.

6.3.2 A.E.B. 'A' Level Electronics Systems, 658.

The A.E.B. Electronics Systems 'A' Level was developed under the quidance of Professor G.B.B. Chaplin at Essex University: Basically the course included consideration of (Chaplin 1976). human perception, computers, and feedback and control systems, as The emphasis is on a broad field of as circuit design. well systems eg. Biology, Ecology, Sociology as well as Engineering. This a Linear-Expert Model of curriculum course (was (MacDonald 1975) affording an example of a redevelopment): orientation as compared with the Electronics Endorsement which was a variation: (4.1.2)

6.3.2.1 The Research and Development phases were based in the Department of Electrical Engineering, Essex University and the initial scheme was evaluated at the Colchester Royal Grammar School being followed by a three year pilot scheme in nine centres including F.E. The use of the local pilot centre was

consistent with the strategy suggested by (Williams 1966),(4.2.3), and is reflected in the present strength of the course in Essex.

(Bevis 1978), who subsequently became Director of the Scheme, noted that the feedback obtained led to a course which was "... well balanced in terms of intellectual scope, syllabus breadth and timing. Mathematics was kept at a minimum so as not to obscure simple and logical concepts; the content could be covered" (in contrast with many 'A' levels) "in two years allowing depth in relation to importance."

In the 'Pilot 'A' Level Syllabus' the nature of the syllabus was described and significantly the first sentence includes "... aims to provide a preparation for modern living." Such an aim and the teaching of the principles and concepts of systems using electronics as a central co-ordinating theme or 'hub' continues to provide a unifying stimulating course. Technology was not allowed to dominate the course so that the course could not be outdated as technology advanced.

During the pilot scheme minor changes occurred in the syllabus:

i) Originally the three main sections were given as:
Television and Audio fundamentals, Computers, Feedback and
control, Ciruit design. Subsequently the content was presented
as Communication System, Computer Systems and Feedback System,
with a section on Basic Electronics which could either be taught
separately or integrated into the three main sections. In the
final syllabus 'Computer System' was renamed 'Processing System',

'Basic Electronics' was described as 'System Components' and an 'Introduction General System' was added. In these modifications the systems identity of the course was gradually being made much more explicit.

- ii) The Master-Slave technique was deleted and specifically replaced by the Data-type bi-stable. The F.E.T. was deleted, no specific emphasis placed in the Telephone, Communication System had the Superhet receiver and the moving coil principle and devices added, the content on the Op.Amp was considerably extended, and Fortran language was replaced by Basic. These changes reflect both the evaluation feedback and availability of components etc.
- iii) The experiments were intended to leave scope for initiative, variable depth and to be open-ended so that the experiments were readily adaptable to future change in sixth form examinations. Originally laboratory work was assessed on a range fourteen experiments involving: "the students' grasp of of principles rather than measurement techniques or style of report." The assessment was changed to involve two 10 projects/investigations of about hours and one project/investigation of about 20 hours. Recently this was changed to six experiments of at least 4 hours duration in the laboratory and one project of 10 hours laboratory work, the scheme now allocated approximately 25% marks assessment to evaluation of performance (measurement) and style of report.

The results of the pilot scheme persuaded the Schools Council

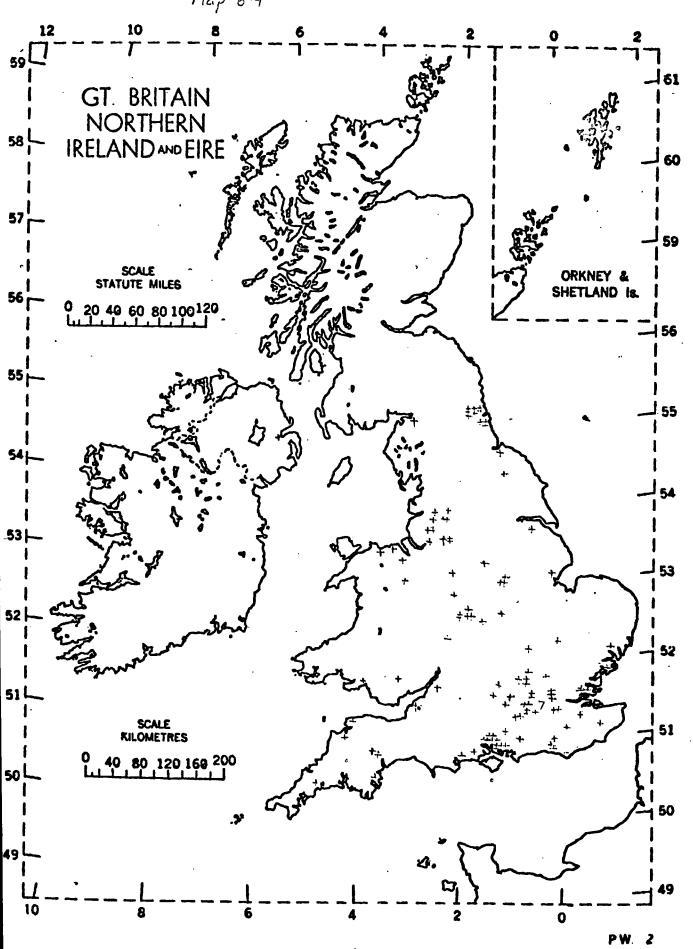
that the course was not too vocational and the course was released in 1976.

During the Research and Development phases the project was supported by the National Electronics Council: (Noaks 1976), who also supported the Dissemination phase.

Teacher courses eg. course N106 Electronics Systems (Sixth form) 6th-9th July 1970 which commenced during the pilot stage gave involvement teachers and advisers an opportunity of early (4.3.5.3).Also in the pilot stage it was made known that teaching materials and laboratory equipment were developed and available from Essex University who considered that "The cost of equipping an electronics laboratory is substantially less than that for either Physics or Chemistry." (Bevis 1978) repeated the in his capacity as Director, Bevis continued to latter point; support the course by making available notes on commercial suppliers of equipment, recommended books, and Feedback published series of course booklets and supported a Newsletter prepared by teachers. (Grace 1981) gave a summary of suitable laboratory equipment.

Thus the introduction followed a 'top-down', centre-periphery, R D and D model. The resulting syllabus identified a main cohesive theme giving explanatory notes on syllabus topics, generally providing a syllabus form which reflected teacher pressure as evinced by articles in School Science Review etc., for more guidance and less 'hidden curriculum.' These various features were consistent with those suggested by (MacDonald and Walker

- 1976) (4.3.5.8) and help to explain the survival of the course.
- 6.3.2.2 The slow growth of Electronic System may be attributed to several features which include:
- i) A re-orientation innovation was considered to require technical support, and resources were important, (4.1.2). Similarly the centre-periphery requires a sufficient level of resources (4.2.9). The resources available to the Electronic Systems project did not allow the appointment of field officers (4.3.3.1) and the lack of contact inhibited the S-1 mechanism. Also the lack of resources did not allow the initial planning to be on a sufficiently large scale (4.2.8.1). In general there was not correction for the negative influences in Schools (4.3.5.9) and little support from L.E.A.s.
- Although it was claimed that the Electronic Systems ii) relatively cheap to establish, the physics resources existed and it was even cheaper to extend those facilities cope with 'variation' innovations such as including Electronics The Schools Council, A.S.E. supported Nuffield 'A' in Physics. Physics project commenced September 1967 and introduced trials in September 1968 involving 500 students in 24 centres. A revised syllabus in the following year had trials involving approx. 1500 students in 62 centres. The materials which became 1970-71 included Aims, suggestions for teaching available sequences etc.


The Nuffield Syllabus included a section on Electronics reported

by (Nicodemus 1975) to be extremely popular. (Tebbut 1981) wrote "It was seen to be relevant, well organised, capable of catering for pupils of all abilities, generating confidence and enjoyment."

(Summers 1983) wrote that the Nuffield 'A' level Physics Thus "pioneered an approach to electronics teaching using conceptual building blocks: An alternative retrospective view is that the resources available to the Nuffield made it more attractive to L.E.A.s and the integration of electronics placed no further pressure on the time-table; also that the Nuffield Electronics delayed links to technology and the growth component of Criticism was also made of the Nuffield 'blocks' electronics. insofar as they were considered by some as not being appropriate: being able to switch like traffic lights but not in the same order. Details of the original syllabus and the new syllabus are given in 6.6.1.

6.3.2.3 Other contemporary relatively highly funded projects such as Project Technology have substantially died away leaving residual traces in the N.S.C.T. and C.D.T. itself, only seen as an idea by Project Technology. It is interesting therefore to consider why Electronic Systems survived and why the innovation did not peel off (4.3.1.5).

The Electronic Systems offered an appeal to specialist staff who were opportunist (4.3.1.2), and invariably as resources never allowed a band wagon effect, such staff received encouragement from student enthusiasm (4.3.2.2). The scatter on the map of

Location of Contres for the AER A Level Electronic System; 558.

centres, and conversations reveal little ripple effect rather than an Urban spread as suggested by (House 1974) (4.2.10.2), and lasting S-l effects from this pilot scheme.

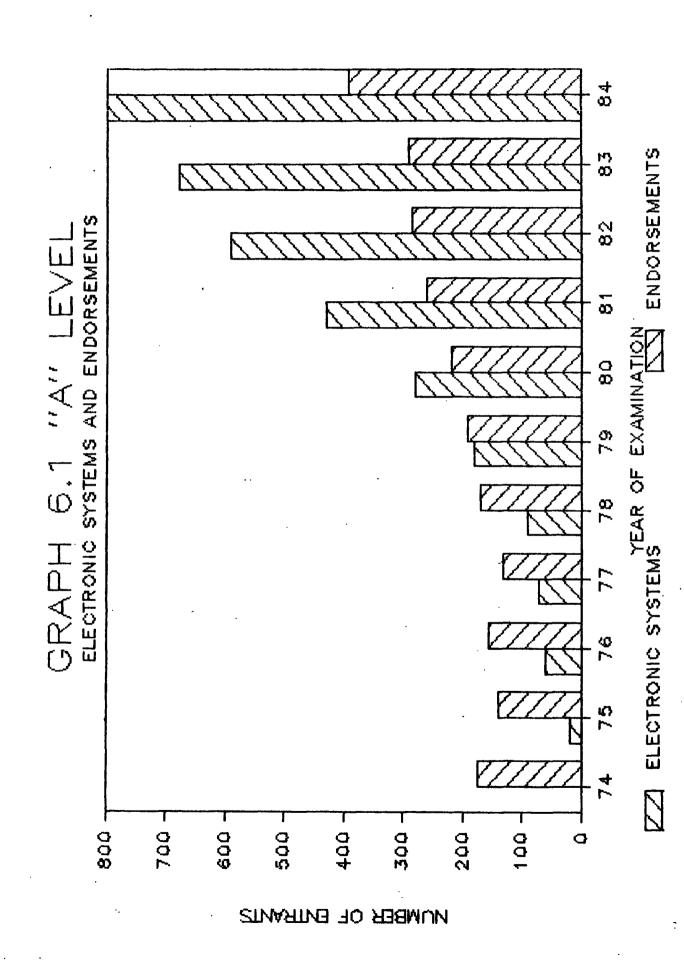
F.E. always had a strong level of involvement perhaps as in many colleges the equipment required to achieve a threshold (4.3.1.1) was available in consequence of O.N.C. and later T.E.C. courses. As (Marsh 1964) noted (4.3.5.2) teachers themselves will push an idea along, they are not passive. Given the opportunity teachers started courses trading off viability of class numbers, in this sense the growth of F.E. gave very healthy Physics groups from which a smaller Electronic Systems group could be formed.

The statistics show the average number of entrants to be in 1983: 6.84 students: in 1984: 6.66 students. The change in centres from year to year (volatility) is perhaps a consequence of small staff turnover etc., and is indicated by numbers. the fluctuations of centres offering candidates in 1983: 99 centres; compared with 1982, 18 ceased and 26 started. In 1984: 120 centres; compared with 1983, 25 ceased and 28 started.

In 1982-84 about 40% of the centres were in F.E., in 1984 44.8% of the candidates were in F.E., the growth in F.E. also reflects that they do not have an assured flow of clients and they need to attract students, (4.3) using an entrepreneur tradition (Morgan and Turner 1979, 51).

Insofar as Headmasters and their equivalents in F.E. did not always actively support such initiatives, it is significant that by not refusing permission they allowed courses to continue.

However, it is also significant that the various strategies (4.0), suggest a Head to teacher direction and little attention was given to the teacher to Head strategies employed in practise.


The Electronic System growth although slow was continuous (Graph 6.1, Table 6.2), and it provided a stimulus for further development, See A.E.B. '0' level, both by introducing ideas into the 16-18 education sector and by setting a target of educational standard and content.

6.3.2.4 In 1984 a draft of a proposed revised syllabus was released for first examination in 1987 and comment invited. This draft was supported by Notes for Guidance, Aims and Objectives, also an Examination paper with its Marking Scheme. The strength of the feedback obtained by the Board in preparing this syllabus (Sect. 6.3.8) was reflected in the fact that it was finally issued without significant change.

The list of Assessment Objectives included Problem solving and Skills in a form which is currently acceptable; also in accordance with current thinking the concepts of Synthesis and Applications were given much greater priority than Recall.

The detail of the syllabus was considerably extended:

- i) by making detail explicit, consistent with the style of previous examination questions.
- ii) devices such as the 555 timer, Schmitt trigger and the JK flip flop were added.
- iii) detail was added on filters and frequency response, also

digital communication.

iv) Sections were added on Transducers, Microprocessors and Storage thus satisfying the criticism made by (Pike 1982, 17).

Sections omitted were Reactance and the manipulation of Boolean functions.

The syllabus thus gave more emphasis to integrated ciruits and microprocessors especially in the transmission of data and moved further away from areas of Physics and Mathematical interest.

Notes for Guidance included detail on Bandwidth, rise The time Sampling rate which will be outside the experience of many Also, as noted in Section 6.3.12, the Notes teachers. for guidance gave detail which is often not given in text books eg. the term Regenerative Comparator (Schmitt trigger) is usually simply given as Schmitt trigger, only a few text books such as Industrial Electronics, p.325) use the former term and (Morris' Morris uses 'Regenerative Voltage Comparator.'

6.3.3. A.E.B. ELECTRONICS ENDORSEMENT 801.

The A.E.B. examinations board was sponsered in 1951 by the City and Guilds of London, the R.S.A., and the London Chamber of Commerce. The first examinations offered in 1955 included commerce, engineering and building, subjects quite unknown in the existing 8 G.C.E. examinations boards.

6.3.3.1. The A.E.B. subsequently continued such initiatives: one was the introduction of a syllabus at A level in Physics with electronics which required candidates to sit three papers set in Physics at A level with a fourth written paper in electronics of three hours duration which was designed to 'stretch' students. On the electronics paper candidates were expected to answer six questions from a choice of ten. The emphasis of the Electronics syllabus was and continues to be on physical electronics.

This option became a separate Electronics Endorsement which retained the same syllabus:

Electron emission, effect of fields.

Thermionic diode, rectification, gas filled devices.

Thermionic diode, class A amplifier, gas filled devices.

Practical amplifier, coupling of stages, matching, feedback.

L.C.R. effects, Q factor.

Zone refining, intrinsic behaviour of Ge and Si.

Doping, majority (minority) carrier, junction diode.

P.N.P. transistor.common base and common emitter.

Comparison of thermionic and solid state devices.

This content was comparable with O.N.C. Electronic Physics and was complementary to several existing 'A' level Physics syllabus.

In 1975 the syllabus was reviewed and several changes were made:

- i) The written paper was of a three hour duration consisting of one compulsory question and a choice of three from six. The compulsory question comprised 12-16 short questions and was allocated 40% of the marks; the other questions were more conventional being allocated 60%. Marks were shown on the exam paper affording the students some guidance.
- ii) Brief notes for guidance were given with the syllabus which it was suggested would require four hours per week teaching time.
- iii) Thermionic devices with the exception of the C.R.O. were deleted and the emphasis was placed on solid state devices:

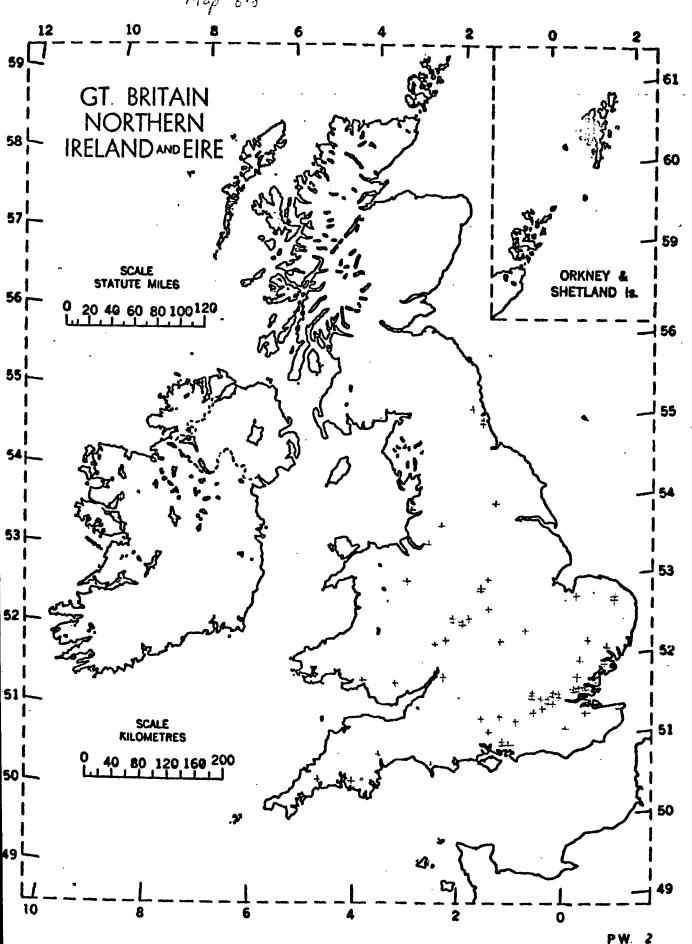
C.R.O. deflection sensitivity.

Experiments involving conductivity-temperature relationships.

Production of junction, and planar devices leading to I.C. fabrication.

Zener diode, n.p.n. and p.n.p. transistors, h characteristics, equivalent circuits.

Emitter follower, multi-vibrator.


F.E.T. unijunction devices, oscillators.

Voltage doubler, ripple.

Op.Amp. LC/RC effects for integration and differentation.

Schmitt trigger and Logic.

After the 1975 revision student numbers fluctuated and consistent growth did not restart until 1978. Whether this was because of

Locarina of Contres for the ASIG A Level Electronics Endorsement Sec.

the move to solid state or because centres offered A O electronics instead is uncertain. Graph 6.1, Table 6.2, show the growth; more recent growth is perhaps because of the larger pool of A physics students due to the bulge, the increasing interest in electronics courses in general, and publicity. (Tebbit 1978) suggested that most interest occurred in the 'diffusion' stage but as the 'diffusion' phase for one board's proposals overlaps with that of another growth is more continuous than would be thoeretically expected.

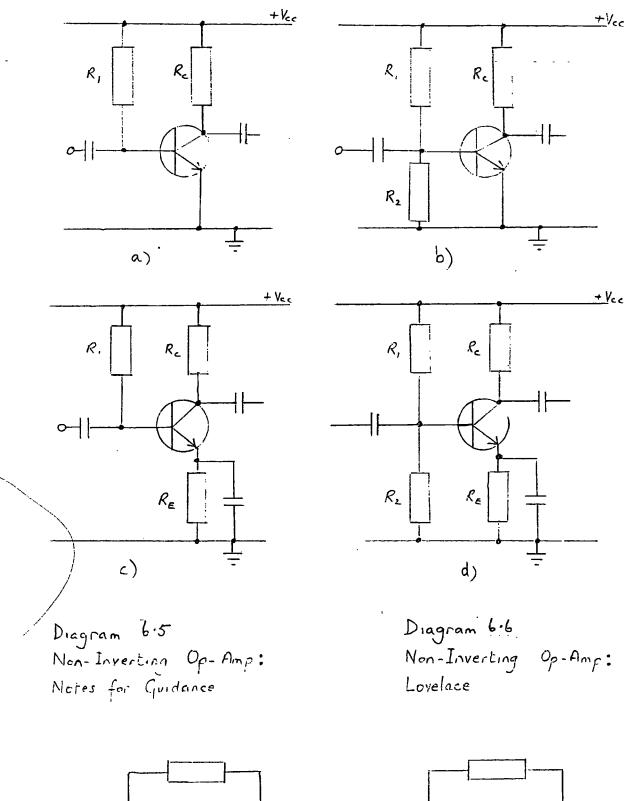
- 6.3.3.2. In 1984 a draft revised syllabus was released for a proposed first examination in 1986 and comment invited. The syllabus continued to differ from the other A.E.B. Electronics syllabuses as it included the physics of semi-conductor and electronic devices. The proposed syllabus showed changes in three areas:
- i) Previous sections on free electrons and electron behaviour were omitted.
- ii) The unijunction relaxation oscillator, the Czochralski apparatus, Op-Amp differentiator, and detailed work on time constants were omitted.
- iii) The digital content was given a clear shift in emphasis to that noted for other syllabuses. Transducers, digital/analogue conversion, display devices, sequential logic and microprocessors were added.

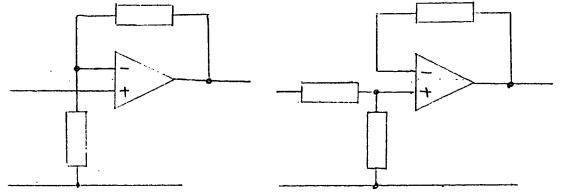
The draft was supported by Notes for Guidance, Aims and Objectives. The Notes for Guidance included detail on Kirchoffs

Law and Thevenins Thoerem which would allow students to identify the relationships between single transistor amplifier configurations as discussed by (Cuthbert 1976): Diagram 6.4.

Where a) and b) have the same structure as do c) and d). As Cuthbert was referring primarily to the content of an undergraduate course the rate of evolution of the syllabus can be appreciated.

The importance of Notes for Guidance becomes apparent if the detail of the content is compared with that of text books e.g. the Non-inverting Op-Amp was given in the Notes for Guidance as Diagram 6.5.


whereas authors such as Lovelace gave Diagram 6.6.


- 6.4 ELECTRONICS SYLLABUSES AT '16+'
- 6.4.1 A.E.B. 'O' LEVEL ELECTRONICS. 080.

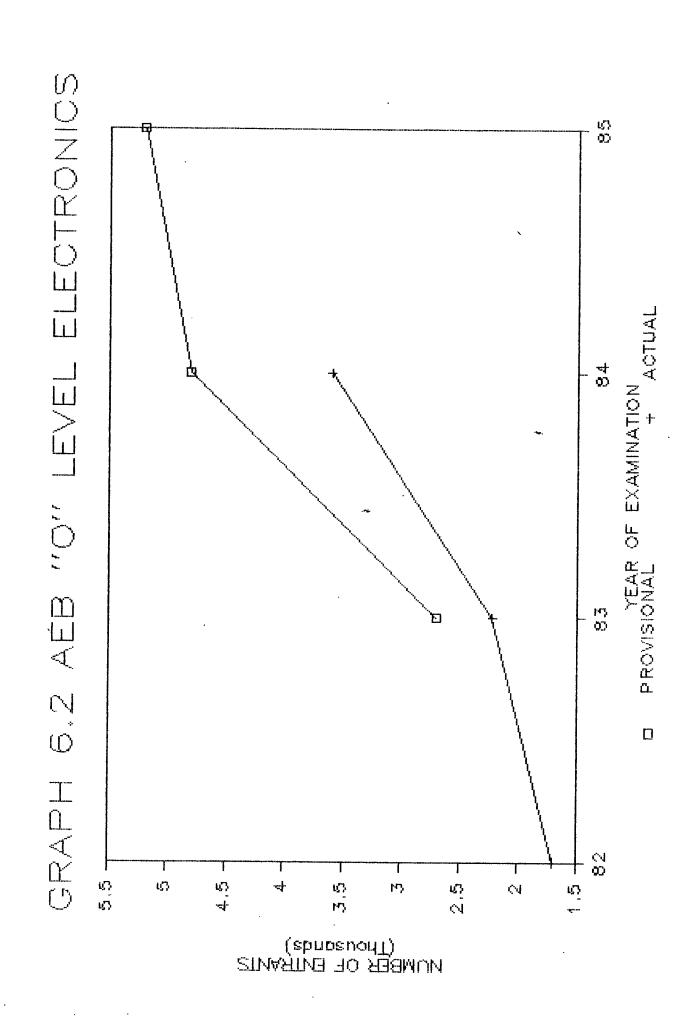

Institute of The Electrical Engineers (I.E.E.) set Schools Liason Service in 1975 the objective being 'to create greater understanding and awareness of the electrical and engineering profession among schools'. At one of their sponsored meetings for teachers held in 1976, it was suggested that in view of the C.S.E. interest in Electronics, an '0' level G.C.E. syllabus should be considered. The development of such a syllabus was supported subsequently by I.E.E. and taken up by A.E.B. When syllabus was first offered in 1982, 250 entrants were expected , but 1670 entered the examination. Graph 6.2. shows how subject has grown to become the fourth largest the

Diagram 6.4

Transistor configurations discussed by Cuthrest

subject in A.E.B.

The growth can be attributed to several factors:

- i) The form of the syllabus and Notes for Guidance have a main cohesive theme as described for the 'A' level Electronic systems (6.3.8) and teachers were given the opportunity to comment to the A.E.B. Board as the syllabus etc., evolved.
- ii) The subject was introduced at a time when the A.E.B. began to exhibit at the A.S.E. annual meeting when considerable interest was reported.
- iii) The subject involves a project which is popular with students adding to the appeal of a 'modern' subject in contrast to the alternative Electricity-Electronics approach without a project used by the Cambridge Examinations Board, Table 6.3.
- iv) The I.E.E. has continued to support the A.E.B. '0' level Electronics since the idea was concieved.
- v) The subject was introduced at a time of public interest when some equipment was available in consequence of C.S.E. and Ao Electronics courses and the changing content of 'A' level Physics syllabuses.
- vi) A systems approach was chosen " to bring out the intellectual interest and practical skills of analysis, synthesis and problem solving." Such an approach was found to allow young pupils to quickly acquire confidence in building systems without " trouble shooting or worrying whether they have connected things together properly."
- vii) In the F.E. Sector, the introduction of a G.C.E. subject

gave Science Departments an opportunity of introducing a course without infringing upon the craft orientated electronics courses usually taught in an Engineering Department.

6.4.2. The I.E.E. together with the D.T.I. sponsored the development of suitable hardware by Alan Ciles at Brighton Polytechnic which was subsequently manufactured by Unilab and E and L Instruments Ltd. Geddes organised and led trials of materials suitable for use with a systems approach on behalf of I.E.E. at four schools in 1982-3, and a book 'Electronics Through Systems' was published. The trial material was also made available to teachers at workshops organised by I.E.E.

(Geddes 1984) reported that the building blocks were designed to have the following properties:-

- i) Ease of assembly.
- ii) Few or no patch leads.
- iii) Robustness.
 - iv) Reliability.
 - v) Clarity of layout.

These blocks allow students to start with a complete system and thus gain an immediate experience of the application of electronics, rather than use a conventional components approach with it's consequent long delay between the start of a course and the time when students gain an appreciation of applications. The blocks encourage students to link sub-systems together to form a "new useful system" designed to fulfil specified tasks in a very flexible manner. Finally, on the basis of the confidence

acquired, students may consider the properties of individual components.

Other advantages claimed for the systems approach include:-

- vi) Staff gain confidence as systems 'work'.
- vii) Devices may be transient being used for only short times before a better device is introduced whereas the systems concept does not date and may be extended into other disciplines as is done in the 'A' level Electronics Systems.
- viii) A flexible level of student attainment is possible, for weaker students for example Ohms Law may be given a low priority.
- ix) No soldering is involved so that there is less risk of components being damaged.
- x) More time is available for practical work as detailed teaching of components is not required: (Summers 1983, 201).

To familiarise teachers with this new approach, the I.E.E. Schools Liason Service with financial support from the Engineering Industry Training Board (E.I.T.B.) also ran a series of teacher workshops. The approach was further supported by the publication of 'Electronic Systems News' and by the development of materials and courses for younger age groups so that the course could be introduced earlier. The trend towards the 'black box' approach wa's also advocated by M.E.P. (Bevis 1978).

After the first release of course details the A.E.B. continued to stress the relevance of the course to a 'modern' curriculum and explained how the systems approach may be used to introduce skills. Feedback from teachers etc. led to minor modifications so

that the draft syllabus contained the objectives given in the first release as four concise aims, the initial abilities were presented as objectives with a slight shift of emphasis towards 'skills' and "application of the appropriate knowledge to new situations". The assessment continued to be on the basis of two written papers and a project; Paper 1 was amended to include assessment of "Application...new situations" and "Analysis and Computation" excluding "Appraisal"; Paper 2 was amended to include "Analysis and Computation" excluding "Evaluation and Judgement and Deductive Skills"; The project had perspective skill added.

- 6.4.3. Feedback from the Draft Syllabus led to further minor amendments:
- i) Safety was placed at the beginning of the syllabus "to emphasise that what is required is a safety conscious approach applied to the whole of the syllabus, rather than an isolated knowledge of safety requirements."
- ii) Field effect devices were omitted consistent with the emphasis on Systems made in the Notes for Guidance rather on Components. At the time, it was considered that the 'system' the '0' level Electronics would enhance its value of complementary to the 'O' level Physics with its The success of this policy may be judged from the fact that '0' Electronics is now accepted by many authorities as qualification, whereas '0' Electricity valid entry and Electronics is often placed into a group of subjects from which a candidate may use only a limited number for entry qualifications.

The Notes for guidance were also amended after the release of the Draft to correct minor errors and to omit much of the theory of the Operational-Amplifier once more reinforcing the systems approach rather than a Physics-Mathematics analysis style. The only alteration since made to the final version of the Notes for Guidance was the inclusion of an Addendum being part of the report made by the Chief Moderator in 1982. This reinforced the safety aspects and the need for teachers to give students instructions in report writing. The report indicated that much work was derived from magazines without any evidence of understanding, consideration of alternatives, testing during development or testing against the specification.

6.4.4 Project Work

The significance of the teacher in project work was noted (6.2.7) and conversations reveal that the teacher could often reinforce his role leading into project work. It would appear that in many student is not made aware of the detail instances the of the project marking scheme by the teacher. This scheme was based on an earlier scheme used for Control Technology and is to be shown candidates to put the project work into an "engineering context". The Notes for Guidance explain the underlying philosophy and stress that both the teacher and student understand the requirements of the marking scheme.

Study of the marking scheme shows that the specification of the device or artifact being made by the student is critical. The

student is required to submit a Project Brief for approval which contains a clear title for the project with a brief description its mode of action and four quantifiable parameters. The Brief also requires the student to plan the consequent work by considering the materials, time etc., required, problems to be encountered, tests to be performed etc. The marking scheme indicates clearly that the project does not simply involve constructing a circuit by linking components and/or sub-systems A specification can usually be simply derived on the together. work students themselves should have done while basis of: investigating simple systems, supported by literature sources:

- i) What are: the supply voltage?., approximate current magnitude?, thus approximate power used?
- ii) If there is an audio signal what frequency range is expected?, how far away might it be heard?, how long for?
- iii) If a thermal transducer is used what is its range?, is it linear?, what is the magnitude of its response?
- iv) If a square waveform is involved, what is space-mark ratio?, the repitition rate?, is it stable if voltage, temperature etc., are altered?

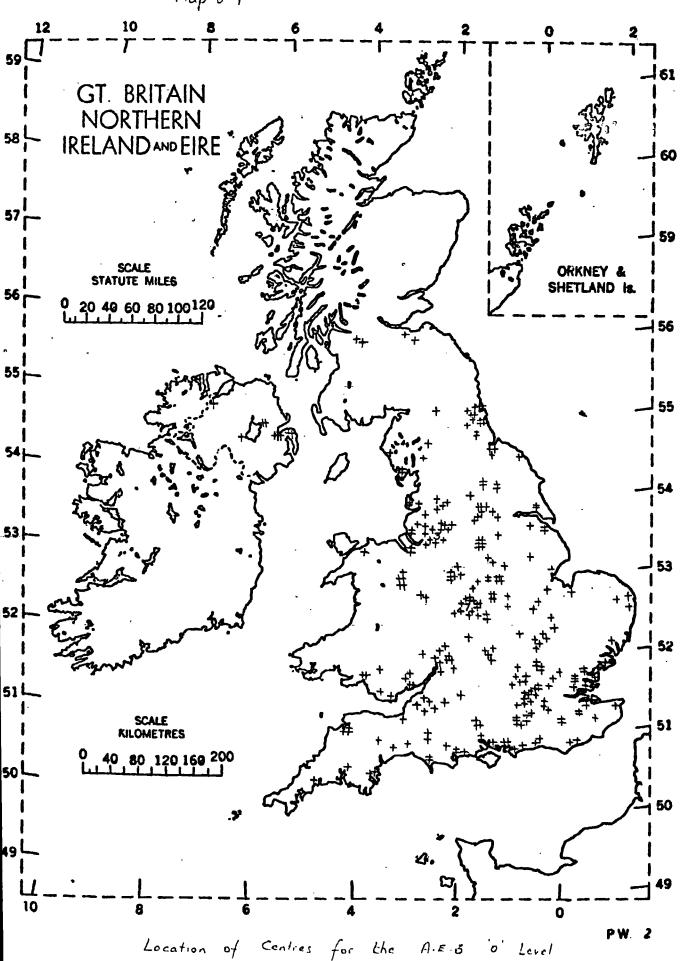
(Kneale and Snashall 1983-84) discussed several issues relevant to project work, the importance of the articles was shown when A.E.B. reproduced them for issue to A.E.B. '0' Electronics centres.

Thus when the students construct working systems as the course

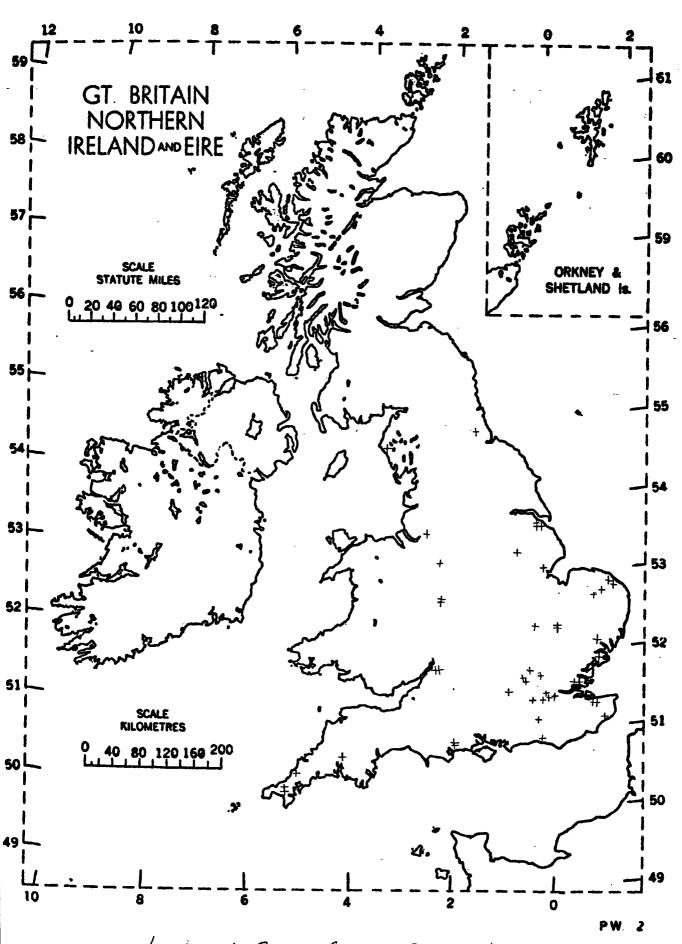
develops they need to be encouraged to explore ideas, to questions and above all to test. As (Brandon 1981) wrote "Tt doesn't matter where you get an idea from - dreams, hardwork, or your local authoritative teacher/text book - what matters and what is pre-eminently teachable, is that you should test Without the use of test equipment a specification rigorously." can not be established, circuits may be constructed using faulty sub-systems and/or components. Students gain insufficient experience of quantitative data to enable them to develop a confidence in their ability to modify circuits by changing transducers etc. The experiences should lead the students to ask everyday questions: What is the working volatge of a nominal 9v battery? How much power does a battery store? As the battery voltage falls will the circuit still function? It is such curiosity which leads to students to consider alternative designs journals etc., and to attempt to make either an informed choice or at least to ask questions.

Just as staff on B.T.E.C. courses reported favourably on Moderators, most staff in A.E.B. 'O' level Electronics centres do so also. In many instances the staff lack experience of project work and consequently do not immediately appreciate the philosophy of the 'engineering design context', also very few staff have either an Electronics background or Electronics facilities available.

However, in most cases staff reacted positively to their first experience of the course and sought solutions by contacting


Moderators, attending short courses, generally strengthening resources available to them etc. By contrast with the 'A' level Electronics Systems the 'O' level course requires a lower level of resources and it is supported by I.E.E. workshops and other initiatives such as M.E.P., T.V.E.I., and In-service training schemes.

6.4.5 ANALYSIS OF EXAMINATION ENTRIES FOR A.E.B. '080' SYLLABUS


As Map 6.1 shows the growth of the A.E.B. 'O' Electronics attracts nationwide interest. The average number of students per centre in 1985 is ~12 and the subject appears less 'volatile' than the 'A' level Electronics for which 20% drop out of centres was noted (6.3.10) in 1984 of 328 centres; compared with 1983: 64 ceased, 202 started. Provisionally in 1985 of 412 centres, compared with 1984: 66 ceased and 159 started.

In the F.E. sector in 1984, 94 centres out of approximately 135 F.E. centres entered candidates, approximately 30% of the total, being the most popular G.C.E. Electronics course offered in F.E. The average F.E. entry is ~14 compared with schools ~15. The relatively higher acceptance in F.E. than schools probably reflects the capacity in the F.E. sector for time-table innovations, (4.3.1.2) the features noted (6.3.2.3) and the attraction of the subject to more mature students.

This view is supported by the similar acceptance in the Tertiary sector, and the larger Comprehensive schools.

Electronics , 080.

Location of Centres for the Cambridge 'O' level Electricity and Electronics, 7060

Analysis of data also suggests that policy features of some L.E.A.s are encouraging Electronics as a subject vis West Midlands, Devon, Lancashire, London, Hampshire, Merseyside, Tyne and Wear, West Yorkshire and that in some areas the subject is only now beginning to develop vis Northern Ireland and Norfolk. However, the L.E.A. support may be 'not to obstruct' rather than 'to actively encourage'; the high position of Sunderland on Graph 6.6 is such a case. Alternatively the apparent L.E.A. support may derive from their capacity to generate policy change eg. to Tertiary etc. The growth of the A.E.B. '0' level Electronics is shown in Graph 6.2, Table 6.2.

- 6.5 ELECTRONICS SYLLABUSES AT '17+'
- 6.5.1 Four G.C.E. Boards introduced an AO paper either in Electronics or Electricty and Electronics:
 - 1976 London 813 Electricty and Electronics.
 - 1978 Oxford and Cambridge 9670 Electronics.
 - 1983 J.M.B. Electronics.
 - 1984 Oxford 8859 Electricity and Electronics.
- All of these syllabuses include a project in their assessment a project which is allocated 20% of the total marks in all except London 813 where it is allocated 25% of the total marks.
- 6.5.2 Brief details of the London 813 syllabus were given in London G.C.E. Board Circular No. 71 February 1975 and the first examination was held in 1976. The syllabus was given as a series

TABLE 6.2 Examination Boards and Number of Entrants with Year of Examination

EXAM- INATION	YEAR	EAR OF EXAMINATION										
	85	84	8.3	82	81	80	79	78	77	76	75	74
O AEB		3600	2250	1670			Actua	al				
E1	5 I 50	4790	2700				Prov	ision	nal	į		
O CAM		418	37I	287	276	I 36	I60	I84	88	66	57	
E1 & E1	excludes H.M. Forces											
AO LON		1851	1603	I 730	150 9	I220	807	722	536	290		
A0 0 & C		354	264	418	209	2 2 4	I40	109				
AO JMB		422	202									
XO OA		213										
A JMB OPTION E		1809	1724	1707	I52 7	1370	I22 7			<u> </u> 		
A AEB: E1 SYST		799	677	593	434	278	ISI	91	66	58	6	
A AEB EL END		395	288	286	25º	22I	189	168	128	I54	I 39	175

All Totals exclude Scotland, Channel Isles and Overseas entries

of brief headings with explanatory notes. Individual practical work was considered central to the development of the course and the style of the course was implied by a syllabus described in terms of devices. Feedback involved regional meetings of Teachers with the Examiner to discuss project work and the publication of Examiners reports. Evidence of feedback was:

- i) Circular 74 April 1975 withdrew the prohibition on candidates taking Phsyics '0' at the same sitting.
- ii) From June 1982 the Case Study requirement was withdrawn and the examination weighting was adjusted:

	<u>Originally</u>	After June 1982
Written Paper	70%	75%
Project	20%	25%
Case Studies	10%	-

(Johnson 1982) indicated that the London AO syllabus was intended to be taught in the sequence:

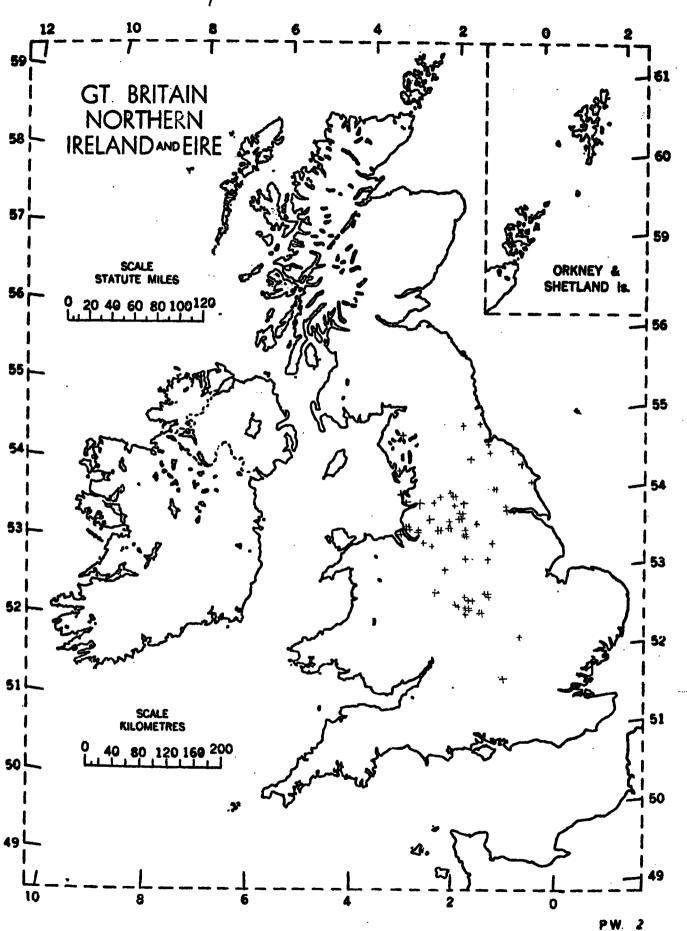
Potential divider - its behaviour under load.

Diode and transistor.

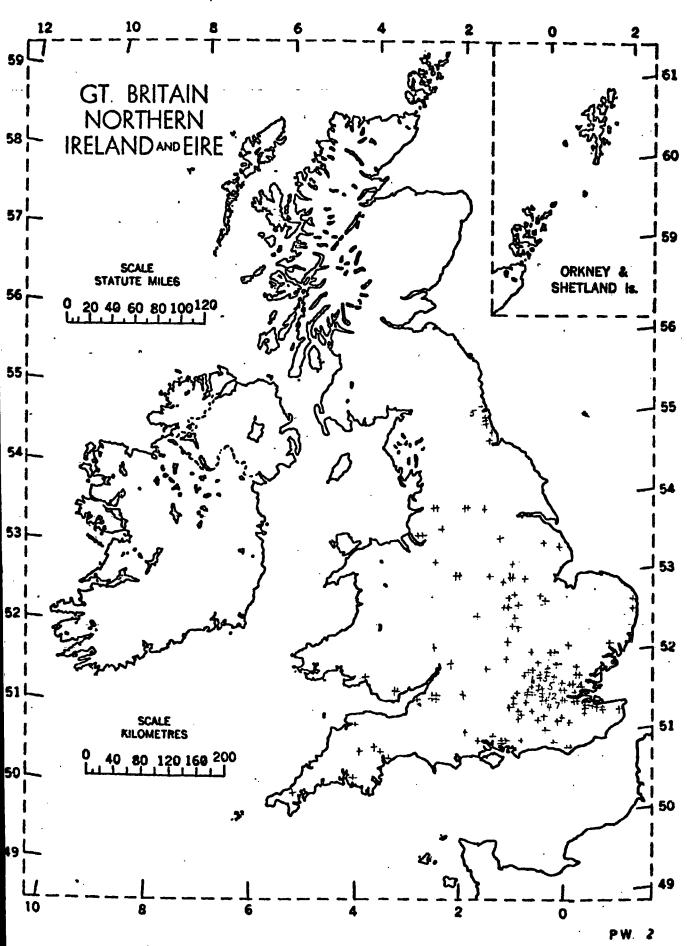
Extend potential divider to CR circuits and timer.

Logic leading to bi, mono and astuble (7400 series).

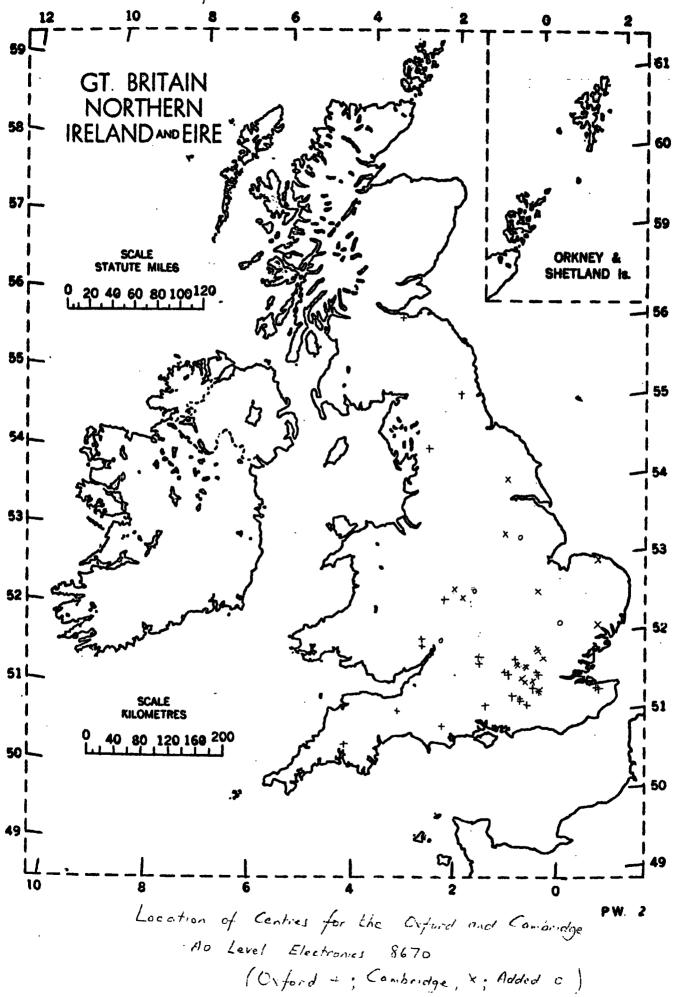
Reconsider transistor for a.c. applications.

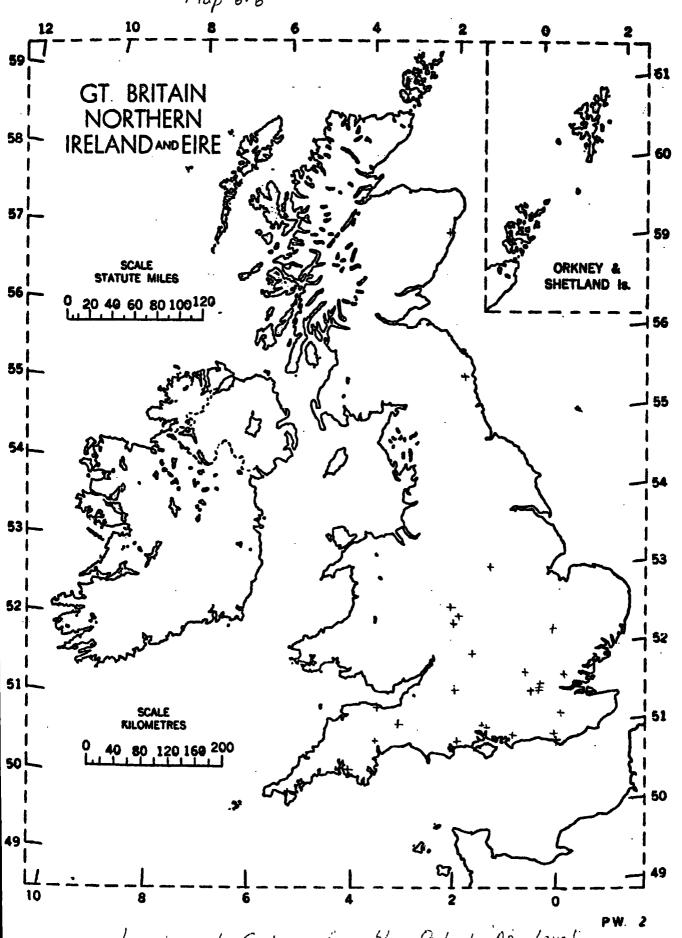

It was observed that bias, matching and stability were difficult and that these concepts were often introduced too early.

This syllabus commences with devices and is a Components approach similar to that of the Oxford Electricity and Electronics AO 8859 (6.7.3.1) and the Oxford and Cambridge Electronics AO 8670.


6.5.3 The J.M.B. proposals were circulated by J.M.B. and discussed by (Gough 1983). The Board identified growth and interest in Electronics and evisaged support for an Electronics course. However, the Board did not wish to add to the time-table pressure by offering an '0' level. It was thought that an AO grade would be suited to a wide range of 16+ students. The duration of the course was to be determined by the type of student.

The format of the J.M.B. AO course was more 'modern' than that of the London 813 AO. As (Gough 1983) wrote, Electronics was an ideal area to consider the "... relationship between science, technology and society since the effects are obvious for all to see and happening at such a rapid pace that they are rarely out of the news." This view was reflected in an Aim to "foster an appreciation of the importance of Electronics on current technology and on modern society."


Such an acceptable modern view, the emphasis toward Digital Electronics, the more explicit Aims and Objectives and the engendered through the J.M.B. structure probably contributed to its growth relative to the Oxford and Cambridge 8670 AO. Indeed it is somewhat surprising that J.M.B. did not introduce the course earlier as the London 813 AO was not supported in Lancashire and the West Midlands, Map 6.4 and the Oxford and Cambrdige 8670 AO was substantially restricted to the Independant Sector. One failure to date is the nil response from



Location of Centres for the JMB Ao Level
Electronies

Location of Centres for the London Ao Lovel
Electricity and Electronics 813

Location of Centres for the Oxford Ao Level Electricity and Electronics 8859

the F.E. Sector defined, originally by J.M.B. as a potential 'market'; this however may only reflect changes of the names of centres during educational reorganisation.

6.5.4 The Oxford Ao 8859 syllabus was written by staff at Richard Taunton College, Southampton. By comparison with the J.M.B. syllabus the Oxford Syllabus has a lower subject content, an improved teacher assessment scheme, more flexibility because of its system bias, and it was suggested that it leads into the A.E.B. Electronics Systems. This last factor is a clear example of Houses's pattern of spread, (4.2.10.1), as Bevis the former Director of Studies of A.E.B. Electronics System was also associated with Richard Taunton College. It is also significant that the proposed Southern Examining Group includes the A.E.B. and Oxford Board, so that the introduction of an AO grade would offer experience at all levels to the new examining body.

6.5.5 Analysis of AO entries

Study of the AO syllabus show changes in content, format, and presentation similar to those generally noted by (Galton and Eggleston 1979): "Each subject curriculum had its own philosophy embedded in a statement of aims, they had in common the intention of moving away from the traditional view of science as taught in schools, as a set of received facts and principles." The AO Electronics courses involved new ideas which were being continually updated and students were required to explore the new ideas.

Graph 6.3, Tables 6.2, shows that total growth in AO Electronics has accelerated slightly, the total spread of entrants broadly covers the entire country. All of the Boards attract only small numbers of entrants per centre, only J.M.B. data was examined to determine the 'volatility' of examination centres.

A comparison of the J.M.B. entrants for 1983 and 1984 shows in 1984 71 centres of which compared with 1983 (9 ceased and 48 started). That 9 centres ceased out of a total number of 32 centres in 1983 is masked by the total overall growth and once again demonstrates the 'volatility' of the situation.

Table 6.2 suggests that centres do move to other syllabuses as they become available.

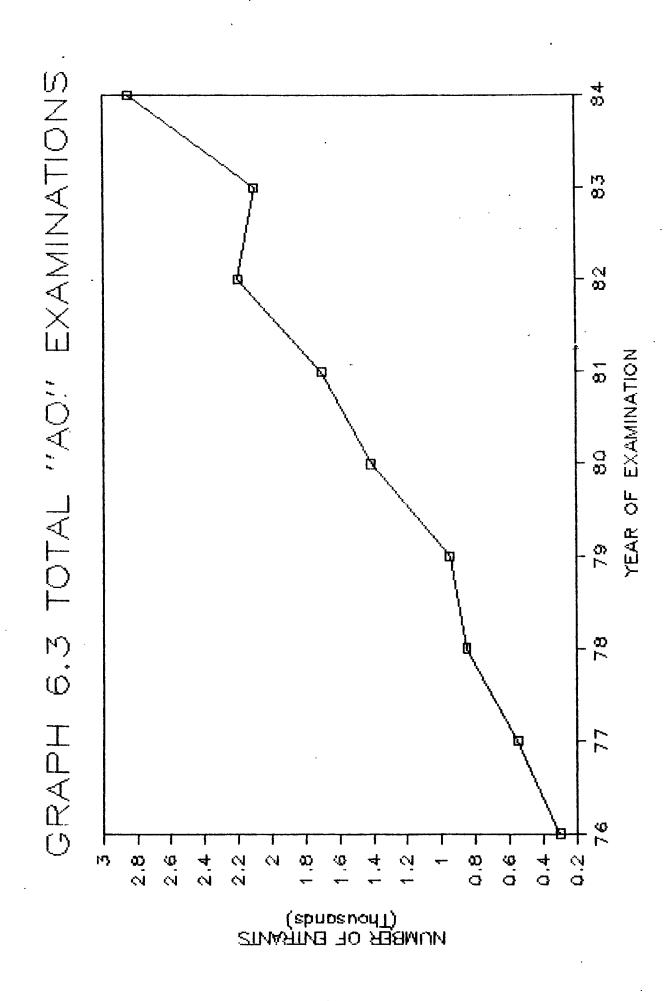
Table 6.3 shows that only a small percentage of the centres are able to link an AO Electronics course to an A Electronics course as suggested (Electronics Systems News, May 1983, 18). The AO coding reflects that the course may be suitable for more mature students, however, the AO qualification is only given credit as an 'O' level for entry qualifications.

It is interesting to note:-

- i) Many more F.E. centres enter the A.E.B. '0' level Electronics than the AO Electronics examinations.
- ii) 26 State Schools and 32 F.E. centres offer both the A.E.B. Electronics and an 'A' level Electronics.

These facts suggest that the '0' level is just as acceptable as the AO level for mature students, also that the F.E. centres can

TABLE 6.3 Details of AO Electronic Examinations


Examination	Summer 1984 Examinations:				
	No of Centres	Average No of Entrants per Centre	Regional Spread		
London	22 I	7.I	London, Home Countiess, East Midlands, a few from the S. Coast and N.E. England		
O) &t: C	46	7.7	Eondon and Home Counties (I)		
JMB ³	70	6.3	Lancashire, West Yorkshire, West Midlands and Birmingham, a few from N.E. England		
0xford	26	7.7	Scattered over Southern England		

A slight scatter represents the popularity of this Board in the Independent Sector where 38 I. centres enter candidates.

Examination	Summer 1984 Examinations					
	Type of Centre and No	No also offering Lat Electronics Systems End.	Systems and End			
London (2) (3)	FE 23 State 183	5. 2° 13 5	I			
0xford (4)	School State 26 School	6 -	-			

2.

Centres also entering 'A' level Electronics are: mainly in the London area; mainly in the London, Hampshire, Tyne-Wear areas; mainly in London and the South.

offer a broader range of subject choice.

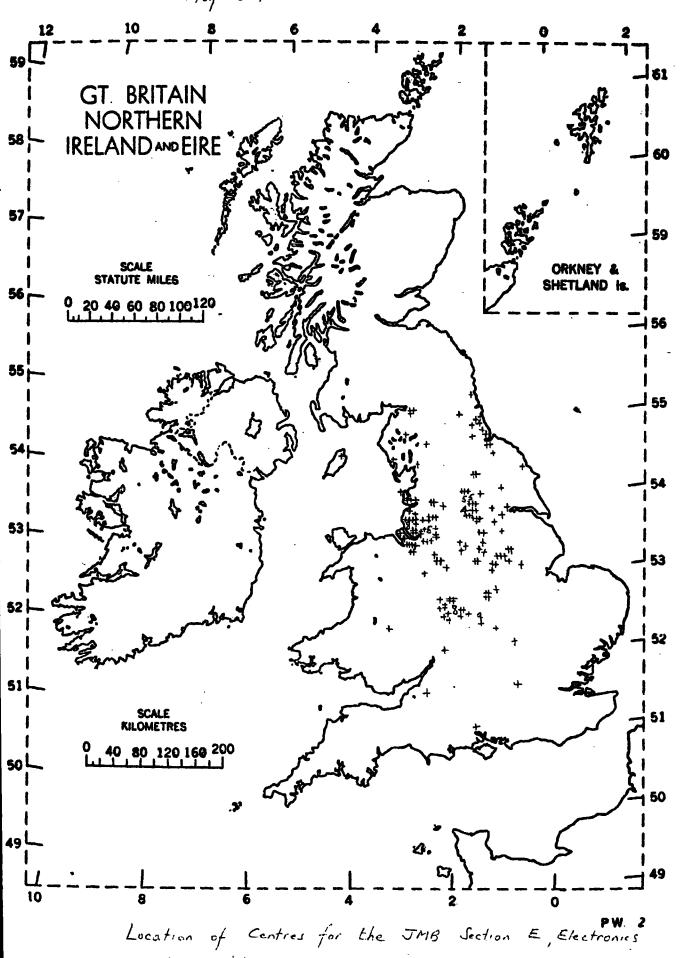
- 6.6 ELECTRONICS IN 'A' LEVEL G.C.E. PHYSICS SYLLABUSES
- 6.6.1 Nuffield Physics

The Electronics content of 'A' level Physics syllabuses was a significant factor in the introduction of Electronics into the curriculum. Reference was made (6.3.9) to the Nuffield A level Physics Unit 6 'Electronics and Reactive Circuits'. The Unit was designed originally "on the assumption that many more students will be users of electronic systems than will be designers of electronic circuits." Using a black box approach a transistor was introduced for switching, amplification etc., and other useful behaviour. (Harris 1985) described the revision of the Nuffield A level Physics for a 1987 start which was intended to:-

- i) cover the existing core and add new topics.
- ii) have a new format.
- iii) without major expense introduce some new equipment.
 - iv) provide a role for microcomputers.

The content of Unit 6 is now covered in Unit C 'Digital Electronic Systems'. However the presentation is now based explicitly on logic gates (NOR and NAND) rather than on a 'basic unit'. To minimise expense the original basic unit may be used with two NAND gates, (Harris 1984) reviewed a suitable kit.

Unit l 'Linear Electric Feedback and Control' is new to the syllabus and is largely based on the operational amplifier. This


unit provides an introduction to devices and basic control principles as well as providing an opportunity to use and revise "some basic ideas about electric circuits, oscillation, growth and decay."

These units are to be covered in three weeks, and a "major innovation" to ensure wide reading in this coverage is the provision of a new student guide.

(Ogborn and Wong, 1984) described a Dynamic Modelling System for use on the Nuffield course. This microprocessor allows students to obtain solutions to problems by writing out equations, also it includes a range of programmes vis: S.H.M., electric and gravitational fields. This simulation approach is novel within an 'A' level syllabus and it relates to proposals made by (Sparkes 1985).

6.6.2 J.M.B. Physics

The J.M.B. 'A' level Phsyics syllabus prior to 1979 included the C.R.O., diode and rectification. In 1979 a choice of options was allowed, one of which was Option E, Electronics. The basic syllabus now included the C.R.O. bridge rectification and use, input and output characteristics of one current and one voltage amplifier, also switching and inversion. The option E syllabus included transducers, matching, simple logic, use of operational amplifiers, the effect of feedback on the performance of amplifier, Multivibrators etc. As many of these topics were outside the experience of many teachers, the J.M.B. Sub-Committee for Physics issued 'Notes for the Guidance of Teachers on the

of the A Level Physics.

Electronics Option' in March 1977.

Other than a minor proof correction the next change occured in 1981, the Option E syllabus was retained within the 1986 revised syllabus. The operational amplifier was given greater coverage, logic was extended to include a comparison of all flip-flop action and a binary 4-bit counter. The operational amplifier was no longer applied to second order differential equations.

This option showed a slow growth within the total pool of J.M.B. 'A' level Physics students from approximately 9% to 11%, figures are shown in Table 6.3.

6.6.3 London Physics

The London 'A' level Physics syllabus up to 1973 contained thermionic emission, the C.R.O., diode and triode Commencing 1973 students took a Part I core with one of the two sections in Part II. The content of Part II included:

- i) semi-conductors, effects of impurity and temperature including band theory.
- ii) simple amplifier and rectification, either thermionic or solid state.
- iii) C.R.O.

From 1973 to 1977 the form of the examination and the format of the Regulations and Syllabus were progressively altered. The syllabus was no longer in two parts and it included brief notes, and syllabus weightings relevant to Blooms taxonomy were given. Commencing June 1977, the only thermionic device was the C.R.O., Band theory was omitted, although either the junction transistor or F.E.T. device could be taught only details of the common emitter mode amplifier were required, and the syllabus no longer specifically mentioned rectification.

For examinations to commence June 1983 up to January 1987 the electronics content was further amended to restrict semiconductors to Group IV; the terms electrons/holes and extrinsic were included; specific reference was made to the p-n junction, diode rectification and smoothing; only the bipolar transistor is required both as a common emitter Class A amplifier and a switch.

6.6.4 Summary

the electronics content of all three 'A' level considered continually evolved from thermionic to solid devices requiring an updating of teacher skills and equipment. In comparison with 1973, the teacher is now offered aims, objectives etc., which are more specific in terms of terminology and exam intent, thus attempting to avoid aspects of the 'hidden-curriculum', (Crellin et al, 1979, 684-5). There is evidence of Application rather than Knowledge in all cases eg. London: rectification, smoothing, specification of amplifier class, and switch, and instrumentation/communications options in 1987. This change and the move towards logic gates and operational-amplifier, eg. Welsh Board, doubtless keeps syllabus 'modern', and therefore acceptable to students. the syllbus revision is fundamentally top-down doubtless

resultant syllabus is also acceptable to higher education, professional bodies etc. (4.3.5.8).

It is significant that although the London Board continually made minor adjustments of detail neither they or any of the other Boards concerned made changes requiring further purchases of equipment within a short period. Indeed the Boards showed an awareness of the limitations of resources in terms of teacher skills and materials, for example, the change by Nuffield to include the microprocessor is the only major change. An awareness was shown also when in general only, either 'easy' or 'standard' questions were set on the semi-conductors etc., when they appeared in the syllabus, (Crellin et al, 1979, 706).

- 6.7 Other Exmination Boards Include:
- 6.7.1 City and Guilds

Courses involving Electronics relevant to the 14-16+ age group:

- i) Electronic Servicing 224
- ii) Microcomputer Technology 756
- 6.7.2 C.S.E. and C.E.E.

Restrictions of space and time compel comment to be brief. The data given in the Appendix shows several Boards with a long-established involvement with Electronics with a total pool of students comparable to A.E.B. 080. The number of entrants shows a continuous growth interrupted in 1982 and 1983, presumably by the introduction of A.E.B. 080, and then resumed growth. The weakest group is that in the North.

Electronics is offered under a wide variety of titles, especially by the N.W. Regional Examining Board. The syllabuses are usually Mode 3, although the East Anglian Board offers a well supported Mode 1 and the Southern Regional Examining Board shows a shift from Mode 3 to Mode 1. The latter shows a major growth 1981-1984, probably reflecting local support following the review of the previous syllabus.

In general syllabus content changed towards a 'modern' approach as evinced by those Boards previously discussed.

6.7.3 Oxford Delegacy of Local Examinations

- i) Electricty and Electronics AO, 8859, introduced 1984. In comparison with the alternative G.C.E. AO Electricty and Electronics syllabuses the 8859 is an 'Electronics' syllabus. The only unusual feature is the definition of the Systems Approach may start from "a knowledge of circuit theory and component behaviour". This is not in agreement with either the description of the systems approach given in 6.4.2, or the description given by writers such as (Geddes 1984, 268-270), (Foxcroft 1983, 4-5) and (Foxcroft 1984, 32-33).
- ii) Electricty and Electronics '0', 5859.

This syllabus may not be entered at the same time as 8859 which is intended for more mature students. The content and presentation of the syllabus are conventional but the assessment differs considerably from those used by other Boards for this subject. 50% of the assessment will be by the teacher comprising

30% Project/Investigation/Extended Article and 20% Coursework, the marking will not be moderated instead a proportion of the centres will be visited by the examiner. The criteria and mark ranges given by the Board offer very little guidance especially to a 'new' teacher and compare unfavourably with other schemes especially in view of the high loading involved.

6.7.4 Cambridge Local Examinations Syndicate

- Cambridge Electronics '0' level 7065 to be introduced **i**) jointly with Oxford and Cambridge. Compared with the 7060 Electricity and Electronics, the 7065 syllabus is completely different in that a project worth approximately 18% of the marks included and a systems approach is used. The syllabus presented in three sections: 'Current Concepts, Devices and Transducers', 'Digital Circuits' and 'Analogue Circuits', with the emphasis on digital and analogue I.C.s. The syllabus is in similar to the A.E.B. 810; the presentation is general not supported by detailed Notes for Guidance in particular the project marking scheme of Cambridge appears as a precis compared with the A.E.B. scheme.
- ii) Cambridge Electronics 'A' level 9363 jointly with 0 and C to be generally introduced in 1986. The syllabus was developed in collaboration with 0 and C to link with the 0 and C AO Electronics and the 7065 'O' level Electronics. It was envisaged that students could "set out with the one-year AO course in their sights and move on in their second year to continue with this 'A' level course".

The course is basically similar to A.E.B. Electronics Systems 658 except that the systems approach is not related so closely to human and other systems as is advocated by A.E.B. Project work is included in the form of two projects each equivalent to fifteen hours work allocated 7% and 13% of the total marks respectively.

The 9363 course was supported by documentation which although not as detailed as that from A.E.B. is usefully complementary, eg. whereas A.E.B. provides a list of suggested projects the Cambridge Board distinguishes between the four categories of practical: investigation, synthesis, application and problems in a way that many teachers will find useful.

iii) The Cambridge 'A' level Technology and Electronics contains an Electronics module which introduced discrete components such as the operational amplifier, display devices and intergrated circuits which were then used in control systems.

The J.M.B. 'A' level Engineering Science also has an Electronics content.

6.7.5 Craft, Design and Technology, C.D.T. courses

Report 18 of the Schools Technology Forum 1979 described the response of the Schools Technology Forum and the Science and Technology Regional Organisation (S.A.T.RO.) to meet 'Employment Needs'. An active initiative in schools was called for with five aims:

i) "pupils handle and become familiar with technological

components and devices -- transistors, amplifers -- switches -- instruments -- integrated circuits etc."

- ii) "pupils <u>develop a knowledge</u> of the ways in which such devices are used in the design of systems---"
- iii) pupils <u>develop the capability</u> to tackle technological problem-solving in the design and creation of working engineering systems.
- iv) pupils <u>develop the capacity</u> to use their science and mathematics in the design of working engineering systems.
- v) pupils <u>experience the excitement</u> of successfully overcoming the hurdles on the way to creating a device which meets a specified need.

The Report then indicated how Technology teachers could participate in Microelectronics describing a Programme which was fundamentally a Proliferation of Centres Model. It was suggested that the Research, Evaluation and Dissemination phases would take three years from commencement and three parameters were identified against which individual schemes could be evaluated:

- vi) people involved.
- vii) types of activity.
- viii) areas of implication.

The consequences of this and similar initiatives was illustrated by a report by (Pilliner 1985) on a proposed modification in the A.E.B. 'O' level Control Technology. Whereas the present course involves 'relay logic and presentation' the proposed scheme allows 'computer system and interface' as an alternative. A Mode

3 pilot development supported by M.E.P., N.C.S.T. took place in 1984 which will lead to extended trials in 1985 followed by a full pilot evaluation in 1986: (Ghee and Mills, 1985), (Pike 1982, pp.17 - 18).

The course is not specific to a particular microprocessor chip and it involves the use of the microprocessor for simple operations and procedures to control hardware making it work as intended. The skills involved are those involved in A.E.B. '0' Electronics and in terms of design etc., the course allows that for a given task the microprocessor may not be the best option so that alternative solutions are acceptable in examinations.

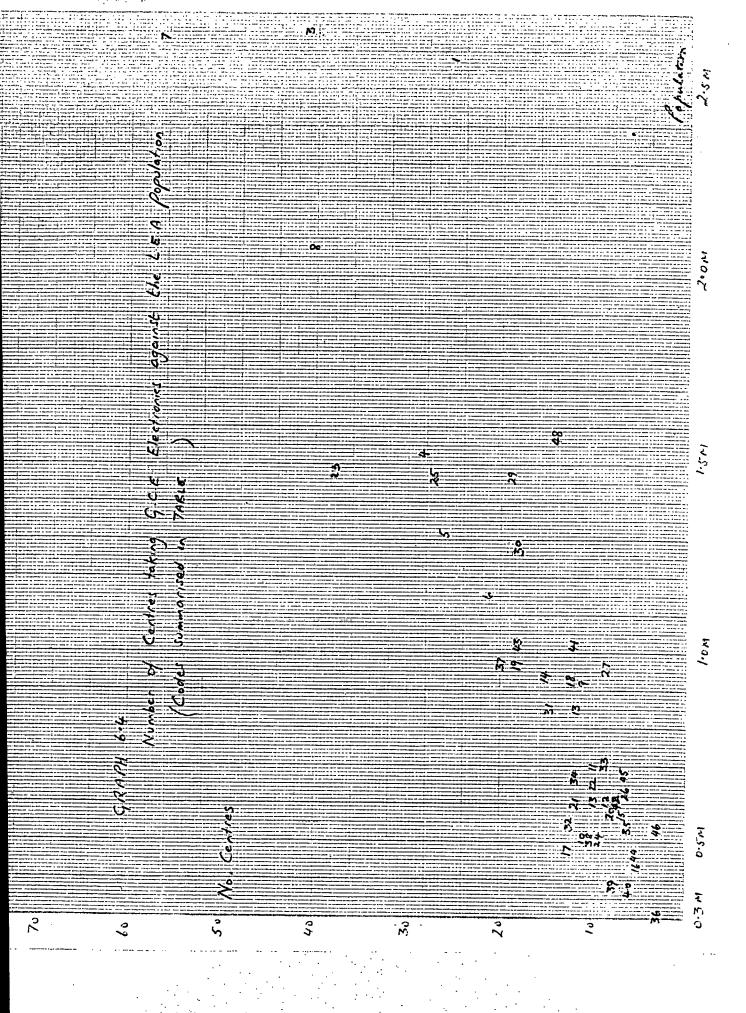
Thus although the present A.E.B. Control Technology or indeed the Southern Universities Joint Board '0' level Technology were not included in the survey because of restraints of space and time, it can be seen that the C.D.T. syllabus content may be covergent with the Electronics syllabus.

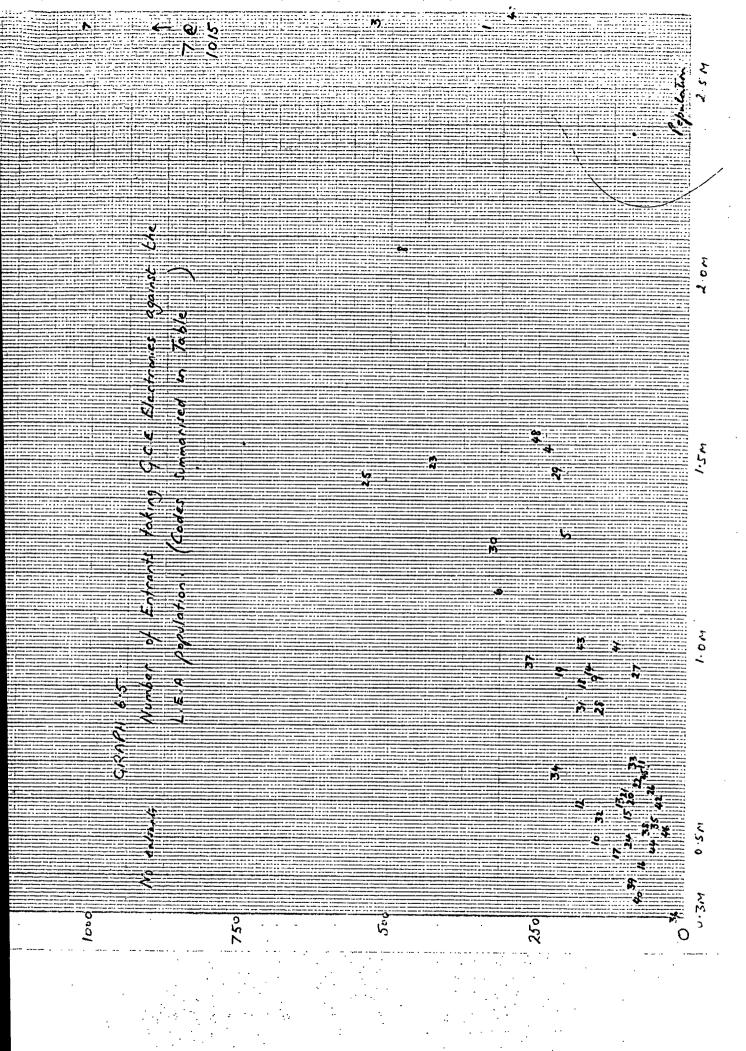
6.7.6 AS Levels

These are to be introduced in 1989 to coincide with the withdrawal of AO level examinations. Discussions on Advanced Supplementary (A.S.) levels may lead to 'complementary' studies for science students and 'contrasting' studies for non-science students. An approach which (Fairbrother 1984, 42) doubted as it was contrary to the philosophy of the A.S. grade which was to relate it to its corresponding 'A' level syllabus. It is possible that the curriculum could be broadened by using modules

from the C.P.V.E. programme or by adding addition materials to such units. The C.P.V.E. syllabus offered by Southern Regional Board suggest that Electronics may be usefully included in such 'supplementary' studies (Section 7). The 'first priority' proposals did not include Electronics and as the D.E.S. suggest that provision must be made within the total resources available rapid growth of Electronics in this sector is doubtful.

6.8 ANALYSIS OF ENTRIES


The A.E.B. '0' level Electronics shows a broad geographic spread entries, Map 6.1, and it was chosen for an analysis of the significance of examination centre size. 94 F.E./H.E. centres each have approximately 19 entrants, 21 Sixth Form and Tertiary entrants, the College centres have approximately 18 centres have approximately 11 entrants. These figures suggest that the large centres can provide large viable groups (4.2.3).However, a much lower proportion of the Sixth Form and Tertiary Centres enter candidates than do F.E. centres so factors must be involved other than the size of centre and maturity of student. Also reference was made (6.3.2.3) to the necessity for F.E. No data is available for either B.T.E.C. attract students. City and Guilds but in many regions it can be anticipated that numbers on day release courses involving Electronics declined in consequence of reduced employment opportunity for technicians. The growth of the A.E.B. '0' level in F.E. probably reflects that many young unemployed students are selecting 'instrumental' goals: (Rutter 1979, 15), such as examination success and preparation for jobs. Also the data suggests that in some regions it is L.E.A. policy to place Electronics provision in the F.E. sector eg. Wales, Northern Ireland, Buckinghamshire.


Graphs 6.4, 6.5 and 6.6 show that the number of examination entrants approximately equates to population, eg. Graph 6.5 has a slope og +223 entrants/Mill.population, intercept -32.2, and correlation coefficient 0.81, suggesting that L.E.A. policy is not itself a major influence (4.2.9.2). The distribution on this graph shows no correlation with the pattern of annual costings of support, premises etc., given by (Lord 1984, 36) who indicated other significant factors similar to organisational health (4.4.1).

Reference was made (6.3.10) to the possible value of accumulated resources and these may be much more significant than an annual figure as given by Lord. Whether with the active support or acquiescience of the L.E.A., a 'critical mass' is required for a successful local project. (Johnson 1982) in connection with Electronics courses suggested that at a certain stage of competence an enthusiast with journals etc., and with a minimum formal training 'takes off'; this view is suggestive of House's 'critical mass'. The 'volatility' of centres may indicate that some centres may become involved without reaching the necessary level of resources etc. (4.3.1.1).

6.9 CONCLUSION

(West 1983) wrote "Whilst many would not conceptualise the school examinations boards as change agents". The evidence does suggest

				70LV
	0 (may 23)	U	40	MORTHUM REALESTED
	5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
i against	Jon Gokoucil		* A	\$ 75.5 \$ 25.5 \$
E Kecton	57.72 500 500		7 8	4.
0 0 0 14 14	1 10 GRE	h;		\$ 5 S
Kroufuz /o	WE-WEAR			0 6 6
	Code 7		*	000 to 37
9-9 MOVAL				
		\$ 2	ر د د	200

that they and B.T.E.C. are indeed change agents quite capable of pursuing initiatives in conjunction with professional institutes, other examination bodies etc., rather than wait for central government support. In doing so the Boards are able to rely on the strength of their formal qualifications and the enduring parameter of the exam system: (Salter and Tapper 1981, 127).

7. RECENT INITIATIVES IN EDUCATION RELEVANT TO ELECTRONICS

'You cannot teach a crab to walk straight'
Aristophanes, Peace, 11083.

A consequence of increasing central control of education, (Section 5) is that various agencies of Government Departments such as D.E.S., D.T.I. and to some extent D.H.S.S., are now attached to the body of Education in an education/training role.

This Section describes the initiatives of some of these agencies in the field of electronics. The progress of the M.E.P. is compared with the detailed innovation strategy suggested at the inception of this Programme. The M.F.A., T.V.E.I. and S.S.C.R. are briefly described and their potential impacts on the Electronics 16+ examinations are considered in terms of resources. The viability of Regional provision for 16+ Electronics is considered and consequences are suggested.

7.1 MODERN INNOVATION THEORY

7.1.1 The formal R D and D model described (4.2.8.1) was found to require the use of strategies if it was to be effective: (Section 4) Thus recognition of the problems of teachers, local difficulties etc., required an advance in the basic theory of diffusion to allow for social learning theory. Such an advance came from the work of (Guba and Clark 1975); they reported:

- i) the centre-periphery model had set unreasonable targets and had changed its policies too frequently.
- ii) the central control should be diminished within a realistic complete programme for education, knowledge, production and utilization, (K.P.U.).
- iii) such a K.P.U. programme was to be "responsible to both individual (ideographic) and instructional (nomathetic) goals" across a broad field of education.
- 7.1.2 (Berg and Ostergren 1977) also tried to place the formal R D and D process into a social and organisational context identifying:
- i) Gains and losses, of both security and stability, and and self-satisfaction.
- ii) Ownership, is there an identity to innovation by the teacher?
- iii) Leadership, characteristics of the leaders, sub-leaders and the "opposition".
- iv) Power, emphasising that institutions are essentially conservative being defensive against intrusion.

Berg and Ostergen advised (p.6), there should be "clear gain and few losses to be made, a strong sense of ownership, effective leadership and more importantly a sensitive and timely exercise of constitutional power that could be mobilised to secure the innovations. They also advised that innovation processes were dynamic and the factors which they had identified might change with time. (Coulson 1983) described the changes which had occured

in U.S.A.

(Barton et al, 1980, 7) offered a much simpler explanation for the failure of innovation models when referring to Musgrove's concept that without a dominant group a lasting 'hegomony' can not be achieved. Thus the vagaries of elections have national as well as local educational consequences!

- 7.1.3 (House 1974, 97) discussed the economy of school innovation work and how the system could be changed making two suggestions:
- i) use of 'Merit Pay': the administrator decides differential access to information and rewards. It was thought that this approach would enhance administration power leading to "more frequent, though more limited" innovation.
- ii) an increase in the "relative power and influence of the teachers" of which the more virulent form of the strategy would be to promote professional contact and interaction outside the school: House considered that teachers could bargain for innovation resources and rewards leading to "more varied pluralistic innovation that would be more widely and deeply embraced by all organisational members.

The second strategy was supported by several writers. (Hunter and Heighway 1982) described the role between Headteacher and ordinary teacher as becoming blurred allowing a 'creative turbulence'. (Munro 1977, 58) stated some evidence suggested that to get improvement in educational practice "the restricted

roles of schools and teachers cannot be allowed to persist". (Rogers and Marcus 1983, 256) wrote: "local control is needed for maximum committment to innovation and that the Government should support the social learning process by providing support from peers in local teachers centres.

- 7.1.4 (Miles 1965) proposed that a network of teacher centres could allow "low energy access to trusted competence". Appropriate information energy and other resources can be easily located from physically dispensed modes to solve local problems. It is pertinent to note that (Miles 1964, 643) identified advantages in the creation of new innovative structures to bypass vested interests:
- i) due to limits on the length of time of appointments increases creativity, involvement and work level.
- ii) has a minimum bureaucratic restriction and does not involve role-conflict.
- iii) can deal with specific, short run problems expeditiously.
 - iv) provides a reasonable link to target.

A disadvantage identified by (Miles 1975, 477) was that the bypass could itself become elitist.

It was against this background of opinion moving in favour of models other than R D and D, that the new training initiatives to be discussed were introduced.

7.2 GENERAL FEATURES OF CURRICULUM CHANGE

Whereas the G.C.E. and B.T.E.C. Examination Boards exert a 'topdown' influence on curriculum many of the new training initiatives advocate a 'bottom-up' approach. At present there is no clear consensus of opinion on the suitability of these two approaches to the Compulsory School curriculum in terms of their professional and vocational significance. (Tomlinson 1985, TES, 22-2) wrote "At the same time the conceptual split sharpens between education, (characterised soft, person centred, academic, analytical traditional, a consumption good rather than investment) and training (hard, task-centred, practical, innovative and a national investment)".

Reference was made in Section 6 to the importance of introducing problem solving skills in an everyday relevance and this is offered as a basis for vocational initiatives. It is suggested that vocational work may usefully bridge schools with industry and commerce to the advantage of students as they become more aware of the problems to be faced.

A further stimulus towards curriculum change continues to be unemployment. The (F.E.U. 1983, March) reported that employment "...increased the pressure to find a new framework through which their transition into adult society might be accomplished" because of the shortage of paid employment the framework must include elements such as "work experience", "community service", "education and training provision", which were previously given a lower priority. In September 1983 the F.E.U. reported a general agreement on social, economic and political grounds on the need

for a wider range of learning opportunities.

The inter-relationships of the Government and non-Government bodies which developed was described in (Education in Science, 1984 January), see Piag 7.1 and it noted that "the links between bodies are becoming stronger and rationalisation of provision is being made."

It was suggested in Section 6 that Electronics could be taught from either an analysis (physics) approach or a systems approach, so it follows that Electronics may be adopted by either 'top-down' or 'bottom-up' curriculum developments. This Section continues to consider the role of Electronics in current initiatives vis G.C.S.E. C.P.V.E., T.V.E.I., M.E.P. etc.

7.3 MICROELECTRONICS EDUCATION PROGRAMME (M.E.P.)

In October 1978 D.E.S. wrote to the Standing Conference of Regional Advisory Committee leading to the announcement by D.E.S. of the M.E.P. programme in March 1980. The scheme was to be funded by D.E.S. at £9m over four years at March 1980 prices and administered by the Council of Educational Technology. According to D.E.S. March 1979 "The sum of the programme wil be essentially to provide a springboard for soundly based wider development throughout schools and F.E. colleges by exploiting existing skills and initiatives."

7.3.1 (McMahon and Anderson 1980, 207) wrote "Various statements made in the Governments annoucements suggest that the aim of the Programme is not to achieve implementation of new

A.S. 5 14-19 Sub-Committee:

The Curriculum Influences-14 to 18

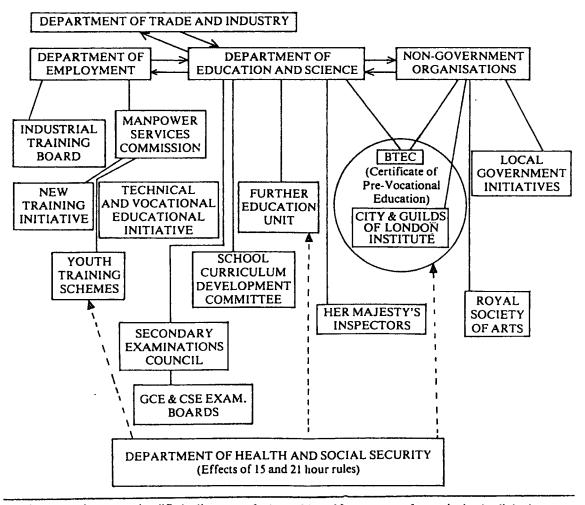


Figure 1 shows a simplified diagram of the relationships between the Government and non-Government bodies influencing the curriculum in the

14 to 18 age range. Increasingly the links between bodies are becoming stronger and rationalisation of provision is being made.

EiS January 1985

21

curricula and methods across all or even most schools and colleges, but instead to establish and evaluate good practise in a smaller number of institutions which can then be the basis upon which wider dissemination takes place." (McMahon and Anderson 1980, 211) advocated a planned decentralised management model as being "the most ambitious and most complex task but also the one most likely to yield the greatest rewards in the end". Four features were described:

- i) to build up expertise on a broad front acting as a front line service of local use.
- ii) each centre to develop area(s) of specialist knowledge and skills to complement other areas.
- iii) an overall need for liason to avoid duplication.
- iv) development, evaluation, transfer and dissemination networks should exist, each to be in existence for differing periods of time and with different objectives providing four simultaneous networks.

Such an analysis was consistent with contemporary theory (7.1) allowing for local involvement. However the basic pattern remains that of a series of linear R D and D models between centres (4.2.9.4).

- 7.3.2 In effect the M.E.P. was initiated in 1981 to end in March 1986, the Aims in the Information File Autumn 1983 were given as:
 - i) to promote, within the School curriculum, the study of

microelectronics and its effects.

- ii) to prepare children for life in a society on which devices and systems based on microelectronics are commonplace and pervasive.
- iii) to help and encourage teachers to use the technology as an aid to teaching and learning.
- 7.3.3 In 1984, the scope of the programme was stated to cover schools and non-vocational F.E. for G.C.E. syllabuses leading to pre-vocational qualifications on the basis of certain assumptions:
- i) The School curriculum would be enhanced by amending the content and approach of subjects within the curriculum and developing new topics.
- ii) Microcomputer/microprocessor equipment would be usefully applied.
- iii) Use would be made of the microcomputer in independent learning and information retrieval.
- iv) For those with special needs new devices/systems would be used.

These assumptions were a significant change of content after the publication of the Information File Autumn 1983, insofar as it was not made clear who will amend syllabuses to 'encourage' schools to respond or who will fund the new equipment. Insofar as M.E.P. is responsible to D.E.S. then it may be assumed that either a new central policy will appear or that the failure to comply with the assumptions will provide a basis for a major rethink on the M.E.P.

- The organisation of M.E.P. grouped the 109 L.E.A.s of 7.3.4 England, Northern Ireland and Wales into fourteen regions of roughly similar population (approx. 3.5m) each served by a Regional Information Centre (R.I.C.) which offered 'a materials viewing advice and general teacher support service'. In addition, four Special Education Centres (S.E.M.E.R.C.s) were linked to 'demonstrate relevant equipment and provide advice relevant to children with special needs'. These regional activities comprised two-thirds of the total programme, the remaining one-third was on a national basis. Four Nation Coordinators were appointed to provide a R.I.C. staff liason and centrally organise INSET direction.
- (R. Dunn 1984) explained that to achieve the Aims the strategy adopted by the organisation was "to operate simultaneously in three equally important interdependent areas": These areas are considered in 7.3.5 to 7.3.7.
- 7.3.5 Curriculum Development: including preparation of documentation, and provision of software, equipment etc. This area later included Educational Materials, and National Evaluation and Development Centres were established at Sunderland and Salford.
- 7.3.5.1 The M.E.P. files show that the centres did develop areas of specialist knowledge and skills broadly across the spectrum on consultation with Schools, H.E. and F.E., Publishers, Industry, B.B.C, I.E.E., etc. (Page 1985) indicated an input from firms

such as British Telecom, I.B.M., S.T.C., etc. (R. Dunn 1984) commented on the L.E.A. autonomy within the programme, the educational needs and concerns. This range of features was consistent with a central pluralist policy (5.2.5.i).

7.3.5.2 Several of the curriculum initiatives related to the Microelectronics for All (M.F.A.) course. This course was "designed as a low cost practical course which introduced the principles underlying Information Technology and demonstrated the action of basic simple IT systems". A very significant 'Principle Design Criteria' was:

"Must not require specialist technical or scientific knowledge on the part of the teachers".

This criteria should be seen in the context of two statements made by the Director, R. Fothergill:

- i) 1-3-83 Birmingham Conference: "So it is incumbent on us all to have a basic familiarity with the way it works. Being able to identify and deal with simple faults, change chips on a circuit board, replace sensors, make use of different problem solving strategies, these are the fundamental skills for the future."
- ii) M.E.P. Conference 1984: "all children should have a basic understanding of electronics"

Fothergill continued to propose that by introducing basic principles of simple circuitry young children would gain confidence in design etc.

(Holt 1980, 17) considered that problem solving and design could be introduced only if the curriculum introduced the basic knowledge requirements and understanding on which these two concepts depended. If the teacher is not required to have a 'specialist' knowledge then unless the curriculum is modified (7.2.3.1), it is difficult to imagine the children gaining experiental learning as suggested by Fothergill. If this introductory course is to provide a foundation for future study then some of the teachers involved will require more technical and scieintific knowledge than they already have.

Several of the units developed by the M.F.A. were similar to the Unitab Alpha and E and L units which originated in the I.E.E./A.E.B. trials. The use of such units may create a "deskilling effect of the package" with a consequent "less input, less pay": (Barton et al, 1980, 16-19). Such a situation would not create a sense of ownership etc., (7.1.2) and may not be accepted by those teachers who were not concerned with the development phase.

7.3.5.3 The M.E.P. in conjunction with Salford University, G.E.C., and Ferranti developed an M.F.A. Scheme described by (John-Martin 1984, 17-18). The scheme was prepared for a fifteen hour introduction to Information Technology for the lower secondary school; consequently the emphasis of the course was on digital electronics. It was thought that new kits for practical work should be developed specifically for this course, these were subsequently placed in 17 schools in Greater Manchester and Lancashire for trials in 1983.

(Bevis 1982, 13) suggested the M.E.P. will encourage and disseminate spontaneous local development; possibly this policy contributed to the M.F.A. schemes in a small number of areas:

i) CLEAPSE (R.J.J. Orton 1982, 7-9).

This module gave the essential features required for M.F.A. at an appropriate level of detail and would fit in at 13+, third year in either a C.D.T. or Physics or Science course so all are 'exposed'. The module adopted a systems approach as it was considered the most suitable approach in the total time of twenty hours allowed for the course although CLEAPSE would probably have chosen the systems approach on the basis of the arguments offered in Section 6.

The syllabus included the: Systems concept, binary patterns and memory, decoding patterns, logic gates, analogue vs digital coding D/A and A/D conversion, programmability and feedback.

The CLEAPSE module is being tested in schools near Uxbridge; tests will include the Unilab and Philip Harris basic units, Griffin and George microprocessor, ZX81, Unilab 1 Bit etc. Even though the weakest pupils spend only fifteen hours on a basic core, this syllabus and the range of equipment involved can be expected to pose problems for "any teacher willing to learn a new discipline". The 'timely' exercise of central 'constitutional power', (7.1.12) implicit in Criteria 2 may be considered as power-coercion rather than a 'sensitive' exercise of power (7.1.2).

ii) The Havant Schools Microelectronic Programme (Bothwell 1982, 4).

The development of this module in four secondary schools was funded by D.T.I. for £65,000 on condition that this sum was matched elsewhere. In-service training involved four groups of twelve teachers for three hour sessions. Also the L.E.A. provided supply teachers to release two co-ordinaters for 20% of the time from each school.

- iii) Five North London L.E.A.s (Dean 1982, 15) S.A.T.R.O. and D.T.I. co-ordinated a scheme in twenty schools, which included simple radio, tuning circuits, logic etc.
- iv) Although the LAMP project is not part of the M.E.P. scheme, it is relevant at this point to consider details of a LAMP project given by (Ainley 1984, 31-38) which indicated the level of attainment involved. Ainley observed that the LAMP, Science at Work, and Open Science projects "concerned with teaching of science to less able or less motivated senior pupils secondary school includes a unit on electronics." work 'considered' the use of the transistor as an amplifier, a and as a component in an astable circuit etc. switch, found that using a systems approach the students could be introduced to flashing and noise making circuits based on the 555, then pulses were counted using a binary counter and seven segment display. Other integrated circuits such as 741, ZN414 were also used.

Ainley expressed the opinion that to avoid the subject becoming a form of "cookery" the "skill of the teacher is of paramount importance". This view was consistent with those given in 6.2.8 and is relevant to comments made in 7.3.5.2.

Ainley also reported "considerable profit can be obtained by exploring the circuit as it works with a voltmeter". If Ainley can make this point on a LAMP project, then teachers with more able and motivated students could perhaps be expected to develop ideas even more rigorously.

7.3.5.4 As information from these various schemes is made available to all schools a close identity of purpose between the M.F.A. scheme and the S.S.C.R. Science for All is apparent; and the whole resembles a Dis-equalisation negotation (4.4.3.i).

In comparison with the central R D and D programme used in the 1960's and 1970's the M.E.P. scheme is extremely diverse in this Development phase and must undoubtedly stimulate a broad interest in Electronics.

(MacDonald and Walker 1976, 54) discussed the reasons for the 'take-off' of Geography, these may be summarised as: there were not too many facts or naive trivial explaining instead the topic was lively including concepts, patterns and processes given in relation to society. Although the M.E.P. has not built up a teacher network in the same way as the Geography project the similarity of features in the M.F.A. project for the 12-14 age group could be expected to contribute to the 'take-off' of Electronics.

In the event of a 'take-off':

i) if resources are made available to schools it can be expected that those resources will be used extensively on the 14-16+ courses.

- ii) the familiarity of students with Electronics and their enjoyment will provide a firm basis for 14-16+ courses.
- iii) the syllabus content and treatment at 14-16+ will alter to build on (ii) and to maintain 'novelty'. Such alteration would be in line with the comments made in 7.3.3., and could be expected to take five years (M.E.P. File Autumn 1984, 3).

Any problems in staffing the M.F.A. Science for All-Electronics Option schemes may appear trivial in comparison to staffing problems caused if there was growth in G.C.S.E. courses which include Electronics. Comment on the G.C.S.E. and Electronics INSET is made in Section 8.

7.3.5.5 The M.E.P. Information File Autumn 1983 made the suggestion that the national need to be able to "flush-out" technological talent further "underpinned and complemented" the justification for M.F.A. Fothergill pointed out that some will "move on to more specialised work" and he asked "how are we making use of the modern technology to improve experimentation to make it more like that which is, and must be, practised in modern industry?". Such comments are consistent with the concern of both Central Government and Industry, but questions of financing remain largely unanswered.

One answer was provided when the then D.O.I. in 1983 provided financial assistance to schools to purchase items related to microelectronics and microcomputers amongst which was the V.E.L.A. This Scheme excluded F.E. and thus discriminated in

favour of those LE.A.s using tertiary and sixth form college provision.

7.3.6 Teacher Training

Four domains were identified by M.E.P. of which the Electronics and Control Technology domain is pertinent to this thesis.

Each domain had a National Co-ordinator appointed by an Advisory Committee which included representation from teachers, L.E.A. advisers, H.M.I., teacher trainees, commerce and industry. "Each domain is served in each Region under the guidance of a Domain Co-ordinator who is responsible for establishing the pattern of courses". (Bevis 1985) stated that the E.C.T. Regional Co-ordinator were in day to day contact with practising teachers.

M.E.P. was to provide pilot I.N.S.E.T. courses only, further provision was dependent upon the input from the L.E.A.s. The E.C.T. I.N.S.E.T. was concerned with the development of teacher's expertise necessary for them "to teach the current electronic component of the many examined and non-examined courses which include this subject" also to extend this "minimum expertise into implications of current and potential new applications of Microelectronic Technology to all aspects of work and life." Information File Autumn 1984 indicated that the I.N.S.E.T. scheme extended to 'A' level Electronics Technology Practical The new I.N.S.E.T. courses will relate closely to the Modules. revised A.E.B. 'A' level Electronics syllabus and practical materials will be featured which were prepared by a working group of thirty experienced teachers, teacher trainees and advisers: (Bevis 1985,24).

M.E.P. documents stated "it is teachers who ultimately influence the content and philosophy of teaching syllabuses". This is not consistent with S.E.C. policy and top-down curriculum review and as only a few schools were represented in the M.E.P. schemes perhaps the wording should be "some teachers".

(Fothergill 1983) reported that M.E.P. had trained 40,000 teachers sufficiently for them to introduce computing and or electronics. Later in 1984 he reported encouraging participation in I.N.S.E.T. by L.E.A.s and an extension to initial training of teachers. As the scheme gets fully under way it will be interesting to see if the concept of (Fothergill 1982) of a "cascade approach" to I.N.S.E.T. will apply.

Sunderland L.E.A. moved onto the 'second phase' of activity running a course in 'Electronics for Teachers' jointly at Monkwearmouth C.F.E. and the Microelectronics Centre, which the Authority shares with M.E.P. This course was offered in connection with the T.V.E.I. scheme and the number of applicants was such that a second ten week course to commence Autumn 1985 was also fully booked. Further comment on this course is made in Section 8.

To support the I.N.S.E.T. Programme, M.E.P. developed a Distance Learning Initiative based on a previous C.S.E. course. A logic tutor and worksheets were made available and it was suggested that these materials would help to meet the need of "totally inexperienced teachers to make a start..." The realism of M.E.P. in appreciating that there is a problem of teacher release is creditable but the production of the 'Distance Learning' materials provides no 'ownership'. Such materials includes good practice from a small number of institutions which were relatively well funded and many teachers comment on the problems faced in introducing the materials into their less generously funded situations.

7.3.7 Information Dissemination

This activity arises from Curriculum Development, Teacher Training etc., and involves the circulation of literature such as the M.E.P. Information files, Electronics Systems News produced in consultation with I.E.E., the Microelectronics handbook produced in concultation with B.P. Educational Service, and liason with the B.B.C.

The R.I.C.s will keep available demonstration equipment; also a broad range of literature collations, syllabus, examination papers with details of regional activities.

7.3.8. The actions taken in these three areas of strategy, described in 7.3.5 to 7.3.7, correspond closely to those actions suggested by McMahon and Anderson, it can be anticipated that in looking to the end of the M.E.P. in March 1986 attention will be given to the advice of McMahon and Anderson: "Mechanisms for identifying, establishing and ensuring appropriate continuation

funding for all dissemination centres need to be established during the Programme itself".

Perhaps a weakness in the M.E.P. scheme is the L.E.A. input, McMahon and Anderson suggested certain Regional tasks including:

- i) Evaluation of the 'state of the art' in the Region;
- ii) Set up a Standing Conference to identify and develop needs for microelectronics education:
- iii) Conceptualise a local network;
- iv) Putative (loosely structured) groups would independently or co-operatively submit development proposals.

Where funding did not allow these tasks excluded non-vocational F.E. to the extent that not even Electronic Systems News was provided to F.E.

Such exclusion of F.E. was inconsistent with (R.Dunn 1984) who advocated that M.E.P. would relate "to a wide range of educational needs and concerns in introducing microelectronics to the classroom". The input of F.E. in the 16-18 electronics examinations is such that even if F.E. is involved in National Schemes its exclusion from Regional Schemes must have affected the balance.

Many L.E.A.s quickly equated microelectronics to microcomputing; writers such as (Dean 1981) tend to give an emphasis to microcomputing. Perhaps this emphasis followed from the D.E.S. November 1980 announcement of projects which was in April 1981 interpreted by the Prime Minister, Mrs. Thatcher, as 'a

microcomputer in every school'. The November statement included F.E. but in practice financing could not always embrace F.E. in the Programme or even in purchase schemes (7.3.5.5).

Whether or not F.E. was officially "by-passed" from the provisions of the scheme is difficult to determine but it is significant to note that "The major statement of M.E.P. Strategy reads: "The aim of the programme is to help schools.."".

7.3.9. Conclusion

An inspection of the publication of the M.E.P. and those 'institutions' 'linked' to it show a range of activities as suggested by House. However, whether or not the products from M.E.P. are acceptable to teachers will depend on attitudes within schools as well as links with M.E.P. It was noted that there are staffing difficulties, those exacerbated by falling rolls and lack of resources may inhibit the take up of M.F.A. in schools. The link from M.E.P. may not be successful:

- i) Relative to schools M.E.P. has massive and daunting resources, (4.3.5.9) and it is seen as elitist by many teachers.
- ii) The 'by-pass' mechanism allows the M.E.P. to be conservative.
- iii) The M.E.P. policy appears to be that it can only pioneer I.N.S.E.T., therefore no linkage to 'peers' develops.
- iv) M.E.P. staff are often on limited time appointments to encourage creativity: (Miles 1975), and on secondment often from grades lower than Head of Department; they may not be seen as

peers by the link within a school especially as there is limited time to develop trust.

- v) There is no evidence that appointments made are of teachers who intuitively established a successful teaching strategy in electronics.
- vi) There is no evidence that institutions which were sponsored to develop packages had any special skills etc., in electronics.
- (v) and (vi) may not allow those outside M.E.P. to identify to the innovations etc.
- Following the restructuring of the Schools Council the Science Curriculum Review (S.S.C.R.) was set up in 1981, the curriculum development strategy chosen being Periphery-Centre (4.2.9.4). The broad aim given by (West 1983) was to develop "..a system of science courses such that all.. whatever their abilities and career intention receive an appropriate scientific training".

It was considered that the S.S.C.R. would co-ordinate the evolution of new science teaching strategies unifying the mechanism of "problem solving", and provide an answer to outside threats vis T.V.E.I. (Hornsby 1984).

Groups of practising teachers and others were formally formed by L.E.A.s (in England and Wales) or Education and Library Boards

(in Northern Ireland). The groups selected feasible tasks based on the interests of the members, schools etc., allowing a local identity (4.3.5.6) and the tasks were submitted to both the Education Authority and the S.S.C.R. for approval. If approved resources for the development programme were provided by the Authority, the programme was supported and co-ordinated (4.2.9.4), on a regional basis by one of six full time Regional Project Leaders funded by the Review. The groups were further supported by a Central team which was responsible for overall planning, control of the development policy, production and dissemination of reports etc., and liason with external agencies. Typically the groups met once per month after school, in-service training allowed meetings as a number of days or half-days per year. Thus the model contains many of the features of Problem Solving (4.2.8.3), and allows the role of the teacher to alter (4.3.5.4), allowing a by-pass (7.1.4).

(Hargreaves 1982) criticised school centred innovation because of "the dirth of rigorous, critical, and empirically grounded accounts of particular schemes and projects". The S.S.C.R. projects are not yet completed, but a general invitation was issued, June 1984, to those who wished to participate in the products of the Review. The invitation was accompanied by a general framework of evaluation consistent with the view of Rivlin who required agreement - "to use common measures of what is accomplished so that results can be compared": quoted by (House 1974, 228). She further observed all this requires is "strong central leadership".

The last point was developed by (Hargreaves 1982) who noted that the S.S.C.R. 'was central in origin and hardly as grass roots as it pretends'. He also observed that there is no value in teacher involvement if the teachers are excluded from other important contacts.

(Long 1983) observed that the framework of the Review excluded the possibility of three separate sciences: Biology, Chemistry and Physics, tending instead to the integration of subjects. Several of the projects under development involve Electronics (See Table 7.1), a subject described in 6.2 as providing a sound basis for the integration of activities.

A somewhat similar initiative to that of the S.S.C.R. involves the B.P./Centre for the study of Comprehensive Schools Scheme at York; within that initiative a school is developing microelectronics and computer literacy across the curriculum for the whole ability range.

Social learning theory suggests that local control is needed for maximum commitment to innovation but (Rogers and Marcus 1983) expressed concern about two dangers:

- i) when there is decentralised control in subjects involving "a high degree of technical expertise" it is possible for "bad innovation to diffuse
- ii) local users may not be able to appreciate and use the total information available, where technical expertise is involved a central co-ordinator could be usefully included.

These points are pertinent to the activities of the S.S.C.R. in electronics. If a local group did not appreciate their lack of expertise it is equally possible that the Regional link would not.

Electronics syllabuses are changing towards a Systems approach increasingly based on integrated circuits and the findings of the A.P.U. suggest that students should be encouraged to appreciate the circuitry of the blocks and test accordingly. Ainley, (7.2.5.3iv) provided encouragement to those who would attempt to do so across the ability range. During the review phase of the S.S.C.R. the work of local groups should be considered against this background and the similar activities within the M.F.A. project. In contrast to the relatively well funded M.E.P. supported projects the S.S.C.R. Electronics groups may reveal the reality of the situation regarding resources and their usage.

The information on resources should emerge insofar as the S.S.C.R. Review criteria suggested that cost implications should be considered. The request for such information and the concept of self evaluation (Hornsby 1984, 15) will provide for teachers initial experience of course validation procedures an should be a useful exercise for those contemplating running courses in Electronics using models such as the B.T.E.C. units.

7.5 Technical and Vocational Education Initiative (T.V.E.I.)

This is a scheme funded by M.S.C. at £3,000 per year for each pupil plus local funding compared with a normal L.E.A. funding

of £30 per year: (Teacher 1985, 22 Feb, 4), (T.V.E.I. Review, 1984). The scheme was described as "the beach-head from which to colonise all secondary education: (Young.M. 1983, T.E.S. 4/3). At present approximately 65% of the L.E.A.s in England and Wales are included, of which 57 are currently running courses; the White Paper, 'Better Schools' indicated that the great majority of L.E.A.s would become involved.

7.5.1 The Aims of the scheme were to equip young people across the ability range with the personal skills and attitudes required for employment and to facilitate the transition from Schools to employment. This scheme was intended to encourage schools to substitute learning by practical experience for conventional academic instruction thus emphasising problem-solving.

The scheme placed an emphasis on transferrable skills and it should be sufficiently flexible to allow for students who either change their career choice or leave a school. Many authorities designed T.V.E.I. courses which had much in common with other courses that a basic course could be extended to 50 allow certification using C.G.L.I. General Vocational Preparation 365, C.G.L.I. Foundation Course, C.G.L.I. General Abilities Profiling System C.S.E., G.C.E. etc. syllabuses. Recent reports (T.E.S. 15 Feb) indicated that the Welsh Joint Education Committee in consultation with Clywd and Gwynedd produced a radically reformed syllabus using modules to meet the needs of T.V.E.I. This course is similar to a C.S.E. Mode 3, it includes only 20%

written tests with an overall assessment.

The T.V.E.I. scheme includes core experiences and options, and in many L.E.A.s one option is Electronics, typically in a form relating to a broad industrial sector rather than to a narrow Sunderland L.E.A. submitted an Electronics Extension vocation. which was designed to be suitable for those students who would "not reach the required standard to successfully gain certification" and which would allow extension to C.S.E. and '0' The option was allocated 1/2 day per week over level Electronics. two years; also it was considered that if Electronics was important then aspects of electronics should appear in each of the core experiences. The content of the Sunderland course was presented as a series of learning objectives so that at a date the syllabus could be considered for use as a level 1 B.T.E.C. Unit. Such a unit could form part of a broad framework such as the B.T.E.C. Technicians Studies Course (6.3.7). of 60 hour level 1 units would give an improved opportunity of certification in areas of student motivation and would allow progession to further education.

In response to the (Alvey Report 1982), an F.E.V. paper by (Neale, D.F. and D.R. Wilson, 1984) suggested seventeen modules involving Physics, Circuit Theory, Electronics, Computer Fundamentals etc. Of these, eleven modules were related to the syllabus contents given for electronics in Section 6. These modules were described at three levels:

- i) No prior knowledge, minimum mathematical ability, could provide the basis of Y.T.S. or Awareness courses.
- ii) Ability for analysis and testing eg. technician training.
- iii) Ability to design eg. graduate.

The levels (i) and (ii) may be appropriate to T.V.E.I.

However, the use of B.T.E.C. units will involve schools in a form of examination in which they are not familiar. The schools would also be required to go through a validation procedure which requires the submission of details of resources vis. staff, rooms, equipment etc. This latter procedure is not unlike the administrative process being used to collect data on the T.V.E.I. Scheme within schools so that in this sense the T.V.E.I. is a sensitive strategy towards a 'big shift of attitude'.

- 7.5.2 The Sunderland T.V.E.I. Electronics Extension required that the Aims and Objectives of the course were taught in a context of relevance; it was recommended that 'in the home' would be suitable. The Extension was to be integrated into the total curriculum:
- i) Safety and Health: use of symbols; colour perception;
 noise; use of chemicals; wiring code; plug testing etc.
- ii) Science: transducers; instrumentation; materials used in the manufacture of components etc.
- iii) Numeracy: use of symbols; analysis of data; graphical representation.
- iv) Communication: report writing skills; verbal discussion; concepts of radio, TV, etc.

- v) Technology: control; instrumentation; quality control.
- vi) Design: printed circuit work; report presentation; wiring lay-out.
- vii) Music: frequency divider-octave; filters etc.
- viii) Society: effects of improved production; communication; changing patterns of employment and leisure.

On the basis of experience gained from A.E.B. '0' level Electronics courses, it was considered that this approach and the opportunity of practical work would be acceptable to students allowing them to acquire a range in skills consistent with T.V.E.I. philosophy.

7.5.3 A significant number of schools associated with the T.V.E.I. scheme introduced courses in 1984 leading to either A.E.B. 'O' level Electronics, or the Electronics option in C.D.T., or the Electronics option in N.E.A. 'O' Phsyics. This growth of interest raises problems of I.N.S.E.T., if the electronics is to be taught so that all educational advantage is obtained. If B.T.E.C. modules are used, then administration and teaching problems in connection with resit phase tests will require consideration in the pilot schemes.

The pilot T.V.E.I. was restrained officially to a limited number of students in the programme (T.E.S. 15 March'85, p.14) eg. Durham L.E.A. submission stated 20% of the total age group. In view of the generous funding, there is concern at the problem of extending the implications of T.V.E.I. to all of the 14-16 year

olds. The added suggestion that in view of the funding streaming was used to obtain success: (Teacher 22 Feb 1985, p.4) exacerbates this concern.

has a strong central control and within the ranges T.V.E.I. its projects the total overall strategy has many of (4.2.5).'The dissatisfaction' features given by Rubin (4.2.5.3.ii), being brought about by a local lack of resources, the reward being the generous funding which allows equipment to into a centre for wider use. When an authority obtained resources eg. E.E.C. in addition to T.V.E.I. a major possible. Linking, input into new subject areas was (4.2.5.3.vii) is encouraged by the simultaneous work of S.S.C.R., L.A.M.P. etc., creating a constant stream of innovation under a centralised control (4.3.1.5). Such is the extent of these simultaneous projects in electronics that they may represent a deliberate policy to implement a Normative-Re-Educative strategy (4.5.2), by involving staff. For example, staff who previously unfamiliar with the use of objectives may experience through the T.V.E.I. system of records and the S.S.C.R. evaluation phase prior to the introduction of G.C.S.E. Also there can be little doubt that experience acquired via on 'Skills testing by observation in Situ' will provide T.V.E.I. teachers with a better basis for introducing G.C.S.E. than given to F.E. staff for T.E.C. (6.3.4.ii).

(Sir Keith Joseph, March 1985) showed how important T.V.E.I. is regarded when he announced that grants would be made to promote T.V.E.I.-related developments throughout the curriculum. This

money is to "be channelled to new technology, bio-technology and electronics": (T.E.S. 29th March p.13). A T.E.S. feature (T.E.S. 3rd May p.33) suggested that some radical changes and innovations were already apparent.

- 7.6 General Certificate of Secondary Education (G.C.S.E.)
- 7.6.1 This single examination will replace G.C.E.'0' level, C.S.E. and Joint 16+ examinations, the first examination will be taken in Summer 1988.

The examination will be offered by regrouped examination authorities:

- Northern Examining Association: one G.C.E. Board: Joint **i**) four C.S.E. Matriculation Board; Boards: the Associated Examining Board, North Lancashire Schools the Regional Examinations Board, the North West Regional Examinations Board, and the Yorkshire and Humberside Regional Examinations Board.
- ii) London Examining Group: one G.C.E. Board: University of London Entrance and School Examinations Council; two C.S.E. Boards: the East Anglian Examination Board, and the London Regional Examining Board.
- iii) Midlands Examining Group: two G.C.E. Boards: the University of Cambridge Local Examinations Syndicate, the Oxford and Cambridge Schools Examination Board; two C.S.E. Boards: the East Midlands Regional Examinations Board and the West Midlands Examinations Board.
- iv) Southern Examining Group: three G.C.E. Boards: the Associated Examining Board, the University of Oxford Delegacy of Local Examinations and the Southern Universities Joint Boards for Schools Examinations; three C.S.E. Boards: the Southern Regional

Examinations Board, the South East Regional Examinations Board, and the South Western Examinations Board.

- v) Welsh Joint Education Committee (W.J.E.C.)
- vi) Northern Ireland Schools Examinations Council.
- 7.6.2. Of these the London Group and the W.J.E.C. released details of their proposed Electronics syllabuses in 1984. Both were broadly similar to the A.E.B. 'O' level Electronics 080 (Section 6).

The W.J.E.C. proposals included a choice of one option from four:

- i) Communication Systems.
- ii) Instrumentation and Control.
- iii) Medical Electronics.
 - iv) Microcomputer and Control Systems.

These extended the content of the A.E.B. Electronics in Society section and included Control, Bioelectronic and Clinical Electronics. The latter were novel and reinforced the integration theme of Electronics.

The London proposals required each centre to be sent six design briefs in January of which the student will be given a choice of one from four. This may prove to be difficult to operate as centres rarely carry a sufficient stock of components and ordering can cause delays. Many A.E.B. centres require candidates to purchase their own components due to a lack of resources at the centre, but a compensating factor is that the student makes something of their own choice which can be taken

home. The London proposal may add to the inadeqacy of resources already severe due to practical requirements.

Both the London University Examinations Board and the W.J.E.B. included an Aim referring to either 'interest and enjoyment' or 'leisure', so that either could be extended from a suitably designed T.V.E.I. Scheme. Other differences with A.E.B. 080 were minor involving specific components: thyristor, 555, F.E.T.; and circuits: monostable, bi-stable etc.

these proposals may be premature as The timing of insist upon differentiated decision was to papers differentiated questions. The consequence of this decision the decision to use grade related criteria may lead to situation where the syllabus content and assessment schemes are not totally compatable. Also the proposals did not include provision for 'Records of Achievement for School Leavers' such provision is made there will be difficulty if teacher time for assessement in view of the finding 16+ proposals included the use syllabus content. Other Distinction and Merit awards described by some as being divisive and not able to accomodate interdisciplinary subjects. was valid then the case for latter criticism including Electronics could be strengthened as that subject itself areas of the curriculum. However, the integrates several suggestion that only two sciences should be studied may reinforce the stating of the traditional science subjects to the detriment Electronics unless Electronics was placed in the 'Technology' blank.

TABLE 7.1

GROUP CODE	REGION	GROUP CATEGORY	INDUSTRIAL APPLICATION OF ELECTRONICS
WALSA-02	MI	С	
KENT-04	AN	С	Applied Physics 14 - 16
HEREF-06	MI	С	Microelectronics
ESUSS-01	AN		Mechanics and Electronics Measurement
WIRRA-01	NW	С	Microelectronics application for All
NEWCA-05	NE	A	An Introduction to Electronics and Microelectronics
DURHA-08	NE	В	An Introduction to Micro- Electronic Systems
IOW-02	so	В	Electronics for the Middle Years
HAMPS-05	so	В	3rd Year Electronic Module
WSUSS-01	AN	В	Computer Application in Technology
SEFOR-01	AN	A	Mechanics and Electronic Measurement
CHESH-04	NW	С	Technology through electricity, electronics and microelectronics for secondary pupils

^{*} Involves digital electronics

7.6.3 It is not yet clear whether centres will be allowed to link to the 'vestige' of a Board or be encouraged by L.E.A.s to use one nominated Board; as committee representation will be local there is a danger of the latter decision being taken by L.E.A.s without full consultation with the staff concerned. An advantage of using a nominated Board is that a common entry provides a simpler administration; a disadvantage is that additional resources may be need if the change of Board involved a change of syllabus content. Further comment is made at the end of this section.

Table 7.2 indicates the potential strength of each Examining Body if restricted entry was used.

Table 7.2 APPROXIMATE TOTALS FOR G.C.S.E./G.C.E. ELECTRONICS EXAMINATIONS AT 16+, 17+, 18+.

		NUMBER OF ENTR	ANTS 1984 EXA	MINATIONS
GROUP	G.C.S.E.	A.O.+ C.E.E	A.E.B.658	A.E.B. 801
MIDLANDS	2165	420	139	106
SOUTHERN	3238	744+	282	109
LONDON and EAST ANGLIAN	3153	713+	122	111
NORTHERN	1873+	539	100	55
N. IRELAND	153+	36	60	0
WALES	~350	27	50	11

One problem will be related to economics as externally moderated project work has a minimum cost level at approximately 1,000, above that level duplication of senior moderators etc., prevents the minimum cost level being repeated. As previous C.S.E. entries will now enter the pool being moderated by an essentially G.C.E. procedure costings, the balance of profitable examinations and the un-profitable examinations offered as a service will need to be considered. The approximations in Table 7.2 indicate that at 16+ the Northern Ireland S.C. will not be economically viable and more unreliable than other groups in terms of staistical Both the Northern Ireland S.C. and the Welsh J.E.B. control. have a very low potential pool for a 17+ examination. At 18+ 'A' the present G.C.E Boards will continue to offer level examination otherwise only the Southern Group looks healthy in terms of Electronics Systems, and no single region has a viable at the Endorsement level. Although Boards may be expected to allow free entry to their examinations, it can be anticipated in the immediate future the Boards will reach that an 'understanding' so that not too many subjects are uneconomic. Southern Group contains the A.E.B. and could expect support from centres in London, the new Cambridge 'A' level Electronics expect support from the Midlands and Northern Groups. In view of social and economic factors, it would be unfortunate if strong regional influences emerged.

i) The 'interaction' of examiners, moderators etc., would be restricted; the predisposition of staff to innovations would be adversely affected (4.3.5.3).

- ii) L.E.A.'s would gain a dominant authority and could control syllabus innovation for political and economic reasons; feedback and adopter behaviour would become regionalised (4.2.8.2.), and less effective.
- iii) Those L.E.A.'s with resources would be able to offer a more 'modern' examination, which was more acceptable as an entry qualifications etc., thus giving a regional bias to student advantage.

7.7 Certificate of Prevocational Education (C.P.V.E.)

B.T.E.C. C.G.L.I. established Joint Board and the for Prevocational Education (J.B.P.V.E.) in May 1983 and in May 1984 details were circulated of a curriculum framework for a one year full time programme. This course was designed to replace the C.G.L.I. Foundation and 365 courses, B.T.E.C. General Awards, R.S.A. Vocational Preparation Scheme and C.E.E., and the course was described as "the long discussed '17+' qualification": (Job 1984). However, (Kirkman 1985) reported that the Oxford and Board were to continue C.E.E. and N.E.A. Cambridge was introduce G.C.S.E. 17+, a not unexpected move in view of the desire of the Boards to maintain their status. Most C.S.E. expected to meet five of the G.C.E. Boards in Boards are 41 April or May to discuss this further: (Teacher Vol. No.27, Recent suggestions that B.T.E.C. and R.S.A. might continue p.4). to offer their examinations as an alternative to C.P.V.E. may represent a negotiating stance relative to the G.C.E. Boards otherwise the B.T.E.C. proposals will "detract from the scheme as originally envisaged": (McArthur 1985, 17).

This course continues the theme of T.V.E.I. being a unified course containing a core, vocational and additional studies with the primary aim "to make the transition from schools by providing opportunities to acquire the skills; expertise; attitudes; knowledge; personal and social competences needed for adult life": (C.G.L.I. Broadsheet No.102 Feb 1985 p.4). 700 - 900 hours were required on the course of which not less than 75% was core plus vocational with 15 days work experience. On the latter aspect, the (N.A.T.F.H.E. Journal Feb 1985) noted the "J.B.P.V.E. is sanguine about finding work placements in spite of doubts expressed by employers and others".

The aims of the course included that it should be individually relevant, practical and allow progression with additional studies to G.C.S.E. for better students. In achieving these aims, the course must be institutionally, administratively and financially viable.

The core contains ten areas all of which must be experienced, of those areas several could be integrated via Electronics as noted for T.V.E.I. (7.4), vis Science and Technology; Communication; Industrial, Social and Economic Studies; Information Technology; Decision Making and Adaptability; Practical Skills; and Numeracy. Electronics offered with a project would give a broad vocational aspect with individual relevance. Such an approach with additional studies would allow the enhancement of the course to G.C.S.E. for the motivated students. There is already evidence

of the growing popularity of 0 and AO G.C.E. Electronics examinations as a 17+ examination. As noted with T.V.E.I., the use of suitable modules may also facilitate progression, such modules could also assist if the C.P.V.E. was to extend to part-time students and to link to Y.T.S., Y.T.P. programmes.

Four Vocational Modules are required in a course being selected from five main categories, each category being divided into clusters "based on a grouping of roles found in occupational and non-occupational activities": (C.P.V.E. Framework 1985). The Vocational Modules are introduced in three stages: Introductory, Exploratory, Preparatory. Electronics could be introduced in two of these clusters:

- Category 2 Technical Services
 Clusters; Information Technology and Micro-electronics
 Systems.
 Service Engineering.
- ii) Category 3 Production
 Clusters; Manufacture.
 Craft based activities.

The various initiatives such as M.F.A. and curriculum development within S.S.C.R. show that Electronics can provide the "required experiences" leading to the "learning outcomes" required by C.P.V.E. It would be unfortunate if the wording "Microelectronics" became firmly equated with Microcomputer and keyboard skills. The level of entrants may be gauged from the

D.E.S. statements that students with less than four '0' levels regarded as being vocationally committed be suited to C.P.V.E. (Turner 1985). Such students may therefore enjoy using a microcomputer and office equipment, but the significance of Electronics should not be overlooked. C.P.V.E. their handbook do give equal emphasis to Information Technology and Microelectronics during 'Theory and Practise' however in the Project Module it is significant that the only use of equipment suggestion is: "Design and install a hands-on security system including a variety of detection and alarm devices."

This type of Project can motivate students as noted by teachers of A.E.B. Electronics and allows the teacher to relate the programme as a whole.

There is concern that the time schedule of the C.P.V.E. programme may not allow links to be established across the educational sectors to gain access to resources and expertise. The form of syllabus, assessment, and subject content may require more to be given to I.N.S.E.T. if integration attention and progression of activities is to be achieved at student rather than on paper. The C.P.V.E. does offer an opportunity to rationalise the 'non-academic' route for education and it can be anticipated that Electronics could provide a viable motivating interest in technology for many students so that C.P.V.E. does not become a "school Y.T.S. Certificate for the students less bright": (Edwards 1984, 116-117).

7.8 Other Initiatives

7.8.1 Although not chosen as an official C.P.V.E. pilot scheme the Southern Regional Examination Board developed a "Course of Pre-Vocational Study at 17+". This course included Electronics as an option in the form of three linked modules with a strong practical bias; if required the modules could be studied individually: Electronics, Electronic Systems; An Extended Practical, Investigational, or Work Experience Unit.

These units were similar to the AO syllabus eg J.M.B. with an emphasis towards Analogue-Radio receiver rather than Digital Telephone and Microprocessor. The units could either be extended to AO or by adding an Automation and Control Module to A level. An alternative theme of study could include units such as Human Communications, and Technology, both of which usefully integrate into an Electronics System approach.

7.8.2 Y.T.S. courses are required to include transferrable skills which could be acquired through the inclusion of Electronics in the curriculum. Some centres include Electronics using C.G.L.I. and B.T.E.C. modules but in practice Electronics tends to be regarded as too vocational. This view reflects the stereotyped teaching approach too often used without regard the broader integrating features available. If an 'employer-led' Y.T.S. developed which was linked to industry then it is probable that students may be directed towards more an Electronics module within that course.

- 7.8.3 I.T.E.C. centres provide courses in Electronics, however such courses do not normally lead to certification. In recent years I.T.E.C. activities included the provision of short evening courses which were initially competitive with F.E. but which in the longer term should stimulate interest to the benefit of F.E.
- 7.8.4 Open Learning initiatives are being considered in various forms, at present the Open Learning Directory only includes T.E.C. Level II Electronics Course Gg4 p.182. The associated practical presents several logistic problems which may be overcome by the use of simulation programmes, see (Sparkes 1985) and (Ogbourne and Wong 1984).

7.9 Conclusion

Several current initiatives in Education are towards a 'new curriculum' in secondary education which will include a broad vocational element. Whereas the curriculum was traditionally based on the conceptual structure of each separate subject the contributory subjects are now subordinate to a unifying concept or theme. The form is suggestive of a '..revamped system of education...": (Salter and Tapper 1981, 34).

In total, the initiatives represent a major move from Central Government which may alter the relative influence of L.E.A.'s on curriculum control. Concern was expressed by the Ass. Metropolitan Authorities: (Passmore and Lodge 1985) over increased central control, and the pressure by L.E.A.'s to control entry into the new G.C.S.E. examinations may be a sign of

resistance.

Separately the initiatives appear to represent feasibility studies which if considered successful will point the way to future development. As Electronics appears in several of the schemes it may be anticipated:

- i) A consensus of opinion will be reached on where and how Electronics should be included in the curriculm.
- ii) Material and I.N.S.E.T. resources will be made available using resources from traditional subjects which are no longer so dominant in the curriculum.
- iii) The interest in Electronics will continue to grow.

SECTION 8. THE PROVISION AND USE OF RESOURCES

"...because of the extreme youth of people in the industry. They learn what should be temporary phases in the industry, assume it was always thus and will always be thus."

CATT, I. (1985, Vol. 89, No. 1566, p.54)

This section describes the justification offered for the alternative positions (for Electronics) within the curriculum and suggests a hybrid role may evolve.

Also it is suggested that as subject growth occurs staff will require certain material resources, also advice on the significance of this resource provision in terms of safety, scope of teaching etc. It is probable that 'interested' teachers themselves given the opportunity can acquire the necessary basic skills required by the theory content of the examination syllabus and use of equipment.

I.N.S.E.T. should provide assistance for teachers in other directions, such as the scope available for the integration of topics across the curriculum, the background needed for project work, and an appreciation of how the syllabus content is changing.

Comment is made on problems encountered with resources. Suggestions are made on integration and project work.

8.1 A PLACE FOR ELECTRONICS IN THE CURRICULUM

(Pilliner 1983, 149) suggested three alternative places for Electronics in the syllabus: separate, in Physics and in C.D.T.

8.1.1 In Physics

Pilliner recommended that Electronics should not 8.1.1.1 linked with Physics. He described Physics as the "search experimental evaluation of the unifying concepts of the physical world" and he considered that the skills of Physics "analysis" and "explanation" "..are not used for electronics at this level." Pilliner wrote that "...there should be greater emphasis on the application of physics and integration with Sciences. There seems little doubt that the nature of school physics will change in the next few years." Changes in the 'A' level physics syllabus were commented on in 6.6; and (Dorey 1983, 31) noted a "...rapid change in the context and teaching methods in 'A' level Physics" also noted were the associated requirements of Nuffield level Physics and A.E.B. 'A' level Electronics Systems for physical resources and teaching skills.

Writers such as (Summers 1983, 201-202) thought that there was an overlap between electronics and physics, which provided the best answer to staffing especially in view of the overcrowded timetable. Summers argued for a wider inclusion of Electronics in physics to provide a source of maturation, later (Summers 1985, 55-61) proposed a co-ordinated 11-18 approach to the issue. (Stephenson 1980) thought there was a danger of boosting physics with a 'gloss of electronics'. The value of the overlap was

questioned by (Gosden 1984, 15) who suggested that if physics graduates were required to teach an altered subject: "There may be a particular problem for physicists who have a background restricted to physics and mathematics so far as integrated science is concerned." Electronics requires the integration of a range of activities (6.2), and its teaching at '0' and 'A' level requires a different teacher approach to that traditionally used in Physics although the work of (Pell 1984, 365) suggested that seven type of physics teacher did exist rather than a single type.

- 8.1.1.2 The A.S.E. recommended that Science Departments should be involved with microelectronics giving in Section B7 the following reasons:-
- i) Introductory electronics is an extension of electrical circuits which form an important part of sciences courses;
- ii) A practical study of electronics and microelectronics uses concepts from other branches of science teaching;
- iii) Electronic devices can assist science teaching at least as much as in other subject areas;
- iv) The application of scientific principles and of microelectronics within industry can often be discussed in the same context;
- v) Those seeking a career in electronics and computers often need science subjects as entry qualifications;
- vi) Science teachers educated in recent years are more likely than other teachers to have had contact with the new technology.

The same report also advises scientists to become actively involved in the appraisal of microelectronics within the whole curriculum.

Significantly (i) was suggestive of a Components approach rather than the use of systems and it may not realise the potential of Electronics in the syllabus. Reason (iii) was given earlier by (Brander 1976, 665) who suggested that if the physics syllabus was split on the grounds of overcrowding the need to understand instruments may be missed by physicists and therefore enough Electronics should be taught in Physics.

In general the reasons could apply equally well to Engineering and C.D.T. departments and they do not afford a convincing case. Indeed it is very dubious whether reason (vi) will apply to many teachers due to the attraction of industrial opportunities for anyone qualified in Electronics. (Wellington 1984) reported that very few teachers were in teacher training for Computer Science and it is probable that the same applies to Electronics.

8.1.1.3 The view of the J.M.B. expressed by (Gough 1983, 4) was that the syllabus content of 'A' level Physics could not reduced to accomodate Electronics, also that the systems approach Electronics was nearer to Mathematical logic and was not in common with the traditional approach of physics. The J.M.B. that Electronics should be outside Physics considered to accommodate the needs of Biologists and Chemists thus A0 an Electronics syllabus was developed. (Akrill 1983, 153) expressed concern with the overlap between this syllabus and Phsyics but in reply (Gough 1983, 153-154) stated that in view of other benefits the amount of overlap was not significant.

The AO Electronics syllabuses often indicate that a teaching sequence commences with devices and as such the AO syllabuses are closer to the physics tradition than 'systems' courses. However, the use of devices rather than 'black-boxes' also extends to pre 16+ study, (Brimicombe 1984, 26) described the use of breadboard observing that "working with real electronics components was adding an extra dimension to pupils electronics education". Without this experience he considered that students could miss the point of related theory, a similar view emerges in 6.1. Brimicombe suggested that the use of components introduced students to problems hidden in 'black-boxes'.

- i) the use of Not gates with D flip-flop to get a change on the rising edge as in the text-book whereas catalogues list rising edge devices.
- ii) the use of decoupling capacitors to soak up stray pulses in the supply rail of sequential systems.

Similarly (Ellse 1984) expressed the feeling that "the study of a single active device such as the bipolar transistor provides a firm background..." For 'A' level studies he described an approach similar to that used during O.N.C. Electric Physics practicals twenty years ago and extended by (Cuthbert 1976) to a design situation but now considered by many a little out-dated.

Writers such as (Bevis 1983) described the educational 8.1.1.4 significance of advances in digital technology especially terms of data communication and processing and it was shown in Section 6 that syllabus content was changing towards digital. other writers such as (Simpson 1984) commented on However stagnation of analogue electronics a subject area relative significant in everyday life in the form of radio, tape recorder, This subject area involves problems not found with digital electronics such as spurious responses, distortion, instability, and signal to noise ratio.

Thus it would appear that at both '0' and 'A' level a compromise will be established between the Systems and Components approaches using both digital and analogue devices, so that any interested Physics teacher should be able to extend their teaching activities into Electronics. The growth described in Section 6 appears to support this view.

8.1.2 In C.D.T.

8.1.2.1 (Mead 1983) strongly reputed the claims of the Science Department to a monopoly of the newer technological subjects such as Electronics, Electronic Systems and Control technology. He considered that technology departments should also be involved with microelectronics being given access to materials and training. Such an approach would allow technology to capitalise on recent advancements at a time when there is a call for technology in some form, to be on all time tables until the age of 16: (T.E.S. 15-2-84) Also an approach could offer many of the

reasons given in support of putting Microelectronics in the Science Department. However, the Oxford Educational Research Group reported a shortage of suitable teachers and (Rolls 1985, 433) reported difficulties in recruiting both engineers in terms of the numbers qualifying and science in terms of industrial salaries.

8.1.3 In many schools and C.F.E.s Electronics is linked to Physics because of the common use of equipment, if equipment is purchased with the needs of both Physics and Electronics in mind then both gain in terms of the range of equipment obtained and the experience gained with it. However, the same staff may not be suitable for both subjects as noted earlier.

Those staff who are involved with Electronics need to consider a servicing role involving instrumentation in Science, control in C.D.T./Engineering, and basic electronics in Information Technology etc. Such a role may then evolve into an area of common interest: Information Technology Education as described by (Chapman 1983, 6).

This last option is economic and attractive but should not disguise the problems of persuading physics teachers to adopt a different teaching style with Electronics and of attracting non-physics teachers who have particular aptitudes into a 'team' attached to Physics.

Recent letters to T.E.S. (10th May, p.18), prompted by a letter by (Chapman, T.E.S. 26th April), indicate that the debate on where/how electronics is to appear in the syllabusis still a long

way from being resolved.

8.2 TEACHERS PROBLEMS

Conversations with teachers involved with the A.E.B. '0' level Electronics and on C.D.T. modules indicate that the project work especially causes problems:

- i) the range of projects in a class and the consequent range of problems in construction and testing, highlights inadequate equipment resources.
- ii) many of the problems are outside of the scope of conventional teacher experience, very often support facilities such as reference books are either not available or the teacher does not have time to read up.
- iii) there is widespread uncertainty over the best teaching approach so that basic conepts and skills can be introduced before the construction phase of the project starts. The skills required are both manual and observational.
- iv) during a project many issues arise which have an immediate relevance to general theory and broader issues of application. Unless the class are given sufficient time in a laboratory these points can not be followed up.

Critics of project work would suggest that both those problems and that of costs could be avoided if the project was omitted. However, this would detract from the potential of the course especially in view of the H.M.I. paper 'The Curriculum from 5 to

16'. The paper calls for an emphasis on 'real problems', student involvement 'at all stages of technological design', students exploration of 'ideas in their own words', 'curriculum areas should complement and reinforce each other' etc. The paper groups skills into eight categories: communications, problemsolving, observation, physical, study, creative and imaginative, personal and social, and numerial. The project can enbrace many of these features as described in Section 6, rather than be omitted teachers should be assisted with the facilities required for project work.

Assistance is required in the form of advice or equipment, literature, and teaching style. I.N.S.E.T. should build on teacher interest, and providing materials etc., in advance, then concentrate on problems mentioned during a suitably structured course.

8.3 ASPECTS OF SAFETY

Safety is an integral part of Electronics teaching and should be included where relevant throughout the course. The inherent danger of electricity and the use of protection systems must be made clear.

8.3.1 Various authors such as (Strother 1977, 315) gave details from a biological perspective of the effects of macro- and microstock. Typically at 120v ac dry skin with a total resistance of 100k n gives 1.2mA; this is painful but stunted through the body tissue does not affect the heart. However, if either (i) the

contact reistance is lowered by wetting or puncturing the or (ii) the voltage is raised, then at about 160mA death occurs due to fibrillation of the heart. The Welsh G.C.S.E. includes an option on Medical Electronics, and students studying such should appreciate the special problems involved with course internal electrodes. The erroneous advances made in medical practice in consequence of the improved electronics devices were unofficially linked in U.S.A., with the accidental electrocution of 1200 patients per year (Strother 1977, 315). (Lacey 1982, 16) also refered to such hospital deaths.

8.3.2 Protection systems include Earth Leaking Circuit Breakers (E.L.C.B.s) (See Appendix).

The E.L.C.B.s do not:

- i) operate due to overload, overload protection must be ensured with the use of fuses.
 - ii) protect live to neutral faults.
- iii) limit the fault current during the time taken for the device to trip typically 30ms. (40ms at 240mA).

Such devices are usually fitted in laboratories and are recommended for use with portable equipment out-doors. A.E.B. made a specific recommendation (080 Notes for guidance 4.2) that E.L.C.B. protection should be provided when teaching Electronics. The devices should be regularly tested not only by using the 'push-to-test' button but also to establish that the voltage, current and sensitivity ratings are correct. The check list given by (A.S.E. Laboratory Safeguards Committee 1983) omits the

latter tests.

If several outlets are used from a single E.L.C.B., then students should be advised of this fact so that if an E.L.C.B. trips they will not alter potentiometer settings etc., possibly causing their circuit to fail when the supply is restored.

8.3.3 Another safety precaution is the use of transformers, (See Appendix).

The (A.E.B. 080 Notes for Guidance, 4.2) required that all mains equipment should be earthed and have an isolating transformer; Addendum was more specific (see Appendix). It would the reasonable to require that all projects which use mains are checked with an earth bond tester and at 500V ac with a commercial tester and found to be satisfactory before being taken Careful consideration should be given not only to the rating of the fuse but also its type ie. fast-blow or slow-blow depending upon whether there are surge currents. Indeed the action and purpose of the fuse can be usefully considered at this stage to avoid the misconception that a fuse protects an appliance from damage.

This misconception caused the Electricity Council to make a special reference to the fuse in its Understanding Electricity Programme: (Q.I.P. 1984).

8.3.4 To re-inforce the concept of safety and good working practise students using low voltage supplies should be encouraged to use power supplies which include a provision for present

voltage and current trip eg. IRWIN EJ 373.3, when first testing their circuits. Also in line with the A.E.B. 080 Addendum it would be preferable if the power supply units being used included a mains switch and indicator. A range of laboratory power supply units, both single and dual rail, are now available with much improved line and load regulation compared with a few years ago, but not all include a switch etc. There are also many recommended stabilised circuits based on readily available I.C.s which compare favourably in cost with commercial units eg. Edu Elequip TL50 and Unilab 5v but complete evidence of 'safety practise' is not always clear on the modules.

It is also relevant when using mains with projects to introduce students to the danger of high resistance in the earth connection of a main socket. The (A.S.E. Laboratory Safeguards Committee 1983) recommended the use of a Checkerplug. (Ellse 1977, 821) criticised this test and suggested the use of the circuit shown in Diagram 8.1.

- i) connect across the line-earth. If the circuit is protected by an E.L.C.B. then this should trip, if the circuit is not so protected the light bulb should light at full brightness and the voltage shown should drop by not mroe than 2v.
- ii) repeat with the line-neutral to test for adequate continuity in the neutral conductor.
- 8.3.5 Teaching staff need to be aware of hazards other than electrical not all of which are given due attention:

Diagram 8-1: Test circuit for Mains Socket (8.3.3)

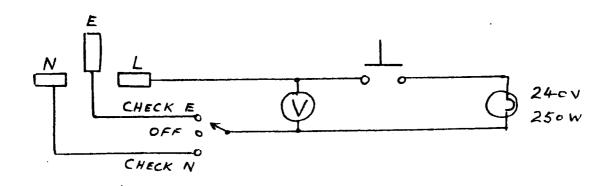
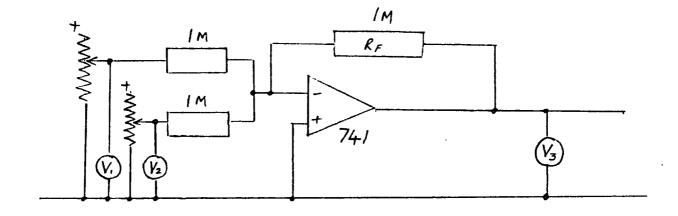



Diagram 8.2: Summing Op-Amp (8.5.1)

i) Although attention is given to the risk of burns from soldering irons and of the electrical safety, indeed low voltage irons are often specified eg. W.J.F.C. Electronics syllabus, very little data is available on the health risk of flux. Hard soldering uses a flux which commonly contains a resin called colophony (or rosin). This is a skin irritant and it can cause sensitization of skin and lungs, evidenced as asthma. Most symptoms get better once sufferers are not exposed, but once a person is sensitized exposure to levels of fume below the 'thresh-hold' level will set off an asthma attack.

This danger resulted in solder flux being placed on the list of prescribed agents for industrial asthma, (D.H.S.S. Leaflet NI 237/Mar 82 Occupational Asthma), and it requires that sensible precautions should be taken. The level of exposure will be brief during practical/project work but for those naturally at risk the lighting level should be good so that students do not need to lean over the work, also soldering should be carried out in a ventilated area.

- boards, p.c.b.'s. Precautions should be taken to avoid spillage of etchant and solvents, protective clothing including goggles, should be used when etching and fumes should be extracted.
- iii) A consultative document was published in 1984 on Health Protection Against the Dangers of Extra Low Frequency Radio-frequency and Microwave Radiation. This document indicated that hand held radio transmitters, intruder alarms and proximity devices "may be regarded as harmless" BUT they should be designed

so that they can not deliver greater than 4 watts per kilogram body weight to the eye for long periods.

- iv) Isolated capacitors will hold high voltages for long periods of time; similarly in voltage doubler circuits capacitors will hold charge at a high voltage level from an innocuous supply voltage. In all such cases, capacitors should be discharged by shorting them out before making contact.
- v) Colour blindness can result in a mistaken identity of a colour code, (Vokes 1980, 48) estimated that "Over two million men in Britain alone may be at risk in the electronics field these errors in colour identification are most noticeable." She indicated that 'dichromats' could make errors of 20% in handling resistors. (Kavanagh 1978, 369) in a letter suggested that the present colour coding for Electrical wiring was chosen to avoid such defects, appearing for the colour blind as dark, light, and striped for the live, neutral and earth wires respectively.

The Electronics syllabus for the Sunderland L.E.A., T.V.E.I., submission included colour identification insofar as it introduced aspects of Safety and Career Aptitude.

(Tully 1983) suggested that video display units, (v.d.u.s) vi) He indicated that the room could cause "fatigue" problems. lighting requirements for the v.d.u. may not be compatible with for other tasks within the same the requirements room; recommednations for lighting, temperature, humidity etc., Although it is improbable that many problems will result from the relatively short times of v.d.u. usage in a laboratory, nevertheless if good working practise is to be encouraged proper

working conditions should be provided.

As many students have home computers, it is important that bad habits are discouraged in the laboratory especially as there may be long term health risks not yet fully appreciated.

The N.U.T. recently referred to an A.P.E.X. report and to the need to monitor professional and industrial illnesses caused by use of microcomputers eq. video screens: (Teacher 1985).

8.4 LABORATORY EQUIPMENT: METERS, C.R.O.S AND MATCHING

Space does not allow a comprehensive survey of the range of laboratory equipment available. New equipment continually appears, usually at prices which represent a reduction in real terms and with improved facilities. The rate at which this equipment is being assimilated into teaching practise is reflected in the changing recommendation of (Bevis 1978), (Grace 1981) and (W.J.E.C. 1984 Systems Electronics).

(Borcherds 1984, 125-127) wrote: "Rapid and continuing in electronics make it necessary developments to revise continually the teaching of electronics and to replace obsalescent laboratory exercises." As examples of this change the use of meters and the C.R.O. will be considered; in this context some aspects of matching are also considered.

8.4.1 When Griffin and George introduced Mektronics kits for the teaching of transistors the range of meters available was not suitable for such simple experiments as common emitter amplifier characteristics. When meter ranges were altered, the 'loading-error' was significant in the total circuit and a discontinuous stepped graph was obtained rather than a smooth curve. Digital meters which became available in the 1950's became smaller and more effective due to improvements in manufacture so that by 1975 meters such as the Fluke 800A were available at below £100. Now it is possible to purchase a cheap digital multimeter so that a student may no longer experience 'loading-errors'.

At present a student may be provided with either an analogue, 'D'Arsonval, moving coil meter at approximately £10 or a digital multimeter, at approximately £30 eg HUNG CHANG HC6100. Observation of students and teachers show a clear preference for the digital mutlimeter especially if it is autoranging. Students dislike the need to choose the appropriate scale on an analogue meter which has several different scales. Accordingly a simple experiment may be presented at '0' level:

An experiment such as the Summary Op-Amp requires the use of three meters as shown in Diagram 8.2, see p. 205.

If both V1 and V2 are digital meters reading voltages such as 100, 200 1000mV then experience shows that an analogue meter can be used at V3 and the relatively weak students will choose the correct scale and gain confidence. Also given that RF Gain = R1N students can perform simple calculations and choose the correct scale. Students can also be led to observe that the analogue meter damps out the fluctuations. If such an experiment is proposed then it is suggested that either some of the power

supply units should provide variable voltage eg. IRWIN EF 392, or they should link to a suitable boxed potentiometer eg. UNILAB dual potentiometer.

To provide students with an experience of 'loading-errors', it is interesting to provide them with a 'black-box' containing a diode, analogue meters and the necessary apparatus with the aim of testing their equipment to determine whether or not it will give the characteristic in a given text. When an incorrect graph is obtained with digital meters, the students can be led to realise that measuring instruments require energy to operate them. Also the students can be introduced to a comparison of the relative costing of meters.

Both experiments illustrate that the revision of teaching methods to include to previous practises can lead to learning experiences often excluded by modern apparatus: matching; and mathematical scale conversion;

- 8.4.2 As an '0' level course develops the concept of matching can be re-introduced especially through projects. Students and teachers often report failure of their circuit whereas a mismatch has occured.
- i) for maximum power transfer, as when driving a loudspeaker from an ouput stage of an amplifier, the output impedance of the driving stage must equal the input of the stage being driven.
- ii) for maximum voltage transfer as when measuring a voltage in a circuit or when a pick up cartridge or other voltage generating transducer is used, the output resistance of the stage

producing the voltage must be less than one tenth the input resistance of the next stage.

iii) for maximum current transfer the previous conditions are reversed

Several syllabuses refer to the use of the Darlington pair, emitter-follower, bootstrapping, and transformer for matching. Insofar as widespread use is made of the Op-Amp perhaps use could be made of the Op-Amp for matching: (Bishop 1974, 64), Diagram 8.3.

Most examination questions involve the Shunt-Voltage mode; the A.E.B. 'A' level Electronic Systems 1977 Paper 2 Question 17, involved the Series-Voltage mode, but only as a problem on feedback.

It is relevant at this point to note that within the syllabus the transistor is used to provide simple calculations, an example of a fundamental component, and as a lead in to a simple logic gate. In terms of the latter applications, the digital content of the syllabus dictates the nature of the analogue content. From an analogue point of view, it may be preferable to omit the transistor in some cases and use the Op-Amp. The Op-Amp has a significant advantage in that it switches to Vsat rather than involve the variable value of Vbe of a transistor which can present some teachers with difficulty in clearly identifying logic 1 and 0 states.

Diagram 8.3: Op-Amp feedback configurations (8.5.2)

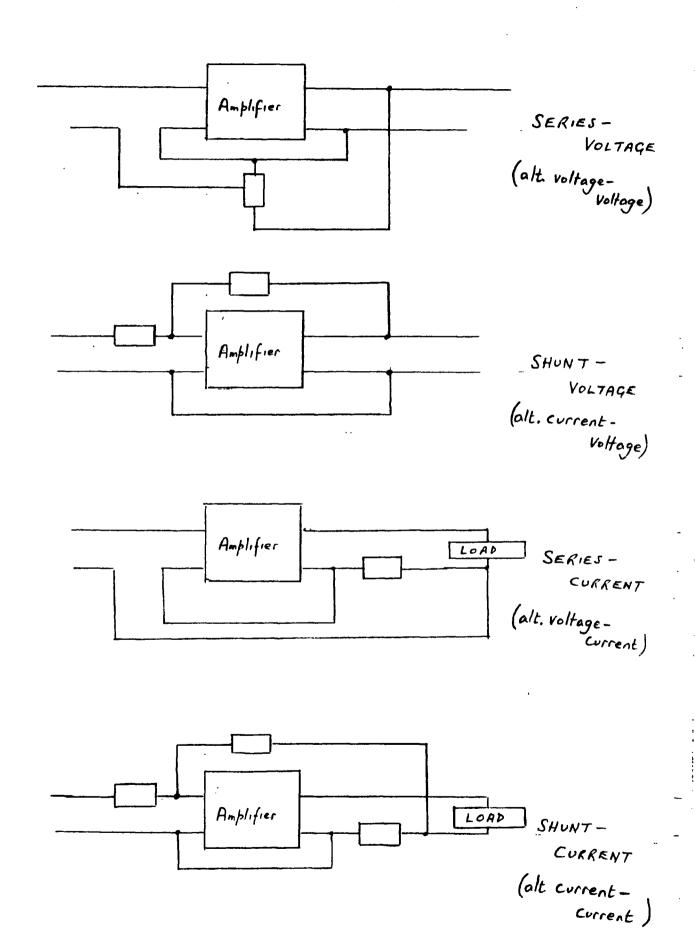


Diagram 8.3 Cont

myrpp or	Impedance change	
TYPE OF FEEDBACK	INPUT	OUTPUT.
Series-Voltage	increased	decreased
Shunt-Voltage	decreased	decreased
Series-Current	increased	increased
Shunt-Current	decreased	increased

- 8.4.3 Many teachers do not appreciate that digital equipment can be misused or applied. A recent reference (E.T.I. 1984, 47), included a warning that unless a meter shows true R.M.S. Thurlby, (also BEWA Model 3610 etc), it finds either average or peak values and divides by a fixed factor. The meter may be no good unless the waveform is sinusoidal and as many practicals and projects involve square waves, this point should be made clear to students by means of a suitable experiment. Significantly the reference mentioned circuit overloading both same by oscilloscopes and frequency counters.
- 8.4.4 The (W.J.E.B. 1985) equipment recommendations for Systems Electronics included five double beam C.R.O.'s for a class of twenty students. However, at the price quoted the C.R.O.'s may not provide the range of 10MHz recommended by (Grace 1981) and consequently a C.R.O. may not be suitable for the range of frequencies encountered in project work.

Although many centres standardise on equipment such as C.R.O.'s it may be preferable to use a variety of models:

- i) Students become more flexible in their use of equipment.
- ii) C.R.O.'s can be purchased which offer differing facilities eg. TRIO CS1575 has an X axis amplifier, the HAMEG 204 has a component tester etc.
- iii) By spreading purchases over a period of years the inevitable problem of replacements may be more easily accommodated.

- iv) A mix of 'good' and 'not-so-good' C.R.O.'s will provide the range of facilities required within a total budget.
- 8.4.5 The problem of frequency range can be encountered on what at first appearances could be given as a simple '0' level experiment: the ring oscillator, Diagram 8.4.

The measurement of frequency allows the propagation delay to be calculated using the equation.

$$f = \frac{1}{2(No. \text{ of gates}) \text{ (propagation delay)}}$$

At '0' level, the use of two I.C.'s would seem a reasonable limit so that seven gates could be used.

If 7400 L series I.C.'s are used a frequency of the order of 2MHz is obtained but if the 7400 LS/S/H series are used then a frequency of the order of 10-15 MHz is obtained, outside of the range being used by many centres. Using such a simple experiment, students can be introduced to the significance of code letters, the limits of equipment, also to the idea of using alternative I.C.'s eg. five gates in a 74 LS04.

An extension of this experiment is to then disconnect the ring oscillator from its power supply when the C.R.O. continues to display a signal of the order of several MHz. An 'O' level student will afterwards be more cautious about the validity of observations, an 'A' level students may be led to realise that in some way the ring oscillator acts as tuning aeriel to the C.R.O.

Diagram 8.4 : Ring Oscillator

(8.5.5)

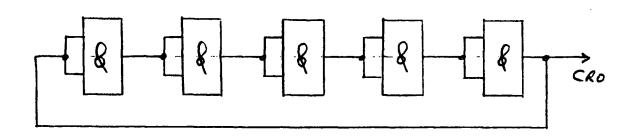
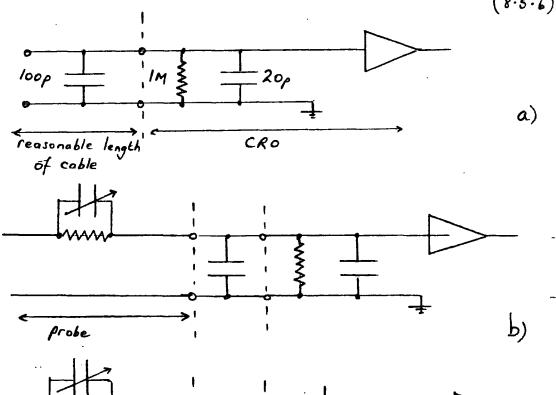
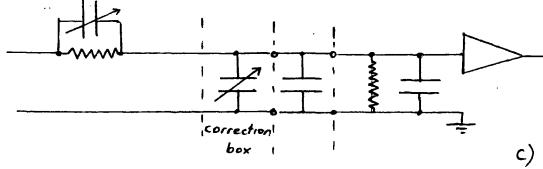




Diagram 8.5: Representation of C.R.O

a) normally b) with attenuation c) with capacitive loading (8.5.6)

A further extension to the experiment is to observe the display using both the 10xl and 1x10 ranges if a suitable C.R.O. is available. These will often give differing amplitudes introducing the importance of using manuals to check on calibration and matching.

8.4.6 Further demands on the C.R.O. are probable in the Medical Electronics option of the W.J.E.C. proposals. When testing voltage signals from nerve and muscle cells the measuring instruments needs "to offer an input resistance at least two orders of magnitude greater than the equivalent source resistance and to generate a bias current sufficiently small not be disturb the impaled cell or produce a significant offset potential.": (Purves 1983, 31). The R.C.A. CA3130 offers an input resistance of 1T with a bias current of 5pA at room temperature in contrast the 74l with its 800nA bias is unsuitable.

Thus at '0' level students will be required to appreciate the use of probes A C.R.O. can be represented as shown in Diagram 8.5a.

At 1MHz this circuit has an A.C. impedance of approximately 1k and the output resistance of the circuit being measured could be up to 100. However, at 10MHz the output resistance would be limited to 10. To obtain an improved connection a passive probe may be used eg. 10:1 attention as shown in Diagram 8.5b. and to extend the band-width capacitive or inductive loading of the C.R.O. may be used eg. capacitive as shown in Diagram 8.5c.

The use of such probes requires trade-offs between rise-time and signal loss so that active probes are preferable; these offer low capacitance, high resistance and use a correctly terminated cable.

At 'A' level, this consideration of test equipment leads to the concepts of band-width and rise-time: A.E.B. Electronic Systems Notes for Guidance 3.5, 3.6. A typical input capacitance of a high quality amplifier is 4pF with a source resistance of 50M giving a rise-time of 2.3Rc = 460 s. This is too slow for some neurophysiological applications so the students may be introduced to the concepts of matching, first using the emitter follower to increase the input impedance and then with boostrapping to modify the input impedance to a fraction of a pF which is satisfactory.

8.5 PROGRAMMABLE AND MEMORY DEVICES

One of the aims of the Information Technology Year and the M.E.P. Programme was to involve school children in the use of microcomputers and related electronic devices. An editorial in Wireless World, September 1982 urged the need for teachers to use the computer as an aid.

Other than computer assisted learning and simulation, the computers may be usefully applied as laboratory instruments. Also microprocessors may be used to create new concepts of laboratory instrumentation. Constraints of time and space only allow the instrumentation usage to be considered.

- 8.5.1 (Clark, Jones and Lambert 1982) described how they were working on "a versatile instrument which can:
- a) take the place of a wide variety of laboratory instruments
- b) enhance the performance of existing instruments
- c) automatically record a sequence of readings for later recall at time intervals which can range from multi-seconds to days.
- d) be used to teach the elements of digital electronics and control technology."

Clark et al pointed out that modern microcomputers were unlikely to be either available in laboratories or suitable for this task because of their cost: "The instrument we are developing would cost a fraction of that of a typical microcomputer scheme."

(Lambert 1983, 38) later indicated that further reasons why the

use of a microcomputer was considered unsuitable were the problems of providing suitable interfaces and of writing software.

The programme was supported by M.E.P., J.M.B. and A.S.E. and led to the development of a Versatile Laboratory Aid, the V.E.L.A. which was made available to schools at half price support being given by D.T.I. Undoubtedly the equipment is versatile, further development to include different ROM, and EPROM increased the range of applications even further to include use with a printer, microcomputer etc. (Bodey 1984) described how the equipment could be used in radioactivity experiments as a rate-meter, also (Bodey 1985) its use with a Sonometer. (Panter 1984) described how a V.E.L.A. was used to record energy levels across an interference pattern and play the information back on a C.R.O. to distinguish the contribution made by interference and diffraction.

The various V.E.L.A. manuals available were supported with a quarterly Newsletter from February 1984.

Unfortunately conversations with teachers reveal little evidence of the use of this equipment in school laboratories even when project briefs specify transients; as discount funding do not extend to F.E. that educational sector made little use of the V.E.L.A.

(Sparkes 1985) in a consideration of the V.E.L.A. and other programmes to develop equipment wrote "At the risk of becoming very unpopular I think that all these were in the wrong direction." He quoted the case of home computers being cheaper

than V.E.L.A. and he observed how much economic factors had altered.

- 8.5.2 The M.E.P. Analogue Sensor Manual gave details analogue interfacing for not only the V.E.L.A. but also general purpose microcomputers such as the Sinclair ZX81 and Spectrum Software was given for the BBC B models and the BBC B model. insofar as it has its own built in ADC as well as other useful features, but no software was given for the Sinclair models as may use any of several external analogue-to-digital converters. The circuits were described as being made for about £5 and capable of an accuracy within 2% with repeatability roughly ten times greater. (Malcolme-Laws 1984) also provided useful information on the use of microcomputers for data collection.
- 8.5.3 The literature provides an impressive range of experiments in the subject areas of Biology, Physics and Chemistry.

Several experiments using the BBC B were described:

- i) (Brankin et al, 1984): the use of several transducers with the BBC B to obtain "appealing" and "convincing" graphics.
- ii) (Watson et al, 1983): measurement of capacitor charge decay; also given by (Miller and Underwood 1984).
- iii) (Roberts 1984): as an interval timer for linear air track experiments.
 - iv) (Warren 1984): colorimetric analysis and curve fitting.
 - v) Marley 1984): demonstration of autocatalysis.

vi) (Baskett and Matthews 1984): computer controlled precision titrations.

- 8.5.4 References to the use of the ZX81 and ZX Spectrum were also made:
- i) (Penman 1984): ZX Spectrum for the investigation of Newtons law of Cooling, giving details of a thermistor detector and an Op-Amp amplifier; also the ZX81 and a laser to measure distance.
- ii) (Rossiter and Humphreys 1983): ZX81 in Chemistry to observe a rate of reaction and in Physics to observe free-fall.

 A Technomatic interface was reported to give "value for money."
- iii) (Taylor 1984): ZX Spectrum with an I-pack interface to plot a cooling curve for wax, capacitor discharge, and to demonstrate simple control. Taylor commented on the cheapness of this equipment.
- iv) (Swift 1984): gave an example of the industrial use of the ZX Spectrum despite its reputation for dumping programmes and he wrote "Don't despise the humble home computer."
- 8.5.5 The use of a cheaper home computer offers several attractive features:
- i) its cost is compatible with a conventional science department budget being much less than V.E.L.A., BBC B etc.
- its use may more probably build onto the students use of a home computer and allow the students to continue work outside of school: (Smith 1983, 367-368)
- iii) if a suitable computer was chosen economically this might under-pin the lower end of the market and reduce foreign

penetration.

8.5.6 Mention was made of the problem of writing software: (Lambert 1983) one of the aspects which were being considered when (Harris 1983) writing of the use of the computer in Chemistry stated "Many of us regard computers with trepidation". What many science teachers would prefer is readily available interfaces, probes and software that will convert a microcomputer into a laboratory without a need for a knowledge of electronics or assembly language programming.

They would prefer to be able to select a programme and then to use the equipment as simply as either a conventional meter or a data acquisition unit. The latter can be easily used to observe transients but unfortunately units such as Phillip Harris Memory Unit C49700/l and Grant Squirrel Meter/Logger are more expensive than the V.E.L.A. etc.

In the U.K. (Sparkes 1984) provided some laboratory programmes for the ZX Spectrum and BBC B. I.C.I. Ltd provided and experimental details using the Rexagon. Also firms such Griffin and George, Phillip Harris and Harley Systems provide interfaces and software to allow the use of the microcomputer to control laboratory equipment etc. Unfortunately, many instances complete facilities are only easily available for the B model. Even where a wide range does exist for the home & G ZX, the total cost of the equipment computer eq. G relatively high in a science department budget and it can be difficult to examine and use the equipment before deciding on a purchase. Some of this difficulty originates in the decision mentioned previously of 'a computer in every school' and local decisions, often taken several years ago, to standardise on the BBC B Model.

If teachers are to have an 'ownership' with the development of ideas they should be allowed greater freedom to experiment and try alternative equipment before deciding on policy. I.N.S.E.T. courses should provide this facility.

In U.S.A. the Cambridge Development Laboratories currently advertise software to convert a microcomputer into a laboratory instrument. Also in U.S.A., Micro-phys offer software which includes a range of laboratory experiments allowing students to follow written instructions making observations as the computer checks the data collected making calculations and providing copy etc.

8.6 USE OF 'SIMPLE' COMPONENTS

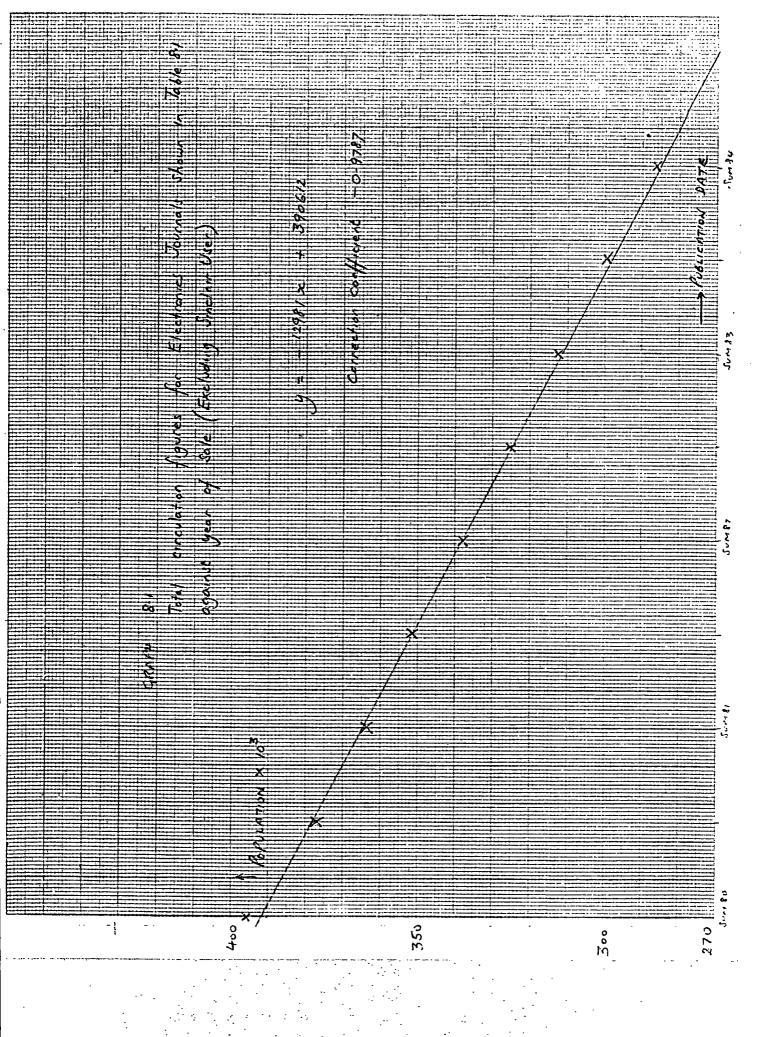
(Bilsland 1985, 73) wrote of 'IT Education' that it was broader than 'a computer in every school'. There is a danger that the efficiency and versatility of laboratory equipment can distract from the use that can be made of simple components. In the field of chemistry and biology, one journal alone provided several interesting uses of the Op-Amp:

i) (Stock and Walter 1976) used Op-Amps to construct a differentiator to identify $\triangle^{t}E/\triangle V^{t}$, the second derivative at the equivalence point. This approach contrasts with the use of a

computer for titration by (Baskett and Matthews 1984) and the use of the Op-Amp relates to the techniques of speed control in some Electronics syllabuses.

- ii) (Durrant and Bloodworth 1976) used Op-Amps in an electro-cardiograph amplifier unit for use with C.S.E. 'O' and 'A' level groups. This circuit uses Op-Amps as buffers, amplifiers and filters; the device usefully allows the integration of Biology and Electronics. Also the device introduces 'A' level students to a form of filter not included in their syllabus.
- iii) (Jackson and McGregor 1978) described the use of an Op-Amp pre-amplifier with a chart recorder.
- iv) (Storie and Wham 1983) described an electron-direction indicator which included L.E.D. and Op-Amps; for Electronics students this provides an illustration of the application of a simple comparator circuit.

Another example of the use of simple components rather than equipment is in the demonstration of L-C-R effects. A sweep generator may be used in this experiment and the envelope on a C.R.O. provides the shape of the L-C-R frequency chracteristic. Using either a sweep generator eg. Thandar TG102 or a V.E.L.A. a ramp voltage is required to obtain the sweep and the laboartory bench is very quickly covered with a range of equipment. An alternative procedure is to use a voltage controlled oscillator I.C. with an integrator; (Sutcliffe 1979) described a circuit which may be adequately extended for this purpose.


Thus the use of simple components can allow the students to relate applications to topics within a syllabus while at the same time integrating ideas/applications etc., from other subject areas. This activity relates usefully to project work and has the advantage of reduced cost compared with the use of purchased equipment.

8.7 JOURNALS AND TEXT-BOOKS

The 132nd Edition of Berns Press Directory published 1984 U.K. states in its Introduction: "Magazines supporting the microchip revolution dominate the new titles listed in the Periodical Section this year; a wider selection of these titles is published in the U.K. than any other country excepting U.S.A." The Directory included 6,500 titles of which 322 titles were under audio, Visual, Computing and Electronics headings. 63 of the 322 were new since the last edition of the Directory published 1983.

The more popular titles are described in the Appendix; details are given also of other journals which are often available in public libraries etc.

The Adult Bureau of Circulations limited by Guarantee circulation figures for the more popular journals covering the period 1979-84 are given in Table 8.1. These circulation figures show a consistent decline for most journals, a significant exception being Sincalir User, this is shown dramatically in Graph 8.1. Should the decline continue then some titles may cease publication. (Johnstone 1984) made the same point in connection

with the microcomputer magazine market.

Just as schools are directed to certain apparatus by Government it would seem sensible to direct schools to certain magazines so that the schools can reliably accumulate a reference Also as losses do occur due to pilfering, accidents, facility. mis-placed student enthusiasm etc., it would seem sensible to direct attention to those journals which are available for reference in the region. A list is given in the Appendix of those titles available in Tyne and Wear. Of the centres listed the Central Libraries at both North Tyneside and Newcastle are suggested as being particularly good in electronics and photocopying facilities exist. The Newcastle College of Arts and Technology is not open during the Summer months. Newcastle Polytechnic opens 9.00am - 5.00pm Monday to Friday during the Summer months.

Although there are only a few text-books which broadly cover any of the Electronics courses considered, there is a very wide range of books suitable for use within the courses. Most of the G.C.E. Boards recommend a reading list but generally they omit any reference to text books prepared for T.E.C. courses eg. Pitman publish several useful books on Electronics and on Radio Systems written by Green. Faced with restricted funds available within a department, and widely reported shortages in library funds many teachers comment on the difficulty of making books available for use on a course.

It would be useful if teachers could have the opportunity to compare texts before making a choice and also if special funding could be made available to enable sufficient provision of books to be made when a course commences.

At present the A.E.B. Board use B.S.3939 symbols for Electronics many other Boards and journals use M.S.806Bsymbols. In future a new international standard given in I.E.C. Publication 617:12 Binary Logic Elements will be increasingly used, (Kampel 1985), and teachers should be careful about the choice of text books in the near future.

8.8 CONCLUSION

A considerable amount of information is available to the teacher of Electronics but not all of the information is either readily available or pertinent. Several literature sources are very useful and as I.N.S.E.T. develops it should make an important contribution.

It would seem unreasonable to expect every teacher to meet every problem individually and it may be useful if L.E.A.'s were able to support local teachers groups for those involved in Electronics. The social contact and sharing of problems would assist in solving problems and giving the subject an 'identity'.

The provision of I.N.S.E.T. needs very careful consideration, teachers should not be regarded as 'passive technicians' and time available for I.N.S.E.T. should concentrate on those areas which cause interested teachers the problems.

SECTION 9. CONCLUSION

"Ad Meliora?"

"The 'demise' of U.K. Engineering capacity especially in its international role is attributed by many to the fact that Education never really attempted to assimilate 'Engineering' into the curriculum; Engineering lacked a certain status and 'respectability' compared with Science. It could be an economic disaster for the U.K. if the significant new technologies were now omitted from the curriculum."

The recent Government initiatives appear to be a co-ordinated innovation strategy designed to encourage the development technology, problem-solving skills etc., within the curriculum. Several of the initiatives will accelerate the already growing interest in Electronics, however the way in which this interest will affect the curd culum is difficult to assess. key determinant will be the provision of resources made vis initial teacher training, I.N.S.E.T., equipment, laboratories, The level of financial commitment may be such that staffing. L.E.A. s may need to encourage specialist provision (Edwards 1983, 15) on the bias of viable centres, L.E.A. s may have to be more prescriptive, and L.E.A. s may have to surrender some autonomy if they are to respond quickly (Gwyn 1982, 364). An example of the latter was the 1985 Budget announcement that Manpower Services Commission was to be invited to administer

in-service teacher training scheme to promote development across the curriculum of the kind particularly related to T.V.E.I. Similarly a re-think may be needed in initial teacher training to encourage and instill those skills and concepts required in the teaching of Electronics.

The rationalisation of educational provision to encourage new technologies within the curriculum and new styles of assessment should full take advantage of the technologies. new should not be interpreted as narrowly meaning Microelectronics skills and games; computers, keyboard as (Cuthbert 1981, the "...microcomputer is not the only use for microprocessor." Microelectronics represents a significant modern technology including Electronics as described in this case Further, other subjects within the curriculum should respond to include relevant information; a call for papers the Fourth International Conference plastics on in telecommunications by the Plastics and Rubber Institute gives an indication of the scope, (see Appendix). In the field of computing, the recently formed Association for Advisors reported general agreement that when the M.E.P. ends in March 1986 national support agency would continue to be needed in different form to M.E.P.: (Makins T.E.S. 15-2-85). Insofar as the E.C.T. Domain of M.E.P. never had the same 'strength' computing it is doubtful whether a similar body will be formed to press for continued support.

It is surprising that a pre-established strategy, such as that of McMahon and Anderson, was seemingly followed. Any continued

support should have a grater flexibility to allow adaption to emerging factors of growing economic stringency in schools, changing availability of equipment etc. A close examination should be made of the I.N.S.E.T. needs of both adminsitration and teachers.

the administrators wish to develop technologies within curriculum, they can not continue to display 'two-images': (MacDonald and Walker 1976) (see 4.3.3.1), one being to ask for development the other being to leave the teachers of the new technology to do the bargaining for resources in competition with The administrators concerned should traditional subject areas. be given the opportunity to recognise the problems of the rate of change, and the material and staff resources required (Gross al, 1971) (see 4.3.1.2) - if not already given - so they can make a coherent decision on the re-allocation of those resources The administrators can encourage a climate in which available. there is a tolerance and trust of new ideas, (see 4.3.4.6), and which allows development to originate within Sections/Departments In making appointments, administrators may (see 4.3.1.4). recognise that although staff atrophy may not be critical: (MacDonald and Walker 1976) (see 4.3.4.7), nevertheless the work of (House 1974) (see 4.3.4.1) suggested that place bound staff are more likely to support 'difficult to adopt' innovations than career bound staff. The work of (Malone and Crone 1978) 4.3.5.9) also suggested that little real help may be given those who support a project seeking 'escape from boredom'.

Some of the teachers I.N.S.E.T. requirements were given in

Section 8.2, it is not enough to merely demonstrate, display and describe either equipment or topics which teachers themselves are quite capable of grasping. I.N.S.E.T. courses should be concerned with:

- i) instilling the concept and relating it to accepted areas:
 (Rogers and Shoesmith 1971) (see 4.4.2.11) using a Normative reeducation strategy (4.4.9.11)
- ii) strengthening a role identity (Williams 1966) (see 4.2.3); also (Miles 1964) (See 4.4.2.ii), perhaps by setting up a 'working party' (see 6.3.1.3.vi).
- iii) dealing with 'problem areas', and individual needs (see 6.3.3.1.3.iv) related to provision and use of resources, project work etc. (Cane 1967) in a summary of I.N.S.E.T. provision indicated the importance of 'new' and 'developing' ideas.

In view of the rate of change, the cost and novelty of equipment, I.C.'s etc., teachers should not be expected to make decisions only on the basis of information in catalogues. Staff whether in should be given the opportunity of ready access schools or F.E. to those resources which are available to determine the suitability of ideas, equipment etc., in terms of the needs of themselves and their school before decisions are made. If subject is to develop with the co-operation of staff, the use of 'de-skilling' packages does not seem a reasonable approach as staff will then accept the materials and not the concept becoming merely technicians: (Nicholls 1983) (see 4.3.5.5, 4.3.5.8). present system of presenting local budget estimates, the

ordering, and virement may be seen as an outmoded accountancy procedure which does not allow sufficent flexibility in a situation where sooner or later equipment necessary for a course will break.

The growth to date in Electronics reflects the commitment of teaching staff; the impact of current Government initiatives and the provision of suitable assistance to those staff who will become involved in future may be expected to contribute to further growth and new problems. What is required is an imaginative view of how Electronics can contribute to the curriculum in future and a flexible policy which will quickly accommodate future problems and change.

C.P.V.E.

Category 2 - Technical Services

Cluster - Information Technology

and Microelectronics Systems

<u>CATEGORY</u>: TECHNICAL SERVICES

<u>CLUSTER</u>: INFORMATION TECHNOLOGY AND MICROELECTRONICS SYSTEMS

EXPLORATORY MODULE: THEORY AND PRACTISE

PRE-REQUISITES

Has undertaken introductory studies in the general categories of "Technical Services" or "Business and Administrative Services" or "Production" or "Distribution".

RATIONALE AND PURPOSE

An introduction to Technology and Microelectronics systems enabling:

- 1. Role exploration within Information Technology and Micro-electronics.
- 2. Development of core skills.
- 3. Acquisition of entry level skills into employment.
- Acquisition of transfer skills.

These purposes must be taken together with those for the project module for Information Technology, and Microelectronics systems, since the overall purposes of exploration are realised by the two modules together.

LEARNING OUTCOMES AND REQUIRED EXPERIENCES

In real or simulated situations (including projects) the students will:

- Have recorded experiences and learning in one or more selected activities in a range of contexts of the cluster.
- Demonstrate progressive achievements in appropriate core skills.
- 3. Record development of his/her individual interests and skills in selected components of the cluster.
- 4. Know and state the uses of information technology and microelectronics systems in each of the four contexts.
- 5. Explain the significance of information technology and developments in microelectronics to the economy and the community.
- 6. Appreciate the general features of Information Technology and Microelectronics systems and how they are applied in individual commercial and domestic situations.
- 7. Understand how a system is designed and implemented.
- 8. Understand how information is processed, stored, retrieved and communicated.
- Appreciate the need for security of information and copyright.
- 10. Study and record the organisational structure of a local information technology department/agency or microelectronics company.
- 11. Review the range and scope of occupational roles in local information technology and microelectronics agencies.

- 12. Know the employment and career prospects within the cluster and assess his/her personal prospects.
- 13. Know and appreciate the expectations of employers in relation to entry level workers in these fields.
- 14. Demonstrate the ability to re-deploy the skills learnt to new situations in this or a related cluster.
- 15. Be able to identify suitable modules for further exploration or preparation studies.

SCOPE

The relevant cluster plan defines the cope of this module. The outcomes above will be fulfilled through a study of:

- Information Technology and Microelectronics in business, industry and the home.
- 2. The effects of information technology and microelectronics on the economy and on individuals.
- 3. Systems as Input, Process, Output : feedback.
- 4. Input devices, eq. Keyboard, optical reader, transducers.
- Process devices, eg. analogue controllers, logic gates, microprocessors, C.P.U.
- 6. Output devices, eg. printers, V.D.U. controllers.
- 7. Storage devices, eg. tape, disc: information transfer systems: telephony, eg. Prestel; telegraphy, eg. Telex, teletext; Radio, eg. satelite.
- 8. Nature of signals: analogue, digital, modems.
- 9. Software: applications packages, commercial and user

- produced, eg. stock control, database, wordprocessing.
- 10. Simple programming : algorithm, testing, coding, data preparation, debugging, documentation.
- 11. Laws and regulations governing health and safety, welfare and security.

PROGRESSION POSSIBILITIES

- Preparatory modules in Information Technology and Microelectronics systems.
- Direct entry into specialist courses at craft and technician level according to attainment.
- 3. Direct employment in industry.
- 4. Preparation for adult life.

RELATIONSHIP TO PROGRAMME AS A WHOLE

- This module must be pursued concurrently with the project module.
- Opportunities exist within this module for the development of core processes, particularly those relating to personal and career development as part of role exploration. Active learning strategies as suggested in the module descriptor will permit development of many other common core skills.
- 3. Will normally precede or run concurrently with preparatory modules in the same cluster.
- 4. May accompany exploratory learning in another cluster.

The additional information below is for guidance of centres on the interpretation and implementation of the module.

EXAMPLES OF ROLES FOR EXPLORATION

See cluster plan.

SUGGESTED TEACHING AND LEARNING APPROACHES

This module complements the asociated project module but provides wider ranging experiences for exploratory purposes. The student should be encouraged and guided to adopt active rather than passive learning methods with the aim of generating autonomy and a pro-active approach to learning. Active learning which may be particularly appropriate to this module include:

- Visit to school/college computer rooms and eletronics workshops and discussion with personnel.
- Visits to industrial and commercial installations followed by reporting back to group.
- Structured assignments relating to microprocessors and microcomputers.
- 4. Study and interpretation of instruction manuals for equipment.
- 5. Work experience/short attachments in the locallity.
- 6. Investigation roles in the locality.
- 7. Case Studies.
- 8. Visiting speakers from business and industry.
- 9. Films and videos on large scale installations.

- 10. Consumer surveys on the use made of microcomputers in business.
- 11. Practical work in electronics.
- 12. Practical work with microcomputers.
- 13. Work sampling to investigate roles in an industrial and commercial environment.
- 14. Simple project to collect and analyse and display data.

NOTES

- Active learning methods should be supported by opportunities for reflection and discussion of, experience to bring about understanding of principles, concepts and generalisations.
- 2. The project module will provide concurrent opportunities to apply and extend in some depth the knowledge/skills generated in this module.
- 3. Students should have the opportunity to explore roles within a wide variety of contexts.

CATEGORY : TECHNICAL SERVICES

CLUSTER : INFORMATION TECHNOLGY AND MICROELECTRONICS SYSTEMS

EXPLORATORY MODULE : PROJECT

PRE-REQUISITES

Related introductory experience, personal and vocational counselling.

RATIONALE AND PURPOSES

Project modules are designed to ensure achievements centred on locally developed projects. Their primary purposes are to:

- carry the learning and application of appropriate core objectives.
- enable role exploration through direct structured experiences.
- ensure the development and application of generalisable vocational skills.
- 4. develop autonomy and the acceptance of reponsibility.
- 5. develop employment entry skills.
- 6. give a basis for progression within and out of the course.

LEARNING OUTCOMES

The student will:

- 1. take responsibility for his/her own contribution.
- 2. take responsibility for a group outcome.
- 3. handle information.

- 4. present an informed judgement.
- 5. respond to changing needs and circumstances.
- 6. select between alternatives.
- 7. proceed in a systematic manner.
- 8. manage and deploy time and other resources.
- 9. monitor and sustain an activity/process/environment.
- 10. complete a course of action/meet agreed targets.

SCOPE AND REQUIRED EXPERIENCES

- 1. The module should encompass all key elements of projectbased learning:
 - selecting a topic/problem/product
 - research/feasibility study
 - problem solving/decision making
 - planning
 - production/activity/implementation
 - review and evaluation
 - recording/reporting/presentation
- 2. The module will lend itself to the development of competences within all core areas particularly those relating to problem solving, practical skills, social skills and creative development.

RELATION TO PROGRAMME AS A WHOLE

The Project module should be pursued concurrently with relevant Theory and Practice module.

POSSIBLE CONTENT AND APPROACHES

- The complementary nature of the Theory and Practice, and the 1. Project modules needs to be made clear. The Theory and practice module provides experience across the range of in the cluster. It will generate knowledge of activities practice across the wider field. The Project module allows study in depth of selected aspects of the cluster. Although some of the same explanatory and core aims will be addressed by both modules, more emphasis will be given to the process objectives of the core in the Project module.
- The project(s) should be substantial to give scope for the learning outcomes to be achieved. Projects may be of several types, such as, product based, service based, or investigatory. Whatever their type, the projects should acquire status, significance and commitment by adopting approaches such as student negotiation and choice, the fulfilment of actual demand/need and full opportunities for feedback. The following examples of projects might be appropriate:
 - (a) Prepare an illustrated report on the history and development of information technology.
 - (b) Prepare a report on the flow of information in a school/college and design a new system based on available technology.
 - (c) Design and install a secuirty system including a variety of detection and alarm devices.

APPENDIX

Ordinary National Certificate in Sciences - Northern Counties
.
Technical Examination Council

Session 1965 - 66

Basic Physics 01 Section 3 Aspects of Atomic Physics

b. Release of electrons by heat, light, particle bombardment and the action of electric fields. Deflection of an electron beam in electric and magnetic fields, dtermination of e/m, the electron volt. Introduction to thermionic and semi-conductor devices (cathode ray tubes, static characteristics of fiode and triode, junction rectifier).

Elective Physics 02 Section 1 Elements of Electronics.

1 ELEMENTS OF ELECTRONICS

Revision of properties of the electron and qualittative account of the simple Bohr model of the atom.

Account of the constructional features of a thermionic valve rectifier, together with diode characteristics. Range of application of this type of rectifier with brief account of gasfilled devices. Elementary account of semi-conduction. For of construction and characteristics of p-n junction. Comparison of semi-conductor and thermionic rectifier in terms of uses and

characteristics.

Rectification of an alternating supply. Approximate estimation...
of ripple output and elementary account of filters.

Explanation of the action of a triode. Valve parameters, their definitions and their determination from static characteristics and dynamic methods.

Introduction to transistor as a circuit element. Comparison with triode amplifier. Emphasis on circuit element values.

Simple R-C coupled amplifier, both valve and transistor, with emphasis on the range of values of circuit elements for normal audio applications, together with a sound physical explanation of the function of each.

The C.R.T. treated as an extension οf the triode. Basic constructional features and uses of electrostatic and electromagnetic deflection types of tube. Uses of the C.R.O. as a display and measuring instrument.

The simple gas discharge tube time base.

NB: Where possible the qualitative treatments should be supplemented with the appropriate calculations, provided that practical or physical points are illustrated and that the mathematics is within the compass of the students.

(FOOTNOTE - For the significance of the asterisk see General Note for Guidance No.2 on Chemistry and Physics Syllabuses.)

2. SOUND REPRODUCTION AND RECORDING

Acoustic resonance in a pipe. Simple account of room acoustics, standing waves, and reverberation time and the factors which affect it. Constructional features of the moving coil loud-speaker. Account of the basic physical features of disc, tape, and film recording techniques, their advantages and limitations.

The essentials of the pressure and the pressure gradient microphone, together with an outline account of the basic features of practical and audio amplifier design.

3. ILLUMINATION

Definitions of source strength and intensity of illumination. Lambert's cosine law. Comparative account in outline of types of light source, range of application, styrength and spectral distribution. Photelectric cells, review of types of and ranges of application.

4. RADIOACTIVITY

Revision of nature and properties of the principal radiations. Law of simple radioactive decay, half life. Outline account of the principle of operation of the geiger counter. Applications illustrating fully the range of application of radio-isotopes. Elements of radio-logical protection.

5. APPLIED HEAT

Qualitative review of the methods of measuring temperature, with particular reference to those which have an electrical output, leading to a brief account of temperature recording and control. Principles of refrigerating machines.

6. HIGH VACUUM

Descriptive account of the principles of operation of the rotary and the diffusion pumps. Brief outline of the physical principles which may be employed to measure "low pressures", with particular reference to the McLeod and Pirani gauges. Mention of application of vacuum, technique to electron tube manufacture and vacuum deposition.

7. PRINCIPLES OF INSTRUMENT DESIGN

Basic principles of kinematic design as applied to instruments employing rectilinear or rotational movements. Uses of leaf springs to eliminate backlash and friction. Uses of strip hinges and twisted strip magnifiers. Spring energy stores and constant torque systems. Reilient mountings.

NB: - This subject should be developed so that the student can appreciate the basic points of good instrument design. It should also give the opportunity for reasonable constructional sketches of simple instrument movements.

BASIC PHYSICS (01)

1. ELECTRON PHYSICS

Simple atomic structure, model; ionisation; spectrum; conductors and insulators. Conduction of electricity in gases, liquids and solids; charges and currents.

Descriptive treatment of semi-conductors, transistors, photo-conductive cells.

(9 hours)

2 MAGNETISM AND ELECTRICITY

Quantitative treatment of the magnetic field due to a current in a conductor and the forces due to interaction; permeability of free space, relative permeabilities. Examples with reference to simple motors, moving coil meters.

Linear and non-linear characteristics; conductivity. Potentiometer cicruits (simple version, together with outline of industrial types).

(17 hours)

BASIC PHYSICS (02)

1. ELECTRON PHYSICS

Forces on charges in magnetic and electric fields with reference to e/m measurements, cathode ray tube.

Description of thermionic, photo-electric, secondary and field emission of electrons with reference to practical devices, including valves, vacuum and gas-filled, photo-multipliers and X-ray tubes.

(14 hours)

ELECTIVE PHYSICS (02)

1. ELECTRICITY AND MAGNETISM

Conduction in Solids.

Energy levels in solids; differences between conductors, semiconductors and insulators; concept of the "hole" current flow; Hall effect; impurity semi-conductors, p-type and n-type, conductivity; effect of heat and light.

Ferromagnetism

Characteristics of ferromagnetic materials; susceptibility, permeability; the hysteresis loop and its signifiance; domains; soft and hard magnetic materials, ferrites. The transformer.

Varying Electric Currents

Growth and decay of current in inductive circuits; charge and discharge of a capcitor; time constant; oscillatory discharge.

Phasor approach to alternating current circuits, r.m.s. and peak values (for sinusoidal waveforms); R, L and C separately, in series, in parallel; phase difference, reactance, impedance, power factor, resonance, Q.

(40 hours)

2. ELECTRONICS

Transistor and valve considered as an a.c. generator, equivalent circuit of amplifier, input and output impedances, relative phase of input and output, principles os positive and negative feedback, including transistor and valve oscillators.

P-n junction and Zener diodes. Junction and field effect transistors. Thermionic diode, temperature and space charge limitations, cathode materials. Brief discussion of vacuum and gas-filled triodes, multi-electrode valves. Cathode ray tube construction, including description of electric and mnagnetic focusing and deflection in oscilloscope and television types; tube control and simple time base circuits in oscilloscopes. Applications of semi-conductor and thermionic devices to include smoothed and stabilised power supplies, simple amplifiers, oscillators and switches.

(40 hours)

APPENDIX

<u>Technician Education Council</u> Modified Standard Unit

- 1 UNIT TITLE Electronics
- 2 UNIT LEVEL II
- 3 UNIT VALUE One Design Length 60 Hours
- 4 PROGRAMMES

The guidelines produced by Programme Committees indicate the standard units that they see for possible incorporation in their programmes or as supplementary to their programmes.

- 5 PRE-REQUISITE UNITS
 - TEC U75/004 Physical Science I or equivalent
- 6 CREDITS FOR UNITS
- 7 AIMS OF THE UNIT

To introduce students to the electronics principles used in light-current electrical engineering with particular relevance to communications and industrial electronics.

8 SPECIAL NOTES

The recommended selection for programmes in electronics and communications engineering, from the pre-requisite unit Physical Science I (U75/004) is given in the Guidelines to those Programmes.

ASSESSMENT ANALYSIS

9

The following gives the unit breakdown, by topic and types of learning, as a key to the production by a college of its assessment specification for this unit.

,	Topic Area(s) as % of assessment	% of total assessment				
		·	Intellectual Skills			
Unit/Subject topic area(s)		Motor skills	Information	Comprehension	Application	Invention
A	41	10	11	14	6	
В	7	1	2	3	1.	
С	12		3	6	3	
D	20	5	5	5	5	
E	20		13	7		
F				,		
G		w				
н .						
I						
Percentage of assessment for entire unit.		16	34	35	15	

10 UNIT CONTENT

The unit topic areas and the general and specific objectives are set out below, the unit topic areas are being prefixed by a capital letter, the general objectives by a non-decimal number, the specific objectives by a decimal number; GENERAL OBJECTIVES GIVE THE TEACHING GOALS AND THE SPECIFIC THE MEANS BY WHICH THE STUDENT DEMONSTRATES HIS OBJECTIVES ATTAINMENT 0F THEM. Teaching staff should design the learning process to meet the general objectives. The objectives are not intended to be in a particular teaching sequence and do not specifiy teaching method, but, for example, practical work could be the most appropriate teaching method for the achievement of the objectives.

ALL THE OBJECTIVES SHOULD BE UNDERSTOOD TO BE PREFIXED BY THE WORDS: THE EXPECTED LEARNING OUTCOMES IS THAT THE STUDENT:

A ELEMENTARY THEORY OF SEMI-CONDUCTORS

- 1 Understands the simple concept of semi-conductors
 - 1.1 Defines the properties of a semi-conductor in relation to conductors and insulators.
 - 1.2 States the two common types of semi-conductor material as silicon and germanium.
 - 1.3 Explains simply the structure of 'p' type and 'n' type semi-conductors.
 - 1.4 Explains electrical conduction as movement of electrons in 'n' type semi-conductor material and 'apparent'

- movement of holes in 'p' type semi-conductor material.
- 1.5 States how a change in temperature affects the intrinsic conduction in a semi-conductor.
- 1.6 Derives the equation for the Hall voltage effect $(V_{H} = \frac{BI}{Ne.t})$
- 1.7 Uses equation in 1.6 to characterise carriers.
- 2 Knows behaviour of a p-n junction with forward or reverse bias.
 - 2.1 Draws a p-n junction connected in the reverse bias mode, indicating current flow in the diode and the external circuit.
 - 2.2 Draws a p-n junction connected in the forward bias mode, indicating current flow in the diode and external circuit.
 - 2.3 Measures the current flow through a p-n junction connected in the foward bias mode.
 - 2.4 Compares the junction potentials of germanium and silicon diodes when connected in the forward bias mode.
 - 2.5 Sketches the static characteristic for a diode.
 - 2.6 Compares typical static characteristics for germanium and silicon diodes to illustrate difference in forward voltage drop and reverse current.
 - 2.7 Explains the importance of considering peak inverse voltage of the diode.
 - 2.8 Demonstrates the breakdown effect.
- 3 Knows simple applications of semi-conductor diodes.
 - 3.1 States simple applications of the available range of:

- (a) Power diodes
- (b) Zener diodes
- (c) Signal diodes
- 3.2 Sketches waveforms of applied a.c. voltage and load current for diode circuits which provide half-wave and full-wave rectification into a resistive load.
- 3.3 Observes and measures the effects of connecting a smoothing capacitor across the load resistor in half and full-wave rectifier circuits upon the diode current waveform, the load current waveform, the load p.d. waveform and the inverse voltage applied to the diode.
- 3.4 Sketches a circuit diagram for a stabilised voltage source including a Zener diode and a series resistor.
- 3.5 Calculates the values of series resistor R in a simple Zener stabilising circuit for the conditions of:
 - (a) varying supply voltage, fixed load
 - (b) fixed supply voltage, varying load
- 4 Knows the arrangement of transistor electrodes.
 - 4.1 Sketches the arrangement of a bipolar transistor produced from a sandwich of semiconductor materials.
 - 4.2 Identifies the electrodes of the bipolar transistor as emitter, collector and base.
- 5 Knows the modes of connection of a transistor.
 - 5.1 Sketches the circuit diagrams for the common base,

- common emitter and common collector modes of connection.
- 5.2 Compares the relative values of input and output resistances for the three modes of connection.
- 5.3 Defines the short-circuit current gains of a transistor connected in the common base (<) and the common emitter (名) modes.
- 5.4 States the relationship between ot
 ot and ot .
- 6 Knows the static behaviour of a transistor.
 - 6.1 Sketches a common-base mode test circuit diagram for dtermining the static characteristics.
 - 6.2 Describes the method of obtaining the common-base mode static characteristics.
 - 6.3 Discusses given typical families of curves of Ic/Vci
 (output characteristics):

 Ic/Ie (transfer characteristics)

Veb/Ie (input characteristics)

- 6.4 Sketches a common emitter mode test circuit diagram for determining the static characteristics.
- 6.5 Measures the common emitter static characteristics.
- 6.6 Plots and describes typical families of:

 Ic/Vce (output characteristics)

Ic/lb (transfer characteristics)

Vbe/Ib (input characteristics

6.7 Determines the values of \propto and β from give characteristics.

- 6.8 Determines the value of input resistance from given input characteristics.
- 6.9 Determines the value of output resistance from given output characteristics.

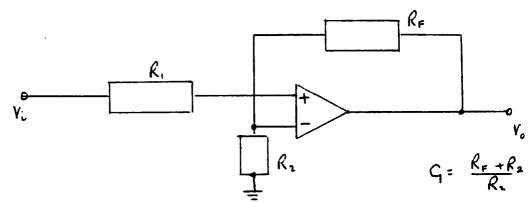
B <u>CATHODE RAY TUBE</u>

- 7 Knows the principles of operation of a cathode ray tube.
 - 7.1 Labels a diagram of a C.R.T.
 - 7.2 Explains the functions of the following:
 - (a) electron gun
 - (b) focus control
 - (c) intensity control
 - (d) blanking pulses
 - 7.3 States that deflection can be produced by electric and/or magnetic fields.
 - 7.4 Demonstrates the use of timebases and of vertical and horizontal deflection controls.

C SMALL SIGNAL AMPLIFIERS

- 8 Knows the circuit and operation of a small signal common emitter amplifier.
 - 8.1 Draws the circuit diagram of a single stage amplifier having a load resistor R .
 - 8.2 Shows that the supply voltage $V_{cc} = I_c R_L + V_{ce}$.
 - 8.3 Explains that bias is required to give a selected quiescent operating point on the output characteristic.

- 8.4 Sketches the circuit diagram and explains the action of a simple bias arrangement consisting of a resistor connected between V_{cc} and base.
- 8.5 Explains the effect of a small sinuisoidal current input on the quiescent condition.
- 8.6 States that voltage phase inversion occurs between input and output signals.
- 9 Constructs and uses a d.c. load line on transistor characteristics.
 - 9.1 Constructs the load line on a given set of output characteristics of a common emitter amplifier for a stated value of load resistance.
 - 9.2 Estimates the r.m.s. voltage output from the load line for given quiescent conditions and given input signal.
 - 9.3 Determines the voltage gain Av from the static characteristics assuming a given input resistance.
 - 9.4 Determines the current gain A; from the static characteristics.
 - 9.5 Calculates the power gain Ap in dB.
 - 9.6 Describes thermal runaway of a transistor.
 - 9.7 States the reasons for use of heat sinks.
- 10 Understands automatic biasing of small signal amplifiers.
 - 10.1 Explains with the aid of sketches, simple methods of biasing a transistor amplifier stage.


D AMPLIFIERS

- 11 Understands Basic Amplifier operation and properties.
 - 11.1 Defines input impedance.
 - 11.2 Defines voltage gain.
 - 11.3 Defines output impedance.
 - 11.4 Measures 11.1 to 11.3 for a given amplifier.
 - 11.5 States condition for maximum power output.
 - 11.6 Explains the advantages of amplifiers with high input impedances.
 - 11.7 States that an ideal operational amplifier has large gain and high input impedance.
 - 11.8 Describes positive feedback.
 - 11.9 Describes negative feedback.
 - 11.10 Explains operation of the circuit shown.

- 11.11 States gain for circuit shown in 11.10.
- 11.12 Builds the circuit in 11.10 using an integrated circuit operational amplifier (eg. 741) measures the gain.
- 11.13 Determines by experiment the variation of gain with frequency of the amplifier in 11.10 and states its bandwidth.
- 11.14 Explains how an operational amplifier can be

connected to given an output in phase to input.

- 11.15 Uses manufacturer (or suppliers) literature to select components of appropriate values to construct a non-inverting amplifier of specified gain using an operational amplifier.
- 11.16 Constructs an amplifier as specified in 11.15 and measures its gain.
- 11.17 States the meaning of drift.
- 11.18 Explains how a differential amplifier can overcome the problem of drift in DC amplification.

E WAVEFORM GENERATORS

- 12 Knows typical oscillator waveforms.
 - 12.1 Sketches ouptut waveforms of oscillators in common use:

sinusoidal, rectangular, saw tooth.

12.2 States the common uses of the waveforms set out in 12.1

- 13 Knows the principles of simple sinuisoidal oscillators.
 - 13.1 States that a sinewave oscillator is an amplifier with positive feedback sufficient to maintain its own output.
 - 13.2 States that a sinewave oscillator requires both a frequenecy-determining circuit and a method of self-stabilisation.
 - 13.3 States that the approximate frequency of oscillation of most LC sinewave oscillators is $f_0 = \frac{1}{2\pi \sqrt{LC}}$
 - 13.4 Sketches the circuit diagram of a tuned-collector oscillator and an Op-Amp oscillator.
 - 13.5 Describes methods of applying bias in a tuned-circuit transistor oscillator.

F LOGIC ELEMENTS AND CIRCUITS

- 14 Knows that information can be communicated by two-state signals.
 - 14.1 Gives simple examples of two-state devices.
 - 14.2 Gives simple examples of information being communicated by two-state devices.
- 15 Understands the function of, 'AND', 'OR' and 'NOT' gates.
 - 15.1 States the logical function of the 'AND' gate.
 - 15.2 Constructs a truth table for a 3 input 'AND' gate.
 - 15.3 States the Boolean symbol for 'AND'.

- 15.4 Draws the B.S. circuit symbol for an 'AND' gate.
- 15.5 Recognises superseded B.S. circuit symbols for an 'AND' gate.
- 15.6 States the logical function of the 'OR' gate.
- 15.7 Constructs a truth table for a 3 input 'OR' gate.
- 15.8 States the Boolean symbol for 'OR'.
- 15.9 Draws the B.S. circuit symbol for an 'OR' gate.
- 15.10 Recognises superseded B.S. circuit symbols for an 'OR' gate.
- 15.11 States the logical function of the 'NOT' gate.
- 15.12 Constructs a truth table for a 'NOT' gate.
- 15.13 States the Boolean symbol for 'NOT'.
- 15.14 Draws the B.S. circuit symbol for a 'NOT' gate.
- 15.15 Recognises superseded B.S. circuit symbols for a 'NOT' gate.
- 16 Understands the action of simple electronic gates.
 - 16.1 Explains the action of a 3 input diode 'AND' gate.
 - 16.2 Explains the action of a 3 input diode 'OR' gate.
 - 16.3 Explains the action of a transistor when used as a switch.
 - 16.4 Explains the action of a transistor 'NOT' gate.

APPENDIX

Technician Education Council

Standard Unit

1 UNIT	TITLE	Electronics
--------	-------	-------------

- 2 UNIT LEVEL III
- 3 UNIT VALUE One Design Length: 60 Hours
- 4 PROGRAMMES

The guidelines produced by Programme Committees indicate the standard units that they see for possible incorporation in their programmes or as supplementary to their programmes.

- 5 PRE-REQUISITES UNITS:
 - TEC U76/010 Electronics II
- 6 CREDITS FOR UNITS
- 7 AIMS OF THE UNIT

To develop electronics principles needed as a foundation for a range of specialisms in electronics and communications engineering at Certificate level.

8 SPECIAL NOTES

9 ASSESSMENT ANALYSIS

The following give the unit of breakdown, by topic and types of learning as a key to the production by a college of its assessment specification for this unit.

 	T	 				
		% of total assessment				
				Intel	llectual Sk	ills
Unit/Subject topic area(s)	Topic Area(s) as % of assessment	Motor skills	Information	Comprehension	Application	Invention
A	12		6	4	2	
В	46	20	20	3	3	
C .						
D	20		14	3	3	
E						
F	22		10	12		
G						-
н						
I						
Percentage of assessment for entire unit		20	50	22	8	

C UNIT CONTENT

The unit topic areas and the general and specific objectives are given out below, the unit topic areas being prefixed by capital letter, the general objectives by a non-decimal number, the specific objectives by a decimal number. THE GENERAL OBJECTIVES GIVE THE TEACHING GOALS AND THE SPECIFIC THE MEANS BY WHICH THE STUDENT DEMONSTRATES OBJECTIVES HIS ATTAINMENT 0F THEM. Teaching staff should design the learning process to meet the general objectives. The objectives are not intended to in a particular teaching sequence and do not specify teaching method, but. example, practical work could be the most appropriate teaching method for the achievement of the objectives.

ALL THE OBJECTIVES SHOULD BE UNDERSTOOD TO BE PREFIXED BY THE WORDS: THE EXPECTED LEARNING OUTCOME IS THAT THE STUDENT:-

A FIELD EFFECT TRANSISTORS

- Describes the action of a field effect transistor (FET)
 - 1.1 Compares the properties of a FET with valves and bipolar transistors.
 - 1.2 Describes the basic construction of FETs (junction gate and insulated gate).
 - 1.3 Explains the differences between completion and enhancement modes.
 - 1.4 States the precautions used when using FETs.
 - 1.5 Determines the output and transfer characteristics from

given data.

- 2 Describes the circuit applications of FETs.
 - 2.1 Calculates the stage gain of a FET common source amplifier stage using a resistive load.
 - 2.2 Describes the effect on frequency response of adding an inductive load to the circuit of 2.1.
 - 2.3 Describes the performance of a common source amplifier with:
 - (a) an inductive load
 - (b) a tuned circuit load
 - 2.4 States the use and advantages of the FET as a switch.

B AMPLIFIERS

- 3 Understands the performance of voltage amplifiers.
 - 3.1 States the biasing conditions for Class A, B & C operation in the common emitter mode and the common source mode.
 - 3.2 Lists the main applications of each type of amplifier in 3.1.
 - 3.3 Predicts the performance of a two stage class A common emitter and common source amplifier.
 - 3.4 Describes the following types of interstage coupling:
 - (a) resistance-capacitance
 - (b) direct
 - (c) transformer
 - 3.5 Lists applications of the coupling methods stated in 3.4.

- 3.6 Measure the frequency response of the circuit in 3.3.
- 3.7 Measures signal amplitude limits for operation of the amplifier in 3.3.
- 3.8 Measures the effect on the stage gain and bandwidth of disconnecting the emitter source bypass capacitor.
- 3.9 Measures the input and output impedance of the two stage amplifier in 3.3.
- 3.10 States the functions of individual components present in an r-f amplifier.
- 3.11 Explains the selectivity of a tuned amplifier.
- 3.12 States the applications of buffer amplifiers.
- 3.13 States that for maximum efficiency impedance-matching must be used in amplifier systems.
- 4 Describes the action of a large signal amplifiers.
 - 4.1 Identifies from given circuit diagrams, the following a-f large signal amplifiers:
 - i) single ended
 - ii) push-pull
 - iii) complementary
 - 4.2 Lists the functions of individual components in the large signal amplifier circuits mentioned in 4.1.
 - 4.3 Observes the frequency response, power gain and distortion of an impedance matched a-f large signal amplifier.
 - 4.4 States the reasons for and effects of parasitic oscillations in large signal smplifiers.
 - 4.5 States methods of suppressing parasitic oscillation.

C NOTES

- 5 Knows basic concepts of electrical noise and its relation to signal strength.
 - 5.1 Defines noise as any unwanted signal.
 - 5.2 List sources of external noise.
 - 5.3 States precautions taken to minimise the effects of external noise.
 - 5.4 Lists the sources of internal noise.
 - 5.5 Defines singal-to-noise ratio in an amplifier or receiver.
 - 5.6 Calculates signal-to-noise ratio in db , given signal and noise power.

D FEEDBACK

- 6 Understands the general principles of feedback.
 - 6.1 Draws a block diagram of a basic feedback amplifier.
 - 6.2 Defines positive and negative feedback in amplifiers.
 - 6.3 Derives the general expression for stage gain of a basic feedback amplifier.
 - 6.4 States the effect of applying negatives feedback to an amplifier in relation to:
 - (a) gain
 - (b) gain stability
 - (c) bandwidth
 - (d) distortion
 - (e) noise
 - (f) input and output resistances

6.5 Applies feedback principles to practical circuits.

E SIMPLE RESISTIVE - CAPACITIVE NETWORKS

- 7 Understands the operation of pulse-shaping circuits.
 - 7.1 Sketches and labels a rectangular pulse-wave form showing pulse width, pulse amplitude, rise-time and decay-time.
 - 7.2 Sketches the diagram of an inetgrating circuit.
 - 7.3 Sketches the ouput waveform of an inetgrating circuit when a rectangular pulse is applied to the input when:
 - (a) the pulse width is much greater than the CR time
 - (b) the pulse width is much smaller than the CR time
 - 7.4 Sketches the diagram of a differentiating circuit.
 - 7.5 Sketches the output waveform of a differentiating circuit for a rectangular input pulse:
 - (a) much loner than the CR time
 - (b) much shorter than the CR time

F OSCILLATORS

- 8 Describes the characteristics of basic sinusoidal oscillator circuits.
 - 8.1 States that oscillations can be produced by an amplifier with positive feedback.
 - 8.2 Explains the operations of:
 - (a) L-C tuned oscillator
 - (b) an R-C oscillator
 - 8.3 Describes class A and class C biasing methods.
 - 8.4 States the factors that affect both the short term and

- long term frequency stability of oscillators.
- 8.5 Describes methods of improving the frequency stability of oscillators eg. piezo-electric crustal control.
- 9 Describes the action of transistor multivibrators.
 - 9.1 States the requirements of a transistor multivibrator.
 - 9.2 Describes three different types of multivibrator:
 - (a) astable
 - (b) monostable
 - (c) bistable
 - 9.3 Describes the action of three different types of multivibrator, by deriving waveforms present around the circuits.
 - 9.4 Explains the need for synchronising and triggering multivibrators.
 - 9.5 States the methods of synchronising and triggering multivibrators.

G <u>INTEGRATED CIRCUITS</u>

- 10 Knows the properties and applications of a range of linear integrated circuits.
 - 10.1 States the available range of linear inetgrated circuits and their compatability.
 - 10.2 States the advantages of linear operational amplifiers over those with conventional transistor circuits.
 - 10.3 Gives examples of the performance characteristics of currently-available linear integrated circuits in relation to:

- (a) operational amplifier
- (b) differential amplifier
- (c) audio amplifier
- (d) rf/if amplifier
- (e) wideband amplifier

APPENDIX

T.E.C. ELECTRONICS SYSTEMS LEVEL II and III

TECHNICIAN EDUCATION COUNCIL

STANDARD UNIT

1	UNIT TITLE	Electronic Systems
2	UNIT LEVEL	II
3	UNIT VALUE	1.0 DESIGN LENGTH 60 HOURS
4	PROGRAMMES	This unit was principally devised for
		use in Certificate and Diploma
		programmes in Science validated by
		Programme Committees Cl. C2 and C5.
		It may, however, be adopted for use in
		other TEC programmes if this is deemed
		appropriate. (See however, Special
		Note 8/4, below).
5	PRE-REQUISITE	TEC U80/684 Mathematics I and either
	UNITS	TEC U80/682 Phsyical Science I or TEC
		U81/845 Phsyics I.
6	CREDITS FOR	GCE A level Electronic Systems
	UNIT	
7	AIMS OF UNIT	1 To develop in students an
		understanding of the basic concept
		of an electronic systems as a
		processor with input and output
		signals.

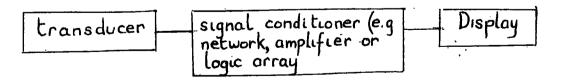
2

To equip students with

understanding of simple electronic

system techniques sufficient to

enable them to solve simple design


an

problems and construct and test the solution devised.

8 SPECIAL NOTES

- It is expected that laboratory work will be an essential feature of the teaching method used. The entire teaching approach could be via laboratory work, but objectives 3.2, 4.3, 4.6, 4.10, 5.3 and 7.6 can only be achived in this way.
- This unit is particularly suitable for a system-based teaching approach, with transducers (ie. amplifiers, transistors and digital logic gates) all being treated as signal processors with input(s) and output.

The underlying theme of the unit is a simple instrumentation system that could be represented thus:

3 Concurrent study of the relevant sections of TEC U81/850 Laboratory Techniques II is recommended.

4 This unit is NOT intended to provide a basis of fault-finding techniques such as might be of value to an electronics servicing technician.

ASSESSMENT ANALYSIS

This gives a very approximate analysis, by topic and types of learning, as a key to the production by a college of its assessment specification for this unit/subject.

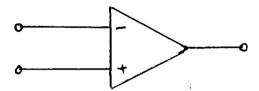
			% of	total as	sessment	
			Intellectual Skills			
Unit/Subject topic area(s)	Topic Area(s) as % of assessment	Motor skills	Information	Comprehension	Application	Invention
A	25		10	10	5	
В	30		10	10	10	
C	20		5	10	5	
D	25		10	10	5	
						·
·						
				-		
Percentage of assessment → for entire unit/subject		*	35	40	25	

^{*} See Special Notes 8/1. It is not considered that the practical work in this unit involves Motor Skills over and above those already assessed in pre-requisite units.

10 UNIT CONTENT

The unit topic areas and the general and specific objectives are set out below. The unit topic areas are prefixed by a capital letter, the general objectives by a non-decimal number and the specific objectives by a decimal number. General objectives give teaching goals and specific objectives the means by which the student demonstrates his attainment of them. Teaching staff should design the learning process to meet the general objectives.

The objectives are not intended to be in a particular teaching sequence and do not specify teaching method, although for example many objectives (including those in the cognitive domain) might benefit from realisation in a practical situation.


All objectives should be understood to be prefixed by the words: THE EXPECTED LEARNING OUTCOME IS THAT THE STUDENT...

A TRANSDUCERS AND DISPLAYS

- 1 Knows the properties of simple input transducers.
 - 1.1 Describes the characteristics of two transducers whose resistance is determined by an input (eg. thermistor, photo-resistive cell, resistance strain gauge).
 - 1.2 Describes the characteristics of two transducers which generate an e.m.f. dependent upon their input (eg. thermocouple, moving coil microphone, piezoelectric

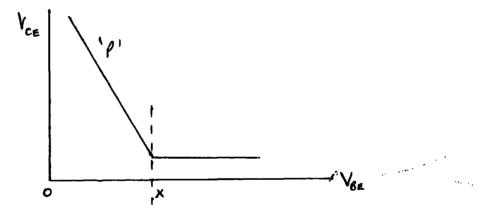
- pick-up, photovoltaic cell).
- 1.3 Selects, from information supplied for given simple applications, the most appropriate transducer in terms of sensitivity, linearity, response time, accuracy and frequency response (as appropriate) and justifies the selection.
- 2 Knows the properties of simple displays.
 - 2.1 Describes the characteristics (eg. sensitivity, cost, response time, accuracy, physical robustness etc) of:
 - (a) moving coil instruments
 - (b) x t plotters (chart and uv)
 - (c) x y plotters
 - (d) Light Emitting Diode (LED) and Liquid Crystal Display (LCD).
 - 2.2 States the advantages and disadvantages of digital displays compared with analogue displays.
 - 2.3 Selects from information supplied an appropriate display for given, simple applications and justifies the selection.
- 3. Describes simple signal conditioning circuits for use with the transducers in 1.1 and 1.2.
 - 3.1 Explain, for a resistive trans d_{ucer} the advantages of using a bridge circuit.
 - 3.2 Investigates the linearity of the out-of-balance bridge current with transducer resistance change.
 - 3.3 Explains, for an e.m.f. generating transducer, the advantage of using a potentiometer circuit.

- 3.4 Selects an appropriate circuit configuration for a given application.
- B OPERATIONAL AMPLIFIER SYSTEMS
- 4 Understands and applies the principles of operational amplifiers.
 - 4.1 Represents a two input, single output operational amplifier by the diagram:

explaining the terms 'inverting' and 'non-inverting'.

- 4.2 Recognises that, for amplification to take place, a source of additional energy is required and uses manufacturers' or distributors' literature to identify the pin connections of an Op-Amp (eg. 741 type).
- 4.3 Investigates experimentally how the output (V_c) varies with the difference in potential (Δv) between the two inputs for such an Op-Amp as in 4.2.
- 4.4 Explains both positive and negative feedback classifying simple, everyday examples.
- 4.5 Demonstrates how an Op-Amp (eg. 741 type) may be wired with negative feedback in both inverting and noninverting modes, and explains how, in each case, △v is held at a small value so the system functions as an amplifier.
- 4.6 Determines experimentally, the gain of the two circuits in 4.5.

- 4.7 States and applies formulae for the gain of the two circuits in 4.5.
- 4.8 Defines bandwidth and input 'resistance' of an amplifier.
- 4.9 Uses manufacturers' (or distributors') literature to determine the theoretical bandwidth and input resistance of the circuits in 4.5.
- 4.10 Designs, builds and tests (to check conformity with design requirements) an ic based amplifier having a minimum of two amplifier stages given design requirements in the form:
 - (a) output in-phase or out-of-phase with input
 - (b) gain required
 - (c) bandwidth required.
- 4.11 States examples of situations where such simple ic Op-Amp circuits may be inappropriate (ie. wideband or low noise applications).


C TRANSISTORS AS AMPLIFIERS

- 5 Understands the bipolar transistor as a circuit system.
 - 5.1 States that a bipolar transistor is a three terminal device, names the terminals and identifies them on the circuit diagram representation of such a transistor.

5.2 Indicates

(a) the correct polarity with which a power supply should be connected to the emitter/collector circuit of p-n-p and n-p-n transistors.

- (b) the correct polarity with which a power supply should be connected to the base/emitter circuit of both types of bipolar transistor in order to generate a base current (I_b) .
- 5.3 Determines experimentally how the 'output' V_{CE} varies with 'input' V_{BE} , taking a bipolar transistor with a load resistor in the collector line as a system, and displays the characteristic graphically.

- 5.4 Describes how the system in 5.3 may be used as an amplifier with $V_{\beta\epsilon}$ varying between 0 and x, and as a switch with $V_{\delta\epsilon}$ varying from 0 to a value in excess of x.
- 5.5 Deduces the amplification available, given a characteristic as in 5.3.
- 5.6 Deduces the form of the output that would be obtained if the input signal varies outside region 'P' in the characteristic shown.

- D DIGITAL SIGNALS AND SYSTEMS
- 6 Understands the basic principles of conveying information by digital signals.
 - 6.1 Distinguishes between common systems in terms of whether they transmit digital or analogue signals (eg. morse code, traffic lights, car speedometer, clocks, etc).
 - 6.2 Distinguishes between serial and parallel transmission of digital signals.
 - 6.3 Explains simply how an analogue waveform (eg. a TV signal), can be sampled and transmitted in digital form (eg. Pulse Code Modulation (PCM)).
 - 6.4 Explains Binary Coded Decimal (BCD) representation and thus the possibility the 4-bit parallel transmission of numerical information.
- 7. Understands the functions of simple logic systems.
 - 7.1 Describes a logic gate as a system that produces an output dependent upont the inputs and represents simple practical situations by means of truth tables.
 - 7.2 Draws up truth tables for up to 3-input (single output)
 OR, NOR, AND, and NAND, gates simple, given, and a NOT gate.
 - 7.3 Deduces the truth table for a simple, given system of logic gates.
 - 7.4 Represents physical situations (eg. part of a BCD to 7 segment decoder) by a truth table.
 - 7.5 Devises a logic circuit to meet situations as in 7.4.

7.6 Builds a circuit satisfying the conditions of 7.4 using commercially-available gates (ie. 7400 series TTL or 4000 series C-MOS gates).

TECHNICAN EDUCATION COUNCIL STANDARD UNIT

1	UNIT TITLE	Electronic Systems
2	UNIT LEVEL	III
3	UNIT VALUE	1.0 DESIGN LENGTH 60 HOURS
4	PROGRAMMES	This unit was principally devised for
		use in Certificate and Diploma
		programmes in Science validated by
		Programme Committees C1, C2 and C5. It
		may, however, be adopted for use in
		other TEC programmes if this is deemed
		appropriate.
5	PRE-REQUISITE	TEC U81/848 Electronic Systems II
	UNIT	
6	CREDIT FOR UNIT	GCE A Level Electronic Systems
7	AIMS OF UNIT	1 To further students' understanding of
		electronic systems to enable them to
		evaluate design problems.
		2 To give students the opportunity to
		follow through the design, constr-
		uction and testing of a system from
		design criteria to finished,
		functioning system.

3 To give students a sufficient under-

standing of digital systems to form a

foundation for further work on micro-

processor systems.

8 SPECIAL NOTE

It is expected that laboratory work will form an essential element of the teaching method used. In particular, objectives 1.5, 3.2, 4.5, 6.1, 6.2, 6.3, 6.5, 10.1 - 10.8 can only be achieved through laboratory work.

ASSESSMENT ANALYSIS

This gives a very approximate analysis, by topic and types of learning, as a key to the production by a college of its assessment specification for this unit/subject.

		% of total assessment Intellectual Skills				ills
Unit/Subject topic area(s)	Topic Area(s) as % of assessment	Motor skills	Information	Comprehension	Application	Invention
A	20		5	10	5	
В	15		5	5	5	
C	40		10	15	15	
D	25			5	10	10
·						
·						
Percentage of assessment for entire unit/subject			20	35	35	10

10 UNIT CONTENT

The unit topic areas and the general and specific objectives are set out below. The unit topic areas are prefixed by a capital letter, the general objectives by a non-decimal number, and the specific objectives by a decimal number. General objectives give teaching goals and specific objectives the means by which the student demonstrates his attainment of them. Teaching staff should design the learning process to meet the general objectives.

The objectives are not intended to be in a particular teaching seuquece and do not specify teaching method, although for example many objectives (including those in the cognitive domain) might benefit from realisation in a practical situation.

All objectives should be understood to be prefixed by the words:
THE EXPECTED LEARNING OUTCOME IS THAT THE STUDENT....

- A FETS AND BIPOLAR TRANSISTOR OSCILLATOR
- 1 Analyses the action of a field effect transistor (FET).
 - 1.1 Compares the properties of an FET and a bipolar transistor.
 - 1.2 Describes the basic construction of FETs (junction gate and insulated gate).
 - 1.3 Differentiates between depletion and enhancement modes.
 - 1.4 Lists the precautions required when using FETs.
 - 1.5 Performs a test to obtain g and r for an FET.
 - 1.6 Obtains the values of g_m and r_d from experimental data

obtained in the test in 1.5.

- 2 Understands the characteristic of basic sinusoidal oscillator circuits.
 - 2.1 States that oscillations can be produced by an amplifier with positive feedback.
 - 2.2 Explains the operation of:
 - (a) L-C oscillators (tuned or Hartley or Colpitts types)
 - (b) R-C oscillators (phase shift or wein bridge types).
 - 2.3 States the factors that affect both the short term and long term frequency stability of oscillators.
 - 2.4 Explains methods of improving the frequency stability of oscillators (eg. piezoelectric crystal control).
- 3 Understand the characteristics of nonsinusoidal oscillators.
 - 3.1 Describes the basic circuit configuration of the different types of nonsinusoidal oscillators and switches, such as:
 - (a) astable
 - (b) monostable
 - (c) bistable
 - 3.2 Constructs a simple astable multivibrator and investigates how the life of the 'states' varies as circuit components are varied.

- B ANALOGUE SYSTEMS
- 4 Understands differential, operational amplifier circuits.
 - 4.1 Defines common mode rejection ratio (cmrr) for an operational amplifier.
 - 4.2 Illustrates the use of a single operational amplifier as a differential amplifier.
 - 4.3 Calculates the gain and input impedances of a differential amplifier as in 4.2.
 - 4.4 Demonstrates how three ic Op-Amp circuits can be wired to form a differential amplifier of high input impedance (~lM).
 - 4.5 Constructs the circuit of 4.4 and tests its performance against predicted characteristics.
- 5 Compares ic operational amplifiers and discrete component amplifiers.
 - 5.1 Contrasts Op-Amp and discrete component amplifiers according to the following criteria:
 - (a) ease of circuit design and construction
 - (b) noise
 - (c) thermal stability
 - (d) bandwidth
 - (e) input impedance
 - (f) output impedance
 - (g) gain
 - (h) power
 - 5.2 Analyses a given unfamiliar situation and decides whether ic or discrete component circuitry would be

most appropriate.

C DIGITAL SYSTEMS

- 6 Understands the various types of bistable available in integrated circuit form and appreciates their application in digital circuits.
 - 6.1 Constructs a simple RS bistable using NAND or NOR gates and derives its truth table.
 - 6.2 Constructs a gated RS bistable using NAND or NOR gates, derives its truth table and explains its action.
 - 6.3 Constructs a D type bistable, derives its truth table and explains its action.
 - 6.4 Identifies the need for a JK bistable.
 - 6.5 Constructs a JK bistable, derives its truth table and shows how it satisfied the need of 6.4.
 - 6.6 Identifies the need for a Master-Slave bistable circuit.
 - 6.7 Identifies the circuit symbols for the devices in 6.1, 6.2, 6.3, and 6.5.
 - 6.8 Describes at least one application for each of the devices in 6.1, 6.2, 6.3 and 6.5.
- 7 Understand the function of counting circuits.
 - 7.1 States that a JK bistable with appropriate input connections can be used as a divide-by-two counting device.
 - 7.2 States that counters may be synchronous or asynchronous

- and compares the two in terms of speed of operation, ripple through delay and dynamic hazard.
- 7.3 Sketches the circuit diagram of a divide-by-sixteen counter in the synchronous and asynchronous forms.
- 7.4 Demonstrates, using the asynchronous counter of 7.3 and a truth table including the Q and Q outputs, that it may be used to count up from 0 to 15 and down from 15 to 0.
- 7.5 Demonstrates (using the counter of 7.4) how, with additional gating, the count may be curtailed at any desired value.
- 8 Knows that bistable elements may be used to form registers and appreciates the operation and applications of these devices.
 - 8.1 Sketches the simple logic diagram of a four-bit register showing:
 - (a) serial input
 - (b) parallel inputs
 - (c) clock input
 - (d) outputs
 - 8.2 Describes the operation of the register in 8.1 and describes one application of the circuit.
 - 8.3 Sketches the logic diagram of a four-bit register which incorporates the following facilities:
 - (a) serial input
 - (b) parallel inputs
 - (c) clock input

- (d) shift mode control
- (e) left and right shift capability
- 8.4 Describes the operation of the circuit of 8.3.
- 8.5 Explains how the four-bit register may be used for the storage and manipulation of digital numbers.
- 8.6 States that register of both types are commercially available in TL and CMOS form.
- 8.7 Compares the performance of TTL and CMOS registers in terms of speed and flexibility of operation.
- Appreciates the range of storage media currently available, their limitations and application.
 - 9.1 Defines the terms volatile and non-volatile as applied to storage media.
 - 9.2 Defines the following terms:
 - (a) Random Access Memory (RAM)
 - (b) Read Only Memory (ROM)
 - (c) Programme Read Only Memory (PROM)
 - (d) Erasable PROM (EPROM)
 - (e) Dynamic Random Access Memory
 - 9.3 List the basic requirements of any storage medium as:
 - (a) a system whereby the required store location is addressed
 - (b) a method of writing into a selected store location
 - (c) a method of reading data in a selected store location
 - (d) permanence of stored data

9.4 Sketches the block diagrams of the devices of 9.2 to show how they fulfil the requirements of 9.3.

D ASSIGNMENT

- 10 Devises a solution to a specified problem.
 - 10.1 Analyses the problem to isolate the parameters involved.
 - 10.2 Devises a solution to the problem in electronic terms.
 - 10.3 Isolates the various electronic sub-systems that will be required to implement the solution devised.
 - 10.4 Designs each sub-system.
 - 10.5 Builds and test the sub-systems.
 - 10.6 Assembles the complete system and tests it against the initial requirements.
 - 10.7 Evaluates the solution chosen and reports on its suitability, efficiency and cost-effectiveness.
 - 10.8 Suggests where further development work might lead to better alternative solutions.

APPENDIX

D.H.S.S.

LIST OF ABBREVIATIONS USED

A.B.C.	A Basis for Choice, - F.E.U. paper 1979
A.E.B.	The Associated Examining Board
A.P.E.X.	Association of Professional, Executive, Clerical
	and Computer Staff
A.P.U.	Assessment of Performance Unit
A.S.E.	Association for Science Education
A.S.T.M.S.	Association of Scientific, Technical and Manage-
	ment Staff
B.E.C.	Business Education Council
B.I.M.	British Institute of Management
B.T.E.C.	Business and Technicians Education Council
C.D.T.	Craft. Design and Technology
C.E.E.	Certificate of Extended Education
C.E.R.I.	Centre for Educational Research and Innovation
C & G	City and Guilds of London Institute
C.P.V.E.	Certificate of Prevocational Education
C.R.O.	Cathode Ray Oscilloscope
C.s.C.s.	Centre for the Study of Comprehensive Schools,
	- York
C.S.E.	Certificate of Secondary Education
D.E.S.	Department of Education and Science

Department of Health and Social Security

D.O.I.	Department of Industry
D.T.S.	Department of Trade and Industry
E.I.T.B.	Engineering Industry Training Board
E.L.C.B.	Earth Leakage Circuit Breaker
EPROM	Eraseable Programmable ROM
E.S.A.	Employment Services Agency
E.T.I.	Electronics Today International, - a journal
F.E.	Further education
FET	Field effect transistor, - a unipolar device
F.E.U.	Further Education Curriculum Review and Develo
	ment Unit
G.C.E.	General Certificate of Education
G.C.S.E.	General Certificate of Secondary Education
H.M.I.	Her Majesty's Inspectorate of Schools
I.M.S.	Institute of Manpower Studies
I.C.	Integrated circuit
I.E.E.	Institute of Electrical Engineers
I.N.S.E.T.	In-service Training
I.T.	Information Technology
I.T.B.	Industrial Training Board
I.T.E.C.	Information Technology Centre
J.B.P.V.E.	Joint Board for Prevriation Education
J.M.B.	Joint Matriculation Board
K.P.U.	Knowledge, Production and Utilisation
L.A.M.P.	academically Less motivated pupils A.S.E. project
L-C-R	Inductance-Capacitance-Resistance Circuit

Local Education Authority

L.E.A.

LED Light emitting diode M.E.P. Microelectronics Education Programme Microelectronics for All, - initiative of M.F.A. M.E.P. Manpower Services Commission M.S.C. National Association of Teachers in Further and N.A.T.F.H.E. Higher Education N.F.E.R. National Foundation for Educational Research in England and Wales term to indicate polarity of a bi-polar n-p-n transistor National Training Initiative N.T.I. N.U.T. National Union of Teachers Ordinary National Certificate O.N.C. Operational Amplifier eg. 741 type Op-Amp term to indicate polarity of a bi-polar p-n-p transistor Problem-Solving, - a model of innovation theory P.S. Physical Science Study Committee, - U.S.A. P.S.S.C. Research, Development and Diffusion - a model of RD&D innovation theory Read Only Memory - permanently resident program ROM and data R.S.A. Royal Society of Arts

Science and Technology Regional Organisations

Secondary Science Curriculum Review

- a model of innovation

Social-Interaction,

theory

S.A.T.R.O.

S.S.C.R.

S-I

T.E.C.	Technician Education Council
T.O.P.	Training Opportunities Scheme
T.S.A.	Training Services Agency
T.V.E.I.	Technical and Vocational Education Initiative
U.V.P.	Unified Vocational Preparation Scheme
v.d.u.	Visual display unit
V.E.L.A.	Versatile Laboratory Aid, - a Microprocessor
	Data Logger and Logic Simulator for Schools
Y.O.P.	Youth Opportunities Programme
Y.T.S.	Youth Training Scheme
W.E.E.P.	Work Experience Programme
W.J.E.C.	Welsh Joint Education Committee
555	Timer i.c widely used as an astable and mono-

741 general term for several formats of an Op-Amp

i.c. - widely used as a general purpose amplifier comparator, and frequency-selective filter.

Call for Papers

FOURTH INTERNATIONAL CONFERENCE ON PLASTICS IN TELECOMMUNICATIONS London, September 1986

In 1974, 1978 and 1982 the Institute held international conferences on 'Plastics in telecommunications' in London. These were very successful with some 220 people from many countries attending. The Institute is planning to hold the fourth international conference in this series on 17-19 September 1986 at the Institution of Electrical Engineers in london.

It is intended to have both presented papers and poster sessions and authors may indicate their preferred method of presentation, the final decision however, will remain with the programme committee. The conference language will be English. Six sessions are envisaged:

- 2 Cable and wire
- 3 Customer equipment
- 4 External plant (excluding cable and wire)
- 5 Polymers, materials and test methods
- 6 Field experience (problems, solutions, etc)

Papers will be welcomed on the following topics:

- (a) Video services (equipment for)
- (b) Optical fibre and cables
- (c) Office and domestic equipment
- (d) Plastics in component packaging
- (e) Communicating equipment
- (f) Foam Structure (in cables and equipment housings)
- (g) Low fire hazards equipment
- (h) Processing and assembly (novel aspects)
- (i) Interconnection systems
- (j) Electrically active polymers (electrets and peizoelectric materials)
- (k) Recent development in batteries
- (1) Plastics in recording equipment
- (m) Shielding materials
- (n) New or novel cable constructions
- (o) Plastics in satellites
- (p) New or improved materials
- (q) CATV cables
- (r) Thermoplastic substrates for PWBs
- (s) UV and electron resists
- (t) Encapsulation of components including semiconductors

Further information can be obtained from M D Shuttleworth at the Plastics and Rubber Institute, 11 Hobart Place, London, SWIW OHL. Telephone 01-245 9555, Telex 912881 CWUKTX G marked 'Attn PRI'.

Details of Electronics and other relevant journals

ELEKTOR established 1974 Elektor Publishing Ltd
95p monthly Elektor House
10 Longport,
Canterbury, Kent
CT1 1PE.

Practical electronic construction projects. New products, recent developments in electronics etc. Published in Dutch, Greek French, German, Italian, Spanish, Swedish and English.

ELECTRONICS AND	established 1982	EMAP Business and
COMPUTING MONTHLY	90 p °	Computer Publications
		Ltd., Scriptor Court,
•		115 Farringdon Road
		London EC1R 3AD.

ELECTRONICS AND	established Feb 81	E & MM Alexander House
MUSIC MAKER	95p monthly	l Milton Road
		Cambridge CB4 1UY.

Features, reviews and practical articles on electromusic including music, musicians, instruments and building projects.

ELECTRONICS AND

established 1911 Electrical-Electronic

WIRELESS WORLD

85p monthly

Press, Quadrant House The Quadrant, Sutton

Surrey, SM2 5AS.

For designs and technicians in the radio, electronics, television and allied industries providing authoritative information on new technical developments, methods and products.

More commonly known as Wireless World.

ELECTRONICS TODAY

established 1972

IPC Magazines Ltd

INTERNATIONAL

99p monthly

Kings Reach Tower

Standard Street

London SE1 9LS

Caters for the electronics enthusiast and contains articles describing DIY projects as well as feature articles on the latest development: aimed at a fairly advanced level.

EVERYDAY ELECTRONICS established 1971 IPC Magazines Ltd

AND COMPUTER PROJECTS 90p monthly

Kings Reach Tower

Stanford Street

London SE1 9LS

Popular and easy to build projects for the home constructor. Caters especially for newcomers with special features explaining circuit theory, components and building techniques; news of products and technological developments.

90p monthly

HOBBY ELECTRONICS established 1978 Argus Specialist

Publications

145 Charing Cross Rd

London WC2 HOEE

Constructed projects for the electronics hobbyist, featur articles on electronics science and citizens band/open rad channel.

PRACTICAL

established 1964 IPC Magazines Ltd

ELECTRONICS

90p monthly

Westover House

West Quay Road, Pool

Dorset, BH15 lJG.

Contains fully detailed articles describing electronics project that amateurs can construct and deals in a popular manner wit technical developments.

SINCLAIR USER

established 1982 ECC Publications

85p monthly

196-200 Balls Pond Rd

(ABS Summer 1984

London N1 4AQ

96,000)

also

SINCLAIR PROJECTS

6 per year at

From Summer 1984

SINCLAIR PROGRAMMES £1.25 monthly

SINCLAIR magazines

from EMAP

ELECTRONICS DIGEST established 1980 Argus Specialist

£2.25 quarterly Publications

145 Charing Cross Rd

London WC2 H0EE

RADIO AND

established 1981

Broadcasting Limited

ELECTRONICS WORLD

90p monthly

117a High Street,

Brentwood, Essex

CM14 4SG

For communication, computing and electronics enthusiasts and engineers. Latest development analysed and related to practical applications.

NEW ELECTRONICS

established 1968 International Thomson

fortnightly -

Publishing Limited

Tuesday

Northwood House

ABC Jan-Dec 82

93-99 Goswell Road

27,739

EC1V 7AQ

Jan-Dec 83

27,099

Designed to keep engineers who have specifying/purchasing power abreast of the later development in the industry.

WHATS NEW IN

established 1980

Morgan-Grampian

ELECTRONICS

monthly

(Publishers) Ltd

ABC Jan-Dec 82

Morgan-Grampian House

30,334

30 Calderwood Street

Jan-Dec 83

London SE18 6QH

30,098

The latest electronic products presented in seven product categories, each is further divided into product sub-groups.

ELECTRONICS established 1982 Conway Kent Publishing
MANUFACTURE AND 13,500 monthly 33 Albion Place

TECHNOLOGY Re-styled Jan 1984 Maidstone, Kent

ME14 4D2

RADIO established 1928 Radio Society of GB

COMMUNICATION monthly 88 Broomfield Road

ABC Jan-Dec 82 Chelmsford, Essex

31,822 CM1 1SS

News and constructional articles of interest to radio amateurs.

RADIO CONTROL established 1960 Model and Allied

MODELS AND ABC Jan-June 1982 Publishing Limited

ELECTRONICS 21,666 Wolsey House

Wilsey Road

Hemel Hemstead

Herts HP2 4SS

All that appertains to radio control of models and related electronic matters.

RADIO-

established 1980 Gernebach Publications

ELECTRONICS

UK 85p monthly Inc.

Zoo Park Avenue South

New York

ELECTRON WEEK

established 1930

McGraw-Hill

U.S.A.

Reference sources of electronics journals - July 1984

NB: C L = Central Library

North Tyneside C L is situated in North Shields

TITLE	TAKEN BY	BACK COPIES AVAILABLE
ELEKTOR	North Tyneside CL	Vol I 1975-
	Newcastle CL	Vol I 1975-
ELECTRONICS AND	North Tyneside CL	June 1981-
MUSIC MAKER		(available at
		Whitley Bay
		Library)
ELECTRONICS AND	Gateshead Tech Coll	4 yrs
WIRELESS WORLD	Newcastle Coll Arts	5 yrs
	& Tech	
	South Shields CL	3 yrs
	Newcastle Polytechnic	1943-
	Sunderland Polytechnic	1952-
	Sunderland CL	1981-
	Newcastle CL	1983-
	North Tyneside CL	1969-
	Gateshead CL	1960-
	Hebburn Tech Coll	1956-

ELECTRONICS TODAY	North Tyneside CL	April 1972-
INTERNATIONAL	Newcastle CL	Sept 1976-
	Hebburn Tech Coll	1976-
EVERYDAY ELECTRONICS	Newcastle CL	May 1983-
AND COMPUTER	North Tyneside CL	Jan 1978 (avail-
PROJECTS		able at Whitley
		Bay Library)
PRACTICAL	North Tyneside CL	1967-
ELECTRONICS	Newcastle CL	1964-
	Sunderland CL	1 yr
	Gateshead Tech Coll	4 yrs
	Hebburn Tech Coll	1970-
	South Shields CL	3 yrs
RADIO AND	North Tyneside CL	Aug 1973
ELECTRONICS WORLD		
ELECTRONICS AND	Newcastle Polytechnic	1964-
POWER	Newcastle CL	1955
	Newcastle Coll Arts	2 yrs
	& Tech	
	Sunderland Polytechnic	1964-
	Hebburn Tech Coll	5 yrs

Some institutions retain journals on an informal basis; at my own college (Monkwearmouth C.F.E.) relevant articles are retained for:

Electronics Today International since May 1975
Practical Electronics since October 1968

and most journals are retained for:

Hobby Electronics since October 1980 Electronics and Wireless World since January 1980

The following are not taken within the Region:

HOBBY ELECTRONICS

DIGITAL MICROELECTRONICS

ELECTRONICS AND COMPUTING MONTHLY

SINCLAIR USER

U.S.A. ADDRESSES

Cambridge Development Lab:

36 Pleasant St., 100 5th Avenue,

Waltham, MA 02154 U.S.A.

Kirschner, E.

Physical Science Laboratory Experiments and Microcomputer Programmes.

Gottlieb, H.H.

Physics Laboratory Experiments and Correlated Computer Aids.

both from:

Microphys

600 Nothern Boulevard, Suite 106,

Great Neck, NY11021, U.S.A.

An Assessment Scheme for Project Work Given by Armstead, D.E.F. (1979).

Project Work in Science,

Schools Science Review Vol 60 No. 212, pp 570 - 573

Criteria for Evaluation

- 1. Choosing a project
- (a) Has the student chosen a piece of work of appropriate standard for the course?
- (b) Has the student considered safety aspects?
- (c) How original is the proposed project,
 - i) as far as the student is concerned,
 - ii) on a national or international level?
- (d) To what extent has the student consulted the available literature, and people expert in the field, in order to come to a decision regarding the choice of project?
- (e) How enthusiastic is the student towards the work?
- 2. Planning the project
- (a) To what extent did the student search the literature?
- (b) To what extent has the student planned a logical sequence of

experiments?

- (c) How much thought and consideration has the student given to the ordering and preparation of material and equipment?
- 3. The project.
- (a) How skilled is the student in manipulative operations?
- (b) Does the student make proper use of the available time?
- (c) How enthusiastic and determined is the student towards the project?
- (d) How original and inventive is the student's practical approach?
- (e) How skilful is the student regarding observation and the systematic recording of data?
- 4. The written account
- (a) Has the student included an introduction and how relevant is it to the project?
- (b) Has the student recorded experimental results properly?
- (c) How skilful is the discussion and interretation of results?
- (d) How valuable is the conclusion?
- 5. The oral account.
- (a) The student should be able to exhibit a knowledge of related work in the field.
- (b) The student should be able to exhibit a knowledge and

understanding of the project.

(c) The student should be able to make an appraisal of his work and make recommendations for further work.

Educational Objectives

Choosing a Project

The student will have to exhibit an ability to evaluate and an ability to apply course material to the process of choosing a suitable project. These abilities will involve comprehension, translation, interpretation and extrapolation of various information and data.

Planning the project.

This part of the exercise will involve the student in producing a plan of campaign and a porposed set of operations.

The student will have a to exhibit a knowledge of methodology.

The student will have to evaluate knowledge and proposals and apply judgements.

The project.

The student will have to exhibit an ability to manipulate objects and materials.

The student will have to exhibit patience.

He will have to show commitment to the problem.

The student will have to exhibit a logical and systematic approach to the practical.

Extract from the M.E.P. Electronics and Control Technology Domain Information File, Autumn 1984.

THREE CLEAR, GOOD REASONS WHY ELECTRONICS SHOULD APPEAR IN THE CURRICULUM OF ALL PUPILS AND WHY, FOR SOME, IT SHOULD FEATURE AS A MAJOR SUBJECT

- Microelectronics, or New Technology, is increasingly pervasive in its influence on the world of work, leisure education, the daily organisation of our individual lives and the way in which Society is organised and controlled. Therefore, in a democratic society, all citizens should be well enough educated about the nature and capabilities of the New Technology in order to be able to intelligently influence its adoption, application and development.
- 2. A practical study of Microelectronics has a very great deal to offer the basic educational process at all levels of ability and age. The subject is highly motivating because it is obviously relevant. It embodies a student centred practical approach which enables personal development in a wide range of skills, aptitudes and attitudes; particularly those of communication skills within working groups. It develops the ability to think logically, to learn and to

apply knowledge to the solution of practical problems, to choose and implement a solution, to evaluate it and, if necessary, improve this solution in the light of experience.

3. If we are to survive as a reasonably successful and prosperous nation, we must be able to identify and stimulate those special pupils, who have imaginative and creative talents, and to encourage them to become the engineers and technicians of a successful manufacturing based economy.

WE DO NOT HAVE ANY SENSIBLE CHOICE. IF EDUCATION DOES NOT PLAY ITS ROLE IN THIS PROCESS, THEN THE FUTURE DECLINE OF OUR NATION IS ASSURED.

The student will have to show an ability to think creatively and to spot and record detail.

The written account.

In achieving this part of the exercise the student will have to exhibit a knowledge of terminology, conventions, classifications and categories and be able to translate, interpret, extrapolate and evaluate accumulated data.

The oral account.

The student will have to have a detailed knowledge of the project and show a willingness to receive, ie. attend to what is being said, and a willingness to respond to questions and ideas.

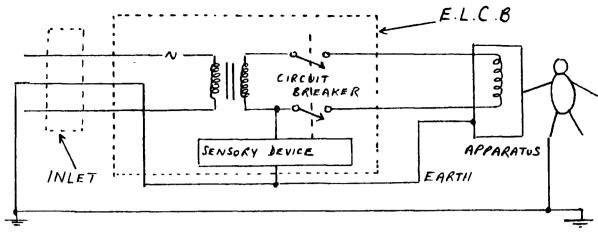
He should show a satisfaction in response to discussion, questioning etc.

He should be able to express valued judgements.

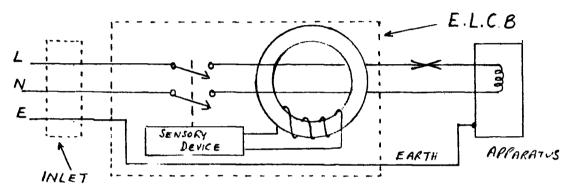
A:E.B. (080 Notes for Guidance) Addendum

Where a main operated project is proposed, it <u>must</u> conform with current Regulations, both national and local. Further, a main operated project <u>must</u>:

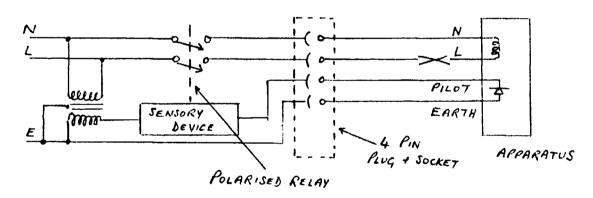
- (a) be built in a metal box;
- (b) Contain suitable fuses on the input and output circuits;
- (c) have a neon indicator which lights when the project is plugged into the mains, ie. before any switch;
- (d) have an isolating transformer;
- (e) use 3 core cable for connection to the mains; this cable must have a secure cable grip (a knot will not suffice);
- (f) incorporate a D.P.S.T. switch, in the primary circuit;
- (g) Have circuit boards and all components firmly bolted in position;
- (h) provide adequate physical and electrical separation between the mains, and the low voltage circuit.

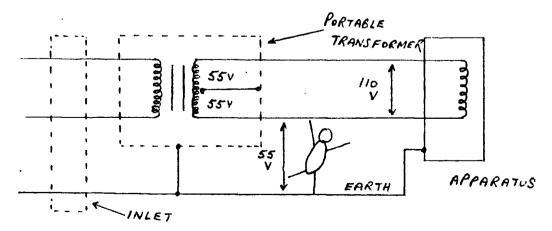

SAFETY: THE USE OF E.L.C.B.s and TRANFORMERS

Earth Leakage Circuit Breakers (E.L.C.B.s); in U.S.A. the ground fault interpreter (Lacy 1982) reported that in twenty years of use no recorded death was associated with these devices.


- i) Voltage-operated, isolation type.
- When a fault occurs, a proportion of the current flows through a sensor and opens the switch. The aim is to prevent exposed conduction exceeding 30v above earth potential.
 - ii) Residual-current operated, differential type
- If a fault develops, some current will return through the earth circuit so that the current in the live and neutral conductors are no longer equal. The difference in currents induces a magnetic field in the iron ring which produces a voltage in a small coil wound on it. This voltage causes a sensor to break the circuit at a pre-determined level of leakage current, usually about 5mA in U.S.A., as prior to 1969 many circuits allowed this level of leakage. In the U.K. a nominal tripping current is 30mA as below 10mA may give rise to nuisance tripping.
- 1ii) Circulatory current earth monitoring.
- If the earth is cut the current trips. To provide for the circulating current a pilot core is needed as shown in the diagram. Using a polarised relay/diode the system is not likely to be defeated by a pilot to earth fault.

- iv) Isolating transformers with a floating secondary give protection because a connection from a live point on the secondary to earth will not give a complete circuit. However, a fault in the primary also could lead to a connection to earth.
- v) Isolating transformers with secondaries centre tapped to earth.


This technique is used in arduous working conditions with a 240 to 110 volt transformer allowing the use of 100v tools whilst limiting the voltage to earth to 55 volts, this voltage has not been known to cause a lethal current.


i) Voltage - operated, isolation type

ii) Residual - current operated, differential type

iii) Circulating - current earth monitoring

V) Isolating transformer with secondaries tapped to earth

TABLES SHOWING TOTAL NUMBER OF ENTRANTS FOR C.S.E. AND G.C.E. EXAMINATIONS IN ELECTRONICS FOR 1984: ALSO C.S.E. SINCE INCEPTION OF EXAMINATIONS IN ELECTRONICS

LONDON AND EAST ANGLIAN EXAMINING GROUP

-	84	83	82	81	80	79	78	. 77	76	75	74	73	72	7.
C.S.E.				i										
LONDON Mode 3	1226	1016	761	912	833		i :							
E.A.E.B. Mode 3	97		92	102	98	93	114	82	71	42	15			
E.A.E.B. Mode l	1005					689	***************************************							
A.E.B. 0	735					!	:		:					
C.A.M 0	. 9 0		1											
C.E.E.	NA			ļ										
J.M.B. AO	. 0													
0.X. AO	31	:	ļ											
LONDON AO	675							!					,	
0 & C A0	7.5	! !	!					!						
A.E.B. 801	111		ļ			: 		:	,					
A.E.B. 658	122		1			i			-					
J.M.B. E	9													
•														
			W	LSH	JOINT	EXA	MININ	G COM	MITTE	<u>E</u>				
A.E.B. 0	207													
A.O.	27		!											
A.E.B. 801	11					;			į					
A.E.B. 658	50									İ				
J.M.B. E	9	. :		:			1		:					
C.S.E. 3	: !		121	97	79	32	40	19	22	22				
				,								·		
	i :													
	i									Ì	•}			
			! !											
	•		}						j					
٠			1											
			:		- •				:					
				•		•	:	_	ĺ		ì	ļ		

MIDLANDS EXAMINING GROUP

					MIO	ANDS	<u> EXAM</u>	IINING	GKU	<u>up</u>						
	84	83	82 .	81	80	79	78	77	76	75	74	73	72	71	70	
- M	350 93	!!!	į	306 102	240 98		114	82	71	42	[:		ng.	Scien	ce	
W.M. 3		!!!	231	234	218	196 ·	173	140	77		. 69		22 d Cor	l6 puter		
A.E.B. 0	1280	· • •								:	:					
CAMB. 0	85	! : :			i		.			:					 	
C.E.E.	:	i	:				: 			:						
W.M. 3	49	48 ·	34	21	42	16	15	26			·					
J.M.B. A	0 160	·	į					! !		; !					!	
OXf. AO	34	:	ļ							!					İ	
LONDON AO	162	:	į					i		:						
0 & C AO	15	:								* •						
A.E.B. 801	106											!				
A.E.B. 658	139															
J.M.B. 'E'	555															
	:															
												1				
•																
		. !				•				i			!			
								!					! :	: :	į	
			:			. !	!									
					•		: : :									
	i						; i									
	:															
			•		:											
									:		į					

NORTHERN EXAMINING ASSOCIATION

				NURT	TERN	EXAM.	INING	ASSU	CIAII	UN .						
	84	83	82	81	80	79	78	77	76 	75	74	73	72	71	70	
C.S.E.									,							
A.L.S.E.B. 3	27	44	79	70 :	65	40	27	30	64	49	11					İ
N.W.R.E.B.	214	195	168	169	153	146										ĺ
W.Y.L.R.E.B. 3	215	194	253	239	214	251	150	220	181	209	159	86	39	29	12	
Y.R.E.B. 3	78	88	87	65	48	49	50	46	40	2	22					
N.R.E.B.	NA	NA .	205	255	277	298	272	168	!	: : :		:				İ
A.E.B. 0	1310		!	į				:	:							
CAMBRIDGE O	29	:	ļ	:				i	:	·		I				
C.E.E.							!									
A.L.S.E.B.	:		!		6			7	9		1					
N.W.R.E.B.	į			-					; ;							
W.Y.L.R.E.B. 3	34	32	56					i	:							į
Y.R.E.B.	4	8	13	19	17	17	26	28	15	10	4					-
N.R.E.B. 3			35	36	10	10										
J.M.B. AO	273								Ì							
OXf. AO	5									j						ļ
LONDON AO	216		1	,		ľ	,					•				
0 & C AO	7.5	<u> </u>	!													
A.E.B. 801	55	•	:			i	:		:							
A.E.B. 658	100			:		į	:		į							
J.M.B. 'E'	1071													· ·	; ;	
	. ;	:		-		-	:				•	:				
;		· ·	:	:		<u>.</u>	:		-		-					
	; ;						:		:							
			-						1							
									-							
											İ					
		!														!
:	:								. :	1						
		i					: t	:	***************************************] :	- Andrews					

SOUTHERN EXAMINING GROUP

				-			VALITI	i i i i d	וטטוו						
	84	83	82 .	81	80	79	78	77	76	7 5	74	73	72	71	70
C.S.E.						:			!						
S.E.R.E.B. 3	741	699	747	583	647	703	633	615	639						
S.R.E.B. 1	664	526		395	. 1	116			· ;						
3	0	0	0	81	45	149	229								
S.W.R.E.B. 3	276	246	244						•						:
A.E.B. 0	1144	•	! !					: : :	;						
CAMBRIDGE O	113					,			: :						
C.E.E.			:						: :						
SOUTHERN	NA :		:												
S.R.E.B.	NA :								!					:	
J.M.B. AO	1				:			:							
OXFORD AO	109							· ;	: 						
LONDON AO	612	:	i				ı	, ! !	; ;						
0 & C A0	22.5														
A.E.B. 801	109														
A.E.B. 658	282		į												
J.M.B. 'E'	27											•			
;	!					•	: - !								
;	į		: <u>N</u> i	ORTHE	RN II	RELAN	D SCH	00LS	EXAM]	[NAT]	ON CO	UNCI			
A.E.B. 0	153				:	1								•	
A.O.	36									,		t .	ctror hysic		in G.(aken t
A.E.B. 658	60										ry fe	•			and the second second
A.E.B. 801	0;				:	:	:		}						
C.S.E.	NA ;	NA	15	15	i	; j	· •	:	1	;					
;	NO.	IVA	17	1)											
:					• • • • • • • • • • • • • • • • • • •				1						
	1									ļ					
	1				1	İ			•						
			:					١.	:	ļ !					
	:	:					•	·	: :						
	•	į							i	. ,	į			i	

THE NUMBER OF CANDIDATES ENTERED BY INDIVIDUAL CENTRES FOR G.C.E. O, AO, A LEVEL ELECTRONICS EXAMINATIONS OR OPTION.

NOTE: Where a figure is underlined that figure was an average entry.

APPENDIX	EXAMINATION		0	3	70		59			
	CENTRE	080	7060	813	0/98 (8829		658	T.E
	Population	AEB O	CAM 0	LON AO		AB AO	OXF AO		AEB 6	JMB Opt.E
	GREATER LONDON	T T	3	걸	õ	JMB	6	AF	¥	5 _
	I.L.E.A.									
	Division 1									
10180 C	The London Oratory School	<u>:</u>					8		8	
	Cardinal Vaughan School			9						
	Division 2	:				İ				
10238 E	Parl't Hall & William Ellis VI Form	25			l				4	
10278 C	Pimlico School						7		3	
	Hampstead School			9						
	Maria Fidelis Convent School			9						
	St. William Collins Secondary			9						
	Division 3			-						
	Division 4								l	
	Haggeston School			9						
	Division 5									
10548 C	Stephney Green							6		
	Division 6									
10626 C	Eltham Green School	5							1	
	Division 7									
	: Haberdashers Askes Hatcham Boys			9						
	Northbrook C of E Secondary	:		9						
10750	S.E. London School	lc	,							Ì
-3	Division 8							1		
10818	Geoffrey Chaucer	20	,							
10860	St. Veronicas R.C.	1						İ		
10840	Warwick Park	25		9						
	Division 9									۱
10976	Tulse Hill	6						İ		
i										
			-							ł

	APPENDIX		EXAMINATION	ē	7060	813	8670		8859		-	
	Charles and the	CENTRE		080 0	0 70				90 V	801	628	, P
•		JANUAR STATE	Population	AEB	CAM		•			AEB	AEB	
	12121	BARKING & DAGENHAM Maysbrook Comp	149,200	10			,					
		Parstoes Comp.				9						
	12127 C	Robert Clack Comp.	,	12						1		
		Warren Comp.				9						
		BARNET	296,600									
		Copthall School	·			9						
		East Barnet School				9						
	12236 C	Grahame Park Schoo Moat Mount School	1	6		9				2		
;		St. Marys C of E S	chool			9						
	•	Wood house 6th For	m College			9						
	12274	Barnet Ravenscoft			5							
	• }	BEXLEY	216,000									
		Chislehurst and Di	scup Grammar			9						
	14133	Parklands School		3								
		St. Marys St. Jos	ephs	- :		9						
	14105	Welling Bexley			20	,						
		BRENT	251,000		Sa	و						
	12322	John Kelly Boys Hi	gh		123							
	!	BROMLEY	299,000						١			
	14255	Beckenham Langley	Park Boys		. 17							
	:	Cator Park School	for Girls			9						
		Darnck Wood School				9		İ				
	14290	Kelsey Park School	for Boys	4	-	9					5	١
	;	Kemnal Manor Schoo	1			9						
		Ramsden School for	Boys	;	Ì	9	1					
	14270 S	Ramsden School Joi	nt Sixth Form			9					8	
	:	Ravensbourne School	l for Boys			9					•	
		Ravensbourne School	l for Girls	;	ł	9						
	<i>i</i>						-					
	i i											
	,			-	-	-	,	-	-			

APPENDIX	EXAMINATION		0	65	8670		8859			
	CENTRE	/ AEB 0 080	CAM 0 7060	LON AO 813	A0	JMB A0	Q V			JMB Opt.E
	Division 10						٢		7	Ť
	Battersea County Secondary			9						
	Salesian College	:		9						
11054	St. Walter St. John Upper School	2								
	CROYDON 316,310									
	John Newham High School	:		9						
	John Ruskin High School			9						
	Purley High School for Boys			9						
	Croydon High School for Girls			9						
14368 C	St. Josephs College			ا			1	١		
	Stanley Technical School			9			İ			
	EALING 280,000									
	Brentside High School			9				4		
13419 C	Cardinal Wiseman R.C. High School			9						
	ENFIELD 260,000									
	Albany School			9						
	Bishop Stepford School			9						
12538	Bullsmoor School	. 8		۱.						
:	Chase School			9	Ì				-	
	Southgate School			9						
•	Winchmore School			9						
:	HARINGEY 227,900							į		Ì
12606	Fortesmere School	8								
12608	Gladesmore School	4								
	HARROW 198,000	:								
12724	Harrow Weald 6th Form College	2								
•	Hatch End High School			9						
· .	Lowlands 6th Form College	;		9						
12746	Rooks Heath High School	140		٩						
	•									
; ;										
į		•	•	•	•	•	•	•	•	•

		AEB 0 080	CAM 0 7060	LON AO 813	0&C AO 8670.	JMB AO			AEB 658	JMB Opt.E
	HARROW 198,000									
	St. Dominics 6th Form College			9			ļ			
:	Stanmore 6th Form College			9						
12764	Whitmore High School	,								
	HAVERING 239,800									
12813	Abbs Cross School	20								
12819	Dury Falls School	13								
	Royal Liberty School			9						
	HILLINGDON 232,420									
	Abbotsfield School			9						
12930	Mellow Lane School	3								
12952	Town Field School	20								
12958	Vyers School	9								
•	HOUNSLOW 203,900									
	Gr e en School for Girls			2						
	Hounslow Manor			9			3			
·	KINGSTON-UPON-THAMES 131,326									
14409 .	Hollyfield School	20	1							
į	Southborough School			9						
14435 C	Tudor School						3		6	
:	MERTON 166,000					Ì				
	Garth High School			9						
	Rutlish School			15						
:	NEWHAM 212,300							Ì		
13202	Brampton Manor School	4	_					ļ		
13222	Little Ilford School	h	1				İ			
1 comb	REDBRIDGE 226,300									
A contract of the state of the	Ilford County High School for Boys				,					
13329	Loxford High School	3		-						
The state of the s	-									

			/ AF.B O 080	0	LON AO 813	0&C AO 8670	JMB AO	OXF AO 885	AEB 801	AEB 658	J.MB Opt.E		
:	REDBRIDGE	226,300											
13305 C	Mayfield High School				9								
	RICHMOND-UPON-THAMES	160.400											
	WALTHAM FOREST	214,500											
	Chingford School			l	9								
·	SUTTON	167,000	i										
	GREATER MANCHESTER				İ						١		
	BOLTON	260,200											
	Bolton South College										1	9	
	Canon Slade School		İ				7	·				9	
32617	Westhoughton School			,									
	BURY	175,452								١			
32213	Holy cross College			٥					-			9	
32219	Peel 6th Form Centre										8		
32253	Stand College		į	12									
,	MANCHESTER	491,700					1				•		
* *	Arden 6th Form College			'					Ì				
į	Margaret Ashton Colleg	е						5				9	I
33763 [:]	St. Thomas More High S	chool	/	ام									
	Shena Simon College			-			1	4				19	
	Wright Robinson High S	chool										9	
:	OLDHAM	226,700	1										
:	Grange School							2					
	Radcliffe School											9	
1 1	St. Anselm's R.C. Scho	ol										9	
	ROCHDALE	209,000											
press. To be	Oulder Hill Community	School						VI					
į	Siddal Moor High Schoo	1										3	<u>?</u>
!													

			AEB 0 080	CAM 0 7060	LOW AO 813	0&C AO 867C	JMB AO	OXF AO 8859		AEB 658	J.MB Opt.E	
: :	SALFORD 250,000											
33331	De La Salle College		12									
33305	Eccles College		20								9	
33349	Pendleton College		21									
33313	Irlam High School		20									
	STOCKPORT 288,980											
33401	Bramhall High School		23									
	Cheadle Hulme High School										9	
	Hazlegrove High School	•									9	
	TAMESIDE 217,000							ļ				
	TRAFFORD 222,200											
	Altrincham Grammar School for Girls	8					ю				9	
	County Grammar School for Boys (Al	trj)						1		9	
	County Grammar School for Boys (Sa	le)						İ			9	
: :	Stretford Grammar School for Girls										9	
:	Urmston Grammar School for Boys	•									9	
i.e. penyeren	WIGAN 309,200											
•	St. John Rigby R.C. College				!						9	
33711	Winstanley College		15									
	Dearney High School										9	
	MERSEYSIDE					<u>ן</u>						
	KNOWESLEY 184,250											
:	K.Page Moss Comp. School										9	
	K.Roby Comp. School						2				9	•
1	K.Parkway Comp. School										9	
\$! !	K.Prescot Comp. School		1									
*	K.St. Kevins R.C. Comp. School										9	
: : :	LIVERPOOL 509,981			l								
:	Alsop Comprehensive School	İ		l							9	
;	Holly Lodge Comprhensive School				9							
				İ								

					080	7060	813	8670		8859	10	8.	t.E	
					AEB 0	CAM 0	LON AO	O&C AO	JMB AO	OXF AO			J.MB Opt	
_	:	Holt Comprehensive School							2		Ė		9	_
	:	King David High	;						6					
		Liverpool Institute High S	School for Boys						3			,		İ
	,	New Heys Comprehensive Sch	nool	1									9	
	:	Quarry Bank Comprehensive	School	I									9	
		St. Hilda C.E. High School	L			٠	9						9	ı
		ST.HELENS 1	190, 000											
		Rainford High School				I			7				9	:
		SEFTON 3	300,700	.										
	·	Christ the King R.C. High	School	l		j							9	
	٠.	Deyes High School		1									9	
	4	Manor High School		١									9	
		Salesian High School											9	
		Warwick Bolam High School				İ							9	
		WIRRAL 3	352,003				İ							
	:	Mosslands School		1	84		İ							
		Park High School											9	
	Angel of The Comments	Pensby Secondary School for Rock Ferry High School for Bays Cardinal Allen Grammar							9				9 9	
		SOUTH YORKSHIRE												
		BARNSLEY	226,000											
		Barnsley 6th Form College						ı	١				9	
	<u>:</u>	Kirk Balk School				-	1						9	
		Worsbrough High School				ı	ļ						9	
		DONCASTER	287,700	ĺ			1	j		j				
		Don Valley High School							İ				9	
	36255	McAuley R.C. School		3	-									
	# C C C C C C C C C C C C C C C C C C C	Thorne Grammar School		ŀ			ı						9	
	!	ROTHERHAM	252.000			İ	l		İ	ŀ			_	
	36469	7.000. Campt Co		۹										
	36433	Kimberworth Comp. School		2										
				-	1		-							

		0 080	0 7060	A0 813	A0 867			•	658	JMB Opt.E	
36473	Swinton Comp. School	- AEB	CAM	LON	၁၈၀	JMB	OXF	AEB	AEB	J.MB	
	Thomas Rotherham 6th Form College	'	ĺ			6				9	
36413	Wales Comp. School	9								9	
	Wickersley Comp. School									9	
	SHEFF IELD 547,600									-	
	Carter Lodge School					5					
	Ecclesfield School									9	
	High Storn school									9	
36598	Jordanthorpe School					1					
•	Newfield School					,					
	Notre Dame School			9							
	Rowlinson School					4					
	Silverdale School									9	
36712	Stocksbridge School	12									
;	TYNE AND WEAR										
;	GATESHEAD 207,800										
39113	Heathfield School	25									
39139	Hookergate School	5									
į	NEWCASTLE-UPON-TYNE 283,000										
39201	Benfield School			9					5		
39303	George Stephenson High School							b			
39231 C	Gosforth School			9					4		
;	Kenton School			9							
39273 C	Redewood School (Pooley Road)								1		
39239 C	Redewood School			9					1		
39255	Rutherford School								1,		
	St. Marys Comp. School			9							
39277	Walbottle High	8		-							
,		$ $									
:											
!											
											}
,											

		0 080	0 706	A0 81	A0 86	AO	A0 88.	801	658	JMB Opt.E	
		AEB	CAM	NO LO	0 % C	JAB	OXF	AEB	AEB	JMB	
	NORTH TYNESIDE 199,600										
38321 C	St. Anselms R.C. High	15							1		
39323 5	Tynemouth College			9					5		
	SOUTH TYNESIDE 160,100										
39419	Springfield Comprehensive	7									
	SUNDERLAND 300,000	ļ						ļ			
39531	Farringdon School	22	•					Ì		9	ı
	Houghton School			·						9	
39537 .	Hylton Red House School	29		9							
39555 C	Southmoor School	9		9				2	7		
	Usworth Comp. School			9							
39575	Washington School								7		
	WEST MIDLANDS										
	BIRMINGHAM 1,006,500										
	Broadway School				ļ	6					
!	Byng Kerrick Central School	}								9	
20420	Cardinal Newmans R.C. School	1									
20061	Castle Vale School	5									
ļ	Hardsworth Wood Boys School	ļ						ļ		9	
20185	Josua Mason 6th Form	6									
	King Edward Aston Boys School					12				9	
	King Edward five Ways Boys Gram. School	l								9	
: : i	King Edwards' Grammar School for Girls	ļ				5					
. !	Kings Heath School	ļ								9	
	Mosely School							1		9	
20195	Northfield School							2			
:	Sheldon Heath School]				13				9	
20265	Turves Green Boys School	20				İ					
	•										
! •											
l i	·	. '	. '		•	•	•	•		•	• .

·			AEB 0 08	CAM 0 70	LON AO 8	0&C AO 8	JMB AO			AEB 658	JMB Opt.	
	COVENTRY 310,000											
	Bingley Park School										4	
	Caludon Castle Comp. School				9						9	
	Cardinal Wiseman R.C. Comp. Schoo	1	•				1				9	
	Cardinal Wiseman R.C. Girls Comp.	Sch.									9	
20432	Coumdon Court Comp. School		8									
	Erresford Grange Sch. & Comm. Col	lege							ŀ		9	
	Lynghall Comp. School										9	į
	President Kennedy's Comp. School	•				Ì	11		1	1		
	Tile Hill Wood Comp. School										2	
;	DUDLEY 300,200					ļ						
20556	Dormston School		6									
20566	Grange School		3								9	
20560	High Arcal School		20								9	
20570 S	King Edward VI College		25							4	9	
20528	St. Gilbert Claughton School	:	14						3			
	Stourbridge							5				
	Summerhill School	:									9	
20508	Thorns School and Community Centre	e	33									
	SANDWELL 308.900				1							
	Churchfields High School										9	
	Menzies High School				ļ		3				9	
20660 S	West Park College	:	25		ļ				6		9	
;	SOLIHULL 200,000											
20748	Solihull 6th Form College	•	18				4				9	
	WALSALL 265,900											
•	Barr Beacon School). Transparence (1997)			i						9	
:	Darlaston Comp. school	:									9	
20860	Joseph Leckie		20								<u> </u>	
20863	Manor Farm School		10				3					
į				<u></u>						}		

:

			AEB 0 080	CAM 0 7060	LON AO 813	0&C AO 867	JMB AO	1	AEB 801		JMB Opt.E	•
	Shire Oaks School										ā	
·	Willenhall Comp. School	L									9	
	Queen Mary Grammar										9	
	WOLVERHAMPTON	255,400										
	Our Lady and St. Chad R	R.C. School					ļο				9	
20916	Wolverhampton Colton		. :	40								
	John Wilmot										9	
	WEST YORKSHIRE											
	BRADFORD	467,000										
37101 37107	Beckfoot Grammar			26								
	Belle Vue Boys School			Ì							9	
•	Bingley Grammar			j			2					
	Buttershaw Upper School										9	
	Hanson School										9	
37221	Holy Family Comp. School	01		R								
; ;	Nab Wood Grammar		L	See 1710	,						9	
	St. Bedes Grammar School	01		Ì						<u> </u>	9	
	Yorkshire Martyrs Colle	egiate School	Ī	ł				ł			9	İ
	CALDERDALE	191,292										
	Calder High School					·	9					
	Crossley and Porter Sch	nool		l							9	
	Heath School			-		ļ			!		9	
į	Highlands School			Ì	2				1			
•	Ryburn Valley High Scho	ool		I						ļ	9	
	KIRKLEES	370,000										
	Greenhead College				l	1	2	l			9	İ
	Heckmondsworth Grammar	School									2	!
	Huddersfield New Colleg	ре					8					
!	King James School	{									9	
!												
:												
•		ļ.	1	l	I	I	Į	1	إ			

			AEB 0 080	CAM 0 706	LON AO 81	0&C AO 86	JMB AO	OXF AO 88		AEB 658	JMB Opt.E	
-		Shelley High School									9	
		Wheelwright College			ĺ		5					
•		LEEDS 749,500										
		Agnes Stewart C.E. High School									9	
	37695	Airebrough Grammar School	10								9	
		Bruntcliffe High School	3									
		City of Leeds School									9	
		Morley High School									9	
	37681 .	Priesthorpe School	22								9	
		Pudsey Grangefield School									9	
		St. Michaels Colle g e									9	
•	37665	Temple Moor High	6									
	37777	West Leeds Boys High School	5									
		Woodkirk High School									2	
	:	WAKEFIELD 312,000										
	38195	Minsthorpe High School	20								19	
	***************************************	Ossett School	l				1					
		AVON 924,200			l							
	50605	Bedminster Downs School	5									
	50709	Hayesfield School	ю									
		Ma n gotsfield School									9	
		Monks Park School			9							
	50547 C	Portway School	20		9						<i>,</i>	
	Transport	St. Brendans 6th Form College			9							
	·	Speedwell School			9							
	50741	Chew Valley School	14									
		BEDFORDSHIRE 510,000					1					
	15147 C	Harlington Upper School			9					1	4	
	15153	Hastingsbury Upper School	′									
	15118	John Bunyan Upper School & Community Ctr	12	1								
	15 247 S	Luton 6th Form College			9					'	0	
	: ! !	Mark Rutherford Upper School	1-	1	12	1 _	. 1	1	1	J	ł	ł,

:

		AEB 0 080	CAM 0 7060	N AO 813	0&C A0 867	JMB AO	(F AO 885			M Opt.E	
	Redbourne Upper School & Commmunity Ctr	- AB	Ö	FON	ŏ	5	OXF	₩.	Ψ.	J.MB	
	St. Thomas Mo <i>r</i> e Upper School			_						9	
15163	Sharnbrook Upper School	1/2									
15117	John Bunyan School	20									
	BERKSHIRE 695,900				ŀ						
	Ashmead School			9							
	Deanfield School	2									
	Piggots School									9	
	Princess Margaret Royal Free School			9							
51235	Theale Green School		5								
	Coxgreen Comp. School			9							
	BUCKINGHAMSHIRE 592,800				ļ						
52219	Burnham County Secondary School	20									
52227	Chesham High School	/									
	Dr. Challoner Grammar School			9		ł					
	Royal Latin School			9							
;	High Wycombe John Hampden						14				
	CAMBRIDGESHIRE 595,320	:									
	Brelton Woods Community School	·		9			}				
22131	Cambridge Parkside		10								
	Hills Road 6th Form College						6				
	Long Road 6th Form College			9							
22207	St. Peters School	21									
	Sawston Village College				7.5	1					
22215	St. Neots Ernulf		7			Ì					
	CHESHIRE 941,400	1									
40401	Frodsham High School	7									
40107	Great Sankey County High School	"								9	
	Harefield County High School									9	
	Henbury County High School									9	

. . :

		080	•		AO 86	AO	AO 88	801 658	Opt.E	
		AEB 0					OXF /	AEB	JMB Opt.	
	Holmes Chapel County Comp.					4				
·	Kingsway County High School								9 4 9	
40131 S	Priestley College	30	,						1	
	Queens Park High School								9	
	St. Johns Dew n es College		l			5			9	
	Stanney County Comp.				Ì				9	
	The Grange County comp. School	İ	1						19	: \
	Whitby County Comp.								19	
40139 .	Woolston County High	į		6						
	CLEVELAND 564,543		١							
	Dyke House School	1								9
·	Eaglescliffe School				9					
	Marton College	1		1		10				9
41268	Nunthorpe School	- 1	6							
41266	South Park College	1	5							9
	CORNWALL 429,300									
53801	Camborne			7						
53811	Helston School			9			3			
53623	Newquay Treviglas			8						
)	Redruth School				9					
	CUMBRIA 476,000		ļ							
42105	Appleby Grammar School		16						-	9
42313	Barrow 6th Form College		12							
! ! !	Caldew School	:								2
42211	Egremont Wyndham			/		1				
; ;	Heversham Grammar School	:								2
; • •	Keswick School									9
•	Millom School	.					5			9
•	St. Aidans School									9
•										
:										
		į					1	1	1	1 1

		AFR O OR		> ≨	0&C AO 80	JMB AO	OXF AO 8	AEB 801	AEB 658	JMB Opt.E	
42249	St. Josephs R.C. Secondary	5	1								
•	Ulverston Victoria High School					5					
42129 C	Trinity School Carlisle	İ							4		
:	DERBYSHIRE 910,690										
:	Anthony Gell School									9	
23154	Clowne School	13								9	
23324 C	Henry Cavendish School							2			
	Henry Fanshawe									9	
:	Highfield School	l								9	
•	Ilkeston School						דו				
•	John Port School									9	
	Lady Manners School									9	
	Long Eaton										
23202 C	Mortimer Wilson school							1			
23351 C	South Derby Schools Consortium						ļ	4			
23230 S	South East Derbyshire College	15			Ì				"		
:	DEVON 957,000										
54118	Bideford School and Community College	16							1		
	Exmouth Community College			9							ļ
54273	Honiton Community College	7									
54133 C	Ilfracombe School and Community College	50							3		
	Dakhampton School and Community College			9	1						
:	Plymstock School						15				
54211 C	Queen Elizabeth School and Communit Col	I		9					5		
	St. James High School	İ									ı
•	Southway School	ł		9	1						
54543	Tavistock School	20	′			-					
54413 C	Coombe Dean School					ĺ		1			
54333	Paignton College	6									
** ***										1	
* 7.::											
	1.				1	-	1				

		AEB 0 080	CAM 0 706C	LON AO 81	0&C AO 86	JMB AO	OXF AO 885	AEB 801	AEB 658	JMB Opt.E	
	DORSET 591,990										
55307	Blandford Upper School	4				}					
55147	Bournemouth St. Peters		/				6				ļ
55377	Broadway Modern School	4									
55245	Corfe Hill School	9									
55213	Ferndown Upper		4								
	DURHAM 603,300										
	Avenue Comp. School									2	
43305 .	Bishop Barrington Comp. School	1/2									
	Denehouse Comp. School									2	
43417	Durham Johnston		/								
	St. Bedes R.C. Comp. School										
	St. Leonards R.C. School									9	
	Shotton Hall Comp. School					10	$\Big $				
	Spennymoor Comp. School					6					
43121	Tanfield Comp. school	17	,								
· :	Wellfield Comp. School								-	9	,
	EAST SUSSEX 656,200										١
566355	Bexhill College	16						I		4	
	Bishop Bell C.E. School			9							
56165	Brighton Patcham Fawcett		9								١
56810 C	Cardinal Newman School									3	
56670	Helenswood School	3	,								
56515 C	Seaford Head School							6		2	
	Uplands Community College			9		Ì					
563102	Bruncliffe (through Morley)	3	3				Ì				
;	ESSEX 1,493,000										
;	Alec Hunter High School			9	,						
16619 C	Belfairs County High for Boys, Leigh		7	- 1					,		
16137 C	Beavchamps School								,		

Billericey School 16533 Bramston School Brentwood County High School 16405 C Colbayns High School 16623 D Eastwood County High School for Boys 16339 C Greet Boddow School 16453 Harwich 16519 C Hedingham School Hedley Walter School Latton Bush Comp. School 16823 Mark Hall Comp. School Meyflower School 16327 Moulsham High School Polmers College 16329 Rainsford School 16437 G Royal Grammer School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.C. Easex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16119 C Bromfords School			AEB 0 080	CAM 0 70	LON AO 8	0&C AO 80	JMB AO	OXF AO 8		AEB 658	JMB Opt.	
Brentwood County High School 16405 C Colbayns High School 16623 D Eastwood County High School for Boys 16339 C Great Boddow School 16453 Harwich 16519 C Hedingham School Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16825 Netteswell Comp. School Palmers College 16329 Rainsford School 16437 G Royal Grammar School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School 16467 West Hatch High School 16467 West Hatch High School 16467 West Hatch High School 1647 West Hatch High School 16480 West Hatch High School 16481 C Woodlands 16111 C Woodlands 16110 Bromfords School		Billericay School	Ť				İ					
Brentwood County High School 16405 C Colbayns High School 16623 0 Eestwood County High School for Boys 16339 C Great Baddow School 16453 Harwich 16519 C Hedingham School Hedley Walter School Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16825 Netteswell Comp. School Palmers College 16329 Reinsford School 16437 G Royal Grammar School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Mestcliffe High School Fitz Wilmore School 16111 C Moodlands 16139 C Bromfords School	16533	Bramston School	3									
16623 0 Eastwood County High School for Boys 16339 C Great Boddow School 16453 Harwich 16519 C Hedingham School Hedley Walter School Latton Bush Comp. school May Flower School 16327 Moulsham High School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School 16467 Thurstable School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	•	Brentwood County High School			2			7				l
16339 C Great Boddow School 16453 Harwich 16519 C Hedingham School Hedley Walter School Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16327 Moulsham High School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16437 G Royal Grammar School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School West Hatch High School fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16405 C	Colbayns High School	32							9		
16453 Harwich 16519 C Hedingham School Hedley Walter School Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16327 Moulsham High School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16437 G Royal Grammar School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School West Hatch High School fitz Wilmore School 1611 C Woodlands 16139 C Bromfords School	16623 0	Eastwood County High School for Boys						1		1		
16433 Harwich 16519 C Hedingham School Hedley Walter School Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16327 Moulsham High School 7 16825 Netteswell Comp. School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16437 G Royal Grammar School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16454 Thurstable School Westcliffe High School 16807 West Hatch High School 16111 C Woodlands 16139 C Bromfords School	16339 C	Great Boddow School			9				7			
Hedley Walter School Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16327 Moulsham High School 16825 Netteswell Comp. School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School 16807 West Hatch High School 16111 C Woodlands 16139 C Bromfords School	16453	Harwich		6								
Latton Bush Comp. school 16823 Mark Hall Comp. School Mayflower School 16327 Moulsham High School 16825 Netteswell Comp. School Palmers College 16329 Reinsford School St. Cedds R.C. School 16437 G Royal Grammer School St. Cedds R.C. School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16519 C	Hedingham School						3				
Mayflower School Mayflower School 16327 Moulsham High School 16825 Netteswell Comp. School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School		Hedley Walter School			9		İ					
Mayflower School 16327 Moulsham High School 16825 Netteswell Comp. School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School		Latton Bush Comp. school			9							
16327 Moulsham High School 16825 Netteswell Comp. School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16823	Mark Hall Comp. School	23									
16825 Netteswell Comp. School Palmers College 16329 Rainsford School St. Cedds R.C. School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	;	Mayflower School			9							
Palmers College 16329 Rainsford School 16437 G Royal Grammar School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16327	Moulsham High School	7									
16329 Rainsford School 16437 G Royal Grammar School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16825	Netteswell Comp. School	8									
16437 G Royal Grammar School St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School		Palmers College			9							
St. Cedds R.C. School 16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16329	Rainsford School	5									
16305 C St. Peters High School 16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16437 G	Royal Grammar School								16		
16627 C Shoeburyness County High 16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	Carried Control	St. Cedds R.C. School			9							
16229 S S.E. Essex 6th Form college Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16305 C	St. Peters High School	direct to						3			
Stewards Comp. school 16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16627 C	Shoeburyness County High	-							/		
16453 C Tendring High School 16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16229 S	S.E. Essex 6th Form college							10	10		
16467 Thurstable School Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School		Stewards Comp. school			9							
Westcliffe High School for Boys 16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16453 C	Tendring High School	25					İ	4			
16807 West Hatch High School Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	16467	Thurstable School	14									
Fitz Wilmore School 16111 C Woodlands 16139 C Bromfords School	, , at the above	Westcliffe High School for Boys			2							
16111 C Woodlands 16139 C Bromfords School	16807	West Hatch High School	15									
16139 C Bromfords School	;	Fitz Wilmore School			9		İ		1			
	16111 C	Woodlands				l				.		
	16139 C	Bromfords School							1.			
									2			
	:										1	İ

		080	7060	813	8670		8859			ы	
		0	0	ΨO	ΑO	ΨO	A0		658	JMB Opt.	
		AEB	CAM	LON	၁၈၀	JAB	OXF	AEB	AEB	JMB	
44173	Malet Lambert High School, Hull	lo									
44339	Waltham Toll Bar School	14									
	KENT 1,482,900										
61413	Canterbury Chaucer		6	9							
	Chatham Grammar School for Boys			9							
61555 G	Dane Court Grammar School	14						,			
61853	Folkstone School for Girls	,	ક								
	Gravesend Grammar School for Boys			9							
61715 G	Maidstone Grammar School for Girls	12		?				4	1		
	Borden			9							
61309	Rainham Mark Grammar	3									
	St. Johns R.C. School			9							
	St. Joseph Williamson Mathematical School			2							
	Simon Langton Boys School			9							
	Sir Roger Marwood's School			9							
	Spellthorne College, Ashford			9							
661703	Swadelands School	9									
61819 C	Towers School	20							/	·]	
61985 G	Tunbridge Wells Grammar School for Boys	10						3			
	LANCASHIRE 1,386,200										
	Nelson and Colne College					24					
46713 S	Runshaw Tertiary College								1	۲	
47513 G	Bacup and Rawtonstall Grmmar School								4	2	
46405 C	Blackpool 6th Form & Collegiate Centre	3						8			
	Fleetwood Heskheth High School	İ				3				2	
	Greenlands High School for Girls									9	
47203	Hollins High School	16									
	Lytham St. Annes High School		Ì			4					
	Mount Carmel High School					5					
	Newman College					15	-				
	Norden County High School			9							
	i		1		1	1	1	•		}	ļ

The second second spirit of the second second second second second second

		B 0 080	M 0 706	N AO 81	C AO 86	ΑO			B 658	B Opt.E	
	S.W. HAMPSHIRE	AEB	CAM	TON	၁೪၀	JMB	OXF	AEB	AEB	J.MB	
58203 S	: Alton college	1							9		
58801 S	Brockenhurst College			9					9		
58203	Hardley School]			7				
58641 S	Richard Taunton						30		//	9	
58437 S	Queen Marys College							11			
	HEREFORD & WORCESTER 631,756										
24255 C	Dyson Perrins C.E. High School							6			
	Redditch						2		Ì		
24450	Nunnery Wood High School	/					6				
	Prince Henry's High School									2	
24375	Tenbury High School	8					1				
	Wolverley High School									2	
	HERTFORDSHIRE 967,500										
	Bushey Hall School			9							
17221	Goffs School	8		9							
	Hatfield School			1							
	Leventhorpe School			9							
17135	Mounbatten School	14			İ						
	Owens School		Ì	9							
17617	St. Clement Danes School	7									
17503	Roundwood Park							٤	5		
	HUMBERSIDE 852,400	İ									
44143	Bilton Grange High School	8				l					
	Bridlington School					2	·				
44309	Cleethorpes Matt Humberstone		1								1
	Goole Grammar School					3	-			9	
44345	Grimsby Wintringham	3					İ				
	Howden School, Goole		1			2					
	:										
	·	1.	1		1	l	1	1	į		I

:

٠.

			B 0 080	CAM 0 706	N AO 81	0&C AO 86	JMB AO		AEB 801	AEB 658	JMB Opt.		
_			AEB	2	ros	ŏ	5	0	₹	TA TA	Γ	├-	
	:	GLOUCESTERSHIRE 503,800			İ						ł		
	57305	Arle School	5										
		Brockworth School			19	ļ							
	57309	Cheltenham Bo∨rneside School	20										
	57017	Farmors School	1										
		St. Thomas Richs School				7.5							
	57139	Sain bridge School	1										٠
	57031	Stroud Archway			5								
	57037	Stroud Marling		1	2								
		Newent	1	4		-				-			
		HAMPSHIRE 1,467,400											
		SOUTHAMPTON AREA	Ì			,							
	58623 S	Itchen College				- 1				l	2		
		Merry Oak School	1		19	1			•	١		١	
		Great Saltern School			9		1						
	58519 C	Mayfield School			-						2	-	
		MID-HAMPSHIRE									12		
	58231 S	Barton Peveril College		16							/2		
	!	Farnbrough 6th Form college				9							
	58343	Frogmore School		30	1	9							
	58323	Oak Farm Community School		20									
	58341	Robert Mays School		18									
	;	Yatterley School				9							
,	•	PORTSMOUTH AREA											
	58437 C	City of Portsmouth Boys				٠.				5			
		N.W. HAMPSHIRE											
	58403	Harrow Way School	•	4							١.,		
	58707 S	Havant College		43						7	18		
		Horadean School				2		1	١				
	58405	John Hanson School		10									
	58123 S	Price's College			-	2					12/		
	1			1.	١.	l		1	•	•	•	•	٠.

		1	1	1	l _c		6		İ		
		080	7060	813	8670		885	-1	œ	t.E	
		C	CAM 0	OA NO	C AO	fB AO			B 658	® Opt	
		AEB	3	TON	080	JMB	OXF	AEB	AEB	J.MB	-
47115 C	Pleckgate School	,							5		
46701	St. Marys R.C. College	20		9						2	
46911	St. Michaels C.E. High School	20									
46817 5	Skelmersdale College	20							2	9	
	Witton Park High School									2	
47201	Ac r ington & Rossendale College	9						1			
	LEICESTERSHIRE 848,000										
	Beaumont Lays School									9	
•	City of Leicester School									2	
	Countess Thorpe College			9							
	English Martyrs School					6					
	Gateway 6th Form College					16		-		9	
	Guthlaxton College '									9	
25210 C	John Cleveland College			9			6				
25244	Leicester Mundella School	8									
25128	Rushey Mead Secondary School	14									
25160	Rutlands 6th Form College	6									
25174	Uppingham Community College	1									
	Wyggeston Collegiate					7				9	
25270 S	Wyggeston & Queen Elizabeth 1st College			9					7	1	
	LINCOLNSHIRE 550,900									1	
26310	Boston Grammar	ļ	15			ļ				ŀ	
26202	Bourne Grammar School	4									
	De Aston School			9						1	
	Kings School			9			İ				
	King Edward VI School			9							
	Kirsteven & Sleaford High School									9	
26120	: Lincoln Ancaster		6								
	Lincoln Christ's Hospital School				7.5	1					
26148	Robert Pattinson School	20									
		•	, ,	,	•	•	•	•	•	•	•

•

		B 0 080	CAM 0 7060	N AO 813		OB AO			AEB 658	JMB Opt.E	
	Southpark High School	AEB	ర	TON	ŏ	JMB	<u>(0</u>	W	₹	9	
	Yarborough High School									9	
	NORFOLK 704,900										
18131 C	Earlham School				ŀ			4			
18327	North Walsham Girls High	1	6								
18331	North Walsham Paston		3								
	Oriel High School	1		9							
18521 C	Springwood High School	12						7			
18343	Thorpe St. Andrew, Norwich		/								
. 18437	Wymondham College		3								
	NORTH YORKSHIRE 673,900										
48317	Fulford School	29								2	
48217	Harrogate Granby High School	/3								2	
	Humtington School					7					
	Northallerton Grammar School					"					
·	Queen Anne Grammar School for Girls					3					
48237	St. Aidan's C.E. High School	22								9	
	St. John Fisher R.C. High School									9	
	South Craven High School					2					
	Scarborough 6th Form College					"				2	
48181	Whitby School	8				5					
	NORTHAMPTONSHIRE 528,000										
27152 C	Chickele School							4			
27208 C	Daventry School							3			
	Kingsthorpe Upper School			9							
	Wellingborough Wren School			9							
	Western Favell Upper School			9				ŀ			
	NORTHUMBERLAND 301,100										
	Astley County High School									2	
	Duchesses' County High School, Alnwick						5				
49047	Haydon Bridge County High School	8									
	!	1.	ľ					1	1	I	ľ

•

	APPENDIX	EXAMINATION	0 080	7060	A0 813	0 8670	0	0 8859	801	658	pt.E	
		CENTRE Population	AEB O	CAM 0	LON A	4 :		OXF AO		AEB 6	JMB Opt.E	
-		NOTTINGHAMSHIRE 974,400	₩.	٣			-	5	7	4	H	
		Bilborough College			2							
	[Christ the King R.C. Comp. School									9	
	28370	Dayncroft Comp. School	"									
	28330	Fairham School	20									
	28354	Forests Fields 6th Form College	8									
		Joseph Whittaker Comp. School						6			9	
	28324	Lilley and Stone School	5			ļ						
		Matthew Holland Comp. School									9	
•	28150	Meden School	6								9	
		North Border Comp. School	:								9	
		The Minster School					ļ				9	
		Valley Comp. School, Worksop						10				
		Wilford Meadows School	18									
		Trent College			9							
		Shirebrook School			9						9	
		OXFORDSHIRE 515,079	•									
		Churchill	ł				ĺ	,	Ì			
	62455	King Alfred, Wantage				7.5	-					
	62433	Gillott's School	2		1							
	62453	Icknield School	6									
	62437 S	King James College, Henley			9					1		
	62249	Marlborough School	1									
		Matthew Arnold School			9				١			
	62247	Wood Green	1									
		SHROPSHIRE 380,000										
	29160	Croeswylan School	3									1
		Idsall	•				7				2	
	29160	Lakelands School	4									
	29345 S	New College, Telford	25							17	,	
				<u> </u> 								
		•	-	-		-						

APPENDIX	EXAMINATION	0 080	0 7060	AO 813	AO 8670		AO 8859	801	658	JMB Opt.E	
-	CENTRE Population	AEB	CAM	LON	೦೩೦	JMB	OXF	AEB	AEB	JMB	
29160	Rhyn Park School	3								9	
29235	Shrewsbury 6th Form College	20								1	
29010	The Corbett School	5									
29155 S	OS westry College							2	3		
!	SOMERSET 342,300				İ						
63223	Holyrood School	20									
63409	Kings of Wessex Upper School	/2									
63463	Preston School	25									
	West Somerset School, Minehead						4				
	STAFFORDSHIRE 1,015,700										
30610	Belgrave Comp. School	6						İ			
	Blythe Bridge High School		,	9							
30545	City of Stoke on Trent 6th Form College	20								9	
30120	Cheudle High School	20									
	Edward Orme High School					2				2	
30210	Leek High School	6									
	St. John Fisher R.C. High School			9							
	Sherbrook School									9	
30650	Woodhouse High School	3									
	SUFFOLK 597,000										
19235	Ipswich Northgate High School		,	9							
	Kirkley High School			9							
19329	Mildenhall Upper School	9					ł				
19335	Stoke College		1	l			Ì				
19125	Thomas Mills High School	3									
	SURREY 1,013,900										
	De Stafford County Sec. School		j	2							
64878	France Hill School	4									
	Horley Comp. School			2							
	Reig ate College				7.5						

APPENDIX	EXAMINATION CENTRE Population	AEB 0 080	CAM 0 7060	LON AO 813		JMB AO	OXF AO 8859	AEB 801	AEB 658	J.MB Opt.E	
		₹	<u>5</u>	9	<u>. </u>	7	۴	۲	 	f	十
	Roseberry School			9							
64200	St. Andrews School St. Bedes School	4									
64970		8									
64970	St. John the Baptist R.C. Comp. School Spelthorne Callege, Ashford			9							
64910 S	Strode's College			-				l	6		
. 04910 3	Tomlinscote School			9							
64986 S	Woking College	14		<u> </u>					7		
64305	Yeamans Bridge School										}
64250	Warlington	20					١				
04230	WARWICKSHIRE 468,900										
31020	Atherstone School	12									1
31010	King Edward VIth College				7.5	-				l	
	Myton School				-					9	<u> </u>
	WEST SUSSEX 666,000	Ì							l		1
65205	Crawley Holy Trinity		9							1	
	Chichester High School for Girls						16			1	
65123 S	Haywoods Heath School						7	-		12	
65428	Manhood High School & Community centre	١٩					ł		ļ		
65423 C	Midhurst Grammar School			9						6	
65329	Steyning Grammar School	18			}		}				
	WILTSHIRE 523,000										
	Devizes, Dauntseys	i		Ì			1	۲		1	
	Kingsdowne School			2						l	
İ	Westwood St, Thomas C of E School			9			1				
	I.O.M.										
	Ramsey Grammar School										9
1								1			
						1			_		_ }

	APPENDIX		EXAMINATION	0 080	0 7060	AO 813	AO 8670	•	AO 8859	801	658	Opt.E	:
	-	CENTRE Pop	oulation	AEB	CAM				OXF		AEB	JMB	
		WALES											
	ļ	CLWYD	385,500										
	68140 C	Alun School									11		
		Bryn Offa School		17									
	68159 C	Rhyl High School									2		
		DYFED	316,640										
		GWENT	439,000										
	68358	Duffryn Comp.		ю				İ					
		GWYNEDD	224,500										
ŧ		MID-GLAMORGAN	537,900										
•		POWYS	111,500										
		Builth Wells High Sc	hoo1									9	Į
		SOUTH GLAMORGAN	396,900										
		Llanishen High Schoo	1			9							
		St. Teilo's High Sch	0001			9							
		WEST GLAMORGAN	366,900										
	68818	Gowerton Comp. School	1	14									
		NORTHERN IRELAND					Ì						
		BELFAST	404,000										
	71101	Belfast Royal Academ	ny	6					İ				
•		St. Malachy's Colleg	ge			9							
	71649	St. Patricks Boys Se	condary School	8		9							ŀ
		N.E. AREA	333,400										
	71401	Antrim Grammar Schoo	01	19									
		S.E. AREA	312,900										
	İ	St. Colmans High Sch	ool, Tyrone			9							
		S. AREA	284,200										
		W. AREA	235,000										
	į							1					
,	1		l	11	,	ı	•	•	•	,	,	•	

	APPENDIX	EXAMINATION	080	2060	0 813	0.8670	1 3	0 8859	801	658	Opt.E	В.
	F.E.	CENTRE Population	AEB 0	CAM 0	LON AO	O&C AO	•			AEB 6	O SIMIC	A.E.B
-	*	ODATA TOPOLOGICAL	٧		1	0	7	0	¥	4	f	
		LONDON										
		I.L.E.A. 2,583,400										
		Mommersmith & W.London College			9							
		Brixton College			9							
	10744 G	S.E. London College		11	9				17			•
•	10662 F	Woolwich College								6		
		BARKING AND DAGENHAM										
	12105 F	Barking College of Technology								2		
		BARNET									ļ	
	12255	Edgeware London Open Centre		١								
		BEXLEY										
		BRENT										
	12330	Kilburn Polytechnic	İ		٩				2	-		,
	12349	Willesden College of Technology	15						2	}	8	
		CROYDON										
		EALING										
	12402	Acton Technical College	7	İ	9							
		ENFIELD										,
	12530	Southgate Technical College									5	
		HARINGEY										
		HARROW	1									
		Harrow College of F.E.		ļ	1							
		HAVERING	ļ					İ				
		HILLINGDON		ļ								
	12956	Uxbridge Technical College	10									
		HOUNSLOW										
	-	KINGSTON-UPON-THAMES										
	14413	Kingston College of F.E.			9						4	
		MERTON										
		·		-								
	•											

•

APPENDIX	EXAMINATION	080	' '	AO 813	A0 8670	0	0 8859	801	658	Opt.E	,
_	CENTRE Population	AEB 0	CAM 0	LON A	O&C A	JMB AO		AEB 8	AEB 6	O SWIC	4 100
	NEWHAM										
13244 S	West Ham College							10			,
	REDBRIDGE					İ					
13329	Waltham Forest College	ю									
	RICHMOND-UPON-THAMES							Ì			
14619	Richmond-upon-Thames College								8		
	WALTHAM FOREST										
	SUTTON										
	GREATER MANCHESTER										
	BOLTON										
32129	Bolton Metropolitan College	10						İ			
-	BURY										
32217	Bury Metropolitan College of F.E.	7									
32303	Abraham Moss							1	. 2	-	
	MANCHESTER										
	OLDHAM										
	ROCHDALE										
	SALFORD										
	STOCKPORT										
	Stockport College of Technology									9	!
	TAMESIDE										
33511	Tameside College of Technology	20									
	TRAFFORD										
33655	N. Trafford C.F.E.		İ	9							
33621	S. Trafford C.F.E.	35								١	
	WIGAN										
33731	Leigh College	12									
33753	Wigan College of Technology	15					Ì			6	,
1											
l											
			ļ	ł	1		1	1		ł	

APPENDIX	EXAMINATION	080	7060	813	867	1 1	885	10	æ.	Opt.E	
	CENTRE Population	AEB O	CAM 0	LON AO		1 !				JMB Op	
 	MERSEYSIDE	7				7	٥	1	7		
	LIVERPOOL										
	Central Liverpool C.F.E.									9	
	N.E. Liverpool Technical College									9	
	SOUTH YORKSHIRE										
	DONCASTER		·								
•	Doncaster Institute of H.E.									9	
	ROTHERHAM										
	Rother Valley C.F.E.			9		Ì					
,	SHEFFIELD									9	
	Richmond College									-	
	Stocksbridge College				ļ					19	
	TYNE AND WEAR		•								
	NORTH TYNESIDE										
39333	North Tyneside C.F.E.	16									
	SUNDERLAND										
39541	Monkwearmouth C.F.E.	28						/0	7		
	WEST MIDLANDS										
	BIRMINGHAM										
20089	Garretts Green College	30						į		'	
20104	Hall Green Technical College	20									
20111	Hardsworth Technical College	40							12		
20313	Sutton Coldfield C.F.E.	40				18	'	14	4 Z	5	
	COVENTRY					İ					
20426	Coventry Technical College					İ			3	2	
20450	Henley C.F.E.	15					1				
	Tile Hill C.F.E.									2	
	DUDLEY										
20518	Dudley College of Technology	10							2	0	
20530	Halesowen College	12									
											ŀ
•	'	l"	1	L	I	ł	ı	1	J	ı	ł

	APPENDI X	EXAMINATION	080	0 7060	AO 813	AO 8670		A0 8859	801	658	pt.E	
•		CENTRE Population	AEB 0	CAM C			1 1			AEB (JMB Opt.E	
	20562	Stowbridge Coll. of Tech. and Art	22									
	20624	Warley College of Technology	52									
		WOLVERHAMPTON										
	20972	Wolverhampton C.F.E.		/2				ļ			Ì	
		WEST YORKSHIRE									1	Ì
•		BRADFORD										
	37227	Keighley Technical College	15				12	Ì			1	
		CALDERDALE										
		Percival Whittey C.F.E.			9						١	
•		LEEDS										
•	37623	Airedale and Wharfendale C.F.E.	15								l	
	37765	Parklane C.F.E.	65							ł		-
		WAKEFIELD										
		Wakefield District College										9
		AVON								Ì		
	50755	Norton-Radstock Technical College	lo					l			1	
	50619	South Bristol Technical College	30								-	
	50645	Weston Super Mare Technical College			9				Ì		9	
		BEDFORDSHIRE										1
	15119	Bedford College of H.E.	12									
	15201	Dunstable College	35	-								
		BERKSHIRE										
		Bracknell C.F.E.			2			1				
	51409	Langley C.F.E.	"									
	51547	Windsor and Maidenhead C.F.E.	9						Ì			
		BUCKINCHAMSHIRE										
	52201	Amersham C.F.E.	5	3							8	
	52101	Aylesbury College	J ₅	-	į		ļ	١				
	ļ											
	·											

	APPENDIX	EXAMINATION	080	0902	A0 813	A0 8670	AO	A0 8859	801	658	Opt.E	
•	-	CENTRE Population	AEB 0	CAM 0	LON A						JMB 0	
	52409	Buckingham College of H.E.	34							/3		
		CAMBRIDGESHIRE										
	22115	Cambridge C.F.E.		18								
	22107	Cambridgeshire Coll of Arts & Tech,								9		
	22211	Huntingdon Technical College	25									
	·	CHESHIRE										
•	40127	North Cheshire College							2			
		South Cheshire College			9							
		CLEVELAND										
3	41247	Longlands C.F.E.	20							2		
		CORNWALL										
	53625	Mid Cornwall C.F.E.	17						14	/3		
		CUMBRIA										
	42303	Barrow-in-Furness C.F.E.	lo									
	42327	Kendal C.F.E.	16									
		DERBYSHIRE										
		Chesterfield College of Technology									9	
	23316	Derby C.F.E.	4 ₀									
		DEVON								ļ		l
	54285	East Devon C.F.E.	/2									
	54221	Exeter College			9				1			
		North Devon College			2							l
	54354	South Devon College of Arts & Tech.	9									l
	54359	South Devon Technical College								8		
		DORSET										
	55117	Bournemouth and Poole C.F.E.	22			İ				3		
	55381	South Dorset Technical College	"						15	-		
		DURHAM										
	43419	New College Durham	15									
		Peterlee Technical College			9							
			}		_						ļ	
		'	'	,		•	•	•	•	•	•	•

APPENDIX	EXAMINATION	AEB 0 080	CAM 0 7060	N AO 813	0&C AO 8670	A0			AEB 658	/B Opt.E	
	CENTRE Population	AE.	CA	TOIN	ő	5	ô	₩.	₩	J.MB	
	EAST SUSSEX			a							
	Lewes Technical College			9					٨		
56130	Brighton College of Technology										
	ESSEX			Ì				4			
16107	Basildon C.F.E.	6									
16317	Chelmsford C.F.E.	25							1/2		
16431	Colchester Institute of H.E.										
16603	Southend College of Technology		10						4		
•	GLOUCESTERSHIRE										
57039	Mid-Glamorgan Tech. College	15						7			
	HAMPSHIRE										
58401	Cricklade College	9						/3	1,,		
58113	Fareham Technical College	14									
58235	Eastleigh C.F.E.						İ		1		
58315	Farnborough College of Technology								/0		
58653	Southampton Technical College								8		
58725	South Downs C.F.E.	80			ļ				18		
	HEREFORD AND WORCESTER				İ						
24145	Hereford Technical College	5									
24495	Worcester Technical College							1,,	3		l
	HERTFORDSHIRE							Ì			
17119	Dacorum College	20							6		
	HUMBERSIDE										
44325	Grimsby College		8								
44363	North Lindsey College of Technology							İ	8	' 	
	KENT										
61417	Canterbury Kent College		4								
	Mid Kent College of F & H.E.			9							
61683	West Kent C.F.E.	4		9					3	<i>-</i>	
											İ
			. ,								-

APPE	ENDIX	EXAMINATION	080	7060	813	867		885		~	E	
-			0	0	A0	¥0	AO				Opt.E	
• 		CENTRE Population	AEB	CAM	LON	0&C	SMB	OXF	AEB	AEB	SW.C	
		LANCASHIRE										
4730	03	Burnley College of Arts & Tech.	15		İ					1		
		LEICESTERSHIRE										
251	16	Charles Keene C.F.E.	15		9							
2510	06	Coalville Technical College	9		•							
		LINCOLNSHIRE										
2630	08	Boston C.F.E.	18							3		
262	40	Stamford C.F.E.	11									
	ı	NORFOLK										
• 185	21	Great Yarmouth C.F.E.	18									
. 181	25	Norwich City College							17			
		NORTH YORKSHIRE										
482	17	Harrogate C.F.E.	13									
483	57	York College of Arts & Technology	60									
		NORTHAMPTONSHIRE										
,		Tresham College			9							
		NORTHUMBERLAND			:	ļ						
į		NOTTINGHAMSHIRE										
		Arnold and Carlton C.F.E.			3	ľ						
282	.08	Broxtowe C.F.E.	40							9		
282	64	Peoples C.F.E.								4		
283	78	South Nottinghamshire C.F.E.	15									
281	.56	North Nottinghamshire C.F.E.							/2			
		OXFORDSHIRE										
622	:09	N.Oxfordshire Tech Coll & School of Arts	15									
622	45	W.Oxfordshire Technical College	/2									
		SHROPSHIRE		ĺ								
		SOMERSET										
632	205	Bridgewater College	15									
634	59	Yeovil College										
			ŀ									
i	I	· · · · · · · · · · · · · · · · · · ·		1		1 ,	ı	ı	1	1	1	i

	APPENDIX	EXAMINATION	0 080	0 7060	AO 813	AO 8670	AO	AO 8859	801	658	Opt.E	
•	^	CENTRE Population	AEB (CAM (B .		OXF /		AEB	JIMB	
		STAFFORDSHIRE										
	30075	Burton upon Trent Technical College	7									
	30480	Cauldon C.F.E.	20									
	30290	Newcastle under Lyme C.F.E. & School Art	15							5		
		SUFFOLK										
	19131	Lowestoft C.F.E.	10		ŀ							
•	19231	Suffolk College of H & F.E.				ļ			2			
	19311	West Suffolk C.F.E.							4			
		SURREY										
•		Hurtwood House			9				1			
	64720	N.E. Surrey College of Technology	12						1	3		
		WARWICKSHIRE										
	31200	N.Warwickshire College of Tech & Art	10								l	
	31310	S.Warwickshire C.F.E.	7						l			
		WEST SUSSEX									İ	
	651088	Worthing College of Technology	18		Ì							
		WILTSHIRE										
										1		
	_	WALES										
		CLWYD										
	68154	Llandrillo Technical College		Ì	1			1	Ì		8	
	68112	The N.E. Wales Institute	15	1					ı	1		
		Aston College	20	·					-		ļ	
		GWENT				l						
	68329	Cross Keys College of F.E.	2.	,	1				1	8	5	
	68375	Pontypool College	3:	5	ļ					1		
	68365	Newport C.F.E.	15	1		l				į		
	·	MID-GLAMORGAN	i				1					
	68506	Aberdare C.F.E.	4				١					
	68524	Bridgend College of Technology	30									
		POWYS		ŀ								
		I	17 .	•	•	•	•	'	•		. '	

APPENDIX	EXAMINATION	080	0 7060	AO 813	AO 8670	AO	A0 8855	801	658	JMB Opt.E	
	CENTRE Population	AEB O	CAM C	TON V		JYMB /	OXF 4	AEB 8	AEB (JIMIB (
	SOUTH GLAMORGAN										
68707	Barry C.F.E.	19									
i	WEST GLAMORGAN										
68860	Swansea C.F.E.			9				3			
68873	West Glamorgan Institute of H.E.	8							24		
;	DYFEDD	}									
	GWYNNED										
	NORTHERN IRELAND										
	BELFAST										
71111	Belfast College of Technology	25							49	'	
71447	Newton Abbey Technical College	15									
71519	Castlereagh C.F.E.	18									
	N.E. AREA										
	S.E. AREA					1					
71514	Bangor (annexe) C.F.E.	20	,								
71545	Downpatrick and Ballynahinch Tech Coll.			9			١				
71645	Dungannen and Cookstown C.F.E., E.Tyrone	12								•	
71514	North Downs C.F.E., Newton	5						١			
	S. AREA					1					
	W. AREA					1		-			
71825	Limovady Technical College	2	5	1		İ					
71849	N.W. College of Technology									10	
İ											
					1						
				ļ							
										1	
•		.		1	1	}		١.		ı	

APPENDIX	EXAMINATION	080 0	0 7060	AO 813	AO 8670	AO	AO 8859	801	658	Opt.E	801
MISC	CENTRE Population	AEB	CAM	LON				AEB	AEB	JiMB	· —
	ESSEX SPECIAL SCHOOL										
į	Chafford School			9							
	Henley on Thames Special					,			·		
	ADULT CENTRES										
	DORSET			ļ							
53201	Christchurch	20									
•	BERKSHIRE										
62423 C	Didcot								′		
	SURREY										
64340	Farnham and Ash	18									
	MERSEYSIDE										
	Grange	9									
	NORTHAMPTONSHIRE										
27206	Grange	/2									
	SALF ORD										
33361	Swinton, Salford	10									
	HUMBERSIDE										
44321	Grimsby Adult Centre	24									
44138	Hull Adult Centre	36									
44360	Scunthorpe Adult Centre	16									
	ESSEX										
	Harlow			9							
	WEST MIDLANDS										
20257	Sparkhill	16						İ			
20301	Boldmore	17									
	Leeds Comm. Ed.					8		١,			
77889 E	H.M. Prison							'			
	Manchester Local Centre									9	
28162 E	Welbeck College								19		:
	CORRESPONDENCE COLLEGE										
62317 E	Edward Greene's Tutorial Estab. 0x.							1			
					1	1	1	1	1	1	[

APPENDIX	EXAMINATION	080	090	813	8670		8859			卢	
. I		C	0 7060	ΨO	PO A	Α0	AO	801	658	JMB Opt.E	
. 1	CENTRE Population	AEB	CAM	ron	၁೪၀	JMB	OXF	AEB	AEB	J.MB	
	GREATER LONDON										
	I.L.E.A.										
10802	Allyns School			9	7.5						
	Colfes School			4					5-		
10752	St. Dunstans College				7.5						
10287	Westminster College	5						9			
10956	South London College								\ ,		
10148	Mander Portman Woodward Tutor							3			
10253	Paddington College										
1	BARKING										
10218 C	Davies College								1		
10816	Dulwich College							10			
	BARNET			}							
12254	King Alfred School	30		9					1		
12202	Hendon Albany		1								
	BEXLEY										
:	BRENT										
	BROMLEY										
	CROYDON										
	Royal Russel School	20									
14380	Whitgift		1/								
	EALING										
	ENFIELD										
	HARINGEY		Ì								
	HARROW										
	Harrow School				7.5		ĺ	İ			
	John Lyons School				7.5	1					
	HAVERING										
	HILLINGDON										
	HOUNSLOW										
l											ļ

WILEWNIV	EXAMINATION	080	7060	81.	98 (3 885	ĭ	58	it.E	
	GRAMPE Denulation	AEB O	CAM 0	LON AO			OXF AO	AEB 801	AEB 658	J.MB Opt.E	. n . u
*	CENTRE Population KINGSTON-UPON-THAMES	ĄŁ	C	ĭ	ŏ	L)	0	A.	· A	5	
	MERTON										
	NEWHAM										
	REDBRIDGE										
	RICHMOND-UPON-THAMES										
14627	St. Pauls School				7.5						
•	WALTHAM FOREST										
	SUTTON										
	GREATER MANCHESTER										
:	MANCHESTER										
:	St. Bedes College									9	
!	OLDHAM										
	Hulme Grammar School for Girls					5					
	TRAFFORD										
	St. Ambrose									9	
	TYNE AND WEAR										
	NEWCASTLE										
39253	Royal Grammar School				7:5						
	WEST MIDLANDS										
	COVENTRY										
	King Henry VIII School									19	
	SOL IHULL										
20772	Solihull School				7.	2					
	WOLVERHAMPTON										
	Tettenhall College			9							
20926	Wolverhampton Grammar School				7:5	-					
	WEST YORKSHIRE										
	KIRKLEES										
	Batley Grammar School	8									
1											
1	·	4 ·	1	ĺ	1	l	j	1]	ł	ı

	APPENDIX	EXAMINATION	0 080	7060	813	0.8670		8859	17	89	t.E	
•		CENTRE Population	AEB O	CAM 0	LON AO	O&C AO	JMB A0	OXF AO		AEB 658	JMB Opt.E	
-		WAKEF IELD	1	Ď	一		-			1	-	
		Ackworth School									9	
		Queen Elizabeth Grammar School								1	9	
		BEDFORDSHIRE										
		Bedford School			9		İ					
		Bedford Modern School					lı					
		BERKSHIRE										
	51201	Bradford College								7		
	51241	Do v i School				7:5						
1	100862	Eton College	6									
•	51415	Licensed Vituallers	'			7. 6						
	51113	Wellington College				7 <u>·</u> 5						
		CUMBRIA										
		Austin Friars									9	
	42347	Sedbergh				7:5						
		DERBYSHIRE		Ì								
	1	Presentation Convent High School					3				9	
		Repton School			9							
		DEVON										
	54255	Exeter School						9		9		
	54115	Grenville College	2	l								
	54539	Kelly College		1		7.5						
	l	DORSET										
	55309	Bryanston School				7.5						
		EAST SUUSEX										
		East Bourne College			9							
	65305	Slindon School	1	Í								
		ESSEX										
		Chigwell School				7.5						
	Ì											
		,					,					
-	ı	ļ	.	I	ı							ſ

APPENDIX	EXAMINATION	080	7060	813	8670		8859		m	五	
		0	0	Q4						Opt.E	
-	CENTRE Population	AEB	CAM	NO I	၁၈၀	JMB	OXF	AEB	AEB	S.M.B	
	GLOUCESTERSHIRE										
57319	Cheltenham College	28									
	ḤAMPSHIRE										
58515	Highbury College ofTechnology							13			
58327	Salesian College							5			
58295	Winchester College				7.5			7			
,	HEREFORD AND WORCESTERSHIRE										
	Belmont Abbey			9							
24040	Bromsgrove School				7:5						
¹ 24135	Cathedral School				7.5						
	Malvern College	9									
	HERTFORDSHIRE					ł					
	Aldenham School				7:5						
17103	Berkhampstead School	!			7.5	1					
	Haberdashers Askes School				7.5						
	Haileybury College				7.5						1
17519	St. Albans School		2	9							
	St. Edmunds College				7.5						
	HUMBERSIDE										
	Pocklington School				7:5	1					
	KENT						ļ				
61419	Kings School				7.5	-					
61423	St. Edmunds School				7:5						
	Tunbridge Wells, Skinne£s						8				
	LANCASHIRE										
46401	Arnold School	13			ł						
	King Edward VII School									9	
	Kirkham Grammar School		1							9	Ì
	LEICESTERSHIRE										
	Oakham School			9							
-		 .	1	1	1		1	1	1	1	

APPENDIX	EXAMINATION	080	706C	1	867		885	10	89	ot.E	
	CENTRE Population	AEB 0	CAM 0	LON AO				AEB 801	AEB 658	JWB Opt.E	I
	LINCOLNSHIRE	1	Ŭ	Ī	<u> </u>	Ť		7	7	,	
	Stamford School			9							
	NORFOLK										
	Gresham School				7.5						
	Norwich High School for Girls	23									
	NORTH YORKSHIRE										
48301	Ampleforth College								3		
	friends School					2				9	
	NORTHAMPTONSHIRE										
27138	Oundle				7.5						
	NOTTINGHAMSHIRE										
28152	Worksiop College				7:5						
	Bilborough College			9							
	OXFORDSHIRE										
62403	Abingdon School				7:5				Ì		
62356	Wolsey Hall Tutorial College								1		
	STAFFORDSHIRE										
	St. Josephs College									9	
	SOMERSET				7.5						
63261	Wellington School				7.5					1	
	Kings College						6				
	SUFFOLK										
19241	Ipswich School			İ	7:5				3		
	SURREY										
64325	Cranleigh School				7.5						
64390	Charterhouse			ł	7.5						
64005	Ashtead Park, City of London		14								
64655	Epsom School				7.5						
	·										
			-								
64325 64390 64005	SURREY Cranleigh School Charterhouse Ashtead Park, City of London		14		7 <u>.5</u> 7 <u>.5</u>						

APPENDIX	EXAMINATION	0 080	0 7060	AO 813	A0 867	AO	AO 885	801	658	Opt.E	
	CENTRE Population	AEB	CAM	LON	0&C	•	•	•	AEB	SME	
	Ewell Castle School			9							
64355	Frensham High School				7.5		<u>.</u>				
64858	St. Georges College				7.5						
64140	St. Johns School				7.5						
64425	Reigate Grammar School				7.5						
	WEST SUSSEX										
65129	Christ's Hospital				7.5						
	WILTSHIRE										
66629	Marlborough College	10									
•	GWENT										
. 68349	Monmouth School				7.5						
l							Ì				
·											
	<u> </u>										
										j	
	i						Ì		j		
					İ						
					Ì						
	·										
Ì	,										
						,					
	•	•	-				-	-	_	•	•

TABLE A.2 Authorities, their population and numbers of centres/student

School & F.E. & Others

CODE	NAME	POPULATION	No. of CENTRES	No. of CANDIDATES
1	Greater London I.L.E.A.	2,583,400	20+5	226+73
2	London	3,776,630	67+12	676+126
3	Greater Manchester	2,650,432	31+9+2	419+151+19
4	Merseyside	1,536,934	24+2+1	258+18+9
5	South Yorkshire	1,311,700	21+4	(175)+36
6	Tyne & Wear	1,150,500	20+2	263+61
7	West Midlands	2,646,900	43+12+2	622+368+33
8	West Yorkshire	2,089,792	34+5+1	346+125+8
9	Avon	924,200	8+3	95+58
10	Bedfordshire	510,000	9+2	114+47
11	Berkshire	695,900	6+3+1	43+29+1
12	Buckinghamshire	592,800	5+3	53+123
13	Cambridgeshire	595,320	7+3	70+52
14	Cheshire	941,400	13+2	157+11
15	Cleveland	564,543	5+1	83+22
16	Cornwall	429,300	4+1	30+44
17	Cumbria	476,000	11+2	102+26
18	Derbyshire	910,690	12+2	117+59
19	Devon	957,000	12+5	161+48
20	Dorset	591,990	5+2+1	30+51+20
21	Durham	603,300	10+2	82+24
22	East Sussex	656,200	8+2	64+17
23	Essex	1,493,000	32+4+2	338+65+18
24	Gloucestershire	503,800	9+1	74+22
25	Hampshire	1,467,400	21+6	376+164
26	Hereford and Worcester	631,756	6+1	41+26
27	Hertfordshire	967,500	8+1	70+26

			School &	F.E. & Others
CODE	NAME	POPULATION	No. of CENTRES	No. of CANDIDATES
28	Humberside	852,400	8+2+3	54+16+76
29	Kent	1,482,900	16+3	182+33
30	Lancashire	1,386,200	17+1	247+16
31	Leicestershire	848,000	13+2	143+33
32	Lincolnshire	550,900	11+2	115+32
33	Norfolk	704,900	7+2	45+35
34	North Yorkshire	673,900	10+2	147+73 <u>.</u>
35	Northamptonshire	528,000	5+1+1	34+9+12
36	Northumberland	301,100	3+0	22+0
37	Nottinghamshire	974,400	15+5	174+89
38	Oxfordshire	515,079	8+2	45+27
39	Shropshire	380,000	8+0	99+0
40	Somerset	342,300	4+2	61+26
41	Staffordshire	1,015,700	9+3	95+47
42	Suffolk	597,000	5+3	32+16
43	Surrey	1,013,900	14+2+1	125+25+18
4.4	Warwickshire	468,900	3+2	37+17
45	West Sussex	666,000	6+1	76+18
46	Wiltshire	523,000	3+0	23+0
47	Wales	2,778,840	8+11	81+223
48	Northern Ireland	1,569,500	5+9	60+189
A	Barking	149,200	5+1	41+2
В	Barnet	296,600	7+1	58+1
С	Bex1ey	216,000	4	41
D	Brent	251,000	1+2	42
E	Bromley	299,000	9	107

TABLE A.2 (Cont)

School & F.E. & Others No. of No. of **POPULATION** CODE NAME **CENTRES CANDIDATES** 6 46 Croydon 316,310 F G Ealing 280,000 2+1 22+16 260,000 6+1 53+5 H **Enfield** 227,900 2 12 Ι Haringey J Harrow 198,000 7+1 88+9 42 239,800 3 K Havering L Hillingdon 232,420 4+1 41+10 203,900 2 21 M Houns low 131,326 @0+13 N Kingston-upon-Thames 3+L 166,000 2 18 0 Merton 212,300 2+1 14+10 P Newham Redbridge 226,300 3+1 23+10 Q 160,400 0+10+8 R Richmond-upon-Thames 9 S Waltham Forest 214,500 1 167,000 0 0 T **Sulton** 260,000 3+1 36+10 **Bolton** 175,452 3+2 65+13 Bury Manchester 491,700 5+0+1 67+0+9 226,700 20 Oldham 3+ 209,000 Rochdale 2+ 20 Salford 250,000 4+0+1 82+0+10 288,980 41+9 Stockport 3+1 Tameside 217,000 +1 +21 Trafford 222,200 5+2 55+54 Wigan 309,200 33+42 3+2 184,250 Knowesley 5+ 39

CODE	NAME		School & F.E. & Others	
		POPULATION	No.of CENTRES	No. of CANDIDATES
	Liverpool	509,981	8+2	74+18+9
	St. Helens	190,000	1+	16
	Sefton	300,700	5+	45
	Wirral	352,003	5	84
	Barnsley	226,000	3	28
	Doncaster	287,700	3+1	23+9
	Rotherham	251,000	6+1	77+9
	Sheffield	547,600	9+2	59+18
	Gateshead	207,800	2	30
	Newcastle	283,000	9	75
	North Tyneside	199,600	2+1	30+16
	South Tyneside	160,100	1	7
	Sunderland	300,000	6+1	121+45
	Birmingham	1,006,500	14+4+2	133+182+33
	Coventry	310,000	9+3	92+56
	Dudley	300,200	8+3	149+66
	Sandwell	308,900	3+1	61+52
	Solihull	200,00	1+1	31
	Walsall	265,900	7	78
	Wolverhampton	255,400	3	68+101
	Bradford	467,000	9+1	93+27
	Calderdale	191,292	5+1	45+9
	Kirklees	370,000	6	51
	Leeds	749,500	11+2+1	118+80+1
•	Wakefield	312,000	3+1	39+9

SUPPLEMENTAL BIBLIOGRAPHY

BOWE R. and WHITTY G. (1981)

A Question of Content and Control: Recent Conflicts over the Nature of School Examinations at 16+. Chap. II pp229-250 in Hammersley, M. and Hargreaves, A. (1983).

CURZON L.B. (1985)

Teaching in Further Education. 3rd. edit. (London: Holt, Rinehart and Winston).

HORNSBY J.L. (1984)

S.S.C.R: Threat or Sanctuary. Education in Science No. 109 Sept. ppI4-I5.

HUNTER .C. (1983)

Education and Local Government in the light of Central Government Policy. pp81-I08 in Ahier, J. and Flude, M. (1983)

LONG R.R. (1983)

Secondary Science Curriculum Review- an alternative view. Education in Science No. 103 June pp22-24.

RENAN_E_ (1897)

Recollections of My Youth. 3rd. edit. (London: Chapman and Hall) in the Preface Xiii gives "The fourth form schoolboy of our age is acquainted with truths to know which Archimedes would have laid down his life". The quotation used is given: 843.29 in TRIPP.R.T. (1979) International Thesaurus of Quotations (London: Penguin).

SARAN R. (1979)

E222. The Control of Education in Britain. Unit 6. The Politics of Educational Policy Making: Pressures on Central and Local Government. (Milton Keynes: OUP).

VARNEY_B: (1984)

The Schools Council: A Changing Approach. Journal of Further and Higher Education Vol.8 No.3 Autumn pp74-80.

WHITTY,G. (1983)

State Policy and School Examinations I976-82: An exploration of the sixteen-plus contraversy. ppI65-I90 in Ahier, J. and Flude, M. (1983).

BIBLIOGRAPHY

A.S.T.M. (1982)
Health and Safety Information No.19 (London: A.S.T.M.)

A Programme for Advanced Information Technology: The Report of the Alvey Committee 1982. Department Trade and Industry (London:H.M.S.O.)

ADKINS, C.J. (1984)
The National Core Syllabus for A level Physics.
Physics Education Vol.19 No.4 pp. 157 - 158.

AHIER, J. and FLUDE, M. (1983)
Contemporary Education Policy (London:Croom Helm).

AINLEY, D. (1984)
Some strategies for teaching electronics to less able pupils.
School Science Review. Vol.66 No. 234 Sept. pp. 31 - 38.

AKRILL, T. (1983)
Letter - Phsyics Education Vol.18 No.4 p.153.

ALLEN, B. (1968) Headship in the 70's (Oxford:Blackwell).

ANDERSON, D.C. (1979)
Curriculum Innovation and Local Needs.
Journal Curriculum Studies Vol.11 No.2 pp. 117 - 123.

APPLE, M.W. (1979)
Ideology and Curriculum (London:Routledge and Kegan Paul).

A.P.U. Science Report for Teachers No.2. Science in Schools at Age 11. (London H.M.S.O.)

A.P.U.
Science Report for Teachers No.6. Practical Testing at Ages 11, 13 and 15. (London H.M.S.O.)

A.P.U. (1984)

Science Report for Teachers No.7. Electricity at Age 15 (London: H.M.S.O.)

ARCHAMBAULT, R.D. (1969)

Philosophical Analysis and Education (london: Routledge and Kegan Paul).

ARMSTEAD, D.E.F. (1979)

Project work in Science. The School Science Review. Vol 60. No.212 pp. 570 - 573.

A.S.E. (1979)

Consultative Document. Alternatives for Science Education. (Hatfield: A.S.E.).

A.S.E. (1979)

Alternatives for Science Education. (Hatfield: A.S.C.)

A.S.E.

Laboratory Safeguards Sub-Committee (1979) Education in Science pp. 19 - 21, June.

A.S.E. (1981)

Education through Science. (Hatfield: A.S.E.).

A.S.E.

Laboratory Safeguards Sub-Committee (1983) Education in Science pp. 15 - 18, Jan.

A.S.E. (1984)

Revised draft 'The ABC of Basic Skills in Science'. (Hatfield: A.S.E.).

ATWOOD, M.S. (1964)

Small-scale administration change : resistance to the introduction of a high scholl guidance programme pp. 49-78 in Miles M.B. (1964).

AUSUBEL, D. (1978)

Educational Psychology (New York: Holt, Rinehart and Winston).

AVIS, J. (1983)

ABC and the New Vocational Census Journal of Further and Higher Education Vol.7 No.1. pp.23 - 33, reply pp. 34 - 35.

BARTON, L., MEIGHAM, R. and WALKER, S. (1980) Schooling, Ideology and the Curriculum. (London: The Falmer Press).

BASKETT, W.P. and MATTHEWS, G.P. (1984) Computing advances in the teaching of Chemistry. The School science Review Vol.66 No.234 pp. 19 - 30.

BILSLAND, I. (1985)

IT Education Electronics and Wireless World Vol.91 No.1589 p.73.

BISHOP, G.D. (1974)

Linear Electronic Circuits and Systems (London: MacMillan).

BECHER, A. (1971)

The Dissemination and Implementation of Educational Innovation. Annual Meeting of the British Association for the Advancement of Science. Section L.

BECHER, T., ERAUT, M. and KNIGHT, J. (1981)
Policies for educational accountability (London: Heinemann).

BENNIS, W.G., BENNE, K.D., CHIN, R. and COREY, K.E. (1976)
The Planning of Change (New York: Holt, Rinehart and Winston).

BERG, B. and OSTERGEN, B. (1977)

Innovations and Innovation Processes in H.E. quoted in Rutherford R.J.D. (1983) (Stockholm: National Board of Universities and Colleges)

BERNBAUM, G. (1976)

The role of the head pp. 9 - 36 in Peters, R.S. (1976).

BEAUCHAMP, G.A. (1961)

Curriculum Theory (Wilmotte, Ill: Kegg Press).

BEVIS, G.F. (1978)

Electronic Systems News. The New A Level Course, The School Science Review Vol60 No.210 Sept. pp 134 - 142.

BEVIS, G.F. (1982)

Changing the School Syllabus. National Electronics Review Vol.17 pp. 11 - 14.

BEVIS, G.F. (1983)

Electronics - Why and in what form it should appear in the curriculum. Electronic Systems News, January.

BEVIS, G. (1985)

'Comments'. Electronic Systems news, Spring p. 24.

BLOOM, B.S. (Ed) (1965)

Taxonomy of Educational Objectives Vols. I and II (London: Longman).

BODEY, D.W. (1984)

Using a V.E.L.A. without Tears - Part 1 Physics Education Vol.19 No.3, pp. 128 - 129.

BODEY, D.W. (1984)

Using a V.E.L.A. wihtout Tears - Part 2 Physics Education Vol.19 No.6, pp. 128 - 129.

BODEY, D.W. (1985)

The Sonometer and the V.E.L.A. Physics Education Vol.20 No.2, pp. 78 - 79.

BOFFEY, R. (1984)

F.E. and the Y.T.S. N.A.T.F.H.E. Journal Oct. pp. 22 - 27.

BOLAM, R., SMITH, G. and CARTER, H. (1978)

Local Education Authority Advisors and the Mechanisms of Innovation (Slough: N.F.E.R.)

BORCHERDS, P.H. (1984)

Op-Amps in power amplification: a laboratory exercise in feedback. Physics Education Vol.19 No.3 pp. 125 - 127.

BOTHWELL, D. (1982)

The Havant Schools Microelectronics Programme. Electronic Systems news, Sept. p.4.

BOWLES, S. and GINTIS, H. (1975)

Education, Socialism and Revolution. pp. 128 - 132 in Rich, J.M. (1981).

BRADY, L. (1985)

The Supportiveness of the Principal in School-based Curriculum Development. Journal of Curriculum Studies Vol.17 No.1 pp. 95 - 97.

BRANDON, E.P. (1981)

Logic in the Laboratory. School Science Review Vol.62 No.221 Jan. pp. 762 - 765.

BRANDER, R.W. (1976)

Physicists and Electronics. Physics Education Vol.11 No.2 p.665.

BRANKIN, C.J., CHIDZIK, R. and DUNKERTON, J. (1984)

'On-line' graphics in the Science Laboratory. Schools Science Review Vol.66 No.234, pp. 134 - 136.

BRICKELL, H.M. (1964)

State organisation for educational change: a case study and a proposal pp. 493 - 532 in Miles M.B. (1964).

BRICKELL, H.M. (1967)

Two local change strategies pp. 399 - 410 in Hooper R. (1971).

BRIMICOMBE, M.W. (1984)

In praise of Solderless breadboard. Electronic Systems News, Autumn p. 26.

BROADFOOT, P.M. (1980)

"Assessment, Curriculum and Control in the changing pattern of centre-local relation". Local Government Studies Nov.

BROWN, M.R. (1971)

Some Strategies used in Primary Schools for Initiating and Implementing change. Unpublished M.Ed Thesis University of Manchester.

BRUNER, J.S. (1960)

The Process of Education (london: Oxford University Press).

BRUNER, J.S. (1962)

On Knowing: essays for the left hand (New York: Havard University Press).

BULLOCK, A. (1980)
Teacher Participation in School Decision Making.
Journal of Education Vol.10 No.1 pp. 21 - 28. Cambridge

CADD, J.A. (1981)

The Clinical Interview: a Holistic Approach to the Evaluation of Learning. Journal of curriculum Studies Vol.13 No.2 pp. 150.

CANE, B. (1967)

In-Service Training of Teachers: a pilot study (two vols) (Slough: N.F.E.R.).

CANE, B. and SCHROEDER, C. (1970) The Teacher and Research (Slough: N.F.E.R.).

CANTOR, L.M. and ROBERTS, I.F. (1979) Further Education today (London: Routledge and Kegan Paul).

CARLSON, R.O. (1964)

School Superintendents and adoption of modern math: structure profile. pp. 329-342 in Miles, B.M. (1964). a social

CARLSON, R.O. (Ed) (1965)

Change processes in Public Schools (Eugene: University of Oregon Press).

CHAPLIN G.B.B. (1976)

Pilot A level in Electronic Systems. Physics Education Vol.11 No.2 Mar pp. 80 - 84.

CHAPMAN, B.R. (1983)

Curriculum 2000. Electronic Systems News, May pp. 6 - 7.

CHAPMAN, B.R. (1984)

Electronics and Physics. Physics Education Vol.19 No.3 pp. 110 -111.

CHESSUM, R. (1980)

Teacher Ideologies and Pupil Dissaffection pp. 113 - 129 in Barton et al (1980).

CHIN, R. and BENNE, K.D. (1976)

General Strategies for affecting changes in Human Systems in Bennis W.G. et al (1976).

CLARK, A., JONES, K. and LAMBERT, A. (1982)

A Versatile Microprocessor Data Logger and Logic Simulator for Schools. Education In Science, Nov. pp. 39 - 40.

Collaborative Research (1978)

Newsletter No.2 Centre for Educational Sociology University of Edinburgh pp. 17 - 40.

CONNELLY, F.M. and BERR-PERETZ, M. (1980)

'Teacher Role in Curriculum Research and Development'. Journal of Curriculum Studies Vol.12 No.2 pp. 95 - 107.

COOMB, P.H. (1968)

The World Educational Crisis (New York: 0.U.P.)

COULSON, J.M. (1983)

Federal Education Dissemination Legislation and Policy pp. 25 - 40 in Paisley W.J. et al (1983).

Council for Educational Technology News No.9 March 1980.

COX, C.B. and DYSON, A.E. (1971)

The Black Papers on Education (London: Davis-Poynter),

CRELLIN, J.R., ORTON. R.J.J. and TAWNEY, D.A. (1979)

Present-day School Physics Syllabuses. Report on Progress in Physics Vol.42 pp. 677 -n 725.

CRESSWELL, M.J. (1982)

Some possible approaches to the Problem of Examining across a Wide Range of Ability: A Discussion of the new 16+ Examination Curriculum Vol.3 No.2 pp. 38 - 44.

CUTHBERT, L.G. (1976)

Stressing design in electronics teaching. Physics Education, March pp. 88 - 93.

CUTHBERT, L.G. (1981)
Microprocessors in Schools. Physics Education Vol.16 No.3 pp. 136 - 140, 151.

DALIN, P. (1973)
Case Studies of Educational Innovation IV Strategies for Innovation in Education. (Paris: Centre for Educational Research and Innovation. 0.E.C.D.)

DAVIES, E.R. and PENTON, S.J. (1976)
An Electronics Unit Laboratory. Physics Education Vol.11 No.6 pp. 404 - 408.

DEAN, K. (1981)
Microelectronics in F.E. Some personal perceptions. F.E.U.
Occassional Paper, Oct. (London: F.E.U.)

DEAN, R. (1982)
Microelectronics in Schools. Electronic Systems news, May p. 15.

D.E.S. 1977a A New Partnership for our Schools, Taylor report (H.M.S.O.)

D.E.S. (1977)
Education in Schools [The Green paper] (H.M.S.O.)

D.E.S. (1977)
Curriculum 11 - 16. [The Red Book] (H.M.S.O.)

D.E.S. (1979)
Aspects of Secondary Education. A Survey by H.M. Inspectorate. (H.M.S.O.)

D.E.S. (1979)
A View of the Curriculum (H.M.I. Matters for Discussion Series)
(H.M.S.O.)

D.E.S. (1979)
Local Authority Arrangement for the School Curriculum. Report on the Circular 14/77 Review (H.M.S.O.)

D.E.S. (1980)
A Framework for the School Curriculum (H.M.S.O.)

DICKENSON, N.B. (1975)

The Headteacher as innovator in Reid W.A. and Walker D.F. (1975).

DIMES, R.E. and HUKER, P. (1977)

A new London A Level Physics Syllabus. Physics Education Vol.12 No.1 pp. 27 - 29.

DOREY, A.P. (1983)

Engineering Solution to the A level Physics Problem. Physics Education Vol.18 No.1 p.31.

DRIVER, R. and WORSLEY, C. (1979)

The Assessment of Performance in Science Project. European Journal of Science Education Vol.1 No.4 pp. 441 - 447.

DUNN, C.W. (1984)

A Favour or Favourite. Electronic Systems News, Autumn p. 11.

DUNN, R. (1984)

Microelectronics in Schools. (M.E.P. Conference Report).

DURRANT, P.M. and BLOODWORTH, R.A. (1976)

The use of an Electrocardiograph apparatus in Biology. The School Science Review Vol.58 No.202 pp. 50 - 53.

E.I.S. Article (1983)

'Draft National Criteria for Physics'. Education in Science, June pp. 17 - 18.

E.I.S. Article (1983)

'A Single System of examining at 16+'. Education in Science, September pp. 11 - 12.

EDWARDS, A. (1983)

The Reconstruction of Post-Compulsory Education and Training in England and Wales. European Journal of Education Vol.18 No.1 pp. 7 - 20.

EDWARDS, T. (1984)

The Youth Training Scheme: A New Curriculum? Episode One (London: The Falmer Press).

EGGLESTON, J. (1977)

The Sociology of the School Curriculum (London: Routledge and Kegan Paul).

Electronics its easy part 41 (1977) Oscilloscopes Electronics Today International, July pp. 64 - 69.

ELLSE, M.D. (1977)

Safety of electrical sockets. School Science Review Vol.58 No.205 pp. 820 - 822.

ELLSE, M.D. (1984)

Teaching the common emitter amplifier. Physics Education Vol.19 No.6 pp. 271 - 275.

ELLIOT, J. (1983)

A Curriculum for the study of Human Affairs: The Contribution of Lawrence Stenhouse. Journal of Curriculum Studies vol.15 No.2 pp. 106.

ESLAND, G. (1972)

Innovation in the School. Unit 12 E212, School and Society (Milton Keynes: 0.V.)

EWELL, M.J. (1984)

Science at age 11. Physcis Education Vol.19 pp. 158 - 161.

FAIRBROTHER, R.W. (1977)

Profiles in Examinations. Physics Education Vol.12 No.1 pp. 29 - 32.

FAIRBROTHER, R.W. (1984)

Examinations: An Up-date. Education in Science, Nov., pp. 41 - 45.

F.E.U. (1980)

"Loud and Clear" p.R3 Summary (London: F.E.U.)

F.E.U. (1982)

A basis for choice: Report of a study greoup on post 16 preemployment courses. Second Edition Dec., 1982. (London: F.E.U.)

FIDDY, R.A. (1982)

A Curriculum for Employability, Journal of Further and Higher Education Vol.6 No.1 Spring.

FOTHERGILL, R. (1982)

Launching M.E.P. into the Curriculum. Inspection and Advice Vol.17 p.11.

FOTHERGILL, R. (1984)

Impact of Microelectronics in the Currioculum (M.E.P. Conference Report).

FOTHERGILL, R. (1984)

All Change. Physics Education Vol.19 No.2 p.53.

FOXCROFT, G. (1983)

The Systems Approach to Electronics. Electronic Systems Jan, pp. 4 - 5.

FOXCROFT, G. (1984)

On the development of electronics at the Independent Schools Microelectronics Centre. Electronic Systems News, Summer, pp. 32 - 33.

FRASER, B.J. (1982)

How strongly are attitude and achievement related? The School Science Review Vol.63 No.224 pp. 557 - 559.

FURNESS, B.S. and SAGOE-STAFF, C.B. (1983)
Science within a Vocational Course at 16+ - T.E.C. Technicians Studies. Education in Science, Sept., pp. 19 - 22.

GALTON, M. (1970)

Accountability and the teacher: some moves and counter-moves pp. 135 - 146 in Richards C. (1970).

GALTON, M., and EGGLESTON, J. (1979)

Some Characteristics of Effective School Teaching. European Journal of Science Education Vol.11 No.1 pp. 75 - 86.

GEDDES, M. (1984)

The system approach to electronics teaching. Physics Education Vol.10 No.6 Nov., pp. 268 - 270.

GHEE, P. and MILLS, R. (1983)

Technology-Microprocessor Control. Electronic Systems news, Autumn, p.13.

GLATTER, R. and OZGA, J. (1979)

E222 The Control of Education in Britain Unit 1. An Introduction to the Control of Education in Britain. (Milton Keynes: 0.U.P.)

GOODSON, I. (1983)

School Subjects and Curriculum Change (London: Cromm Helm).

GOTT, R. (1984)

Science Report for teachers No.7. Electricity at Age 15, D.E.S. (London: H.M.S.O.)

GOSDEN, S. (1984)

'Probation of Life Sentence'. Education in Science No. 107, April p. 15.

GOUGH, C.E. (1983)

The J.M.B. Electronics AO Syllabus. Physics Education Vol.18 No.1 pp. 14 - 17.

GOUGH, C.E. (1983)

Letter. Physics Education Vol.18 No.4, pp. 153 - 154.

GOULET, R.R. (Ed) (1968)

Educational Change: The Reality and the Promise. (New York: Citation Press).

GRACE, D. (1981)

Electronic Systems. The School Science Review Vol.62 No.220, pp. 581 - 585.

GRANT, L. (1985)

The Changing Patterns of Vocational Education for 16 - 18 year olds: a critical comment. Journal of Further and Higher Education Vol.9 No.1 pp. 56 - 65.

GREEN, E.L. (1982)

Individualised Learning in Science. The School Science Review Vol. 164 No.22 pp. 16 - 22.

GRIFFITHS, D.E. (1964)

Administration theory and change in organisations. pp. 425 - 436 in Miles M.B. (1964).

GROSS, N., GIACQUINTA, J.B. and BERNSTEIN, M. (1971)
Implementing Organisational Innovation. (London: Harper and Row).

GWYN, R. (1982)

Information Technology and Education: the approach to policy in England, Wales and Northern Ireland. European Journal of Education Vol.17 No.4 pp. 355 - 368.

GUBA, F.G. and CLARK, D.L. (1975)

The configurational perspective: a new view of knowledge production and utilisation. Educational Research Vol.4 part 4, April pp. 6 - 9.

Guidance Note PM32.

The Safe Use of Portable Electrical Apparatus (electrical safety). Health and Safety Executive.

HALLIDAY, J.S. (1981)

T.E.C. Physics Assessment. Physics Education Vol.16 No.3 pp. 172 - 177.

HALPIN, D. (1980)

Exploring the Secret Graden. Curriculum Vol.1. No.2 pp. 32 - 45.

HAMILTON, Sir JAMES (1983)

'The Nature and Problems of Curriculum Development. Education in Science, June, pp. 10 - 14.

HAMMERSLEY, M. and HARGREAVES, A. (1983)

Curriculum Practise: Some sociological case studies. (London: Falmer Press).

HARGREAVES, A. (1982)

The Rhetoric of School-Centred Innovation. Journal of Curriculum Studies Vol.14 No.3 pp. 251 - 266.

HARRIS, F.O. (1983)

Computer programs in Chemistry - the present and the future. The School Science Review Vol.65 No.231 pp. 318 - 323.

HARRIS, J. (1984)

Electronics and Physics. Physics Education Vol.19 No.4 pp. 165 - 166.

HARRIS, J. (1985)

Revised Nuffield Advanced Physics. Physics Education Vol.20 No.1 Jan, pp. 18 - 23.

HAVELOCK, R.G. (1969)

Planning for Innovation through Dissemination and Utilisation of Knowledge. (Ann Arbor, Mich: Centre for Research on Utilisation of Scientific Knowledge).

HAVELOCK, R.G. (1973)

The change agents guide to innovation in education (New Jersey: Educational Technology Publications).

HAVELOCK, R.G. (1971)

Utlisation of Educational Research and Development'. British Journal of Educational technology Vol.2 No.2 pp. 84 98.

HILFIKER, L.R. (1970)

Factors Relating to the Innovativeness of School Systems: Journal of Educational Research Vol.64 No.I.

HILTON, B. (1984)

Profiling Skills in Science. Education in Science, April, pp. 32 - 34.

HIRST, P.H. (1969)

'Liberal education and the nature of knowledge' in Archmabault, R.D. (1969).

HIRST, P.H. and PETERS, R.S. (1970)
The Logic of Education (London: Routledge and Kegan Paul).

HODSON, D. and PROPHET, R.B. (1983)

Why the Science Curriculum Changes - Evolution or Social Control. School Science Review Vol.65 No.230, pp. 5 - 18.

HOLT, J. (1976)

How Children Fail (Harmondsworth: Penguin).

HOLT, M. (1980)

Schools and Curriculum Change (Maidenhead: McGraw-Hill)

HOLT, M., PRING, R. and WHITFIELD, R. (1980) The Tertiary Sector (London: Hodder and Stoughton).

HOLT, M. (1981)

Evaluating the Evaluation (London: Hodder and Stoughton).

HOLT, M. (1982)

Whole Curriculum Planning in Schools: Some Research Implications. Journal of Curriculum Studies Vol.14 No.3 267 - 276.

HOOPER, R. (1969)

Educational Technology in the U.S.A. - a diagnosis of failure pp. 411 - 423 in Hooper R. (1971).

HOOPER, R. (Ed) (1971)

The Curriculum: context, design and development (Edinburgh: Oliver and Boyd).

HOOPER, E. (1981)

Beckingsales Safe use of Electricity (Birmingham: R.O.S.P.A.)

HOUSE, E.R. (Ed) (1973)

School Evaluation. The Politics and Process (Calif. U.S.A: McCutchan).

HOUSE, E.R. (1979)

"Technology versus Craft: A Ten Year Perspective on Innovation".
Journal of Curriculum Studies Vol.11 No.1 pp. 1 - 15.

HOUSE, E. (1974)

The Politics of Educational Innovations (Berkeley: McCutchan Publishing Corporation).

HOYLES, E. (1968)

The Head as an Innovator pp. 128 in Allen B. (1968).

HOYLE, E. (1969)

How does the Curriculum Change? 1. A Proposal for Inquiries. Journal of Curriculum Studies Vol.1 No.2 pp. 132 - 141.

HOYLE, E. (1969)

How does the Curriculum Change? 2. Systems and Strategies. Journal of Curriculum Studies Vol.1 No.2 pp. 230 - 239.

HOYLE, E. (1969)

How does the Curriculum Change? pp. 375 - 398 in Hooper R. (1971).

HOYLE, E. (1970)

Planned Organisational Change in Education. Research in Education 3 pp. 1 - 22, May.

HOYLES, E. (1974)

Innovation and the Social Organisation of the School in Creativity of the School, C.E.R. Technical Report No.1 (Paris: Organisation for Economic Co-operation and Development).

HUMPHRIES, M., McALLISTER, M., OLIVER, D. and OSBORNE, P. (1980) Loud and Clear: A Study in Curriculum Dissemination in F. & H.E. (London: F.E.U.)

HURFORD, J. (1979)

Testing Times. Rank and File Teacher, 64.

I.C.I. (1983)

A practical guide to Microcomputer Interfacing. (Physics and Radiosotope Services; I.C.I., plc).

I.E.C. Publication 479.

Effects of current pasing through the Human Body. CDU/UDC 621 30144: 6160012 614825

I.E.E. (1984)

Schools Liason Service 1975 - 84 The First Ten Years, October (Hatfield: I.E.E.)

ILLICH, I. (1973)

De-schooling Society (Harmondsworth: Penguin)

JACKSON, A. and McGregor, J. (1978)

Three notes concerning differential thermal analysis. The School Science Review Vol.60 No.211 pp. 292 - 300.

JACKSON, P.W. (1968)

Life in Class-rooms (New York: Holt Rinehart & Winston).

JENKINS, D.

An adversary's account of Safaris' ethics of case study pp. 128 - 134 in Richards C. (1978).

JOB, G.C. (1984)

The Certificate of Pre-vocational Education. Education in Science, Nov. pp. 37 - 38.

JOHN MARTIN, J. (1984)

M.E.P. Microelectronics for all. Electronics Systems News, Summer pp. 17 - 18.

JOHNSON, A. (1982)

An approach to the teaching of electronics. Electronic Systems News, Sept. p.5

JOHNSTONE, A.H., MACGUIRE, P.R.P., FRIEL, I. and MORRISON, E.W. (1983)

Criterion - referenced testing in Science - thoughts, worries and suggestions. The School Science Review Vol.54 No.229 pp. 626 - 634.

JOHNSON, D.W. (1964)

Title III and the dynamics of educational change in Californian Schools pp. 157 - 182 in Miles G.M.B. (1964).

JOHNSTONE, W. (1984)

Computer magazines in circulation war. The Times 24th Oct., also The Times 26th Oct.

KAMPEL, I. (1985)

The New Logic Symbols. Electronics and Wireless World Vol.91 No.1589 pp. 43 - 46.

KAVANAGH, A.M. (1978)

The Colour Coding for Electrical Wiring. The School Science Review Vol.60 No.211 p.369.

KAY, B. (1976)

The Assessment of Performance Unit: It's task and rationale. Education Vol.4 No.2 pp. 108 - 112.

KELLY, A.V. (1982)

The Curriculum Theory and Practise 2nd Edn. (London: Harper and Row).

KELLY, J. (1971)

A Reappraisal of Examinations. Journal of Curriculum Studies Vol.3 No.2 pp. 119 - 127.

KEMPA, R.F. and NICHOLLS, C.E. (1983)

Problem Solving and Cognitive Structure. European Journal of Science Education Vol.5 No.2 pp. 171 - 184.

KERR, J.F. (1967)

The Problems of Curriculum Reform pp. 13 - 18 in Kerr J.F. (1968).

KERR, J.F. (Ed) (1968)

Changing the Curriculum. (London; University of London Press).

KIRKMAN, S. (1985)

Examining bodies refuse to bow to prevocation T.E.S. 15th Feb.

KLEIN, D. (1976)

Some notes on the dynamics of resistance to change: the defender role in Watson G. (1976).

KNEALE, R. and SNASHALL, D. (1983, 1984)

Projects Need Planning. Electronic Systems news, Autumn '83, Spring '84, Summer '84.

KOGAN, M. (1978)

The Politics of Educational Change. (London: Fontana).

KOGAN, M. (1984)

Policies for the School Curriculum in their Politcal Context. Cambridge Journal of Education 10th March.

KOHL, H.R. (1976)

Developing and Sustaining New Schools pp. 9 - 12 in Rich J.M. (1981).

KUBLI, F. (1983)

Piagets clinical experiments: A Critical Analysis and Study of their Implications for Science Teachers. European Journal of Science Education Vol.5 No.2 pp. 123 - 139.

KUHN, T.S. (1970)

The Structure of Scientific Revolution (Chicago: University of Chicago Press).

LACY, E.A. (1982)

The Handbook of Electronics Safety Procedures (U.S.A: Tab Books Inc)

LAMBERT, A. (1983)

V.E.L.A.: a microprocessor-based laboratory instrument. School Science Review Vol.15 No.230 pp. 38 - 47.

LATCHAM, J. and RUSSELL, T.J. (1975)

The Skills of Curriculum Development IV: Selecting Alternative Patterns of Examination and Assessment Info. Bank 00944 (Coombe Lodge).

LAYTON, D. (1973)

Science for the People (London: Allan and Unwin).

LAWTON, D. (1980)

The Politics of the School Curriculum (London: Routledge and Kegan Paul).

LEWIS, A.M. (1982)

C.E.D.E.F.O.P. (European Centre for the Development of Vocational Training: Berlin).

LODGE, B. (1985)

Technician Courses try to catch up. T.E.S. 15th March, p.8.

LORD, R. (1984)

Value for money in Education (Public Money: London).

LOVIS, K.S. (1983)

Dissemination Systems: Some lessons from programmes of the past p. 65 - 88 in Paisley, W.J. (1983).

LUKACS, G. (1923)

History and Class Conciousness - translation by R. Livingstone. Merlin Press.

LUKES, J.R. (1975)

Power and Policy at the D.E.S. - a case study. Universities Quarterly 29, pp. 133 - 165.

McARTHUR, J. (1985)

C.P.V.E. Commitment or Capitulation. N.A.T.F.H.E. Journal pp. 14 - 17.

McMAHON, H.F. and ANDERSON, J.S.A. (1980)

Building a Springboard: regionalization within the Microelectronics and Schools and Colleges Development Programme. British Journal of Educational technology Vol.11 No.3 pp. 201 -220.

MacDONALD, B. (1976)

Who's afraid of evaluation? Education Vol.4 No.2 pp. 87 - 91.

MacDONALD, B. and WALKER, R. (1976)

Changing the Curriculum (London: Open Books).

MacFARLANE REPORT

Education for 16 - 19 year olds, December 1980 (London: H.M.S.O.)

MacLURE, S. (1982)

The Educational Consequences of Mr. Norman Tebbit. Oxford Review of Education Vol.8 No.2.

MacRORY, J., BEAUMONT, T. and TAYLOR, H.T. (1977)

Backwards from T.E.C. Journal of Further and Higher Education Vol.8 No.3 pp. 3 - 13.

MALCOLME-LAWES, D.J. (1984)

Microcomputers and Laboratory Instrumentation (London: Plenum Press).

MALONE, J. and CRONE, R. (1978)

A New Approach to Innovation in Schools. Educational Research Vol.20 No.2 pp. 83 - 88.

MANLY, D.P. (1984)

Demonstration of autocatalysis using a microcomputer. The School Science Review Vol.65 No.233 pp. 709 - 714.

MANN, J. (1979)

Education. (London: Pitman).

MANNHIEM, K. (1936)

Ideology and Utopia: an introduction to the sociology of knowledge 1960 translation (London: Routledge and Kegan Paul).

MANSELL, J. (1984)

A question of balance. N.A.T.F.H.E. Journal November.

MARCUS, J.E. (1983)

Advances in Diffusion Theory pp. 251 - 257 in Paisley W.J. (et al 1983).

MARSH, P.M. (1964)

Wellsprings of Strategy: considerations affecting innovations by the P.S.S.C. pp. 249 - 270 in Miles M.B. (1964)

MASKILL, R. and WALLIS, K.G. (1982)

Scientific thinking in the classroom. Vol.63 No.224 pp. 551 - 554. The School Science Review

MEAD, T. et al (1984)

The M.E.P. Analogue Sensor Manual.

MEADE, T. (1983)

Technology - The Change and the Challenge. Electronics Systems News, May.

MEE, J.S. (1983)

M.A. Thesis Durham University. Electronics in Schools.

MEIGHAN, R. and BROWN, C. (1980) Location of Learning and Ideologies of Education: Some issues raised by a Study of Education pp. 131 - 151 in Barton L. (et al 1980).

M.E.P. ARTICLE

- Versatile Laboratory Aide in M.E.P. Electronics and V.E.L.A. Control Technology Domain, Information File, Autumn 1984.

M.E.P. (1983)

Electronics and Control Technology Domain, Information File, Autumn (M.E.P. Centres).

M.E.P. (1984)

Electronics and Control Technology Domain, Information File, Autumn (M.E.P. Centres).

MICHELL, M.G., MUNDIE, J.H. and SWAIN, J.R.L. (1984) A Report on Recent Developments. Education in Science, April pp. 21 - 22.

MILES, M.B. (Ed) (1964) Innovation in Education (New York: Teachers College Press).

MILES, M.B. (1965)

Planned change and organisational health: figure and ground 329 - 341 in Carlson R.O. (1965).

MILLAR, R.H. (1981)

Curriculum Rhetoric and Social Control: a Perspective on Recent Science Curriculum Development. European Journal of Science Education Vol.3 No.3 pp. 271 - 284.

MILLAR, R.H. and UNDERWOOD, C.I. (1984)

Using the analogue input port on the BBC Microcomputer: some general principles and a specific example. The Schools Science Review Vol.66 No.235 pp. 270 - 279.

MILLER, A.I. (Ed) (1967)
Perspectives in Educational Theory. (New York: Appleton Century-Crofts).

MILLMAN, J. (1979)

Microelectronics: Digital and Analog(sic) Circuits and Systems. (London: McGraw-Hill).

MILLS, C.W. (1939)

Language, Logic and Culture. American Sociological Review 4, pp. 670 - 680.

MOOR, C., DEAN, A. and ANDREWS, S. (1983) T.E.C. Programmes Evaluated. (Windsor: N.F.E.R. - Nelson). MORT, P.M. (1964)

Studies in educational innovation from the Institute of Administration Research: an overview pp. 317 - 328 in Miles M.B. (1964).

MUNRO, R.G. (1977)

Innovation: Success or Failure? (London: Hodder and Stoughton).

MULTIMETER GUIDE (1975)

Electronics Today International, December pp. 54 - 61.

MUSGRAVE, P.W. (1968)

The School as an Organisation. (London: MacMillan).

MUSGROVE, F.

The Contribution of Sociology to the Study of the Curriculum pp. 96 - 110 in Kerr J.F. (1968).

MUSGROVE, F. (1971)

Patterns of Power and Authority in English Education (London: Methuen).

MUSGROVE, F. (1973)

Power and the Integrated Curriculum. Journal of Curriculum Studies Vol.5 No.1 pp. 3 - 12.

NEALE, D.F. and WILSON, D.R. (1984)

Design of Microelectronic Programmes: A Consultative Document (London: F.E.U.)

NEVERMANN, K. (1974)

The relationship and the formal organisation of, and informal grouping within, a school to its creativity in Creativity of the School, Technical Report No.1 (Paris: Organisation for Economic Co-operation and Development).

NICHOLLS, A. (1983)

Managing Educational Innovations. (London: Unwin Educational books).

NICODEMUS, R.B. (1975)

"Measuring Adoption of Twentyfive New Curriculum Projects in Seventeen Local Education Authorities". Durham and newcastle Institute of Education Vol. 27 No.131 Oct. pp. 12 - 17.

NICODEMUS, R.B. and MARSHALL, D. (1975)

Familiarity of Headteachers with Twentyfive New Curriculum Projects in Educational Studies Vol.1 No.3 pp. 191 - 200.

NICODEMUS, R.B. (1977)

Why Science Teachers Adopt New Curriculum Projects. Educational research Vol.19 No.2 pp. 83 - 91.

NOAKES, P. (1976)
The N.E.C. Link Schemes. Physics Education Vol.11 No.2 pp. 84 - 87.

OGBORN, J. and WONG.D. (1984)

A Microcomputer Dynamical Modelling System. Physics Education Vol.19 No.3 May 1984, pp. 138 - 142.

OLSEN, J. (1982)

Innovation in the Science Curriculum (London: Croom Helm).

OLSEN, J.K. (1977)

Teacher Educational and Curriculum Change: re-examining relationship. Curriculum Inquiry Vol.1 No.1 pp. 61 - 66.

OLSEN, J.K. (1980) "Teacher Constructs and Curriculum Change. Journal of Curriculum Studies vol.12 No.1 pp. 1 - 11.

OSBORNE, R.J., BELL, B.F. and GILTER, J.K. (1983) Science Teaching and Childrens View of the World. European Journal of Science Education Vol.5 No.1.

ORTON, R.J.J. (1982)

Microelectronics Awareness. Electronics Systems News, May, pp. 7 - 9.

PAGE, M. (1985)

The Impact of Microelectronics for All. Education Vol.165 No.3 p.61.

PAISLEY, W.J. and BUTLER, M. (Ed) (1983) Knowledge Utilisation Systems in Education (London: Sage Pub.)

PALACIO, D. (1984)

What is a Scientific Observation? The School Science Review Vol.65 No.233 pp. 769 - 771.

PANTER, M.J. (1984)
Diffraction pattern in Young's double slit experiment using VELA. School Science Review Vol.66 No.234
pp. I4I - I43.

PASSMORE, B. and LODGE, B. (1985)
Lawson reveals training for staff and leavers. T.E.S. 15th March p.3.

PAULSTON, R.G. (1976)
Conflicting Theories of Social and Educational Change: A
Typological Review (Pittsburgh: University Centre for
International Study).

PENMAN, D.A. (1984)
The Measurement of distance using a laser. School Science
Review Vol.65 No.233 pp. 735 - 744.

PENMAN, D.A. (1984)
An easily constructed electronic thermometer. School science
Review Vol.66 No.235 pp. 356 - 359.

PELL, A.W. (1984) Looking for a Science in the teaching of Physics. The School Science Review Vol.66 No.235 pp. 363 - 367.

PETERS, R.S. (1976)
The Role of the Head (London: Routledge and Kegan Paul)

PETERSON, S.M. and EMRICK, J.A. (1983) Advances in Practise pp. 219 - 250 in Paisley W.J. (et al 1983).

PHENIX, P.H.C. (1964)
Realms of Meaning (New York: McGraw-Hill).

PHILLIPS, R.F. (1982)
"A Reaction to the 16+ Report Propising National Criteria".
Education in Science, January pp. 15 - 16.

PIAGET, J. (1970)
The Science of Education and the Psychology of the Child (New York: Orion Press).

PIAGET, J. (1973)
To understand is to invent. (New York: Grossman).

PIGGOTT, A.G. (1984)

Teacher perspective and the development of core science. The School Science Review Vol.65 No.233 pp. 752 - 754.

PIKE, T.D. (1982)

The Schools Council Modular Course in Technology Development of a Unit Entitled "Microelectronics in Control". Electronic Systems News, May pp. 17 - 18.

PILE, Sir W. (1979)

The Department of Education and Science, The New Whitehall Series No.16 (London: Geo. Allen and Unwin).

PILLINER, G.W. (1983)

'Whither Electronics'. Physics Education Vol.18 No.4 pp. 149 - 150.

PILLINER, G.W. (1985)

Microprocessors at '0' Level. Electronic Systems News, Spring pp. 9 - 10.

PITMAN, A. (1981)

The Necessary Distortion of Dissemination Innovation. Journal of Curriculum Studies vol.13 No.3 pp. 253 - 265.

PLASKOW, M. (Ed) (1985)

The Life and Death of the Schools Council. (London: Falmer).

POLANYI, M. (1958)

Personal Knowldge. (London: Routledge and Kegan Paul).

POPE, D. (1983)

The Objectives Model of Curriculum Planning and Evaluation, C.E.T. Occasional Paper 10 (London Council for Educational Technology).

POPPER, K.R. (1972)

Objective Knowledge (Oxford: Clarendon Press).

PURVES, R.D. (1983)

High-impedance electronics. Electronics and Wireless World Vol.89 No.1566 pp. 31 - 32.

Q.I.P. (1984)

Queries in Physics. Physics Education Vol.19 No.4 p.167 Q.558.

RAFFE, D. (1981)

Education, Employment and the Youth opportunities Programme: Some sociological perspectives. Oxford Review of Education Vol.7 No.3.

RATHS, J.D. (1971)

Teaching without specific objectives. Educational Vol.28, April pp. 714 - 720. leadership

RAVETZ, J.R. (1973)

Scientific Knowledge and its Social Problems. (Harmondsworth: Penguin).

REID, W.A. and WALKER, D.F. (Ed) (1975)

Case Studies in Curriculum change (London: Routledge Kegan Paul)

RICH, J.M. (Ed) (1981) Innovation in Education: Reformers and their Critics, 3rd Edit. (Boston: Allyn and Bacon).

RICHARDS, C. (Ed) (1970)

the Curriculum, Power and issues in Curriculum Studies (Driffield: Nafferton Books).

ROBERTS, I.F. (1976)

The Technician Examination counci, some thoughts on T.E.C. as a curriculum project. Education for Teaching, Autumn Vol. 101 pp. 16 - 28.

ROBERTS, S.C. (1984)

Use of a BBC Microcomputer as an interval timer for linear air track experiments. The School science Review Vol.66 No.234 pp. 129 - 133.

ROGERS, E.M. (1962)

Diffusion of Innovations (New York: Free Press).

ROGERS, E.M. and EICHHOLTZ, G. (1964)

Resistance to the adoption of audio-vidual aids by elementary teachers: contrasts and similarities to agricultural innovation pp. 299 - 316 in Miles M.B. (1964).

ROGERS, E.M. and SHOEMAKER, F.F. (1971)
Communication of Innovation: A Cross Cultural Approach, 2nd Edn. (New York: The Free Press).

ROGERS, E.M. (1978)

Rise and fall of the dominant paradigm. Jo

Rise and fall of the dominant paradigm. Journal of Communication 28, pp. 64 - 69 Winter.

ROGGATT, R. and EVAN, M. (Ed) (1977)
The Political Context (London: Ward Loch) from D.E.C.D. (1976)
Report on Britain.

ROLLS, I.F. (1984)

The Future of Science Education: an alternative perspective. The School Science Review Vol.65 No.232 pp. 429 - 439.

ROSSITER, B. and HUMPHREYS, S. (1983)
Using the ZX81 for experimental science. The School Science
Review Vol.64 No.229 pp. 741 - 744.

RUBIN, L.J. (1968)
Installing an innovation in Goulet R.R. (1968).

RUDDUCK, J. and KELLY P. (1976)
The Dissemination of Curriculum Development (Slough: N.F.E.R.)

RUTHERFORD, R.J.D. (1983)

An Analysis of Four Institutional Strategies for Staff Development. British Journal of Education technology Vol.14 pp. 4 - 13.

RUSSELL, T.J. (1975)

Curriculum Development without Behavioural Objectives. Info Bank 00947 (Coombe Lodge).

RUSSELL, T.J. and LATCHAM, J. (1979)
'The Skills of Curriculum Development: The Writing of Specific Learning Objectives' LBN 0942 in 'Curriculum Development in F.E.' 3rd Edition F.E. Staff College.

RUTTER, M. (1979)
Fifteen Thousand Hours. (London: Open Books).

SAFARI (1974)

Innovation, Evaluation and Research and the Problem of Control. Mimeo (Norwich, Centre for Applied Research in Education, University of East Anglia).

SALTER, B. and TAPPER T. (1981)

Education, Politics and the State (London: Grant McIntyre).

SAVAGE, B. (1977)

Active Scope Probe. Practical Electronics, Sept. pp. 32 - 38.

SCARTH, J. (1983)

"Teachers School Based Experiences of Examining". pp. 207 - 227 in Hammersley and Hargreaves (1983).

SCHOOL COUNCIL PAMPHLET 14:

"Dissemination and In-Service Training": Report of the Working party on Dissemination 1972/3.

SCHOOLS COUNCIL (1971)

Choosing a Curriculum for the Young School-Leaver. Working paper 33. (London: Evans/Methuen).

SCHOOLS COUNCIL (1973)

Patterns and Variation in Curriculum Development Projects (London: MacMillan).

SCHOOLS COUNCIL (1973)

Evaluation in Curriculum Development: Twelve case Studies. Schools Council Research Studies (London: MacMillan).

SCHOOLS COUNCIL (1975)

Progress in Learning Science Project: Information Paper No.5.

SCHOOLS COUNCIL (1978)

Impact and Take up Project. A First Interim Report.

SCHOOLS COUNCIL (1979)

An Introduction to Evaluation 132a; Williams N.

SCHOOLS COUNCIL (1981)

Working paper 70. The Practical Curriculum (London: Methuen).

SCHMUCK, R.A. (1974)

'Interventions for strengthening the schools creativity' in Creativity of the School, C.E.R.I. Technical Report No.1 (Paris: Organisations for Economic Co-operation and Development).

SCHOFIELD, R. (1984)

The Place of Science in School Technology Teaching. The School Science Review Vol.66 No.234 pp. 151 - 156.

SCHON, D.A. (1971)

Beyond the Staple State (London: Temple Smith).

SEYMOUR, P. (1985)

Letter. T.E.S. 22nd February.

SHAYER, M. (1978)

The analysis of science courses for Piagetian level of demand. Studies in Science Education Vol.5 pp. 115 - 130.

SHIPMAN, M.D. (1973)

The Impact of a Curriculum Project. Journal of Curriculum Studies Vol.5 No.1 pp. 47 - 57.

SHIPMAN, M.D. (1974)

Inside a Curriculum Project. (London: Methuen).

SIMPSON, P. (1984)

Development in the teaching of communications electronics in Abergele. Electronic Systems News, August, p.6.

SMITH, B.P. (1983)

Digital Control at Greenhead Grammar, Keighley. The School science Review Vol.65 No.231 pp. 367 - 368.

SMITH, D.J. (1978)

Perceptions of scientific discovery among secondary school-children. The School Science Review Vol.60 No.210 pp. 142 - 149.

SPARKES, R.A. (1985)

But is it Electronics? Electronic Systems news, Spring pp. 32 - 33.

STENHOUSE, L. (1975)

An Introduction to Curriculum Research and Development (London: Heinemann).

STEVENSON, P. (1981)

Electronics - the new core technology. Physics Education Vol.16 No.3 pp. 141 - 144.

STOCK, J.T. and WALTER, K.D. (1976)

A Demonstration Automatic Poteniometric Titrator. The School Science Review Vol.57 No.201 pp. 728 - 731.

STONE, H. and WHAM, A.J.B. (1983)

Electron-direction indicator - an aid to interpreting redox reactions. The School Science Review Vol.64 No.229 pp. 719 - 721.

STROTHER, G.K. (1977) Physics with Applications in Life Sciences (Boston: Houghton Mifflin).

SUMMERS, M.K. (1982)

Science education and meaningful learning. The School Science Review Vol.64 No.227, Dec. pp. 361 - 366.

SUMMERS, M.K. (1983)

Electronics in the School Physics Curriculum. Physics Education Vol.18 No.5 pp.201 - 202.

SUMMERS, M.K. (1985)

Electronics 11 - 18: a co-ordinated programme for the school physics curriculum. Physics Education Vol.20 No.2 pp. 55 - 61.

SUTCLIFFE, J.K. (1979)

Displaying amplitude against frequency on an oscilloscope. The School Science Review Vol.60 No.213 pp. 740 - 742.

SWIFT, D.G. (1984)

Don't despise the humble home computer. The School Science Review Vol.66 No.235 pp.392 - 394.

TAYLOR, J. (1984)

Introduction to programming using a microcomputer for control. The School Science Review Vol.66 No.234 pp.137 - 140.

TAYLOR, P.H.

The contribution of psychology to the study of the curriculum, pp. 79 - 95 in Kerr J.F. (1968).

TAYLOR, P.H. (1971)

Purpose and structure in the curriculum, pp. 153 - 177 in Hooper R (1971).

TAYLOR, P.H. (1982)

"Curriculum Research: Retrospect and Prospect". Journal fo curriculum Studies Vol.14 No.1 pp. 53 - 59.

TAYLOR, P.H. and TYE, K.A. (Eds) (1974) Curriculumm, School and Society.

TEACHER (1985)

N.U.T. to monitor micro safety. Vol.41 No.27 p.1.

TEBBUT, M.J. (1978)

The Growth and Eventual Impact of Curriculum Development Projects in science and Mathematics. Journal of curriculum Studies Vol.10 No.1 pp.61 - 73.

TEBBUT, M.J. (1981)

Teachers' Views about the Nuffield Advanced Core Physics. Physics Education Vol.16 No.4, July pp. 228 - 233.

THOMPSON, K. (1984)

Education for Capability; A Critique. British Journal of Educational Studies Vol.XXXII No.3 pp. 203 - 212.

THORNE, M.P. (1980)

The Specification and Design of Educational Microcomputer Systems. British Journal fo Educational Technology Vol.11 No.3 pp. 178 - 184.

TRUMP, J.L. (1967)

Influencing change at Secondary level in Miller A (1967).

TULLY, J. (1983)

Introduction to v.d.u.'s. Electronics and Wireless World, Jan, Vol.89 No.1564 pp. 68 - 69, 72.

TURNER, P. (1985)

Consultation or Cover-up. T.E.S. 22nd Feb.

T.V.E.I.

Review 1984 (London: Manpower Services Commission).

VOKES, J. (1980)

Colour Blindness. Practical Electronics, June pp. 48 - 51.

VINCENT, B. (1983)

The Influence of Pressure Groups on the Policy-Making Process in Further Education: with special reference to Provision for Sixteen to Nineteen Year olds. Journal of Further and Higher Education Vol.7 No.1.

WALKER, P. (1984)

'Test equipment'. Electronics Today International, August p.47

WATKINS, R. (1972)

Curriculum Development and Teacher Development - A Suggestion. Paper submitted to Schools Council Working Party on Dissemination.

WALTON, J. and WELTON, J. (Ed) (1976)
Rational Curriculum Planning (London: Ward Lock).

WATSON, G. (1976)

Concepts for Social Change (Washington DC: National Training Laboratories, N.E.A.)

WATSON, G. (1967)

Towards a conceptual architecture of a self-renewing school system in Watson G (1967).

WATSON, P., KENINGTON, P. and HEYWOOD, G. (1983)

Measurement of capacitor charge decay using a microcomputer. The School Science Review Vol.65 No.231 pp. 33 - 337.

WEAVER, T. (1979)

E222, Unit 2 Central Control of Education (Milton Keynes: 0.U.)

WELLINGTON, J.J. (1981)

"What's supposed to happen Sir?": some problems with discovery learning. The School Science Review Vol.63 No.222, Sept. pp. 167 - 173.

WELLINGTON, J.J. (1984)

Computers across the curriculum - The Needs in Teacher Training. Journal of Further and Higher Education Vol.8 No.3 pp. 46 - 52.

WELTON, J.M. (1976)

Innovation as a Social Process pp. 125 - 140 in Walton J. and Welton J. (1976).

WEST, R.W. (1975)

The Summative Evaluation of Curriculum Innovations. University of Sussex Education Areas Occasional Paper 1.

WEST, R. (1978)

The Politics of Evaluation: stance focus and methodology pp. 121 - 127 in Richards, C. (1978).

WEST, R.W. (1981)

A Case against the core. The School Science Review Vol.63 No.223 pp. 226 - 236.

WEST, R.W. (1983)

Purpose and Values in Science Education. The School Science Review Vol.64 No.228 pp. 407 - 417.

WEST, R.W. (1984)

S.S.C.R. - A Progress Report. Physics Education Vol.19 No.4 pp. 182 - 186.

WHITEHEAD, D.J. (1980)

The Dissemination of Educational Innovations in Britain (London: Hodder and Stoughton).

WHITFIELD, R.C. (1979)

Educational Research and Science Teaching. The School Science Review Vol.60 No.212 pp. 411 - 430.

WILLIAMS, F.J. and PANTON, P. (1977)
The National Development of T.E.C. Programmes. Journal Further and Higher Education Vol.1 No.2 pp. 3 - 14.

WILLIAMS, J.D. (1966)

"Effecting Educational Change - Some Notes on the Reform Primary School Mathematics Teaching". Educational Research Vol.8 No.3 pp. 191 - 195.

WILLIAMS, N. (1979) An Introduction to Evaluation 132a. Schools Council.

WILSON, C. (1984) 'Matching Assessment to Objectives'. Education in Science, April pp. 17 - 18.

WILSON, K.D. (1983)
T.E.C., B.E.C. and the Theory of Curriculum Change. Journal of Further and Higher Education Vol.7 No.2 pp. 29 - 33.

WISEMAN, S. and PIDGEON, D. (1970)
Exploring Educational Curriculum Evaluation. (Slough: N.F.E.R.)

WOLCOTT, H.F. (1977)
Teachers vs Technocrats: An Educational Innovation in Anthropological Perspective (University of Oregon: Eugene).

WOOLNOUGH, B.E. (1976)
Practical work in 6th form Physics. Physics Education Vol.11
No.6 pp. 392 - 397.

WOOLNOUGH, B.E. (1983)
Exercises, investigations and experiences. Physics Educationa
Vol.18 No.2 pp. 60 - 63.

ELECTRONIC SYSTEMS

Advanced Level (658)

SYLLABUS, SPECIMEN PAPERS AND NOTES FOR THE GUIDANCE OF TEACHERS

The Associated Examining Board

INTRODUCTION

The syllabus for Electronic Systems at A level has been revised, and the new syllabus will be examined for the first time in 1987. This booklet sets out the new syllabus, specimen question papers, notes on the practical assessment and some syllabus topics, and specimens of the type of forms that will be used for the practical assessment. (The printed assessment forms were not ready when this booklet was prepared so that amended versions of the forms used in 1984 have been included).

The new syllabus is intended to retain the philosophy of the syllabus it replaces but to bring it up to date and to improve or remove those topics which proved to be less than satisfactory in the present scheme. There is a greater emphasis on digital systems than previously, reflecting the increasing importance of this branch of electronics. However, the syllabus is not intended to be concerned only with the hardware associated with computing, and a balance has been maintained between digital and analogue systems.

The examination in 1985 and 1986 will be based on the old syllabus. Details are available from the Board (Department A7).

In using this booklet, please check page 2 for details of any amendments (and use the page to make a note of any amendments sent out by the Board). Details of the project assessment are amended from time to time

CONTENTS

Page	3	Syllabus	
Page	23	Specimen Paper 1	
Page	27	Specimen Paper 2	
Page	32	Notes for the Guidance	of Teachers
Page	46	Examples of assessment	forms

THE ASSOCIATED EXAMINING BOARD Wellington House, Aldershot, Hampshire. GU11 1BQ
Telephone: Aldershot (0252) 25551

ELECTRONIC SYSTEMS – 658

SYLLABUS - ADVANCED LEVEL

Two papers, each of 3 hours, and Course-work

INTRODUCTION

The overall aim of this syllabus is to identify the general principles of systems and to exemplify them in an electronics form. A further aim is to enable the student to understand the interaction of electronic systems with modern society.

The study of general systems in terms of electronic systems has been chosen because the fundamental principles can be readily demonstrated and quantified. Modern electronic integrated circuits enable complex systems to be demonstrated simply and cheaply.

Because systems are designed for the use or benefit of man, his relevant mental and physical characteristics constitute an important aspect of the syllabus. Examples of systems in the operation of the human body and examples of the human being as part of a larger overall system are included.

Experimental work is an essential part of this syllabus and all candidates are expected to be familiar with experiments illustrating the principles in the syllabus.

AIMS

The course based on this syllabus is intended to

- encourage candidates to identify fundamental systems principles, to appreciate the broad applicability of these systems principles and to gain experience of them by means of electronics;
- 2. to promote an understanding of the interaction of electronic systems with modern society;
- 3. to emphasise the importance of storing, processing and communicating information in the operation of a system.

THE EXAMINATION

The examination comprises two written papers and an assessment of practical work.

Paper 1 - 3 hours - 40% of the total marks

This paper consists of short answer questions covering the whole syllabus and assessing objectives 1, 2, 3, 5, 6, 7, 10, 12 and 15. All questions in this paper are compulsory. Questions do not carry equal marks but the question paper shows the mark allocation to enable candidates to apportion their time appropriately.

Paper 2 - 3 hours - 40% of the total marks

This paper comprises seven questions in two sections. Section A has three compulsory questions:

one question based on analysis of systems (objectives 5, 6 and 7)

one question based on system design (objective 8)

one question based on social and technological awareness (objectives 13 and 14)

Section B has four questions of which candidates are required to answer two. Each question is based on the content of a different one of the sections 2, 3, 4 and 5 of the syllabus and may test any of the objectives excluding objective 11.

Paper 3 - Practical Assessment

Candidates are expected to carry out practical work as an integral part of their course. Two components of this practical work will be internally assessed by centres and externally moderated by the Board. These two components are the candiate's laboratory notebook and a project. The assessment is based on objectives 7, 8, 10, 11, 12 and 15, and carries 20% of the marks for the examination.

The project comprises a single piece of work in electronics, selected by the candidate. It should involve planning, specification, selection of procedures, construction, evaluation and the preparation of a report. The project carries two thirds of the marks for the practical assessment.

The laboratory notebook (log book) should contain a record of practical assignments undertaken during the year immediately preceding the examinations. The assignments, of which not less than six should be included in the submission, will normally be investigational assignments allocated to the candidate by his teacher. Such assignments are expected to provide the candidates with opportunities for selection of procedure or equipment to be used as well as the successful completion of prescribed routines.

Both the project report and the laboratory notebook will be assessed by the teacher; the project report and assessment sheet (but not the laboratory notebook) must be submitted to the Board's Moderator, and must reach the Moderator by 15th May 1987. The project report will NOT be returned.

Full details of the coursework requirements and methods of assessment are available from the Secretary General (A7) at the Board's Offices, and Centres are advised to obtain these details before assessed coursework is started.

Private candidates are also required to complete projects and laboratory assignments but they will be assessed by the Board. Such candidates will be required to attend at a pre-arranged time and place for an interview with the Moderator. An additional fee is charged for the marking of the project by the Moderator.

1. GENERAL SYSTEMS [3.1]

A system is any organised assembly of components and procedures which has a defined function and a means of control. There will thus always be identifiable inputs and identifiable outputs, and most systems have other characteristics which are general in nature, notably feedback paths and decision-making facilities.

A system may be biological, mechanical, electrical or electronic; this list is not exhaustive and some employ a combination of media. It may be concerned with information, or materials. The main function of a system may be correlating, decision—making or producing. It may be concerned with transport, communication or energy transfer.

There are general features which characterise all systems, and it is the purpose of this section of the syllabus to specify the general features that may be examined and the type of context within which examination questions will be asked.

It is not the intention that this section should be taught as a separate element of the course, and the majority of questions set will integrate these concepts into specific systems which demonstrate them.

1.1 Features of a system:

defined function; output; inputs of information and materials; control inputs; power inputs; feedback - control inputs

Candidates should be able to identify these features in a wide variety of systems.

1.2 Processing:

Transfer characteristics

Information processes: comparison (equivalence); magnitude determination (e.g. counting); arithmetic processes (e.g. addition); decision making The need for an element to process inputs to generate the required output. Processing may be concerned with information or with power or with materials.

The defined relationship between input and output. Candidates should be aware of the various kinds of transfer characteristics and possible ways of expressing the characteristic.

The processing element, whether analogue or digital, will have to undertake one or more of these processes. It is not always possible to classify processes precisely into these four categories.

Other waveforms

Familiarity with rectangular, square, step, exponential and linear ramp waveforms is expected.

Characteristics of waveforms

Rise time, fall time, pulse repetition rate.

Combination of waveforms

Implications of Fourier's theorem, demonstrated graphically.

2.3 Amplifiers:

The integrated circuit operational amplifier should be used to support the material in this section.

The amplifier as a system block

Power requirement - single and dual voltage supplies. Appreciation of low efficiency of amplifier system. Efficiency always sacrificed for quality.

Amplifier characteristics

Linear region and saturation. Saturation level determined by voltage supplies.

Inverting and non-inverting amplifiers

Directly coupled amplifiers [3.2] Used for zero frequency operation.

Characteristics of the ideal voltage amplifier

Including features of the differential amplifier system.

Voltage feedback [3.3]

Derivation of $A! = A \over 1 - \beta A$

(A' = closed loop gain, A = open loop gain)

Negative and positive voltage feedback

Features of negative voltage feedback and its role in amplifier design. Positive voltage feedback for oscillators and switching circuits.

The current amplifier

Decibel scale [3.4]

Use restricted to frequency response.

Frequency Response:
features of first-order
response to include
3 dB point roll-off of
20 dB/decade phase change
< π//2 phase change at
breakpoint = π/4

Simple low-pass and high pass RC networks. Candidates should be able to sketch or interpret a graphical representation of gain and phase dependence on frequency for a low-pass first-order frequency response [3.5]. Candidates should be able to explain why this form of response is preferred for amplifiers, particularly those having feedback applied.

Bandwidth

Effect of negative voltage feedback on bandwidth. Relationship between bandwidth f_o and rise time t_R for an oscilloscope amplifier: $t_R f_o = 0.35$ [3.6].

2.6 Transistor Circuits:

This section is based on the silicon bipolar junction transistor and, apart from the emitter follower section specified below, is limited to the common emitter configuration.

Transistor behaviour in terms of characteristics

Candidates should be able to sketch and interpret characteristics but questions will not be set on the determination of characteristics.

Biasing network for transistor amplifier stage

Candidates will be expected to perform calculations on simple biasing networks. Candidates should

(i) neglect leakage currents

(ii) assume $V_{\rm BE} = 0.7 \text{ V}$

(iii) know that $h_{FE} = \frac{I_C}{I_R}$

Use of transistor as linear amplifier

Qualitative treatment only.

Use of transistor as a switch

Candidates will be expected to perform calculations on simple transistor switching circuits including the effect of loading.

Emitter follower network

Limited to d.c. conditions only, including input and output currents. Use with Zener diodes in stabilised power supplies.

2.7 Timing Circuits:

The charge and discharge of a capacitor through a resistor

Candidates should know and be able to use the equations

$$v_C = V \quad (1 - e^{-\frac{t}{RC}})$$

$$v_C = V \quad e \quad \frac{-t}{RC}$$

but questions on their derivation will not be set.

Monostable and Astable

Treated as functional blocks (See also Section 2.5

Integrated circuit timers

Principles of operation of the 555 type of timer [3.13]

Quality of components necessary for precision timing

Analogue timing methods compared with digital methods

The quartz crystal as a frequency standard

Gandidates should appreciate the selectivity and stability of a quartz crystal.

3.3 Information in digital form:

Binary representation

Conversion between decimal and binary representations.

Physical representation of binary numbers: use of any two-state variable; use of discrete voltage levels in electronic systems

Bit, byte, word

Hex (hexadecimal) representation

The advantages of hex compared with binary. Conversion between hex, decimal and binary.

Parallel and serial representation

Coding and decoding of information; concept of parity bit and sign bit

Candidates should understand that a bit stream must be interpreted in terms of the code being used. Particular reference should be made to representation as an integer, an ASCII Code or a floating point number, but candidates are not expected to remember the ASCII code or a particular floating point representation.

3.4 Translation of information:

Analogue to digital (A to D) and digital to analogue (D to A) conversion. Time quantisation: sampling rate and Nyquist criterion [3.8] Amplitude quantisation: resolution.

Treated as a functional block only: circuits are not required.
Candidates should understand that the sampling frequency should be at least twice the frequency of the highest component present, to avoid distortion.

3.5 Processing analogue information:

Candidates are expected to recognise that the processes discussed in Sections 2.3, 4.4 and 4.5 are among the procedures for dealing with analogue information

Digital systems:

meaning and use of RAM, ROM, PROM and EPROM

characteristics of digital memories

Mode of access, access time, volatility, capacity, physical size, power requirement.

Comparison between magnetic disc and magnetic tape stores

3.8 Processing Digital Information; the Microprocessor:

Central Processor

To include arithmetic logic unit, accumulator, instruction register and program counter.

Sequential behaviour of processor

Qualitative treatment of the processor as a clocked logic block. Clock, machine and instruction cycles. Qualitative understanding of processes occurring during "fetch" and "execute" parts of instruction cycle.

Bus structure

Data bus, address bus, control bus, tri-state outputs.

Address decoding

Including the concept of a memory map and the need for address decoding.

Memory

Access

Serial and parallel access for inputs and outputs to the computer system. The relative merits of serial and parallel access.

Knowledge of specific devices or circuits is not required.

Block representation of a bus organised microprocessor system

Languages

Need for a language. Relative merits and form of machine code, assembly language and high-level language. Function of assembler and compiler. Specific knowledge of any language is not required.

Peripherals

Limited to those peripherals included elsewhere in this syllabus.

Interfaces

The need for interfaces in using external devices. Design of interfaces is limited to the use of functional blocks specified elsewhere in this syllabus

Channel selection and multiplexing [3.10]

Frequency division multiplex Time division multiplex Use of simple LC circuits for channel selection Principle of multiplexing as a means by which a number of channels may be transmitted in a single medium; demultiplexing as a means of selecting individual channels. Including use of $f = \frac{1}{2\pi \sqrt{LC}}$

4.2 Audio Communication

Response of the ear

Frequency and intensity responses. Candidates should realise that the information content depends on both frequency and amplitude but not phase.

Response of the receptor - brain system

The ability to select a particular sound source from a noisy environment. Effects of tiredness, alcohol, etc.

Speech recognition

Distinction between message component and other information given in speech, such as mood. Redundancy of information in language.

4.3 Visual Communication

Response of the eye

Frequency (colour) and intensity (sensitivity) responses.

Persistence of vision.

Colour

Colour vision in terms of three broad spectral responses. Relative effects of colour and contrast on perception of detail. Colour addition as used in colour

television.

Vision

The brain's response to complex visual images, field of view, flicker, and optical resolving power.

4.4 Amplitude Modulation (AM)

Nature of amplitude modulation

Time waveforms. Modulation index (depth of modulation). The production of two sidebands of frequency differing from the carrier frequency by an amount equal to the modulating frequency.

Mathematical proof not required.

Bandwidth requirements of an AM signal

Frequency-division-multiplex Sideband suppression.

Concept of channel allocation

4.6 Digital Communication Techniques

Sampling

Including quantisation distortion. See Section 3.4 of the syllabus.

Pulse Code Modulation (PCM)

Time division multiplex

Use of interleaved samples to produce multilink system using one channel.

Bit rate

Effect of system bit rate on number of possible channels and on signal quality.

Use of non linear quantisation scale (companding)

Use to produce better quality at low levels of signal.

4.7 Television Systems

Conversion of picture information into serial electronic signals

Principle of raster scanning. Details of camera system not required.

Factors affecting picture quality

Visual resolution
Picture element size
Number of lines
Field repetition rate
Interlacing

Principles of teletext.

Synchronisation of display

The need for both line and field synchronisation.

Picture transmission systems

Composite nature of tansmitted signals. Calculation of Bandwidth requirements. Comparison of broadcast television and slow scan systems.

Colour television systems

Separate transmission of brightness signals and colour difference signals to achieve compatibility with black and white television. Relative bandwidths required for brightness and colour information.

Block diagram of colour television receiver.

Characteristics of the human being as an information processor

Ability to discriminate between required and non-required information received as parallel inputs from the senses.

Body control processes

Voluntary and involuntary control

Simple description of sub-systems within the human body that perform control tasks. Sub-sections to include, body temperature control, voice control, iris control, touch and reflex actions.

Human Being as the feedback path in a system

Human Control Actions

Candidates may be required to analyse simple control tasks such as inserting a key in a lock. Human actions in a learned sequence e.g. walking, dressing. Comparison with complex tasks involving interacting external influences such as driving a car or playing a team game. Use of memory; human ability for judgement and intuition; role played by experience in determining human action.

Comparism between human and machine controlled systems; robotics

Candidates will be expected to show an understanding of the capabilities and limitations of programmable systems compared with the human being, with particular reference to relative memory capacity, and reliability. Candidates should appreciate that machines can only be used for processes that are predictable.

5.3 Proportional Control Servomechanisms

The ideal proportional control servomechanism: demanded-position potentiometer slave potentiometer controlled by a motor, subtractor, and amplifier to drive the motor.

Response of this system without friction or inertia. Effect on response of attenuating the feedback signal.

Characteristics of a real system: inertia

friction

Dead band resulting from friction and its dependence on amplifier gain.

frictional damping velocity damping response to a step input

Including disadvantages

Qualitative treatment only

Qualitative treatment of underdamped, critically damped and
over damped systems

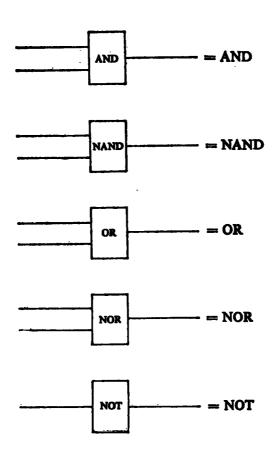
THE ASSOCIATED EXAMINING BOARD

for the General Certificate of Education

Advanced Level

ELECTRONIC SYSTEMS

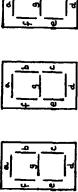
Paper 1


658/1

SPECIMEN PAPER

3 hours allowed

Answer ALL questions
This paper carries 40% of the total marks for the examination.


The marks in brackets at the end of each question or part of a question are the marks allocated to that question or part of a question.

Assume that 0.7 V exists across a forward biased silicon diode and across the base-emitter junction of a transistor which is biased on.

[Turn over © 1983 aeb

(6 marks) multiplexed mode. The number to be displayed is decimal 357. If the ON time is to be 50 ms, complete the table opposite showing the logic level applied for each 50 ms interval to each cathode element and also to the anode of each display. The three seven-segment light-emitting diode displays with Common anodes, shown below are to be operated in a time-



(2 marks) State two advantages of using a time-multiplexed display with seven segment LEDs.

What property of the human eye makes a multiplexed display acceptable? State how the frequency of multiplexing affects the appearance of the display.

(2 marks)

below. The reset line will simultaneously return the outputs from the four Bistables to logic O whenever it is at logic O. The reset line is operated by the two-input NAND gate. (a full 4-bit binary coded counter) is shown in the diagram The internal connections and the pin function of a 7493

- (2 marks) Draw up a truth table for the NAND gate to show when the reset line is operating and when it is not operating. ŝ
- (5 marks) What three external connections (not counting the power supply) would you make to convert the 7493 into a divide by 10 counter? Explain your reasoning. è
- (2 marks) Why is it not possible to convert the 7493 on its own to operate as a divide by 7 counter? છ

Question 6

Use this table for your answer

DISPLAY 2 DISPLAY 3	b c d e f g B a b c d e f g				
€	D ✓××××××××××××××××××××××××××××××××××××				
DISPLAY 1	abcdefg				
		first 50 ms	Second 50 ms	Chird Soms	faweth 50 ms

actual enomination then the question paper would contain a tear-out sheet with the blank table printed If this question were to be used in this form in an on it as shown here. Note:

THE ASSOCIATED EXAMINING BOARD

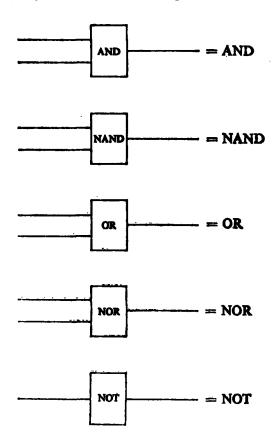
for the General Certificate of Education

Advanced Level

ELECTRONIC SYSTEMS

Paper 2

658/2


SPECIMEN PAPER

3 hours allowed

Answer all three questions in Section A.

Answer TWO questions from Section B.

In this paper the following logic symbols will be used throughout:

Assume that 0.7 V exists across a forward biased silicon dude and across the base-emitter junction of a transistor which is blussed on:

[Turn over © 1983 AEB

2. An automatic gas boiler control system has several sub-systems.

The sub-systems are:

(i) A pilot-flame sensor that detects whether the pilot-flame is lit. (ii) A gas valve for the pilot flame. This valve has a 'start' button which is pressed momentarily to open the valve to allow gas through. Once this button has been pressed the valve remains open. A 'stop' button is also provided: this button is pressed momentarily to turn off the gas.

(iii) A pilot-flame ignition system that operates provided that the gas valve is open and the pilot is not alight.

(iv) A main-burner gas valve with a mechanism that opens the valve when both the pilot is lit and the temperature of the water is below that set on the thermostat. (a) Name a component in the system which is a 2-state sensor. (1 mark)

(b) Draw a block diagram of the complete gas-boiler control system.

(5 marks)

(c) Identify one sub-system that uses feedback and state clearly which part of that sub-system is the feedback transducer and which part is the processing element.

(3 marks)

(d) The main-burner control is performing a combinational logic function whereas the pilot gas-valve is performing a sequential logic function. By reference to these examples explain briefly what is the difference between combinational logic and sequential logic.

(4 marks)

(e) Design an electronic logic system to implement the complete control system. In your answer state clearly the relationship between logic states and physical conditions for each input and output. Explain how your system works. (7 marks)

Some cars now-use microprocessor systems for monitoring performance and communicating information to the driver by visual, audible, and YerBal signals. This innovation has attracted numerous comments, such as:

all these fancy gadgets

all these rancy gadgets r it is far better if the system ts1.ts you that the

petrol tank is nearly empty - they use a woman's voice so that men will buy the car

- routine servicing can be much less frequent with such a comprehensive monitoring system fitted

- conditions in a car-engine compartment are far from ideal for using electronic equipment

safety depends only on the driver, not the gadgets.

(a) Select two of these comments and discuss how far or in what ways these two comments can be regarded as valid or invalid. Support your answers with appropriate block diagrams of systems, quantative infernation and technical details.

(b) The first microprocessor systems used in cars only monitored performance, but it is also feasible to make these systems control the car. What would be the advantages and disadvantages of incorporating microprocessor control? How desirable would such a system be?

(6 marks)

(14 marks)

29

COMMUNICATION SYSTEMS •

The diagram shows a communication system in generalised form.

Transduc

(2 marks)

INFORMATION SYSTEMS

- Distinguish between the terms digital and analogue as used in information systems. 3
- Information may be represented, stored, processed and communicated in digital, analogue or hybrid form. 3

classification. Outline your reasoning in each case. Allocate the following systems to the appropriate

A proportional position-control servosystem. 3

(2 marks)

(2 marks)

(2 marks)

- between two persons by a pulse code modulation A telecommunications system conveying speech technique. (ii)
- A floppy disc store. (iii)
- The human being can recognise complex patterns. છ
- information becomes the data transmitted to the Briefly outline the processes by which visual human brain and recognised as a pattern. Ξ
- Briefly discuss why pattern recognition is a difficult task to be performed by a technological system. (ii)
- Information may be stored in either digital or analogue form. Discuss the relative merits of storing information in either form on magnetic tape. 9

	(10 marks)
a) Briefly describe the function of each of the labelled	8
•	

received and decoded in a simple linear. PCM (pulse-code Explain briefly how information is coded, transmitted, modulated) system. 3

(? marks)

(3 marks) system. State three benefits of transmitting information Optical fibres may be used for a PCM communication in this way. છ

CONTROL SYSTEMS ۲.

(2 marks)

(6 marks)

(4 marks)

What is a transducer? For (i) position, and (ii) temperature identify a suitable transducer that provides an electrical output and outline its principle of operation, 3

(7 marks)

- (4 marks) Draw a generalised block diagram showing the basic elements of a closed-loop feedback system. 3
- (3 marks) How is the performance of a control system improved by the use of feedback? Describe the behaviour of a simple proportional position-control servosystem employing feedback. છ
- (6 marks) servosystem may oscillate when disturbed and discuss Explain why a simple proportional-positional control of these oscillations. What factors would what factors would control the brolitude and the control the duration of the oscillations? 3

. Conventions for Symbols, Diagrams and Units

This section gives details of the various conventions that will be employed in question papers. It is hoped that teachers will employ the same conventions and encourage their use by candidates. However, candidates will not be penalised if they do not use these specific conventions, providing the symbols used are readily identifiable and consistent.

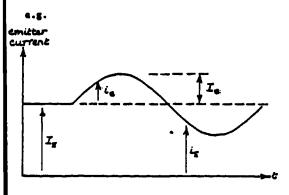
1.1 Units

Units will conform with the British Standard Institute publication 'The Use of SI Units', PD5686: 1972, to which the Board's policy document, 'The Use of Units', 5/DM also refers.

1.2 Text, Symbols, Subscripts, etc.

Where letters are used in equations to represent quantities, the letters will be printed as italics. Where letters are used as labels, they will be printed in roman type. Thus R is a value of resistance in ohms (or any other unit) whereas R is a label for a resistor. (Symbols will be in accordance with those indicated in the ASE publication "SI Units, Signs, Symbols and Abbreviations".)

Quantity Symbols:


quantity symbol

Quantity symbols published in the syllabus and in examination questions will follow the practice laid down in BS 3363. Candidates will not be penalised for a different usage provided that it is clear and unambiguous. The advantage of BS 3363 is that it clearly distinguishes between the varying and constant components of a signal. A quantity symbol generally consists of both a main symbol and a subscript, the main symbol ienoting the quantity and the subscript the part of the circuit to which it refers. Different cases are used to distinguish different tomponents of the signal:

'n	lower caselower caseinstantaneous value of the varying component
))	lower casecapitals instantaneous value of the total signal
:)	capitalslower caseEMS value of varying component
þ	capitalscapitalsDC value (no signal)

Subscript

Meaning

With a 3 terminal device, such as a transistor, 3 subscripts are used:

1st: terminal at which quantity is measured

2nd: reference terminal or symbol to indicate configuration of circuit (may be omitted if meaning is clear)

3rd: indicates state of the 3rd terminal

X - reverse biased

O - open circuit

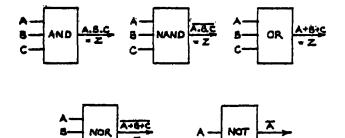
S - shorted to the reference terminal (2nd subscript) (omitted if the third terminal is not necessarily in one of these conditions)

The supply voltage is denoted by repeating the subscripts:

Examples: ib: instantaneous value of the varying component of base current

v_{CE}: instantaneous value of collectoremitter voltage

V_{CC}: supply voltage (the supply connected through some network to the collector terminal)


1.3 CIRCUIT SYMBOLS AND CIRCUIT DIAGRAMS

Diagrams published in the syllabus and in examination questions will be to BS 3939. However, it is recognised that some of the symbols in this standard are not those in common use. Candidates must recognise BS 3939 symbols but will not be penalised for using something different in their answer if their usage is clear and unambiguous.

Shortened versions of BS 3939 have been prepared by and can be obtained from the British Standards Institute. PF400 is reprinted here (with the permission of BSI). PD7303 is an abstract which gives all the detail normally required by a school or College, and includes a wall poster showing the commoner symbols.

1.4 LOGIC SYMBOLS

To preserve simplicity and uniformity, the system of symbols used for the purpose of the examination is outlined below.

Other functional blocks will also be indicated by labelled 'boxes'. Whilst this is not BS 3939, the Board specifies this system as a simplified form of BS 3939 which will not lead to possible confusion. Students should readily accept the normal BS 3939 symbols with no difficulty later if they have become familiar with this system. The symbols shown here do not include the small circle to denote NOT. Candidates would not be penalised for using this symbol for NOT, but teachers should recognise that candidates might write, say, NAND in a square box and add the circle, thereby in fact indicating AND.

Description	Symbol
Heater	
Thermistor	-5-
Capacitor: general symbol	+
Polarized capacitor	, 11⊦
Polarized electrolytic capacitor	-¶-
Capacitor with preset adjustment	#
Winding	hm
Inductor + core	لىسا
Transformer	لسا

Description	Symbol	Des	cription	Symbol
Ammeter	A	Ohn	nmeter	0
Voltmeter	(V)	Wat	tmeter	W
Wavemeter	(A)	Galv	anometer	①
Oscilloscope			②	(OSC)
Motor	Genera	ator	M	G
Microphone				a
Earphone (receiver)			==	d d
Loudspeaker			=	Image: Control of the control of the
Clock (and slave clock)			(D

Description	Symbol
Make contact (normally open)	\ \
Break contact (normally closed)	Å - -
Relay make contact-unit	1-
break contact-unit	لمر
Thermionic valve: triode, directly heated	
Neon lamp	(*)
p n diode	*
Alternative symbol	*
Light-sensitive pn diode	<u>**</u>
Light-emitting diode LED	*
Zener diode	
p n p transistor	
n p n transistor	©
Amplifier	\rightarrow

Teachers may duplicate this sheet for the use of their class.

ENQUIRIES:

Technical Education Officer
© BSI 1980 PP400/8010/5k/DP

- Comparison of flicker fusion rate for direct and sideways observation.
- Effect of L/C ratio and resistance on the selectivity of an L.C.R. resonant circuit.
- Measurement of the frequency response of a flame loudspeaker.
- Measurement of the property variation for a temperature dependent device and its conversion to a variable on/off response.
- Measurement of the frequency response of an inductive capacitor.
- Harmonic analysis of a waveform using beats.
- 10. Measurement of magnetic fields with an "integrated" search coil output.
- Comparison of the efficiency of Class A and B power amplifiers.
- Measurement of the efficiency of a loudspeaker.
- An investigation of the effectiveness of smoothing circuits.
- B An Investigation
- Possibilities of modulated light transmission.
- Possibilities of modulated light reception.
- Modified response of a human controller as a result of learning and tiredness in a control situation, e.g. temperature regulation of a heatsink.
- Measurement of the speed of a linear motor by counting pulses reflected from a rotating cam.
- 5. Investigation of binaural hearing.
- Effect of colour and intensity of stimuli on reaction response time.
- Using pulse width modulation to transmit audio signals.
- Development of an analogue computer to simulate a bouncing ball moving in a variable viscosity medium.
- Production of a tangential tracking system for a record player pick-up.
- Effect of alcohol and noise on reaction time.
- 11. Effect of intermittent interruption of visual feedback on tracing ability. Is usual feedback control a two co-ordinate system?
- 12. Effect of delayed auditory feedback on speech capability. Effects of actual time delay and intensity of feedback signal. Time for controlled suppression of feedback signal.
- C Circuit Design
- Design of a Schmitt trigger circuit and investigation of its real as compared to design response.
- Design of a simple astable multivibrator with stepped variable mark to space ratio.

- Design of a simple common emitter transistor power amplifier to drive a particular load.
- Circuit to display frequency dependent characteristics on an oscilloscope.
- Circuit to switch after preset time intervals.
- 6. B.C.D. adder using 7400 gates only.
- Electronic combination lock design with lock-out and alarm.
- A school bell system operating from a digital clock.
- Wave height measurement using resistance probes.
- Construction of an electrical analogue of the rainwater cycle from sea to mountain top and back.
- Construction of an electrical analogue of a warehousing system.
- An attempt to synthesize a speech waveform.
- Motor speed control by use of a multivibrator.
- D System Synthesis
- Digital to analogue conversion and the use of the resulting voltage to control frequency.
- Production of a light sensitive device to scan a black and white picture.
- System to switch a dynamo over to battery power at low cycle speeds.
- Colour indicator for mains wire to enable a blind person to wire a plug.
- Automatic traffic light system dependent on counting cars and time intervals.
- 6. A fluid flow meter counting water wheel revolutions.
- Ghost detection by humidity and temperature variation detection.
- Controlling a conveyor belt speed to feed objects at a constant rate if distribution random.
- Alarm for sleepy train driver.
- 10. Electronic organ.
- Steering a model submarine towards a sound source.
- 12. A pulse rate measuring device.
- 13. Digital compass.
- 14. Digital water depth measurer.
- 15. Manufacture of an electrocardiograph.

to discriminate. Whilst almost all candidates will score marks on the first question in some of the assessment groups, few will score full marks in any assessment group and very few will score full marks in most groups.

S. Syllabus topics

The purpose of these notes is to explain more fully those parts of the syllabus that may be unfamiliar to teachers. These notes are not intended to be a substitute for text books and the treatment is necessarily brief.

or a full discussion of these points teachers are referred to an apprepriate book: a book ist is given at the end of these notes.

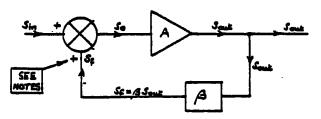
3.1 General Systems (Syllabus Section 1)

This syllabus is intended to be about systems and particularly electronic systems. Candidates are expected to be ble to apply systems principles to lescribe the behaviour of a system Teachers resented in an examination. re, therefore, advised to discuss a number of systems (including nonlectronic systems) in class and to show ow the features of syllabus section 1 ppear. The list of possible examples a almost limitless, but the following suggestions will illustrate the range: lomestic equipment such as a washing achine or vacuum cleaner, computer data torage, transport systems, commercial ood processing, thermostatic and omeostatic (biological) systems, ndustrial control and automation.

n considering transfer characteristics, on-electronic amplifiers (eg car brake ervo system), thermostatic, ecological nd homeostatic systems could usefully be iscussed with students: in addition to lectronic systems.

t will also help students to relate lectronic systems to systems in general if he characteristics of mechanical systems re compared with those of programmed lectronic systems. For example, a gear ox has a built-in program in so far as the utput speeds are related to the input peeds by the programmed relationship of ear ratios, this relationship being a form of memory equivalent to ROM

he universality of the processing of nformation, of its communication, and ontrol (including feedback) as elements f a system should also be understood by tudents. These elements should be egarded as major cohesive themes of the yllabus to which the teacher should epestedly refer as the students' nderstanding develops. Although the yllabus has separated these three elements heir relevance is as elements in systems nd not separate entities in their own ight.


.2 Directly coupled amplifiers (Syllabus section 2.3)

andidates are expected to appreciate the easons why capacitors are often used to ouple between stages in an amplifier; hey are also expected to know qualitatively) the effect capacitor oupling has on the overall frequency esponse. From this they will be xpected to be able to explain why

directly coupled amplifiers have to be used if the signal contains a d.c. component.

3.3. Feedback (Syllabus section 2.3)

A feedback emplifier system takes the general form shown in the diagram below; s is used to denote "signal": this signal can be voltage or current.

Nocas:

(i) A is the open-loop gain gain of the amplifier

(ii) β is the feedback factor (s_f/s_{cont} = β)

(iii) A and 8 can each be positive or negative (in real systems A and 8 may be complex but that is not required for this syllabus)

(iv) s_{out} may be a voltage or a current:
s, may be a voltage or a current, but need not necessarily be the same as s_{out} (i.e. β may in real systems have dimensions of impedance or admittance). There are, therefore, four combinations:

sout voltage ; se voltage

sout voltage ; of current

sout current; se voltage

out current ; & current

For the purposes of this syllabus candidates used only consider general feedback systems where all quantities are signals (s) or practical systems where all quantities are voltages. The latter type of feedback system (s out s both being voltage) is known as series voltage feedback.

When consulting books about practical feedback amplifiers teachers are advised to be careful about selecting only series-voltage feedback circuits.

(v) In the diagram given above it should be noted that the feedback signal is added to the input signal to produce the error signal. This is purely sign convention: it has nothing to do with whether the feedback is positive or negative. Some books (particularly those concerned with feedback in control systems) use the convention of subtraction here and write $s_a = s_{in} - s_{in}$.

Analysing the circuit:

$$s_{out} = A s_{out}$$

$$s_{out} = A s_{out}$$

$$s_{out} = A' = \frac{A}{1 - A\beta}$$

I' is known as the closed-loop gain

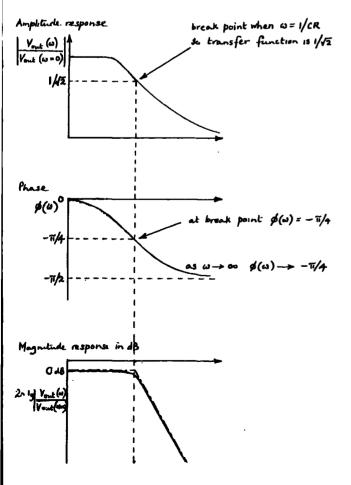
AS is known as the loop gain

(Note: the other sign convention gives: $A' = A/(1 + A\beta)$)


function. Note that n at $\omega = 0$ must be 0.

Note too that the quantity V_{out} is the magnitude of the a.c. voltage: the phase term is considered separately (not in dB).

3.5 Frequency response and bandwidth (Syllabus section 2.3


In this section it is important to remember the effect of phase. Although this syllabus does not include the use of j-notation it is used here in order to explain where confusion may arise. Teachers should not attempt to teach students any of the derivations in this section, or j-notation. However, it is included in the hope that teachers will avoid introducing ideas which have to be "unlearned" later.

A low pass first order frequency response is that obtained from a simple RC circuit

The amplitude response is $V_{\text{out}}(\omega) = 1$ $V_{\text{out}}(\omega=0) = 1$

The phase response is \emptyset (ω) = \tan^{-1} -(ω CR) (Note that phase is a relative quantity so does not need to be expressed as a ratio).

There are a number of interesting points about the magnitude response expressed in dR:

- (i) at the origin its value is 0 dB
- (ii) at the break point its value is is approximately - 3 dB
- (iii) the asymptotic slope as $\omega \rightarrow \infty$ is 20 dB/decade. (~ 6 dB/octave)

This is shown as follows:

$$n = 20 \log \sqrt{\frac{1}{1 + \omega^2 C^2 R^2}} \approx 20 \log \sqrt{\omega^2 C^2 R^2}$$

(as $\omega CR > 1$ beyond the breakpoint so that $\omega^2 \, C^2 \, R^2 \, \gg 1)$

$$n (\omega_1) = -20 \log \omega CR$$

$$n \quad (\omega = 10\omega_1) = -20 \text{ lg} \quad 10\omega CR =$$

- 20 lg $\omega CR - 20$

so that over 1 decade of frequency the amplitude has been reduced by 20 dB.

(iv) the frequency response can be approximated to the chain-dotted line shown in the sketch.

For $\omega \leqslant \omega_0$ the response is taken as 0 dB

For $\omega \geqslant \omega_{_{\mbox{\scriptsize O}}}$ the response is -20 lg ωCR

but CR is $1/\omega_{_{\rm O}}$ so the response is $-20~{\rm lg}~\omega/\omega_{_{\rm O}}$

The situation is complicated when feedback is applied. Consider an amplifer with a first-order response: the frequency response is now

$$\frac{V_{\text{out}}(\omega)}{V_{\text{out}}(\omega=0)} = \frac{A_{\text{o}}}{1 + j\omega CR} = \frac{A_{\text{o}}}{1 + j\omega/\omega_{\text{o}}}$$

Where A_0 is the voltage gain at $\omega = 0$

This is the expression for A in the feedback expression. If feedback is now applied (using conventions so that $A' = A/(1-A\beta)$) and assuming β is constant with frequency

$$A^{1} = \frac{A_{o}/(1 + j\omega/\omega_{o})}{1 - A_{o}\beta/(1 + j\omega/\omega_{o})}$$

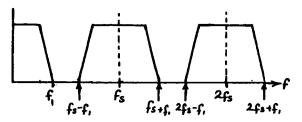
Note that the feedback expression must be applied before taking the modulus.

Hence A' =
$$A_o$$

$$1 - A_o\beta + j\omega/\omega_o$$

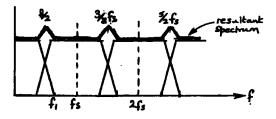
$$= \frac{A_{o}/(1 - A_{o}\beta)}{1 + (j\omega/\omega)/(1 - A_{o}\beta)}$$

This can be written as:


$$A^{T} = \frac{A_{o}}{1 - A_{o}\beta} \times \frac{1}{1 + j\omega/(1 - A_{o}\beta) \omega_{o}}$$

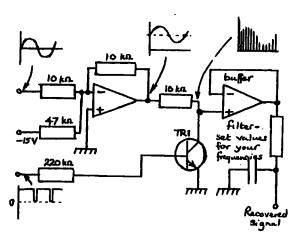
This is a first order response with break point of $(1 - A_0\beta)\omega_0$; the asymptotic slope is the same as is obtained without feedback.

Hence if we plot the frequency response


the effect of making the frequency spectrum repeat about the harmonics of the sampling frequency.

Note: the amplitude scaling is also affected by sampling

It can be seen from this spectrum that an ideal low-pass filter with cut-off frequency between f_1 and $f_3 - f_1$ will completely recover the original spectrum.


However, if f_8 is reduced so $f_8 < j_1$ the repetitive spectra overlaps:

The resulting spectrum is shown by the heavy line: notice that the original shape could not be recovered by filtering since the shape has been changed. This is known as aliasing distortion.

From the diagram above it can be seen quite clearly that the aliasing distortion extends well below $f_{\rm s}/2$. This is why the sampling frequency must be greater than twice the highest frequency present, rather than twice the highest frequency of interest.

Aliasing can be demonstrated easily and cheaply in the laboratory. All that is required is is a sampling unit, a simple filter and an oscilloscope. At first eight it may seem difficult to make a campling unit but in fact it is very casy. For the purposes of this demonstration the circuit shown below is quite adequate.

When transistor TRI is OFF the input signal appears at the input to the operational amplifier but when the transistor is turned ON by the sampling clock the input is taken to zero. The op amp can be omitted but it is probably worth including because it does buffer the sampling unit and prevent the filter from loading the unit. A drawback with using the op amp is that the slew rate limits the frequency response that can be obtained and it is probably worthwhile using an op amp with a reasonably fast slew rate (such as a 741S) and keeping signal levels fairly low (of the order of a volt)

The sampling clock needs to have the sort of mark-space ratio that is shown on the diagram: a square wave should not be used.

To demonstrate aliasing keep the sampling rate fixed at some suitable frequency (2kHz is quite satisfactory). Use a sinewave signal for the input and start with a fairly low frequency, much lower than half the sampling frequency. Note the sampled signal that appears at the output of the sampling unit and the recovered signal at the output of the filter. Increase the signal frequency and notice that immediately after it becomes equal to half the sampling frequency the recovered signal no longer matches the input frequency: in fact, as the signal frequency is increased further the recovered signal goes down in frequency.

The reason for this can be seen on the following frequency-domain diagrams. Once the signal frequency is greater than half the sampling frequency the filter recovers the component reflected about the first harmonic of the sampling frequency.

3.9 Servomechanisms (Syllabus section 5.1)

The servomechanism is included in this syllabus as an example of a control system which introduces many of the ideas of this section. Moreover, information about the servomechanism is readily available.

3.10 Channel Selection and Multiplexing (Syllabus section 4.1)

Candidates are expected to be able to explain what is meant by frequency-division multiplexing (fdm) and time-division multiplexing (tdm). This explanation need only be in qualitative terms.

Engineers Notebook

Tandy

by F M Mims

Adventures with Digital

Electronics

John Murray

by Tom Duncan

Electrical Transducers for Industrial Measurement

Butterworths

by P H Mansfield

The Wealth of Information

Methuen

by T Stoair

Practical Electronic Building Blocks

Babani

by R A Penfold

The Mighty Micro

Gellancz

by C Evans

Cybernetics Simplified

English Universities

by A Porter

The Intelligent Eye

World University

by R L Gregory

Eye and Brian

World University

by R L Gregory

5. Equipment

There is no prescribed list of essential equipment, and the range of practical work done will depend on what is available and the teaching approaches being used. Teachers are advised, however, to include in their courses practical work representing all sections of the content syllabus.

As indicated in Section 2.4 the texts prepared for this course by Essex University and published by Feedback Ltd do contain a series of experimental assignments specifically developed for the course. Teachers are advised to refer to these texts for ideas and suggestions. Apparatus for this series of experiments is manufactured by Feedback Ltd. Printed Circuit boards for similar apparatus are available through the Microelectronics Education Programme (MEP).

The following pages are photoreduced copies of the main parts of the assessment forms ES1 (the Project Brief), ES2 (the candidate list), and ES3/4 (the marking scheme and mark sheet).

	read assessed to the readered and f Greens same force and same same same.
What is the title of your project?	provisional plans for overcoming them.
Briefly describe the problem to be solved.	
	6 Make a list of the sources of information (including advice from other neonals) was been need on think
	you may need to use, in your project activities.
State your proposed solution to the problem and the methods by which you intend to implement this solution. If the project involves a series of events in sequence, you should state what that sequence will be. Use block disarrans where appropriate to illustrate your specification, on the snace provided on this	2. Outline any test procedures you intend to soonly to your completed system.
form.	
	÷
	NOTES FOR GUIDANCE OF CANDIDATES
	The space available on the form is an indication of the amount of detail you are required to give. In exceptional circumstances, an additional sheet of plain paper may be added if enough space is
	not available, and this extra sneet must have your name on it and be firmly stapled to this Project Brief.
	In completing this Project Brief you should also consider what you are expected to do for the final
	report on your project. Your teacher of tutor will show you a copy of the Project Assessment Scheme that will be used to mark your project at the end of the course.
Give some indication of the types of materials and equipment you intend to use for the completion of your project.	When the report is written make sure that your report is clear and easy to understand. Comment on the difficulties you encounter as well as those parts that succeed.
	You are expected to consult sources of information (data sheets, excerpts, etc.), and mention them in your report. You will be marked on what you have done with this information, not on the sheer quantity of facts and information you present in the report.
	In completing Sections 3 to 7 you will be putting down ideas about your project. Some of them may work, others may not, so you will probably have to make changes. Where major changes are necessary in the way you carry out the project, you should make detailed comments about the

THE ASSOCIATED EXAMINING BOARD

for the General Certificate of Education

ELECTRONIC SYSTEMS (658)

ADVANCED LEVEL

COURSEWORK ASSESSMENT

49

LABORATORY ASSIGNMENTS AND PROJECT ASSESSMENT

Advanced Level

This form contains notes for guidance on coursework and for Electronic Systems, instructions for the assessment of laboratory assignments and projects, the assessment scheme and an assessment sheet. Each assessment sheet is for one candidate and is perforated so that it can be detached from this form and attached to the candidate swork. One of these forms will be required for each candidate entered. It is expected that candidates will be familiar with the requirements of the assessment scheme and teachers are encouraged to let candidates see copies of this form at the time when the work is being planned.

GENERAL

In Electronic Systems, experimental work is seen as a very important component of the course and, accordingly, the coursework component of the examination carries 20% of the marks available for the examination. The assessment of practical work is in a form that should allow for discrimination between candidates with a flair for the subject, as well as discrimination between less able candidates, to be achieved. To this end, coursework assessment comprises two separate components:

- (a) an overall assessment of candidates' performances in practical investigations assigned to the candidate by the teacher during the latter part of the course (last year of the course), the assessment being based on scrutiny of candidates' laboratory notebooks (log books) and the teacher's observation of the students' laboratory work;
- (b) an assessment of candidates' performances on two projects involving the production of detailed reports for assessment purposes, undertaken during the last year of the course. IFith prior approval by the Board, one longer project covering more than one major aspect of the syllabus will be accepted in place of the two short projects. The two projects should be choson in such a way as to enable the development and demonstration of different skills and knowledge. This will most readily be achieved by the choice of topics from separate areas of the syllabus. Where a single project is to be considered in place of two this topic should be sufficiently wide ranging also to meet this requirement.

ROJECTS

For the purposes of the Electronic Systems course a project is an exercise of sufficient scope, depth and detail to allow the candidate to make positive contribution to the planning and conduct of the work; to permit consideration of alternative strategies, designs or techniques; to make considered choices on the basis of a sensible appraisal of the alternatives and then to evaluate the outcome in terms of the intended and actual achieved objectives.

A project may be related to a design problem where an artefact is designed by the student, constructed, and evaluated in terms of desired performance. A project in which the student merely undertakes the construction of an artefact using a purchased kit or an unmodified critcuit from a magazine is inappropriate at this level. However, it is possible that a thorough evaluation of such a system could be appropriate, in which case the assessment should relate to the evaluation and not to the construction. Where such circuits are used the source should be clearly identified in the report.

A project may be an investigation of the performance of a device or system where a particular assemblage of equipment and/or technique must be chosen from alternative possibilities.

The development of computer software is not of itself acceptable unless it relates to a particular problem or situation which is relevant to the study of the A-level Electronic Systems course. (See note on page 4.)

Exercises which involve the production of a dissertation based on a library book research exercise are not in general permissible.

exammanum. 11 this requirement has not been met, the mains for question (a) in Croups (I), (II) and (IV) are automatically zero, meaning that no marks can be scored in these groups and the maximum mark for the assignments is 5 (fall questions in Group (III) are answered 'yes'). Candidates who fail the examination and expect to re-take the examination in the following year must carry out additional laboratory work in the extra year unless permission has been given by the Board for the previous marks to be carried over.

SUBMISSION OF ASSIGNMENTS AND PROJECTS

The Project Reports and Laboratory Notebook for every candidate must be assessed by the teacher and then the Project Reports but not the Laboratory Notebooks should be sent to the Moderator together with assessment forms and a copy of form ES2, to reach the Moderator not later than 15th May in the year of the examination. The Board will notify Centres of the name and address of their Moderator Dyy April. Project Reports WILL NOT BE RETURNED. Centres or candidates requiring copies of their reports should make such copies before submitting the Report. The Board will not accept photocopies and requires the original Report to be submitting the

NOTE ON ORIGINALITY

Candidates are expected to find or think out solutions to practical problems for themselves, wherever possible. In Group (vi) of the scheme for assessing the projects, question (c) uses the word 'original'. This is intended to mean 'new to the candidate' rather than original in an absolute sense. A candidate who has provided on his or her own initiative a useful idea portinent to the solution of the problem, hy reading, consultation, application or inventiveness, can be awarded the mark in Group (vi) (c), assuming he/she has earned the marks in Group (vi) (a) and (b) as well.

NOTE ON COMPUTER PROGRAMMING

Producing and testing computer software is not in itself a suitable project exercise for A-level Electronic Systems. Where however the production of software is part of a wider project or where the program itself has some very direct relevance to the A-level course then it is acceptable. Examples which fall in this category include the following.

- The devising of a program for the control of a system which includes elements external to the computer itself. In such a case the generation and processing of the input and output signals to the computer each require detailed consideration as does the means by which this information determines the systems response.
- (ii) The use of the computer to provide solutions to a systems design problem or the prediction of systems behaviour where the computer offers significant advantage over traditional methods of processing. In this case the project could include the production of the corresponding hardware, the response of which may be practically determined and compared to the expected result.
- Prior approval from the Board should be obtained for any programming exercises not falling into these categories.

 NOTE ON INVESTIGATION OF SYSTEMS WHICH ARE NOT BASED ON ELECTRONICS

(iii) The use of the computer to model the hehaviour of a system or of interacting subsystems.

NOTE ON INVESTIGATION OF STATEMS WHICH ARE NOT BASED ON ELECTRONICS Exercises which involve the production of a dissertation based on a library book research exercise are not in general permissible. However, the study of biological, cybernetic or sociological systems forms a

not in general permissible. However, the study of biological, cybernetic or sociological systems forms a part of the syllabus and could form the basis of *** PTO J ect*... In practice, the demands in time and insight upon the student for successful completion of such projects make success in such and insight upon the student for successful completion of such projects make success in such upost or successful of such gross oversimplification that the result is misleading or unreal. Proposals for projects in this area are acceptable, but in all such cases the proposal must have the prior approval of the Board.

PROCEDURE WHERE PRIOR APPROVAL OF PROJECT PROPOSALS IS REQUIRED

Wherever prior approval is required for a project, the completed Project Brief (on the standard form ES1) should be submitted to the Board. Approval will be considered on the basis of this Project Brief. Such Project Briefs can be submitted any time from June in the year preceding the date of the examination but not later than 31st March in the year of the examination. To avoid problems if approval is withheld. Centres are advised to submit such requests for approval as soon as the nature of the project has been determined by the candidate.

Where prior approval IS given, the Board will advise, if necessary, on the way the marking scheme should be interpreted for questions which do not apply directly to such projects (eg Group iii).

	(e)		(a) Did the condidate undertake during the wear immediately prior to the examination vix experiments each of four hours
CANDIDATE'S NAME			direction (or equivalent laboratory work), in addition to the assessed project. AND did the candidate conduct a signification proportion of the required experimental work in an effective and competent manner?
	9		(b) Did the candidate conduct the work independently, needing guidance only with those difficulties requiring experience fither solution?
TEACHER'S COMMENTS:	(၁)		(c) Did the candidate complete all of the experiments attempted efficiently and competently?
	=		GROUP II - KNOWI.EDGE AND UNDERSTANDING 6 marks
	8		(a) Did the candidate undertake, in the year immediately prior to the examination, six experiments each of at least four how duration for equivalent laboratory work) in addition to the assessed project. AND in undertaking the experiments did the candidate display, in at least half of the work undertaken, sufficient understanding of the techniques and principles to carry out the work in a self-sufficient manner without the need for instructions in skills which a candidate should have mastered before the work in outside the undertaken?
	(9)		mastered before the work in question was undertaken; sufficient understanding of the techniques and principles to (b) Did the candidate display, in most of the work undertaken; sufficient understanding of the techniques and principles to carry out the work in a self-sufficient manner without the need for instructions in skills which a candidate should have mastered before the work in question was undertaken? ("most" means at least five of the
		. <u> </u>	r work
	(c)		(C) Was the candidate's final understanding of the techniques and principles demonstrated in all the assessed work sound in most respects?
53	(ā)		(d) bid the candidate's understanding and appreciation of the principles and techniques demonstrated in this work extend beyond the immediate experiment brief and has the candidate indicated this in the reports of during the conduct of the we
	(e)		(e) Was the candidate's final knowledge and understanding of all the principles and techniques demonstrated in this work complete in all respects without exception?
TEACHER'S DECLARATION	=		GROUP III - ANALYSIS 5 marks
The assessments on this page and page 7 have been	(3)		(a) Has the candidate recorded results and findings for a significant proportion of the experimental work conducted?
made by me. The work I have assessed is work done by the candidate and is entirely his own work except	(9)		(b) Were these results and findings largely valid, complete and correct?
where acknowledged in his reports or noted by me in	()		imental work
the space above.	Đ		(d) Were all these results and findings valid, complete and correct?
	(c)		(e) As well as stating the obvious implications and findings of the analysis of the work completed, has the candidate suggeste a use for the knowledge gained in a wider application or for the solution of a further problem?
Signed.	ΛI		GROUP IV - LABORATORY NOTEBOOK 3 marks
Date	(e)		(a) Has the candidate written reports on at least six coursework experiments or their equivalent and are most of the significal aspects of the work included in these reports?
(Note: Candidates are expected to make reference to books and other sources of information, and to receive	9		(b) Are the reports clear, concise, easy to interpret and an accurate account of the candidate's work?
help from their teachers. They will not be penalised for so doing but must acknowledge all reference used	(၁)		(c) Do the reports include all significant aspects of the work undertaken, and are they a valid account of this work?
to so doing, but must acknowledge an reference used and all help given. Marks are awarded for the use they make of information, not for the information itself.)	TOTAL MARK FOR COLUMN 2		
Moderator's Signature:			
	TOTAL MARK FOR COLUMN I (from page 7)		This page is 'the wrong way round' so
Date			in the booklet the project
	SUM OF TWO TOTALS =		mark sneet can be brinted on the back of the coursework mark sheet.
	FINAL COURSE-WORK MARK		
	5 5 5 5		

ELECTRONICS

Ordinary Level (080)

SYLLABUS, SPECIMEN PAPERS AND NOTES FOR THE GUIDANCE OF TEACHERS

The Associated Examining Board

15.27

1.

INTRODUCTION

The Ordinary Level Electronics Syllabus was introduced in 1982. The Board recognised that, because there were several unusual features in this scheme, it would be necessary to provide supporting information for teachers. All that information has now been collected into a single booklet. This booklet contains an off-print of the syllabus, a copy of the 1983 question papers, "Notes for the Guidance of Teachers" and copies of the forms used in connection with the project (as used in 1984). "Notes for the Guidance of Teachers" includes detailed information on the conduct of the project and its assessment.

In using this booklet, please check page 2 for details of any amendments (and use the page to make a note of any amendments sent out by the Board). Details of the project assessment are amended from time to time (the syllabus will <u>not</u> change in 1986 or 1987).

CONTENTS

Page	3	Syllabus for 1985, 1986 and 1987
Page	11	Paper 1 from June 1983
Page	19	Paper 2 from June 1983
Page	25	Notes for the Guidance of Teachers (EL5)
Page	49	The Project Brief form (EL1)
Page	52	Form EL2
Page	53	The Project Marking Scheme (EL3, EL4 and EL6)

THE ASSOCIATED EXAMINING BOARD Wellington House, Aldershot, Hampshire. GU11 1BQ Telephone: Aldershot (0252) 25551

Care.

ELECTRONICS - 080

SYLLABUS - ORDINARY LEVEL

Two papers, one of 1½ hours and one of 2 hours, and a project.

Centres wishing to enter candidates for this subject should inform The Secretary General (A7) of the number of candidates not later than 15 October

INTRODUCTION

Electronics occupies a special place amongst the applied sciences. Rapid improvements in technology over the past decade have led to the introduction of electronic systems in more and more areas of present day society; in many instances electronic systems have changed, or will soon change, our way of life. Furthermore, modern technology makes it particularly easy to demonstrate important concepts in applied science using electronics.

This examination syllabus is intended to be a framework around which schools and colleges can build a teaching syllabus relevant to the needs and interests of their students. It should benefit those wishing to further their career in science generally, where they will certainly meet a great number of electronic systems, as well as those intending to pursue a career in electronics. The syllabus will also contribute substantially towards the general education of all candidates by developing their thinking and deductive capabilities and by increasing their awareness of the impact of electronics on modern society.

The approach taken in this syllabus is to treat the subject, as far as possible; on a systems basis. With this approach students are required to make use of their abilities in stating and solving a problem, in selecting the best realisation of a particular system from possible alternatives and in understanding how the component parts of a system interact to make the whole system meet its specification. Central to this approach is the concept of 'basic building blocks' and these blocks form the core of the syllabus. It is important that students should also appreciate that real electronic systems are not collections of idealised blocks but are made up from passive and active components, discrete transistors and integrated circuits. A review of the important properties of these components is therefore included although the approach taken is still to treat each component as part of a system: what it does is important, but no treatment is required of the physics explaining these properties.

In many schools and colleges this subject will be taken by candidates who are also studying physics. This syllabus includes basic work on electrical circuits that is also covered in O-Level Physics, but the approach will complement rather than duplicate the approach used in physics.

Aims

- 1. To show the importance of electronics in present day society.
 - 2. To introduce systems concepts through electronics.
 - 3. To introduce the process of system design.
- 4. To develop skills in the design, realisation and operation of simple electronic systems.

Objectives

At the end of the course a candidate should be able to demonstrate the following abilities:

- 1. Recall and comprehension: recall of technical terms necessary for a full understanding of the syllabus; knowledge of principles of electrical theory, behaviour of components and nature of circuits used in building blocks; relating of knowledge to familiar situations specified in the syllabus.
 - Application of the appropriate knowledge to new situations.
- 3. Problem solving: the ability to recognise, state, interpret and solve a problem and then to evaluate the solution.
- Analysis and computation: the ability to use quantitative relationships in the analysis of circuits and of data.
- 5. Synthesis: the ability to synthesise a system to meet a specification, given a set of basic 'building blocks'.
- 6. Evaluation and judgement: the ability to choose the best solution to a specified problem given a set of alternatives.
 - Perceptive skill in the realisation of electronic circuits from circuit diagrams.
 - 8. Manipulative skill: the ability to construct neat, functional and reliable circuits.
 - 9. Deductive skill: the ability to identify faults in simple electronic circuits.
- 10. Appraisal: the ability to make a critical appraisal of electronics technology in its interaction with society.

Structure of the Examination

The examination will consist of two question papers and a project.

Paper 1 (40% of the total marks) will be of 1½ hours duration and will contain short answer questions all of which should be answered. These questions will assess mainly abilities 1, 2, 3, 4, 7 and 9.

2. ELECTRICAL CIRCUIT THEORY

Units, circuits, circuit laws, calculation based on these laws

The topics in this section should not be taught as a single block but as required by and in the context of other sections of the syllabus. This section is not set out in a teaching order.

Electric current

Candidates should know that a current is normally a movement of electrons but should also realise that movement of positive ions constitutes a current.

Currents at a junction; series and parallel pathways

The result of Kirchhoff's current law (i.e. that current flowing out of a junction is equal to the current flowing into it) should be known, but the law does not need to be named.

Conductors, insulators and semiconductors

Candidates should know the existence of these three groups of materials and be able to classify common examples.

Magnetic effect of a current

Candidates are expected only to know that the magnetic effect exists and appreciate its significance for relays, solenoids and transformers.

The ampere

Candidates will not be required to quote the formal definition in the examination.

Sources and their characteristics

Cells, mains driven power units and transducers as sources. Candidates should know the significance of source voltage, power rating, internal resistance, equipment costs and the capacity of cells.

The volt

Questions will not be set which require a definition in words.

Potential difference

-Candidates should recognise that current flow is always associated with a potential difference.

Summation of p.d. around a circuit

The basic result of Kirchhoff's voltage law should be known but the law does not need to be named. Questions set will involve the use of the law only in the application to real systems or circuits as required by other parts of the syllabus. Specific 'Kirchhoff law' calculations will not be set.

Ohm's law

Candidates should be aware that Ohm's law applies only to metallic conductors at constant temperature.

Resistance: the ohm

Definition in words not required, but calculations based on the defining equation v = iR may be set.

Resistors in series and parallel

For unequal resistors in parallel calculations will be limited to two resistors only, although the parallel combination may form part of a larger series/parallel arrangement.

Limiting ratings for practical resistors

Power rating, tolerance.

Measurement of voltage, current and resistance

Candidates are expected to be familiar with the practical use of meters and multimeters (moving

tion, use within the limits of meter FSD, circuit loading (treated qualitatively) and limitations to accuracy. Details of meter construction, either mechanical or electrical, are not required other than those indicated below, and candidates will not be required to calculate shunt values.

Circuit of simple ohm-meter [2.1]

The basic ohm-meter circuit should be known and the consequences of reversed terminal polarity in some multimeters and of non-linear scale should be understood.

Digital measurement [2.2]

Candidates should understand in outline the principle of operation of single-slope analogue to digital conversion and be aware of the advantages and disadvantages of the digital voltmeter (DVM) compared with analogue instruments.

Power: the watt

Calculations based on the equations p = iv, $p = i^2R$, $p = v^2/R$ may be set.

Maximum power theorem

Candidates should know that for a source with a fixed internal resistance, maximum power is transferred into the load when the source resistance and load resistance are equal.

Capacitance

The capacitor should only be treated as a device which will store charge and will allow a.c. to flow.

Alternating voltage and current: amplittide, frequency, phase; peak-to-peak and r.m.s. voltages

Candidates should know that sine-wave alternating voltages and currents are usually measured in i.m.s. values, that peak = $\sqrt{2} \times r.m.s$: for a sine wave, and that power dissipation is calculated from r.m.s. values.

Constancy of $h_{\rm FE}$ in the active region should be assumed and candidates should know that $h_{\rm FE}$ has different values for different samples of transistors with the same type of number. Candidates should know how the transistor can be used as a switch (V_{CE} when the transistor is operating in saturation is assumed to be zero), and should know that V_{BE} for a silicon transistor biassed into the active region

Integrated circuits

Candidates should know that an integrated circuit is a silicon chip incorporating many transistors and associated circuits.

4. PRACTICAL CONCEPTS

Topics included in this section may be examined by questions in the written papers as well as being an element of project work.

Use of instruments: oscilloscope; multimeter; signal generator with sine wave and square wave

Candidates should be familiar with the use of instruments in practical work and may be asked to describe standard practical procedures in the writ-ten paper. Familiarity with the function and adjust-ment of all controls normally provided on an oscil-loscope (including timehase and Y-amplifier) is required.

Understanding of simple circuits

Candidates should be able to relate symbols and diagrams to real components and circuits.

Realisation of circuits from circuit diagrams

Given only a circuit diagram, candidates should be able to plan a layout for a simple circuit and construct the circuit on stripboard (Veroboard) and by direct wiring.

Mechanical and electrical reliability

Including importance of neat and logical arrangements and reliable solder-joints.

Colour coding of resistors

Candidates should be able to identify resistor values given the value for each colour in the colour

Recognition of numerically coded markings for values of components

Candidates should recognise the markings used according to the BS 1852 (such as 4R7 for 4.7 Ω). Tolerance codings are excluded.

Use of multimeter to identify faulty components in simple circuits [2.5]

Faults will be limited to: resistors outside tolerance; capacitors short circuited; diode and transistor junctions not having a low forward and high reverse resistance; dry joints (open circuits).

5. 'BUILDING BLOCKS' FOR ELECTRONIC SYSTEMS

This syllabus is based on a systems approach to electronics. One aim of the course is to develop the ability to construct electronic systems by connecting together electronic building blocks' (modules). A set of basic building blocks is listed in this section and candidates will be expected to have a knowledge of the overall function of each block sufficient for them to synthesise, in block diagram form, a required system and to interpret block diagrams of simple systems.

To be able to do this, candidates should understand that for interfacing:

(a) the output voltage levels of one block must be compatible with the input requirements of the next block;

(b) the current demand of an input must not exceed the supply capability of the previous one;

(c) the input resistance of a block must be the same as the output resistance of the previous one if maximum power transfer is needed and that if these conditions are not met, a matching device must be interposed.

Building Blocks

Voltage amplifier

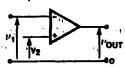
Analogue summer

Treated as a block that produces an output voltage equal to the algebraic sum of the inputs. Candidates should understand the difference between a summer and an AND gate.

Voltage comparator

Ramp generator (integrator)

Treated as a block that produces a linear rising or falling output voltage for the duration of a constant input. Candidates will be expected to know that the slope of the ramp is proportional to the input vol-


Astable multivibrator.

Candidates will be expected to understand the meaning of the terms 'pulse width', 'repetition rate' and 'mark/space ratio'.

(c) Non-inverting amplifier

(d) Comparator

Candidates should be able to use but not derive the expression

 $\mathcal{A}_{i}(\vec{R}_{i}) \sim$

.;

$$v_{\text{OUT}} = \left(1 + \frac{R_2}{R_1}\right) \quad v_{\text{IN}}$$

and to show that they understand the differences between the inverting and non-inverting configura-tions, including the input current drawn by each configuration. The unity-gain buffer will be treated as a special case of this configuration.

Candidates should know that if $v_1 > v_2$ the output will be close to the negative supply voltage and vice versa.

7. ELECTRONICS IN SOCIETY

Candidates should study the section on Information Representation and ONE of the three options, I (The Telephone System), II (Radio and TV) and III (Computing), See note [2.9].

Information Representation

Meaning of digital and analogue in representing information, and the relative merits of each

Examples of analogue representation

Examples of digital representation

Transmission of information

Information storage

Option 1: The Telephone System

Transmission and reception of verbal information by microphone, earphone, and power source

Signalling system for automatic connection of calls, using pulse (dialled) coding.

The telephone system in society

Including the use of a pulse train to represent a multibit number. Candidates should be aware of the high immunity to distortion of digitally coded information.

The carbon microphone giving current as the analogue of information. The crystal microphone giving voltage as the analogue of information. The analogue voltmeter giving an analogue representation of electrical information.

In addition to the representation of numbers by binary and BCD code, candidates should under-stand the inherently digital signal system of the common thermostat, of the common lignition warn-ing system in a car, and of automatic traffic lights.

The million of Block diagram of a communication system com-prising information source, modulator, transmitter, propagation medium, receiver, demodulator, recep-tor of information. Candidates should know how these blocks relate to the particular systems they study in options I, II or III.

Candidates will be expected to understand that many channels of information can be represented on a single carrier by modulation, and that modula-tion can be by amplitude or frequency variation.

Candidates should be able to discuss the relative merits of memory systems, including non-electronic means of storing information such as words, numbers, punched cards and gramophone records.

Candidates should understand the basic princi-ples of operation of the carbon microphone and magnetic diaphragm earphone.

Candidates should understand the operation of the dial as a means of producing a train of pulses and should understand in outline how these pulses are used at the exchange for automatic selection.

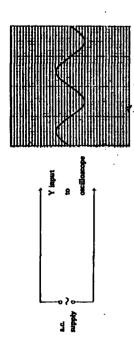
- Candidates should be able to:
 (a) give an outline of the numerical growth of the service;
- (b) state the major developments within the system: automatic exchanges, international links, STD, multiplexing, electronic switching, use in association with VDU, computing equipment etc. for data transmission, microwave links, optical fibres;

(c) recall the determinant reason for each of

- these developments;
 (d) describe the basic function of Prestel;
- (d) describe the basic function of French;
 (e) list the principal users of the telephone service; commerce, journalists, private individuals;
 (f) discuss the effects the telephone service has had on these users since, its inception;
 (g) discuss the possible effects of recent developments in the system.

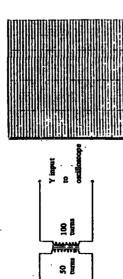
l

For Examiner's use only

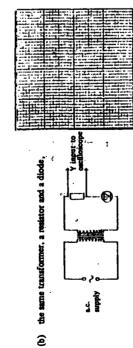

THE ASSOCIATED EXAMINING BOARD for the General Certificate of Education

	jor int	General	Certiju	uie oj L	MHCHI	Or.	1	
					••	•	_	
						•		
	June	Examination	n, 1983	- Ordina	ry Leve	al .	Ÿ	
		ELF	CTRONI	CS		,		
			Paper 1		•	080/1	٠	\$
	Mon	day, 6 June	e, 2.00 p.r	n. to 3.30	p.m.			
		1 hour and	30 minut	es allowed	1			
					-	•	į.	
1. W	rite in the space provi	ded on this p	zge:	,				
		•			•			
(a) your initials and ;	urname in blo	ck letters,		-			
(b) the number of you	ur evaminatio	m cantro (f	ham vara er	ntement			
,,,	of entry),	ar caerniriento	vi comire ()	on your si	M 10//15/16	1		
(c) your own candida	ite's number (from vour	statement (of entro l	1		
14			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	•		السلسل
2. <i>O</i> 1	pen the flap at the bac	ek of this has	b and ansa	ا ۱۱/ والسعماد .	amal /a l			
<u> </u>	pen the julp ut the out		K WING CITTE	ueimis (D)	ana (c).		·	
		wer all questi		•		7		
	În calculatio	ms, omission	of working	may lead to	o loss of	mærks.		
	roximate number of n of each question. Thi						lown at	ļ
	Data:	The scale	of preferred	i values is:		-		
			.2 1.5		2.2			<u> </u>
		2.7 3	.3 3.9	4.7	5.6			
		6.8 8	.2		. :			
			s in the res	istor colous	code co	orrespond		
		Black :	0	Green	:	5		
		Brown :	1	Blue	: •	6		
		Red :	2	Violet	:	7		
		Orange :	3	Grey	:	8		
	•	Yellow :	4	White	•,	9		

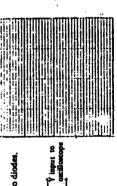
[080/1]


© 1983 AEB

[Turn over



If the adjustment of the oscilloscope remains unchanged draw the trace that you would expect to see when the a.c. supply and the oscilloscope are connected to:


(a) a transformer with a primary coil of 50 turns and a secondary coil of 100 turns,

are.

supply

the same transformer, a resistor and two diodes,

[080/1]

i mark

-||..., 12 & 6.4 0.06 A å[]3 4.7 kD Z L1 🚫 6.0

What happens to lamps L1 and L2 when the switch SI is closed?

Œ

(b) Explain your answer to (a) by explaining the action of the chruit.

3 marks

What happens to lamps L1 and L2 if switch S1 is kept closed and switch S2 is also closed?

છ

3 marks

(d) Explain your answer to (c) by explaining the action of the circuit.

3 marks

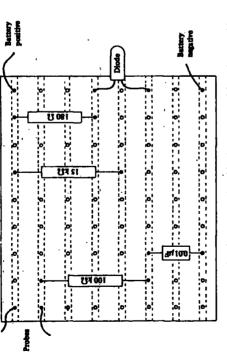
ℸ℩℗℗ *********

supply

ভ

[080]

IMB CICUIT Shows & Gevice that is designed to act as a gamp locator:


Suggest one simple test that could be done after assembly to see if the device works:

છ

metal one. Suggest a reason for this:

ì

Someone decided to assemble this carcuit on a piece of stripboard. The partly assembled circuit (top view) is shown in this enlarged diagram:

The transistors to be connected to the stripboard look like this when viewed from the underside:

- (a) Show how you would complete the assembling of this circuit by adding to the above stripboard diagram:
- the two transistors, clearly labelling each of the transistor leads,
- a label 'X' to show the point where a break would have to be made in one of the copper strips on the underside of the board,
- (iii) a label 'a' (anode) and a label 'k' (cathode) to show the correct connections of the diode. If marks

TURN OVER FOR NEXT QUESTION

[080/1]

2 marks

(;

4 marks

assumed to have no resistance. Each of the conductors is 10 kilometres long and has a resistance of 10 Ω per kilometre.

The landline develops a fault and an ohm-meter is used to locate the fault so that the landline can be dug up at this point and repaired. For the purpose of the test the landline is disconnected from its circuit

The readings that are obtained are shown in this table:

Ohm-meter connections	Resistance measured \(\Omega\)
Start of white conductor, and start of black conductor.	instaite
Start of white conductor,	0Ĭ.I
Start of black conductor, and earth.	infinite
End of white conductor, and earth.	96

(a) Explain carefully the likely nature of the fault.

2 marks

How can the resistance measured be 110 Ω if each whole conductor has a resistance of 100 Ω ? 3

I mork

(c) Calculate the distance, from the start of the landline, where the fault is to be found:

4 marks

.... kilometres from the start.

The fault is.

Europhones Amplifier

Transmitter

7

emitting diode is modulated by means of a microphone. The amount of light radiation produced is proportional to the current flowing through the diode. Thus the light output is modulated with the speech signal and this is focussed onto the transducer of the receiver. The resulting audio signal is The system is described as working in this way. In the transmitter the current through the light amplified and fed into the earphone.

(a) Give an example of when such a system could be rather more useful than a simple telephone system.

2 marks I mark Explain how a change in the sound level in the microphone results in a change in the output (b) Give two advantages of such a system as this. of light from the LED. છ

By means of a tabelled diagram illustrate what is meant by amplitude modulation. ਉ

"];

[080/1]

THE ASSOCIATED EXAMINING BOARD

for the General Certificate of Education

June Examination, 1983 - Ordinary Level

ELECTRONICS

Paper. 2

080/2

Wednesday, 22 June, 9.30 a.m. to 11.30 a.m.

2 hours allowed

You should attempt FOUR questions altogether including:

ONE question from Section A
ONE question from Section B
ONE question from Section C

ONE further question from either Section B or Section C

Simple clear diagrams should be used when they will help in answering a question.

In calculations all working should be shown.

This paper carries 40% of the total marks for the examination.

Data:

The scale of preferred values is:

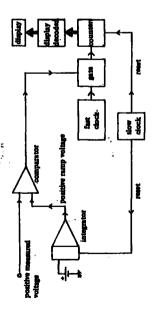
1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2

The colours in the resistor colour code correspond to the following values:

 Black:
 0
 Green:
 5

 Brown:
 1
 Blue:
 6

 Red:
 2
 Violet:
 7


 Orange:
 3
 Grey:
 8

 Yellow:
 4
 White:
 9

SECTION B

Answer at least ONE question from this Section, but not more than TWO.

4. The figure below shows the block diagram of a digital voltmeter.

A pulse from the slow clock causes both the integrator and counter to reset to zero and then to start again.

(a) Sketch a voltage - time graph of the output from the integrator.

3 marks

(b). Explain what the counter is doing as the voltage from the integrator is changing.

(c) Explain the sequence of events that stops the counter.

3 marks

2 marks

(d) Explain how this arrangement measures the voltage applied to the comparator.

(e) What would be the effect on the reading if the next pulse from the slow clock came too soon?

2 marks

4 marks

(f) Explain three of the important differences between this type of digital voltmeter and an analogue voltmeter.

Most multimeters can measure three quantities: voltage, current and resistance.

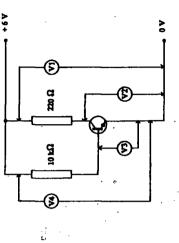
(a) Describe how you would use a multimeter to test for each of the following faults. In each case state which of the quantities you would switch the multimeter to measure, how you would connect the multimeter and the reading you would expect to obtain.

(i) A "blown" fuse.

(ii) A milliammeter which is apparently giving an incorrect reading.

(iii) A short circuit capacitor.

(iv) A "burnt-out" diode.


8 marks

[080/2]

...

In the circuit below the silicon transistor is normally biased into the active region with the resistor values shown. When the circuit develops a fault a multimeter is used to test the circuit. It is used in the voltage position and four voltages are read.

2

(i) If the four readings are:

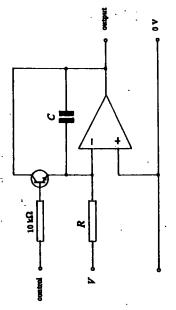
Explain why these readings indicate that there is a fault. Explain where the fault is most likely to be.

(ii) If the four readings are:

The state of the s

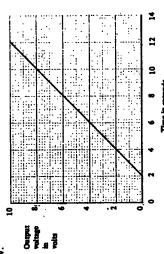
and there is no change in any of these readings on removing the 10 km resistor, explain why these readings indicate that there is a fault. Explain where the fault is most likely to be.

(c) Suppose that the transistor was found to be working satisfactorily and you know that:


Calculate the currents you would expect to find flowing through each of the two resistors.

Turn over

5 marks


This diagram shows the circuit of a ramp generator (power supply ± 10 V not shown).

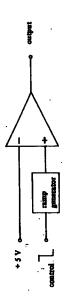
۲.

The output will produce a ramp voltage when the control voltage drops from a positive voltage to zero. The rate of rise of the ramp voltage is calculated by the formula:

The required output from this circuit is the voltage ramp shown in the graph below: **e**

- Calculate the ramp rate shown on this graph. Ξ
- Using the formula above calculate the value of C, the size of the capacitor, if **a**

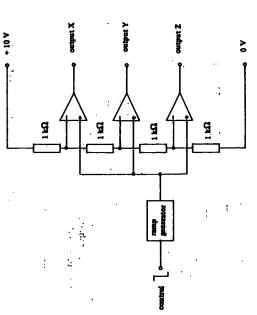
Using the same scales draw a graph of the control voltage required to produce this ramp voltage. £


[080/2]

5 marks

3 marks

(Turn over 6 marks


input of the operational amplifier below (power supply ± 10 V not shown) and (b) Assume that the above ramp generator delivers its output to the non-inverting +5 V is applied to the inverting input.

- Describe and explain what happens to the output of the op-amp after the control voltage received by the ramp generator goes to zero. $\boldsymbol{\Xi}$
- State two ways of increasing the delay between the control voltage going to zero and the change in the op-amp output taking place. Œ

6 marks

(c) The ramp generator is connected to several op-amps in the following way:

Explain how the changes in the outputs from X, Y and Z differ after the control voltage goes to zero.

- display is controlled by the circuit shown in (c), with the resistor values changed, sections. The sections come on in sequence, section 1 first, sections 1 and 2 two seconds later and then all three sections five seconds later again. If this An advertising display consists of mains powered lighting arranged in three calculate suitable values for the resistor chain Ξ ਉ
 - draw a circuit diagram that would be suitable for connecting output Z ≘

to its section of the display.

THE ASSOCIATED EXAMINING BOARD

for the General Certificate of Education

ELECTRONICS Ordinary Level (080)

NOTES FOR THE GUIDANCE OF TEACHERS

This pamphlet has been prepared to assist teachers of Ordinary Level Electronics by providing further information on those aspects of the syllabus and scheme of examination which are relatively new developments in this subject area. It contains the following sections:

- 1. Philosophical background to the syllabus
- 2. Syllabus topics
- 3. Books
- 4. Apparatus and equipment; typical requirements
- 5. The nature of project work in Electronics
- 6. The Project Brief
- 7. Assistance to candidates carrying out projects
- 8. Group projects
- 9. Project reports
- 10. Project assessment
- 11. Systems for symbols, diagrams and units

An addendum quotes extracts from the report on the first examination in 1982.

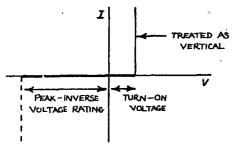
not. With modern silicon transistors, the baseemitter junction usually has a reverse-breakdown voltage of 5 V. Exceeding the reverse-breakdown voltage is the most reliable way to destroy a transistor!

2.2 DIGITAL MEASUREMENT (Syllabus Section 1)

Nowadays digital multimeters are almost as cheap as analogue instruments. Although many schools will not yet be using digital multimeters, they are sufficiently important to warrant inclusion in the syllabus. A digital voltmeter is also a good example of a system that can be built from the building blocks in section 4 of the syllabus.

At the time of writing these notes, the most popular method of analogue to digital conversion in multimeters is the dual-slope-ramp principle. This is too complicated for ordinary level candidates. The method required for this syllabus is the simpler single-slope method. A block diagram of the A-D converter is reproduced underneath. Its operation is explained as follows and candidates will be expected to give an explanation along these lines:

- The counter is set to zero; the integrator output is reset to zero.
- (ii) The stream of clock pulses from the astable multivibrator (in reality a crystal-controlled oscillator) is fed to a counter.
- (iii) The integrator produces a ramp-voltage output (i.e. the voltage is proportional to time).
- (iv) The ramp-voltage is compared with the analogue input. When they are equal the counter is stopped.
- (v) The time taken for the ramp-voltage to equal the input is proportional to the number reached by the counter; this number is therefore proportional to the input voltage. Scaling is arranged so that the number gives a direct reading in volts.



Note: The two blocks in dotted lines can be omitted and need not be taught for this syllabus:

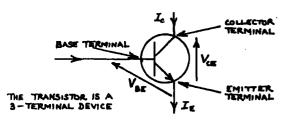
- (a) if the analogue signal is charging slowly or is just a d.c. quantity the sample and hold block is not necessary and the analogue input is compared directly with the ramp
- (b) the latch holds the display constant with the last value while the counter is counting.

2.3 DIODES

At this level the characteristic curve given to students should be idealised as illustrated below.

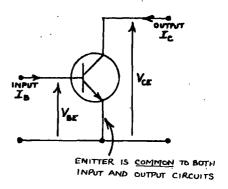
Typical values for the turn-on voltage should be known. For silicon diodes this is 0.7 volt (approximately) for germanium diodes 0.2 volt (approximately).

In selecting a diode the average load current and the peak-inverse-voltage rating are the basic parameters. The peak-inverse-voltage for a diode in a half-wave rectification circuit with a smoothing capacitor (or secondary cell on charge) connected to an a.c. supply with r.m.s. rating, $V_{r.m.s.} \quad \text{is } 2 \quad \sqrt{2} \quad V_{r.m.s.} \quad \text{For a bridge circuit it is } \sqrt{2} \quad V_{r.m.s.} \quad \text{(providing the diodes are accurately matched)}.$


The output voltage of a half-wave rectifier circuit connected to a load and with adequate smoothing will be $\sqrt{2}$ V_{r.m.s.} - 0.7 volts d.c. approximately if the diodes are silicon. For a full-wave bridge circuit the output voltage would be $\sqrt{2}$ V_{r.m.s.} - 2 x 0.7 volt d.c.

Where diodes are employed in logic circuits the value of turn-on voltage is particularly significant - see Section 2.7.

2.4 BIPOLAR JUNCTION TRANSISTOR (Syllabus Section 2)


No treatment of the physics of the transistor, nor of small-signal equivalent circuits, is required.

Only n-p-n transistors are to be covered; the following simplified approach should give sufficient guidance for teachers; details are given later of the specific parts that candidates need to know.

The most common circuit configuration is the commonemitter configuration and this syllabus implicitly restricts treatment to this configuration.

Notice the polarities of the voltages and currents for the n-p-n transistor.

In this configuration the base terminal is the input and the collector terminal the output. A full description of the relationships between

is given by the transistor characteristics which are a set of graphs.

However, engineers prefer design techniques using parameters to design techniques using graphs.

Parameters vary considerably between transistors, even between transistors of the same type, and it is much easier to consider worst-case conditions with parameters. No treatment of worst-case conditions is required for this syllabus.

A simplified explanation of the way in which the common-emitter transistor operates is as follows:-

- (i) if $V_{\rm BE}$ is less than a certain value (usually taken as 0.7 V) $I_{\rm C}$ = 0 and the transistor is said to be OFF.
- (ii) Once VBE reaches 0.7 V, IC can flow. To get a flow of collector current, base current must be supplied. The maximum value of collector current (it may be less because it may be limited by the external circuit) that can flow is given by

$$I_{C} = h_{FE} I_{B}$$

 $h_{
m FE}$ is a parameter of the transistor and is considered in more detail later. The base current must be limited by a resistor - again this is covered later.

If more base current than $V_{\rm CC}/h_{\rm FE}R_{\rm C}$ is supplied, the excess base current cannot produce more collector current, but does produce extra stored charge in the base region which slows down the response of the transistor.

Candidates are expected to be able to:

- (i) decide whether a transistor is ON or OFF in a particular circuit i.e. whether it acts as a closed or open switch
- (ii) calculate $I_{\mbox{\footnotesize B}}$ given an external circuit connected to the base of the transistor
- (iii) calculate $I_{\rm C}$ from the relation $I_{\rm C}=h_{\rm FE}~I_{\rm B}$ if the transistor is not saturated
- (iv) calculate $I_{\mathbb{C}}$ from the external circuit if the transistor is saturated
- (v) decide whether a transistor is saturated or not
- (vi) calculate $V_{\rm CE}$ from $I_{\rm C}$ and the external circuit

Candidates are NOT expected to be able to:

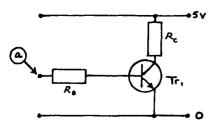
- (i) know anything about amplification of a.c. signals
- (ii) use the terms gain or amplification in relation to transistor circuits.

2.5 USE OF MULTIMETER TO IDENTIFY FAULTY COMPONENTS IN SIMPLE CIRCUITS (Syllabus Section 3)

The ability to identify which component in a simple circuit may be faulty calls for the use of deductive skill. It is an advantage of a syllabus of this nature that deductive ability can be encouraged. This ability is, of course, vitally important in practice when trying to get electronic circuits to work.

Given a set of information (voltage, current or resistance readings) taken from a multimeter, candidates are expected to be able to deduce the following faults:

resistors outside tolerance, open circuit or short circuit

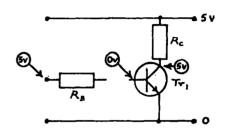

capacitors being short circuit

diode and transistor junctions not having a low forward and a high reverse resistance

dry joints (open circuit connection)

An example is probably the best way to give guidance as to the level of complexity to be considered.

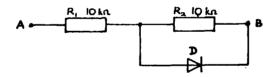
(a) (Using voltage measurements)


A transistor switch fails to operate. Given the voltage readings tabulated below, identify the fault.

Collector of TR1 : 5 V, Base of TR1 : 0 V. Point (a) of $R_{\rm B}$: 5 V.

 The base-emitter junction of the transistor could be short circuit.

(This is the answer that is the most obvious and would be expected).


(ii) There could be a dry joint at the junction of $R_{\overline{B}}$ and the base of TR1 or $R_{\overline{B}}$ could be an open circuit.

(Notice that the voltage was specified at the base of the transistor. Neglecting leakage currents the base voltage would be 0 V under these conditions).

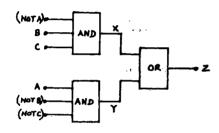
This fault is more obscure and generally would not be expected without further hints in the question.

An example where there could be more than one fault, and where there is a strong hint to this effect in the question is given below:

'An ohm-meter was used to test for a fault in the above section of a circuit. Connection of the meter to A and B indicated a resistance of 10 km whichever way round the meter was connected. There is known to be only one single fault. Which of the components could be faulty and which component or components (if any) can be assumed not to be faulty? Justify your answers.'

There is a strong hint that there is more than one possible fault condition, although for each fault there is only one faulty component.

The two possibilities are:


- (i) Diode D short circuit.
- (ii) Resistor R₂ short circuit.

Step 3: Convert this truth table to a logic circuit. This may seem at first to be the most difficult part of the design but in reality it is very easy. The process can be explained step by step by writing logical expressions in words but after some practice the required circuit can be written down by inspection.

- (i) From the truth table the output is logical 1: when (a) is O AND (B) is 1 AND (C) is 1 OR when (A) is 1 AND (B) is 0 AND (C) is 0
- (ii) This is the same as saying that the output is logical 1: when (NOT A) is 1 AND (B) is 1 AND (C) is 1 OR when (A) is 1 AND (NOT B) is 1 AND (NOT C) is 1

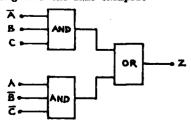
Notice that the expressions have been written so that each variable or inverted variable appearing in the expression is '1'.

(iii) The gating required to implement this function is

This is obviously true because Z is 1 when X OR Y is 1.

X is 1 only when (NOT A) AND B AND C is 1 Y is 1 only when (A) AND (NOT B) AND (NOT C) is 1

or using Boolean notation:

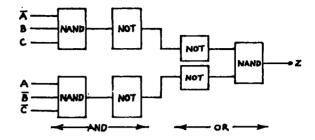

$$Z = \overline{A} \cdot B \cdot C \cdot + A \cdot \overline{B} \cdot \overline{C}$$

Since no minimisation of the number of gates is required for this syllabus this is the end of the process.

Summarising the rules for getting the final logical expression from the truth table:

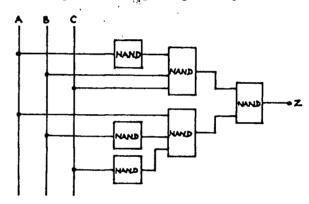
- the circuit consists of a number of AND gates feeding into an OR gate,
- (ii) there is one AND gate for every line in the truth table corresponding to a '1' for the output,
- (iii) each AND gate has an input for every input variable. If the variable appears as a '1' in that line of the truth table the variable itself is fed to the input; if the variable appears as '0' its inverse is fed to the input.

The AND - OR circuit derived from the truth table can easily be converted to a NAND - NAND circuit. Continuing with the same example.



The identities shown earlier were:

AND = NAND followed by NOT

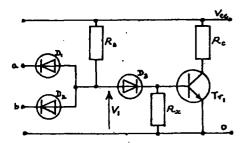

OR = NOT of each input followed by NAND

The circuit becomes:

Double inversion of a variable obviously gives the original variable, i.e. two successive NOT gates cancel each other.

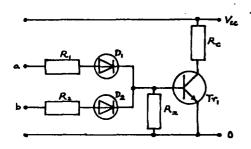
Hence the AND - OR circuit is identical to NAND - NAND. It is also worth noting that a single input NAND gate is an inverter so the complete function can be implemented using NAND gates only.

Section 6C of the syllabus requires the implementation of the full adder as a NAND - NAND function. This is another example that can be solved using the approach described here.


Decimal relationships	Equivalent in	n a m	aum	carry	
	binary		S	C	
0 + 0 + 0 = 0		000	0	۰ ٥	
0 + 0 + 1 = 1	* .	001	1	oʻ	
0+1+0=1		010	1	0	
0+1+1=2	0 carry 1	011	0	1	
1+0+0=1		100	.1	0	
1+0+1=2	0 carry 1	101	0	1	
1+1+0=2	0 carry 1	110	0	1	
1+1+1=3	1 carry 1	111	1	1	

Using the rules explained in this section

$$S = \overline{u.v.w} + \overline{u.v.w} + u.\overline{v.w} + u.v.w$$


which can be implemented as an AND - OR function or NAND - NAND

A practical circuit (more complicated than anything forming part of an examination question) is shown below. Silicon diodes can now be used. The inclusion of D3 means that V_1 must reach 1.4 V before TR1 will turn ON, i.e. any input voltage of less than 0.7 V will turn the transistor OFF.

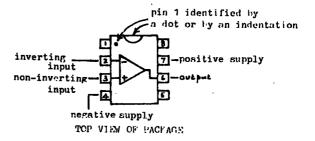
R, must be included otherwise D3 will prevent the transistor turning OFF properly.

(b) NOR gate.

In practice R_{χ} must be included to enable the transistor to turn OFF. If it were not included diodes D_1 and D_2 would prevent minority carrier charge stored in the base when the transistor is ON from properly flowing out of the transistor when it turns OFF.

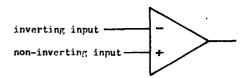
This nicety need not be considered for this syllabus and questions on NOR gates will not include $\mathbf{R}_{\mathbf{y}}$.

Without the inclusion of $R_{\rm X}$ the circuit is straightforward, except that the base current of TR1 depends on the number of inputs that are HIGH. When an input is taken to OV that diode is reverse-biased.

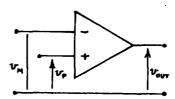

Note that this circuit needs an input of 1.4 V (if silicon diodes are used) before the transistor will turn ON.

2.8 OPERATIONAL AMPLIFIER CIRCUITS (Syllabus Section 5)

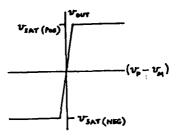
Operational amplifiers are very much easier to use than transistors and are now so cheap that they should generally be used in preference to an equivalent transistor circuit, especially when voltage amplification is required.


The most common "op amp" is the 741 which is an industry standard for all general purpose applications.

Just because it comes in a package with 8 pins and has 14 transistors inside it does not mean it is more difficult to use than a transistor; indeed it is much easier to use. Of the 8 pins only 5 need be considered for all general purpose applications.


Note that the device needs a <u>dual power supply</u>. Usually a supply in the range + 9 V to + 15 V is used. There is no direct connection from the device to the common zero line of the power supply, but input and output circuits are returned to this zero line.

The circuit symbol for an op amp omits the power supply connections as it is understood that they should be there; the symbol is:


This symbol can be drawn either way up but for the purposes of this syllabus it will always be shown with the inverting input uppermost.

The op amp is a differential amplifier, the output being given by $V_{\text{OUT}} = A_{\text{V}} (V_{\text{P}} - V_{\text{M}})$.

Ay is the voltage gain and is very large, perhaps 105. The output voltage cannot be larger than a value just smaller than the supply voltage; this value is called the saturation voltage and because there is a dual supply there are two saturation voltages: $V_{SAT(NEG)}$ and $V_{SAT(POS)}$.

From this it follows that the op amp has a transfer characteristic like that shown below:

The maximum differential input voltage that can be applied without the operational amplifier saturating is therefore $V \leq_{AB} \gamma^A$ which is perhaps 150 μ V or less. This is the basis for the "intuitive" approach used later for the derivation of the transfer function of op amp circuits.

For most general-purpose circuits it can be assumed that the operational amplifier (usually a 7^4 1) behaves as an ideal operational amplifier i.e.

A_V is infinite

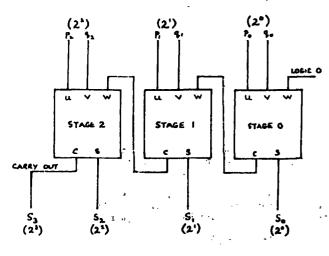
each input takes no current

the microprocessor (the "computer on a chip") can be used as a device in electronic engineering. Since computers are extremely complicated, treatment should be limited to principles.

Basic Computer Operations

(a) Representation of numbers:

Treatment should be limited to integers represented directly in binary code. Candidates should know powers of 2 up to 20 and they may be asked to convert decimal numbers in the range 0 to 127 into binary code or from binary into decimal. Candidates may be required to perform numerical operation operations with binary numbers of up to four bits.


(b) Full Adder:

This has already been dealt with in Section 2.6.

(c) Adding two binary numbers:

The full adder has three inputs:- u, v and w, and two outputs S (sum) and C (carry). Its function is to add together the three binary digits and produce the sum and carry outputs.

It is simpler to draw a block diagram for a parallel adder than it is for a serial adder, and treatment should be restricted to the parallel form. A block diagram for a 3-bit adder is shown below.

The two input numbers are P_2 P_4 P_0 and q_2 q_4 q_0 : P_0 and q_0 are the least significant bits and P_2 and q_2 the most significant. The carry output from one stage acts as the w input to the next. There is of course no carry in to the addition of the least significant bits but the carry out from the addition of the most significant bits produces the most significant bit of the sum (two n bit numbers added together produce an n + 1 bit sum).

Points: (i) since there is no carry in to stage 0 a half adder can be used instead of a full adder. For this syllabus a full adder in this position is quite acceptable.

(ii) this type of adder is called a "carry-ripple-through" adder because the time taken for the addition is the time taken for the carry out of the first stage to propagate through to the output of the last stage. In modern high-speed electronics a more complicated adder is used (called a "carry look-ahead adder") which predicts the effects of all the carries - no treatment is needed of such complications.

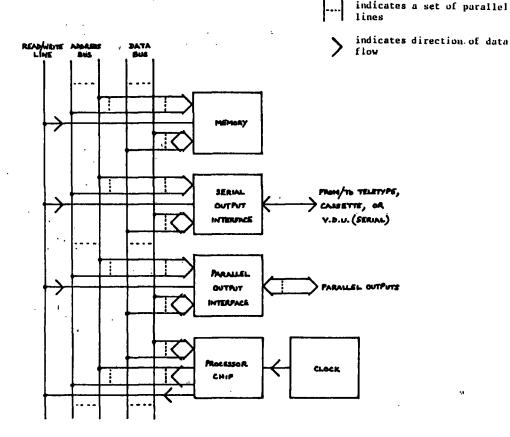
(d) Softwave multiplication:

this is best illustrated by an example.

decimal: $5 \times 3 = 15$

binary: $101 \times 011 = 01111$

Write in the form of conventional longmultiplication and perform the usual process, except that addition is binary.


multiplicand: 101	register P
multiplier: 0 1 1	register Q
101	101 x (1 x 2 ⁰) (LSB of 011)
101	101 x (1 x 2 ¹)
· · · · · · · · · · · · · · · · · · ·	(2nd bit of 011)
. 1111	add
000	1 0 1 x (0 x 2 ²) (MSB of 011)
0 1 1 1 1	add - 15, in binary

This is equivalent to (in basic computer steps)

Instruction	Result							
clear accumulator is last bit of Q 1? Yes: add P to accumulator: shift P 1 bit left shift Q 1 bit right is last bit Q 1?	acc: 0 0 0 0 0 0 acc: 0 0 1 0 1 0 1 0 0 0 0 0 1							
Yes: add P to accumulator: shift P 1 bit left shift Q 1 bit right is last bit of Q 1? NO: no addition	acc: 0 1 1 1 1 1 P: 1 0 1 0 0 0 0 0							

the multiplication is now complete: the result is in the accumulator. $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{$

(a) Block Diagram

Details of bus operation are given later.

Operation of the microprocessor system can be described very simply:

the clock governs the frequency of operation of the microprocessor. With a very simple processor one instruction would be executed at each clock pulse.

the processor chip controls the whole processes; it decodes the instructions contained in the programme and performs operations on the data values stored in memory

memory is used to store data and program instructions (see later section)

output-interface integrated circuits enable the microprocessor to communicate with other electronic systems. Of the two types of interface the parallel interface is probably easier to teach as it takes the parallel word put on the data bus by the microprocessor and gives that value to some peripheral (or takes the value from the peripheral and puts it on the bus).

The seven segment LCD or LED displays are parallel interface devices but they are rarely directly interfaced with microprocessor circuits. Thus candidates may be more concerned with serial interfacing, and will have to understand the concept of taking a parallel word and converting it to a serial sequence (and vice versa). Applications for this device are more common: a teletype or VDU is a peripheral requiring a serial interface. Questions on output interfaces will not specify the particular type and candidates may discuss either.

(b) Peripherals: a teletype or alphanumeric VDU (visual display unit) is used to enter data or instructions to the microprocessor and to display output. A brief comparison between the properties of the two types of terminal may be useful.

TELETY PE	VDU							
1 mechanical	electronic ·							
2 not particularly reliable (many moving parts)	reliable - electronic components are very reliable							
3 slow: data rate is usually 110 baud (110 bits/sec)	can operate very much faster than 110 baud							
4 noisy ··	silent							
5 produces a permanent record (in jargon: hard copy)	no permanent record							
6 only built in editing facility is 'delete last character'	can have sophisticated editing facilities built into the terminal							

A cassette recorder is the simplest form of backing store which is used to store large amounts of data program. Data is stored in serial form, 1's and O's being represented by different frequencies being recorded. Cassette storage is a slow form of storage but is cheap. Section 4.2 indicates the physical arrangements necessary in working areas to conform to good practice and it is hoped that teachers will ensure that students are aware of all the safety provisions of which they have the benefit. Section 7 of the syllabus includes those areas which are directly and immediately relevant to the student following the course and which may be examined.

It should be noted that question (ix) (d) in the project assessment is also an assessment of what is in fact an essential prerequisite to safe working.

Further guidance for teachers may be found in the following publications recommended by the Health and Safety Executive:

"The Safe Use of Electricity - a practical guide for persons at work in industry and commerce" obtainable from:

The Royal Society for the Prevention of Accidents
Cannon House
The Priory
Queensway
Birmingham
B4 6BJ

(This publication is suitable for students to refer to, but contains much additional information that they do not need at this level.)

"Safety in Electrical Testing" obtainable from:

Radio Electrical and Television Retailers Association (RETRA) Ltd RETRA House 57-61 Newington Causeway London SE1 6BZ

The Health and Safety Executive also recommends the use of artificial respiration charts such as those published by Electrical Review.

3 BOOKS

There is at present no single book which can be used as a course book for either students or teachers. The following list is included to assist teachers in extending their own background knowledge and some of the books are also suitable for a reference library for students.

Mainly for Students:

Project Technology Basic Electronics, Books 1-5 English University Press

Ladybird 'How it Works' The Telephone, Television, The Computer

(Slide sets for "The Telephone" and "Television" are available from Slide Centre Ltd, 143 Chatham Road, London SW11 6SR)

For Teachers' and Students' Use:

Project Technology Handbook No. 13 Basic Electrical and Electronic

Construction Methods Heinemann Educational Books

Engineering Science Electronics, Systems and Analogues Macmillan Development Unit (ESDU),
Loughborough University of

Technology (for Schools Council)

P C Pittman Cambridge Learning Enterprises

C P Gane & A W Unwin Digital Computer Logic & Electronics

(4 volumes) Cambridge Learning Enterprises

Ferranti E-Line Transistor Applications

Hartley Jones The Practical Introduction to Electronic Circuits . Cambridge University Press

M Plant (NCST) Photocell Applications English University Press

M Plant (NCST) Operational Amplifier Applications NCST Trent Polytechnic, Nottingham

Ian R Sinclair Understanding Electronic Circuits Fountain Press

Ian R Sinclair Understanding Electronic Components Fountain Press

H W Hellyer & I R Sinclair ... Radio and Television Newnes Technical Books

T L Squires & C M Deason Beginner's Guide to Electronics Butterworths

Gordon J King Beginner's Guide to Television Butterworths

B & Barker Foundation Electronics Helcon

Tools

At a minimum, each pair of students will need small screwdriver, a wire stripper or pair of side cutters, a small pair of narrow-nosed pliers, a 25 W soldering iron with a supply of solder, a stand for the iron and a heat resistant mat.

In addition, a range of tools such as a fine toothed saw for cutting circuit boards, small vice, range of screwdrivers, hand drill and bits, several needle files, a sharp (Stanley) knife, steel rules and a fine flat file will be needed. Nuts and bolts, solder, steel wool, 5 minute Araldite and spare drill bits will be among consumables.

Costs

At 1979 prices, it is likely that the cost of setting up the course would be around £2000, but most schools will have much of the apparatus and equipment available already in the Science Department. Annual costs are not high, as it should only be consumables and small components that have to be replenished.

+.2 HEALTH AND SAFETY LEGISLATION

The Health and Safety Legislation requires that all reasonable steps should be taken to protect students and teachers alike from possible accident or injury. This means that the a.c. mains supply should be installed to comply with IEE regulations, and should preferably include an earth leakage circuit breaker and a master trip. All mains equipment should be earthed, or double insulated, and all equipment to which connections will be made should have an isolating transformer. Equipment containing an autotransformer (e.g. many variacs) is not acceptable unless also permanently connected through an isolating transformer.

Mains equipment must be capable of isolation from the supply. Whilst an accessible plug and socket will achieve this, in practice equipment should be fitted with a switch.

The Legislation also requires regular inspection and maintenance of equipment. Checking should include regular checking of earth continuity and testing or earth leakage circuit breakers.

In considering electrical safety other hazards should not be overlooked. These include portable electric tools, and risks of burning from soldering irons and other electrical equipment. All working spaces should be equipped with carbon dioxide fire extinguishers.

5 THE NATURE OF PROJECT WORK

The project is intended to develop the abilities required for problem solving - formulation of the nature of the problem and a specification for its solution, planning of the approach, identification of alternative solutions and their evaluation to select the optimum solution, realisation of the solution by construction of appropriate hardware, and evaluation of that solution. Since the realisation of the solution is necessarily a time consuming process, it is inevitable that these skills will not be adequately assessed in a written examination, so the scheme includes an assessment of the project work.

It follows from this need to make decisions that the work done by each candidate must be unique to the candidate and different from work carried out by others in the class. Each candidate should be encouraged to select his own problem and two candidates should not be allowed to attempt the same topic unless their approaches to it are demonstrably and fundamentally different right from the outset.

Published designs may well form the basis of a project, but if published designs are used, the approach must be appropriate to the aims of the course. Any piece of equipment built must be intended to perform a specified function, and it is entirely acceptable that a candidate should formulate a problem, find several possible published designs, and select the most appropriate design to meet the specified requirement. However it is not acceptable for this syllabus for a candidate to see an attractive published design, decide he/she would like to build it and then hope that it will do as a probject.

5.1 TIMETABLE FOR PROJECT WORK

Since the project often requires background knowledge on the more sophisticated parts of the syllabus, most teachers leave the project work until the end of the course. Typically, students would be encouraged to think about possible topics and to select an appropriate topic in the October before the examination. They are required to consider the implications and plan their initial approach, and then prepare a Project Brief for submission to the Board by 30 November. This Brief is intended to direct the planning of the project and to ensure that the selected topic will be appropriate for assessment. It is not assessed at this stage, but will be signed by the Moderator and returned by January (see Section 6). It is assessed with the final report and must be resubmitted at that time (see Section 10). Project, together with the candidate's report, will need to have been completed and assessed by the teacher so that it can reach the Moderator not later than 15 May.

For candidates preparing for the examination in one year, 30 November will be too early in the course for submission of a Project Brief. In this case it will be necessary to request permission from the Board, not later than 30 November, to submit the Project Briefs later. In this case, the Project Briefs must be submitted not later than 31 January.

Whilst individual cases vary by a considerable amount, typically a student might spend eight weeks in preparation, requiring perhaps a half hour of class time each week, and twelve weeks carrying out the project, based on two hours class time per week. Candidates might well expect to spend a significant amount of their own time on their projects - either in school after hours or at home.

5.2 PROJECT TITLES

There is not a list of standard titles, and candidates should be encouraged to find their own ideas. The following list of popular project titles is included only to give some indication of the scope of typical projects:

Electronic metronome Stylus organ Musical door chime Guitar effects units Windscreen wiper delay Electronic dice Electronic cricket Pattern generator for oscilloscope Programmed light display (low voltage only) Enlarger exposure meter Colour temperature meter Stop clock Transistor and diode tester Capacitance meter Combination lock Automatic porch light

if at all, by the candidate. The assessment procedure, however, provides a genuine customer demand with the Board acting as customer and the assessment scheme providing the customer's specification.

~ · · · · · · · · ·

7.3 ASSISTANCE FROM OTHER SOURCES

Candidates are expected to consult reference books or experts as appropriate. <u>In every case</u> they must acknowledge this source of information or advice explicitly (either as a footnote or as a list of references). The project assessment is based on what they have done with the information at their disposal, not on the facts and information they claim to know.

8 GROUP PROJECTS

Group projects are not permitted in this subject.

9 PROJECT REPORTS

At the end of the project each candidate must prepare a report on the project. This report will be assessed, together with the hardware of the project, by the teacher, and then the report will be sent to the Moderator. The reports will not be returned.

9.1 CONTENT OF REPORTS

The report should contain:

- (a) The Project Brief
- (b) A statement of alternatives considered for the chosen artefact and the reasons for the selection of the particular design chosen. Reasons for deviation from the original Project Brief should be included.
- (c) Significant aspects of development and progress
- (d) A brief explanation of the mode of operation of the artefact (either in words or by diagrams)
- (e) Test results, appropriately tabulated
- (f) An evaluation of the performance of the artefact based on the original specification
- (g) Layout diagrams, circuit diagrams, photographs, etc, to illustrate both the development and the final form
- (h) Statement of all sources of information and assistance received.

As much of the report will be in the form of diagrams, tables etc, it is difficult to give an estimate of the typical length of a report. However, it is unlikely that a report will be more than 2000 words in length. It is more important that the report should be of a length appropriate to the project whether this is less or more than the typical length. Candidates will lose marks for including unnecessary detail, for unnecessary repetition, and for failing to include essential details.

9.2 STYLE OF PROJECT REPORT

The style of the report should be, before anything else, clear straight-forward communication of facts and ideas. Candidates should be given instruction in the presentation of information and encouraged to use a more suitable style than a simple diary of events. The quality of written communication is directly assessed but its real weighting in the assessment is inevitably greater than the marks directly allocated.

10 PROJECT ASSESSMENT

In order that arrangements can be made for Project Assessment, a provisional entry for this subject must be made by 15 October of the year preceding the examination, by writing to The Secretary General (A7) at the Board.

The completed Project Report must reach the Moderator by 15 May. Every candidate must have carried out a project and submitted a Project Report. No result will be issued unless a Report is submitted and some hardware has been produced.

10.1 ADMINISTRATIVE DETAILS - CANDIDATES ASSESSED AT THEIR OWN CENTRE

The first assessment of the project and its report is to be carried out by the teacher using the detailed scheme and assessment form provided by the Board.

Assessment forms will be sent to centres in early April. Assessment must be completed and the project report and assessment forms (but not the project hardware) must be sent to reach the Moderator by 15 May. The Moderator may wish to visit the centre to inspect the project hardware (and possibly interview candidates) during the period 15 May to 30 June.

Centres may obtain copies of the assessment scheme at any time by applying to the Secretary (A7).

10.2 ADMINISTRATIVE DETAILS - PRIVATE CANDIDATES

The assessment of the project report will be carried out by the Moderator using the same scheme of assessment as used for internal candidates. When the report has been assessed, the candidate will be required to attend for an interview with the Moderator at a centre and on a date to be arranged by the Board. All interviews will be completed by 15 June. The Moderator may ask the candidate to bring his project to the interview. An additional practical fee will be payable by private candidates.

Private candidates must send their Project Report (but not the project hardware) to the Moderator to arrive not later than 15 May. The Moderator's address will be notified in April. All other correspondence must be sent to the Board at this address:

The Secretary General (A7)
Associated Examining Board
Wallington House
Station Road
Aldershot
Hempshire GUIL 1FQ

Private candidates can obtain a copy of the assessment scheme, for their own reference, by applying to the above address.

10.3 BASIS OF ASSESSMENT SCHEME

The assessment scheme uses groups of graded questions which are to be given either a 'yes' or 'no' answer, and the mark awarded is the number of 'yes' answers obtained by a candidate. However, the questions are arranged in groups and 'yes' answers may only be given to later questions in a group if all previous questions in the group have gained a 'yes' answer - even if by itself the question would obtain a 'yes' answer.

The answer to the assessment cuestions given by the teacher must be based on evidence from the project hardware and the project report. Where a candidate clearly deserves a particular mark but has failed to record the necessary details in his report, the teacher can award a mark providing supporting information is given to the Moderator.

GROUP I

This assessment is based entirely on the written report. The development of a project will vary significantly dependent upon its particular nature. In some cases it will be the trying out of circuits on bread-boards or the testing of sections of a system. In other cases it will be determining physical arrangements (e.g. possible vero-board designs) and the testing of components. Whatever form the development takes, it should be reported.

GROUP II

This assessment is based entirely on the written report. A single circuit diagram is not sufficient for 'yes' for question (a), but question (a) may be answered 'yes' if there is any additional attempt to use appropriate sketches etc. Reproduction of standard basic circuit diagrams taken from the test book are not, by themselves, likely to score more than one mark in this section, since a page reference to the original circuit could be equally appropriate.

GROUP III

This assessment is based entirely on the written reports. Evaluation of a system performance is only relevant in the context of the specified function and/or purpose of the artefact.

GROUP IV

Available resources means libraries in school, accessible experts, readily available magazines and the local library if it is accessible and can supplement resources in the school. To score two marks there should be no obvious reference which the candidate has failed to check.

GROUP V

A details specification means a specification giving the complete sequence of a sequential or oscillating system, an indication or range of control function and indication of power supply requirements and an indication of conditions under which the artefact is to operate.

Question (c) may be answered 'yes' if any of the parameters in the specification is specified in quantitative terms.

GROUP VI

The assessment sheet indicates the type of parameters required, and below is given some indication of the range of parameters that could be considered for typical projects. The operation of questions (b) and (c) can perhaps best be explained by an example. The standard for (b) is . "The power supply voltage is to be 9 volts" whereas for (c) "The power supply should be between 7.5 volts and 9.5 volts." The requirement for a realistic range is only to be operated as a discriminator against candidates who know a range of values might be the correct specification but specify any range that comes to mind solely to "earn" the mark. It is, in any case, important that candidates specify in realistic terms because their evaluation techniques will follow from the specification and this scheme will tend to penalise an unrealistic specification inadequately evaluated. It should also be noted that this question will tend to penalise the very simple project, and therefore sets the lower limit of acceptable complexity, but will accommodate both a simple project thoroughly evaluated and a more complex project with less evaluation.

Examples of parameters which might be specified:

(i) metronome

frequency range, mark/space ratio, stability, power requirements, output power, setting accuracy

(ii) traffic light sequence generator

time for red, time for red/yellow, time for green, time for yellow, power requirements, light output, timing controls, switching times.

(iii) audio amplifier

input signal, amplifier gain, input signal control, output power, output load, frequency response, distortion, power requirements, low frequency correction, high frequency correction, safety or overload protection.

(iv) windscreen wiper delay unit

delay time, control, power supply requirements, motor stall protection, response to variation in supply voltage, timing stability, temperature stability, protection from adverse environment.

(v) radio receiver

frequency range, selectivity, sensitivity, output power, automatic/manual gain control, power supplies, signal/noise ratio, hum levels, stability.

Teachers are reminded that students are expected to use reference sources in this and all parts of the project. They are not expected to derive quantitative specifications from their imaginations.

GROUP VII

"Any evidence" means that a single instance of alternatives being considered, chronicled in the report, will earn one mark. "Several relevant points" means at least three instances. Design solutions means complete circuits taken from reference sources.

GROUP VIII

....

An assembly which is not sufficiently rigid to be transported in one piece, or in which electrical connections are intermittent, cannot score more than one mark. Redundant material includes unused circuit boarding, excessively large cabinets, unnecessary switches, controls or warning lights, unnecessarily heavy conductors, unnecessary earth loops, leads of unreasonable length. High standards of neatness are required, including wiring neatly bunched, routed and colour coded and a good standard of craft practice in construction. Cabinets are not necessarily required for all projects. If equipment is mains operated or is to be used in circumstances where protection is required, then a cabinet would be expected, but low voltage equipment would often be 'complete' without provision of a cabinet.

Circuits do not necessarily need to be built as a permanent piece of equipment. Construction based on bread-board systems or matrix board is acceptable provided (a) the assembly is organised (b) the assembly will withstand movement and storage. As a guide to the latter condition, the equipment should be capable of being moved from bench to storage cupboard and back without need for dismantling or introduction of faults.

PARST READ THE NOTES FOR GUIDANCE ON PAGE 5		2. Write a specification for the completed system you intend to produce.			OF.	FORM	3. Give some indication of the type and range of the materials, components and equipment you think you will require for the conduct and completion of your project.	984						
	Candidate Number	THE ASSOCIATED EXAMINING BOARD for the General Certificate of Education	ELECTRONICS (080) Ordinary Lovel	PROJECT BRIEF	NAME OF CENTRE: CANDIDATE'S SURNAME AND INITIALS: YEAR OF EXAMINATION:	FILL IN YOUR CENTRE AND CANDIDATE NUMBERS IN THE BOXES IN THE TOP RIGHT HAND CORNER OF THIS COVER	A Project Brief form must be completed by each candidate for the examination, and the forms must reach the Board's Moderator not later than November 30th preceding the date of the written examination, together with the top copy of the candidate Het, CT2/EL2.	Candidates are strongly advised to keep a copy of the Project Brief form, so that preparatory work can be carried out while the Moderator has the forms.	Project Briefs will be returned to centres by January 1st with any necessary comments by the Moderator.	When you have completed this Project Bulef, make sure you have a copy for your own use and then hand the original form to your expervisor so that he can post it to the Moderator.	SUPERVISOR 3 DECLARATION	I confirm that this Project Brief has been prepared by the above candidate.	Name of the state	Date:

51

NOTES FOR GUIDANCE OF CANDIDATES

not approved

Comments:

This Project Brief is:

The space available on the form is an indication of the amount of detail you are required to give. In exceptional circumstances only, an additional sheet of plain paper may be added if enough space is not available, and this extra abset must have your name on it and be firmly stapled to this Project Brief.

In completing this Project Brief you should also consider what you are expected to do for the final report on your project. Your supervisor will show you a copy of the Project Assessment Scheme which will be used to mark your project at the end of the course, and you should ensure that as far as possible you will be able to obtain "Yes" answers to all the questions in the assessment scheme.

The specification in section 2 should consist of a description of the function of the completed system and a statement of the values of all significant quantities which are predetermined, a statement of the range of all quantities which are warishle or can have a range of values, and a statement of the sequence of any sequential operation giving times for each element of the sequence. The specification is a statement, as complete and operation giving times for each element of the sequence. The specification is a statement, as complete and expected to do, and this is the measure by which you will be able to judge how effective your completed system is at the end of your work. You will not get extra credit by trying to be excessively precise or, on the other hand, by making the specification so bread that the completed system will inevitably meet it. High makin will be awarded for a realistic specification, a realistic attempt to meet it, and a sensible appraisal of how far and in which respects you have schleved it.

.,

The information you give in sections 3 — 7 inclusive on this form does not irrevocably commit you to particular counses of action. Where major changes are necessary in the way you carry out the project, you should make detailed comments about the reasons in your project record which you hand in at the end of the course. Any major divergence from section 1 or 2, however, must be negotiated by your supervisor with the Moderator.

Project Brief Approval

When the Project Briefs are returned approval will be indicated in the appropriate space on page 6 of the form. Should the Moderator not approve, he will give reasons and you should submit a new or modified Project Brief for approval before lanuary 20th. This will normally be returned within a few days. It should be pointed out that approval only means that the activity planted, if fully carried out, will give an assessable project at Ordinary Level. Approval does not mean that the Brief is flawless or that further planning is unnecessary.

:				(Moderator) (Roderator)
				Signed: (Moderator) Date: Date: Moderator indicates that the project is sparomists for the examination in Electronica but does
				NOTE Asserved by the Moderator is

In making a final amesument of the project, the initial brief will be taken into account.

not indicate that every detail in the Brief is necessarily correct or appropriate.

THE ASSOCIATED EXAMINING BOARD for the General Certificate of Education

ELECTRONICS (080) Ordinary Level

PROJECT ASSESSMENT

The project is to be assessed out of a total of 50 marks. The marks are to be allocated under the following criteria.

ROUP	CRITERION	MARKS
8	Witten communication	\$
æ	Graptical communication	٣
(E)	Reporting of System Performance	7
E	Use of Resource Materials	7
ε	Project Brief	4
E	Specification	m
Œ	Design, Selection of Atternatives	*
ĵį.	Competence in Physical Assembly	4
(Competence in Electronic Assembly	8
8	Testing and modification during development	61
Î	Does it work? (Including reliability)	٧,
(<u>X</u>	Quality of evaluation	m
	Project activity during the course, and initiative	m
(Originality	7
æ	Safety	ю

ASSESSMENT OF THE CRITERIA ABOVE

The questions are arranged in various groups according to the criteria being tested.

The questions in each group are graded, each question representing a higher ability than the preceding question in that group.

To seess a particular project, the teacher, on the evidence of the artefact, project report and his knowledge of the work of the candidates, will answer the questions. If the answer is 'yes' to a particular question, award I mark in the appropriate column, and proceed to the next question in that group. If at any stage a 'no' answer is recorded, the marks awarded for that particular question and remaining questions in that group are zero, and the teacher will proceed to the sext group of questions.

Group (i) - Written Communication (5 marks max.)

- (a) Has the candidate reported at least some of the major aspects of the development and progress of the
- Has the candidate reported all the significant aspects of the development and progress of the project?
- (c) Is the presentation of the report logical?

E

- (d) Is the report clear (i.e. concise, free of unnecessary repetition, and easy to understand)?
- (e) Does the report represent a complete account of all the work carried out by the candidate?

Group (ii) - Graphical Communication (3 marks max.)

- is the development of the project illustrated by appropriate block diagrams/circuit diagrams/layout diagrams/ photographs?
- (b) Is the development of the project adequately illustrated by block diagrams/circuit diagrams/layout diagrams/ photographs?
- (c) Are the illustrations neatly and carefully presented?

COPY OF FORM USED

Group (iii) - Reporting of System Performence (2 marks max.)

- (a) Does the report contain any evidence of evaluation of system performance?
- (b) Does the report contain evidence to show that the system performance has been evaluated fully, including tables of appropriate text results?

1984

Group (iv) - Use of Resource Materials (2 marks max.)

- (a) Did the candidate use a reasonable selection of available resources?
- (b) Did the candidate make the best use of available resources to ensure that the project operated to the specification?

Group (v) - Project Brief (4 marks max.)

- (a) Does the report contain a statement of a project brief in addition to the title?
- (b) Does the Project Brief contain a specification for the main features of the proposed artefact?
- (c) Does the Project Brief contain a quantitative specification for the proposed artefact?
- (d) Does the Project Bris foutline possible problems that need to be solved in order to arrive at a final solution?

1980

THE ASSOCIATED EXAMINING BOARD

_	_	_	_	_						_ •	_			_	_	_	9	
	CE	NTRE NUI	MBER	· · · · · ·		C	ANDIDAT	E NUMB	ER			DO	NOT W	RITE IN	THE SP/	NCE		SHADE
				! ! !			<u> </u>							BELOW			SHAD	瑟
							OPY COPY			ED IN	198						SHOW REQUIRED MARK BY IN PANEL THUS [1]	CANCEL A N
1 a) b) c) d)	WRITTEN some aspects logical clear complete	COMMUNI(CATION		7 a) b) c) d)	at sever	ives consid Il points for rejectio				12 a) b) c)	approp perfor	UATION priate prod med accur te conclus	ately			MARKSHEET	
2 a) b) c)	GRAPHICA illustrated adequately well presen	AL COMMU	NICATIO		8 a) b) c) d)	organisa adequate	AL ASSER tion eviden construct adant mate	nt tion			13 a) b) c)	made	ECT ACTI some decis most decis all decision	sions			ELECTRONICS (080) PROJECT MARKSHEET	Moderator's total mark
3 a) b)	SYSTEM P some evaluat		NCE		9 a) b) c)	no obvio			田田田		14 a) b)	any or	INALITY iginal idea ruitful ide				ELECTRONIC	Assessor's total mark
4 a) b)	RESOURC reasonable best use	E MATERI <i>I</i>	ALS		d) e) 10 a)	techniqu TESTIN	e good				15 a) b) c)	SAFET safe ap sensible thorou	proach e					
5 a) b) c) d)	PROJECT (submitted with specifi which is que problems or	cation entitative utlined 			b) 11 a) b) c) d)	DOES I' any part several ; most of reliably	parts				NOTES Use only an HB-pencil to complete this form. Write only in marked boxes. Submit comments separately. Code centre and candidate numbers at top of sheet. Refer to EL3 for detailed criteria for each mark. Mark either 1 or 0 for each of the 50 criteria. Enter total mark and candidate's name in box on right hand side.			f sheet. erk.				
e) b) c)	four param with magni precise and	tudes				_	_	_	_								Centre (Enter centre name on	Candidate's name