
Durham E-Theses

Approaches to Support Student Learning in

Introductory Programming Laboratory Classes

LOW, ADAM,CHRISTOPHER

How to cite:

LOW, ADAM,CHRISTOPHER (2010) Approaches to Support Student Learning in Introductory

Programming Laboratory Classes, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/828/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/828/
 http://etheses.dur.ac.uk/828/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Approaches to Support Student Learning

in Introductory Programming Laboratory

Classes

Ph.D. Thesis

September 2010

Adam Low

Technology Enhanced Learning Research Group

School of Engineering and Computing Sciences

Durham University

Abstract ii

Abstract
Objectives: This thesis will explore some innovative solutions to communication

difficulties that exist in higher education teaching of introductory programming.

Communication between a teacher and student is important, as it is the main

opportunity where a student can ask a teacher questions about a particular problem

they have, and a teacher can give feedback to direct them towards a solution. It is

expected that through utilising technology in laboratory practical classes,

communication between teachers and student can be improved.

Methods: This thesis primarily explores the possibilities of using student compiler

and method invocation data, collected during a practical class and sent directly to a

teacher. This data maybe beneficial as a method of allowing teachers to see if a

student requires help. This thesis utilises a variety of research methods including

questionnaires, observations of classroom interactions and collection of data

recorded from student and teachers interactions with the technology. The approaches

are used during an investigation into the current approaches of laboratory practical

teaching, before progressing onto investigations using the technology developed that

accompanies this thesis.

Results: The results identified that the majority of the students and teachers who

used the technology felt that it improved their ability to communicate within

laboratory practical classes. The teachers felt that they could use the data collected

by the technology to view activity from the students and see a student’s progress.

The teachers could interpret the data collected from the technology and students who

needed help could be identified.

Conclusions: This thesis has demonstrated that technology has the potential to

improve communication in laboratory classes, and enable teachers to support

students more effectively. However, the technology developed in this thesis, does not

eliminate the requirement for a teacher to interact with a student face-to-face, but

rather its role is to act as an indicator of students who may need assistance.

Declaration of Authorship iii

Declaration of Authorship
I, Adam Low, declare that this thesis titled, ‘Approaches to Support Student

Learning in Introductory Programming Laboratory Classes’ and the work presented

in it are my own. I confirm that no part of the material provided has previously been

submitted by the author for a higher degree in Durham University or any other

University. All the work presented here is the sole work of the author.

This research has been documented or is related, in part, within the publications

listed below:

• A. Low. ‘TR-TEL-08-04: Technology to Support Interactivity in

Introductory Programming Lectures’ Technology Enhanced Learning

Research Group Technical Report Series, Durham University, August 2008

• J. Lavery, & A. Low. Concept Mapping in Lectures. Proceedings of 9th

Conference of the Subject Centre for Information and Computer Sciences,

Liverpool, England. 2008.

• A. Low, L. Burd & A. Hatch. Technologically Enhanced Demonstrator

Support - Tools for Assisting Demonstrators in First Year Programming

Laboratory Classes. 10th Conference of the Subject Centre for Information

and Computer Sciences, Kent, England. 2009.

Acknowledgments iv

Acknowledgements
I would like to acknowledge and thank my friends (especially Ryan Ford, Tam &

Andy Burn, Christopher Foster and Stephen Cummins) who supported me and

provided escapes from my work when it was needed.

Thank you to Professor Liz Burd And Doctor Andrew Hatch, for providing

invaluable guidance and technical advice for this research.

I would like to thank Professor Keith Gallagher and Stephan Jamieson, for allowing

me to test TEDS within their courses. Without their support this thesis would have

been very short.

Special thanks to Marion Low, Elizabeth Low, Jane Low, Ramona Scheufele and

Stephen Cummins for either proof reading my work or giving me advice on the

statistical portion of this research. Their support and assistance was invaluable.

I would like to acknowledge the Centre for Excellence in Teaching and Learning:

Active Learning in Computing for funding this research.

I would like to finally thank my family, who have always supported me when I have

needed it, and especially my wife, Marion, who has put up with me and kept me

going through all of the low points.

Contents v

Contents
Abstract..ii

Declaration of Authorship ...iii

Acknowledgements ... iv

Contents ...v

List of Figures ..xii

List of Tables ... xv

1. Introduction.. 1
1.1. Research Phases... 1

1.1.1. Research Phase (i) – Analyse existing methods of teaching

programming and identify issues with the current methods2

1.1.2. Research Phase (ii)– Develop technologies to overcome identified

issues 2

1.1.3. Research Phase (iii)– Carry out experiments to see the potential of the

technologies to overcome any discovered issues ...3

1.2. Layout of the Thesis... 3

1.3. Aim of the thesis.. 4

1.4. Demonstrators.. 4

1.5. Scope... 4

2. Literature Review... 6
2.1. Pedagogy ... 6

2.1.1. Constructivism and Directed Guidance...6

Contents vi

2.1.2. Constructive Alignment ...7

2.2. Modes of Teaching in Higher Education .. 10

2.2.1. Lectures ... 10

2.2.2. Practicals and problem based learning.. 19

2.3. Teaching Programming.. 22

2.3.1. The problems of teaching programming ... 22

2.3.2. Existing methods of teaching programming.. 25

2.3.3. Technology .. 25

2.4. Summary ... 29

3. Investigating Learning and Teaching In Current Practical Setting 30

3.1. Method .. 31

3.2. Results ... 32

3.2.1. Group A... 32

3.2.2. Group B ... 35

3.3. Evaluation.. 37

3.3.1. Issue 1 – Students are afraid to openly initiate dialogue with teachers 37

3.3.2. Issue 2 – Communication Difficulties... 41

3.3.3. Issue 3 – Students’ Range of Programming Abilities 50

3.3.4. Issue 4– More Independent Learning.. 51

3.3.5. Issue 5– Visibility of Students’ Progress .. 52

3.4. Summary ... 54

3.4.1. Research Question 1 – How highly do students value practicals? Do

students and teachers find communication difficult in existing practicals? Do

teachers find it difficult to track progress in the existing practicals setting?..... 54

Contents vii

3.4.2. Research Question 2 – How do students begin interactions with teachers

in the existing practical setting? .. 55

3.4.3. Research Question 3 – To what extent can teachers perceive student

status in the existing practical setting? .. 55

4. Technologically Enhanced Demonstrator Support... 57

4.1. Design Principles ... 57

4.2. Design Investigations... 58

4.2.1. Exploration of the capabilities of the BlueJ extension library.............. 58

4.2.2. Focus groups and interviews .. 61

4.2.3. During Use... 65

4.3. Features Identified ... 66

4.4. The Features of TEDS.. 67

4.4.1. Teacher Client.. 69

4.4.2. Feature A - Compiler Errors... 72

4.4.3. Feature B - Method Invocation... 78

4.4.4. Feature C - Code Snapshot ... 80

4.4.5. Feature D - Help Button ... 82

4.4.6. Feature E - Short Message Functionality .. 84

4.4.7. Feature F - Objective Setting.. 84

4.4.8. Feature G – Image Sending .. 86

4.5. Summary ... 87

5. Implementation... 89
5.1. Design Issues ... 89

5.2. Server Architecture.. 91

5.2.1. Connection Manager .. 93

Contents viii

5.2.2. User Manager... 93

5.2.3. Functions Manager... 94

5.2.4. Database Manager.. 94

5.3. Clients ... 95

5.3.1. Teacher Client.. 95

5.3.2. Student Client .. 97

5.4. Summary ... 98

6. Case Studies Design ... 99
6.1. Methods... 99

6.1.1. User Feedback.. 100

6.1.2. Observations .. 102

6.1.3. Automated Data Collection .. 104

6.2. Case Studies .. 105

6.3. Sample Selection ... 108

6.4. Limitations .. 108

6.5. Summary ... 112

7. Case Studies ... 113

7.1. Case Study One ... 113

7.1.1. Results ... 114

7.1.2. Evaluation.. 118

7.1.2.1. The benefits of smaller groups... 118

7.1.2.2. Runtime Errors.. 119

7.1.2.3. Teachers Behaviours Using TEDS... 120

7.2. Case Study Two... 120

Contents ix

7.2.1. Results ... 121

7.2.1.1. Results from Group A Session (i) .. 121

7.2.1.2. Results from Group A Session (ii) ... 124

7.2.1.3. Results from Group B Session (i) .. 127

7.2.2. Evaluation.. 130

7.2.2.1. The majority of students’ did compile/run code 130

7.2.2.2. Some students do not execute their code.................................... 131

7.2.2.3. Types of compiler errors are common across the cohort............. 132

7.2.2.4. Some students did not run or compile code................................ 134

7.3. Case Study Three... 135

7.3.1. Results ... 135

7.3.1.1. Results from Group A Session (iii) .. 136

7.3.1.2. Results from Group B Session (ii) ... 148

7.3.1.3. Aggregated Student Errors... 152

7.3.1.4. Student Questionnaires .. 154

7.3.2. Evaluation.. 156

7.3.2.1. TEDS shows teachers students’ status 157

7.3.2.2. TEDS reveals ‘movers, ‘stoppers and ‘extreme movers’ 166

7.3.2.3. TEDS enabled better teacher to student communication............. 172

7.3.2.4. The diagramming tool is beneficial for supporting the students.. 175

7.3.2.5. Teachers did not use all of the functions 176

7.3.2.6. Students’ compiler errors were grouped together 177

7.3.2.7. Positive Responses in the questionnaires 178

7.4. Summary ... 179

Contents x

7.4.1. Research Question 4 - In what areas can TEDS change the way that

teachers track student status? .. 180

7.4.2. Research Question 5 - In what areas can TEDS change the way that

teachers and students interact? .. 180

8. Conclusions .. 182

8.1. Research Phases... 182

8.1.1. Research Question 1 – What are the students’ and teachers’ opinions on

the pedagogic value of practicals?... 182

8.1.2. Research Question 2 – How do students begin interactions with teachers

in the existing practical setting? .. 183

8.1.3. Research Question 3 – To what extent can teachers perceive student

status in the existing practical setting? .. 184

8.1.4. Research Question 4 – In what areas can TEDS change the way that

teachers track student status? .. 184

8.1.5. Research Question 5 – In what areas can TEDS change the way that

teachers and students interact? .. 185

8.2. Limitations .. 186

8.3. Further Work ... 186

8.4. Summary ... 187

Appendix 1 – Teacher Preliminary Case Study Questionnaire 189

Appendix 2 – Student Preliminary Case study Questionnaire................................ 191

Appendix 3 – Teacher Post Main Case Study Questionnaire................................. 193

Appendix 4 – Student Post Main Case Study Questionnaire 195

Appendix 5 – Observation Tally Chart Sheet.. 197

Contents xi

References.. 198

Figures xii

List of Figures
Figure 2.1: Student orientation, teaching method and level of engagement [Big02 pp

4]..9

Figure 2.2: Laurillard’s Conversational Framework [Lau06 pp. 87]........................ 12

Figure 2.3: Laurillard’s Conversational Framework in regards to the traditional

lecture format [Lau06] .. 14

Figure 2.4: The Problem Based Learning Cycle [Hme04 pp237] 20

Figure 3.1: Group A comparison between students' total time of interactions and the

average time per interaction.. 33

Figure 3.2: Group A amount of student and teacher interactions and the breakdown

of who initiated these interactions... 34

Figure 3.3: Group B comparison between students’ total time of interactions and the

average time per interaction.. 35

Figure 3.4: Group B amount of student and teacher interactions and the breakdown

of how these interactions began .. 36

Figure 3.5: Example Classroom.. 42

Figure 3.6: Thematic map of Group A’s student interaction by total amount........... 43

Figure 3.7: Thematic map of the frequency of interactions initiated by teachers in

Group A ... 44

Figure 3.8: Thematic map of the frequency of interactions initiated by students in

Group A ... 45

Figure 3.9: Thematic map of Group B’s student interaction by amount................... 46

Figure 3.10: Cutts version of Laurillard Conversational Framework [Cut05] 48

Figure 4.1: Teacher Console Version 1... 70

Figure 4.2: Teacher Console Version 2... 70

Figures xiii

Figure 4.3: Teacher client ... 72

Figure 4.4: View of compiler status .. 75

Figure 4.5: Students’ computer ID’s ... 76

Figure 4.6: Graph to show a student’s percentage of successful compiles 77

Figure 4.7: List of groups of compiler errors... 77

Figure 4.8: Pie chart of combined groups compiler errors 78

Figure 4.9: View of method invocation status... 80

Figure 4.10: Example of student code view .. 82

Figure 4.11: View of the student help box .. 83

Figure 4.12: View of the teachers view rows associated with the ‘help button” feature

... 83

Figure 4.13: Teacher objective setting window... 86

Figure 4.14: Student view of the set objective... 86

Figure 4.15: Image creating tool ... 87

Figure 5.1: Server Managers... 92

Figure 7.1: Comparison between students’ total time of interactions with teachers

and average time per interaction in a practical... 136

Figure 7.2: The amount of interactions by students and who initiated the interactions

... 137

Figure 7.3: Showing the total groups breakdown of how interactions began 138

Figure 7.4: Comparison between student’s total time of interactions and average time

per interaction in a practical. (Students not using TEDS) 139

Figure 7.5: The amount of interactions by students and how these interactions began

(Students not using TEDS) ... 140

Figures xiv

Figure 7.6: Showing the breakdown of how interactions began (Students not using

TEDS) .. 141

Figure 7.7: Comparison between students’ total time of interactions and average time

per interaction in a practical. (Students using TEDS) 142

Figure 7.8: The amount of interactions by students and how these interactions began

(Students using TEDS) ... 143

Figure 7.9: Showing the breakdown of how interactions began (Students using TEDS

... 144

Figure 7.10: Student A’s compile success rate .. 158

Figure 7.11: Student A’s compile success rate and method invocations 159

Figure 7.12: Student B’s compile success rate .. 162

Figure 7.13: Example of a stopper .. 169

Figure 7.14: Example of "Extreme Mover"... 171

Figure 7.15: Screenshot of Image for student.. 176

Tables xv

List of Tables
Table 3.1: Table presenting comparison of observations taken from Group A and

Group B.. 39

Table 4.1: Presenting link between features and investigations 67

Table 4.2: Map of features to issues.. 69

Table 5.1: Advantages and Disadvantages of different portable computer options .. 96

Table 6.1: Table of different case studies by groups.. 106

Table 7.1: Case Study One session data.. 115

Table 7.2: Case Study One, grouped compiler errors .. 117

Table 7.3: Group A Session (i), student data... 122

Table 7.4: Group A Session (i), grouped compiler errors 123

Table 7.5: Group A Session (ii), student data.. 124

Table 7.6: Group A Session (ii), grouped compiler errors 126

Table 7.7: Group B Session (i), student data ... 127

Table 7.8: Group B Session (i), groups combined compiler errors 129

Table 7.9: Group A Session (iii), student data... 145

Table 7.10: Group A Session (iii), collated groups compiler errors 147

Table 7.11: Group B Session (ii), student data .. 149

Table 7.12: Group B Session (ii), collated compiler errors.................................... 151

Table 7.13: Whole set of compiler errors collected by TEDS over the three case

studies .. 153

Table 7.14: T-Tests on data collected by TEDS during Case studies two and three160

Table 7.15: T-Tests on observation data taken during Case Study Three............... 164

1. Introduction 1

1. Introduction
Communication is a vital part of a student’s learning [Lau06] at any level, either by

the teacher conveying knowledge to a student or a student asking questions of a

teacher. Advancements in ubiquitous computing over recent times have enabled

developers to create systems that assist communication in the classroom. One

instance of an application of ubiquitous computing to improve communication in the

classroom is the use of Personal Response Systems (PRS) [Cut01].

Along with communication, teaching introductory programming within higher

education is also viewed as difficult, and has been the focus of recent research. For

example Scheele [Sch05] and Cutts [Cut01] explore developing interactive lectures

to increase their efficacy using tools such as PRS, while researchers like Jadud

[Jad05] and English [Eng09] investigate using technology to increase the efficacy of

practicals. Practicals in the context of this work are computer laboratory classes,

where students are required to complete work based on what they have been taught

in lectures. Practicals are differentiated from the term practical by the use of italics.

This thesis bridges these areas and focuses on developing new technologies to

improve student support within practicals on teaching programming.

1.1. Research Phases

Three research phases are completed in this thesis. Supporting these research phases,

five research questions further clarify what the research aims to discover during the

completion of the research phases. The five research questions are addressed during

the completion of each research phase. The following three points summarise the

research phases:

Research Phase i. Analyse existing methods of teaching programming and

identify issues with the current methods in practicals.

Research Phase ii. Develop technologies to overcome these issues in practicals.

1. Introduction 2

Research Phase iii. Carry out experiments to see the potential of the technologies

to overcome any discovered issues in practicals.

Each of these research phases are explored in more detail below by explaining the

motivation for each theme and presenting the research questions that are asked on the

topic of each phase.

1.1.1. Research Phase (i) – Analyse existing methods of teaching

programming and identify issues with the current methods

The motivation behind the Research Phase (i) is to explore the advantages and

disadvantages of the current methods of teaching introductory programming. The

method of finding these advantages and disadvantages are analysed through the

literature within the research area and by investigating a live introductory

programming module.

In regards to Research Phase (i) the following questions and areas are considered:

Research Question 1. What are the students’ and teachers’ opinions on the pedagogic

value of practicals?

Research Question 2. How do students begin interactions with teachers in the

existing practical setting?

Research Question 3. To what extent can teachers perceive student status in the

existing practical setting?

These questions assist in providing answers that dictate the technology created for

Research Phase (ii). In the context of this work the term status is used, status relates

to how a student is doing at a certain point in practicals, for instance, if their last

compile or method invocation was successful or unsuccessful.

1.1.2. Research Phase (ii)– Develop technologies to overcome identified

issues

Research Phase (ii) explores whether technology can be developed to overcome the

issues that currently exist in practicals. None of the research questions are directly

1. Introduction 3

associated to this phase, yet the developed tool is used in relation to Research Phase

(iii).

1.1.3. Research Phase (iii)– Carry out experiments to see the potential of

the technologies to overcome any discovered issues

The motivation behind the Research Phase (iii) is to investigate the potential that any

developed technologies have in improving teachers’ support of students in

practicals. Research Questions 4 and 5 are used in relation to Research Phase (iii) to

explore the opinions that both the students and the teachers have of the developed

technology (TEDS), especially in regards to its potential as a teaching tool.

In response to the Research Phase (iii) the following areas were considered:

Research Question 4. In what areas can TEDS change the way that teachers track

student status?

Research Question 5. In what areas can TEDS change the way that teachers and

students interact?

1.2. Layout of the Thesis

The thesis has chapters that can be mapped to each of the research phases.

Chapters 2 and 3, which are the literature chapters and the existing practicals setting,

look into the existing ways of teaching programming within higher education. As a

result, the first two chapters focus on Research Phase (i).

Chapters 4 and 5, are the design and implementation chapters, and look at the

development of a tool called ‘Technologically Enhanced Demonstrator Support’

(TEDS), which is designed to help teachers in practicals setting. For the duration of

the research the system is referred to as TEDS and is the tool that is created for

examining the data collected in Research Phase (iii).

Chapters 6 and 7 are concerned with the investigations that test the efficacy of TEDS

within a practical setting, to investigate Research Phase (iii).

1. Introduction 4

1.3. Aim of the thesis

In summary the main aim of this work is to investigate if technology can improve

teachers’ support of students in programming practicals. In response to this aim the

thesis uses the three research phases and their related research questions.

During Research Phase (i) any issues in the literature and during investigations into

introductory programming practicals are identified. These findings lead to the

creation of technologies (TEDS) and then investigations into their capability to

improve student support within programming practicals.

1.4. Demonstrators

In Durham University the teaching staff that assist students in practicals are known

as demonstrators. Demonstrators are usually postgraduate students from within the

department and in some cases have previously studied the modules that they now

assist.

The role the demonstrator plays in practicals is that of a teacher helping the students

with problems and leading them to solutions, therefore teacher is a suitable and more

widely understood title for the demonstrators at Durham University. In this thesis,

since ‘demonstrator’ is a term that is not common to all institutions, the term teacher

will be used.

1.5. Scope

The environment where the research takes place dictates the scope of this thesis. In

the case of this thesis the environment is the introductory programming module at

Durham University. Caution has to be taken when producing any generalisations

from the findings of this work, as the research needs to take into account the

environment in which the research is carried out. For instance, students studying

introductory programming at Durham University are taught the Java programming

language, whereas other institutions may use different languages.

1. Introduction 5

Additional factors that could influence the scope of this work involve applying the

research to different students (i.e. with stronger or weaker students), different

teaching staff or different teaching methods (i.e. more or fewer lectures/practicals).

Despite these limitations to the scope of this work, the environment does still have

some benefits. Durham University uses a typical teaching method of lectures

supported by practicals, which is common in most universities. Also Java is a widely

taught programming language in introductory programming courses.

2. Literature Review 6

2. Literature Review
This chapter presents relevant teaching techniques used in higher education.

Responses in literature are provided as to why University taught courses are designed

with an emphasis on lectures. Some examples of how courses are taught at

University are also presented.

This work is cross disciplinary with a focus on Computer Science, but has elements

of Education and Psychology as well, which is reflected in this chapter.

The chapter is split into three areas:

1. Pedagogy – Considering different teaching theories related to teaching

students in higher education.

2. Methods of teaching in higher education – Exploring different methods used

to teach in higher education institutions.

3. Teaching programming – Focusing on how introductory programming is

taught in higher education institutions.

Exploring each of these areas gives an overview of the context in which this thesis

takes place.

2.1. Pedagogy

In present day higher education, two theories have shaped the currently accepted best

practice. Here the two theories are presented as well as their culmination in

constructive alignment (section 2.1.2).

2.1.1. Constructivism and Directed Guidance

Constructivism [Ben01] and Directed Guidance [Kir06] differ in the explanation of

how knowledge acquisition occurs in learners. The way the two pedagogies differ is

in how students acquire and assimilate knowledge.

2. Literature Review 7

Advocates of Constructivism believe that the student can actively construct

knowledge, rather than the students’ passively absorbing knowledge from textbooks

and lectures. The construction builds recursively on knowledge that the student

already has, which means that each student will construct his or her own personalised

version of the knowledge [Ben01 pp45]. In essence, Constructivism relies on the

students being allowed to construct their own versions of the knowledge and teachers

acting as facilitators for the students in developing their versions.

Directed Guidance is much more prescriptive. Concepts and procedures of the topic

are explained fully through lectures and textbooks. In Directed Guidance, rather than

the knowledge being constructed, the act of learning is defined as “a change in long-

term memory” [Kir06 pp75]. Through Directed Guidance the students are taught the

procedures and the concepts that are required for the material on the course.

In higher education a range of teaching methods are used. These include both

methods that relate to Directed Guidance (lectures) and Constructivism (problem

based learning) as they operate together in Constructive Alignment. Constructive

Alignment is the framework widely used in higher education in the UK.

2.1.2. Constructive Alignment

Constructive Alignment is the approach Biggs [Big02] outlines as the most

appropriate for teaching students within higher education. Biggs defines Constructive

Alignment as a system where teaching methods and assessment are aligned to the

learning objectives of the course [Big02, page 11].

Wide acceptance of Constructive Alignment can clearly be seen by the stance

adopted by the QAA (Quality Assurance Agency for Higher Education) [Jac02].

Constructive Alignment consists of two dimensions “What the teacher does to learn

and promote students’ learning” and “what the students do to learn and promote

their own learning” [Jac02]. The term Constructive Alignment can be analysed in

terms of how it relates to the students and the teacher. The constructive element

refers to what the learner does to construct their own meanings through the teaching

and learning activities in which they participate. The alignment element refers to the

2. Literature Review 8

teacher and his or her goal to create a learning environment that will allow the

students to achieve the desired learning outcomes. Jackson [Jac02] admits that both

of the terms could apply equally to student and lecturer, where lecturers can

construct meaning through their teaching and students can align their learning to the

teachers’ learning outcomes.

The main aim of Constructive Alignment and its associated teaching techniques is to

encourage deeper approaches to learning and discourage surface learning [Big02].

Biggs argues that Constructive Alignment would allow for the change from the

current higher educational teaching framework of supporting a surface style to deep

learning. Surface learning is an approach to learning where facts are learnt so that

they can then be recited or memorised and regurgitated during assessment, for

instance, within examinations. Through the implementation of Constructive

Alignment, an environment would be created where the students would be actively

encouraged to explore deeper approaches to learning. Deep approaches to learning

include theorizing, reflecting, generating and applying. In this ‘Deep’ learning,

students are encouraged to use more thought rather than just memory. Deeper

approaches are more widely seen during seminar discussions and practicals where

the application of knowledge supersedes the learning of the knowledge [Big02].

2. Literature Review 9

Figure 2.1: Student orientation, teaching method and level of engagement

[Big02 pp 4]

Figure 2.1 shows what Biggs views as the two spectrums of student that study within

higher education. At the bottom is the ‘non-academic’, Robert, who seeks to do the

bare minimum to pass the course to go on to get a good job and is more inclined to

adopt surface learning techniques. At the top is the ‘academic’, Susan, who has more

intrinsic motivation to be successful at an academic level and has a higher inclination

to adopt deep learning techniques. Figure 2.1’s presents how these two different

types of learners react within different teaching methods. Arrow A highlights that the

largest gap between the two learners is during the passive standard lecture and the

smallest gap is indicated by arrow B that is during active learning. An example of

active learning is students actively applying knowledge the students have been told

or read. Biggs seeks to show within Figure 2.1 that active learning can motivate

students to use deeper methods of learning which passive learning, for example the

expository lecture, does not [Big02]. Yet this is not an indication that lectures are all

bad; there are ways of making lectures more active and thus stimulating deeper

2. Literature Review 10

learning within them. It is important to note that although some students may in

some modules use deeper learning methods this does not necessarily mean that they

will use deep learning methods for all modules.

2.2. Modes of Teaching in Higher Education

Universities in the UK vary in the way that they teach courses. Some put increased

focus on seminars and support practicals to assist students whereas others choose

lectures as the main way of delivering content. It not only varies from institution to

institution but also from department to department, and module to module. At the

School of Engineering and Computing Sciences in Durham [Dur10], a typical

programme begins with more support practicals at level 1 than lectures. At level 2

students get fewer support practicals and at level 3 the students have almost no

support practicals on the modules, just lectures. Student support classes are

gradually phased out as students make progress. The principal aim for this practice is

to increase student independence and make them more prepared for work after

University.

Lectures have existed as a method of teaching for centuries and are “an established

and popular way of knowledge transfer” [Sch05 pp6]. Yet they have been a widely

criticised teaching method, due to their passive nature, where students are asked to

just listen to the lecturer [Big02, Bli98].

Lectures and their support classes are explored below.

2.2.1. Lectures

Modern day higher education courses are dominated by lectures, where a lecturer

explains a concept to a large group of students who passively listen and these are

supported by practicals, where a student actively applies the knowledge that they

have been taught within the lecture. According to the module descriptions at Durham

University, the majority of modules in level 1 computer science are split almost

equally between lectures and ‘hands-on’ support practicals. For example, in the

single module first year Introduction to programming course, there is a 50-50 split

2. Literature Review 11

between lectures and practicals. In the double module of Introductory Physics, also

at Durham University, there are 116 hours of lectures, 20 hours of tutorials and 10

hours of workshops [Dur10]. Durham University’s modules are indicative of current

practice, where the majority of teaching consists of lectures and practicals.

Lectures are often seen as a method for inspiring surface learning. The expository

style of the lecturer, ‘exposing’ facts to their students, allows them to either

memorise or take notes for reference, in preparation for exams [Gib92, Bli98]. Biggs

agrees that lectures do appeal more to surface learning yet believes that with a

combination of a good lecturer and students more open to deeper learning

techniques, lectures can still be successful. The conveyance and description of facts

and methods during lectures also aligns them to the Directed Guidance pedagogy

(section 2.1.1).

Lectures are seen as one of the best methods for a teacher to transmit his or her

knowledge to a large group of students in the most efficient way possible in regards

to both lecture hall space (student numbers do not matter) and teacher work hours

[Big02]. The passivity of the lecture is often criticised, as active learning is what

most students require to learn effectively. The passivity of the lecture leads to the

students being asked to listen to the teacher for the duration of the lecture, which

many studies show, is not an effective method for acquiring knowledge [Llo68].

Laurillard [Lau06] and, to a certain extent, Biggs [Big02] support a view that if we

were to consider higher education teaching again with a clean slate, the lecture would

not be the method we would eventually agree on to be the dominant method of

teaching. They both agree that students require more interaction to achieve the

deeper forms of learning, that Biggs would like students to achieve whilst studying in

a constructively aligned learning environment.

The limitations of the lecture can be lessened by the adaptation of more interactive

forms of lecturing [Lau06, Big02, Bli98]. These interactive elements have the tri-

purpose of maintaining student attention, instigating students into exploring deeper

learning styles and maintaining a link between the student and the lecturer where any

2. Literature Review 12

cognitive conflicts can be identified and resolved [Bli98, Sch05]. This final point of

interactive elements will allow a form of conversation to develop between the

lecturer and the student. This method is one that has been identified by Laurillard

and formulated into a theory called the Conversational Framework [Lau06]. A

diagram of the ideal implementation of a Conversational Framework can be seen in

Figure 2.2.

Figure 2.2: Laurillard’s Conversational Framework [Lau06 pp. 87]

Laurillard’s model can be seen as a form of the Socratic dialogue model, in the way

that the second part of the conversation is concerned with the teacher setting a

problem for the student to attempt to complete. The Socratic dialogue model is

described as being “teaching by questioning” by the Joint Information Systems

2. Literature Review 13

Committee (JISC) and developed at Harvard University to attempt to re-engage

students [JISC06], more detail in regards to the Socratic dialogue method are given

by Ravenscroft et al [Rav00]. Laurillard does not demonstrate links to the Socratic

dialogue method within her Conversational Framework, as, despite her method also

being a dialogue-based method of teaching, she questions whether the Socratic

dialogue method has value as a teaching method.

Laurillard’s [Lau06 pp75] Conversational Framework is constructivist as the teacher

uses existing ‘things’ in the students’ current mental world, to allow them to

construct meanings for the new ‘things’ they are being taught. Laurillard argues that

Socratic dialogue struggles to be successful as it is still merely the lecturer lecturing

to the students. She accepts that it may be in a discursive way, yet still the lecturer

leads the students to the answer rather than them constructing the answer themselves,

which is what Laurillard seeks to do with her Conversational Framework.

As Biggs and Laurillard show, lectures are not altogether deficient as a teaching

method because the main problems can be overcome within the lecture format.

Though both prefer more active learning methods of teaching examples, Figure 2.1

and Figure 2.2 referenced from both Biggs and Laurillard support this statement.

Figure 2.1 shows that in Biggs’ opinion deeper learning is achieved through active

learning methods. Figure 2.2 shows that Laurillard’s Conversational Framework is

easier to implement in a setting where a communication link between a student and

teacher is maintained, for example in support practicals and interactive lectures.

In summary, lectures play a large part in the current constructively aligned higher

education teaching system, yet the lecture is flawed in a number of ways. The next

subsection explores how active learning in lectures can be achieved.

Active Learning within Lectures and the Lecture Hall

Lectures are often unidirectional with the lecturer talking to the passive student, with

theory being taught to students with the aid of handouts or other audio-visual devices

[Lau06]. Figure 2.3 shows how Laurillard views the current format of lectures in

relation to her Conversational Framework.

2. Literature Review 14

Figure 2.3: Laurillard’s Conversational Framework in regards to the

traditional lecture format [Lau06]

Laurillard believes that the lecturer and the student need to perform a conversation,

so that the lecturer can judge whether the student understands the point that the

lecturer is intending to teach. She believes the best way to do this is through

questions from the lecturer to the students, which carry on until the student’s

conception matches the lecturer’s conception. Figure 2.3 shows the traditional lecture

in relation to the Conversational Framework. The lecturer’s questions may be set in

the form of, ‘Goal/concepts’, ‘self assessed questions’ and ‘in-text questions’. The

problem with these questions is that they are often left unanswered by students. Any

questions that are answered have no capability to be given to the lecturer within the

lecture due to constraints with: technology, student timidity and time [Gib81, Sch05],

2. Literature Review 15

which prevent the Conversational Framework from being implemented within the

traditional lecture.

Introducing interactive elements to lectures can help to maintain student attention

[Smi01], as these breaks in the lecture to answer questions allow students to recover

more quickly from what Lloyd refers to as the ‘middle sag’ where student attention

drops. Bligh shows a break away from the lecture can bring this attention up again.

Smith supports the view that the break could be an active learning component in a

lecture [Smi01].

Bonwell identifies seven major characteristics that show why active learning is more

beneficial than passive learning. They are:

1. Students are involved in the class more than passive listening

2. Students are engaged in activities (e.g., reading, discussing, writing)

3. There is less emphasis placed on information transmission and greater

emphasis placed on developing student skills

4. There is greater emphasis placed on the exploration of attitudes and

values

5. Student motivation is increased (especially for adult learners)

6. Students can receive immediate feedback from their instructor

7. Students are involved in higher order thinking (analysis, synthesis,

evaluation)

[Bon03, pp. 2]

By applying to different types of learners, the seven characteristics above show that

active learning addresses a range of students with differing learning styles.

The problem with the traditional lecture format is that it does not allow the student to

apply the received information during the lecture [Gag65]. This problem is far less

prevalent within an interactive lecture since all seven of Bonwell’s characteristics

2. Literature Review 16

show, the main goal of an interactive lecture is to allow a student to immediately

apply the information that they receive during the lecture.

Interaction can help resolve the majority of the issues with the lecture, yet the layout

of the lecture hall could make the implementation of some forms of interaction

difficult [Cut01]. In reference to this issue, Cutts [Cut01] observes the problems

associated with interacting in large lecture theatre typically with around 300 students.

He explains how these lecture theatres and their formation have been used in the

same way for centuries and are not really designed for interaction, but rather for the

lecturer conveying knowledge to the students, vocally and visually.

Cutts [Cut01] introduced interactivity to his computer science lectures by using a

paper method. This method consists of the lecturer outlining the process of creating a

piece of source code and then allowing the students the opportunity to write down on

paper their own example of the code, in relation to a set problem [Cut01]. Cutts

concludes that this attempt at interaction was not entirely successful as the majority

of students did not participate and “would rather wait for the answer”. Further he

concluded that the room layout was not conducive for interaction on a one to one

basis.

The problem of the room not being conducive for interaction is an issue that is

addressed by interactive lecture technologies, including Personal Response Systems

(PRS) and others. In more recent papers Cutts [Cut05] discusses how he used a PRS

in his module to improve interaction between the lecturer and the students, and to

help in creating a simplified form of the Laurillardian Conversational Framework.

Cutts uses a PRS to enable the lecturer to apply the Conversational Framework

through the use of Multiple Choice Questions (MCQs). This allows the lecturer to

see how much the student understands the subject and also allows the student to

actively participate in the lecture [Cut05]. PRS allows interaction within lectures,

although there is some doubt that this interaction inspires deeper learning, which

better supports student learning [Big02]. Biggs argues that MCQs can lead students

towards a surface approach to learning potentially causing students to just revise

potential questions and memorising the answers. He argues that this does not prompt

2. Literature Review 17

them to think more deeply by asking questions that promote the students to use

deeper learning methods, such as reflection [Big02].

Some teachers argue that well phrased MCQs can be used to elicit deeper thinking

[Wit03]. Wit gives examples of ways that questions can be asked to engage students

in deep learning and claims that MCQs can address all levels of Bloom’s taxonomy

of educational objectives [Wit03].

Duncan [Dun06] refers to an example of active learning with interactive lecture

technologies that has been shown to increase attention within practicals. During the

study 100 students were given a lecture in the traditional style, by the lecturer

reciting material to passive students (referred to in the paper as highly motivated

managerial trainees). As in previous studies by Lloyd [Llo68], the students in

Duncan’s experiment also showed a slide of attention after 20 minutes and

throughout the lecture the number of students who were paying attention averaged 47

out of 100. The lecture was repeated with some non-technological interactive

elements added and the attention level of the class rose to 68 of 100. Yet during the

lecture few students actually contributed to the interactive elements on a consistent

basis, with 10 – 20% of the students dominating the lecture and the other 80 – 90%

only occasionally contributing, the ‘silent student’ can account for this. A silent

student is defined by Wit as being afraid of contributing publicly in front of a large

group of their peers, for fear of getting answers wrong and facing ridicule [Wit03].

To further improve the lecture and to try and increase the amount of student

contribution to it, in the third iteration of the lecture an interactive classroom

technology was used on the students. This improved attention in the lecture to 83 out

of 100 students. One final observation was that students in the interactive lecture

scored more highly than those in the traditional lecture. This would seem to highlight

that interactive lectures are more successful than the expository lecture method

[Dun04].

As identified previously a problem for active learning within lectures is the learning

space of the lecture theatre [Cut01, Bli98]. Despite the lecture theatre being a

problem for active learning, the ever-improving technology available or present

2. Literature Review 18

within lecture theatres has begun to alleviate this problem [Mil07]. Milne comments

that higher education has reached the “fourth wave” of computing system evolution

which he describes as “many devices, many users” [Mil07 pp 16]. For instance,

wireless technology allows many users to connect to the Internet or a Local Area

Network (LAN) if they are within the signal range of a wireless router. Wireless

technology allows students within a lecture theatre to connect to the Internet and

participate during an interactive lecture using a range of devices, such as PDAs and

laptops. This ubiquitous computing is used by Scheele [Sch05] highlights that, due to

the improving technology, the lecture theatre as learning space can be used for active

learning within an interactive lecture. This is despite the fact that the lecture hall is

not designed or built for it.

Active learning is important within lectures as:

1. It allows students to use deeper learning techniques through the application of

knowledge, rather than just passively listening to knowledge being spoken to

them [Big02].

2. It allows attention to be maintained by breaking up the traditional expository

style of lectures [Llo68, Bli98].

3. It maintains motivation by bringing in interesting and challenging elements to

lectures through quizzes [Cut05, Sch05].

4. It allows closer working relationships in lectures between the lecturer and the

students, promoting feedback to both especially on how the lecture is

proceeding, allowing adaptivity within the lecture i.e. for a teacher to put

more focus on particular topic which the students are having difficulties

understanding [Lau06, Sch05].

5. Interactive lectures appeal to the different learning styles thereby they satisfy

the majority of students, whereas the traditional expository lecture style may

exclude many different types of learners. This problem is addressed with

interactive lectures [Bon03].

2. Literature Review 19

With these five points considered it is clearly beneficial to introduce active elements

to lectures and increase the efficacy of them.

The positives of active learning shown in this subsection can be replicated in lecture

support practicals as well. This is addressed in the next section, which focuses on

practicals.

2.2.2. Practicals and problem based learning

Numerous different types of teaching formats often support lectures, the main three

are seminars, tutorials and practicals. The fact that lectures require support lessons at

all has led some to argue that if lectures are that great a method of teaching, why do

they need a support class at all [Gib81]. Gibbs [Gib81] argues that eventually it is the

support practicals themselves, where students are required to actively participate that

are more important than the lectures to the overall learning process.

In Biggs’ [Big02] Constructive Alignment system he highlights that the support

practicals allow the students to actively apply the knowledge related to them in

lectures. Biggs further asserts that the support practicals allow the instructors the

opportunity to inspire the less academic students into using deeper methods of

learning. Biggs supports lectures, as doing one important task of passing knowledge

to the students, yet he supports Gibbs’ view that eventually it is the support

practicals that are more influential elements of a student’s learning in Constructive

Alignment.

Laboratory practicals usually take the form of giving students a set problem, then

students spend the allotted time trying to solve. This is active learning, as the

students are actively trying to overcome problems. This is also a form of problem

based learning or PBL [Ben01].

PBL is a member of the constructivist family of teaching methods, which is also the

basis of Constructive Alignment. As discussed in section 2.1.

Figure 2.4 shows the constructivist-based problem based learning cycle, showing the

different steps which students should go through whilst in a PBL class.

2. Literature Review 20

Figure 2.4: The Problem Based Learning Cycle [Hme04 pp237]

Hmelo-Silver [Hme04] is an advocate of this system as it allows students to achieve

the higher levels of learning championed by Biggs [Big02], where the more active

the learning method is, the more likely it is to stimulate higher levels of learning.

The communication between the student and the teacher is important in PBL

although Figure 2.4 does not implicitly identify where communication between the

teachers and the students would happen in the cycle. Hmelo-Silver comments that a

teacher during PBL has two main roles: the first role of the facilitator is to guide the

students to using higher order thinking skills, they do this by getting the students to

justify their theories; the second role is to encourage self reflection by asking

appropriate questions to the individual students [Hme04 pp245]. These roles mean

that during PBL the teachers are only there to help and to provide guidance to the

students. The teacher also ensures that they mentally understand the solution to the

problem that they have been set. This description is similar to the role that the

teacher has in Laurillard’s Conversational Framework [Lau06]. In the Conversational

Framework teachers ask questions probing the students’ knowledge and then, if they

2. Literature Review 21

give incorrect responses, the teacher rephrases the answer to them and questions

them again, until the student gives a correct answer.

PBL has faced criticism especially from advocates of Directed Learning [Kir06].

Directed Learning is where the main parts of the learning come through the teacher

telling the students directly about concepts in a passive way. The advocates of this

Directed Learning argue that due to minimal guidance methods, students have

problems in acquiring the skills they require for the course. Kirschner et al argue that

there is not much research that supports that PBL is actually capable of doing what it

claims to do, this claim is that through setting a problem students learn skills through

the solving of the problem [Kir06].

PBL and Anchored Instruction

There are many different instantiations of PBL with differences in the ways that the

teachers/facilitators of the course interact with the students and also with the type of

problems that students are asked to solve. One example is Anchored Instruction

[Hme04, You92]. This differs in a number of ways to traditional PBL, but retains

similarities in regards to the learning cycle shown in Figure 2.5. Hmelo-Silver

defines the similarities between the two methods are that they both use a common

problem and the teacher is key arbitrator of the learning process. PBL and anchored

learning differ in the: “terms of the type and role of the problem, the problem-solving

process, and the specific tools that are employed” [Hme04 pp237]. The key

difference between traditional PBL is that the problems that students have to solve in

Anchored Instruction are a lot more structured than in PBL. The structure provides

the stages that a student must complete to resolve the problem.

The teachers’ role also changes as well under Anchored Instruction. In Anchored

Instruction they act from a position of having the knowledge from having experience

of solving the problem in a real situation. The teachers then use this knowledge to

lead the students to solutions that they may not consider, due to them previously not

experiencing these kinds of problems [You92 pp7]. Anchored Learning is more

2. Literature Review 22

aligned to Laurillard’s Conversational Dialogue than basic problem based learning in

the way that the teacher provides a structure and guidance to the students.

2.3. Teaching Programming

There are two areas that this work is concerned with in relation to teaching

programming:

• The discussion in literature of teaching novice programmers

• Current course leaders’ strategies to teach novice programmers

Teaching programming is ‘notoriously difficult’ [Rob03] and many reasons have

been discussed why this is the case. Section 2.3.1 looks at the different problems

involved in teaching novice programmers and section 2.3.2 focuses on some

techniques course leaders have implemented in their courses to alleviate these

problems.

2.3.1. The problems of teaching programming

There has been much discussion on why it is difficult to teach novice programmers

how to program, especially on higher education introductory programming courses

[Rob03]. Robins et al in their review of the literature on the topic, look at a range of

the different issues that course developers face in teaching introductory

programming. They focus on two issues in particular:

• The difficulties that novice programmers have learning how to program

• Difficulties in teaching novice programmers

Robins et al report a number of issues they have found from their own experiences

teaching novice programmers and also through the literature. The problems include:

• Which languages, if any, are taught on the course

• Unrealistic targets set for the courses [Rob03 pp157]

• The way that students cope with problems

2. Literature Review 23

The programming language used to teach students does not necessarily alter the

modes of teaching. Languages vary from institute to institute with some choosing not

to use languages at all in their introductory course. Some examples include:

• Object orientated programming [Kol03]

• Procedural languages [Rob03 pp145]

• Not using programming languages [Dji89]

Despite this range, the method of delivery is entirely independent. Institutions would

still adopt lectures, practicals, or both.

One of the questions this work is concerned with is making practicals more

effective. To this end the latter two issues, discussed by Robins et al [Rob03], that is,

the way students cope with problems and the unrealistic targets set for courses, are

more important for this work.

Winslow [Win96] in his investigation into programming pedagogy makes the

observation that we cannot expect a student to become an ‘expert’ programmer over

the course of a 4-year undergraduate programme. Winslow states that it could take a

student 10 years to become an ‘expert’ programmer [Win96 pp 18]. Winslow adds

that during an undergraduate programme the best a student can be expected to

become is competent or proficient on the 5-stage programmer development scale

proposed by Dreyfus and Dreyfus [Dre86]. The Dreyfus scale is:

• Novice – Who complete systems based on the set objective facts and features

• Advanced Beginner – Start to develop their own strategies but not quite

comprehending what they are doing

• Competence – Are capable of considering the whole problem and choosing a

suitable plan for achieving it

• Proficiency – No longer have to consciously think through a system step by

step before they begin

• Expert – Knows what to do based on experience

2. Literature Review 24

Winslow sees university novice programming courses as the beginning of a student’s

learning development, which they build on when they move into industry.

Perkins et al [Per85] looked at how students cope when faced with problems when

producing software source code. During this study Perkins et al identified three types

of students who each apply different strategies when they are faced with a problem.

These three types of students are:

• Stopper – This student faces a problem and stops with not being able to see

the solution or attempt to find it.

• Mover – This student faces a problem and then solves it by trying

something that they know already, or by working out a solution.

• Extreme Mover – This student is a subset of movers but rather than

successfully solving problems, they try to find solutions without

considering the logic of the change and could end up creating more

problems [Per85 pp11]

During Perkins et al’s study, Students exhibited these types of behaviours during an

observed programming practical. Perkins et al [Per85] note that students who, for

instance, exhibit “stopper” behaviour will always exhibit this behaviour, but that in

some cases they just need assistance from teaching staff. In an example, Perkins et al

records how a particular student when faced with a problem skipped past it without

attempting to overcome it. A researcher then asked the student why they did this and

the student replied that they could not do it, but when pressed by the researcher they

managed to solve it [Per85 pp24]. This highlights that with assistance and prompting,

students can be helped.

This subsection provides an overview of some of the problems facing course

developers in creating novice-programming courses, what they teach and coping

with student behaviours.

2. Literature Review 25

2.3.2. Existing methods of teaching programming

Novice programming modules are usually taught through lectures supported by

practicals. Practicals are used to reinforce the theory taught in lectures and also to

allow students in a supported way to develop working software. Typically in higher

education teachers, who are postgraduate students and knowledgeable in the subject,

usually provide support in practicals. In some cases the teachers have taken the

course themselves, and can call on this experience to assist the students.

The course developer in Durham describes the course in the disciplinary commons

portfolio on teaching programming, which was chaired by Fincher during 2005 /

2006 [Fin06]. The aim of the disciplinary commons was for teachers and lecturers of

programming courses throughout the UK and the USA to share their approaches and

experiences of teaching programming to undergraduate students. With this shared

resource the course leaders could consider if they could improve their courses by

integrating some ideas from their peers.

Fincher [Fin06] identifies some of the unique elements of each course. An example

of this is from the University of Abertay and its creation of a hybrid lecture/practical

setting. A further example is from the University of Glasgow where technology is

used within lectures to make them more interactive and more effective, which was

referenced in section 2.2.1.

The element of interest at Durham University is the use of the ‘Personal Project’,

which allows the students to direct and develop their own projects for assessment.

The goal of the ‘Personal Project’ is to enable a student to gain ownership of their

work and therefore motivate them to learn more to improve their programming skills

[Fin06 pp157].

2.3.3. Technology

Technology is used when teaching programming in a number of different ways. One

example is personal response systems (PRS) [Cut05] to enable interactive lectures. A

number of other tools have also been used to assist teaching and learning of

2. Literature Review 26

programming within higher education specifically for within practicals. These three

in particular were chosen as they are; currently used, have been the topic of recent

research and are in the area of research that this work is in i.e. improving practicals

with the use of technology. The tools that are discussed are the following:

• Checkpoint [Eng06]

• SNOOPIE [Fin06]

• BlueJ extended version [Jad05]

These tools are summarised below.

Checkpoint

Checkpoint is a system implemented by English [Eng06] at the University of

Brighton. It is used as a tool to automatically assess students’ work both in practicals

and for homework based assignments.

Checkpoint allows for two different types of questions:

• Fixed response questions – Where the tool can be used to ask multiple-choice

questions or ‘fill in the blanks’.

• Free text questions – Where the students have to complete questions, which

could have a number of correct answers. An example could be to write some

code. This code can go through the process of being automatically:

o Compiled and run

o Checked for functional correctness

o Assessed for stylistic aspects

o Timed to assess the efficiency of the code [Eng06]

Checkpoint can either automatically mark any answers submitted to it or allow

teachers to manually check the answers. After the work has been assessed,

Checkpoint provides the results to the teaching staff for example if the student

completed the work successfully.

2. Literature Review 27

The University of Brighton uses a ‘little and often’ assessment model where students

are given short assignments to complete on a fortnightly basis [Eng09], Checkpoint

is designed to support this. Checkpoint is used as an assessment checker with the

capability of making assessment easier for the teaching staff, as well as quickly

creating automated feedback for the students.

SNOOPIE

SNOOPIE is designed with the aim of overcoming two issues students face learning

how to program: “first formulating a (working) program at all and second

formulating the right program to address the problem” [Fin06 pp154]. SNOOPIE

does this by checking students’ submitted code and checking the coding style.

SNOOPIE can also further explain compiler errors to students, which in some cases

are quite obscure and not very easy for novice programmers to interpret and fix.

SNOOPIE has been used in practicals in Abertay University [Bow06]. In Bown’s

contribution to the disciplinary commons portfolio, notes how the system is available

for students to assist with their individual learning. He reports that the students

accept the tool and the support it provides and that they preferred using SNOOPIE

rather than, as he puts it, to ‘pester’ the lecturer for assistance.

In comparison to Checkpoint, SNOOPIE is similar in the way it provides support for

the teachers through automatically checking students’ submissions. However, the

tools differ in the type of work submitted to them, with SNOOPIE being able to

assist with more open submissions whereas Checkpoint is more focused on

assignments with set variables.

BlueJ

BlueJ is a tool used to help novice programmers to learn how to program [Kol05].

BlueJ has also been used within practicals to collect data on student behaviour

[Jad05].

The investigations carried out by Jadud [Jad05] used the BlueJ extension library

[Blu10] to create an extension for BlueJ, which collected data on a student’s

2. Literature Review 28

compilation reports. The data was stored and analysed after practicals. The data was

used to view similarities and trends in novice compiler behaviour.

Jadud’s investigations found that some compiler errors, in particular, dominated the

list of collected errors. The investigation’s top 5 compiler errors were:

• Missing semicolons (18%),

• Unknown symbol: variable (12%),

• Bracket expected (12%),

• Illegal start of expression (9%),

• Unknown symbol: class (7%) [Jad05 pp30-31]

Jadud carried out further analysis into the repetition of compiler errors and also the

time between compiler errors.

The extension to BlueJ, unlike the previous tools, is not focussed as a teaching or

student support tool. Despite this the data it collects can be used to support teachers

and students. The analysis of the data can identify ‘bad’ novice programmer

behaviours and the teachers can use this to help the students, although the

researcher’s focus is to identifying, rather than correcting the behaviours.

Technology Summary

The three tools explored during section 3.1.3 have identified both the need for, and

integration of, technology into higher education programming courses.

Both Checkpoint and SNOOPIE assist the teachers by automatically assessing work

and providing automated feedback, which reduces the workload of teachers.

Checkpoint and SNOOPIE support students by providing automated feedback.

SNOOPIE provides feedback by further explaining compiler errors to the students

and Checkpoint provides assistance on source code style. The automation of

feedback assists students in two ways:

• The feedback is quicker, as students do not have to wait for teachers to

mark work

2. Literature Review 29

• The feedback is tailored to the students’ work and the mistakes that the

tools finds

Therefore, both Checkpoint and SNOOPIE deal with the issues of supporting

students whilst lessening the teaching staff’s workload.

2.4. Summary

Chapter 2 has presented an overview of how some researchers believe courses should

be implemented within higher education. In particular, it has addressed lectures and

how these are integral at University level to distribute course content to a high

number of students at one time and one place. The chapter has also outlined some of

the problems with the lecture. Specifically, it is often carried out in a unidirectional

way, where a student can lose focus and interest.

Despite the problems with the lecture format, strategies have been attempted to

improve the efficacy of lectures, namely with the introduction of active elements. As

section 2.2.2 has presented, this has been done with the use of systems like PRS,

where students can be questioned in a way that allows lecturers to see how effective

their description of concepts has been.

The introduction of active elements to lectures is one method that has been

successful to an extent in improving teaching, yet lecture support practicals are still

important as a method of enabling students to use techniques in a supported

environment.

The last section of this chapter has focused on introductory programming courses

and how such courses have been implemented. It has also described three examples

of technologies that have been implemented to assist teaching programming.

The following chapter, Chapter 3, examines one example of an introductory

programming module and how practicals are managed on it.

3. Investigation Into Current Practicals 30

3. Investigating Learning and
Teaching In Current Practical Setting

Practicals and other types of support lessons have the function of reinforcing the

material that students have been taught in lectures. On programming courses they are

the primary place where the students are supported when they are programming

themselves [Jam06]. This makes practicals very important and the course leader in

Durham and course leaders at other establishments place great emphasis on them.

At Durham University students are supported by teachers known in Durham as

demonstrators (see section 1.4) and by lecturers. Typically during a practical there

are at least ten students to one teacher. A practical in Durham University is 120

minutes in length and there are normally three teachers in attendance. This gives 360

minutes of combined teacher time, available for student interaction.

This chapter presents an investigation of how practicals in Durham University’s

introductory programming module operate. This investigation addresses Research

Phase (i), which comprises of the following three research questions:

Research Question 1. What are the students’ and teachers’ opinions on the pedagogic

value of practicals?

Research Question 2. How do students begin interactions with teachers in the

existing practical setting?

Research Question 3. To what extent can teachers perceive student status in the

existing practical setting?

To explore these, data was obtained during an investigation using the first year

programming course at Durham University. The chapter outlines the method used to

investigate practicals, and then display and evaluate the results collected during the

investigations.

3. Investigation Into Current Practicals 31

3.1. Method

To explore the research questions outlined above both participant observations and

questionnaires were used. Observations were used during practicals at Durham

University in the start of the 2008/2009 academic year. These observations were

used to investigate the format of the current practical setting and to provide evidence

of how teachers and students view practicals. The observations were also used to see

how teachers and students operated within practicals. The approach used in the

observations is described in more detail in the next section.

The data collected from the observations, presented in this chapter, was collected

from two practical groups. The observations consisted of records of the frequency

that interactions took place within practicals. These observations in particular

recorded:

• Who initiated the interactions (student or teacher)

• The duration of each interaction

These observations identified some problems that exist within the current practical

setting.

There are two differences between the groups:

• Group B is smaller (14 students in comparison to 25)

• Both groups have three teachers, but in Group B two of the teachers appeared

to be more reactive (reacting to students asking for help rather than searching

for students who may need help)

The two aims of collecting the data were to, firstly observe how open students were

in asking teachers for help and secondly, to view if any students dominated the

teachers’ time during a practical. The observations are also important to answer

research questions 1, 2 and 3. The observations do this by providing further

quantitative and qualitative data. The sheet used to record these observations can be

found in Appendix 5.

3. Investigation Into Current Practicals 32

Questionnaires were given to both the teachers and the students during the

investigations into current practicals. These were used to obtain both quantitative

and qualitative responses to assist in answering research questions 1,2 and 3. The

research questions rely on finding the opinions of the teachers and students, on three

areas of practicals: how highly they value practicals, do they find it difficult to

communicate in practicals and how easy or difficult do teachers find tracking status

in practicals. The teacher and student questionnaires from the investigations into

current practicals are recorded in Appendix 1 and Appendix 2. They use the same

method as the questionnaire used in the main case studies of this work (described in

detail in section 6.1.1) where both open and closed questions are asked to get the

opinions of the respondents.

3.2. Results

The following sections present the data that was successfully obtained from

conducting the investigation outlined above. Results are presented by group, rather

than for each category of data. This approach better illustrates the differences that

group size and teacher style had on variables measured during the observation.

3.2.1. Group A

Total Time of Interaction by Student

Figure 3.1 presents each student’s individual total interaction time with the teachers

in practicals and also the average time per interaction. In the chart the values on the

X-axis relate to the student and the assigned computer number at which they were

sat. For instance, in Group A there was no student sat at computer 6, so this number

is not included on the figure. In Group A there was a student at computer 9 but they

did not interact with a teacher at any point in practicals, so they are included on the

Figure with no interactions.

3. Investigation Into Current Practicals 33

Figure 3.1: Group A comparison between students' total time of interactions

and the average time per interaction

In Group A (with 25 students) there were 215 minutes of interactions recorded by the

researcher. What additionally needs to be taken into consideration for the timings is

that during the first ten minutes of practicals students were allowed to prepare or

arrive for the lesson and the last ten minutes of practicals the students were allowed

to complete to go to their next lesson. This means that there are 60 minutes of

interaction time that can be discounted, as the three teachers in effect individually

lose 10 minutes at the beginning and the end of practicals. After discounting these

60 minutes, 85 minutes of the teachers’ interaction time were not used for interaction

with the students. The majority of the 85 minutes unused interaction time was from

just one of the three teachers who tended to be more reactive, waiting for requests for

help rather than for searching for students who may require help.

3. Investigation Into Current Practicals 34

Figure 3.1 highlights one of the expected outputs that some students did dominate the

teachers’ time. As was noted while there is only a limited amount of time available

with the teachers and in Group A, five students accessed 20 or more minutes of

interaction time with a teacher. In Group A one student (Student 30) alone had 30

minutes of the total interaction time. The majority of the students had ten or fewer

minutes of interaction (18 students) and four students had no interactions within

practicals. These results, especially the students with longer teacher interaction

times, are further discussed in section 3.3, as their behaviour is notable.

Interaction Frequency

Figure 3.2 is concerned with how the interactions were initiated. Teachers’

perceptions are that the students are often not willing to ask for help and that this

would lead to the teachers being required to initiate interactions. However, the

observations revealed that opposite was the case. In Figure 3.2 the student numbers

relate to the computer that they were sat at and omitted numbers are computers that

no student was sat at.

Figure 3.2: Group A amount of student and teacher interactions and the

breakdown of who initiated these interactions

During the observations of Group A, there were 49 interactions. These 49

interactions consisted of 35 initiated by the students and 14 initiated by the teachers.

3. Investigation Into Current Practicals 35

As Figure 3.2 highlights there were nine of the 24 students who did not ask for help

during practicals including the four students who had no interactions at all. Over 50

% of the students did ask for help and this was unexpected, but the nature of how the

students asked for help may explain this result. Many of the interactions were

initiated by the student ‘catching the eye’ of the teacher as they walked around the

laboratory. By doing this, the students began interactions in a less obvious way rather

than openly asking for help, such as by putting their hand up.

3.2.2. Group B

Total Time of Interaction by Student

Figure 3.3 presents the total and average time of the interactions between the

students and the teachers.

Figure 3.3: Group B comparison between students’ total time of interactions

and the average time per interaction

The total time of interactions in Group B was 172 minutes and as Figure 3.3

highlights one student (18) alone accounted for 60 minutes of these interactions. The

interactions took the form of the teacher sitting behind, rather than next to, the

student and assisting them with their work. This is discussed in further detail in

3. Investigation Into Current Practicals 36

section 3.3, as the teachers' adoption of one to one assistance was possible in Group

B, due to it being a smaller group.

As with Group A, there was a mixture of students with low and high amounts of

interactions. Group B had four students with 20 or more minutes of interactions and

eight students with fewer than ten minutes of interactions including three students

with no interactions at all. The high proportion of on average low interaction times

may be because the majority of teachers in this practical adopted a reactive approach

and waited for requests from the students.

Interaction Frequency

Figure 3.4 further supports the fact that the students had to ask the teachers more for

help in Group B to get assistance from the teachers.

Figure 3.4: Group B amount of student and teacher interactions and the

breakdown of how these interactions began

During the observations of Group B there were 26 interactions. These interactions

consisted of 18 initiated by the students and only eight initiated by the teachers. As in

Group A these numbers further support the observation that students initiated the

majority of interactions.

3. Investigation Into Current Practicals 37

As Figure 3.4 shows five of the students did not ask for help during the class and

three of these students did not have any interactions with the teachers.

3.3. Evaluation

Five issues were identified during the observations taken from Group A and Group

B. These issues are described in this section with the evidence, which supports them.

These are:

Issue 1. Students are afraid to openly initiate dialogue with teachers

Issue 2. Communication difficulties between teachers and students

Issue 3. Teaching made difficult by the range of different skill levels of

students

Issue 4. The independence of learning in practicals leading to students not

knowing what to do

Issue 5. Visibility of students’ progress

These issues are explained more fully below.

3.3.1. Issue 1 – Students are afraid to openly initiate dialogue with teachers

During the qualitative observations it was discovered that some students were

apprehensive about openly initiating dialogue with the teachers, but the recorded

observations show that they still did initiate dialogue. The quantitative observations

showed that the students initiated the majority of interactions in both Group A and

Group B.

The qualitative observations of the two groups revealed that there are two behaviours

exhibited by the teachers, whilst they were in practicals:

• Standing in a specific area of the classroom for the majority of the class time

waiting for the students to ask for help or put their hands up.

• Actively ‘patrolling’ the classroom and enquiring on the status of individual

students.

3. Investigation Into Current Practicals 38

The teachers tended to have an inclination towards one of the two behaviours. In

recognition of this, a classification was created to group teachers. Teachers who were

more inclined to wait for the students to ask for help were classified as reactive, and

teachers who were more inclined to inquire on the status of the students were

classified as proactive.

The qualitative observations taken of the two groups found that there was a mixture

of proactive and reactive teachers with a 2:1 ratio in Group A and 1:2 in Group B.

This ratio was formed through observing how the teachers acted within the learning

environment.

T-tests were carried out between Group A and Group B to compare if there was any

significant difference in:

• The total time of interactions per student

• Total frequency of interactions per student

• Frequency of teacher initiated interactions per student

• Frequency of student initiated interactions per student

3. Investigation Into Current Practicals 39

 N Mean Sd T P - Value

Total time interactions per student

Group A

25 8.60 8.48

Total time interactions per student

Group B

14 12.29 16.32
-0.79

Not

Significant

Total frequency of interactions
per student (Group A)

25 1.96 1.49

Total frequency of interactions
per student (Group B)

14 1.86 1.75
0.19 Not

Significant

Frequency of teacher initiated
interactions (Group A)

25 0.56 0.71

Frequency of teacher initiated
interactions (Group B)

14 0.57 0.94
-0.04 Not

Significant

Frequency of student initiated
interactions (Group A)

25 1.40 1.44

Frequency of student initiated
interactions (Group B)

14 1.29 1.49
0.23 Not

Significant

Table 3.1: Table presenting comparison of observations taken from Group A

and Group B

As Table 3.1 presents, despite the qualitative observations revealing the proactive

and reactive teachers, none of the T-tests revealed any significant difference between

groups A or B. These results could be due to the size of the groups being relatively

small.

In Group A, 49 interactions took place between the students and the teachers. A

paired T- Test was conducted comparing who initiated interactions in Group A.

There was a significant difference in the scores for student initiated (M = 1.40, SD =

1.44) and teacher initiated interactions (M = 0.56, SD = 0.71) conditions; t(24) =

2.44, p = 0.021. The p value reveals that there is significantly more student who

3. Investigation Into Current Practicals 40

initiated interactions than those initiated by teachers. This suggests that the students

were not afraid to request help from the teachers, although typically their requests for

help involved approaches other than the student putting their hand up to attract the

attention of the teacher. More commonly students’ requested help by asking a

teacher when teachers passed close to them as the teachers monitored classroom

activity. The importance of this observation is that the proactive teachers were more

likely to be asked for help. This is due to the fact that the more reactive teachers,

who wait and look for hands to go up, are not so accessible to the students who seem

to prefer a more ‘covert’ method of attracting attention.

Unstructured interviews with the teachers carried out after this observation supported

the view that if the teachers did not make themselves approachable to the students

then they were rarely approached. The teachers in the interviews also speculated that

the students sit together in friendship groups and that they are afraid of putting their

hands up and revealing that they are having problems in front of their friends. A

student and their peers may well perceive a casual request to a passing teacher as

being less associated with personal failure and more related to interest in the topic.

Questionnaires given to students within the observed practicals revealed that only

9% of the students admitted to finding it difficult to ask the teachers for assistance.

These results seem contrary to the observations that were noted. However, the way

the students asked for help from the teachers highlights that they might be just

apprehensive to openly ask for help, rather than not being prepared to ask for help at

all.

In summary, the students did initiate interactions with the teachers but it was the

mode of asking for assistance that was notable. The questionnaire responses further

highlighted that students do not see a problem asking for help. Yet the observations

of practicals groups revealed that some of the students preferred to not openly ask

the teachers for help, they would rather ‘catch the eye’ of a teacher as they patrol the

classroom. This method works when the teachers in the classroom are proactive and

walk around the classroom, however, when they adopted a reactive approach it was

observed that they were less likely to have student initiated interactions.

3. Investigation Into Current Practicals 41

3.3.2. Issue 2 – Communication Difficulties

The observations highlighted the following three problems, which caused

communication difficulties:

1. The room layout is not conducive to the type of assistance that can be

provided by the teachers

2. Students have difficulties describing their problems

3. Teachers have problems describing solutions to students

Although practicals are more suited for interaction than lecture theatres, the teachers

noted a number of problems with the learning space. For instance, one teacher noted

that: “Currently it is awkward for teachers to talk to a student as the rooms are too

cramped and the teacher will have to talk on their knees or over the student’s

shoulder.” This was noted during the observations as well, where certain computers

were difficult for the teachers to reach to help students. Such as classroom design

makes it difficult for the teachers to provide feedback and also to allow them to gain

an appreciation that students have understood their instruction. Facial feedback can

be useful for teachers to judge whether students have understood something. It is not

easy to get this feedback in practicals as the students sit facing their computer

screen.

Figure 3.5 presents the layout of Durham University’s CG65 classroom that was

used as the experiment laboratory and highlights some of the difficulties that teachers

can have interacting with the students.

3. Investigation Into Current Practicals 42

Figure 3.5: Example Classroom

There are two rows of computers that present particular problems, marked as

Column A and Column B in Figure 3.5. Figure 3.5 depicts these problems in the

classroom where the teachers have to disturb students in Column A to be able to help

students at computers 2 to 7. This is due to the narrow space behind the computers,

which makes it difficult for the teachers to get to the students to help them. This is

also the case with column B, where to assist students seated at computers 13 to 8 and

16 to 21 teachers would have to disturb students seated at the top of column B e.g.

computers 14 and 15. The column that is easy for the teachers to interact with the

students is column C. In the case of column C there is a larger gap between the two

rows of students, which enables the teachers to monitor the students without

disturbing the other students seated on the column.

The problems in the classroom layout are reflected by observations that the students

seated at some computers seemed less likely to have interaction with the teachers if

they did not request help by putting up their hands.

A

B

C

3. Investigation Into Current Practicals 43

To highlight the frequencies of interactions based on where the students were located

in the classroom thematic maps from both groups have been generated using the

observation data,. Figure 3.6 shows the thematic map of Group A’s interactions, and

presents the total frequency of each student’s interactions during practicals:

Figure 3.6: Thematic map of Group A’s student interaction by total amount

As Figure 3.6 highlights there are no clusters of students with a high volume of

interactions in Group A, even in the computer locations where it was expected that

the teachers could have difficulties to reach as the darker blue colours, which

represent higher frequencies of interactions, are distributed throughout the

classroom. However, the thematic maps that display who initiated the interactions

(Figures 3.7 and 3.8) reveal that certain locations required students to initiate

interactions more frequently. Figure 3.7 presents the thematic map of the frequency

of interactions initiated by the teachers:

3. Investigation Into Current Practicals 44

Figure 3.7: Thematic map of the frequency of interactions initiated by teachers

in Group A

Figure 3.7 shows that the students who were located on column A were less likely to

have interactions initiated by teachers. This compares to locations in column C,

which are easier for the teachers to reach. In column C it was recorded that the

students had more interactions initiated by the teachers in comparison to Columns A

and B. These observations correspond to the problem rows identified in Figure 3.5.

Figure 3.8 presents the thematic map of Group A’s student initiated interactions:

A

B

C

3. Investigation Into Current Practicals 45

Figure 3.8: Thematic map of the frequency of interactions initiated by students

in Group A

Figure 3.8 confirms that with the students having fewer interactions initiated by

teachers, they had to formally request help, which is especially notable in column A.

The teachers attempted to explain this observation, during semi-structured

interviews. They reported that students in inconvenient locations are less likely to be

interacted with unless there are obvious request help.

The smaller size of Group B makes it difficult to illicit viable results from the

interactions as it is sparsely populated, but it did provide notable qualitative

observations into how interactions in the class took place in a small class context.

The thematic map of the interactions recorded during the Group B practical did

highlight how students seem to prefer to sit in column A. The thematic map also

reveals that with fewer students some of the issues with the learning space are

reduced.

A

3. Investigation Into Current Practicals 46

Figure 3.9: Thematic map of Group B’s student interaction by amount

Figure 3.9 highlights that the students sat on only one side of column B, the

qualitative observations taken by the researcher found that it was easier for the

teachers to interact with the students. The thematic map shows that some students did

group, for example on columns A and B, but others were more spread out. For

instance, those students sat at computers 25, 30 and 35.

The observations show that the student sat at computer 35 in Group B had only a

single interaction lasting for only one minute with a teacher. It can only be

speculated as to why that student sat in that location but one possible reason is that

they might wish to avoid teacher interactions unless they themselves chose to request

it. Alternatively the student sat at computer 30 had a high frequency of interactions.

In this case as may they positioned themselves close to the teachers so they could

easily access help when needed.

Another notable example was in Group B for a student sat at computer 7. In this

case, the first interaction was instigated by the student putting their hand up and

getting the teacher to come to them. Thereby the student initiating the interaction

made the teachers aware of the difficulties they were in and so henceforth the next

three were inquiries initiated by the teacher. The important point about this example

A

B

3. Investigation Into Current Practicals 47

is that only when the student actually asked for help did the teacher became aware of

the problems they faced. So, when the teachers identified that the student required

extra help, they paid particular attention to them.

The observations of practicals showed that the majority of the interactions were

short, averaging between two to three minutes per interaction, yet there were a few

students who seemed to require longer interactions. The interactions instigated by the

teachers were in the majority of instances shorter. In these cases typically a student

would either report that they had completed the work successfully or otherwise

presented issues that were solvable in a short time. The problem with short

interactions is that it could be the teacher just provides the student the answer, which

although it allows the student to get over the issue quickly, it does not help the

student’s learning. Providing the students with an answer may deter them from

trying to solve the problems themselves in the future.

In both Group A and Group B some of the students, on average, took more of their

teacher’s time. In Group A one student had an average of ten minutes of interactions,

divided into two interactions and another student had four interactions with an

average of seven and a half minutes each. These examples could be a result of the

student not understanding the solution, so as a consequence the teacher has to try

various ways of leading the students to the answer. There are a number of methods

for the teachers to help the student, for example:

• Showing them the Application Programming Interface (API)

• Drawing students a picture to illustrate the solution

• Standing over a student’s shoulder offering them advice when it is required.

These are all valid and accepted ways for teachers to assist the students, but there has

to be a balance so that the students are not too reliant on such help. One of the main

differences between higher and secondary school education is that the students are

expected to be work more independently at university.

3. Investigation Into Current Practicals 48

In the groups that were observed two of the students receive one-to-one tuition. One

student from Group A had 30 minutes of interaction (Student A) and in another

example one student from Group B had 60 minutes of interaction (Student B) with

one teacher. The researcher asked the teachers involved in both cases to provide an

outline of the reasons for the large amount of interaction time with these students.

Both teachers reported that the students appeared to be having serious problems with

their work and teachers felt that they had been unsuccessful in explaining the

solution to the student. They noted this was especially the case for student A. Student

A had already had one of the other teachers try and explain a solution to them before

the longer later interaction. Student B was a different situation, in this case the

teacher made use of smaller group teaching involving two other students who sat

close to student B, and all of whom were having similar issues. With student B the

teacher was also able to stay looking over the shoulder of the student whilst they

coded and then so to offer advice when it was needed.

As well as the learning space issue, an additional issue in relation to communication

difficulties is the issue that many students have difficulty describing their problems

to the teachers.

Figure 3.10: Cutts version of Laurillard Conversational Framework [Cut05]

Figure 3.10 presents a simplified version of the Laurillardian dialogic framework

[Cut05], which demonstrates how PRS can facilitate the framework in lectures. The

T refers to the teacher and L the learner and the numbers refer to the steps in the

framework:

1. Where the teacher explains a concept to a student

2. Where the student attempts to comprehend the concept

3. Investigation Into Current Practicals 49

3. The student explains their understanding of the concept back to the teacher

4. The teacher judges whether the student has understood the concept and if not

they go back to stage 1 and explain the concept again maybe in a new way.

The Laurillardian dialogic framework can be applied more easily in practicals than

in lectures, as teachers interact on a one-to-one level with students. For instance, the

teachers interacting directly to a student and they interact directly back to the teacher,

these interactions facilitate steps 1 and 3 in the Laurillardian Conversational

Framework, yet as this section has revealed these steps are still difficult in practicals.

In the questionnaires given to the students, three answered that there are

communication difficulties in step 1 in particular of the Laurillard Conversational

Framework, one student said: “Questions are sometimes not directly answered and

can leave you more confused” this reveals that students are sometimes unhappy with

the assistance that they get from some of the teachers. This introduces an interesting

problem that is explored in more detail in Issue 4, as one of the roles of the teacher is

to lead the students to the answer rather than just give them the answer. Thus, the

students still need to be able to solve the practical problems themselves. The student

response highlighted above could reveal that the students feel that the methods that

the teachers use to lead them towards solutions are actually more confusing than

helpful.

The questionnaire responses from the teachers also highlighted some difficulties with

communication at Laurillard’s point 3 (Student to teacher interaction) where 50% of

the respondents disagreed with the statement: “Students are good at describing the

problems that they have with their code.” This response highlights that the teachers

do have concerns regarding at least some student’s ability to describe their problems.

In summary the classroom design can cause communication difficulties between

teachers and students. Although despite the room, a form of the Laurillardian

Conversational Framework does exist where teachers ask the student questions and

offer advice if it is needed. This work has also found that students and teachers

sometimes find it difficult to describing their points to each other.

3. Investigation Into Current Practicals 50

3.3.3. Issue 3 – Students’ Range of Programming Abilities

An issue, which exists in introductory courses at any level and on any subject is the

prerequisite knowledge that the students have before the course [Rob03]. The

questionnaire given to the students explored what level of programming experience

students had prior to coming to university. The results showed that the range of

experiences were noticeable, from students who had a lot of prior experience

including those whom had worked in industry to those students whom had no prior

experience. These responses add another element of challenge for the teacher, as

students with experience may be able to program but not explain why they need to

they need to do it in certain way which is knowledge they require to pass the course,

while students with no experience would need assistance with even the simple tasks.

Ten students, of the 35 students surveyed, admitted to having very little or no

experience of programming prior to University, and a positive correlation can be

seen between those students and those that found practicals and the course more

difficult. In total six students responded that they found practicals difficult all of

whom has no prior programming experience. In comparison none of the students

with prior experience of programming admitted to practicals being difficult and two

even reported that the course was too easy.

With a combination of the room set up and the apprehension of the students to

openly ask for help, teachers have problems identifying which students require help.

An example was seen in Group A where early in the course (within two months)

some of the students were having problems with coding such as writing calling

methods and adding fields and variables. To further illustrate the range of abilities in

the cohort, one of the students spent a long portion of a practical trying to set up an

advanced IDE on their computer. This resulted in the student acquiring, during

practicals, 24 minutes of teacher time. This case raises the issue of what priorities

the teachers should have in deciding how to apportion their time. Should teachers

prioritise those beginners to ensure all students understand the basics, or do they also

seek to help the advanced students to ensure they are able to push themselves, and

3. Investigation Into Current Practicals 51

not get frustrated. While this in an interesting topic, it is outside the scope of this

thesis.

In the questionnaire given to the teachers the question: “Do you think in the current

practical setting it is difficult to judge how well one student is doing?” the teachers

responded unanimously that they could judge the stronger students and through the

fortnightly assessment lessons they could identify most of the weaker students. A

number of the teachers highlighted that the students ‘in the middle’ were the hardest

to identify and that it is difficult for them to see what level they are working at. The

teachers reported that this middle group could either do well or they could fail. The

following statement from one teacher summarises this point: “Over the last 3 years

I’ve not had any difficulty in picking out the better and the worse programmers in

practicals. However the ‘in-betweeners’ are harder to work out, and indeed some of

them have gone on to fail or score badly in exams unexpectedly, and some have

scored higher than expected.” So this group of individuals clearly need to be closely

monitored.

3.3.4. Issue 4– More Independent Learning

The fourth issue found in practicals is with the element of independent learning.

Independent learning makes it difficult for the teacher as it means that they are faced

with a number of students who are all working on different projects and at different

levels. The independence in practicals is beneficial because it allows the students to

work at their own pace [Cut07]. It is difficult for the teachers to judge how a student

is doing in some contexts. For instance, there could be situations where the students

are reading the content of the course book but are not able to translate this into a

capability for them to create their own programmes, whereas others may adopt this

skill readily.

The students, in the questionnaire responses, seem to enjoy the independence of

practicals setting. In the questionnaires that they completed one student noted:

“More independent -> less pressured -> can learn in own time”. This is the sentiment

presented by many students when they were asked to compare their secondary school

3. Investigation Into Current Practicals 52

practicals to University practicals. Though the majority of the students like the

independence, a few noted that there were negative impacts. One of these is that they

were not sure what they were required to do, as these students’ note; “PDS2

(introductory programming module) practicals are generally too vague”,

“Sometimes [it is] difficult to know what work is”. A further student presented a

reflective insight into the issues that face the students in the transition between

school and higher education: “I find it [practicals] more difficult than a school

lesson, purely due to the pace that is expected”. These highlight that some students

are used to being told exactly what to do in their lessons, as in secondary school, and

have problems when they are set more open targets to complete at their own pace

and over a longer period time.

Practicals as a method of independent learning is important but presents challenges

to appropriately support students’ learning. The student need to be supported only to

an extent to allow them to be independent, but whilst also enabling them to be able to

speedily progress with their learning.

Such issues are noted by Biggs [Big02] who writes that university is a place where

students have the opportunity to get away from the lower order learning, which is

sometimes apparent within secondary school and college. In secondary school

emphasis is focused on getting the students prepared for exams. In higher education

more emphasis is on enabling the students to learn independently and explore more,

higher order, learning strategies, for example generating their own strategies for

dealing with problems rather than having the answers given to them.

3.3.5. Issue 5– Visibility of Students’ Progress

The final issue is a combination and a result of the previous four issues and is that

teachers have difficulty in judging and viewing progress made by the students.

In Durham practicals operate by having a marking session every second practical, to

allow the teachers to view which students are falling behind and which are working

to or above the required level. Of equal importance is to give the students formative

and summative feedback. One of the reasons that the course leaders had

3. Investigation Into Current Practicals 53

implemented this marking session was due to the room issues addressed in issue 2,

which makes it difficult for teachers to judge how well a student is doing in

practicals. In the questionnaires completed by the teachers a couple of the responses

related to the ease of judging a student’s progress in a practical. One teacher noted:

“Teachers cannot always see what the students are doing”, which leads to the need

for the marking sessions to check on how a student is progressing.

Teacher’s opinion and also the observations taken by the researcher were mixed in

regards to the success of marking sessions. The teachers unanimously thought that

the marking sessions were a good idea as it allowed them to see how well a student

was progressing. However, some teachers and the researcher argued that practicals

was the wrong place to do it. The researcher observed one marking session and

found that each student took an average of ten minutes. This time was dependent on

the level of the student, longer for a weaker student and not as long for a stronger

student. Group A had three teachers and a class of 25 students, so out of the 360

teacher minutes, 300 minutes could be taken up by marking work. The researcher

noted that during this time some students wasted time while waiting for the teacher

to mark their work and instead spent practicals time surfing the Internet. The teacher

questionnaires seemed to support this, one in particular noting a desire to: “Remove

marking from the actual practical settings” and later explaining their desire to, “Have

marking sessions outside of practicals with practicals being mainly problem sessions

and feedback sessions”. However, if marking sessions were removed from

practicals, an alternative way for the teachers to see levels of progress may be

needed.

The teacher was further interviewed and noted that the marking session is good for

seeing how a student is progressing, but that takes up so much time that support

cannot be offered to the other students whose work is not being marked in the

session. So, for instance, a student could be marked in the first ten minutes of

practicals and then get stuck with their work but due to the marking requirement

placed on teachers there is no one free to assist them. This may mean that they do not

3. Investigation Into Current Practicals 54

receive the help from the experienced programmer, which is one of the main benefits

of practicals.

The current practical setting presents the challenge that for teachers to understand

how a student is progressing requires that the teachers regularly assess them, but this

causes staff-time constraint difficulties. Technology could be used to assist the

teachers to judge a student’s status in practicals and is explored during the remainder

of this thesis.

3.4. Summary

This chapter investigated a practical within a typical introductory programming

course at Durham University. The investigation identified five issues with the way

that practicals operate. The last issue of these five issues, Issue 5 – Visibility of

students’ progress, was seen as both a result and cause of a number of the other

issues. This issue should form a primary focus of the development of the technology

to support practicals.

The remainder of this summary discusses the three research questions that were

asked in Chapter 1 that were addressed in Chapter 3.

3.4.1. Research Question 1 – What are the students’ and teachers’ opinions

on the pedagogic value of practicals?

The questionnaires responses from the students and the teachers revealed that they do

value practicals highly. The students and the teachers view the importance that they

can apply knowledge they have read and been taught in lectures, whilst being

supported by teaching staff. The students also value the way practicals allow them to

work at their own pace and on particular parts of the topics that they feel they have

difficulties with. This was discussed in more detail in section 3.3.4.

The University also accepts the importance of practicals, by making practicals

compulsory for students when lectures are not.

3. Investigation Into Current Practicals 55

3.4.2. Research Question 2 – How do students begin interactions with

teachers in the existing practical setting?

The results taken during Research Phase (i) found that the students began

interactions in a number of different ways with the teachers. The two main methods

were through:

1. The students putting their hands up and requesting help,

2. The students intercepting the teachers as they patrolled the classroom.

The first method was an expected observation when the students have a problem that

they raise their hand to get the attention of the teacher, but the second method and

the way that some students asked for help was more notable.

The observations of this second method found that some students preferred to not

openly ask for help, but instead preferred to ask ‘covertly’. This is sometimes made

difficult by another observation that some teachers are reactive rather than proactive

in the classroom. Reactive teachers were seen to wait in one spot of the classroom

waiting for hands to go up, whereas proactive demonstrators would patrol the

classroom. The proactive teachers were much more likely to be asked for assistance

by the students who preferred to ask for help ‘covertly’.

Another factor that could impact on a student’s capability to use this second method

could be the room layout. This is especially as there is not much space behind the

students’ seats, which makes it difficult to interact. In some cases it is also required

to disturb a number of students to assist an individual.

3.4.3. Research Question 3 – To what extent can teachers perceive student

status in the existing practical setting?

Two main factors were found during Research Phase (i) that both hinder the

teachers’ ability to track the students’ statuses in the practical:

• Communication difficulties

• Room layout

3. Investigation Into Current Practicals 56

As a result of communication difficulties in the existing practical setting, the

teachers admitted to having some difficulties in tracking how some students were

progressing. The teachers in the questionnaires answered that it was usually easy to

pick the students who were strong and the ones who were weak but there was a

middle group majority, which could either do very well or very poorly. The teachers

noted that it was difficult to judge how well the students were doing. This was

discussed in more detail in section 3.3.2.

The room layout causes problems as it is difficult to see a student’s work on the

screen and quickly see if it is good or not, which is compounded by the students, who

have problems describing their work. The ability to describe their code is one of the

skills they are developing during the introductory programming course, which should

improve over the course.

The existing setting attempts to overcome the difficulties in tracking progress by

having marking sessions in practicals. Although these marking sessions are flawed

as they occupy teachers for the duration of a lesson with the consequence that they

cannot provide the support to students who are not being marked. The teachers’

support to the students is the main benefit of practicals, so limiting this is not

beneficial.

In Chapter 4, components of Technologically Enhanced Demonstrator Support

(TEDS) are described. TEDS is used to help teachers support students in practicals.

It explores ways of lessening the impact of the issues identified in this chapter.

4. Technologically Enhanced Demonstrator Support 57

4. Technologically Enhanced
Demonstrator Support

Technologically Enhanced Demonstrator Support (TEDS) is an approach, realised by

a software system that is designed to address the five issues for existing practice, as

identified in Chapter 3. In trying to overcome the issues outlined in Chapter 3, TEDS

is used to address research questions 4 and 5.

The focus of this chapter is on the features of the TEDS software that are designed to

provide support for those teaching programming. A feature, in the context of this

thesis, is a component of TEDS that is specifically designed and implemented to

fulfil the identified needs of the teachers. The process of implementing the features is

later explained in Chapter 5.

4.1. Design Principles

During design, a set of principles were developed and used to guide the inclusion or

exclusion of potential features, and set the approach by which the TEDS software

would be constructed. These principles are:

Design Principle 1 – Minimal change to students’ method of working. It is

imperative that the software does not change the way in which students normally

work, and has no impact on the instructional design of the course.

Design Principle 2 – Provide a maximum amount of data to the teacher. Different

teachers may find different data useful in evaluating the learning of students. By

providing as much data as possible, teachers have access to a number of metrics.

Design Principle 3 – Ensure data is accessible. Given principle (2), it is important

that the volume of data is accessible and does not present a further cognitive

overhead during teaching. For instance the data must be presented in a way that the

teachers can effectively use it during the practical.

4. Technologically Enhanced Demonstrator Support 58

Design Principle 4 – Facilitate improved communication. It is necessary for the

software to improve communication. In this case improving communication could

ease some of the issues identified in Chapter 3.

The goal of this design is to adhere as closely as possible to the four presented design

principles, which seek to lessen the impact of the issues identified in Chapter 3.

4.2. Design Investigations

Features included in TEDS were derived from an explicit design process. The design

process consisted of three investigations:

1. Exploration of the capabilities of the BlueJ extension library. This

investigation aimed to reveal what data would be available to the

TEDS system via the BlueJ extension library and for determining

what data could be gathered from the students’ activities.

2. Focus groups and interviews. This investigation concerned direct

consultation with users. It gathered data from focus groups and

interviews with teaching staff from the department as a means to

determining which features to include in the design of the TEDS

system.

3. User evaluations. Early versions of the software were, in a rapid-

prototyping fashion, evaluated by users. This process served as both a

validation exercise for the implemented features, and a way of

capturing further feature needs.

Each of the three investigations identified above are explained in more detail below,

showing where each feature in TEDS was identified as a requirement.

4.2.1. Exploration of the capabilities of the BlueJ extension library

Students in the introductory programming module use BlueJ as their IDE. This

prompted research into the possibility of using BlueJ as the foundation of TEDS,

adhering to design principle 1. It would not be appropriate to select any other IDE as

4. Technologically Enhanced Demonstrator Support 59

this would have a significant effect on the course design and the learning activities

that the students engage with. This investigation, therefore, is to fully understand the

potential of the BlueJ extension library system in providing the necessary data for

TEDS.

BlueJ has a built in extension library that gives developers API access to a restricted

set of functions. Examples of the kind of information available to extension library

developers include data regarding compile time and run time objects [Blu10]. The

BlueJ extension API has three packages that can be used by extension developers to

gain access to core data [Blu10]. These three packages are:

• bluej.extension – this is the core package of the BlueJ extension API. This

package allows developers to access to data that BlueJ users create. This data

includes classes, methods and source code.

• bluej.extension.editor – this package allows developers access to users’

current active editor window. The editor window is a part of the user

interface that programmers use to write Java source code. This API lets a

BlueJ extension retrieve source code text, make changes to that text, and

determine which class the user is currently editing and where in a particular

class they are editing.

• bluej.extension.event – BlueJ extensions can register themselves with

the BlueJ event system. This means that the extension receives events as they

are generated while the user writes their software. Example events that the

extension can listen for include: when the user compiles their code; when the

user invokes a method in their software; or when the user begins changing a

class.

Developers have used the BlueJ extension API to create a range of extensions. For

instance, the extended version of BlueJ discussed in 3.1.3 made extensive use of

BlueJ’s event API during its implementation [Jad05].

In considering the issues, outlined in Chapter 3, the BlueJ API provides good support

to extension developers to gain access to data and functions that are useful in

4. Technologically Enhanced Demonstrator Support 60

designing a tool to support learning. Furthermore, using the BlueJ extension library

has the additional benefit that BlueJ can remain as the tool used in the design of the

course. A student’s familiarity with this environment could increase the likelihood

that the TEDS tool would not be a barrier to adopting it in their learning.

It is not appropriate to map the issues from Chapter 3 directly to functions of the

BlueJ APIs. The TEDS system provides a set of features that use the BlueJ API, so

discussion of this type of mapping is, instead, included in the descriptions of the

remaining design investigations. Instead, the creative process of design resulted in a

set of prototype features that were directly included. The features that were derived

from BlueJ API capability were:

Feature A: Report of students’ last compile i.e. success/fail

The bluej.extension.event API allows extension developers access to the

compile events created by BlueJ. If the event is a compiler error the result includes:

• The location of the compiler error within the code i.e. the class and the line of

code where the compilation error occurred

• The type of compiler error i.e. ‘missing ;’

If the compiler is successfully able to complete a compilation process over the

student’s code base, a confirmation of this is given to the student. However, a

limitation of BlueJ is that it only outputs the first compilation error that is found by

the compiler [Jad05].

Feature B: Report of student’s last method invocation

The bluej.extension.event package allows an extension developer access to

events generated when BlueJ users invoke their program. The invocation events

include whether the method invocation was successful or unsuccessful, and the

location of the run method in the BlueJ user’s code.

A limitation of the method invocation API is that certain runtime errors are not

recorded. An example of this would be if the method runs but returns an incorrect

result. Another limitation is that it does not give a developer access to the details of a

4. Technologically Enhanced Demonstrator Support 61

runtime error; e.g. it does not make any report on what runtime errors occurred

during execution of the student’s software.

Feature C: A snapshot of the student’s code that is sent to the teachers

The two packages bluej.extension and bluej.extension.editor give

extension developers access and the ability to copy a BlueJ users source code. This

then means that the extension could, for example, replicate or transfer their source

code. Snapshots could then be taken of a student’s source code over a period of time

and these could be used to view code development.

4.2.2. Focus groups and interviews

In February 2008, a focus group was arranged to present TEDS. The audience

consisted of academics and postgraduates from the Computer Science department at

Durham University. A description of TEDS was given and a demonstration of an

early prototype. The intention of the demonstration was to give the participants an

introduction to the TEDS system, including a full review of the proposed feature set.

During the session the focus group had the opportunity to use the prototype in the

role of a student, and a small task was set for them to complete.

The prototype of TEDS presented was a basic system consisting of:

• Feature A – Compiler Errors

• Feature B – Method Invocation

The prototype was networked so that the data collected by TEDS could be collated

and displayed to the members of the focus group. This provided the audience with an

overview of what a teacher, using TEDS, would be able to see in a practical.

The participants all taught within the department either as course leaders, lecturers or

teachers.

After the short presentation and demonstration of TEDS, the focus group was

consulted to collect their views on the current feature set. The objective of this

4. Technologically Enhanced Demonstrator Support 62

consultation was to see if any changes should be made to the system. In total 14

suggestions were made. These suggestions were:

1. Seeing the context of compiler error, i.e. which class the error is in.

2. Compiler errors by frequency, errors grouped together by type.

3. Help button, for students to ask for help.

4. See the student’s current activity while they type.

5. Chart of a student’s compiles over the period of a practical.

6. Maintain practical data by task.

7. Store student records in a database.

8. Provide information to group students by shared difficulties.

9. ‘You are not alone’ provide students with data on the progress of their peers.

10. Remote editing by teachers of students code.

11. Sending files and tasks to the students.

12. Provide teachers data on student’s semantic errors.

13. Provide teachers data on student’s runtime errors.

14. Introduce unit tests.

These observations were thematically analysed to view their suitability to the four

design principles of TEDS:

Minimal change to the students' methods of working.

Provide a maximum amount of data to the teacher.

Ensure data is accessible.

Facilitate improved communication.

When thematically analysed, seven of the suggestions were found to be

incompatible. The incompatibilities were due to Design Principles 1 and 3.

4. Technologically Enhanced Demonstrator Support 63

Design Principle 1 seeks to make TEDS adjust to a student’s learning, rather than the

other way around. The themes of five of the suggestions from the focus group were

incompatible, as they would change the ways practicals are operated. An example of

this was to add J-Unit tests to TEDS. J-Unit is a method of passing variables to a

piece of code and running it to test if it works. The use of J-Unit tests are very

valuable, but require students to be relatively rigid in the way they complete coding

tasks to a specification. TEDS should not be designed for this purpose rather its

focus should be on monitoring students and informing teachers if they require

assistance.

J-Unit (14) is incompatible with Design Principle 1 because at Durham University,

students engage in open, flexible coding projects, which could mean that all the

students could be working on different projects within the same practical [Cut07].

This makes it impractical and time inefficient to create a J-unit test for each student.

In light of this J-Unit tests were not implemented in TEDS.

Another instance of a suggestion that was analysed as being incompatible with

Design Principle 1 was to use data collected by TEDS to group similar students

together (8). This would be a change for the students, as they are not currently

grouped together based on assessment. Furthermore, generating groups based on

similar problems would require a form of partnering algorithm, which is not the

focus of this work.

Design Principle 3 rendered four of the suggestions incompatible (4, 9, 10, 12).

Design Principle 3 is concerned with ensuring that any data is presented in an

accessible manner to the teachers, but this is not always practical. In one of the

suggestions made by the focus group, they commented that it might be beneficial to

see details of what a student was working on. Through revealing to the teacher what

line and class a student is working on, they could see if the student is making any

errors that can be rectified before they worsen. In principle this is a good idea but it

is impractical to display all of that data to a teacher especially taking into account

that a practical could consist of up to 40 students. Due to this reason it was

concluded that the suggestions were incompatible with Design Principle 3.

4. Technologically Enhanced Demonstrator Support 64

Seven of the suggestions were found to be compatible with the Design Principles (1,

2, 3, 5, 6, 7, 13).

Design Principle 4 is concerned with ensuring that TEDS improves communication.

One of the suggestions was the idea of a “Help Me” button (3), which would enable

students to ask for help in a more discreet way rather than by putting their hands up

or by shouting to attract a teacher’s attention. It was anticipated that the feature

would increase the likelihood of shy students asking for help. In response to this

suggestion, Feature D – Help Button and Feature E – Short Message functionality

were implemented.

The six other suggestions from the focus group that were implemented all

corresponded with Design Principles 2 and 3. These two principles are concerned

with enabling teachers to view useful data in an accessible way. Three of the

suggestions related to how data that was currently available was displayed to the

students (1, 2, 5). For instance, it was suggested that displaying a student’s compiler

status over the period of a whole practical in graphical form would be useful (5).

This suggestion matches both Design Principle 2 and Design Principle 3 as a graph

can be easily generated from the data collected from the students and displayed in a

useful manner to the teachers.

Two other suggestions (6, 7) were concerned with integrating a database into TEDS.

The suggestion was that with a persistent record of a student’s data, a teacher could

view how a student progresses over a number of weeks. The main focus of this thesis

and consequently TEDS however, is to provide teachers with live data on a student’s

status during the course of one practical. Despite this there are benefits to integrating

a database into TEDS. For example, it would maintain a record of data that can be

viewed interactively after the session, and with this data a lecturer could observe if a

student cohort is making common errors. The main advantage of using a database is

that it maintains a permanent record of data, which provides a fail safe if a client has

network problems. The data, as long as the server receives it, is saved in the

database, this ensures that the data is accessible to the teachers matching Design

Principle 3. In light of these perceived benefits a database was added to TEDS.

4. Technologically Enhanced Demonstrator Support 65

4.2.3. During Use

TEDS was tested in both a departmental showcase and during a practical. These were

carried out to test the features of TEDS, and also to get feedback from the intended

users of the system. As a result of showing TEDS to the users some new features

were suggested.

Showcase

The showcase was an event where researchers systems were presented to students

and took place towards the end of the 2007-2008 academic year. The suggestions for

features for TEDS generated in the focus group (Feature D – Help Button and

Feature E – Short Message Functionality), had been implemented for the prototype.

The showcase became a test of the features developed so far as the visitors were able

to take part in a short demonstration of TEDS.

The difference between the showcase and the focus group was that the attendees

were students. Students along with the teaching staff are the intended users of TEDS.

Therefore, the feedback from the students was useful, as feedback from the focus

group had already provided feedback from the teachers.

A further benefit of the showcase was that it enabled TEDS to be tested to examine if

it could perform satisfactorily with up to 8 student users.

The students did not make any new suggestions for features, but nevertheless they

gave positive feedback, which was useful as it gave indication that TEDS's features

were sufficient to allow progression to the next phase – full investigations.

First Investigation Practical

In June 2008, TEDS was tested in the first investigation practical, which took place

in a ‘real-life’ educational environment. The first investigation practical examined

the performance of the software with a high number of users, as well as its

practicality as a teaching tool.

4. Technologically Enhanced Demonstrator Support 66

The investigation practical explored the use of the combined features from the focus

group and the BlueJ API and practicality of how the data was displayed to the

teachers.

During this practical, data was collected and the results are presented in Section 7.1.

While taking part in the exercise one of the teachers commented that they felt it

would be beneficial if TEDS could be used to draw images for a student, and then to

send these to them for reference. Some of the teachers noted that often it was

important to raise the level of abstraction when teaching novice programmers to that

of design. Since TEDS did not support graphics at the time of practicals, that was

not possible. A new feature, Feature G was implemented in response to this idea.

After practicals teachers commentated that they used a number of windows more

than others and would prefer those windows to be larger. Modifications later made in

response to this suggestion enabled the teachers, to view the window displaying

students’ requests for help and their current compiler status easier than before. The

final version of the teacher console is displayed in Figure 4.3.

4.3. Features Identified

As a result of these investigations, a set of seven features was determined. Table 4.1

presents the seven features along with the investigation in which the feature was

determined.

4. Technologically Enhanced Demonstrator Support 67

 BlueJ
Extensions

Focus
Group

During Use

Feature A: Report of a student’s last compile i.e.
success/fail

√

Feature B: Report of a student’s last method
invocation i.e. success/fail

√

Feature C: A snapshot of a student’s code that is
sent to the teachers

√

Feature D: Ability for a student to request help
electronically

 √

Feature E: Ability for teachers to reply remotely
to a student via Short Messages

 √

Feature F: Objective setting functionality
allowing clear objectives to be set in practicals

 √

Feature G: Ability for teachers to draw and send
images to a student’s to help them understand
concepts

 √

Table 4.1: Presenting link between features and investigations

Feature F was not devised through any of the three investigations directly, but rather

was influenced by the questionnaires and feedback from both the students and the

teachers. Each feature is explained in detail below.

4.4. The Features of TEDS

Seven features were generated out of the investigations presented in section 4.1 and

these features can be related back to the issues highlighted in Chapter 3. These were:

Issue 1. Students’ are afraid to initiate dialog with teachers;

Issue 2. Communication difficulties between:

i. Teachers and students

4. Technologically Enhanced Demonstrator Support 68

ii. Students and teachers

Issue 3. Students’ with a range of different skill levels

Issue 4. The independence of learning in practicals leading to students not

knowing what to do

Issue 5. Visibility of a student’s work status

In summary the features that were generated for TEDS and are explained in this

section are:

Feature A. Report of a student’s last compile i.e. success/fail;

Feature B. Report of a student’s last method invocation i.e. success/fail;

Feature C. A snapshot of a student’s code that is sent to the teachers;

Feature D. Ability for a student to request help electronically;

Feature E. Ability for teachers to reply remotely to a student’s via

Short Messages;

Feature F. Objective setting functionality allowing clear objectives to be

set in practicals.

Feature G. Ability for teachers to draw and send images to the students to

help them understand concepts;

The five Issues (identified above) and the seven Features (identified above) can be

cross-referenced. These relationships are presented in Table 4.2, where a letter

represents each function and each issue has a row.

In the Table 4.2 a tick (√) indicates where it is anticipated a specific feature could

ease a particular issue. For instance, Features D and F are anticipated to ease the

impact of Issue 4.

4. Technologically Enhanced Demonstrator Support 69

 Features

 A B C D E F G

1

√ √ √ √

2

√

√

√

√

√

√

N
um

be
r

3

√

√

√

√

√

Is
su

e

4

√

√

5

√

√

√

Table 4.2: Map of features to issues

In total seven features were implemented and each are looked at individually in this

chapter in their own subsection. In relation to each feature these three statements are

considered:

• The role of the feature in overcoming the issues identified in Chapter 3.

• The process of developing each feature.

• What the feature does.

4.4.1. Teacher Client

TEDS is required to show enough data that it is useful to the teachers but not too

much that it becomes too complicated to use within a live practical. Robins et al

support this [Rob03, pp 164], writing that data needs to be presented in a way, where

4. Technologically Enhanced Demonstrator Support 70

teachers can use it successfully during a practical. Before the final teacher console

was decided upon, two other versions were used in design phase. These can be

viewed in Figure 4.1 and Figure 4.2.

Figure 4.1: Teacher Console Version 1

Figure 4.1 presents version 1, which is a tabbed view that by cycling through the tabs

the teacher can view the students’ data grouped together under different tabs. For

example the compiler status tab gives a teacher access to all of the students’ compiler

data.

The benefit of version 1 is that data is not overwhelming as the screen only presents

a small amount of the whole data collected by TEDS at one time. This is also a

negative effect of the version 1 teacher console, as to view all of the activity updates

that TEDS collects from the students during the practical, at least the Compiler

Status and the Method Invocation Status data needs to be viewable at any one time.

After these negative observations Teacher Console Version 2 was implemented for

the ‘during use’ component of the design of TEDS presented in 4.2.3. This can be

seen in Figure 4.2.

4. Technologically Enhanced Demonstrator Support 71

Figure 4.2: Teacher Console Version 2

Figure 4.2 is a large console window with moveable and resizable sub-windows so

the teachers can adapt the layout to their own requirements. This version presented

more data at one time than version 1, but the teachers requested for some windows to

be combined to make it easier for them to access and interpret the data. The teachers

especially asked for the ‘List of Online Students’ window to be combined with the

compile and method invocation windows.

In response to factors concerning the displaying of data and feedback from users of

the teacher client the layout shown in Figure 4.3 was developed.

In the figure, window 1 is the view of each individual student’s status during

practicals. It presents data such as the time since last event, if the student is offline or

online, compiler and method invocation status. In the lower half of the main teacher

view the windows are from left to right:

4. Technologically Enhanced Demonstrator Support 72

• Window 2 is the cohorts collated compiler errors which are looked further at

in Figure 4.7

• Window 3 is the old task overview which allows teachers to view a student’s

progress over a number of practicals

• Window 4 allows the teacher to interact with a student. This feature is

explored further in section 4.4.7.

Figure 4.3: Teacher client

4.4.2. Feature A - Compiler Errors

Rationale

1

3 4
2

4. Technologically Enhanced Demonstrator Support 73

The rationale of Feature A – Compiler Errors, is to explore the opportunities for

using compiler errors to help a teacher monitor the current status of the students. The

two reasons for Feature A – Compiler Errors are:

• To see if the students are actively engaging with the set task

• To see how successful the students are with compiling their code

These reasons are both important as they address Issue 2 – Communication

Difficulties. In typical laboratory conditions teachers cannot clearly view the

students’ screen to assess how well a student is progressing. Feature A – Compiler

Errors enables teachers to observe compiler errors remotely, so they can assess what

the current status of a student. Feature A – Compiler Errors would allow a teacher to

view, for instance, if the student was making common novice compiler errors such as

‘missing ;’ [Jad05]. Feature A could also reveal errors created by a student

attempting a more challenging task, for example trying to use methods from a Java

class without creating an instance of that class. A compiler error like this could

reveal that the student is trying to create more complicated systems than the task

requires. Thus the error indicates the individual student’s status but could also

highlight to teachers that a student is trying to work on a problem that is too

advanced for them at the current time. Therefore, TEDS can reveal which students

are working at the different levels by the nature of the errors that they are making.

The compiler error data can be used and displayed in a number of different ways,

which enable the teachers to observe individual student’s status. The compiler error

data can present errors that are common in a cohort as a whole. In addition, since the

data is stored within a database the lecturer has the opportunity to review the data

and use it to tailor future lectures. By tailoring lectures to those errors committed by

that particular set of students, could make class content more attentive to students as

they could directly use this to guide their work in practicals.

As Table 4.2 highlights, Feature A – Compiler Errors, is aims to counter some of the

communication difficulties (issue 2 on Table 4.2). The elements of the feature that

assist include the following:

4. Technologically Enhanced Demonstrator Support 74

• Recording errors. TEDS indicates that the students are having problems.

• Displaying the committed errors. This has the benefit that the teachers could

have an indication about the kind of errors that the students’ have before they

interact with them student.

There are a number of limitations when the teachers use the compiler error data

collected by the BlueJ extension to track student status. The three main limitations

are listed here:

1. The data is only collected when a student’s software is compiled.

2. If the student’s code has multiple compiler errors, only the first compiler

error the compiler finds is collected.

3. The compiler error description is not always correct i.e. a missing bracket

compiler error could return the compiler error description ‘illegal start of

type’

These limitations mean that the teachers cannot depend completely on the compiler

errors that TEDS gives them, and the teacher would have to further investigate the

students code to see the true cause of the compiler error. The feature does indicate to

the teachers that a student has a compiler error and that indicator is the features main

benefit to TEDS.

Design and Implementation

This subsection presents example screenshots of TEDS in relation to Feature A –

Compiler Errors.

4. Technologically Enhanced Demonstrator Support 75

Figure 4.4: View of compiler status

Figure 4.4 shows how a teacher can monitor a student’s compiler status. The first

column (Compiler Successes) is the quantity of successful compiles made by each

student, the second column (Compiler Fails) is the quantity of their compiler fails

and the third column (Compiler Status) has a colour-coded view of the outcome of

last compile. The colours indicate:

• Blue no compile in the lesson

• Green a successful compile

• Red an unsuccessful one.

The advantage of colour coding is to enable teachers, at a glance, to quickly assess

individual student’s current compile status. Thereby, such a feature makes it easier

for teachers to identify which students are currently successfully compiling code and

those that are not.

An additional column, which is useful for more than just Feature A – Compiler

Errors, is displayed in Figure 4.5. The column named ‘Computer Name’ has the ID

of the computer, indicating where the student is seated. The ID provides the location

of a student’s computer (from Figure 4.5 the text before the ‘--‘ is the classroom

where the student is located and after the ‘--‘ the number refers to the student’s

computer ID). Therefore, the teacher can locate where the student is sitting to

provide assistance.

4. Technologically Enhanced Demonstrator Support 76

Figure 4.5: Students’ computer ID’s

Figure 4.6 presents a view where a chart is displayed showing a student’s compiles.

In the Figure the graph shows the student’s percentage of compiler success rate

during practicals in the form of a line graph. The Y-axis is the percentage of

compiler success and the X-axis is the time that the events take place. The view

enables the teacher to identify prolonged periods of unsuccessful compiles, which

might indicate extra support should be directed towards that student. For instance, a

teacher may dedicate additional support to those students who have recently recorded

the lowest percentage of compile successes.

4. Technologically Enhanced Demonstrator Support 77

Figure 4.6: Graph to show a student’s percentage of successful compiles

Figure 4.7 presents how TEDS collates errors by type across a cohort of students.

This feature presents a rich set of data to course designers who may use it to examine

frequent sources of errors evident in student programming practices in order to

redesign future iterations of the course.

Figure 4.7: List of groups of compiler errors

Figure 4.8 shows an alternate view of the information presented in Figure 4.7 and is

available for consultation by the teachers using TEDS in a practical.

4. Technologically Enhanced Demonstrator Support 78

Figure 4.8: Pie chart of combined groups compiler errors

4.4.3. Feature B - Method Invocation

Rationale

The aim of Feature B – Method Invocation is to deal with a number of issues that

were identified in Chapter 3 and the links are shown in Table 4.2. The ability to get

method invocation data is facilitated by the BlueJ extension library, which creates an

event when the student tries to run their code. Feature B gives an indicator if the

code ran successfully or not and also details on the method that was run.

The main benefit of Feature B – Method Invocation, is that it provides the teachers

with information on how a student’s status is at a particular point of practicals. It

does this by revealing whether a student is successfully running their code. By doing

this it enables teachers to judge whether a student should be encouraged to carry on

with their work or if they should be offered assistance.

4. Technologically Enhanced Demonstrator Support 79

A second benefit of Feature B – Method Invocation, is how it supports the students.

This feature reduces the need for a student to alert a teacher, something that

observations described in Chapter three identify that students avoid doing. Feature B

helps as TEDS indicates to the teachers the students who need support. The teachers

using this feature can use the knowledge it provides to be proactive in offering

advice. This could ultimately enable teachers to more effectively allocate their time

to those students who are most in need of support.

A limitation of Feature B – Method Invocation is that it is not possible to record

runtime errors, which return an incorrect result, but still execute. An example is

shown in the code snippet below:

int i = 0;

 int total = badArray.size();

 while(i < total){

 String currentWord = badArray.get(i);

 System.out.println(currentWord);

 }

In this example of a while loop the code compiles and the method runs but gets stuck

in an infinite loop due to the lack of ever adding 1 to variable ‘i’ in the loop.

In this case Feature B – Method Invocation would not report a method invocation

error although the student’s code does create one.

Implementation

Figure 4.9 presents the data that the teachers would have to with TEDS in relation to

Feature B – Method Invocation. The data for Feature B – Method Invocation, is very

similar to that displayed for Feature A – Compiler Errors.

• The first column (Invocation Successes) presents the number of successful

method invocations

4. Technologically Enhanced Demonstrator Support 80

• The second column (Invocation Failures) presents the number of

unsuccessful method invocations

• The third column (Invocation Status) presents the status of the last method

invocation.

The third column uses the same colour coded indicators as Feature A – Compiler

Errors; with the aim of showing teachers at a glance the status of a student’s last

method invocation.

• Blue indicating no method invocations

• Red indicating unsuccessful method invocation

• Green a successful method invocation.

Figure 4.9: View of method invocation status

4.4.4. Feature C - Code Snapshot

Rationale

The aim of Feature C – Code Snapshot is to get a snapshot of a student’s code every

time they compile it, thereby collecting a profile of the student’s code progression

through practicals. The BlueJ extension library allows a developer to get the:

• Classes of the active BlueJ project,

• Methods that are within the classes

4. Technologically Enhanced Demonstrator Support 81

• Student’s code from the classes.

Feature C – Code Snapshot exploits this component of the BlueJ extension library.

The main benefit of Feature C – Code Snapshot, is the way it enables the teachers to

get a copy of the student’s code every time that they compile. The teachers

consequently are able to view this code to help the student to find a solution. As

Chapter 3 discusses, it is a challenge for the teachers to help their students as they

usually provide little context when formulating questions for help. The students are

more likely to indicate that “it doesn’t work” or “why doesn’t it work?” By having

the code and also the compiler error, the teacher now has sufficient information

about what the error is. Therefore, this feature supports improved communication

between teachers and students.

As was the case with Feature A – Compiler Error, by being able to view the code that

the student creates the teachers are able to see the coding styles of the different

students. This provides information as to the level the students are working at and the

teacher has the opportunity to explore ways to improve how students implement

certain elements of their software. For example, a student that was familiar with

using more procedural or functional programming languages before progressing to

Java may be attempting to translate traditional programming techniques into the

object orientated paradigm. Through observing this, teachers could suggest more

appropriate ways of writing code.

Finally with these snapshots of the student’s code collected over the course of a

practical, it is possible to view a novice programmer’s coding skills development.

For example, the techniques they use to try and overcome compiler errors.

Design and Implementation

Figure 4.10 shows the view of a student’s code that the teacher would be able to

access during the experimental practicals. This view is accessible by the teacher, as

long as the student has compiled their software at least once during practicals. The

view on the right is the student’s code and on the left side is the student’s project

hierarchy. The project hierarchy is structured like this:

4. Technologically Enhanced Demonstrator Support 82

• Project

o Package

 Class

• Method

Figure 4.10: Example of student code view

The student’s code on the right hand side is a direct replication of the work so a

teacher can check a student’s coding style. For instance to examine their approach to

indentation and commentating.

4.4.5. Feature D - Help Button

Rationale

Feature D – Help Button is primarily concerned with the communication difficulties

that exist in the existing practicals setting. Its location is presented in Table 4.2.

Feature D – Help Button is simple in that it allows the student to click a button and

request help from the teachers. The help request notifies the teacher and the students

4. Technologically Enhanced Demonstrator Support 83

can additionally choose to submit information on their problem. This allows teachers

to think about the students’ problem before they go over to help.

The main reason for this feature is to provide students with an alternate way of

alerting the teachers other than via verbal requests. As Chapter 3 highlighted only

having the option of verbal interaction could result in students being less willing to

ask for help.

Implementation

Figure 4.11 presents the student view of Feature D – Help Button. At point 1 there is

a box for a student to send a text based question to a teacher. Point 2 indicates the

radio button where a student can set their status to either, “I am Ok” or “I need help”.

Figure 4.11: View of the student help box

The teachers then receive an update to their view as shown in Figure 4.12. Column 1

represents the status of each student and Column 2 is where a student’s text questions

are displayed.

Figure 4.12: View of the teachers view rows associated with the ‘help button”

feature

The third column on the diagram is the time that the student requested help. The time

that help was requested enables the teacher to see how long the student has been

waiting for assistance.

1

2

4. Technologically Enhanced Demonstrator Support 84

4.4.6. Feature E - Short Message Functionality

Rational

Feature E – Short Message Functionality was designed to deal with the

communication difficulties that exist within practicals setting. The feature works in

conjunction with Feature D – Help Button. Feature E – Short Message functionality

like the Help Button is intended to facilitate communication between teachers and

their students. It enables students, like the help button, to ask for help electronically.

The students use Feature E – Short Message Functionality by typing a short message

into their TEDS student window (shown in figure 4.14). This message, when

submitted, is sent to the teachers console for them to address.

The short message feature deals with communication problems between the student

and teacher in two ways. Firstly Feature E – Short Message Functionality, enables

the students to ask for help without putting their hands up, so increasing the

likelihood they may ask for help. Secondly by enabling the student to describe and

contextualise their problem, which could lead to them gaining a better understanding

of their problem or even to find their own solution.

The ability for teachers to be able to communicate remotely with the students lessens

some of the room design difficulties, for instance where it is difficult for the teachers

to walk around the classroom to talk to a student. By enabling the teacher to be able

to solve a student’s issues remotely could support reactive teachers in becoming

more proactive and willing to help the students.

One limitation of Feature E – Short Message Functionality is that some teachers may

consider it much easier to just go over to the student rather than to type in replies. So

it may be observed during the investigations of TEDS that the student may make

more use of this feature but that the teachers will continue to favour face-to-face

communication in providing support.

4.4.7. Feature F - Objective Setting

Rationale

4. Technologically Enhanced Demonstrator Support 85

Feature F – Objective Setting was not directly discussed during any of the

investigations, but its general idea was one of the main topics of discussion in the

focus group. This feature has elements of enabling the dialogic method of teaching

that Laurillard [Lau06] extols. Laurillard’s method was described in detail in the

Chapter 2 of this thesis.

Feature F – Objective Setting, allows teachers to set objectives for the students to

complete over the course of practicals. When the student has completed the task they

can define the objective as complete. This allows the teacher to track a student’s

opinion of their status. Feature F – Objective Setting, supports a Laurillardian

conversation by allowing a student to set an objective as completed, which begins the

conversation. The teacher is notified and has the option to either:

• Verify the completed objective, ending the conversation,

• Or if the student has not completed the objective, the teacher can explain

what they need to do to complete their work.

A further benefit of Feature F – Objective Setting, is that it helps with the problem

that came to light in the questionnaires, which is that sometimes the students do not

always know what task they have been set. With objectives being a set and viewable

by the students, they will be better informed on their objectives for practicals.

A limitation to Feature F – Objective Setting, is due to the openness of the course it

is difficult to set objectives for the whole group. Despite this the students have

certain features of Java that they must use, for example ArrayList. This is necessary

so that the students can show the teachers that they can use the typical features of

Java. In this example an objective would work as when the student has implemented

the ArrayList in their project, they could mark this objective as complete.

Implementation

Figure 4.13 presents the screen showing how the teacher can set the objective (by

typing in the objective in the text box) and then submitting it by clicking on the

button indicated by the red number 1.

4. Technologically Enhanced Demonstrator Support 86

Figure 4.13: Teacher objective setting window

The objective then is sent to the student and displayed as in Figure 4.14.

Figure 4.14: Student view of the set objective

The student then can click on the radio button most suited to their status on the

objective. When there is a status change the teachers are notified.

4.4.8. Feature G – Image Sending

Rationale

During traditional programming practicals often a teacher uses a pad of paper to

draw diagrams to assist the students. This feature can be recreated by using an

existing graphics package such as MS paint and a tablet PC. However, it would be

helpful to a teacher if there was an easy way of passing this image to the student

without either getting the student to copy the image or to e-mail the image later.

Feature G – Image Sending allows teachers to create an image and send this through

TEDS to a student. This image can then be exported as a JPEG and saved for later

reference.

Feature G – Image Sending could help with 2 of the Issues identified in Chapter 3,

specifically Issue 2 – Communication Difficulties and Issue 3 – Range of Students

Abilities. This feature gives the teacher another way of communicating to the student

and also allows them to provide explanations on programming concepts tailored to a

student’s ability. The teachers can already give vocal feedback, but with this feature

4. Technologically Enhanced Demonstrator Support 87

they are able to send the students other forms of written feedback. It enables students

who may have failed to understand a concept presented in a lecture to get the teacher

to re-explain the concept in a different way, such as by using visualisations or design

notations.

Implementation

The implemented version of Feature G – Image Sending is displayed in Figure 4.15

where the teacher can draw an image and then to send the image to a specific

student. The student receives a copy of this that they can then save as a .jpeg on their

computer.

Figure 4.15: Image creating tool

4.5. Summary

TEDS or Technologically Enhanced Demonstrator Support was the suite of tools that

was developed to help lessen the impact of the issues identified in response to

Research Phase (i) The main aim of TEDS was to provide teachers a view of any

student’s current status during the course of a practical, so allowing the potential for

teachers to view which students are having problems despite; the room and the

4. Technologically Enhanced Demonstrator Support 88

student not being willing to ask for help. The features developed to overcome these

issues are:

Feature A. Report of a student’s last compile i.e. success/fail;

Feature B. Report of a student’s last method invocation i.e. success/fail;

Feature C. A snapshot of the student’s code that is sent to the teachers;

Feature D. Ability for a student to request help electronically;

Feature E. Ability for teachers to reply remotely to a student via Short

Messages;

Feature F. Objective setting functionality allowing clear objectives to be

set in practicals.

Feature G. Ability for teachers to draw and send images to a student to

help them understand concepts;

Chapter 5 explores some of considerations, related to the implementation of TEDS.

These considerations include the server architecture and the hardware the teachers

and students use during the investigations into using TEDS.

5. Implementation 89

5. Implementation
This chapter looks at the architecture and design principles used to develop TEDS to

enable it to deal with the issues outlined in Chapter 3. Important technical

considerations are discussed, especially in regards to server architecture. The

environment in which TEDS was used is also considered, in particular what effect it

had on the implementation.

The chapter highlights some of design issues which need to be considered for TEDS

in section 5.1, section 5.2 looks at the server architecture used in the design of

TEDS, finally section 5.3 looks at the design considerations for TEDS user clients.

5.1. Design Issues

In the development of TEDS there are a number of design issues, which need to be

considered. They included:

• The classroom

• The network

Chapter 3 noted that a system, which would allow for better communication between

the student and the teachers, would be helpful in improving the learning experience

for students within practicals.

In Chapter 3 the computer laboratory that is currently used for practicals was shown

in Figure 3.5. In the computer laboratory individual students have their own

computer to complete their work. TEDS can utilise the IT infrastructure to facilitate

the communication between students and teachers. TEDS is not concerned with

student-to-student communication, as this is open for abuse as well as not being a

focus of this thesis. In an experiment by Lavery [Lav08] it was observed that the

students used student-to-student communications functionality within a lecture to

spend more time on social communication rather than focusing on the work.

5. Implementation 90

Chapter 3 Issue 2 – Communication Difficulties, identified that there are

communication difficulties between students and teachers within laboratory

practicals. In response to this issue TEDS’s primary concern is with improving

communication by reporting information automatically collected from the student

client, and communicating this to the teachers in a form of status reports.

The University IT infrastructure is such that the use of client server architecture for

the TEDS system is technically feasible. This facilitates the use of a distributed

server, which can be used to host the system. Using the University network is

beneficial in a number of ways, including, that the network is fast, typically

operating at around 100 Mbps and reliable. The University network enables multiple

rooms to connect to the same session when cohorts are too large to just use one

room.

The client/server architecture is best suited for TEDS with the server being the centre

for data processing. The server receives data from the different clients and is tasked

with the storage and redistribution of this data to the intended recipients. The benefit

of having a server as a central location for data means that, if there are any network

issues, for instance, should any of the clients lose connection or encounter network

issues, and then the data is safely retained.

Using TEDS the students used a wired link to the network so there connection was

reliable. However, when using TEDS teachers were required to use the typically less

reliable wireless network, as they needed to be mobile in the classroom, to talk

personally with the students. With the teachers using the wireless network means

that if they lose the link to the server then a method of reconnecting and getting the

current data is required.

The usual number of student-client machines within a practical can range from 15 to

30 students. The number of teachers and the size of the room dictate the overall

numbers. The number of clients may impact on the server’s ability to support the

class. In a similar example [Sch05] a system created for interactive lectures, with a

server written in Java and running on a notebook PC, was found to comfortably

5. Implementation 91

operate with 300 clients. So the numbers of students is not considered to be a

problem in the use of TEDS.

5.2. Server Architecture

The TEDS server has the task of receiving connections from different clients and

processing the data that is required for each service.

The server is separated into 4 components or managers that deal with its functions.

These are:

1. The Connection Manager. This component receives connections from both

types of clients.

2. The User Manager. This has the task of checking what kind of user the

client is (teacher or student). Through this information it can be identified

what type of data and reports need to be sent.

3. The Functions Manager. This manages all of the server side processing of

the data. The Functions Manager’s tasks consist of collecting data received

from the clients and then judging whether the teacher needs to be informed

about this data.

4. The Database Manager. This manages the storage of the data.

Figure 5.1 presents a diagrammatical view of how the server managers interact:

5. Implementation 92

Figure 5.1: Server Managers

Figure 5.1 shows the different routes a message, sent to the server, can take before it

is stored in the database. The numbers on Figure 5.1 relate to two tasks of the server,

number 1 is the connections from the clients reaching the server and number 2 is the

persistence of this data. These two tasks are defined below:

1. The Connection Manager first receives the message. The message is then

processed and passed onto two managers:

a. The User Manager. This is where the personal record (for example,

name, current compiler/method invocation status) of the student is

kept and updated according to the message that is sent.

1

2

5. Implementation 93

b. The Functions Manager. This is where the message is processed to

see if the teachers need to receive an update from the server on a

student’s status.

2. After stage 1 both the Functions Manager and the User Manager store the

details of the message into the database.

Sections 5.2.1 through 5.2.4 further describe each of the manager’s tasks within

TEDS.

5.2.1. Connection Manager

The Connection Manager has the function of processing any connections that are

received by the server.

The Connection Manager uses a socket-based approach where each client has a

connection to the server through which they receive and send data. The main benefit

of using this approach is speed, it operates by allowing the client to have a

designated socket connection to the server ensuring the connection is fast.

A disadvantage with this approach is that if a connection is lost the Connection

Manager needs to be able to catch this and have a fail-safe. The fail-safe would have

to protect messages that the clients try to send until they are able to re-establish their

connection.

The Connection Manager also maintains a reference of the type of client a

connection is from. This data is sent to the User Manager to see if any previous data

is kept on the students from past laboratory practicals.

5.2.2. User Manager

The User Manager is responsible for identifying which client has sent a message to

the server. The design for TEDS has two types of users; teachers and students. By

identifying what type of user has sent a message to the server, the User Manager

keeps a record of which clients are online and also which type of user they are. For

data protection purposes the errors made by the students should not be sent to an

5. Implementation 94

unintended user, to ensure no student receives data on another student’s status on the

work.

The User Manager as presented in Figure 5.1, is connected to the database as that

keeps a record of the data of student progress over a number of practicals.

5.2.3. Functions Manager

The Functions Manager processes all of the messages that are received from the

students and the teachers that relate to a particular feature of TEDS.

The functions that are managed in the Function Manager were described in detail in

Chapter 4. Chapter 4 illustrated the links between the functions that have been

developed and how they seek to alleviate the issues found in Chapter 3. Table 4.2

presented the links diagrammatically.

5.2.4. Database Manager

The TEDS server holds past data from previous practicals that the students have

participated in so that it can be accessed in the future.

Storing the data into a database also provides a safety mechanism. The benefit of this

is that in the event of a server failure, the database will still have the data recorded.

With this record the server can be restored with the current practicals data intact.

Storing a record in a database allows a teacher to access student data from previous

practicals. The record could highlight if students have reoccurring problems with

specific aspects of the course. For example, if a student scored poorly in an exam

then the lecturer could look at the past data for that student, and formulate help for

the students, based on the consistent errors that TEDS had recorded.

The implementation of the Database Manager uses an object-orientated database.

Using Java in an object-orientated way allows data to be sent as objects. The data

objects that the Functions Manager uses to send data to the clients can be taken

directly out of the database and then sent to the user. This same method also works

5. Implementation 95

for the input of the data, as the data received from the clients, can be saved directly

as an object into the database.

5.3. Clients

The clients that use TEDS are split into two different types, teachers and students.

Subsections 5.3.1 and 5.3.2 present an overview of these two clients and the factors

that need to be considered in their design and implementation.

5.3.1. Teacher Client

The teacher client has to be able to present a high volume of data to the teachers.

This is so the teachers can view any difficulties that the students may be

encountering.

Interviews with teachers and observations in practicals classes highlighted that

within the setting of the classroom it is preferable that teachers can move around to

interact with the students on a one-by-one basis to see each individual student in the

class. Chapter 3 Issue 2 – Communication Difficulties discussed the advantages of

proactive over reactive teachers. Chapter 3 also discussed the reasons for the

communication difficulties such as:

• Room layout

• Students unwillingness to ask for help

• And how within the current practical setting the teachers have problems

tracking student current status due to the classroom environment.

With these findings considered it is a requirement of TEDS that the teacher client is

able to run on a portable device.

A number of portable computer devices are available which allow teachers this

mobility whilst enabling them to access data through TEDS. Three possible options

are:

• Laptops

5. Implementation 96

• Personal Digital Assistant (PDA’s)

• Tablet Personal Computers (Tablet PC’s)

All three have individual advantages and disadvantages with their use within a

practical. Table 5.1 presents the advantages and disadvantages of each option.

Portable Computer
Options

Advantages Disadvantages

Laptops • Full interactivity – with
Keyboard

• They usually have a large
screen which are suitable for
reading easily

• Not very mobile or easy
to use when moving
around

PDA’s • Very portable due to the
handheld size.

• Not very easy to
interact with for
example, to modify
code

• Small screen which
does not allow much
data to be presented at
any one time

Tablet PC’s • Good interactivity using
touch screen

• Good mobility, it is
designed to be easy to hold
and walk with it

• Larger screen which is easy
to read and allows a lot of
data to be displayed

• No off screen keyboard
results in a difficult to
use user interface.

Table 5.1: Advantages and Disadvantages of different portable computer

options

Table 5.1 highlights that despite the advantage of the PDA’s portability, its small

screen counteracts these benefits. This would have an impact on the ability of the

teachers to provide learning support to the students. For example, TEDS frequently

transmitted status updates to the teachers, which needed to be presented in a way that

5. Implementation 97

is easily accessible. This would be less of an issue if the teachers had laptops as this

would allow them to have a bigger screen and view a lot of data. Also with a laptop

the teachers could interact with the data using tracker pads and a full keyboard.

Unfortunately, laptops are not very easy to use whilst moving from desk to desk.

Therefore, considering the disadvantages of Laptops and PDA’s, Tablet PC’s have

the advantage as they have a big screen that can present a lot of data, whilst also

maintaining mobility. Tablet PC’s can be easily held in one hand, leaving the

teacher’s other hand free to interact with the device.

Considering all the factors above, Tablet PC’s were identified as the best option to

enable teachers to be able to support students proactively, taking into consideration

the classroom environment and networking constraints.

5.3.2. Student Client

The main design constraint to be considered in the design of the student client is that

the client should be unintrusive to the students. This is to limit the impact of the

Hawthorne Effect [Lan58] within the experiment. The Hawthorn Effect is where a

subject of observation acts differently to how they would in a situation where they

are not being observed [Lan58].

Two approaches were taken to make the student client of TEDS less intrusive. They

were:

• Using BlueJ so that the students appeared to be using the same software as

they usually would in any other practical.

• Making the windows relating to TEDS on the student client as small and

unintrusive as possible.

The Hawthorn Effect could still cause difficulties for the investigation and these are

considered in the following Chapter Section 6.4.

5. Implementation 98

5.4. Summary

In summary Chapter 5 presented the factors that were taken into account in the

implementation of TEDS. It specifically looked at the general design issues, related

to TEDS, the server architecture and the clients. Furthermore, it considered the

reason behind choosing Tablet PC’s as the teacher client hardware for the

investigations.

Within association with Chapter 4, this chapter has presented the steps taken in the

implementation of TEDS's range of tools designed for Research Phase 2 – Develop

tools to overcome issues in practicals.

Chapter 6 will now present the design of the case studies where TEDS was used.

6. Case Studies Design 99

6. Case Studies Design
Research Phase (iii), is concerned with investigating whether TEDS can be

successful at resolving the issues found during Research Phase (i). Chapter 6 is

focuses on describing the case studies to test and evaluate TEDS and is structured as

follows:

• The methods used during the case studies

• The format of the case studies

• The sample selection

• The limitations of the case studies

The primary aim of the case studies, was to determine whether TEDS has an impact

on the way that teachers support practicals.

6.1. Methods

There are a number of methods that can be used to determine if there was an impact

with using TEDS in practicals. There are some inherent limitations with these

methods and these are addressed in section 6.4.

In this thesis a combination of methods are used to enable triangulation to evaluate

TEDS. Triangulation was used to judge whether data collected from a number of

different sources, could be combined to answer the research questions. By the use of

triangulation it is possible to check the validity of the results of one set of data by

using two other sets of data [Fli92]. In the theory of triangulation there are usually

three different types of data collection. Within this work three methods were used:

• User Feedback (both student and teacher) and teacher interviews to get

quantitative and qualitative views from the users

• Observations of the practicals by the researcher

• Using TEDS to record quantitative data.

6. Case Studies Design 100

In the collection of this data both qualitative and quantitative will be collected and

these are summarised in the table 6.1

6.1.1. User Feedback

Aim

The aim of user feedback was to discover user experiences of TEDS in the context of

programming practicals.

Experimental Design

User feedback was collected for two reasons (i) To discover the students and

teachers views on TEDS and (ii) To discover if students and teachers are willing to

accept using TEDS during practicals.

The user feedback in this case study (See Appendix 3 and 4) took the form of

questionnaires and semi-structured interviews with the teachers.

The questionnaire used for this case study was based on one used by Scheele

[Sch05]. Although Scheele’s research is focused on lectures, some topics of his

questions are based on the acceptance of using a new system. This topic was also

relevant in this thesis in judging user acceptance of TEDS.

The use of questionnaires is common within literature of learning tool assessment

including the work of Lloyd [Llo68]. Lloyd used questionnaires and tests to view

attention levels and knowledge assimilation in lectures. Lloyd used three methods in

his experiments:

1. Testing the students on the content of the lecture, after the lecture, to view

attainment.

2. A survey of the students to see how they felt they had learnt during the

lecture

3. An interview with the lecturer to see how they felt the lecture went and how

they thought the students learned in the lecture.

6. Case Studies Design 101

With these three methods Lloyd could use triangulation to judge the validity of each

source of data.

For the case studies in this thesis, questionnaires were given to the students and the

teachers. The questionnaires were designed to get a view of staff and students’

acceptance and experiences of using TEDS.

The questionnaire takes the form of a statement where the respondents can either:

• Strongly Agree

• Agree

• Disagree

• Strongly Disagree.

With a four point scale students were not given the opportunity to answer neutrally,

to promote greater levels of decision [Kal80]. Kalton et al’s research revealed that

when presented with an opinion question with a middle option, that responders

would be likely to select that, rather than an anti or pro opinion response. Kalton et al

further argued that without providing respondents with a middle option, enables

researchers to view the leanings of the respondents rather than definitive answers,

where leanings are an acceptable result.

In addition to the closed answer questions a set of open-ended questions were

presented. This was to facilitate more in depth answers to get a more detailed

understanding of how the students and the teachers experienced the use of TEDS.

This approach was also used by Scheele [Sch05]. Examples of the questionnaires

used during this thesis are in appendices 1, 2, 3 and 4.

After this data was collected, semi-structured interviews were carried out with

teachers to follow up on some of their responses. Another element of the interviews

was that some of the questions used resulted from notable observations taken by the

researcher during the practical class observations. This approach was used see if the

teachers could triangulate any of the notable observations made by the researcher.

6. Case Studies Design 102

During the interviews questions examined if the teachers could provide reasons why

they or students acted in the observed behaviours made during the practicals.

Expected Outputs

The expected output of the questionnaires was to collect data on how the students

opinions of using the system and their overall acceptance of it. Also via open

responses, qualitative feedback was collected from the users.

The outputs from the teacher interviews provided additional qualitative data about its

use and any perceived benefits.

These outputs were valuable when triangulated with the observations discussed in

subsection 6.1.2.

6.1.2. Observations

Aim

The aim of taking observations, when the students and teachers were using TEDS,

was to be able to compare the data collected to the observations in Chapter 3. The

observations are concerned with who started the interaction and the length of

interaction.

Experimental Design

Participant observations are one-way observations. Participant observation is where

the observer is part of the event that they are observing [Kem01]. In this case the

researcher would be sat in the class, available to the students as a teacher if the other

teachers are occupied. Thus the researcher appeared as if they are working within the

class. This technique aims to minimise change to the learning environment and

prevent students from being conscious of their being observed. Thus this approach

has the intention of keeping student behaviour within the class as natural as possible.

The observations reported in Chapter 3 consisted of one observer doing simple coded

records of a practical. These observations primarily recorded who instigated

interactions and for how long these interactions lasted.

6. Case Studies Design 103

In this new case study the same kind of observations were performed to get

comparative data, to see if there were any significant differences when using TEDS.

The differences could consist of:

• Who instigated the interaction.

• The duration of interactions.

In the observations for the case studies with TEDS, TEDS provides students with

additional technological possibilities for requesting help. When students use TEDS

to get assistance these events are recorded by the system. An example of the sheet

used to record the observations can be found in Appendix 5.

The observation method used in these case studies created a set of challenges to the

researcher in performing the observations. In some cases the observer could not see

if the interaction was initiated via the tool. This is because TEDS reported to the

teachers any student who was having problems with their work thereby initiating

potential interactions. An instance of this could be if a student was having a long run

of compiler errors. Situations like this may not be noted as being instigated by TEDS

as there is no way to differentiate this from any other interaction. Potential ways of

limiting this could include asking the teacher if TEDS was a factor in making them

interact with the student.

The accuracy of the researcher’s qualitative observations can be given validity by the

experience that the researcher has in these practical laboratories. The researcher has

three years of experience with practical teaching. Kemp identifies experience as a

benefit with the observer being familiar with the situation that they are observing

[Kem01]. The researcher was also known to the majority of the students through

teaching them on another course, so students are less likely to be distracted as the

individual was familiar. This enabled a form of covert observation [Kem01]. Covert

observations are where the subject of observation does not feel like they are being

observed, as the observer is part of the environment.

6. Case Studies Design 104

Making the observer part of the environment is not easy to achieve. Kemp suggests

using devices such as one-way mirrors. Since the classes took place in teaching

rooms such an approach is not possible for this case study.

A limitation of the researcher being acquainted with the students could result in

biased observations, but an awareness of this potential limitation would help to

mitigate the issue.

Expected Outputs

The expected outputs was a set of observations, which recorded the number of

interactions between the teachers and the students. Specifically the observations

recorded:

• How long the interaction lasted

• Who started it:

o Teacher

 Through enquiring on current student work status

 Through the system revealing problems

o Student

 Through putting their hand up to request interaction

 Through requesting help through the system

The researcher also took qualitative observations of any notable events during the

observed practicals. An instance, of a notable event could be any behaviour

exhibited by students or teachers that could be considered unusual and linked to the

TEDS. An example, could be a teacher who was seen as being reactive during the

earlier observations, becoming more proactive within the case study practical.

6.1.3. Automated Data Collection

Aim

6. Case Studies Design 105

The aim of using TEDS to automatically capture data was to log the way users

interact with TEDS.

Experimental Design

TEDS has recording facilities that have the ability to record many of the different

events that a student triggers during the course of a practical (See Chapter 4). Logged

data was stored in a database and the data was analysed after the practicals.

Expected Outputs

The expected outputs from this data collection was a mixture of different reports that

the tool was programmed to create. Every time a user, both teacher and student, uses

TEDS it sends an update to the server. These events were recorded from a number of

sources for later analysis:

• Server log – This is a text file of everything sent to the server recorded in

chronological order.

• The Database – This stores all the data sent to the server. These can then be

accessed and analysed by the researcher.

6.2. Case Studies

The combination of the three methods of collecting data, described in section 6.1,

provided data from the case study practicals. It also revealed if there were any

differences between specific practicals and students behaviour.

6. Case Studies Design 106

Case Study

Type

Type 1 - Teachers not using

TEDS (data type collected in

method)

Type 2 - Teachers using TEDS

(data collected in method)

Group A TEDS – (Quantitative) TEDS – (Quantitative)

Questionnaires – (Quantitative +

Qualitative)

Observations – (Quantitative +

Qualitative)

Teacher Interviews – (Qualitative)

Group B TEDS – (Quantitative)

TEDS – (Quantitative)

Questionnaires - (Quantitative +

Qualitative)

Observations – (Qualitative)

Teacher Interviews - (Qualitative)

Table 6.1: Table of different case studies by groups

Table 6.1 shows the two types of case studies that were used in the evaluation of this

tool. There are two groups being used in the case studies in this thesis:

• Group A which was the larger group which ranges from 25 to 30 students

depending on attendance

• Group B which was a smaller group which ranges from 14 to 16 students

Both groups had three teachers to support the students.

The first case study uses the technology to gather information to see how the students

work within a class. In type 1 – Teachers not using TEDS (Table 6.1), the reporting

systems are not sending status reports to the teachers. The data is recorded as a

6. Case Studies Design 107

background process. In the type 2 – Teachers using TEDS, case study the teachers

use the technology to help them support the students.

Observations were also carried out for Group A. During the observations taken for

both groups in Chapter 3 it was found that despite the difference in the differing

number of students in each group, that the observations were similar. Table 3.1,

which evaluated the earlier observations of both groups using T-Tests, revealed that

there was no significant difference in any of the observations. So it was decided in

the case studies using TEDS that only Group A would be formally observed.

The design of the case studies was to ensure that the practicals would appear to the

students as not being significantly different to the ones they usually attend. This was

to ensure the students did not act differently due to them being observed and aware

that they were part of a case study. Such an effect is referred to as the Hawthorne

effect [Lan58]. However some changes had to be made. Students were required to

sign consent forms and in case study type 2 – Teachers using TEDS, the teachers

held tablet PC’s with the reporting systems running on them. It must therefore be

acknowledged that the students were aware of the case study, but otherwise design

measures were taken to minimise the intrusiveness. With regards to the teachers,

however, changes in the actions were unavoidable, as they were required to act

differently. However, it was hoped that with repeated use of TEDS the impact of the

effect would be lessened [Cla83]. Also this was the material to be collected in the the

teacher questionnaires to evaluate TEDS usage.

As a conclusion the underlying principle of the case studies was to make it appear as

similar to a standard practical class as possible, as to limit the impact of the

Hawthorn Effect [Lan58].

This particular set of data collection methods still had some limitations, which are

discussed in section 6.4.

6. Case Studies Design 108

6.3. Sample Selection

The subjects for this study were selected through using a convenience sampling

method. It was a convenience sample for three reasons:

• All of the students study the introductory programming course, which TEDS

had been designed for.

• The lecturers allowed the experiment to be used on their course.

• It takes place in the department where the researcher was based.

The particular practicals which were chosen for the study were chosen for three

reasons:

• They consisted of two thirds of the students on the course.

• The chosen practicals were the biggest group and smallest group in that

current year’s cohort. This would therefore provide data from the extremes of

group sizes in that cohort.

• The groups ran one after the other in the same laboratory. This meant that it is

more convenient with less need to move hardware between experiments.

6.4. Limitations

There are five limitations with the case studies as described in this chapter. Many of

the limitations were created due to the attempt to limit the impact of the Hawthorne

Effect [Lan58].

1. Within the experiment it was not possible to record all the different interactions

between the teachers and the students. This was due to the attempt to maintain a

low level of intrusion, which means it was only possible to see that an interaction

took place and who began it. This means that useful data may have been missed,

such as the subject of the interactions.

The data could have been collected covertly to avoid the Hawthorn effect with

hidden cameras and Dictaphones, yet this would have many ethical issues. Also

6. Case Studies Design 109

the devices are not certain to be completely hidden from the students and the

teachers. With covert recordings the teachers would have to be complicit to hide

the voice recorders and then they could then be less likely to act as they would

usually. The experiment could use, open cameras and voice recorders, but these

potentially would have been more likely to cause both the students and teachers

to act differently.

In conclusion it was important to consider, how many observations can be taken

before the subjects of observation begin to act differently. So it is hoped

observations take place in this experiment in a way that the impact of the

Hawthorne Effect was lessened whilst still maintaining a substantial amount of

collected observational data.

2. With new technology there is always a risk of novelty creating false results. The

novelty of the system could cause the users to act differently to how they would

after using a system over an extended amount of time [Cla83].

TEDS has been designed to ensure that it collects data in the background. For

example, a student's client of BlueJ, with TEDS, appears the same as the BlueJ

they use every week but with a little window that they can use to ask for help. So

it was hoped that with this small change to the usual system that the novelty

effect was minimal.

Conversely, for the teachers with TEDS they had access to a lot more data than

they usually would, so for teachers the novelty factor is unavoidable. The

teachers were shown the tool before the experiment and used the system over

four, two hour practicals. It was hoped that the more frequently the teachers use

the tool that this will lessen the impact of the novelty factor [Cla83].

3. A third limitation was that there was not enough time for longitudinal studies on

TEDS effectiveness. Which would of allowed comparisons if the students have

learnt more successfully in the practical when the teachers have access to TEDS.

This is due to two reasons:

1. The openness of the practicals

6. Case Studies Design 110

2. The limited time scale of this experiment

Ideally assessment tasks could be used to examine how much the students have

learnt within the specific practical [Sch05] [Llo68]. But in the case of this project

the students in practicals learn at their own pace. So creating an assessment that

for a student cohort to examine their learning during the practical would have

been problematic.

The limited time scale of the experiment meant that it cannot reported if

prolonged use of the system could allow the students to increase their learning

during practicals. While it would have been beneficial to carry out a study of a

semester of the traditional practicals and compare the outcomes to a similar time

period with the use of TEDS, similarities between different cohorts could not be

guaranteed. These would all impact on the reliability of the test.

4. The fourth limitation was created through the necessity of using the Durham

Universities centrally managed computers in the case studies.

The University manages the open access computers that the students can use in

the laboratories in Durham. The University therefore controls the software that

can be used including that of the BlueJ installation. To extend BlueJ with the

TEDS client, a user needs access to the extensions library of BlueJ, which the

University does not allow. The University does allow users to temporarily install

software onto the computers local drive for the duration of a session that they are

logged on. This allows the workaround by installing a local version of BlueJ

complete with the TEDS client at the beginning of each case study practical.

This workaround is a limitation as it left the potential for students to have two

instances of BlueJ running during the case study session, one recording data as a

TEDS's client and the other just being a standard instance of BlueJ. This

limitation could have resulted in students accidentally using the standard version

of BlueJ and therefore appearing on the TEDS reports as being a student who

was inactive, whereas they could be compiling and running code intensively just

on the wrong BlueJ installation.

6. Case Studies Design 111

The teachers were alerted to this issue and therefore with this awareness they

prompted students to use the TEDS BlueJ installation.

5. The fifth limitation was the ordering of the case studies. The case studies are

ordered so that Type 2 just recorded data from the students. Type 3 presented the

recorded data to the teachers so that they could use it to support the students.

This design was a limitation as it was not possible to see if factors such as

increasing difficulty of the work or increasing knowledge impacted on the

results. These factors could potentially impact on students or staff evaluations of

TEDS.

A cross over design may have mitigated against this issue and with two groups it

would be possible to order the case studies differently, for instance during Case

Study Two, Group A’s teachers could use the data collected by TEDS, and in

Case Study Three Group B’s teachers. This would allow the experience and

work difficulty data to be compared with a group where the teachers use TEDS

and one where they do not.

This ordering was not adopted, as the observations taken for Chapter 3 showed

that the total number of students in each group impacts on how teachers interact

with the students. For example, Group B has a higher ratio of teachers to

students, so the teachers were more inclined to interact in a one to one manner

with the students.

It was noted in section 6.2 in the reference to table 3.1, that the difference

between Group A and Group B observations was qualitative and that it was not

reflected by the quantitative data collected, as t-tests taken of the observation

data showed no significant difference between the two. However, the qualitative

data did seem to emphasise that the groups were different enough to make the

data collected from the two groups incomparable.

Considering the differences in the way interactions were conducted depending

on the teacher to student ratio, it was decided to adopt the order of experiment

outlined in Table 6.1.

6. Case Studies Design 112

6.5. Summary

Chapter 6 describes the design of the case studies that were used to measure TEDS

effectiveness at overcoming the issues identified in Chapter 3. This chapter has

acknowledged that some limitations exist in the proposed methods, but where

feasible procedures have been put in place to lessen their effects.

The results from these case studies are presented in the next chapter along with an

evaluation of the findings.

7. Case Studies 113

7. Case Studies
Chapter 7 look at the three case studies performed during the evaluation of TEDS.

Each case study has its own section: Section 7.1 is on Case Study One and presents a

small preliminary case study using TEDS. Section 7.2 presents Case Study Two

where TEDS was run on the students’ computers but without the teachers having

access to the data. Section 7.3 finally presents Case Study Three, which was where

TEDS was used to assist teachers to support students within practicals.

Each case study is split into three subsections:

1. The context of the case study

2. The results collected in the case study

3. The evaluation of the case study and the main findings.

In this chapter the term event is used. In the context of this chapter an event covers

both compiles and method invocations.

7.1. Case Study One

The first set of case studies took place in June 2008 and consisted of two revision

practicals designed to prepare first year students for making the transition into the

second year.

The main aims of the case study were to:

• Ensure the tool operated in a practical,

• Get feedback from the teachers on the data collected by TEDS

• Get feedback from the students on using TEDS.

The practicals were optional and were aimed at students who had difficulty

completing a task they had been set over the summer break.

Teachers and the course leader supported the practicals so that the students could get

expert advice if they had specific problems with their work.

7. Case Studies 114

As Chapter 6 highlighted, the data collected within this set of case studies was data

from the system and questionnaires. Unfortunately, the two practicals were not well

attended. Out of the two practicals only a combined total of nine students attended

which is around 15% of that cohort. Despite the low attendance qualitative

observations, feedback and the testing of the TEDS were still possible.

7.1.1. Results

Table 7.1 shows the compiler and invocation success and failure counts, which was

data collected by TEDS from the students. The different columns in Table 7.1 are:

i. Students – this is the anonymised id of the students in the group

ii. Compiler Success – Shows a count of the amount of successful compiles

iii. Compiler Fails – Shows a count of the amount of compiler fails

iv. Invocation Success – Shows a count of the amount of successful method

invocations

v. Invocation Fails – Shows a count of the amount of failed method invocations

7. Case Studies 115

Student
ID

Compiler
Success

Compiler
Fails

Invocation
Success

Invocation
Fails

1 14 10 96 2

2 8 15 0 0

3 8 15 0 0

4 5 7 15 2

5 0 0 0 0

6 2 2 14 1

7 0 2 0 0

8 6 1 7 0

9 0 0 0 0

Totals 43 52 132 5

Table 7.1: Case Study One session data

During Case Study One, nine students agreed to use TEDS, producing a total of 95

compiles and 137 method invocations.

The breakdown of the compiles is that 43 were successful, which is 45.26% of the

total compiles. Students 2 and 3 each contributed the highest frequency of compiles,

23 (16.79% of total) of which eight were successful (34.78% of their total). Also

they both contributed no method invocations.

The breakdown of the method invocations is that 132 of the total were successful

which is 96.35% of the total method invocations. Student 1 alone contributed the

highest frequency of method invocations, 98 (71.53% of the total), of which 96 were

successful. The high frequency of successful method invocations hides the fact that

7. Case Studies 116

the code was not returning the result that the student wanted. This is discussed in

further detail in section 7.1.2.2.

Excluding students 1, 2 and 3 the other six students contributed 26.32% of the total

compiles (25/95) and 28.47% of the total method invocations (39/137). This includes

students 5 and 9 who both contributed no compiles or method invocations during the

case study. A possible explanation for the results of these two students could be that

they just showed their problem to the teachers and were helped to a solution that did

not require them to compile or run their code. Another potential explanation could be

that they are using another instance of BlueJ that is not running the TEDS student

client.

Table 7.2 shows the collated compiler errors that were made by the students. The left

hand column is a description of the error type and the right hand column is the

number of times the error occurred in the case study.

7. Case Studies 117

Error Message Number of
Occurrences

Percentage of Total

Cannot find symbol 16 30.77

Incompatible types 8 15.38

Unexpected type 3 5.77

Missing Bracket 3 5.77

; Missing 3 5.77

Missing return statement 3 5.77

Illegal start of expression 2 3.85

Variable not initialized 2 3.85

Class or Interface identifier needed 1 1.92

Previously defined variable 1 1.92

Identifier Expected 1 1.92

Table 7.2: Case Study One, grouped compiler errors

Table 7.2 presents the compiler errors collected from the students who participated in

Case Study One. In Case Study One, 52 compiler errors occurred and can be

classified into 11 different types.

The highest occurring compiler error type was “Cannot find symbol” with 16

occurrences (30.77% of the total errors). The second highest compiler error type was

“Incompatible types” with 8 (15.38% of total) occurrences.

Finally, in Case Study One there were 5 compiler error types with 2 or fewer

occurrences.

7. Case Studies 118

7.1.2. Evaluation

The findings from Case Study One are now discussed. The section highlights a

number of the benefits of using a system like TEDS in a practical situation.

The three findings from Case Study One are:

i. Interaction is aided in smaller groups with a high ratio of teachers to

students.

ii. Successful method invocations do not always mean successfully running

code.

iii. Teachers prefer to see data at a glance rather than having to interact with

the system to get to it.

The following subsection looks at these three findings in more detail.

7.1.2.1. The benefits of smaller groups

Case Study One, unlike the two other case studies described in sections 7.2 and 7.3,

had almost one teacher to every one student and this dramatically changed the way

that the students interacted with the teachers. The qualitative observations taken by

the researcher showed that the students were quick to ask for help and make use of

the one-to-one assistance to overcome the problems that they were facing.

A number of limiting factors must be taken into account when considering the

behaviour exhibited by the students in this case study. A significant factor is that the

students participating are those who have identified a problem with the set task and

have come to the class to discuss this problem with the teacher. This could lead to

bias as the students who attended the practicals may have been those more likely to

ask for help in the usual practical settings anyway.

The impact of having almost one-to-one teacher support was highly advantageous for

the students. It enabled Laurillardian [Lau06] dialogue within the practical setting

without the teachers being concerned that they were leaving students waiting with

problems as discussed in section 2.2.

7. Case Studies 119

The use of smaller groups and higher ratio’s of teachers to students has much

literature promoting its benefits at all levels of education, yet resource constraints

mean that such a favourable staff – student ratio is rarely possible. This is discussed

in section 2.2.

In the later case studies there is a higher ratio of students to teachers, which is a more

realistic practical setting. This puts more focus on TEDS’s potential to assist teachers

in keeping track of a higher number of students than during Case Study One.

7.1.2.2. Runtime Errors

During Case Study One, partly due to the ratio of students to teachers, the teachers

did not use the reporting functions of TEDS, although the collected data was

analysed by the researcher. One particularly notable result was that one student

completed 96 successful method invocations. Further analysis of this identified that

although the student’s code was running successfully it was not working as was

intended. Such a runtime error is not something that TEDS alone can identify in the

information that it records.

The fact that TEDS does not reveal some runtime errors was not so relevant in Case

Study One as the students had a teacher assisting them at all times. It is, however,

important to note that TEDS has the potential to reveal false positives to teachers

when they become more reliant to the data it reports. For instance, it may lead to the

assumption that students are running code successfully where they are in fact not.

A potential solution to TEDS not being able to detect a hidden method invocation

would be to have a dialog box asking the student if the method returned the correct

result. However, this may make students more self conscious of the teachers

watching them and thereby subverting a principle design feature of TEDS’s student

client. This design feature was for the student client to be relatively unobtrusive and

to allow the students to work as usual. Students may become frustrated with TEDS if

they were asked each time they ran their code to confirm if the method had returned

the correct result.

7. Case Studies 120

However, the method invocation data does highlight to teachers that the students are

active at any given time, which in itself is useful.

7.1.2.3. Teachers Behaviours Using TEDS

Despite the teachers not using TEDS extensively it was still possible to identify that

one of TEDS features was unlikely to be useful in a class situation. It was possible to

identify this by a mixture of teachers’ feedback and also through the observations by

the researcher of how the teachers used TEDS. Feature C – Code Snapshot was the

feature that was not that useful in Case Study One within the classroom setting as it

was shown to be too impractical to use whilst trying to interact with students. It was

found that the teachers would be more likely to just ask the students to show them

their code on the student’s computers.

The teachers requested that they be presented with an overall view of the class and

the individual student’s number of compiles and method invocations, rather than

having to interact with the software to locate this data. These design considerations

were added to TEDS and used for the final two case studies.

7.2. Case Study Two

The second set of case studies was carried out during the first term of the 2008 –

2009 academic year. In Case Study Two the students’ had TEDS student client

running on their computers but the data collected from the students was only

viewable by the researcher and not the teachers.

At this point of the academic year the students’ had varying levels of programming

ability. The students ranged from complete novices who had never programmed

before to professional programmers who have been employed to complete

programming projects. This issue of varying ability was discussed in Chapter 3

Section 3.3.3 as being an issue that teachers have to deal with in practicals.

7. Case Studies 121

Within the practicals in Case Study Two the students were using Java with the BlueJ

IDE, to develop simple systems to assist them with understanding object orientated

programming.

The aim of Case Study Two was to explore the data TEDS collects from the students

and to consider the possibilities of using this data to support them, when the teachers

use the live data collected by TEDS in Case Study Three. Case Study Two is a

comparison group that was created to compare to Case Study Three, where the

teachers used the data to support the students.

7.2.1. Results

During Case Study Two, three practicals were used to record data. Each practical-

class is referred to as a session within the context of the results and the evaluation.

Two were taken from Group A (Group A Session (i) and Group A Session (ii)) and

one was taken from Group B (Group B Session (i). Group A is the larger group in

terms of number of students (25 to 14).

The results are split into sessions to differentiate between groups and also to consider

how the level of student learning effects the errors they create. This is necessary as

during Case Study Two, Group A Session (i) took place four weeks before Group A

Session (ii) and Group B Session (i), so the compiler errors collected in both sets of

sessions could reflect the progress in level of the students’ study.

7.2.1.1. Results from Group A Session (i)

This subsection presents the results collected from Group A Session (i). Table 7.3

presents the students’ compiler successes and failures and method invocation data.

7. Case Studies 122

Student ID Compiler
Success

Compiler
Fails

Invocation
Success

Invocation
Fails

1 7 14 24 1

2 11 5 18 0

3 4 4 3 0

4 4 7 37 0

5 2 2 15 0

6 4 1 25 0

7 19 6 51 0

8 10 3 28 0

9 6 12 15 0

10 8 19 9 0

Total 75 73 225 1

Mean 7.5 7.3 22.5 0.1

Standard
Deviation

4.95 5.85 13.97 0.32

Table 7.3: Group A Session (i), student data

The data presented in Table 7.3 is from the ten students who used TEDS from Group

A Session (i). Together they produced a total of 148 compiles and 226 method

invocations.

The 148 compiles consisted of 75 successful compiles. This is 50.68% of the total

compiles. Student 10 was the highest contributor of compiles with 27 compiles

(18.24% of total) of which 8 were successful (29.63% of their total).

7. Case Studies 123

The 226 method invocations almost entirely consisted of successful method

invocations where only one method invocation was unsuccessful. Student 7

contributed the most method invocations with 51, which is 22.57% of the total.

The other eight students contributed 71.62% of the total compiles (106) and 73.45%

of the total method invocations (166). These results demonstrate the students

displaying an equal level of engagement with the task.

Table 7.4 shows the groups collated compiler errors.

Error Message Number of
Occurrences

Percentage of total

Missing return statement 12 16.44

Integer number too large 11 15.07

Missing Bracket 9 12.33

; Missing 8 10.96

Cannot find symbol 8 10.96

Identifier Expected 7 9.59

Not a statement 5 6.85

.class missing 2 2.74

Illegal start of expression 2 2.74

Incompatible types 2 2.74

Package does not exist 2 2.74

Possible loss of precision 2 2.74

Variable not initialized 2 2.74

Class or Interface
identifier needed

1 1.37

Trying to return from void 1 1.37

Table 7.4: Group A Session (i), grouped compiler errors

7. Case Studies 124

Table 7.4 presents the students’ grouped compiler errors. In this session there were

73 compiler errors consisting of 15 different types.

The highest occurring compiler error type was “Missing return statement” with 12

occurrences. The second highest occurring compiler error type was “Integer number

too large” with 11 occurrences.

Out of the 15 types of compiler errors, six of these occurred only two times and two

errors occurred only once.

7.2.1.2. Results from Group A Session (ii)

Table 7.5 shows the compiler and invocation success and failure counts from Group

A Session (ii).

Student ID Compiler
Success

Compiler
Fails

Invocation
Success

Invocation
Fails

1 35 2 123 5

2 18 9 23 1

3 3 7 18 1

4 6 13 1 0

5 7 5 8 0

6 11 22 11 0

7 112 56 52 1

Total 192 114 236 8

Mean 27.43 16.29 33.71 1.14

Standard
Deviation

38.82 18.67 42.65 1.77

Table 7.5: Group A Session (ii), student data

Table 7.5 shows the data collected from the seven students who used TEDS in this

practical. Together they contributed 306 compiles and 244 method invocations.

7. Case Studies 125

Considering the breakdown of the compiles, 192 were successful which is 62.75% of

the total compiles. The highest contributor of compiles was student 7 who made a

total of 168 (54.9% of total) compiles of which 112 were successful (66.67% of their

total). This student was also a high contributor with regards to method invocations

with 53 (21.72% of total).

Method invocations in Group A Session (ii) were dominated by successful method

invocations as with Group A Session (i). In this session 236 of the total method

invocations were successful which is 96.72% of the total. Student 1 was the highest

contributor of method invocations 128 (52.46% of total).

The other five students contributed 33.01% of the total compiles (101) and 25.82%

of the total method invocations (63). This result highlights that in this group, the

compiles and methods invocations were not as evenly distributed between the

students as the previous group.

Table 7.6 presents the different types of errors and the frequency over the course of

the Group A Session (ii).

7. Case Studies 126

Error Message Number of
Occurrences

Percentage of Total

Cannot find symbol 54 47.37

Incompatible types 12 10.53

Missing Bracket 8 7.02

; Missing 6 5.26

Private Access Violation 4 3.51

Previously defined variable 4 3.51

Package does not exist 4 3.51

Missing return statement 4 3.51

Variable not initialized 3 2.63

Possible loss of precision 3 2.63

Identifier Expected 2 1.75

Class or Interface identifier needed 2 1.75

Not a statement 2 1.75

Illegal start of expression 2 1.75

Trying to override abstract methods 1 0.88

Trying to return from void 1 0.88

Void can't be used here 1 0.88

Illegal escape character 1 0.88

Table 7.6: Group A Session (ii), grouped compiler errors

Table 7.6 presents the collated students’ compiler errors from Group A Session (ii).

In this session there were 114 compiler errors consisting of 18 different types of

errors.

7. Case Studies 127

In Group A Session (ii), 54 of the errors came from the same compiler error type,

which was “Cannot find symbol”. This is opposed to 12 “Missing return statement”

compiler errors in Group A Session (i). The only other type with over ten

occurrences was the compiler error type “Incompatible types” with 12 occurrences,

which is 10.53% of the total.

7.2.1.3. Results from Group B Session (i)

Table 7.7 presents the compiler success and failure rate and the invocation success

and failure counts from Group B Session (i).

Student ID Compiler
Success

Compiler
Fails

Invocation
Success

Invocation
Fails

1 1 0 2 0

2 54 22 35 1

3 7 4 0 0

4 6 11 7 0

5 2 1 0 0

6 15 28 0 0

7 35 34 55 1

8 0 0 0 0

9 16 26 17 0

Total Group 136 126 116 2

Mean 15.11 14 12.89 0.22

Standard
Deviation

18.22 13.57 19.68 0.44

Table 7.7: Group B Session (i), student data

7. Case Studies 128

Table 7.7 presents the data collected from the nine students that used TEDS in Group

B Session (i). In total the students produced 262 compiles and 118 method

invocations.

The 262 compiles consisted of 136 successful compiles, which is 51.91% of the total

compiles. Student 2 was the highest contributor of compiles with 76 (29.01% of

total) of which 54 were successful (71.05% of their total).

The 118 method invocations were almost entirely successful, with just two

unsuccessful. Student 7 was the highest contributor with 56 (47.46% of total) method

invocations.

The other seven students contributed 117 compiles (44.66% of the total) and 22.03%

of the total method invocations (26). Four of these students did not contribute any

method invocations during the session with one of these also not making any

compiles.

Table 7.8 presents the compiler errors and the number of the errors that occurred in

Group B Session (i).

7. Case Studies 129

Error Message Number of
Occurrences

Percentage of the
total

Cannot find symbol 35 27.78

; Missing 20 15.87

Illegal start of expression 17 13.49

Missing return statement 13 10.32

Incompatible types 12 9.52

Missing Bracket 12 9.52

Private Access Violation 4 3.17

Missing method body, or declare
abstract

4 3.17

Identifier Expected 2 1.59

Trying to Override abstract methods 2 1.59

Class or Interface Identifier needed 2 1.59

Unexpected type 1 0.79

Variable not initialized 1 0.79

Void can't be used here 1 0.79

Table 7.8: Group B Session (i), groups combined compiler errors

Table 7.8 presents the combined compiler errors from Group B Session (i). In the

group there were 126 compiler errors that consisted of 14 different types.

The highest type of compiler error was, as in Group A Session (ii), “Cannot find

symbol” with 35 occurrences (27.78% of the total). The second highest occurring

compiler error type was “; missing” with 20 occurrences (15.87% of total).

In Group B Session (i) there were eight error types with four or fewer occurrences

and three with just one occurrence.

7. Case Studies 130

7.2.2. Evaluation

The aim of Case Study Two was to evaluate if TEDS collects data that has the

potential to be used by teachers to support students more effectively.

The four findings listed below did highlight that TEDS did record data that could

potentially be useful to teachers. The findings were that:

i. The majority of students’ did compile/run code

ii. Students do not always run their code

iii. Types of compiler errors are common across the cohort

iv. Some students did not run or compile code

These four issues are now discussed in the remainder of this subsection.

7.2.2.1. The majority of students’ did compile/run code

To be an effective teacher support tool TEDS requires students’ to compile and run

their code. This thesis has identified that the majority of students in the case studies

did, perform these actions.

The three practicals, that Case Study Two consisted of, had a high number of

compiles and method invocations. The totals are:

• 26 students participated in the case studies with a combined total of 1304

events (An event is a compile or method invocation)

• 403 successful compiles

• 313 unsuccessful compiles

• 577 successful method invocations

• 11 unsuccessful method invocations

The total of 1304 events over a six hour period is substantial amount of data for the

teachers to use to track current status and highlights that the students are at least

working and running code in practicals. The volume of the events alone causes one

7. Case Studies 131

of the TEDS features to take more prominence, the presentation of data. The data is

presented so the teachers were not overwhelmed and could miss important events.

In summary, it was revealed that the students do create the events that TEDS

presents to the teachers. It is highlighted again in the evaluation of Case Study Three

(section 7.3.2), how TEDS provides these activity measures, which can be used by

the teachers to judge the activity levels of the students.

7.2.2.2. Some students do not execute their code

The data collected by TEDS identified that some students created a significant

number of compiles during the practical but at no point during that time did they

execute the code to see if it was functioning correctly. In industry the programmers

work on very big projects where it is not necessary or even possible to run code very

often, due to modules relying on other modules to do their tasks.

The results collected by TEDS revealed that some of the students who did not run

their code still compiled it. Compiling the code checks the syntactical correctness of

their code. TEDS revealed the majority of the students did execute the code that they

had written.

Out of the 26 students who participated in Case Study Two, four did not execute

their code during the class. With this data, the teachers could reiterate the benefits to

students of executing their code at suitable points. For instance, if a student’s code

has runtime errors, it could be possible that they made a lot of changes without fixing

the original problem, and actually create more runtime errors elsewhere. A better

strategy could be to use test driven development (TDD). TDD is where a

programmer first creates a test case and uses this to ‘drive’ the development of their

software [Edw03].

Debugging and testing code is a vital skill for programming, and some higher

education institutions put great focus on these skills on their courses [Ahm05]. An

example is from Edwards [Edw03] who used TDD to prompt students into creating

test cases and then generating their systems using the test case as a guide.

7. Case Studies 132

In summary TEDS reveals those students that are not executing their code. It must be

noted that the case studies took place early in an introductory programming course

where some students have problems in generating code. So the main focus of lectures

and the tasks that the students have to complete are to generate code. The course

focus does not move to testing until the end of the academic year, which was after

Case Study Three. So it is understandable that some students would not be aware of

such testing strategies.

A number of students who participated in Case study 2, are aware of debugging and

executing as issue 3 (Students range of programming experience) revealed, most

students have programming experience prior to coming to University (25 students

out of 35 students surveyed). This could be a possible explanation for why TEDS has

recorded the majority of students executing their code, as they may be capable of

generating code and be inquisitive if it successfully executes.

7.2.2.3. Types of compiler errors are common across the cohort

During Case Study Two it was found that two of the three practicals there was one

error, which dominated the overall total. In case studies Group A Session (ii) it was

“Cannot find symbol” (47.37% of total, Rank 1) and once again in Group B Session

(i) it was “Cannot find symbol” (27.78% of total, Rank 1).

The “Cannot find symbol” compiler error occurs when a programmer tries to call a

class, method or variable that does not exist in the scope from which that they

attempt to access it. Two factors could lead to this compiler error and both had

instances during Case study 2:

• That the programmer spelt the called class, method or variable wrong. For

example Class Tast rather than Class Test.

• The class, method or variable is not in the scope of where it is being

accessed. This could occur due to two reasons:

7. Case Studies 133

o The programmer is calling the wrong class. For example that the

method run() is in class A, but the programmer attempts call the

method in the class B.

o The programmer attempts to access something that does not exist. For

example they try and call the method run() in the class A, but they

have not written it yet.

Instances from Case study 2 include, ‘cannot find symbol – method get()’ and also

‘cannot find symbol – constructor Artist()’.

The “Cannot find symbol” compiler error was common. One reason for this could be

the way the BlueJ does not have an auto complete functionality, which is a function

in some IDE’s, for instance Eclipse [Ecp10]. Auto complete functionality allows a

developer to create an instance of a class and then the IDE checks what methods are

available in that class, it then gives a list of the potential methods that can be called

on that class. In providing this list of the potential methods it avoids the programmer

from trying to reference a method that does not exist.

The error types recorded by TEDS during Case Study Two highlights the progress

made by students over a number of practicals. As the course develops the compiler

errors evolve as well. For example, as was mentioned in section 7.2.1, Group A

Session (i) was a practical early in the academic year where some students were

unfamiliar with programming. This could indicate why “Missing return statement”

was the highest occurring error type in that session. In comparison to Group A,

Session (i) was approximately four weeks later than Group A Session (ii) and Group

B Session (i). At this point in the academic year students have gained some

experience in programming and so were more competent. The lack of experience of

the students in Group A Session (i) could be a potential reason for why these

students were creating a high proportion of missing return statements. The high

frequency of missing return statements could be due to the students not being used to

ensuring in Java that each method that is not a void must return something. The

results seem to suggest that the students are getting more confident in avoiding this

7. Case Studies 134

error in the later sessions. Although they still do make this mistake it is no longer the

highest occurring error.

The data recorded by TEDS highlights that the students within a group do create

clusters of errors. Knowledge of these clusters is useful for lecturers as they can

reveal miscomprehension in certain cohorts. Teachers can use the compiler error data

in practicals to help them to support the students.

7.2.2.4. Some students did not run or compile code

As noted earlier, for TEDS to be successful it needs the students to use it and 20 out

of 39 students (51.28%) used the tool in this case study. One student had TEDS

installed and did not perform any compiles or method invocations. The students that

did not adopt TEDS were thereby excluded from the case study. Their failure to

adopt TEDS could have been for four reasons:

• Not attending the practical.

• Turning up late to the practical and missing the briefing.

• Running multiple instances of BlueJ, and using primarily the one without

TEDS’s student client.

• Choosing not to use the tool. Formally no feedback was collected from

students who fell into this grouping as to why they did not install the tool.

One reason why they chose not to use TEDS could be that they were

concerned of someone being able to see their work, or that their productivity

in the lesson has been low.

Feedback from the teachers commented that some students do not actually program

within the practicals but rather read the textbook and ask questions of the teachers.

Which may explain the number of students who ran TEDS but did not generate many

compiles or method invocations.

7. Case Studies 135

7.3. Case Study Three

Case Study Three took place at the end of the first term (December 2008) and ran

through to the beginning of the second term (January 2009). In Case Study Three the

students once again had the student client of TEDS but now the teachers now had

tablet PC’s with the teacher client of TEDS.

The context of the cohort at the time of Case Study Three is that they are

approaching the end of using BlueJ and moving to more professional IDE’s, for

example Eclipse. Despite this, the majority of the students were still using BlueJ at

the time of the case study and 18 students used TEDS during the two practicals.

The main aim of Case Study Three was to view the how teachers use the data

collected by TEDS to assist students. With the overall aim in mind, a number of

different sources of data were collected:

• Observations for comparison of those taken of the current practical setting

presented in Chapter 3

• Questionnaires and semi structured interviews to receive students and

teachers opinions of using TEDS

• Student and teachers interactions with the system through the practical.

These interactions are collected by the TEDS system.

These three sources of data are presented in the section 7.3.1 and evaluated in section

7.3.2 to view the potential benefits of using TEDS within practicals.

7.3.1. Results

As in Case Study Two this section is split into sessions, but Case Study Three has

only two sessions one from Group A and one from Group B. The groups in Case

Study Three are the same as in Case Study Two.

7. Case Studies 136

7.3.1.1. Results from Group A Session (iii)

During Group A Session (iii) observations were taken to see if there were any

differences in the way the students and the teachers interacted, when TEDS was used

in the session. Some differences were found and these are described in section 7.3.2.

To add a further dimension to the data presented in this section some of the students

did not choose to use TEDS in this group. Although these two groups were not

intentional it does allow comparisons to be made between the teacher’s interactions

with students using TEDS and the students not using TEDS.

Figure 7.1, Figure 7.2 and Figure 7.3 present the interaction data collected from

Group A Session (iii), including students using TEDS and students not using TEDS.

Figure 7.1: Comparison between students’ total time of interactions with

teachers and average time per interaction in a practical

Figure 7.1 displays the data regarding the student’s interactions with the teachers.

The Figure includes the length in minutes of the student’s total interactions with the

students in the practical and the average time per interaction for each student with the

teachers.

7. Case Studies 137

Despite there being fewer students in Group A Session (iii) there was still a rise in

the total amount in minutes of interactions between the teachers and the students

(238 minutes), in comparison to observations of Group A collected for Chapter 3

(215 minutes). The highest total time of interactions between the students and the

teachers are analysed further in the next section, but factors like Feature G – Image

Sending could have caused longer interactions with the teachers taking time to create

diagrams for the students. Another potential reason for the longer interactions in

Group A Session (iii) is that with a smaller group the teachers may have felt that they

could spend more time with each student.

Figure 7.2 and Figure 7.3 present how the interactions between the students and

teachers began during Group A Session (iii). An interaction can either begin through

the teacher or the student. Figure 7.2 displays a breakdown of how each individual

students interactions were initiated and Figure 7.3 presents a pie chart of the

breakdown of how the whole groups interactions were initiated.

Figure 7.2: The amount of interactions by students and who initiated the

interactions

7. Case Studies 138

Figure 7.3: Showing the total groups breakdown of how interactions began

Figure 7.2 and Figure 7.3 reveal that the percentage of “Teacher initiated interaction”

interactions rose significantly from the case studies taken of Group A for Chapter 3

from 28.57% to 46.67%. This is an increase of 18.1%.

As a result of the “Teacher initiated interaction” interactions rising, the “Student

initiated interaction” fell in the TEDS practical from 71.43% (35/49) to 42.22%

(19/45)

Finally, during Case Study Three observations there are two additional routes for

initiating interactions through the software from the students using the help box and

through the software revealing student problems. The interactions initiated through

the software accounted for five of the 45 interactions in Group A Session (iii), ‘Help

requested through TEDS’ 4.44% of the total interactions (2/45) and ‘issues revealed

through TEDS’ 6.67% of the total interactions (3/45). With the observation method

used it was difficult to define how the interactions really began, though it was

possible to observe whether it was a student or teacher who began the interaction.

For instance, a number of observations recorded as “Teacher initiated interaction”

7. Case Studies 139

could have been started from the teachers being alerted by TEDS to a student having

problems through a high number of compiler errors. Unfortunately, through the

vantage position of the observer, it was impossible to differentiate between these and

the ones where the teacher would just like to make sure the student was working.

Figure 7.4, Figure 7.5 and Figure 7.6 present the data recorded through the

observations excluding the students who were using TEDS. Figure 7.4 presents the

student’s total time of interactions and also their average time per interaction.

Figure 7.4: Comparison between student’s total time of interactions and

average time per interaction in a practical. (Students not using TEDS)

When the data presented in Figure 7.4 is compared to the data in Figure 7.7 the

students not using TEDS had a lower average time per interaction to the students

using TEDS. Students not using TEDS averaged 8.18 minutes per interaction (with a

standard deviation of 4.85), compared to 13.25 minutes for the students using TEDS

(with a standard deviation of 5.59). This disparity is discussed in more detail in the

7. Case Studies 140

evaluation subsection 7.3.2. One reason for the disparity is that without TEDS

recording the students’ current status the teachers may feel a greater need to check

the status of students not using TEDS, which may result in a greater number of

interactions, some of which concluded quickly if the individual was making good

progress.

Figure 7.5 and Figure 7.6 present data collected during the observations on how the

interactions began between the teachers and the students not using TEDS.

Figure 7.5: The amount of interactions by students and how these interactions

began (Students not using TEDS)

7. Case Studies 141

Figure 7.6: Showing the breakdown of how interactions began (Students not

using TEDS)

As Figure 7.5 and Figure 7.6 highlighted “Teacher initiated interaction” interactions

were slightly higher in this cohort by 6% to “Student initiated interaction”. This

outcome reinforces the reasoning that without TEDS supplying information to

teachers on their students’ current status they would need to use another approach to

check how they are progressing i.e. verbally enquiring.

Figure 7.5 also shows that one student did not have an interaction with the teachers.

This student was seated at computer 8. Computer 8 was noted in chapter 3 as being

on a row that is difficult to reach due to the classroom layout, although other factors

may also have resulted in the outcome of the student having no interactions. For

instance, the teacher could know the student was a strong programmer or a teacher

may have simply observed that they were making good progress.

The next three figures in this subsection are Figure 7.7, Figure 7.8 and Figure 7.9.

These present the data collected from the students using TEDS in the practical.

Figure 7.7 shows the students’ data with regards to how long, in total, their

interactions lasted and also the average time per interaction. As was mentioned

7. Case Studies 142

previously the students using TEDS had a higher average time per interactions than

the students without TEDS.

Figure 7.7: Comparison between students’ total time of interactions and

average time per interaction in a practical. (Students using TEDS)

Figure 7.8 and Figure 7.9 focus on the particular interactions that took place within

the practical. Figure 7.8 presents how each individual student using TEDS,

interactions were initiated and Figure 7.9 shows the breakdown of how the whole

cohort who used TEDS interactions with the teachers were initiated.

7. Case Studies 143

Figure 7.8: The amount of interactions by students and how these interactions

began (Students using TEDS)

Figure 7.8 shows that five of the interactions began through just the use of TEDS,

instances of this are students 27 and 33. These students explicitly asked for help

using TEDS (as shown on Figure 7.8 with interactions labelled as “Student initiated

through software”) and students 16, 28, and 36 were where the teachers were altered

through TEDS that they needed help (as shown on Figure 7.8 with interactions

labelled as “Teacher initiated through software”).

7. Case Studies 144

Figure 7.9: Showing the breakdown of how interactions began (Students using

TEDS

Figure 7.9 shows that the percentage of “Teacher initiated interaction” was similar to

that of “Student initiated interaction”.

The mode by which the interactions were initiated across the whole of Group A

Session (iii) is listed below. The data highlights that the results for the students using

TEDS and without TEDS were similar. The reasons for this are explored in section

7.3.2:

• Teacher initiated interaction; without tool = 10, with tool = 11;

• Student initiated interaction; without tool = 9, with tool = 10.

• And five extra interactions that began through the tool.

7. Case Studies 145

A final observation is that the students not using TEDS accounted for only 19

interactions and the students using TEDS had in total 26 interactions.

Group A Session (iii) data collected by TEDS

This section focuses on the successful and unsuccessful compiler and method

invocations collected by TEDS during Group A Session (iii). The computer number

corresponds to the computer that the student was sat at.

Student
ID

Computer
Number

Compiler
Success

Compiler
Fails

Invocation
Success

Invocation
Fails

A1 27 15 60 17 5

A2 3 2 1 32 0

A3 28 17 30 5 7

A4 34 19 2 0 0

A5 18 10 1 11 2

A8 33 0 0 0 0

A9 4 4 0 15 1

A10 29 7 42 22 1

A11 26 3 0 7 1

A12 16 126 66 0 0

A13 36 17 34 30 0

 Total 220 236 139 17

 Mean 20 21.45 12.64 1.55

 Standard
Deviation

35.80 25.92 11.67 2.34

Table 7.9: Group A Session (iii), student data

Table 7.9 presents the data collected from the 11 students who used TEDS in

Group A Session (iii). Table 7.9 also presents the computer number where each

7. Case Studies 146

student sat which relates to the observation data presented in section In Group A

Session (iii) a total of 456 compiles and 156 method invocations were made.

The breakdown of the compiles includes 220 successful ones; 48.25% of the total

compiles. Student A12 provided 42.11% of the total compiles without any method

invocations. The fact that student A12 did not run their code is a factor that is

discussed in the evaluation and matches some of the findings from Case Study Two

section 7.2.2.2.

With regard to method invocations, as with much of the data collected over the three

case studies, successful ones dominated unsuccessful ones. In this practical, there

were 139 successful and only 17 unsuccessful ones. No single student dominated the

total amount of method invocations.

Finally in this session one student did not contribute any compiles or method

invocations and four other students contributed fewer than 10 events. Events are

either compiles or method invocations.

Table 7.10 shows the common error types from Group A Session (iii) and the

number of times that these errors occurred.

7. Case Studies 147

Error Message Number of
Occurrences

Percentage of Total

Non static referenced from a static
context

30 12.71

Illegal start of expression 29 12.29

Missing Bracket 27 11.44

Incompatible types 27 11.44

Unknown Method 18 7.63

Identifier Expected 15 6.36

Unknown Class 14 5.93

; Missing 14 5.93

Unknown Variable 13 5.51

Missing return statement 12 5.08

Not a statement 8 3.39

Class or Interface identifier needed 7 2.97

.class missing 5 2.12

array missing 4 1.69

Package does not exist 4 1.69

cannot assign a value to final variable 3 1.27

Missing method body, or declare
abstract

3 1.27

Previously defined variable 2 0.85

Trying to return from void 1 0.43

Table 7.10: Group A Session (iii), collated groups compiler errors

7. Case Studies 148

Table 7.10 presents the collated compiler errors collected from the students in Group

A Session (iii). In this session 236 compiler errors occurred and were collected into

19 different types of errors.

The error frequency is more spread than in Group A Session (i), with four compiler

error types having between 27 and 30 occurrences and only one error type (“Trying

to return from void”) having just one occurrence.

The highest occurring type was ‘non static referenced from a static context’ (30

occurrences, 12.71% of the total). It should be noted that using static variables was a

recent lecture topic before the practical. So the high volume of these errors could

occur from students’ relative unfamiliarity with the construct.

Group A Session (iii) is the only practical where the “Cannot find symbol” compiler

error type is not found within the top two most frequently occurring errors.

7.3.1.2. Results from Group B Session (ii)

In Group B Session (ii) the teachers used TEDS to support all seven of the students

that used the system. Observation data was not collected from this group, the

rationale for this decision is in section 6.2.

Table 7.11 shows the compiler and method invocation success and failure counts for

Group B Session (ii).

7. Case Studies 149

Name Compiler
Success

Compiler Fails Invocation
Success

Invocation
Fails

B1 26 39 31 1

B2 19 13 5 17

B3 0 3 2 0

B4 0 0 0 0

B5 15 18 7 2

B6 45 35 2 0

B7 6 4 0 0

Total Group 111 112 47 20

Mean 15.86 16 6.71 2.86

Standard
Deviation

16.14 15.66 11.01 6.28

Table 7.11: Group B Session (ii), student data

In Group B Session (ii) the seven students produced a total of 223 compiles and 67

method invocations.

In this session there was almost an equal distribution between the number of

successful and unsuccessful compiles, with just one more unsuccessful compile

(112) than successful compiles (111). Student B6 was the highest contributor with 80

(35.87% of total) compiles, 45 of which were successful (56.25% of their total).

Method invocations were not so evenly split in this session with 47 successful

method invocations and 20 unsuccessful ones. This is a higher proportion of

unsuccessful method invocation than recorded during the other case studies. The

amount of these unsuccessful method invocations are unevenly distributed with

student B2 making 17 of the 20. Student B1 dominated the proportion of method

7. Case Studies 150

invocations with 32 (47.76% of total) method invocations of which 31 (96.88% of

their total) were successful.

Two students contributed fewer than 10 compiles with one not contributing any

compiles or method invocations.

Table 7.12 presents the types of errors committed by the students and the frequency

they occurred. ‘Cannot find symbol’ was the most frequently occurring error type, as

it was for both Group A Session (ii) and Group B Session (i).

7. Case Studies 151

Error Message Number of
Occurrences

Percentage of Total

Cannot find symbol 25 22.32

Missing Bracket 19 16.96

; Missing 10 8.93

Incompatible types 9 8.04

Illegal start of expression 6 5.36

Missing return statement 4 3.57

non static referenced from a static
context

4 3.57

Not a statement 3 2.68

Else without if 3 2.68

Unexpected type 3 2.68

Possible loss of precision 2 1.79

Package does not exist 1 0.89

Previously defined variable 1 0.89

Unreachable statement 1 0.89

Identifier Expected 1 0.89

Class or Interface identifier needed 1 0.89

Table 7.12: Group B Session (ii), collated compiler errors

7. Case Studies 152

Table 7.12 highlights the compiler errors the students in Group B committed in

session (ii). There were 112 compiler errors in 16 different types of errors.

A total of 25 (22.32%) of the compiler errors belong to the same group (“Cannot find

symbol”). The second highest occurring compiler error type was “Missing Bracket”

with 19 (16.96% of total) occurrences.

The other 14 compiler error types each accounted for ten or fewer occurrences.

This data highlights some notable results collected by the system with the different

types of errors that the students seem to have and also the frequencies of these errors.

It presents a relationship that some students in the cohort generate similar errors,

which can be used to reflect on teaching within lectures. This data is further analysed

in section 7.3.2.6.

7.3.1.3. Aggregated Student Errors

Table 7.13 presents the combined errors made by the students over the course of case

studies two and three, where TEDS was used.

Error Message Number of
Occurrences

Percentage of
total

Cannot find symbol 138 20.12

Missing Bracket 78 11.37

Incompatible types 70 10.20

; Missing 61 8.89

Illegal start of expression 58 8.45

Missing return statement 48 7.00

non static referenced from a static
context

34 4.96

Identifier Expected 28 4.08

7. Case Studies 153

Unknown Class 18 2.62

Not a statement 18 2.62

Unknown Method 14 2.04

Class or Interface identifier needed 14 2.04

Unknown Variable 13 1.90

Package does not exist 11 1.60

Integer number too large 11 1.60

Private Access Violation 8 1.17

Previously defined variable 8 1.17

Variable not initialized 8 1.17

Missing method body, or declare abstract 7 1.02

Possible loss of precision 7 1.02

.class missing 7 1.02

Unexpected type 7 1.02

array missing 4 0.58

Trying to override abstract methods 3 0.44

Else without if 3 0.44

cannot assign a value to final variable 3 0.44

Trying to return from void 3 0.44

Void can't be used here 2 0.29

Illegal escape character 1 0.15

Unreachable statement 1 0.15

Table 7.13: Whole set of compiler errors collected by TEDS over the three case

studies

7. Case Studies 154

Table 7.13 highlights some notable findings from the case studies. A total of

686 errors were committed by the students and can be collected together into 30

different types of errors. The five most common errors accounted for 59.03% of the

overall errors.

The highest occurring error type was “Cannot find symbol” which accounted for

20.12% (138 errors) of the overall number of errors. The second highest error types

were “Missing Bracket” with 11.37% (78 errors) of the overall errors.

Finally there were eight errors with fewer than five occurrences and accounting for

20 of the total errors (3.43%).

7.3.1.4. Student Questionnaires

Students were asked to complete questionnaires during Case Study Three to discover

their opinions on TEDS and also any differences that they felt they experienced in

Case Study Three in comparison to a usual practical.

The results to the six questions asked to the students in the questionnaires are

reported. 12 students replied out of 18 students (66.67%) who used the tool in Case

Study Three.

The format of this section is that the six questions are grouped by themes based on

the topic. The two groups are:

• The students’ opinions on how the teachers interacted within the class

• The students use and opinions of the help box

Was there any difference in teacher behaviour during Case Study Three?

Four questions were used to investigate the students’ perceptions of how the teachers

acted within Case Study Three. The main focus of the questions were to find out

perceptions regarding if the teachers interacted more with the students when they

have TEDS and if the quality of their advice is higher with the additional information

they get on the students’ current status.

7. Case Studies 155

As the teachers in a practical in Durham University are known as demonstrators the

questions used the term ‘demonstrators’ to avoid confusion, but in the analysis they

are referred to as teachers.

The first question asked to the students was if they: “felt more supported in the case

study practical than usual”. The students were unanimous with all 12 agreeing with

the statement. Therefore, it is reasonable to suggest that the students saw a positive

impact in teacher support when TEDS was used.

The 100% agreement from the students in their responses to that question is reflected

by the responses given to the second question: “The demonstrator spent less time

with you today in the practical than usual”, where all 12 students disagreed with the

statement (ten students disagreed and two students strongly disagreed). From these

responses it can be concluded that the students felt that they spent equal or more time

with the teachers and therefore one could reasonably assume that the students felt

equally or better supported.

One observation presented in section 7.3.1.1 supported the students’ opinions on the

amount of time that the teachers spent with them. The students using TEDS averaged

5.69 minutes per interaction in the Case Study Three observations, this compares

with the observations collected in the preliminary case studies from Chapter 3 where

the average time per interaction from the same group was 4.39 minutes. This is an

increase of one minute per interaction.

The students were also asked whether they: “…felt more watched by the

demonstrators in this practical than usual”. This question was asked because of the

researchers concern that the students might feel more watched using TEDS, and

would work differently to how they usually would in the case study practical. The

students answered with eight agreeing to the statement (two strongly agreeing) and

four disagreeing with the statement.

The next question the students were asked was on how well they felt supported in the

case study practical. 85.71% either agreed (eight) or strongly agreed (two) with the

statement “The demonstrators in this practical gave more valuable advice than usual”

7. Case Studies 156

with two strongly agreeing with the statement. The results would suggest that the

students did feel more supported during the case study.

Students’ opinions on the help box

During Case Study Three, students had the option to ask the teachers for help from

their desks using TEDS. Two questions were asked in the questionnaire to find out

the students’ opinions on the help box.

In response to the first question: “Would you rather use the help box then putting

your hand up”, the results were mixed: eight students agreed that they would prefer

to use it and four disagreed.

The students were also asked: “Did you use the help box?” in response to this only

two students admitted to using it, which were only 16.67% of the respondents. This

means that although the students like the idea of the help box, in practise they still

prefer to use traditional means of asking for help.

7.3.2. Evaluation

Case Study Three consisted of TEDS being used by the teachers in live practicals,

monitoring students who were using TEDS’s student client. Seven main findings

were discovered during Case Study Three.

These findings are:

i. TEDS makes it easier for teachers to view student status

ii. TEDS reveals to teachers the student characteristic which may be

classified as, ‘stoppers’, ‘movers’ or ‘extreme movers’

iii. TEDS enabled teachers and students to communicate more effectively

iv. The diagramming tool makes it easier for the teacher to communicate

with some students

v. Teachers did not choose to make use all of the functions of TEDS

7. Case Studies 157

vi. The results of student’s compiler errors highlighted that groups of

students had similar errors.

vii. Questionnaires and interviews revealed that users accepted TEDS

Section 7.3.2 now looks into these findings in more detail referring to the

quantitative results presented in section 7.3.1 in combination with the qualitative

results that the researcher collected during this round of case studies.

7.3.2.1. TEDS shows teachers students’ status

The first finding is that TEDS seems to have been successful in highlighting the

students’ status to the teachers.

The majority of TEDS’s functions allow teachers to view how a student is

progressing with their work and also to see what they were doing at certain points

throughout the practical.

TEDS features in particular Feature C – Code Snapshot (in Case Study One), Feature

A – Compiler Errors and Feature B – Method Invocation are all aimed at giving

teachers a view of students’ status. The intentions of these features are to reveal to

teachers if a student is active without the need for them to oversee each student’s

screen watching them work.

Figure 7.10 presents student A’s compile status during Group A Session (iii).

Student A was chosen as an example as the student used a number of the features

during the session, that they had available with TEDS. Also the teachers informed

the researcher that the student’s compiler status had prompted them to interact with

the student.

7. Case Studies 158

Figure 7.10: Student A’s compile success rate

Figure 7.10 is graphical representation of student A’s compile success rate over the

course of Group A Session (iii). The X-axis is the time during the practical, and the

Y-axis is the percentage of compiler success rate. The blue line is student A’s

percentage of successful compiles after each of their compiles during the session,

and the blocks represent each a compile. A descending line in Figure 7.10 reflects a

subsequent unsuccessful compile, while an ascending line represents a subsequent

successful compile. The bold numbers in Figure 7.10 highlight notable occurrences.

At point 1 there is a 10-minute gap where student A is not doing any compiles or

method invocations after a successful compile, which could indicate that the student

is trying to overcome a problem with their work. Point 2 shows where student A,

used the help box to ask for help after a period of unsuccessful compiles, which was

noted in the observations and through server logs. The researcher knew that student

A asked for help through their version of the teacher client, which the researcher ran

during the session. A teacher responded to the request and the student then began to

compile successfully again.

1

2

7. Case Studies 159

Figure 7.11 compares student A’s compiler success rates within the practical, with

the student’s method invocation success rates.

Figure 7.11: Student A’s compile success rate and method invocations

Figure 7.11 presents a red line that charts the percentage of successful method

invocations. The red line reveals that the student came with code that would compile

but had some runtime errors (Point 1). The compiler status updates when combined

with the method invocation status updates, get more contextual meaning with the

method invocation status included as well, for instance, the gap marked as 1 on

Figure 7.10 is now shown as a response to point 2 on Figure 7.11. Point 1 highlights

that the students code is not running, so the gap at point 2 could be viewed as an

attempt to solve this runtime error. The succession of compiler errors could show

unsuccessful attempts at solving the error. The help provided by the teachers enable

to student to progress beyond their compiler problems and then led onto point 3

where the student code seemed to be working more successfully.

The statistics did not reveal any significant improvement in compiler and method

invocation success rates between Case Study Three (where the teachers used TEDS)

1
2

3

7. Case Studies 160

and Case Study Two (where the teachers did not use TEDS). Independent T-Tests

were performed on the compiler and method invocation results collected from Case

Study Two and Case Study Three.

 N Mean Sd T P - Value

Successful Compiles
(Teachers Not Using TEDS)

26 15.50 23.29

Success Compiles
(Teachers Using TEDS)

18 18.39 29.16
-0.35

Not
Significant

Unsuccessful Compiles
(Teachers Not Using TEDS)

26 12.04 13.05

Unsuccessful Complies
(Teachers Using TEDS)

18 19.33 22.12
-1.26 Not

Significant

Successful Method Invocations

(Teachers Not Using TEDS)

26 22.19 26.44

Successful Method
Invocations
(Teachers Using TEDS)

18 10.33 11.47 2.03 0.049

Unsuccessful Method
Invocations

(Teachers Not Using TEDS)

26 0.42 1.03

Unsuccessful Method
Invocations
(Teachers Using TEDS)

18 2.06 4.19
-1.62 Not

Significant

Table 7.14: T-Tests on data collected by TEDS during Case studies two and

three

As Table 7.14 presents only one of the T-Tests showed any significant difference

between the data collected for Case Study Two (Teachers Not Using TEDS) and

7. Case Studies 161

Case Study Three (Teachers Using TEDS). The significant result was found through

the comparison of successful method invocations. The T-Test found that there were

significantly more successful method invocations during Case Study Two. The result

probably reflects that the work has increased in difficulty between the two case

studies and therefore the students ran their code successfully on fewer occasions. The

fact that there is no significance between the other three data sets reveals that the

students had improved at a similar rate to the increasing difficulty of the work.

These statistics do not show that TEDS assisted in the students’ ability to cope with

the work.

The remainder of this subsection looks at other data sources that can assist in getting

closer to a conclusion.

The merits of TEDS Feature B – Method Invocations was initially seen as being

limited, due to the inability to view the types of runtime errors that are produced.

Yet, the indication that an unsuccessful method invocation is recorded can highlight

to the teachers that a student is encountering difficulties. Figure 7.10 and Figure 7.11

presented a situation where combined compiler and method invocation data can

create a snapshot of a student’s status at a certain time in the practical.

Figure 7.12 presents how the recording of both a student’s compiler and method

invocation data also can spotlight a student’s bad programming practice.

7. Case Studies 162

Figure 7.12: Student B’s compile success rate

Figure 7.12 shows a student who, despite compiling their code a large number of

times, did not run their code at any point during the laboratory class.

Figure 7.11 highlighted that by viewing the data collected by TEDS that some of the

students do understand that they need to be able to have code that works, but TEDS

also seems to provide some evidence of students not understanding the value of

running their code to examine it for runtime errors. For instance, Figure 7.12

presents a student that either does not know about testing their code or is creating

methods, which are not complete enough to test within a two hour practical. Student

A (Figure 7.11) finds runtime errors and then work towards solving them. Student B

(Figure 7.12) is using a development strategy where they are just fixing compilation

errors whilst generating their code. An issue with this kind of strategy is that the code

may compile successfully yet the code may not run, or not run as expected. For

example, consider the code snippet below:

7. Case Studies 163

public void runTimeError()

 {

 ArrayList<String> test = new ArrayList<String>();

 test.get(-1);

 }

The code compiles successfully as it is syntactically correct yet when run the code

creates the error: “java.lang.ArrayIndexOutOfBoundsException: -1”. This highlights

the kind of problem student B may face when they do run their code. If a student

contrives to make additional changes then the complexity of identifying the source of

the error increases, as the change set is larger.

The teachers can use TEDS to alert them to instances such as the student B where

they can use their experience to improve the students’ software development

techniques. Although teachers would most likely have advised students of such

strategies without using TEDS but TEDS provides immediate evidence to the

teachers, so that teachers can identify and help these students earlier and well before

bad practice becomes too ingrained in a student’s usual programming practise.

The observations, presented in section 7.3.1.1, suggest that the teachers by having

access to more information increases the average time the teachers interact with the

students. Group A with the whole group not using TEDS averaged at 4.39 minutes

per interaction (section 3.3.1). In the Case Study Three observations, the students

who did not use TEDS in the practical had a similar average of 4.74 minutes per

interaction. These are both lower than in comparison to the average time of the

students using TEDS who averaged at 5.69 minutes per interaction. T-Tests

performed on this data did not reveal a significant difference between the

observations taken during the preliminary case studies and the ones taken for Case

Study Three. This highlights that despite the identified higher average time per

interaction across the two data sets there was not a statistically significant difference.

7. Case Studies 164

As well as the observations described above, observations were taken in the class

between students who used TEDS during Case Study Two and Case Study Three. T-

Tests were then performed to see if there was any significance between the two

groups:

 N Mean Sd T P - Value

Total time of interactions per
student

(Students With TEDS)

11 13.45 5.59

Total time interactions per
student
(Students Without TEDS)

11 8.18 4.85
-2.36 0.029

Total frequency of
interactions per student

(Students With TEDS)

11 2.36 0.50

Total frequency of
interactions per student
(Students Without TEDS)

11 1.73 0.79
-2.26 0.037

Frequency of teacher
initiated interactions

(Students With TEDS)

11 1.27 0.65

Frequency of teacher initiated
interactions

(Students Without TEDS)

11 0.91 0.54
-1.43 Not

Significant

Frequency of student initiated
interactions
(Students With TEDS)

11 1.09 0.70

Frequency of student initiated
interactions

(Students Without TEDS)

11 0.82 0.40
0.28 Not

Significant

Table 7.15: T-Tests on observation data taken during Case Study Three

7. Case Studies 165

As Table 7.15 shows there was a significance difference between the frequency of

interactions and the amount of time the students with and without TEDS spent

interacting with the teachers. Four potential reasons for these results are listed below:

• The students using TEDS could have been the weaker students in the class

• Having a record of what compiler errors the students make could enable the

teachers to provide more in depth support and advice to the students

• Teachers who begun the interactions with the students using TEDS could

have been prompted to inquire through viewing concerning behaviour in the

students status updates i.e. high percentage of unsuccessful compiles.

Whereas students without TEDS may be asked about their current status,

which could be going quite well or well in the student’s opinion, so this

would result in more but quite short interactions.

• The actual process of drawing images to send to the students could take more

time than a traditional interaction

These points present an outcome that was not anticipated when using TEDS. It was

predicted that an interaction would be quicker, but as described previously this was

not the case. The initial prediction was based on TEDS reducing the amount of time

a teacher needs to understand the student’s problem by alleviating the need for a

student to describe it in detail. As TEDS reporting systems give teachers more

information on the student’s current status before they interact with them, just the

solution or nudging in the right direction would be necessary in the interaction,

therefore the lower interaction time.

Despite the amount of time and frequency of total interactions being significantly

different, there was no significance between interactions initiated by the teachers and

the ones by the students. These T-Test results reveal that that TEDS, in statistical

terms, was not a significant factor in impacting on increases or decreases in students

or teachers initiating interactions.

7. Case Studies 166

The teachers in their questionnaires noted that they liked the fact that they could see

the student’s current status via the frequency of their compiles and method

invocations. There was a hundred percent agreement to the statement: “The

technology made it easier for me to see which students were struggling”. This

highlights that the teachers did agree that the data on compile frequency and method

invocations acted as a suitable indicator of a student’s status at a snapshot of time

during the practical. A second question was asked to garner if the teachers with the

extra data provided by the systems went on to help the students more. The results

were more mixed as one disagreed with this statement. The particular teacher’s view

on another question could explain why they felt that they helped less in the practical

than they usually do: “I could tell which students weren’t working and not those

using the new version of BlueJ”. This highlights how with TEDS the teacher could

view if a student was progressing, so they did not have to request updates from

students. This finding presents another benefit of TEDS in that the students who are

working well can be left to their own devices (or be given positive reinforcement),

leaving the teachers to focus on the students with problems or who are not engaging

with their work.

Some of the qualitative responses that the teachers made in response to the question:

“Did the technology reveal anything surprising?” highlighted some more positive

comments towards TEDS and especially what TEDS reveals about student

behaviour. Two of the teachers commented surprise at the amount of compiles that

the students did. One said: “A lot more students than I thought seem to use the

compiler button as a check for errors in their code” and another commented that:

“When students got frustrated or bored they clicked the button rapidly.” Both of

these comments highlight that TEDS records useful events that enable teachers to

effectively judge where students need support.

7.3.2.2. TEDS reveals ‘movers, ‘stoppers and ‘extreme movers’

‘Stoppers’, ‘Movers’ and ‘extreme movers’ are three types of novice programmer

behaviour exhibited when they are faced with problems. These are behaviours

7. Case Studies 167

identified by Perkins [Per85] and discussed in detail in section 3.1.1. To summarise

each behaviour;

• ‘Movers’ when they are faced with a problem carry on looking for a solution

until they finally discover the best route to take,

• ‘Stoppers’ when faced with a problem stops and cannot think of a solution or

even really try to find one,

• ‘Extreme Movers’ take moving too far and change too much between

compiles and without any real thought between changes where on reflection

would have told them that the change would never had been successful.

TEDS reporting systems revealed students who exhibited these kinds of behaviour

through the compiler and method invocation data. Especially the record of time

between events is an important indicator of “stoppers” and “extreme movers”.

The next three subsections, present examples and the ways that TEDS revealed each

of Perkins three types of novice programmers that occurred.

“Movers”

“Movers” are the students who are able to explore their own routes for overcoming

programming difficulties. TEDS reveals these students by the way that they are

solving compiler errors and having successful method calls regularly.

Figure 7.11 presented an example of how TEDS can reveal students who could be

considered a “mover”. The compiles and method invocation success rates reveal that

the student did create compiler and method invocation errors but they overcame

these issues and could continue to progress with their work.

TEDS revealing these “movers” allows the teachers to be satisfied with a student’s

current status and more open to concentrate on the “stoppers” and “extreme movers”.

Naturally the students who through TEDS could appear to be “movers” could be

extreme movers or stuck with issues, which they might feel they can solve

themselves. This means that a teacher would still need to check on the student’s

status during the class, but TEDS does allow teachers to prioritise how they support

7. Case Studies 168

students. They can prioritise based on a range of factors: frequency of compilers

errors, frequency of unsuccessful method invocation and extended period time since

last event.

It was noted in section 7.1.2 that the student data collected by TEDS can be

misleading such as the successful method invocations, so this further reinforces that

the teachers cannot leave a student completely without interacting with them.

“Stoppers”

A “stopper” is a student who has a problem and does not have the ability or the will

to progress. Students could present “stopper” behaviour by not compiling or running

their code or by having large gaps of time between trying to fix errors. TEDS can

highlight these behaviours in two ways to the teachers:

• Through the amounts of compiles and method invocations

• Through the data on the time since last event

During the Case Study two and Case Study three the students exhibited both of these

“stopper” behaviours. In Case Study Three, seven students were shown to have made

fewer than ten compiles over the two hour practicals. A lack of compiles does not

necessarily mean that the students are in “stopper” situations as they could be

making progress without actually compiling their code, but this would also mean that

they are not running their code as BlueJ forces students to compile their code before

they run it. However, it could mean that they are making progress without compiling

which may lead to the other extreme of an “extreme mover”. Both of these examples

are not good programming practise for students at this level [Per85] still trying to

master the semantics and syntax of the language, as the compiler can work as a form

of spell checker for the student seeing if the student has made any errors such as

missing a semi-colon. So even though they may not be “stoppers” they would still be

worth getting attention from the teacher if they were not compiling.

The second way a teacher using TEDS could see that a student is in “stopper”

situations is by a student committing an unsuccessful compile or method invocation,

7. Case Studies 169

which is then followed by a prolonged period of time before they compile again.

This was seen a number of times during the third set of case studies. Figure 7.13

presents a student’s status throughout a practical where this was seen.

Figure 7.13: Example of a stopper

As Figure 7.13 presents the student only did two compiles for the whole of the

practical, though they did make one successful method invocation. The student could

be identified as a “stopper” by not finding a solution to any compiler errors they have

and also by the amount of time taken between changes. The data for Figure 7.13 was

taken from a practical in Case Study Two which explains why a teacher did not see it

to be able to respond to the student’s behaviour.

In later practicals conducted when the teachers did have access to the student’s

status reports, all of the teachers felt that TEDS gave them a good overview of which

students are having problems. Furthermore, one teacher commented that: “I could

tell which students weren’t working.” This is a rather negative interpretation from

7. Case Studies 170

the teacher in assume that the student is not working rather than that student being a

“Stopper” and struggling to get over a problem. Either way the teacher can see this

inactivity and can choose to interact with the student, and the ability to present this to

the teachers is one of the aims of TEDS.

It could be the case that the “stopper” had never started and further features could

have been added to TEDS to view activity. One way that could potentially have

revealed student activity could have been a key logger to generate an event every

time a key is pressed. This key logger could send data to a teacher when a student is

neither compiling nor running their code, but still working.

“Extreme Movers”

“Extreme Movers”, are students who try lots of different ways of fixing an issue

without considering the merits of the solutions, when faced with a problem. During

his study Perkins [Per85] identified “Extreme Stoppers” and “Extreme Movers” as

the two largest groups of students. These two behaviours were present in the TEDS

three case studies, with some students even showing both behaviours, with extended

periods of inactivity followed by periods of high activity. Figure 7.14 presents one

such student.

7. Case Studies 171

Figure 7.14: Example of "Extreme Mover"

Figure 7.14 shows a student with a period of inactivity of 20 minutes at point 1 on

the figure, which could be seen as “stopper” behaviour where the teacher could want

to see how a student is progressing. After the 20 minutes they then began

programming and completed a high frequency of compiler errors over a 10-minute

period. This would suggest that they were not reflecting on their approach to fixing

their code before attempting it resulting in more compiler errors.

The data collected by TEDS highlights students who may be exhibiting “Stopper” or

“Extreme Mover” behaviour, and in a way that the teachers can use whilst in a live

practical. In his case studies Perkins [Per85] required students to be observed

personally by a researcher to see if they exhibited any of the concerning novice

programmer behaviours, whereas with TEDS teachers can get an overview of a

number of student’s statuses at any point during the lesson. A lesson where each

student has their own personal teacher would be beneficial for students as was noted

1

7. Case Studies 172

in the evaluation of Case Study One, but this is impossible within most universities

budgets. TEDS also allows students to feel less watched so potentially to act more

naturally with TEDS only listening to the events rather than a teacher watching

everything they do.

7.3.2.3. TEDS enabled better teacher to student communication

Communication problems exist within the existing practical setting as section 3.3.2

highlighted, creating a number of different issues. These issues range from the

teachers and the students having problems communicating with each other, to the

room layout being ill suited as a learning environment.

The first feature that is designed to address this issue is Feature E – Short Message

Functionality, which allows students to request help via TEDS from the teachers.

The students did not make much use of this functionality within the case study

practicals. Within Case Study Three the functionality was used 10 times. Several of

the students who used the system seemed to come to the laboratory practicals with

issues. Examples messages that the students submitted are:

• “Arrays hate me!”

• “Help me!”

Both of these examples are useful for the teacher. Especially the first comment, as

the teacher at least knows that the student has an issue with Array’s before they go

over to assist.

Two students used Feature D – Help Button to get help. One used the feature to its

potential as when they faced problems during the software development cycle they

asked for help after two periods of difficulties. This example, was described in detail

in section 7.3.2.1 and the student’s data shown in Figure 7.11. After the student used

the feature they then used the feature a second time and both times resulted in

successful compiles and also method runs. This particular student in the

questionnaires responded that they felt their use of the help box was: “good”.

Although this does not say too much about how they felt the system worked for

7. Case Studies 173

them, it does highlight that they viewed it positively. The positive view is further

supported by the students repeated use of the Feature D – Help Button.

The second set of tools that were hoped to improve communication within the

laboratory practicals were; Feature A – Compiler Errors and Feature B – Method

Invocation. It was expected that a persistent error made by a student over an

extended period of time would alert a teacher to a student being in difficulties. These

functions were designed to counter the behaviour exhibited by some teachers, where

they react to students asking for help rather than proactively seeing if they require

help. The status updates provided by TEDS were intended to alert teachers to

students with problems in a similar way to them putting their hands up. Functions A

and B did seem to work, especially for some of the more reactive teachers.

For instance, on one occasion it was observed that a teacher who during the

observations taken for Chapter 3 was judged to be reactive became proactive, when

they had access to the data provided by TEDS. The behaviour viewed by the

researcher was that the teacher would wait for the student to compile to see how

they were progressing at any particular time during the practical.

The researcher feared during the observations that the way the teacher, who was

more reactive in previous observations, had become too proactive and maybe

overzealous in the way that they interacted with the student. In response to this

concern the students were asked in the questionnaire about their opinions over the

ways that the teachers interacted with them. Two questions were asked to see how

they accepted the potential intrusiveness of TEDS. The first question was: “I felt

more watched by the teachers in this practical than usual”. In response to this 66.67%

agreed with this statement. The second question “I felt better supported in this

practical than usual” had a 100% agreement. These responses suggest that the

students felt that they were more watched in the practical and that this led to them

feeling more supported within the practical. This presents the positive way that the

students viewed the software although further information needs to be gathered to

7. Case Studies 174

explain more fully their perceptions of being ‘more watched’. That the students felt

better supported is good as this is one of the main aims of TEDS and the

questionnaire responses from them suggest that they felt better with a teacher

keeping an eye on them. For instance, by TEDS enabling teachers to see more

information thereby enabling them to better support the students.

Laurillard [Lau06] is interested in communication between a learner and teacher in

classroom conditions and Laurillard’s research influenced many of TEDS’s features.

TEDS was in particular designed to improve steps one and three of Laurillard’s

conversational framework presented in Figure 3.10. Step one is the teacher

communicating a theory to a student, and step three is the student communicating

their grasp of the theory back to the teacher, and this process is repeated until the

student completes step 3 appropriately as judged by the teacher. The design for these

case studies by not recording the communications between the students and teachers,

means that it is impossible to evaluate the success definitively of TEDS during stages

one and three. Qualitative questionnaire responses from the students and the teachers

were favourable towards TEDS and instances where TEDS was used successfully

were also presented throughout this section. Yet further investigations would have to

be done on the actual conversations between the students and teachers to view TEDS

potential in fully assisting in the conversational framework.

One teacher (during unstructured interviews), who was noted as being more proactive

during the observations taken when not using TEDS, felt that they became more

reactive when using TEDS. The teacher further noted that they began to prioritise

their interactions with the students who were shown on the system as having a

negative trend of events. The problem with this impact of TEDS is that the stronger

students could have fewer interactions when the teachers use TEDS. As a result of

the stronger students having fewer interactions they could lose any positive

reinforcement feedback they may have received from the teachers. Another further

negative impact with communication based purely on the data collected by TEDS, is

that the students with positive status trends are not necessarily working

7. Case Studies 175

successfully. So when using TEDS teachers would still need to interact with the

students personally to check progress.

That particular teacher’s reflection on using TEDS, suggests that the system could

make all teachers reactive in its method of supplying status updates to the teachers.

7.3.2.4. The diagramming tool is beneficial for supporting the students

Object orientated languages use the concept of objects as their basis. Some novice

programmers have problems visualising these objects at the start. Learning tools, for

example BlueJ [Kol03], try and help novice programmers with this problem. BlueJ

uses UML like representations of Java classes to demonstrate how objects interact.

Despite using learning tools like BlueJ some students still have a gap in their

understanding.

During Case Study Three, the teachers had Feature G – Image Sending available to

them, which they used to try and fill gaps in the students understanding. In one

example, the researcher observed where the image sending feature was used, to assist

a student who had difficulty understanding nested loops. In this example, the teacher

did not draw a diagram but rather wrote down a solution for the student. The fact that

the teachers were able to use tablet PC’s enabled them to add text to any images they

drew. By having the solution written down it allows the student to have the solution

for that occasion and further on during the course.

Figure 7.15 shows another image used in a practical, to help a student with Arrays:

7. Case Studies 176

Figure 7.15: Screenshot of Image for student

Figure 7.15 shows how TEDS allows text to be included in images to further

contextualise images.

The teachers who used the diagramming tool said that the students did “gratefully

receive” diagrams from them. One teacher added that one student asked for the

diagram to be sent to them for further reference.

The feedback from the students was a little less informative. They were asked if the

teacher drew them an image and how the valued the image they were sent. Two

students answered that the teacher sent images to them, but they did not further

clarify their feelings positively or negatively towards it. With these responses further

research would be required to see to what level they thought it was useful.

7.3.2.5. Teachers did not use all of the functions

As Chapter 4 presented there are seven different functions that combine to make

TEDS. These functions were demonstrated to the teachers before the case studies and

also the design considerations behind the development of the functions. The teachers

were not required to use any of the functions.

7. Case Studies 177

It was found that the teachers did use the data and they saw the benefits of using the

data, yet some of the functions were not used. These were functions that the teachers

had to actually interact with the system to use such as Feature C – Code Snapshot

and Feature F – Objective Setting. The functions they did use were the ones where

the data was just presented without them having to interact with TEDS. These

include Feature A – Compiler Errors and Feature B – Method Invocations.

Research by Robins et al on the possibility of using a tool in a practical situation may

explain one reason why the additional functions were not used that much: “Any

diagnostic tool to be used in actual laboratory situation will need to be rich enough to

be useful, but simple enough to be manageable” [Rob03 pp 164]. So with regards to

TEDS it could be that the main screen of the TEDS could be considered to match

Robin’s requirements with the data provided in a manageable and simple way.

Conversely the additional functions seem to be too much for the teachers to carry out

along with their role of supporting the students. Although with more training and

more experience using TEDS the teachers could have used more of the features.

7.3.2.6. Students’ compiler errors were grouped together

As was discussed in the evaluation of Case Study Two the students did commit

similar compiler errors. This behaviour was repeated in Case Study Three as well

where “Cannot find symbol” was the highest occurring error in Group B Session (ii)

and in Group A Session (iii) it was “non static referenced from a static context”.

By looking at the errors that are created, they reflect the increased complexity in the

material taught in lectures. This was specifically in regards to the highest error in the

second case study “non static referenced from a static context”. Only four repeat

occurrences of this error happened outside of that practical and they were in Group B

Session (ii), which was also in Case Study Three. Using static methods and classes

was covered during the lectures, which took place whilst Case Study Three was

carried out.

TEDS recording that students are committing these types of errors is useful as it:

7. Case Studies 178

• Allows teachers to use this data straight away to help students overcome and

avoid errors in the future

• Records an overall view of which compiler errors students are committing

which can be used by both lecturers and teachers for helping students in this

cohort and future cohorts

The data collected by TEDS from this cohort of students over the three case studies

is combined in the Table 7.13 and is given certain reliability by its similarity to data

collected by Jadud [Jad05]. Jadud’s work was discussed in section 2.3 and studied

novice compiler behaviour, which included recording compiler errors they

committed, and analysing the data after the laboratory class.

7.3.2.7. Positive Responses in the questionnaires

A final outcome that can be noted in the evaluation of Case Study Three is that the

questionnaire replies from the students and the teachers were both positive in regards

to TEDS. Unfortunately, due to the small amount of participants in the case study

who filled out questionnaires there are not enough replies to draw any statistical

significance.

The questionnaires from both teachers and students are both positive towards the

four particular aims of TEDS:

• The positive experiences that the students and the teachers had with using

Feature G – Image Sending.

• The benefits that the teachers felt with using TEDS to view a student’s

current status.

• The benefits that the students and teachers saw in using TEDS to overcome

communication difficulties.

• The final positive is new and still needs to be explored, that is both the

students and to an extent the teachers see the benefits of using TEDS in a

lecture situation.

7. Case Studies 179

The first three of these questionnaire responses have already been looked at in this

evaluation section, which just leaves the final point.

This thesis began with identifying the potential of using TEDS within the context of

a lecture to introduce active elements. In the questionnaires given to the students and

the teachers it was asked what their thoughts were on introducing actual

programming elements into lectures. The responses to the questionnaires from the

students highlighted this where 75% agreed with the statement that: “I believe

lectures on Java would be more interesting if the theory that is being taught is

supported by practical programming components where you could program in the

lecture”. The agreement with this statement reveals that the students would accept

the programming elements or at least see the benefits.

The teacher’s responses also noted that lecturers could be improved with

programming elements. Although they warned that it could be too time consuming

getting the students and the tasks organised within the strict time constraints of the

timetabled lecture.

The questionnaire responses suggest that the students would accept a form of

programming in lectures but that the teachers understand that currently would be

difficult to run it in the existing lecture setting.

7.4. Summary

This chapter presented and analysed the results collected from the three case studies

that were carried out using TEDS. The case study was concerned with Research

Phase 3 – Can technology be used to improve a teacher’s ability to support students

in practicals.

The introduction to this thesis linked the research phases to two research questions,

which are explored in the rest of this summary.

7. Case Studies 180

7.4.1. Research Question 4 - In what areas can TEDS change the way that

teachers track student status?

Research Question 4 was concerned with evaluating how successful TEDS is at

assisting teachers. The teacher did have access to more data during the case studies

and they to some extent used this data to view the current status of the students.

During Case Study Three, there were instances where the teacher used the data to see

that a student was not making progress. The teachers then used this evidence to help

the students. Especially during Case Study Three results collected from the students

by TEDS potentially revealed instances of all three of Perkins [Per85] three types of

novice programmer behaviours. With this categorisation reported to teacher they

could then decide with how to proceed in order to support the students.

TEDS was also found to have a negative impact by the way that the teachers used

the data collected by TEDS. The teachers admitted that they trusted the data too

much and were therefore less inclined to interact with those students with ‘positive’

status updates (no compiler errors or method invocation failures). As was noted in

sections 4.4.2 and 4.4.3, the compiler and method invocation data may show a

positive trend (i.e. successful compiles and method invocations) when the teachers

used TEDS, while the student may have difficulties with their code. This means that

a teacher by trusting this data could result in them not interacting with students who

may actually have difficulties.

A further impact is that formerly proactive teachers felt that through using TEDS

they became more reactive.

7.4.2. Research Question 5 - In what areas can TEDS change the way that

teachers and students interact?

TEDS providing the teachers with additional data on the status of the students

changed the way that some interactions started. Some teachers and students did use

the features and this combined with repeated use and feedback from the students,

7. Case Studies 181

illustrates the positive opinions on these features and TEDS potential to improve

communication. In addition to this both the students and teachers in the

questionnaires agreed that they perceived that TEDS improved communication.

Despite the positive questionnaire responses the features designed specifically to

assist directly with communication were not widely used. Features that were not

widely used but that the students and teachers liked in theory were Feature D – Help

Button, Feature E – Short Message Functionality and Feature G – Image Sending.

A further area where TEDS impacted on interactions is through the teachers relying

on TEDS to track progress. Feedback from the teachers noted that the teachers were

more inclined to interact with students showing a negative status (i.e. compiler errors

and unsuccessful method invocations). This reliance on the status updates meant that

the stronger students did not receive positive reinforcement, which is a useful

component of teacher to student interactions.

However, it must be further investigated to see how using TEDS in the long term

could improve communication as teachers and students get more familiar with using

its features.

8. Conclusions 182

8. Conclusions
This work has sought to evaluate whether technology can be used to improve a

teacher’s ability to support students during practicals. This chapter outlines what was

discovered during each of the three research phases. The chapter also considers any

limitations of the thesis and areas for further work.

8.1. Research Phases

The research phases conducted are:

Research Phase i. Analyse existing methods of teaching programming and

identify issues with the current methods

Research Phase ii. Develop technologies to overcome these issues

Research Phase iii. Carry out case studies to see the potential of the technologies

to overcome any issues discovered.

Five research questions were addressed during the research phases. The questions are

reproduced below together the findings from the case studies.

8.1.1. Research Question 1 – What are the students’ and teachers’ opinions

on the pedagogic value of practicals?

Research Question 1 was concerned with evaluating how the students and teachers

felt about practicals within the context of an introductory programming module. The

students appreciated the pedagogic value of lectures as a mode of knowledge

transfer, but they value practicals more highly. The students noted, in the

questionnaires, that they especially value the way that they can apply the knowledge

taught from lectures, whilst being supported by teachers.

The majority of students viewed themselves as active learners. From the literature,

presented in Chapter 2, active learners are usually more suited to practicals, this

8. Conclusions 183

could provide an explanation as to why the students perceive practicals as having a

higher pedagogic value to lectures in their learning.

8.1.2. Research Question 2 – How do students begin interactions with

teachers in the existing practical setting?

Students were found to begin interactions with the teachers in two ways:

 1. Raising their hand and attracting the attention of the teacher

 2. Getting the attention of the teacher as they patrolled the classroom

The first method is a typical way of attracting attention and is effective in the

practical also. The second method is more problematic and usually took the form of a

student attracting the attention of a teacher, when the teacher walks behind or near to

them and subtly ask for help.

A minority of the teachers were reactive in the classroom and preferred to wait for

students to ask for help, rather than actively inquiring on current status or patrolling

the classroom. These ‘reactive’ teachers created some communication difficulties, as

the students who covertly asked for help, it was observed, tended not to have

interactions with these teachers.

Communication in general, was observed as being difficult in existing practicals.

This was due to two principle reasons. The first reason was the room layout, which

made it physically difficult for the teachers to get to the students to interact with

them. It was observed that a minority of the teachers avoided interacting with

students in difficult physical locations. The second reason occurred during the

interactions between the students and teachers. The teachers reported that the

students had difficulties explaining problems encountered with their work and these

led to some teachers having difficulties explaining solutions to the students.

8. Conclusions 184

8.1.3. Research Question 3 – To what extent can teachers perceive student

status in the existing practical setting?

The teachers who took part in this research valued the ability to be able to track a

student’s progress so that they can view the level each student is working at and

divide support according to this progress. The majority of teachers said they found it

easy to track the weaker and stronger students in the cohort, but the average students

are more difficult to track. These average students can vary between eventually

becoming a strong performer on the course, or they could fail, based on teacher

feedback.

Problems were identified with communication between teachers and students. One

factor involved in this problem is room layout, which made it difficult to see what a

student is doing and also to get to the student to interact with them. Difficult

communication has a direct impact on the ability of a teacher to track the progress of

a student, as without effective communication, tracking cannot be effective.

Furthermore, some of the students remarked that they find it difficult in some case to

effectively communicate their progress to teachers.

8.1.4. Research Question 4 – In what areas can TEDS change the way that

teachers track student status?

TEDS was developed during Research Phase (ii). TEDS aims to improve the

teachers’ ability to support students in programming practicals. Case studies were

carried out using TEDS to determine whether it enables teachers to provide better

support to the students.

The case studies generated both quantitative and qualitative results. The quantitative

observations alone did not provide any evidence that TEDS improved the teachers’

ability to track student status. The qualitative observations revealed that the teachers,

in a small number of cases, used the data collected by TEDS, to support the students.

These teachers used TEDS as a form of alert system to indicate which students

needed help.

8. Conclusions 185

The teachers commented that having the student status data provided by TEDS

allowed them to prioritise the students based on their current status i.e. more help for

students with more errors. But the teachers also noted that this resulted in students

with a positive status trend not be interacted with. This has the twofold problem of

the students who are doing well not receiving positive feedback, and also if a student

has a problem they may miss having a teacher coming to interact with them.

8.1.5. Research Question 5 – In what areas can TEDS change the way that

teachers and students interact?

TEDS did not change the way that the students and teachers interacted, although it

did have some impact on the way that the interactions were initiated. The teachers

noted that they felt having access to the data collected by TEDS, that they could

prioritise student support by the students who had errors.

During the case studies, observations revealed that the students using TEDS had

statistically longer interactions with the teachers than the ones not using TEDS with

a difference of 13.45 minutes (Students With TEDS) to 8.18 minutes (Students

without TEDS).

In regard to whether students perceived an improvement in the interactions, the

qualitative feedback from the questionnaires revealed that the students did perceive

improved communication in practicals using TEDS. They felt that TEDS enabled the

teachers to support them more in depth than they usually did. The response rate from

the questionnaires although was not great enough to draw any statistically accurate

results from these responses.

The feedback from the students was positive in regards to TEDS. The students

responded that that they did not see it as being too intrusive and they valued the

support that they received from the teachers using TEDS.

8. Conclusions 186

8.2. Limitations

The case studies revealed that TEDS has the potential to overcome some of the

issues that exist within practicals, more extended use of the tool would be required

to see if the potential can be realised over different cohorts, over extended periods

and with different configurations of teachers. It could be that the tool would be more

beneficial in practicals with a higher proportion of reactive teachers where the

reporting systems by revealing students with issues, prompt teachers to ‘react’ to

these stimuli.

The results of this work may not be generalisable outside the context presented,

because the case study was not extended outside of the single participating

institution. The results collected during this research may not occur if the same

experiments were run in courses related to those other than programming. Further

work would need to be carried out to explore the transferability of the approach

across institutions or disciplines.

8.3. Further Work

There are two areas where the work presented in this work can be furthered. The first

is by extending the case study and the second is by using TEDS in lectures.

Extending the case study would help to discover, with more certainty, if TEDS has a

positive impact on the teachers ability to support students in practicals. The main

way of extending the case study would be to make it longer. The case studies could

be extended to include a full year of the teachers and students using TEDS. Although

this would increase the amount of data collected it would still provide difficulties in

judging whether TEDS is an improvement over the current methods. Control groups

would be required with students and teachers of similar abilities either using or not

using TEDS.

A further way of extending the case studies would be to put more focus on the

diagramming tool. During this work the potential of the feature was seen both

8. Conclusions 187

through the use of it and from feedback. A further case study just using the

diagramming tool feature would be useful to further see if it has potential to assist

teachers in supporting students.

Another way of extending the case study would be to use a different programming

language. This would present another challenge as languages such as Java require to

be compiled which enables some of the important functionality of TEDS in

presenting to the teachers how a student is currently proceeding with the work. Other

languages such as PHP are not compiled so would not allow TEDS to collect these

messages. The challenge with languages like this would be to find other ways to

track status/activity, such as by creating key loggers, which would record how many

characters are being typed by the students. With this data it can be viewed if the

students are not coding and therefore could be having difficulties or that they are

coding. Also with non-compliable languages more focus could be put onto the

features designed to facilitate communication, as teachers would no longer be able to

use just the compiles and compiler errors to see how a student was progressing.

The second area would be to investigate if TEDS can assist students to assimilate

more knowledge in lectures. TEDS’s features allow students to compile or run there

code and a lecturer could potentially view the success of this on a console. This

would allow lecturers to teach theory and then the students can apply it. TEDS could

then provide the teachers with an indication of the success of a student’s application

of the theory in terms of their compiler and method invocation events.

8.4. Summary

In summary this work has revealed that tools can be developed in a way that are both

practical and useful for teachers to use in practicals element of introductory

programming courses. The tools can be used to highlight which students may need

help and also have the potential to improve communication in classes. The notable

findings from research are that:

• There are proactive and reactive teachers.

8. Conclusions 188

• Students prefer to covertly ask for help.

• Teachers noted that they used compiler and method invocation status updates

to prompt interactions with students with problems.

• TEDS can help to overcome the difficulties in supervising students in typical

computer laboratories.

Despite these findings, some of the features of TEDS were not widely used by the

teachers. These were typically the features that required the teacher to interact with

the system.

The use of TEDS in its current form could also be perceived as having a negative

impact in some cases on how the teachers supported the students in the practical.

This is especially the case for more proactive teachers, who used the data to prioritise

their support for the students with the most errors. This resulted in two negative

impacts:

1. Some stronger students missing out on positive feedback.

2. Some of the data collected by TEDS is not always accurate, the teachers may

not have interacted with a student based on a false interpretation of the data.

These negative impacts of using TEDS do show that TEDS on its own cannot replace

the valuable one–to-one communication between a teacher and a student, but could

be an extension to their methods of support. TEDS could especially be useful where

teachers are more reactive and wait for stimuli before they interact with students .The

tool, in its present form, can alert teachers to students who may need help and can

provide further context on their problems. Although further work could be done on

interpreting the data that is collected and how this is displayed to the teachers to

make TEDS more effective.

Appendices 189

Appendix 1 – Teacher Preliminary

Case Study Questionnaire

Question Statements

Strongly

Agree Agree

Neutral

Disagree

Strongly

Disagree

Practicals are a good way of teaching

programming

Students don’t seem to remember much of

what they are taught in lectures

BlueJ is the most appropriate tool for teaching

novice programmers Java

Students are usually willing to ask for help if

they need it

Students are good at describing the problems

that they have with their code

I generally find it easy to help students with

their problems

You find the majority of the students are open

to talking to you if you ask them questions

I am a proactive demonstrator (ask the

students questions) rather than a reactive

demonstrator (wait for the students to ask me)

If you had the option to change anything about practicals what would it be?

Appendices 190

What do you see as the positives and the negatives of a practical?

Do you think in the current practical setting it is difficult to judge how well one

student is doing?

“Students are just interested in the mark” What do you think?

Do you have any other general comments on practicals:

Appendices 191

Appendix 2 – Student Preliminary Case

study Questionnaire
Dear Student

This questionnaire is to see what your opinions are about the way IP/PDS is

taught and also about what type of learner that you think you are.

This is part of a project to see if communication and feedback in IP/PDS

practicals can be improved by the use of a technology that I have developed.

Question Statements

Strongly

Agree Agree Disagree

Strongly

Disagree

1. I think lectures are useful as a catalyst of learning

2. I prefer practicals for learning rather than lectures

3. I usually achieve what I am set to do in practicals

4. I find it easy to approach the demonstrators for help in

practicals

5. I find it difficult to explain my problems to the

demonstrators

6. I have an outgoing character

7. I am more of an active learner (learning by doing) than a

passive learner (learning by listening)

Prior to University have you had any programming experience?

Appendices 192

How does a University practical compare to a secondary school lesson, in terms

of support, independent learning, difficulty etc?

Any other comments on practicals:

Appendices 193

Appendix 3 – Teacher Post Main Case

Study Questionnaire

Question Statements

Strongly

Agree Agree Disagree

Strongly

Disagree

The technology improved my ability to help

students

You were a more proactive demonstrator today

than a practical without the technology

The technology was difficult to use

The technology made it easier for me to see

which students were struggling

You helped more students in the lesson due to

this software

Students asked for help more often in this

practical in comparison to a normal practical

You see the benefit of this system and would like

a system like this to be introduced to

programming practicals on a regular basis

Did the technology reveal any things that you found surprising? I.e. in regards to

student compiler behaviour, particular students success/failure rates etc

Did you use the diagramming tool today in practicals? If yes do you think it improved

your ability to help the students?

Appendices 194

Would you like any more functions to be added to the system?

Do you think this technology could be used in lectures? For example by using small

programming tasks to reinforce theory and using the reporting systems to show the

lecturer if students understand what is being taught?

Any other Comments:

Appendices 195

Appendix 4 – Student Post Main Case

Study Questionnaire

Question Statements

Strongly

Agree Agree Disagree

Strongly

Disagree

The demonstrators in this practical gave more

valuable advice than usual

I felt that the reporting systems were not too

obtrusive

I am more likely to use the help message box than

asking the demonstrator directly for help (for

example by putting my hand up)

I did not see any noticeable difference between the

usability of the normal BlueJ and the extended

BlueJ

I believe lectures on Java would be more interesting

if the theory that is being taught is supported by

practical programming components(needs

rephrasing)

Did you use the help box to request help from the demonstrators in this practical? If

yes how was it?

Did the demonstrator use the diagramming tool to help to explain something to you?

If yes do you think that the diagram helped you to understand the problem better?

Did you feel that with the demonstrators seeing how your code was progressing in

practicals that you were more conscious of making mistakes?

Appendices 196

Did the demonstrators spend more or less time with you in this practical?

Did you have a feeling of being continuously supported by the demonstrators?

Did you feel continuously watched by the demonstrators?

Any other comments/ suggestions for improvements to the software:

Appendices 197

Appendix 5 – Observation Tally Chart

Sheet

General

 Types Of

Interactions

Computer Student

Name

Tally of

Interactions

(2 min per

stick)

Inquire

on

progres

s

Help

provided at

request

Mark

work

Help

requeste

d through

software

Students

help

requirement

revealed by

software

Social

1

2

3

4

5

6

7

8

9

10

* Scaled down from A3 to A4

References 198

References

[Ahm05] M. Ahmadzadeh, D. Elliman, and C. Higgins. An Analysis of

Patterns of Debugging Among Novice Computer Science

Students. ITiCSE ’05, June 27-29, Monte de Caparica, Portugal. Pp

84 - 88. 2005.

 [AM00] G. D. Abowd. E. D. Mynatt. Charting Past, Present, and Future

Research in Ubiquitous Computing. ACM Transactions on

Computer-Human Interaction, Vol. 7, No. 1, March 2000, Pp 29–58.

[Ban06] D. A. Banks. Audience Response Systems in Higher Education.

Information Science Publishing, London, UK, 2006.

[Bar32] F.C. Bartlett. Remembering: A study in experimental and social

psychology. Cambridge University Press, London, U.K., 1932.

[Bar05] L. Barkhuus. Bring Your Own Laptop Unless You Want to Follow

the Lecture: Alternative Communication in the Classroom.

GROUP’05, November 6-9, 2005, Sanibel Island,, FL, USA. Pages

140 - 143

[Bas68] M. Bassey. Learning methods in tertiary education. Nottingham

Regional College of Technology, 1968.

References 199

[Ben01] M. Ben-Ari. Constructivism in Computer Science Education.

Journal of Computers in Mathematics and Science Teaching, 20(1),

pp 45-73. 2001.

[Big02] J. Biggs. Teaching for Quality Learning at University. Open

University Press, Buckingham UK, 2002.

[Bli98] D.A. Bligh. What’s the use of lectures? Intellect,

Exeter UK, 1998.

[Blu10] BlueJ, www.bluej.org. WWW, last visited: March 2010

[Bon03] C. C. Bonwell. Active Learning: Creating Excitement in the

Classroom. Active Learning Workshop, 2003.

[Bor80] A. Bork. Interactive Learning. In The computer in school: Tutor,

tool, tutee pages 53-66, New York: Teachers College Press, 1980.

[Bor03] A. Bork. Interactive Learning 20 years later. Contemporary Issues

in Technology and Teacher Education, 2(4) pp 608 – 614, 2003.

[Bow06] J. Bown. Disciplinary Commons Submission. WWW.

www.disciplinarycommons.org/ last accessed March 2009.

[Boy90] E. L. Boyer. Scholarship Reconsidered. The Carnegie Foundation

for the Advancement of Teaching, New York, 1990.

References 200

[Car01] L. Carson. Teaching Power. In H. Edwards, B. Smith, and G.Webb,

editors, Lecturing. Case studies, experience and practice. Kogan Page

Limited, London, U.K., 2001.

[Cla83] R. E. Clark, Reconsidering Research on Learning from Media.

Review of Educational Research, Vol. 53, No. 4, Pp. 445-459. Winter,

1983.

[Cof04] F. Coffield. D. Moseley. E. Hall. K. Ecclestone. Learning styles and

pedagogy in post-16 learning. Learning & Skills research centre,

2004.

[Cow81] L. Cowan. Suggestions for a modified lecture programme

Educational Methods Unit Occasional Paper. Oxford Polytechnic,

1981.

[Cut01] Q. Cutts. Engaging a Large First Year Class. In M. Walker, edited,

Reconstructing Professionalism in University Teaching, SRHE series

of the Open University Press, 2001, pp105-128.

[Cut05] Q. Cutts. G. E. Kennedy. Connecting Learning Environments Using

Electronic Voting Systems. In A. Young & D. Tolhurst, edited,

Australiasian Computing Education Conference 2005, Conferences in

Research and Practice in Information Technology, Vol.42, 2005.

Newcastle, Australia.

References 201

[Cut07] Q. I. Cutts. S. Jamieson. Comparing Two Free Programming

Projects Used In Introductory Programming Courses. 8th

Conference of the Subject Centre for Information and Computer

Sciences, Southampton, England. 2007.

[Daw03] P. Dawabi, L. Dietz, A. Fernandez, and M.Wessner. Concert-

Studeo: Using PDAs to support face-to-face learning. In

Proceedings of the International Conference on Computer Supported

Collaborative Learning (CSCL’03), pp 235–237, Bergen, Norway,

Jun. 2003.

[Die03] L. Dietz, P. Dawabi, A. Ferndandez, and M. Wessner. Improving

Face-to-Face Learning with ConcertStudeo. Learning Technology,

IEEE Computer Society, Vol. 5(No. 2), pp 51–57, 2003.

[Dij89] E. W. Dijkstra. On the cruelty of really teaching computer science.

Communications of the ACM, 32, pp 1398 – 1404, 1989.

[Dra10] S. Draper, http://www.psy.gla.ac.uk/~steve/ilig/people.html. WWW,

last visited: March. 2010.

[Dre86] H. Dreyfus and S. Dreyfus. Mind Over Machine: The Power of

Intuition and Expertise in the Era of the Computer. New York:

Free Press. 1986.

[Duf96] R. J. Dufresne. W. J. Gerace. W. J. Leonard. J. P. Mestre. L. Wenk.

Classtalk: A Classroom Communication System for Active

References 202

Learning. Journal of Computing in Higher Education, 7, 3-47,

(1996).

[Dun05] D. Duncan. Clickers in the Classroom. Addison-Wesley, US. 2005.

[Dun06] D. Duncan. Clickers: A New Teaching Aid with Exceptional

Promise. Astronomy Education Review, Volume 5, Apr 2006 - Oct

2006, pages 70 – 88

[Dur10] Durham University, www.durham.ac.uk. WWW, last visited:

September. 2010

[Ecp10] Eclipse IDE, www.eclipse.org. WWW, last visited: September. 2010

[Edw03] S. Edwards. Improving Student Performance by Evaluating How

Well Students Test Their Own Programs. ACM Journal of

Educational Resources in Computing, Vol. 3, No. 3, Article 01,

September 2003.

[Eng06] J. English. The Checkpoint Automated Assessment System.

ITiCSE ’06, June 26-28, Bologna, Italy. Pp 337. 2006.

[Eng09] J. English, & T. Rosenthal. Evaluating Students’ Programs Using

Automated Assessment – A Case Study. ITiCSE ’09, July 6-9,

Paris, France. Pp 371. 2009.

References 203

[Fin06] S. Fincher Ed. Some Good Ideas From The Disciplinary

Commons. 7th Conference of the Subject Centre for Information and

Computer Sciences. 2006.

[Fli92] U. Flick. Triangulation Revisited: Strategy of Validation or

Alternative? Journal for the Theory of Social Behaviour, 22:2. 1992.

[Her89] N. Herrmann. The creative brain. Brain Books,

The Ned Hermann Group, North Carolina, 1989.

[Hme04] C. E. Hmelo – Silver. Problem-Based Learning: What and How Do

Students Learn? Educational Psychology Review, Vol.16, No.3,

September 2004.

[Gag65] R.M. Gagne. The conditions of Learning. Holt, Rinehart & Winston,

1965.

[Gal91] K. B. Gallagher, & J. R. Lyle. Using Program Slicing in Software

Maintenance. 1991

[GB93] N.L. Gage and D.C. Berliner. Educational Psychology.

Houghton, Mifflin, Boston, Massachusetts, 5th edition, 1993.

[Gib81] G. Gibbs. Twenty terrible reasons for lecturing. SCED Occasional

Paper No. 8, Birmingham. 1981.

References 204

[Gib92] G. Gibbs. Improving the quality of student learning. Technical and

Educational Services Ltd, Bristol, UK. 1992.

[Int07] InterWrite Learning. www.interwritelearning.com. WWW, last

visited: June. 2007.

[Jac02] N. Jackson. QAA: CHAMPION FOR CONSTRUCTIVE

ALIGNMENT! LTSN Generic Centre, University of Surrey,

November 2002.

[Jad05] M. C. Jadud. A First Look at Novice Compilation Behaviour Using

BlueJ. Computer Science Education, Vol. 15, No. 1, pp 25 – 40.

March 2005.

[Jam06] S. Jameson. Disciplinary Commons Submission. WWW.

www.disciplinarycommons.org/ last accessed March 2009.

[JISC06] JISC. Designing Spaces for Effective Learning. Higher Education

Funding Council for England, Bristol. 2006.

[Jon23] H.E. Jones. Experimental studies of college teaching. Archives of

Psychology, Vol. 68, 1923.

References 205

[Kal80] G. Kalton, J. Roberts, & D. Holt. The Effects of Offering a Middle

Response Option with Opinion Questions. The Statistician, Vol. 29,

No. 1. Pp. 65-78. 1980

[Kem01] E. Kemp. Observing Practise as Participant Observation –

Linking Theory to Practise. Social Work Education, Vol. 20, No. 5,

pp 527 – 538. 2001.

[Kin91] A. King. Effects of students’ self-questioning, summarizing, and

note taking-review on immediate and delayed lecture

comprehension. Paper presented at the meeting of the American

Psychological Association, San Francisco, August 1991.

[Kir06] P. A. Kirschner, J. Sweller & R. E. Clark. Why Minimal Guidance

During Instruction Does Not Work: An Analysis of the Failure of

Constructivist, Discovery, Problem-Based, Experiential, and

Inquiry-Based Teaching. Educational Psychologist, 41(2), pp 75 –

86. 2006.

[Kol03] M. Kölling, B. Quig, A. Patterson, & J. Rosenberg. The BlueJ

System and its Pedagogy. Journal of Computer Science Education,

Special Issue on Learning and Teaching Object Technology. Vol. 13,

No. 4. Dec 2003.

[Lan58] H. A. Landsberger. Hawthorne Revisited: Management and the

Worker, Its Critics, and Developments in Human Relations in

References 206

Industry. Distribution Center, NYS School of Industrial and Labor

Relations, Cornell University, Ithaca, New York. 1958

[Lau06] D. Laurillard. Rethinking University Teaching: a framework for

the effective use of learning technologies. 2nd Edition. Routledge

Falmer, Cornwall UK. 2006.

[Lav08] J. Lavery, & A. Low. Concept Mapping in Lectures. Proceedings of

9th Conference of the Subject Centre for Information and Computer

Sciences, Liverpool, England. 2008.

[Llo68] D.M. Lloyd. A concept of improvement of learning response in the

taught lesson. Visual Education, pages 23–25, Oct. 1968.

[LDK+07] D. Lindquist. T. Denning. M. Kelly. R. Malani. W. G. Griswold. B.

Simon. Exploring the Potential of Mobile Phones for Active

Learning in the Classroom. SIGCSE’07, March 7-10, 2007,

Covington, Kentucky, USA.

[Mac70] J.M. Trenaman. The Length of a Talk. In McLeish: The Psychology of

Teaching Methods (1976), 1951.

[McL76] J. McLeish. The Lecture Methods. In N.L. Gage, editor, The

psychology of teaching methods, pages 252–301. The University of

Chicago Press, Chicago, IL, U.S.A., 1976.

References 207

[Mil07] A. J. Milne. Entering the Interaction Age Today. In Educause

review. January/ February 2007.

[ML03] M. McCabe and I. Lucas. Engagement with Mathematics in an

Interactive Classroom. In Proceedings of the 6th International

Conference on Technology in Mathematics Teaching (ICTMT6),
Volos, Greece, Oct. 2003.

[Mye95] B. A Myers. User Interface Software Tools. ACM Transactions on

Computer-Human Interaction, Vol.2, No 1, March 1995, pages 64-

103

[Nov84] G. Novak. Learning technologies should be designed to increase,

and not to reduce, the amount of personal contact between

students and faculty on intellectual issues. Study Group on the

Conditions of Excellence in American Higher Education, 1984.

[Opt07] Option Technologies. www.optiontechnologies.com. WWW, last

visited: June. 2007.

[Par05a] R.P. Pargas. MessageGrid: Providing Interactivity in a

Technology-Rich Classroom. Two Page Overview, Clemson

University, 2005.

[Par05b] R. P. Pargas. MessageGrid: Providing Interactivity in a

Technology-Rich Classroom (Presentation). Microsoft Research,

Faculty Summit 2005.

References 208

[Par06] R. P. Pargas. Reducing Lecture and Increasing Student Activity in

Large Computer Science Courses. ITiCSE ’06, June 26-28, 2006,

Bolgna, Italy.

[Per85] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin & R. Simmons.

Conditions of Learning in Novice Programmers. Concept Paper.

Educational Technology Centre, ETC-85-13, April 1985.

[Qwi07] Qwizdom. www.qwizdom.com. WWW, last accessed: June. 2007.

[Rav00] A. Ravenscroft and M.P. Matheson. Developing and evaluating

dialogue games for collaborative e-learning. Journal of Computer

Assisted Learning (2002) Vol. 18, 93-101

[Rob03] A. Robins, J. Rountree & N. Rountree. Learning and Teaching

Programming: A Review and Discussion. Computer Science

Education, Vol. 13, No. 2, pp. 137-172. 2003.

[Ros71a] B. V. Rosenshine. Objectively measured behavioral predictors of

effectiveness in explaining. In I. D. Westbury & A. A. Bellack,

editors, Research into classroom processes (pp. 51-98). Teachers

College Press, New York, 1971.

[Ros71b] B. V Rosenshine. Teaching behaviours and student achievement.

London, National Foundation for Educational Research in England

References 209

and Wales. Brings together, clusters, and summarizes about fifty

studies.

[Ruh90] K. L. Ruhl. C. A. Hughes. & A. H. Gajar. Efficacy of the Pause

Procedure for Enhancing Learning Disabled and Nondisabled

College Students' Long- and Short-Term Recall of Facts

Presented through Lecture. Learning Disability Quarterly, Vol. 13,

No. 1. (Winter, 1990), pp. 55-64.

[Sch05] N. Scheele. The Interactive Lecture: A new Teaching Paradigm

based on Pervasive Computing. PhD thesis, University of

Mannheim, Faculty of Computer Science, 2005.

[Sch70] J.R. Schoen. Use of Consciousness Sampling to Study Teaching

Methods. Journal of Educational Research, Vol. 63, pages 387–390,

May 1970.

[Smi01] B. Smith. Just give us the right answer. In H. Edwards, B. Smith,

and G.Webb, editors, Lecturing. Case studies, experience and

practice. Kogan Page Limited, London, U.K., 2001.

[SS69] H. W. Stevenson. & A. Siegel. Effects of instruction and age on

retention of filmed content. Journal of Educational Psychology, Vol.

68, pages 71 – 74, 1969.

[Ste99] R. J. Sternberg. Thinking styles. Cambridge University Press,

Cambridge, 1999.

References 210

[Tre51] J.M. Trenaman. The Length of a Talk. In McLeish: The Psychology

of Teaching Methods (1976), 1951.

[Ver92] J. D. Vermunt. Learning styles and directed learning processes in

higher education: towards a process-oriented instruction in

independent thinking. Swets and Zeitlinger, Lisse, Netherlands,

1992.

[WFU07] Wake Forest University. http://classinhand.wfu.edu/. WWW, last

visited: June. 2007.

[Win96] L. E. Winslow. Programming Pedagogy – A Psychological

Overview. SIGCSE Bulletin, 28. Pp 17 – 22. 1996.

[Wit03] E. Wit. Who wants to be … The Use of a Personal Response

System in Statistics Teaching. In MSOR Connections Vol. 3 No 2

May 2003, pp 14 – 20.

[You92] M. F. Young, & J. M. Kulikowich. Anchored Instruction and

Anchored Assessment: An Ecological Approach to Measuring

Situated Learning. Paper presented at the Annual Meeting of the

American Educational Research Association, April 1992.

