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Many body effects in
one-dimensional attractive Bose

gases

David Ian Henry Holdaway

Abstract
In this thesis we investigate the properties of ultra-cold quantum gases in
reduced dimension and the effects of harmonic confinement on soliton-like
properties. We study regimes of agreement between mean-field and many-
body theories the generation of entanglement between initially independent
finite sized atomic systems.
Classical solitons are non-dispersing waves which occur in integrable sys-
tems, such as atomic Bose-Einstein condensates in one dimension. Bright
and dark solitons are possible, which exist as peaks or dips in density. Quan-
tum solitons are the bound-state solutions to a system satisfying quantum
integrability, given via the Bethe Ansatz. Such integrability is broken by the
introduction of harmonic confinement. We investigate the equivalence of the
classical field and many-body solutions in the limit of large numbers of atoms
and derive numerical and variational approaches to examine the ground state
energy in harmonic confinement and the fidelity between a Hartree-product
solution and a quantum soliton solution.
Soliton collisions produce no entanglement between either state and result
only in an asymptotic position and phase shift, however external potentials
break integrability and thus give the possibility of entangling solitons. We in-
vestigate the dynamical entanglement generation between two atomic dimers
in harmonic confinement via exact diagonalisation in a basis of Harmonic os-
cillator functions, making use of the separability of the centre-of-mass compo-
nent of the Hamiltonian. We show repulsive states show complex dynamics,
but with an overall tendency towards states of larger invariant correlation
entropy, whereas attractive states resist entanglement unless a phase match-
ing condition is satisfied. This phase matching condition could in theory be
used to generate states with highly non-Poissonian number superpositions in
atomic systems with controlled number.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Bose-Einstein condensation

Bose-Einstein condensation (BEC) was originally theorised by Einstein in
1925, extending the theories of S. N. Bose [3], which were based on photon
statistics, to particles of a finite mass via the introduction of a chemical poten-
tial, denoted µ, to the theory. The most general definition of a Bose-Einstein
condensate is a system of particles with integer spin whose single-body den-
sity matrix has one large eigenvalue which is a finite fraction of the total
number in the thermodynamic limit [4]. However, a more intuitive definition
comes from the idea that the wavefunctions of the (identical) particles signifi-
cantly overlap, hence they cannot be distinguished as individuals and behave
as a single entity. To quantify this for a system with a number density n and
thermal de-Broglie wavelength

λdB =

√
2π~2

mkBT
, (1.1)

one usually defines a measure called the phase space density

PSD = max(n)λ3
dB . (1.2)

1
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As this parameter tends to unity, the wavefunctions are around the size of
the inter-atomic spacing and the quantum statistics become increasingly im-
portant. Condensation typically occurs when PSD & ζ(3/2) ∼ 2.6 with ζ(x)

the Riemann Zeta function (c.f. Sec. A.1.2); for liquid 4He this condition
is satisfied at temperatures of a few Kelvin1. However the high density of
approximately 2 × 1022 atoms/cm3 means the system is strongly interact-
ing, leading to strong correlations between atomic positions effects and a
condensate fraction lower than 10%, even as the temperature tends to abso-
lute zero. This fraction is still sufficient to yield interesting properties like
super-fluidity.

Dilute gases of Alkali atoms (number densities of the order of 1013 to 1015

atoms/cm3) can satisfy weak interaction conditions2 and tend to condensate
fractions near 100% at sufficiently low temperatures. However condensation
occurs at much lower temperatures, typically of the order of a few hundred
nanoKelvin. These nearly pure condensates can often behave like a single
nonlinear wavepacket or “super-atom” and respond in an identical way to
external potentials. This wave can be made to interfere with itself like a
single atom, but due to the large number of atoms present (typically 104 to
107) one can image entire momentum distributions without being as limited
by shot noise. This classical picture sometimes breaks down and can miss
interesting physics, a concept we explore within this thesis.

1.1.2 Solitons

What is a soliton?

Definitions of what exactly constitutes a soliton or a soliton supporting sys-
tem differ somewhat between fields; a common definition [6] states that in
order for a wave to be a soliton, it must

• be of permanent form (not undergoing dispersion),

• be localised within a region,
1At atmospheric pressure a phase transition is found to occur at around T = 2.2K [5].
2Specifically that the number density times the cube of the s-wave scattering length is

much smaller than unity.
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• be able interact with other solitons, with the asymptotic outgoing form
unchanged, except for a position and phase shift.

A notable point about the first two conditions is that they are properties
obeyed by everyday solid objects, simply being in one distinct place at a
given time and not changing its shape; these are however very interesting
properties for a wave as any wave in a linear system will undergo dispersion,
unless it is uniform throughout all space (which breaks condition two) or
subject to some external potentials. The third condition is not a property
of every day objects, even totally elastic collisions between several difference
objects can change the outgoing momentum, and hence distinguishes what is
so special about these wavepackets. We refer to solitons which are a peak/dip
in density as bright/dark respectively.

Observation of solitons in nature

The first recorded observation of a bright soliton was by Scott Russell in
August 1834. He observed a water wave in a shallow canal, created by a
fast moving boat suddenly coming to a stop. Following it on horseback for a
couple of miles, he noticed it maintained a constant velocity and shape as it
propagated. After some time, the amplitude and velocity decayed slowly until
he lost it in the winding canals. He originally referred to this phenomenon as
a “wave of translation,” the term soliton was coined afterwards. Mathematical
models of shallow water waves use the Korteweg de Vries (KdV) equation [7]
and have the following soliton solution3

h(x− x(0)− vt) =
v

2
sech2

[√
v

2
(x(0)− a− vt)

]
, (1.3)

with v the velocity and h the height above the background level of the water.
The sech2(x) (inverse cosh2(x)) profile is common for bright solitary waves.

Additionally signals between neurons have been predicted to be transmitted
as solitons [8] and pulses of light can be transmitted as solitons in optical
fibres with a focusing Kerr nonlinearity [9]. The focus of this work is around

3Up to unit rescalings to system dependent parameters.
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solitons found in dilute gases of atoms, confined to one dimensional geome-
tries.

1.1.3 Motivating experiments and theory

Interest in BEC solitons has increased in recent years thanks to experimental
demonstrations of BEC in attractive gases (c.f. [10] and references herein).
Attractive condensates exhibit a collapse phenomenon, which was observed
by several groups [11–13]. Cornish et. al. later noticed localised remnants of
the collapse which appeared to behave like solitons [14], forming a train that
was stable for many collisions, despite containing too many atoms to have a
stable local energy minimum. Trains of multiple solitons had been observed
previously [15], but not directly following a collapse. Theoretical modelling of
the multiple soliton system suggests a relative phase of π is required between
neighbouring solitons to stabilise the system [16] and proposals have been
made to generate solitons with controlled relative phase to test this [17].
Other research suggests solitons can exhibit Anderson localisation [18] and
could be used to probe surface potentials [19].

In addition to these experiments, many-body calculations are possible for
cold atoms in quasi one-dimensional geometries via the Bethe ansatz [20]
and the system is often said to be quantum integrable and collisions between
quantum solitons cannot transfer atoms. The interaction of solitons with
narrow barriers can lead to coherent splitting [21] in the high kinetic en-
ergy regime, enhanced reflection and transmission [22, 23], or soliton barrier
bound states [24] with attractive barriers. In the low energy regime there is
the possibility of creating mesoscopic quantum superpositions [25, 26], and
other beyond mean-field effects. Additionally, calculations suggest coherence
between interacting solitons may be lost [27], leading to a fragmented sys-
tem. Weak 3D effects also lead to broken integrability, allowing for inelastic
scattering between solitons [28].

1.2 Thesis layout

This Thesis is organised as follows:
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Chapter 2 discusses the onset of Bose-Einstein condensation and the deriva-
tion of the nonlinear wave equation describing the evolution, referred to as the
Gross-Pitaevskii equation (GPE). We also include an explanation of dimen-
sional reduction via harmonic confinement and a summary of experimental
progress and techniques.
Chapter 3 introduces the concepts of classical integrability, and discusses
soliton solutions to integrable systems and multiple soliton solutions to the
one dimensional GPE.
Chapter 4 discusses many-body physics in one dimensional systems and the
concept of quantum integrability and the Bethe ansatz. Additionally we
derive a numerical method for calculations within a harmonic oscillator oc-
cupation number basis.
Chapter 5 includes calculations relating to a single soliton in harmonic con-
finement, discussing centre-of-mass separability and regimes of agreement
between mean-field approximations and many-body results.
Chapter 6 investigates dynamics of collisions between two indistinguishable
finite number systems, oscillating in a harmonic potential. This focuses on
the generation of entanglement between each system and the trend to equi-
librium at late times. We also discuss observed resonance effects, which are
due to a phase matching.

1.3 Summary of Publications arising from this

work

D. I. H. Holdaway, C. Weiss, and S. A. Gardiner, Quantum theory of bright
matter-wave solitons in harmonic confinement, Phys. Rev. A 85, 053618
(2012).

In this paper we investigated many-body quantum solutions to attractive
bosons in harmonic confinement. We derive a variational method based on
the Bethe Ansatz and a numerical method based on exact diagonalisation in
a finite basis, making use of the separation of the Hamiltonian into two com-
muting parts. It is found that there is strong agreement between the centre-
of-mass energy subtracted GPE solutions and true many-body grounds states
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and high overlap between the Hartree product solution and the many-body
cluster state with a localised centre-of-mass envelope.

D. I. H. Holdaway, C. Weiss, and S. A. Gardiner, Collision dynamics and
entanglement generation of two initially independent and indistinguishable
boson pairs in one-dimensional harmonic confinement, Phys. Rev. A 87,
043632 (2013).

In this paper we investigated few-body collision dynamics between indepen-
dent boson pairs, again in harmonic confinement. We investigate the rate of
increases of invariant correlation entropy and number uncertainty between
the two regions to the left and right of the trap centre. It is found that attrac-
tive systems resist entanglement forming between both sides unless resonance
conditions are met.



Part I

Background material

7



Chapter 2

Bose-Einstein condensation,

harmonic confinement and s-wave

scattering

2.1 Harmonic oscillator potentials and ladder

operators

2.1.1 The importance of Harmonic oscillator potentials

The harmonic potential V (x) = kx2/2 = mω2x2/2, is one the most widely
utilised potentials in both classical and quantum physics. The prevalence in
theoretical work is due in part to the fact that it is analytically solvable, but
the physical importance is due to the properties of small oscillations about
an equilibrium position xeq. This position can simply be rescaled out of any
equation and so can be taken to be at zero without any loss of generality.
We consider the Taylor expansion of the potential about x = 0:

V (x) = V (0) + V ′(0)x+ V ′′(0)
x2

2
+
∞∑
n=3

xnV (n)′(0)

n!
. (2.1)

8



Chapter 2. Bose-Einstein condensation 9

Zeros of potentials are essentially arbitrary, hence we can set V (0) = 0.
Gradients in potential energy give rise to forces (or spatial differences in
rates of phase evolution for waves) which are real measurable effects. To be
an equilibrium position, we require that the net force at that point is zero,
i.e.

F (0) = −V ′(0) = 0 , (2.2)

so we can immediately ignore the first order derivative as well. There is how-
ever, no ab initio reason to assume the second derivative vanishes (although
one can construct saddle-point potentials for which this is the case) and so
for small enough displacements V (x) ≈ kx2/2 [with k = V ′′(0)] and thus
F (x) ≈ −kx. Within this small displacement approximation, we can easily
solve Newtons equation mẍ = −kx(t) for the displacement at a given time t

x(t) = x(0) cos

(√
k

m
t

)
+ ẋ(0)

√
m

k
sin

(√
k

m
t

)
. (2.3)

The key point here being that oscillation occurs with a constant angular
frequency ω =

√
k/m regardless of the initial condition. Additionally it

is possible to solve all the eigenfunctions ψn(x) for a quantum mechanical
particle in a harmonic oscillator potential. These are given by

ψn(x) =
φn(x/a)√

a
(2.4)

with a =
√

~/mω the harmonic oscillator length and φn the Hermite func-
tions

φn(x) =
H(x)√
n!2n
√
π

e−x
2/2 . (2.5)

Note that the Hermite polynomials H(x) are defined in Eq. (A.12a). The
energy eigenvalues En = ~ω(n+ 1/2) are spaced linearly in units of ~ω.

2.1.2 Harmonic oscillator potentials in D dimensions

If we consider a D dimensional harmonic oscillator system V (r) = m(ω2
1r

2
1 +

...ω2
Dr

2
D)/2 the dynamics can be split into many one dimensional equations.
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Within classical mechanics, given an initial displacement and velocity in each
direction, one simply has Eq. (2.3) for every dimension. Hence the problem
is totally separable. This is not the case for, say, atoms in a 3D magnetic
quadrupole potential: V (x, y, z) = µ ·B = k

√
x2 + y2 + k2z2 [29].

Quantum mechanically we can again separate our Hamiltonian out into D
commuting parts

Ĥ = Ĥ1 + Ĥ2 + ...+ ĤD , (2.6)

Ĥk = − ~2

2m

∂2

∂r2
k

+
mω2

kr
2
k

2
, (2.7)

where it can be seen that [Ĥk, Ĥj] = 0 if j 6= k as they share no coordi-
nates. Because of the commuting, we can construct eigenstates of the total
Hamiltonian Ĥ through the individual Hamiltonians for each dimension. The
eigenstates and eigenenergies are of the form:

Ψn1,..,nD(r) = φn1(r1)φn2(r2)...φnD(rD) (2.8a)

En1,..,nD = ~
D∑
j=1

ωj(nj + 1/2) , (2.8b)

with φn(x) given by Eq. (2.5) with an appropriate harmonic oscillator length
based on ωj.

General ladder operators

Ladder operators are a useful tool for analysis of the quantum harmonic
oscillator (QHO) system.1 In general an operator L̂− (with L̂+ = (L̂−)†), is
a ladder operator to Ô if it satisfies

[Ô, L̂±] = ±cL̂± , (2.9)

with c a constant that can be rescaled to unity by rescaling Ô → Ô/c without
loss of generality, which we will assume from now on. Note that this structure
implies that we can express L̂+ = P̂ + iQ̂ where P̂ and Q̂ are symmetric
operators [30]. When acting on any eigenstate of Ô with eigenvalue n we

1Additionally ladder operators are important for angular momentum algebra.
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have the relation

ÔL̂±|n〉 = (L̂±Ô + [Ô, L̂±])|n〉 = (n± 1)L̂±|n〉 . (2.10)

As such the eigenvalue is raised/lowered by unity. Additionally, we can see
that L̂+L̂− commutes with Ô

ÔL̂+L̂− = ([Ô, L̂+]L̂− + L̂+[Ô, L̂−] + L̂+L̂−)Ô

= L̂+L̂−Ô . (2.11)

Ladder operator for the multidimensional harmonic oscillator

We specialise now to the QHO, defining the raising and lowering operators
for dimension k, â†k and âk, as [31]

âk =

√
mωk
2~

(
r̂k +

i

mωk
p̂k

)
. (2.12)

Here p̂ is the momentum operator. These operators also satisfy the commu-
tator relations

[âj, â
†
k] = δjk , (2.13)

which can be verified via [r̂k, p̂j] = i~δkj. We can now express the Hamilto-
nian as

Ĥ = ~
D∑
k=1

ωk(â
†
kâk + 1/2) , (2.14)

with each term in the sum corresponding to one of the Hamiltonians Ĥk

in Eq. (2.7), with eigenstates which can be denoted as a tensor product of
states |n1〉1...|nD〉D. Considering only one dimension,2 we see that the state
are non-degenerate and so the requirement that â† raises the eigenvalue by
one [Eq. (2.10)] can be expressed as â†|n〉 = f(n)|n+ 1〉. We can determine

2Extending to many dimensions just involves noting that âk|nj〉j = |nj〉j âk if j 6= k.
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f(n) by noting that via Eq. (2.13)

〈n|ââ†|n〉 = 1 + 〈n|â†â|n〉 , (2.15)

which implies the important ladder property

â†|n〉 =
√
n+ 1|n+ 1〉 . (2.16a)

â|n〉 =
√
n|n〉 . (2.16b)

Using this it is possible to construct all the eigenstates from the ground state:

|n1〉1...|nD〉D =
(â†1)n1

√
n1!

...
(â†D)nD√
nD!
|0〉 . (2.17)

Degeneracy of states in symmetrical oscillators

In principle, if all the harmonic oscillator frequencies ωk are different from
one another by an irrational number then no degeneracy is present. However,
if any ωk/ωj is close to a rational number then approximate degeneracies will
need to be accounted for. We consider the simplest situation of ω1 = ω2 =

. . . = ωD = ω, i.e. a spherical (or hyper-spherical in general) oscillator.
The degeneracy gn of states with energy En = (n + D/2)~ω is given by the
number of ways to construct the integer n fromD non-negative integers (with
repetition) [32], and is given by

gn(D) =

(
D + n− 1

n

)
=

(D + n− 1)!

n!(D − 1)!
, (2.18)

noting the important physical cases of D = 2, gn = n + 1 and D = 3,
gn = (n + 1)(n + 2)/2 with no degeneracies for D = 1. We note this is
the same degeneracy as energy levels in a 1D many-body system with N

distinguishable particles. The degeneracy for identical particles is discussed
later in Sec. 4.2.2.
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Summary

We introduced the harmonic oscillator potential and explained its importance
within physics. We listed known results about Hamiltonian separability in
multi-dimensional oscillators and introduced the ladder operators as tools to
understand the system. Finally we noted the high degeneracies of symmetric
oscillators, due to the linear spacing of the energy levels.

2.2 Interactions in a cold bose gas

2.2.1 A degenerate bose gas and the critical tempera-

ture

As we mentioned in Sec. 1.1.1, we can intuitively describe Bose-Einstein con-
densation (BEC) by comparing the thermal de-Broglie wavelength [Eq. (1.1)]
with the average distance between the atoms, leading to a measure called the
phase space density [Eq. (1.2)]. For PSD & 1 the wavefunctions start to over-
lap. In aD dimensional system (reduced dimension is discussed in Sec. 2.2.5),
with a number density n, this happens when3

kBT < max(n)2/D2π~2/m . (2.19)

At this point bosonic spin statistics become important; a many-body wave-
function for N identical bosons must be symmetric with the interchange of
any of the coordinates. The effect of this symmetry is to radically change the
degeneracy of energy states. A system ofN distinguishable particles will have
an N -fold degenerate first excited state, with N − 1 particles in the ground
state and particle one, two, three,..., or N in the first excited state, whereas
our bose gas only has one. This causes the deviation from the Maxwell-
Boltzmann statistics that lead to a phase transition when PSD∼ ζ(3/2) [34].

This indistinguishably is somewhat counter intuitive but does occur in clas-
sical probability. If one asks “A couple has two children, at least one of which

3Equation (1.1) for the de-Broglie wavelength is also true for D dimensions, so long as
the momentum dispersion relation is the same [33]
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is male, what is the probability the other child is male?” the obvious answer
appears to be 1/2 however it is in fact 1/3, because the information has only
ruled out the possibility of having two girls, leaving the three equally likely
outcomes: boy+boy, girl+boy and boy+girl (ordered by date of birth). As
more information is available distinguishing the first and second born, such
as the boy being born on a Tuesday (leading to a probability of 13/27 for
two boys) the probability approaches 1/2.

We do not discuss the thermodynamics extensively here, but note that below
some temperature Tc, referred to as the critical/condensation temperature in
the literature, a Bose gas will have a macroscopic occupation of the ground
state energy level. For a three dimensional Bose gas in a harmonic oscillator
potential, we have to leading order in N ,

Tc = ~ωavζ(3)−1/3N1/3 , (2.20)

with similar expressions for lower dimensional systems [35]. Again to leading
order in N , the ground state occupation N0 in a D dimensional harmonic
oscillator in thermal equilibrium is found to be

N0 ∼ N [1− (T/Tc)
D] . (2.21)

For this thesis we consider systems in which the temperature is considered
to be low T � Tc and as such can be considered to be zero, unless otherwise
stated. At a many-body level this statement becomes somewhat ill defined,
and so we say that there is no uncertainty in initial conditions and no coupling
to any external systems beyond what is explicitly considered.
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2.2.2 Scattering theory and the many-body problem

The many body problem in 3D

The most general 3D Hamiltonian describing a system of identical particles,
in identical spin states, is given in second quantised form as

Ĥ =

∫
dr Ψ̂†(r)H0(r)Ψ̂(r)

+
1

2

∫∫
drdr′ Ψ̂†(r′)Ψ̂†(r)V (r− r′)Ψ̂(r)Ψ̂(r′) (2.22)

H0(r) = −~2∇2/2m + V (r) contains the kinetic and external potential
terms and V (r − r′) describes the interactions between the particles. In
general this interaction potential can be very complicated. Taking a com-
monly used inter-atomic interaction potential (Van der Waals/Lennard-
Jones) V (r) = −C6r

−6 + C12r
−12, where r = |r − r′|, this potential would

support many bound states and considerably complicate the dynamics (even
for a few atoms) and so must be simplified in order to deal with the many-
body problem. It is possible to assign an effective range to any potential
that falls asymptotically faster than 1/r [36], which has been calculated for
an atomic potential [37]. However, for low momentum scattering we are in-
terested in the classical turning point of the potential r0 defined by V (r0) = 0,
after which point a relative wavefunction for two atoms with a relative mo-
mentum of zero must decay exponentially.

Solving the two body scattering problem in the zero momentum

limit

First we wish to solve the two body scattering problem by finding solutions
to the Schrödinger equation(

−~2∇2

m
+ V (r)− E

)
Ψ(r) = 0 , (2.23)

which is obtained by separating the centre-of-mass and relative wavefunctions
of two identical particles. Here r = r1 − r2 and the factor of two is missing
from the kinetic energy as we are considering the reduced mass.



Chapter 2. Bose-Einstein condensation 16

An incoming wave Ψinc(r) = exp(ik · z), with4 z = r cos(θ) and energy E =

~2k2/m, has the asymptotic scattering wavefunction [34]

Ψ(r)→ eikr cos(θ) +
eikr

r
fk(θ) . (2.24)

This is valid for r � r0 providing that V (r) decreases faster than 1/r asymp-
totically. The function fk(θ) is known as the scattering amplitude (with θ

the angle between r and the axis of propagation of the incoming wave). This
is related to the scattering cross section σ of two identical particles via

dσ = |fk (θ)± fk (π − θ)|2 sin(θ)dθdφ , (2.25)

with the + sign taken for Bosons and 0 ≤ θ ≤ π/2. For non-identical
particles the π − θ term is missing and θ runs up to π. It is also known [38]
that fk(θ) → −as with as a constant as k → 0; as there is no angular
dependence the angular momentum quantum number `, is zero and this is
a pure s-wave scattering solution. This result is intuitively obvious since,
if there is no velocity, direction cannot be an important parameter after
scattering.5 Integrating Eq. (2.25) over the unit of solid angle of the upper
half sphere then gives

σ(k = 0) = 8πa2
s , (2.26)

or zero for fermions. Hence identical fermions do not interact via s-wave
scattering.

The constant as is a highly important quantity called the s-wave scattering
length. This quantity is also defined through the scattering phase shift, which
can be extended to reduced dimensions [34]

cot(δ(k))→


−(kas)

−1 In three dimensions
2
π
log(ka2D) In two dimensions

ka1D In one dimension .

(2.27)

4Any direction of propagation can be rotated to the z axis.
5Alternatively, one can see that the classical turning point of the centrifugal barrier

potential, V` ∝ `(`+ 1)/r2, tends to infinity as the kinetic energy decreases, unless ` = 0.
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Bound state solutions in the scattering spectrum

We also note in passing the case of E < 0 solutions, i.e. bound states. These
states exist in what are usually referred to as “open channels” in the scat-
tering matrix. Considering again a low energy limit, where the ` = 0 state
dominates, we can express the asymptotic wavefunction of a bound state
from scattering as

Ψ(r)→ C
e−κr

r
, (2.28)

with κ defined by its relation to the energy E = −~2κ2/m. If this energy
is large, then for any r � r0 (the asymptotic region), this wavefunction is
already small and this bound state has little effect on the scattering length
of the potential. However, if a bound state is present with a small energy,
satisfying

|E| < ~2

mr2
0

, (2.29)

then the wavefunction will have a large penetration to the asymptotic region.
If this is the case then one can identify κ = k cot(δ0) and so κ→ −1/as and
f = 1/(κ + ik) in the k → 0 limit [34]. The presence of a close-to-threshold
bound state leads to a divergence in the scattering length of the form as ∼
~/
√
m|E| and to the scattering cross section diverges as σ ∼ 1/(mE/~2+k2).

This phenomenon is known as a Feshbach resonance [39].

Weak interactions in the uniform Bose gas

Interactions between atoms in a Bose gas will modify the ground state of
a many-body system such that it is no longer uncorrelated. However, for
weak repulsive interactions and large numbers of atoms, these correlations
are likely to be minor, and can be added into the theory. For the case of a
uniform Bose gas, free from external potentials, in a periodic box of volume
V , we can expand Ψ̂(r) in Eq. (2.22) over momentum space

Ψ̂(r) =
∑
p

1√
V
ĉpe

ip·r/~ . (2.30)

In the limit N0 → ∞ we need only consider interactions between atoms in
the zero momentum state; the matrix element V0 = 〈0|V̂ |0〉 can be computed
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via the second Born approximation (see for example [40]) to be

V0 = g3D +
g2

3D

V

∑
p6=0

m

p2
+O(g3

3D) . (2.31)

where we have introduced the interaction coupling parameter

g3D =
4π~2as
m

. (2.32)

If we take 1/N0 and na3
s to be small parameters and take T = 0, we can set

ĉ0 = N0 (equivalent to ignoring the commutation relation with its complex
conjugate) and derive expression for bulk properties in the condensate [34],
including the pressure: P = g3Dn

2/2 and sound velocity: c =
√
g3Dn/m.

Using the order g2
3D approximations for V0 in Eq. (2.31), Bogoliubov showed

that the Hamiltonian could be put into the diagonalised form in terms of
quasi particles, with energies [41]

ε(p) =

√
g3Dnp2

m
+

(
p2

2m

)2

. (2.33)

The final point we note on the weakly repulsive uniform gas is that if |p| � mc

(with c the sound velocity), then we have a phonon like relation ε(p) ∼ pc

and if |p| � mc we have ε(p) ∼ p2/2m + ng3D, a free particle like relation.
This transition can be characterised by a momentum p = ~/ξ, at which the
mean field interaction energy ng3D and kinetic energy p2/2m are equal, with
the length scale

ξ =

√
~2

2m|g3D|n
=

1√
2

~
mc

, (2.34)

often called the healing/correlation length. This is an important length,
characterising scales on which the condensate can recover coherence after
changes. It is essentially independent of the dimensions as the number density
is rescaled by the same amount as the effective coupling parameter. It is also
applicable in non-uniform condensates, where n can be taken as a peak or
background density. Alternatively it is sometimes preferable to take a the
local density in which case we refer to ξ(r) as a local healing length. The
background healing length determines the critical angular velocities for the
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formation of vortices, and, up to a relativistic-like correction, the length
of dark solitons [see Eq. (3.6)]. The peak healing length determines the
condition for the Thomas-Fermi regime in repulsive condensates (∇2

√
n �

√
n/ξ(0)2 such that the quantum pressure can be neglected) and the bright

soliton length [see Eq. (3.3)].

2.2.3 The contact scattering pseudo potential

In the dilute gas limit (satisfying na3
s � 1), scattering events between atoms

will be dominated by 2-body events. At extremely low temperature these
events will also be equivalent to k → 0 limit. Therefore it is possible to re-
place the real interaction potential with one that gives the correct asymptotic
scattering properties in the zero wavevector limit [42]. Denoting, r = ||r−r′||
the potential used is 6

V (r− r′) = g3Dδ(r− r′)
∂

∂r
r (2.35)

= g3D
δ(r)

4πr2

∂

∂r
r

where g3D is the coupling parameter given in Eq. (2.32). This potential is
often referred to as the Fermi-Huang pseudo potential. The ∂

∂r
r term regu-

larises any divergences of the wavefunction that are of the form A(r + r′)/r,
where A(r) is a function that is non divergent. If as > 0, then this renormal-
ized potential permits bound states between pairs of atoms with a reduced
mass µ = m1m2/(m1 + m2) of depth E = −1/2µa2

s, even as the scattering
cross section tends to zero. Several very deep molecular bound states usu-
ally exist for atomic scattering potentials, but a zero width potential can
only support one. Interestingly recent work has shown this potential can be
explicitly represented in Fourier space [43, 44]:

δ(r)
∂

∂r
[r exp(ir · k)] = δ(r)

[
1− δ(1/k)

k

]
, (2.36)

6This also requires that the effective range of the potential is much less than the average
atomic separation, which is typically not the case for atoms such as Chromium, which
posses strong dipolar interactions, scaling as r−3.
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hence the attractive component for g3D > 0 applies if the occupation of states
with k →∞ drop only as 1/k.

If one ignores this regularisation term, an approach generally valid for a
large number of atoms, we have V (r − r′) = g3Dδ(r − r′). This potential
always has the same sign as g3D and so positive (negative) as will mean
repulsive (attractive) interactions between atoms. The Hamiltonian can now
be simplified to

Ĥ =

∫
dr Ψ̂†(r)H0(r)Ψ̂(r) +

g3D

2

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) . (2.37)

The removal of the regularisation does introduce some pathologies, such as
the ultra-violet divergences in the anomalous average [45], which occurs in
beyond mean-field treatments. Most relevant to this work is the lack of a
global energy minimum at the mean field level if as < 0, which we will discuss
in Sec. 2.3.4.

2.2.4 Transformation to first quantisation

We can transform our second quantised Hamiltonian into a first quantised
Hamiltonian by considering its action on an arbitrary state ket in Fock space,
defined via the vacuum state |0〉 and

|ψ〉 =
∑
n

an√
n!

∫ ∞
−∞

. . .

∫ ∞
−∞

ψn(~r, t)
n∏
i=1

Ψ̂†(ri)dri|0〉. (2.38)

We use ~x to denote a set of particle coordinates {x1, x2, . . . , xn}, in order
to distinguish it from r, which is used for vectors of spatial coordinates.
Hence used together ~r = {r1, . . . , rn} denotes a set of coordinates which
are spatial vectors. This distinction is import for symmetrisation of many-
body wavefunctions. The wave function and coefficients in Eq. (2.38) satisfy
appropriate normalisation conditions

Σn|an|2 = 1,
∫∫ ∞
−∞
|ψn(~r, t)|2dr1...drn = 1. (2.39)
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For most of our purposes however we will assume a definite number of atoms
and hence an = δN,n.

2.2.5 Scattering in strong transverse confinement

The Lieb–Liniger model of a 1D gas [20] with contact interactions V (xk −
xj) ∝ δ(xk−xj) is not immediately applicable to a three-dimensional state. In
the presence of strong radial harmonic confinement, we can assume the radial
degrees of freedom of all the atoms in the system are in the ground state of
this external potential, as the interactions are too weak to change this. With
this assumption, the radial degree of freedom of our many-body wavefunction
is described by a product state Ψ(r1, . . . , rN) = Ψ(~x)

∏
k φ0,0(ρk) with ρk =√

y2
k + z2

k and integrate the interaction terms (ignoring the regularisation)
over the radial degrees of freedom. In the two body case this gives∫∫ ∞

−∞
dy1dy2dz1dz2

e−(y21+z21)/a2⊥

πa2
⊥

e−(y22+z22)/a2⊥

πa2
⊥

g3Dδ(r1 − r2)

=g3Dδ(x1 − x2)

∫ ∞
−∞

dy1

∫ ∞
−∞

dz1
e−(y21+z21)/a2⊥

π2a4
⊥

=
g3D

2πa2
⊥
δ(x1 − x2) , (2.40)

the many body case just includes N(N − 1)/2 terms with an identical coef-
ficient.

A more rigorous derivation by Olshanii [46] looks at the two-body scattering
problem with the regularised contact potential in the presence of strong har-
monic confinement, using the regularised interaction pseudo potential given
by Eq. (2.36). This method assumes the incoming scattering states are in
the ground state of a radial harmonic oscillator potential and have a relative
kinetic energy which is less than the excitation energy to the first radially
symmetric excited state (2~ω⊥). This assumption means that outside of the
range of the interaction potential (which is zero) the occupation of radial ex-
cited states by the outgoing scattering states must decay exponentially with
the separation. Hence for an incoming scattering state of wavevector kx the
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outgoing scattering state is given asymptotically by

Ψasym(x, ρ) =
exp (−ρ2/2a2

⊥)

πa⊥

[
eikxx + feveneikx|x| + foddsgn(x)eikx|x|

]
,

(2.41)
with fodd = 0 by Bose symmetry. Due to the continuity of the wavefunc-
tion, we can fix feven by meshing the asymptotic expression [Eq. (2.41)] with
boundary condition at the origin, set by V (r) [Eq. (2.36)]. This leads to

feven = − 1

1 + ikxa1D +O(kxa⊥)3
, (2.42)

where we have introduced the 1D scattering length

a1D =
a⊥
as

(
1− ζ(1/2)

as
a⊥

)
, (2.43)

which satisfies Eq. (2.27). We note a1D diverges as as → a⊥/ζ(1/2) and tends
to a constant a1D → −ζ(1/2) as |as| → ∞ (essentially shifting the position of
Feshbach resonances). Intuitively this can be understood as being due to the
coupling between the bound state of the scattering pseudo potential, with
energy ~2/ma2

s, and the ground state of the trapping potential, with energy
~ω = ~2/ma2

⊥.

The scattering amplitude [Eq. (2.42)] is known to be reproduced in the limit
of kx → 0 by a contact pseudo-potential of the form [46]

V (x) =
~2

µa1D

δ(x) ∼ δ(x)

[
g3d

πa2
⊥

+O

(
as
a⊥

)]
, (2.44)

which reduces to Eq. (2.40) if |as| � a⊥.

Summary

We discussed the zero momentum limit of two-body scattering processes and
how this lead to pure s-wave scattering, along with possible Feshbach reso-
nances if a close-to-threshold bound state was present. We then noted how
bulk properties of a uniform Bose gas could be derived at T = 0 and in the
case of weak interactions, leading to the definition of the healing length as
an important scale. Finally we introduced the interaction pseudo potential
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to simplify the many-body Hamiltonian, and results for scattering in strong
radial harmonic confinement.

2.3 Derivation of the Gross Pitaevskii equation

2.3.1 The Onsager-Penrose condition and off-diagonal

long range order

In order to define Bose-Einstein condensation for systems that are inter-
acting, we will need to generalise the notion of the macroscopically occupied
lowest single particle eigenstate. For a weakly interacting condensate, we can
consider any particles not in the ground state mode to be “non-condensate”
atoms, often referred to as a quantum depletion. This criterion is less use-
ful for more strongly interacting systems. For example, the ground state
of repulsive atoms in a weak harmonic potential [max(n)g3D � ~ω] form a
Thomas Fermi profile [34]. This density profile is much wider than the non-
interacting ground state of the trap. Equally an attractive system will have a
density profile which is much narrower than the ground state. In both cases
one can show the occupation of the lowest mode of the harmonic oscillator
is not significantly higher than any other, but both can be well described by
a mean field approximation, indicating there is still macroscopic coherence.
A more general criterion was devised in terms of the trace of the system’s
single body density matrix over all but one of the degrees of freedom [47].
This work lead to the general criterion in terms of the first order spatial
correlation function [4]

g(1)(r, r′) =
〈Ψ̂(r)†Ψ̂(r′)〉√

〈Ψ̂(r)†Ψ̂(r)〉〈Ψ̂(r′)†Ψ̂(r′)〉
→ Nc

N
as |r− r′| → ∞ , (2.45)

with Nc/N a finite fraction as N →∞, which is referred to as “off-diagonal
long range order.” This can also be expressed via eigenvalue decompositions
of the single-body-density matrix (the top half of the fraction in Eq. (2.45))

ρ(r, r′, t) ≡ 〈Ψ̂(r)†Ψ̂(r′)〉 = Ncφ(r)∗φ(r′) +O(1/N) , (2.46)
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i.e. that it has one large eigenvalue with all others a small fraction of the
total number of atoms. This forms the condition of validity for the GPE and
the condensate number, where the maximally occupied state corresponds to
the condensate wavefunction.

2.3.2 The Hartree product state

There are a number of possible way to derive the Gross-Pitaevskii equation
(GPE) from Eq. (2.37). One method, most useful at T = 0, is to assume the
many-body wavefunction is in Hartree product form, such that all atomic
wavefunctions are exactly the same:

ψN(r1, ..., rN , t) =
N∏
j=1

φ(rj, t) . (2.47)

Such a wavefunction has many simple properties. The field operator takes
the form Ψ̂(r) = ĉφ(r) where ĉ is an annihilation operator for a boson in that
mode. The one body density matrix, defined in Eq. (2.46), simplifies to the
form

ρ(r, r′, t) = Nφ∗(r, t)φ(r′, t) , (2.48)

and hence the density matrix of state ψN [Eq. (2.47)] has one large eigenvalue
equal to N , the total number of atoms, and is thus totally condensed by the
condition Eq. (2.46). Using this ansatz for the many-body wavefunction we
can calculate the time evolution from the action functional derived from the
Hamiltonian (2.37) and the wavefunction ψN :

S =N

∫
dr

{
φ∗(r, t)

[
i~
∂

∂t
−H0(r)

]
φ(r, t)− (N − 1)g3D

2
|φ(r, t)|4

}
.

(2.49)

Extremising this action with respect to variations in φ∗(r, t) then gives [48]

i~
∂

∂t
φ(r, t) = H0φ(r, t) + g3D(N − 1)|φ(r, t)|2 . (2.50)

The prefactor (N − 1) of the nonlinear term differs from that of the usual
GPE found in the literature in which this factor is N . However, the validity
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is only to order 1/
√
N and so this is not unexpected or inconsistent. In either

case, the GPE tends to an exact description as N → ∞ while g1DN is held
constant [49, 50]. The discrepancy is partly due to the way a Hartree product
ansatz breaks the translational symmetry. If the centre-of-mass dynamics
decouple from the interactions we can consider subtracting this energy from
the Hamiltonian, which would reproduce the usual factor of N , which we
show later in Sec. 5.2.

The Hartree-product method has the advantage of giving a tangible many-
body wavefunction. It is found to work well at describing the physics of the
system for systems with a high condensate fraction/weak correlation at zero
temperature and can be extended to include occupation of multiple single
particle wavefunctions via the multi-configuration time dependent Hartree
method for Bosons (MCTDHFB) [51]. Without this extension, the theory is
found to break down in the cases of high condensate depletion and in situa-
tions like double well potentials [52], where many body effects are present.

2.3.3 Decomposition of the field operator

Alternatively, we can consider the Heisenberg equation of motion for the field
operator. As Ψ̂(r) is not explicitly time dependent, this can be written as

i~
d

dt
Ψ̂(r) = [Ĥ, Ψ̂(r)] , (2.51)

with the Hamiltonian (2.37). Using the bosonic commutation relation
[Ψ̂†(r), Ψ̂(r′)] = δ(r− r′), we can simplify this equation to

i~
d

dt
Ψ̂(r) =

[
H0 + g3DΨ̂†(r)Ψ̂(r)

]
Ψ̂(r) . (2.52)

This is still a fully quantum mechanical equation, in order to simplify this
to a classical field equation, (the GPE), we need to make an approximation.
This is usually achieved by breaking the U(1) symmetry, i.e. assuming our
state has an indefinite number of atoms such that 〈Ψ̂〉 =

√
Nc 6= 0, with Nc

the number of condensate atoms, and assuming all fluctuations about this
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mean value are small [34]

Ψ̂(r) = 〈Ψ̂(r)〉+ (Ψ̂(r)− 〈Ψ̂(r)〉) ≡
√
NcΨ(r) + δψ̂(r) . (2.53)

The operator δψ̂(r) is assumed to have an expectation value of zero and we
have taken Ψ(r) to be normalised to unity. This is often called the Bogoliubov
ansatz. Alternatively, one can also expand Ψ̂(r) into condensate and (small
fluctuation) non condensate parts in a number conserving way [50]

Ψ̂(r) = ĉΨ(nc)(r) + δ(nc)ψ̂(r) . (2.54)

Here ĉ is an annihilation operator for a quantum in the condensate mode.
This approaches assumes that there is one large eigenvalue Nc ≈ N � 1

to the density matrix, with its eigenvalue relating to the population of the
condensate atoms and corresponding eigenstate to the wavefunction.

Taking Eq. (2.52) to lowest order in either fluctuation operator results in the
usual Gross Pitaevskii equation [53, 54] (GPE), valid to order 1/

√
Nc:

i~
d

dt
Ψ(r) =

[
H0 +Ncg3D|Ψ(r)|2

]
Ψ(r) . (2.55)

This mean field equation is the workhorse of the majority of BEC physics.
It is a type of nonlinear Schrödinger equation which is also used in other
areas of physics such as nonlinear optics. In both the number conserving and
symmetry breaking cases, the non-condensate dynamics are contained in the
small fluctuation operator δψ̂(r). Various expansions to higher orders in the
fluctuation operator exist in both the number conserving [50] and symmetry
breaking formalisms, allowing for the derivation of quantities like the sound
velocity within the condensate, and the properties of collective excitations in
a similar way to Sec. 2.2.2. However, U(1) symmetry breaking expansions
can show some non-physical pathologies in driven systems [55].

An important point about the GPE is that the time dependence of a sta-
tionary state (evolving only in phase) is governed by the chemical po-
tential. In the symmetry breaking formulation, Eq. (2.53) implies that
〈Ψ̂(r)〉 =

√
NcΨ(r),7 this means that state with n particles is qualitatively

7Whereas for a number conserving derivation this expectation value would be identically
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similar to a state with n− 1 particles. This condition is satisfied for a Pois-
sonian distribution of atom number, i.e. a coherent state

|Nc〉Ψ = exp

(
−|Nc|2

2

) ∞∑
n=0

Nn
c√
n!
|n〉 , (2.56a)

ĉ|Nc〉Ψ =
√
NC |Nc〉Ψ . (2.56b)

This would well describe a BEC coupled to an infinite thermal bath, with
which it can exchange particles (grand canonical ensemble), resulting in an
uncertainty in the number of condensate atoms. Assuming Nc � 1 we can
treat the creation and annihilation operators as numbers, i.e. ĉ ≈

√
Nc,

ĉ† ≈
√
Nc + 1 and ignore any commutators. Averaging over states with time

dependence of the form e−iE(n)t/~ then gives time dependence of the order
parameter/single particle wavefunction of the GPE

Ψ(r, t) = Ψ(r)e−iµt/~ , (2.57)

where µ = E(NC)− E(NC − 1) is the chemical potential of the system.

For what follows we will denote NC = N as we do not explicitly consider
condensate depletion.

2.3.4 Condensate Collapse with attractive interactions

Lack of global energy minimum with the GPE model

Introducing attractive interactions also introduce new physics. Unlike their
repulsive counterparts, attractive condensates are inherently unstable to col-
lapse. With experimental considerations in mind, we consider the energy
(with the Gross-Pitaevskii theory) of a condensate in a D dimensional sym-
metric harmonic trap (or in reality a cylindrical symmetric prolate trap with
3−D directions having extremely strong confinement compared to the other
D, which we discuss in detail in 2.4) with an orbital Ψ(r) = LD/2f(r/L),
with a variational length L and with r a radial coordinate for the appropri-

zero.
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ate number of dimensions:

E = N

∫
dr

{
L−Df ∗(r/L)

[
−~2∇2

2m
+
mω2r2

2

]
f(r/L) + L−2DNg3D

2
|f(r/L)|4

}
= f1L

−2 + f2L
2 + g3Df3L

−D . (2.58)

Here all the function fk > 0 are positive and f3 ∝ N , with values dependent
on the definition of f(r). For D = 1, we can differentiate Eq. (2.58) with
respect to L and set the result equal to zero to find a finite value of L which
minimises the energy, such as was considered in [56]. In the case of zero
trapping (f2 = 0) and g3D < 0, the minimising length scales inversely with
the interaction strength: L = 2f1/|g3D|f3. In D = 2 an energy minimum
exists8, provided f1 + g3Df3 > 0, at L = [f2/(f1 + g3Df3)]1/4. However, it is
clear that for g3D < 0 and D = 3, as L → 0 the g3Df3L

−3 term dominates.
As such we have E → −∞, and hence no finite width ground state.

In reality, below a certain L the GPE is not an adequate description of the
system. Significant three-body effects leading to molecule formation and the
repulsive components of the scattering potential begin to play a significant
role. Arguments based around the GPE predict large (N � 1) attractive
condensates will either disperse (without confinement) or undergo a phase
transition to a solid or liquid phase [57]. This is hard to envisage in any
realistic experimental scenario. What is usually observed is a collapse fol-
lowed by expansion, possibly repeating several times, accompanied with jets
of atoms [11–14].

Some theoretical work has been done to examine ways to make attractive
condensates stable to collapse, such as introducing angular momentum [58,
59], and using Bose-Fermi mixtures with repulsive p-wave scattering [60].

Existence of local energy minima

Despite the lack of a finite global energy minimum in 3D, attractive con-
densates can exist in quasi-stable local energy minima, provided the number
of atoms is below a critical value, which depends on as and external po-
tentials. Within a harmonic confining potential, it is found that a stable

8Note that if f1 + g3Df3 < 0 then there is not even a local minimum.
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local-minimum exists if

Υ3D :=
N |as|

(axayaz)1/3
< kc , (2.59)

with ax =
√

~/mωx the harmonic oscillator length in that direction and
where kc is a parameter depending on the trapping geometry; if ax = ay = az

we have kc ≈ 0.5746 [61] otherwise kc is smaller than this value. A list of
values has been calculated in [61] for radially symmetric traps. In Sec. 3.2.4
we show that this stability condition is relevant even when one of the trapping
widths tends to zero. To match Eq. (2.59) up with this extreme 1D case we
can take ay = az = λax ≡ a⊥ and obtain

Υ :=
N |as|
a⊥

< λ1/3kc , (2.60)

and note this implies kc ∼ λ−1/3k1D as λ→ 0, with k1D . 2/3. We will refer
to the left hand of Eq. (2.59), Υ3D, as the “3D collapse parameter” and kc as
the “3D critical value”, and their one-dimensional analogues in Eq. (2.60) as
the collapse parameter and critical value, since these are more important for
this work.

Summary

This section discussed off-diagonal long range order and a general criterion
for Bose-Einstein condensation in terms of the single-body density matrix
and its eigenvalues. Two derivations of the GPE were included, firstly using
Hartree product ansatz for the many-body wavefunction and secondly expand-
ing the field operator in terms of condensate and fluctuation components.
Finally we investigated the lack of a global energy minimum in attractive
condensates within the GPE model, and the importance of metastable local
energy minima.
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2.4 Reduction of dynamics to 1D, regimes of

different approximate models

Dynamics in a particular dimension can be “frozen out” by confining them
on length scales much smaller than the healing length [ξ in Eq. (2.34)]. In
the case of cylindrically symmetric traps, the radial trapping strength can
be increased in order to freeze out atomic dynamics in these directions; the
wavefunction in these directions (for cold atoms) will essentially look like the
ground state wavefunction of the trap. We noted in Sec. 2.1.1 that most
potentials look harmonic near the minima, for example a Gaussian potential
from a focused, red-detuned laser:

V (ρ) = V0 exp

(
− ρ

2

L2

)
. (2.61)

Taylor expansion of Eq. (2.61) up to second order: V (ρ) = V0(1−ρ2/2L2 + ..)

means we can associate a harmonic oscillator frequency ω2
⊥ = V0/mL

2 and
length a⊥ =

√
~/mω, so long as L� a⊥.

With this as a justification, we specialise to the case where trapping in the
radial directions can be considered harmonic, hence we take

V (r) = V (x) +
mω2

⊥(y2 + z2)

2
, (2.62)

with V (x) potentially any axial potential. We consider two regimes, based
on whether or not the nonlinear interaction is much smaller than the energy
gap between the ground and first excited state of the radial potential, i.e. if
the condition

~ωr � Ng3Dmax(|Ψ(r)|2) , (2.63)

is satisfied. Expressed in terms of the peak healing length, this condition
is ξ � a⊥. The first regime relies on Eq. (2.63) being satisfied, the latter
only requires ξ & a⊥. We noted when minimising Eq. (2.58) that the ground
state width (and therefore peak density) for an attractive condensate with
no trapping scaled inversely (linearly) with Ng3D, hence for Eq. (2.63) to be
satisfied for an attractive ground state we require Υ� 1.
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2.4.1 Completely 1D: wavefunction fully separable into

radial and axial components

Derivation of the 1D GPE

The simplest 1D reduction assumes the wavefunction is separable into an
axial wavefunction [as we did for Eq. (2.40)], which contains all the dynamics
of interest, and a radial component which is a ground state of the radial
potential. This is assumption is valid when the condition (2.63) is satisfied.
It is then possible to decompose the wavefunction as Ψ(r) = ψ(x)φ(y, z) in
much the same way as was used to derive Eq. (2.40), with

φ(y, z) = (a2
⊥π)−1/4 exp

(
−y

2 + z2

2a2
⊥

)
(2.64)

where a2
⊥ = ~/(mω⊥) is the radial harmonic oscillator length or zero point

oscillation amplitude. It is then possible to integrate the GPE [Eq. (2.55)]
over dydz and obtain a 1D equation.

i~
∂

∂t
ψ(x, t) =

{
− ~2

2m

∂2

∂x2
+ V (x) + ~ω⊥[2asN |ψ(x, t)|2 + 1]

}
ψ(x, t)

(2.65)

To simplify Eq. (2.65), we can rescale the global phase evolution (equivalent
to shifting the zero point energy) via ψ(x, t) = ψ̃(x, t) exp(−itω⊥) to cancel
the factor of ~ω⊥ and define a 1D coupling parameter as

g1D = 2~ω⊥as . (2.66)

In the case V (x) = 0, Eq. (2.65) then reduces to the nonlinear Schrödinger
(NLSE):

i~
∂

∂t
ψ̃(x, t) = − ~2

2m

∂2

∂x2
ψ̃(x, t) +Ng1D|ψ̃(x, t)|2ψ̃(x, t) . (2.67)
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1D ground states in harmonic confinement

It is experimentally relevant to consider V (x) = mω2
xx

2/2, and characterise
the ground states of Eq. (2.65) for a given Ng1D and ωx. This is moti-
vated both in understanding imaging data and optimising ramps (continu-
ous modification) of the scattering length and axial trapping frequency to
achieve adiabatic transition from a strongly trapped, repulsive condensate,
to a weakly trapped, attractive condensate. We do not explicitly calculate
adiabatic timescales here, but note that intuitively the best ramps should be
those that minimise changes to the shape of the ground state.

We first note that ground state solutions exist in three limits, which we
can express in terms of the healing length ξ [Eq. (2.34)] and the zero point
harmonic oscillator length ax =

√
~/mωx. The weak interacting limit, ξ �

ax, is solved by an ordinary Gaussian, |ψ|2 = exp(−x2/a2
x)/axπ

1/2. The
strongly interacting limit ξ � ax has two solutions; for g1D > 0 we can
neglect the kinetic energy term in Eq. (2.65), resulting in a Thomas-Fermi
profile [34]

|ψTF|2 =
max(2µ−mω2x2, 0)

2Ng1D

, (2.68)

with µ = (9mω2N2g2
1D/32)1/3 set by the normalisation. The standard devi-

ation (σ = 〈x2〉) of this solutions scales as (Ng1D/mω
2)1/3. For g1D < 0, the

ground state will be far more narrow than ax, and thus we can neglect the
potential to get Eq. (2.67), the solution of which is a bright soliton, given
later in Eq. (3.3). In both strongly interacting cases this approximation does
not apply in the wings, where the local density (and thus local healing length)
tends to zero, hence the asymptotic decay will always be Gaussian.

We numerically solve Eq. (2.65) for parameters relevant for the Durham 85Rb
experiment [62], using the numerical method outlined later in Sec. 5.4.4.
Additionally to the standard deviation, we plot the excess kurtosis, γ2 =

〈x4〉/σ2 − 3 of the ground state functions in Fig. 2.1. The reason for consid-
ering the Kurtosis, is that it can be used to identify the type of ground state
we see, as it is independent of the width. For the three extreme cases of the
Thomas-Fermi profile, Gaussian and bright soliton we have γ2 = −6/7, 0, 6/5

respectively; intermediate states will transition to these values slowly, as the
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Figure 2.1: (a) Ground state widths (in µm), (b) Kurtosis, for a range of axial
trapping frequency ωx and scattering lengths, given in units of a0, the Bohr
radius. We plot the square root of ωx to better demonstrate the behaviour
at low values, ωx runs from 2π× 1.5Hz to 2π× 28Hz. The other parameters
used are ω⊥ = 2π ×

√
28× 39Hz with 3000 atoms of 85Rb.

ground state becomes more and more peaked with decreasing as.

The regime with both strong attractive interactions and axial trapping does
not satisfy Eq. (2.63) and may in some cases correspond to systems with no
local ground state. The values are still physically meaningful in that they
are true if one takes ω⊥ → λω⊥ and as → as/λ, which keeps g1D the same
but gives Υ3D ∝ λ−2/3, which becomes small for λ sufficiently large, and
hence 3D effects can be neglected. Strongly repulsively interacting 1D gases
in harmonic confinement also have significant finite number and temperature
effects which are beyond mean field theory [63].

2.4.2 Quasi 1D: radial component not independent of

axial density

In the case where the energy change due to the nonlinearity is comparable to
that of the radial trapping, the nonlinear effects will alter the wavefunction
in the radial directions and so the axial and radial dynamics are no longer
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separable. This is less extreme than the situation investigated in [46], in
which the s-wave scattering length is comparable to the radial harmonic
oscillator width, leading to confinement resonances when the regularisation
term in Eq. (2.36) is included. As we will see for as < 0 having |as| ∼ a⊥

will inevitably result in a system which is unstable to collapse, and so this
correction is largely irrelevant for the attractive system, unless N is 2 or 3
atoms.

A good approach to modelling this situation via mean field methods is given
in [64], which modifies the harmonic oscillator width in Eq. (2.64) from a⊥

into σ2(x, t), a function of the axial coordinate; σ(x, t) is then treated it as a
variational parameter. We then determined the time evolution by applying
the principle of least action to the GPE action functional

S =

∫
dt

∫ ∞
−∞

dxdydz
ψ∗(x, t)

2πσ2
exp

[
−(y2 + z2)

2σ2

]{
ω2
⊥(y2 + z2)

2
− i~ ∂

∂t
− ~2

2m
∇2

+ V (x) +
g3D|ψ|2

2πσ2
exp

[
−(y2 + z2)

σ2

]}
exp

[
−(y2 + z2)

2σ2

]
ψ(x, t). (2.69)

This approach makes three key assumptions:

• Slow axial variation: The radial degrees of freedom follow adiabati-
cally the ground state of the combined potential of the radial harmonic
oscillator potential and the nonlinearity for the current axial density.

• Smooth axial profile: The derivative of the variational width along the
weakly confined direction ∂σ(x)/∂x is assumed to be negligible.

• Validity of the ansatz: The ground state of the combined potential
in the radial degrees of freedom can be well described by a Gaussian
profile.

The first and second assumptions rely on spatial (temporal) changes to ψ(x, t)

being small compared to a⊥ (1/ω⊥). These conditions can be violated by
rapid changes to the axial density cased, for instance, by peaks and troughs
due to an interference effect (e.g. after a collision with a barrier or other
soliton), or by fast changes to a⊥ or g3D. The third assumption could be
investigated numerically, but should generally be valid so long as the system
is not too close to the collapse threshold.
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The equation for the axial mean field wavefunction is known as the Non-
polynomial Schrödinger equation (NPSE). It is also generally found to be in
better agreement with full 3D numerical simulations of GPE dynamics than
the usual 1D treatment [65]. The final equations obtained from minimising
S with respect to variations in ψ∗ and σ are:

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+
g3DN

2π

|ψ|2

σ2
+

~ω⊥
2

(
σ2

a2
⊥

+
a2
⊥
σ2

)
+ V (x)

]
ψ(x, t) .

(2.70a)

σ2 = a2
⊥

√
1 + 2asN |ψ(x, t)|2 . (2.70b)

This equation features no rescaling of the chemical potential µ.

Summary

This section detailed the regimes of validity of effective 1D equations for con-
densates under strong radial confinement, noting the importance of the ratio
of the healing length and radial width as the important parameter for sep-
arability. We also numerically investigated the widths of ground states for
harmonically confined 1D condensates, using experimentally relevant param-
eters.

2.5 Experimental realisation of BEC

2.5.1 History and progress

The first attempts to create an atomic BEC were experiments with liquid
4He in a dilution fridge [66]. Liquid 4He, while a bosonic superfluid, strongly
violates the diluteness condition na3

s � 1 resulting in only a small condensate
fraction by the Onsager-Penrose definition, even as the temperature nears ab-
solute zero [5]. However liquid 4He still exhibits a critical temperature, below
which it displays superfluid behaviour, showing no measurable viscosity and
quantised vorticity [67].

The first confirmed experimental realization of BEC in dilute atomic gases
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came in 1995 [68, 69], with considerable progress since. To date many atomic
species have been successfully condensed [70, 71], which we split into sub-
groups: alkali metals [14, 68, 69, 72]: 7Li, 23Na, 39K, 41K, 85Rb, 87Rb, 133Cs;
effectively two electron atoms [73–75]: 40Ca, 84,86,88Sr, 170,174,176Yb; strongly
dipolar species [76–78]: 52Cr, 164Dy, 168Er and finally spin polarised H and
metastable 4He [79].

Additionally temperatures of less than 500pK have been achieved [80, 81],
with lifetimes of over a minute. More significantly for this work, it has been
possible to tune the scattering length between hyperfine states of species with
negative background ground scattering lengths, e.g. 85Rb [14], 7Li [15, 82] and
133Cs [83, 84], to positive values, allowing them to be Bose condensed. After
condensation is achieved the fields can be adjusted to return to as < 0 and
create attractively interacting condensates. These condensates are unstable
to collapse when held in confinement if they exceed a critical number of
atoms, as discussed in 2.3.4.

Recent experiments have also been able to access reduced dimensional
regimes, even going as far as to be able to manipulate the radial wavefunction
with optimal control schemes, in order to place it in an excited state [85].
Additionally great progress has been made with lattice experiments [86], with
the possibility to address single sites and observe quantum phase transitions.

2.5.2 Techniques required to obtain a BEC in a dilute

atomic gas

Overview

A simplified process to form a condensate in a dilute atomic gas is carried
out by loading the gas into a magneto optical trap (MOT) in an ultra-high
vacuum, transferring the gas into a conservative potential and manipulating
this potential to perform evaporative cooling until a desired temperature is
achieved.9 At this point the condensate can be manipulated as required;
scattering lengths and external potentials can be modified via magnetic and

9Additional equipment/techniques may be required such as a Zeeman slower, multiple
potentials for different stages of cooling (such as magnetic quadrupole potentials) and
degenerate Raman side-band cooling [87].
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electric fields or off resonant laser-light.

Electric and magnetic fields interacting with atoms

Atoms are by their nature quantum mechanical objects, especially in iso-
lation. Alkali metal atoms can be treated like single electron atoms as the
“core” electron wavefunction doesn’t change significantly as the outer electron
is excited. Therefore, we can consider a single-body Hamiltonian Hatom relat-
ing to this outer electron, with discrete eigenstates below a certain threshold.
The addition of external electric and magnetic fields can be included via the
dipole approximation [88]:

V = −µ · F , (2.71)

with µ the magnetic (electric) dipole moment operator and F an external
magnetic (electric) field. This operator V will couple different eigenstates
of the atom as well as shifting their energies. Assuming the fields are weak,
one can treat the system with perturbation theory to obtain energy level
shifts, and mixing, of the eigenstates. For an electric field, the first order
shift vanishes due to symmetry considerations10, with a second order shift to
the ground state of

E(2) = −α
2
|F|2 . (2.72)

Here we have introduced the polarisability α, the second order nature of this
shift is due to the field imposing an orientation on the atoms. If the field
F varies in space this will induce non-uniform potential which can be used
for confinement. The mixing between states can also alter the scattering
properties [39].

Light interacting with atoms can be described in the same way except that the
electric and magnetic fields are time dependent and so V is time dependent.
A time-averaged field will still produce a potential that can be used for
confinement, creating harmonic or lattice potentials [86]. Inelastic photon
scattering is significant if the light is near resonant with a transition, i.e.
ωlaser ≈ (En − E0)/~ ≡ ω0, which can be manipulated for cooling [88] but
causes decoherence.

10Note that the energy levels shifts in magnetic fields do not vanish to first order.
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Atom loss processes

Evaporative cooling is limited in efficiency by inelastic processes that cause
a loss of atoms (which are not high in energy) from the system. Additionally
such loss processes limit condensate lifetimes and can act as measurement like
events. An ultracold gases in a conservative potential has three significant
inelastic processes, resulting in the loss of atoms [29, 89]:

• Collisions with background gas (imperfect vacuums): rate ∝ N .

• Collisions which change the hyperfine state of one or more atoms: rate
∝ N〈n〉 .

• Collisions between atoms which form molecular states (via three-body
processes [90]): rate ∝ Na4

s〈n〉2.

These effects have different proportionality with the number density 〈n〉,
assuming no significant correlation effects are present. The impact of loss
processes is discussed further in Sec. 3.5.4.

2.5.3 Feshbach resonances

Feshbach resonances occur due to the existence of inter-atomic bound states,
with an energy extremely close to the threshold for disassociation, as dis-
cussed in Sec. 2.2.2. These energy levels are generally tunable with external
magnetic fields or laser fields, but optical Feshbach generally result in a large
inelastic two body collision rate due to spontaneous emission [39], which
makes them undesirable. Far from a resonance such changes are small, but
in the vicinity of a magnetic feshbach resonance the s-wave scattering length
behaves as [39]

as(B) = abg

(
1− ∆

B −B0

)
. (2.73)

Here B is the magnetic field, abg is the background scattering length, ∆ is
the width of the resonance (both of which can be positive or negative) and B0

is the centre of the resonance. Generally, for experimental purposes, wider
resonances are preferred, because less precise control of the magnetic field is
required. In theory these techniques can be used to achieve arbitrarily large
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scattering lengths, but these typically result in larger two and three body
inelastic losses.

Summary

This section reviewed some of the general progress in BEC experiments and
covered the basic experimental procedures, including how atoms can be manip-
ulated with external fields to modify inter-atomic interactions and the external
potential. Additionally we briefly discussed the significant loss processes and
their effect.



Chapter 3

Classical solitons and integrability

3.1 Classical integrability and conserved quan-

tities

3.1.1 Conditions for an integrable system

The three conditions of 1.1.2 are good for getting a qualitative feel about what
solitons are and where they are supported, but we require a more rigorous
mathematical framework to describe them and predict where they occur.
This leads to the notion of integrability. A Hamiltonian system is said to be
integrable in the Liouville sense if there exists a maximal set of independent
Poisson commuting invariants. For a 2N dimensional phase space, we have
a set of N functions f1, . . . , fN , with vanishing Poisson brackets with respect
to one another: {fk, fj} = 0, and the Hamiltonian: {fk,H} = 0 [91]. Note
the Poisson brackets are defined for a set of N generalised coordinates ~q, ~p as

{f, g} =
N∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
. (3.1)

Integrability is an important concept as it determines if the behaviour of a
system can be chaotic [92]; a two body planetary system is an integrable
system (if the planets are treated as rigid bodies) and the dynamics can be
solved exactly, whereas a three-body system is not integrable and is also
chaotic [93]. Note that we can take f1 to be the Hamiltonian H in all cases,

40
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and so any D = 2 space is integrable if the Hamiltonian is time independent.

Integrability is often associated with solvability; analytic expressions can
usually be found for integrable systems but it is not true to say that just
because an analytic solution can be found a system is integrable. A good
counter example is a particle in a 1D harmonic oscillator potential which is
periodically kicked, instantaneously in time, with period τ :

H =
p2

2m
+
mω2x2

2
+K cos(kx)

∞∑
n=−∞

δ(t− nτ) . (3.2)

Despite the fact it is possible to obtain an analytic solution for x(t) [94], the
system has no conserved quantities and hence is not integrable. The same is
true for a periodically kicked rotor. Further more, the behaviour is chaotic,
namely it satisfies the three criteria [95]:

• the system is sensitive to initial conditions,

• it is topologically mixing; and

• it has dense periodic orbits.

3.1.2 Consequences of integrability

Both the free GPE and the KdV have been shown to satisfy Liouville in-
tegrability [96]. One of the most interesting properties about solitons is
that (in the absence of additional perturbations) any initial condition can
be decomposed into soliton and radiation solutions via an inverse scattering
transform [97]. Therefore, at asymptotically long times, the system will be
described by a dispersed radiation component and isolated (and localised)
solitons, given by analytic single soliton solutions which we examine in the
next section. The radiation component is not analytically tractable, but will
be of vanishing density if the system has no boundaries. This behaviour was
shown numerically to be the case for the KdV system [98], with an initially
smooth cos(πx) solution (and periodic boundary conditions) tending to a
localised soliton train at long times. We examine the single soliton solutions
to both these systems in the next section.
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3.2 Solutions in the nonlinear Schrödinger equa-

tion

3.2.1 Bright soliton solution

If we have attractive interactions (g1D < 0), the NLSE [Eq. (2.67)] has the
bright soliton solution [6]

ψ(x, t) =
1

2
√
ξs
sech

(
x− x0

ξs

)
e−iµt/~ , (3.3)

with
ξs =

~2

m|g1D|N
, µ = −m|g1D|2N2

8~2
; (3.4)

the initial position x0 can be chosen arbitrarily due to the translation sym-
metry. The length factor ξs in Eq. (3.3) is called the soliton length; this
length is also equal to the healing length at the peak of the soliton divided
by
√

2. The time evolution of this state is simply a rotation of the global
phase and is hence referred to as a stationary state, a nonlinear analogue to
an eigenfunction. Exact solutions for stationary states also exist with box or
periodic boundary conditions, given by Jacobi elliptic functions [99].

Unlike the bright soliton of the KdV [Eq. (1.3)], the GPE soliton does not
exist on a finite background. Hence by Galilean invariance, we can express
a soliton moving with velocity v as [100]

ψ(x, t) =
1

2
√
ξs
sech

(
x− x0 − vt

2ξs

)
exp

[
i

~

(
−µt+ vxm− mv2t

2

)]
. (3.5)

Note that the phase evolution (and thus energy) is independent of the initial
position x0.

3.2.2 Solutions on a finite background

It is also physically relevant to consider excitations with a finite background
number density n. These solutions cannot be normalised, and hence the GPE
[Eq. 2.55] would need to be modified. This can be achieved by removing the
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factor of N and taking the density (away from excitation we are considering)
to be |ψ(x)|2 = n.

Attractive condensates permit the spatially periodic Akhmediev breather1

and time periodic Kuznetsov-Ma soliton as solutions [101, 102]. Interestingly
when the period tends to infinity, both classes of solutions also tend to the so
called Peregrine soliton, a highly focusing solution connected to rogue waves.
Peregrine solitons have been observed in fibre optics [103].

Repulsive condensates (g1D > 0) have a dark soliton solution. This is a
density dip moving with velocity v along the uniform background and can
be expressed as [104]

ψ(x− vt) =
√
n

(
i
v

c
+

√
1− v2

c2

)
tanh

[
x− vt√

2ξ

√
1− v2

c2

]
, (3.6)

with ξ the healing length [Eq. (2.34)] for a density n and c =
√
g1Dn/m the

sound velocity. These behave like quasi particles with negative mass, having
a maximum energy of E = 4~cn/3 when v = 0 and no energy as v → c where
the solution in infinitely wide and has no amplitude.

3.2.3 Rescaling to dimensionless units

In order to simplify our equations, we rewrite Eq. (2.65) in terms of rescaled
time and position coordinates and scaling out the constant factor of ~ω⊥. As-
suming we are dealing with normalised solutions, we define our dimensionless
time and position in soliton units as

x̃ :=
m|g1D|N

~2
x = 2Υ

x

a⊥
, t̃ :=

m|g1D|2N2

~3
t = 4Υ2ω⊥t , (3.7)

with Υ the (1D) collapse parameter, defined in Eq. (2.60). We note that
besides this factor these are just harmonic oscillator units in the radial degrees
of freedom and the condition Eq. (2.63) is now Υ� 1. Finally we define

ψ̃(x̃) =
~√

m|g1D|N
ψ(x) , (3.8)

1Note that, confusingly, the NLSE from optics has time and space interchanged.
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to be the wavefunction normalised with respect to x̃ (important for a non-
linear problem). In these units, with V (x) = mω2

xx
2/2, the 1D GPE reduces

to

i
∂

∂t̃
ψ̃(x̃) = −1

2

∂2

∂x̃2
ψ̃(x̃) +

~3ω2
xx̃

2

2mg2
1DN

2
ψ̃(x̃) + sgn(g1D)|ψ̃(x̃)|2ψ̃(x̃) ; (3.9)

which can be further simplified by collating the prefactor of x̃2 into one term
ω̃2/2. For convenience we drop the tildes when using these units.

3.2.4 Solitary wave solution to the non polynomial

Schrödinger equation

Unlike the NLSE, the NPSE is not an integrable system, hence it does not
permit true soliton solutions. However, it does have a localised solitary wave
(a non dispersing localised) solution if the interactions are attractive. Con-
sidering the case V (x) = 0 and as < 0, we can rescale Eq. (2.70a) in soliton
units [as defined in Eq. (3.7)]:

i
∂

∂t
ψ(x) =

[
−1

2

∂2

∂x2
+

1
4Υ2 − 3

2
|ψ(x)|2√

1 + 4Υ2|ψ(x)|2

]
ψ(x) , (3.10)

leaving only the collapse parameter. Additionally, for 0 < Υ < 2/3 a bright-
solitary wave solution can be obtained in implicit form [105]

x− vt =
2−1/2

√
1− µ

arctan

√√1− 2Υψ(x)2 − µ
1− µ


− 2−1/2

√
1 + µ

arctanh

√√1− 2Υψ(x)2 − µ
1 + µ

 . (3.11)

For Υ = N |as|/a⊥ > 2/3 there is no stable solution and µ and σ are dis-
continuous, indicating this is the point at which the ground state is not
stable and will collapse; this value is close to the value from full 3D numer-
ical predictions of around kc = 0.675 ± 0.005 [from [106]] and experimental
observations of the structure factor in this geometry. Note that to lowest
order in Υ, Eq. (3.11) reproduces Eq. (3.5), so this parameter can be seen as
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controlling the validity of a true 1D reduction for a ground state.

Summary

We investigated the bright soliton solution to the GPE, observing that the
density formed a sech squared profile as was the case in the KdV soliton
solution and introduced a dimensionless rescaling to make the NLSE param-
eter free. The implicit solution to the solitary wave solution to the NPSE
was also given, noting the collapse parameter Υ can be considered a small-
ness parameter for the condition that 3D effects in the ground state can be
neglected.

3.3 Multiple well-separated solitons in the 1D

GPE

3.3.1 General solutions for Ns solitons

An important class of solutions for this work is the set of multiple soliton
solutions. It is possible to analytically express a solution for a system with Ns

solitons, with amplitudes Aj (summing to one half if we wish for the function
to be normalised to unity), momentum per atom pj,2 initial positions xk0 and
phases φj0, as the solution to a system of Ns coupled equations [9]

ψ(x, t) =
Ns∑
j=1

uj(x, t) (3.12a)

1 =
Ns∑
k=1

uj(x, t)
γ−1
j + γ∗k
λj + λ∗k

all j . (3.12b)

Here we have defined λj = Aj + ipj and γj = exp[λj(x− xj0) + iλ2
j t/2 + iφj].

If each component is separated by many soliton lengths from all the others,
we can obtain analytic expressions for each component:

uj(x, t) = Ajsech (Aj[x− xj] + qj) exp [iφj + iΦj] , (3.13)

2Or equivalently soliton velocity Vj as in these units ~ is effectively one.
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where xj = xj0 + pjt is the position and φj = φj0 + pjx+ t(A2
j − p2

j)/2 is the
phase. The additional parameters that occur are Φj, the phase shifts and qj,
the collisional position shifts multiplied by the size Aj (hence the centre shift
is qj/Aj). These are not arbitrary and are fixed via

qj + iΦj =
∑
k 6=j

sgn(xk − xj) ln

(
Aj + Ak + i[pj − pk]
Aj − Ak + i[pj − pk]

)
, (3.14)

for every j = 1, .., Ns. The function sgn(xk − xj) denotes a change of sign
before and after collision, and the amplitude (phase) of the term in the log-
arithm determining the scattering position (phase) shift. When considering
the quantum theory of this system we will see that Φj are the large N limits
of scattering phase shifts between bound state strings (quantum solitons), in
Eq. (4.27).

3.3.2 A collision between two solitons

A simple but important case is the situation with only two solitons. The
two equations which then comprise Eq. (3.14) can be added together (noting
that the prefactor will take opposite sign) to give

q1 + q2 + i(Φ1 + Φ2) = sgn(x2 − x1) ln

(
[p1 − p2]− i[A1 + A2]

[p1 − p2] + i[A1 + A2]

)
. (3.15)

Because qk and Φk are real, and the term in the log is of unit magnitude, there
is no real term on the right of Eq. (3.15), and hence q1 = −q2 (the position
shifts per atom are equal). By subtracting Φ1 + Φ2 before the collision i.e.
t < (x10−x20)/(p2−p1) from the value after collision, the system has a total
phase shift of

2|Φ1 + Φ2| = 4 arctan

(
A1 + A2

|p1 − p2|

)
, (3.16)

modulo 2π. This is only relevant if there is some phase reference (e.g. addi-
tional solitons). A more important equation governs the relative quantities

q1 − q2 + i(Φ1 − Φ2) = sgn(x2 − x1) ln

(
[A1 + A2]2 + [p1 − p2]2

i[A1 − A2]− [p1 − p2]2

)
. (3.17)
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By separating into real and imaginary parts we can calculate the equations
for the relative position and phase shifts:

q1

A1

− q2

A2

= sgn(x2 − x1)
A2 − A1

2A1A2

ln

[
(A1 + A2)2 + (p1 − p2)2

(A1 − A2)2 + (p1 − p2)2

]
, (3.18a)

Φ1 − Φ2 = 2sgn(x2 − x1) arctan

(
A1 − A2

p1 − p2

)
, (3.18b)

noting the shift is double that of the right hand side of the above equations
as the values before and after are equal and opposite. Both of these relative
shifts vanish if the two solitons are the same size (as the solitons both see
the same extra potential and have the same mass) or if the relative velocity
is large, as this results in a brief interaction time.

3.3.3 Importance of relative phase

It can be seen from Eq. (3.14), that the relative phase between two solitons,
Φr = φ1(xc) + Φ1− φ2(xc)−Φ2 (colliding at some point xc), has no effect on
the asymptotic scattering. This property is important for deriving a particle
model of solitons [100], effective at describing their locations at a given time.
Despite this, relative phase does strongly effect the density during collisions;
if Φr = 0 the collisions will produce a density maximum at the centre, whereas
Φr = π will produce a density minimum. High densities can cause the onset
of collapse effects and radial excitation [17], and so systems with Φr = π

between neighbouring solitons are generally predicted to be more stable.
Relative phase is also important when external potentials are present, such
as strongly peaked barriers [107].

It is noteworthy that Eq. (3.14) fails in the case that two solitons are of
similar sizes and have near zero relative velocities. In this case it is found
that the relative phase and position vary according to [9]

∂2

∂t2
Φr = 8 exp(−xr) sin(Φr) (3.19a)

∂2

∂t2
xr = −8 exp(−xr) cos(Φr) , (3.19b)

with exponentially decreasing interaction with the separation xr. For certain
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initial conditions, it is possible to obtain bound states with separations that
oscillate about some value periodically. These soliton molecules, as they are
often referred to in the literature [108], have no binding energy, which allows
them to be broken easily.

Summary

This section quoted the inverse scattering result for a multiple soliton solu-
tion in the NLSE, along with the position and phase shifts that occur due to
collisions. We noted that relative phase changes the density profile during
collisions and introduces the possibility to form bound states. Such density
changes are important when considering additional terms in the GPE which
break integrability.

3.4 Integrability and soliton properties in sys-

tems of classical particles

Solitons are often said to behave like particles; as we noted earlier, out of
the conditions (1.1.2), only the third condition (emerging unchanged from
collisions besides a position and phase shift) is not automatically satisfied
for a structureless particle. It is easier to think of an isolated bright soliton,
such as those that occur with the attractive 1D GPE, to be particles rather
than water waves or density dips in repulsive condensates. The latter can be
thought of more as quasi-particles (likes holes in semi-conductors), a change
of density over the uniform background which preserves its shape; in the
former case this background is simply the vacuum state.

Classical particles have no phase property, hence all we require is particles to
emerge asymptotically without their momenta/velocities changed, only their
positions. If the particles are identical then we require the weaker condition
that only a rearrangement of velocities is allowed, as this can still be mapped
to position shifts on the original particles.
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3.4.1 Two particles

The simplest example to satisfy 1.1.2 be would two structureless classical
particles, heading directly towards another at non-relativistic speeds, free
from external forces, but interacting with some conservative, effectively finite
range potential V (r1− r2), such that V (r)→ 0 if |r| > R. This is equivalent
to being confined to move in one dimension, which we will call x as the
coordinates can always be rotated and translated such that the positions
along the y and z axis are zero through all time. We can see that this system
satisfies Liouville integrability as the energy E = p2

1/2m1 + p2
2/2m2 +V (x1−

x2) and centre-of-mass momentum pc = p1 +p2 must also be conserved which
is N = 2 quantities as required. We can therefore look at the system in a
frame moving with velocity v = p1/m1 + p2/m2 with respect to our original
frame and consider pc to be zero. This leaves only the relative momentum
between the two pr = p1−p2 as a free parameter, which is fixed by the energy
E (in this reference frame) via

p2
r

2µ
= E − V (x1 − x2) , (3.20)

with µ = m1m2/(m1 + m2) the reduced mass. After the collision, when
the particles are again separated by enough distance |x1 − x2| > R, the
interaction is not felt and this relative momentum must be the same as it
was initially, up to a factor of ±1 depending on whether it was reflected
or transmitted3. However, if we were to work out the full time evolution,
pr would have changed during the interaction time. Hence compared to
the positions of the particles had they not been interacting, an attractive
potential would put them slightly ahead and a repulsive potential slightly
behind, leading to the position shift. If the two particles were identical,
we can also not meaningfully say which one was which. The sign which
occurred due to reflection is now meaningless and we can therefore state that
the asymptotic velocity is unchanged.

We note that if V (x) < 0 for some x, it permits bound states, for which pr = 0

and |pr| < pmax. However, due to energy and momentum conservation of
3Transmission occurs if V (x) < E for the whole range.
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Eq. (3.20), if V < 0 then the relative momentum must increase to compensate
and hence the two colliding particles cannot form a bound state unless they
were in one at t = 0 and if they were, they can’t possibly get out of it.

3.4.2 More than two particles

One might also consider adding a third particle to the system, noting the
centre-of-mass momentum pc = p1 + p2 + p3 and energy E must still be
conserved. If the third particle is not moving along the same axis as the
other two it can collide skew and the problem becomes three dimensional.
Any transfer of momentum off-axis instantly means asymptotic momentum
is not conserved, leading to the first condition that the system must be effec-
tively one dimensional (or, trivially, non interacting) with all three moving
along the same axis. In one dimension we still require N = 3 invariants for
integrability. Only two are apparent for a general potential and asymptotic
relative momenta may not be conserved.

This is best demonstrated by the possibility to dynamically form bound-
states. Assuming the centre-of-mass momentum to again be zero and that
particles one and two end up in a bound state with energy Ebound such that
p1 − p2 = 0,4 we have from energy and momentum conservation

0 = p1 + p2 + p3

E − Ebound =
p2

1

2m1

+
p2

2

2m2

+
p2

3

2m3

, (3.21)

and hence substituting in p3 = −p1 − p2 = −2p1 to the second line and
rearranging gives

p1 = ±

√
E − Ebound

(4/m3 + 1/m1 + 1/m2)
, (3.22)

and p3 = −2p1 to keep the new momentum zero. This of course leads to an
asymptotic velocity shift compared with the starting values and hence these
particles are no longer behaving like solitons.

4This is a simple choice for the bound state, more general choices would have |p1−p2| <
pmax and p1−p2 time averaging to zero. But this assumption does not change the principle.
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It therefore seems that in general the addition of a third particle breaks
integrability of an interacting (1+1)D system, even when the particles are
indistinguishable, due to these three-body interactions. However certain po-
tentials which we discuss in the next section possess properties that mean
they just so happen to permit such invariants and give asymptotic scattering
properties that don’t alter the incoming momenta, however these are special
cases, not the general rule as was the case for N = 2. This should give
some indication of why soliton properties imply particle like behaviour and
why one dimension is so special for classical scattering. Later this concept
is extended to quantum mechanical systems leading to the Bethe ansatz in
Sec. 4.1.

3.4.3 Potentials giving classical integrability

It has been shown that N identical particles interacting with the potential

V (x) = −b
2℘(x/a|ω, ω′)
e1 − e3

+ const , (3.23)

i.e. a Calogero-Moser system [109], with ℘ Weierstrass’s elliptic function,5

satisfy Liouville integrability. Due to the conserved quantities, these poten-
tials also preserve the asymptotic momenta of the particles [91]. The current
form is however far too general; three important special cases are

V (x) =



g

x2

g

a2 sinh(x/a)2

g

a2 sin(x/a)2
,

(3.24)

with g > 0, these can all be related via lattice sums [91] and are totally
impenetrable. We note that the potential Ṽ (x) = −gsech2(x/a)/(a2), inter-
esting in that it is reflectionless for certain g and is the nonlinear potential an
atom would see interacting with a quantum soliton and a model potential for
particle models of solitons [100], does not yield integrability for N > 2. This

5Here e1 = ℘(ω|ω, ω′) and e3 = ℘(ω′|ω, ω′) are the values at the half periods ω and ω′.
If one is real and the other imaginary the values along x will be real.
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is an interesting result in that it implies the particle model used in [100] does
not constitute an integrable system for three or more identical sized solitons.
However, a combination of two different types of particle, with the same
mass, interacting between themselves via V (x) = g/a2 sinh(x/a)2 and with
the opposite type via Ṽ (x) = −gsech2(x/a)/(a2) does result in an integrable
system [91].

Summary

We introduced the concept of solitons behaving like particles, and the condi-
tions for integrability in 1D many-particle systems in the classical case. We
show that, while a system of two identical particles is integrable and con-
serves momentum asymptotically, whereas a system of three or more is only
integrable for certain interaction potentials.

3.5 Quantum mechanics, wave particle duality,

entanglement and measurement

3.5.1 Wave particle duality

One of the key concepts in quantum mechanics is the so called wave-particle
duality, the idea that particles can behave as waves and vice versa. Within
(non-relativistic) quantum mechanics, everything can be described by a wave-
function (possibly with a very large number of degrees of freedom), with the
dynamics described by the evolution in potentials via the Schrödinger equa-
tion

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 . (3.25)

Here |ψ(t)〉 is the state of a quantum system at a time t with a Hamiltonian
Ĥ. For an initial condition |ψ(0)〉 the solution is

|ψ(t)〉 = e−iĤt/~|ψ(0)〉 , (3.26)
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although the solution of this equation is rarely simple to obtain, analyt-
ically or numerically, it is in principle a deterministic, linear wave equa-
tion [110]. This considers a system in isolation from, as it were, the rest of
the universe. When extra pieces are added to the system (e.g. an observer)
but not accounted for at a quantum mechanical level, the particle-like na-
ture becomes apparent. In a classical mechanical sense, the most common
particle-like property is a definite position and momentum and an absence
of internal structure (or internal structure that doesn’t affect the properties
of interest). Within the theory of quantum mechanics, the former properties
are not obtainable due to the position and momentum uncertainty relation
∆p∆x ≥ ~/2, but the idea of being structureless is a meaningful property
which can be carried over. We will later see that this idea can be applied
to solitons, where the internal structure cannot be altered as it is protected
by integrability. Additionally if the values of position and momentum uncer-
tainty can be considered small, typically if the mass is large, the particle like
nature can be used completely. Combined with the idea of a measurement,
where for simplicity we will say we can measure with arbitrary precision, one
can take the idea of a particle in quantum mechanics to be a structureless
object with some uncertainty in what a measurement will yield, with the
probability being given by the particle’s wavefunction in the Copenhagen
interpretation of quantum mechanics.

Classical mechanics also includes a theory of waves in which everything is
essentially deterministic. For example an electromagnetic wave of a single
frequency can have a known electric and magnetic field at every point in
space. Quantum mechanics states the energy of such a wave must be quan-
tised in units of ~ω. It is still however possible to have a state of arbitrary
energy expectation value E = 〈Ĥ〉, by taking a superposition of such states.
The discrepancy comes again when the system is coupled externally to say,
a perfect detector, which will find n energy packets of ~ω with n an integer.
This is considered to be waves behaving as particles. The duality is also
illustrated in Einstein’s formula for fluctuations in black-body radiation [38]

ε2 =

(
hνρ+

c3ρ2

8πν2

)
dν , (3.27)
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where ν is the frequency. The former term is due to the particle like “shot
noise” and the latter due to the wave like “speckle”.

3.5.2 Measurement

Measurement has long been a difficult concept in quantum mechanics with
a great deal of literature dedicated to it [110, 111]. Despite some of the
conceptual difficulties, measurement theory is powerful enough to relate a
great deal of information extracted from quantum mechanical systems to the
internal processes. Theoretically one takes an observable, e.g. position, but
in general any Hermitian operator Ô with a set of eigenstates Ô|n〉 = εn|n〉,
and interacts with a quantum system in order to obtain an outcome from
the measurement [38]. If this measurement process is considered “perfect,”
performing the measurement on a state |ψ〉 = c0|0〉+ ...cn|n〉+ .. will project
the state of the system into one of the eigenvalues of Ô, with a probability of
|cn|2. Hence this process will alter the quantum state of the system, unless
it was originally an eigenstate of Ô. Real measurements can be imprecise or
destructive, which can also be accounted for within the theory [112]. Addi-
tionally measurements do not have to be performed by people, or by classical
processes, they are simply anything interacting with the system that is not
explicitly accounted for. Taking the example of a BEC in a vacuum chamber,
blackbody radiation, thermal atoms, stray fields and inelastically scattered
photons all constitute a measurement in this sense.

A contextually simple but illustrative experiment is the splitter of a single
photon state with a 50-50 beam splitting in the path such that the reflected
light would go to detector A and the transmitted to detector B. Repeating
the process with many single-photon input states, separated in time, one
would see approximately half the counts in detector A and the other half
in detector B, with only statistical deviations, as one would expect for a
classical light input. The number of coincidence counts in which A and
B fire together (within the separation time of the input photons) is however
suppressed compared to the classical expected value [113]; in fact for a perfect
experiment, the number of coincidence counts would drop to zero.
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3.5.3 Decoherence and the density matrix

Accepting that quantum mechanical systems will interact with their sur-
roundings in a way that is intractable and also that we often do not know
the exact quantum state of a many-body system, only bulk properties like
temperature; means that we will require a statistical tool to analyse these
systems. This leads to the density matrix formulation, in which we describe
a system with a density6 matrix [38]

ρ̂(t) =
∑
k

cjk|ψj〉〈ψk| , (3.28)

and the von Neumann equation

∂ρ̂(t)

∂t
= − i

~
[ρ̂(t), Ĥ] (3.29)

where ρ̂ is Hermitian (cjk = c∗kj) and normalised such that Tr(ρ̂) = 1. If
Tr(ρ̂2) = 1, this operator is said to represent a “pure state” and this for-
mulation is exactly the same as the Schrödinger formulation. However if
Tr(ρ̂2) < 1, the operator is said to represent a “mixed state” or statistical
mixture.

This formalism can also include non Hermitian (loss/gain) processes and
random processes by including these on the right hand side of Eq. (3.29), to
make it a so called master equation. This is required to describe processes
like laser cooling of an atomic gas, in which many intractable spontaneous
(vacuum field stimulated) decay events from the excited to ground state
occur; the density matrix is used to describe the state of an atom in the
ensemble and give statistical agreement. Loss processes like this tend to have
the effect of reducing the amplitude of the off-diagonal elements (coherences),
so atoms will be less likely to be found in superposition of eigenstates than
if the decay term was not present.

6Not to be confused with the single body density matrix [Eq. (2.46)].
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3.5.4 Entanglement

Entanglement is manifest when the outcome of one measurement affects an-
other. This typically leads to systems that are very sensitive to measurement
effects and hence are often not stable. How entanglement is defined in general
for many-body systems has been covered in detail (see for example [114] and
references herein), but there are some subtleties for indistinguishable parti-
cles [115]. Non-entangled pure states can be expressed as an appropriately
symmetrised tensor product of single particle states, if this is not possible
the state can be considered entangled.

As a relevant example, we consider the ground state of N atoms confined
to a 1D periodic box, which we assume is extremely wide, with contact
interactions (discussed in detail in Sec. 4.1.4). The many-body wavefunction
separates into a centre-of-mass wavefunction which is delocalised uniformly
throughout the box and a relative component which holds all the information
about pair correlations [g(1)(x, x′) in Eq. (2.45)]. The non-interacting ground
state will be a pure BEC and hence have g(1)(x, x′) = 1 and be described
by a tensor product of N identical stages, and hence has no entanglement.
A measurement of a single atomic position (by, say, scattering a single high
frequency photon) gives no information about the position of the other N−1

atoms.

However, the stronger the interactions become, the stronger the pair corre-
lations become and so the more information this one particle measurement
carries about the position of the other N−1 atoms. Ultimately, in the strong
interacting limit, we can say g(1)(x, x′) → δ(x, x′) for attractive bosons and
g(1)(x, x′) ∼ |x− x′| as x→ x′ for repulsive bosons [116] (or non-interacting
fermions). In this regime a measurement of a single atomic position, made
with some uncertainty ∆x, would fix the position of all the other atoms with
roughly the same uncertainty. In the strongly attractive case, this would
also localise the centre-of-mass position wavefunction to a width ∆x (since
all the atoms must be close together); noting that this wavefunction was
totally delocalised before.

Typically the more atoms are present, the more likely measurement-like
events will occur, for example the loss processes discussed in Sec. 2.5.2, which
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makes it difficult to have such a delocalised state for large atom numbers
and/or strong interactions. These loss processes have little effect on the
Hartree-product states which have g(1)(x, x′) = 1, in the limit of large N ,
hence one expects such states to be more resilient to loss processes.

Summary

This section described the differences between the theories of classical and
quantum mechanics when describing waves and particles, and the signifi-
cance of measurement process. Basic measurement theory was introduced,
along with processes which could be considered as measurements for our sys-
tem. This leads on to the notion of decoherence and we introduced the density
matrix as the usual statistical tool to deal with classical uncertainty in quan-
tum systems. Finally we discussed entanglement, with relevance to quantum
gases in 1D, including a discussion of pair correlations increase the impact
of measurement like events on the system.



Chapter 4

Many body quantum physics in

one spatial dimension

4.1 The Bethe ansatz and quantum integrabil-

ity

4.1.1 Quantum vs classical integrability and diffraction-

less scattering

Classical integrability was discussed earlier in section 3.1, along with its sig-
nificance in terms of whether or not a system admits soliton solutions. The
notion of classical integrability is well defined in terms of Poisson commuting
invariants, and one could attempt to extend a similar notion to quantum
integrability by exchanging the Poisson brackets for commutator brackets.
This means for a system with N degrees of freedom that there exist N inde-
pendent operators {L̂1, . . . , L̂N} satisfying [L̂j, L̂k] = 0 and [Ĥ, L̂k]. This can
be done but implies very little about the system [91], for example a set of 1D
bosons with an elliptic interaction potential of Eq. (3.23) satisfies this condi-
tion, but no analytic solutions are known for the eigenstates. One therefore
considers scattering without diffraction to be a condition of quantum inte-
grability. Such systems are found to have eigenstates described by the Bethe
ansatz, a set of plane waves which have a gradient discontinuity where coor-
dinates in the many-body wavefunction meet. This is essentially a quantum

58
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generalisation of the classical particle collisions considered in Sec. 1.1.2.

In order to describe this mathematically it is necessary to write the Hamil-
tonian for N particles with identical mass in one dimension, interacting with
two body interactions only. In terms of 1D atomic position coordinates ~x,
we have

H(~x) = − ~2

2m

N∑
k=1

∂2

∂x2
k

+
N∑
k=2

k−1∑
j=1

V (xk − xj) (4.1)

which controls the time evolution of some many body wavefunction Ψ(x1, . . . , xN)

which describes all the physical properties of the system. First we examine
the simple case of N = 1; as there is no self interaction present all the
eigenstates of the system are plane waves:

ψ(x1)p1 ∝ exp(i
p1

~
x1) (4.2)

with normalisation and quantisation of p, the momentum eigenvalue, de-
termined by boundary conditions. This state also has energy eigenvalue
E = p2/2m. If another particle is added, the two will now interact with a
potential V (x1 − x2) (which must be symmetric). We note it is still possible
to split the Hamiltonian into centre-of-mass and relative coordinates

HC(xC) = − ~2

4m

∂2

∂x2
C

,

Hr(xr) = −~2

m

∂2

∂x2
r

+ V (xr) , (4.3)

with xC = (x1 + x2)/2 and xr = x1 − x2, which commute with one another
and thus share eigenstates. This is a very general property which we will
later see applies to the N body case, even with the addition of harmonic
confinement [see Eq. (4.83)]. Therefore the centre-of-mass momentum pC is
a good quantum number and must be preserved in a scattering event, along
with the total energy. This means for an incoming scattering state

〈x1, x2|ψS〉 = exp(i[p1x1 + p2x2]/~) = exp(i[pCxC + prxr]/~) , (4.4)

a scattered wavefunction can only have a relative momentum pr or −pr as
these are the only two possible values which obey both momentum and energy
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conservation. If V (x) is of finite range, or at least tends to zero faster than
1/|x| asymptotically, then for sufficiently large separations |xr| our scattering
state is

ΨpC,pr(xC, xr, t) ∝ exp
(
i
pCxC

~

) [
exp

(
i
prxr

~

)
− exp

(
−iθ(pr)− i

prxr

~

)]
.

(4.5)
The phase factor θ(pr) would be zero for a non-interacting system. In quan-
tum mechanics energy controls the rate of phase rotation in the wavefunc-
tion, hence travelling through a varying potential leads to a phase shift
θ(pr) = −θ(−pr).

If more quanta are present (say N) it is not enough to simply have two
conservation laws to set the asymptotic scattering wavefunction to have the
same momenta as the incoming state. Non-diffraction is the condition that
all the other possible scattering paths cancel out asymptotically leaving only
those that rearrange the input momenta. If this is the case, one can see the
phase shift from scattering the first particle through n of the others to cause
a phase shift of exp[

∑n
k=2−iθ(p1− pk)], as long as we are looking in a region

where the interactions are weak.

So far we have ignored symmetry, however this is an important property
which enforces the particle exchange symmetry Ψ(x1, . . . , xj, . . . , xk, . . . , xN) =

±Ψ(x1, . . . , xk, . . . , xj, . . . , xN) with + corresponding to bosons and − to
fermions. This enforces an extra N ! constrains on the wavefunction, and
can significantly effect two body scattering. For the rest of this section we
will consider only bosons, as this is the focus of this work.

This leads to the question “what two-body potentials admit non-diffractive
scattering?” and thus yield a system that is “integrable.” This is the case if
one has, for example, two body interactions given by Eq. (3.24) (but not the
general elliptic potential) [91] or the contact potential

V (xk − xj) = g1Dδ(xk − xj) . (4.6)

We discussed in Sec. 2.2.5 how this potential is found to accurately describe
interactions between cold bosonic atoms in one dimensional configurations.
Additionally we need not worry about asymptotic scattering, as the potential
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is zero range, which simplifies matters considerably. As a proof this poten-
tial obeys diffractionless scattering, we need to verify that states which are
just sums of differently arranged incoming momenta are eigenstates to the
Schrödinger equation, which we do in the following subsections.

For convenience we will rescale the position coordinates to x̃k = xk
√
m/~

and g̃ = mg1D/~2, for the rest of this section but the tildes will be dropped
for future convenience. This does not uniquely define a unit system but
effectively coincides with harmonic units (codified as ~ = m = ωx = 1) used
in Chap. 6.

4.1.2 Two-body eigenstates of the contact interaction

In order to find the eigenstates of the two body problem with V (x) = gδ(x)

in Eq. (4.3), our relative wavefunction ψ(xr) must satisfy ψ(xr) = ψ(−xr)

by Bose symmetry, and from the kinetic part of the relative Hamiltonian in
Eq. (4.3)

− ∂2

∂x2
r

ψ(xr) = Erψ(xr) , (4.7)

when xr 6= 0. Ordinarily the only symmetric solutions to this equation are of
the form cos(kxr) (with k = (p1 − p2)/2 a relative momentum/wavenumber
a real number), however, as we don’t require this function to be a solution at
zero we can additionally have sin(k|xr|) as a valid solution. Ignoring for now
issues with the orthogonality of these solutions (which is only really a problem
if the system is of finite extent, and thus doesn’t affect this discussion) a state
with relative energy Er = k2 can be expressed in the form

ψk(xr) = α cos(kxr) + β sin(k|xr|) , (4.8)

with k taking in principle any real value, and α and β any complex values
satisfying a normalisation convention. For general values of α and β, complex
values of k are not possible as they would yield divergent solutions as xr →∞;
however if we have β = iα our solution reduces to

ψk(xr) = αeik|xr| , (4.9)
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which tends to zero as xr → ∞ if imag(k) > 0 and so is also allowed,
corresponding to a bound state. Periodic or hard-wall boundary conditions
at some finite length L would modify this condition slightly, but this analysis
is always valid in an L → ∞ limit. The interaction term gδ(xr) gives a
boundary condition on the first derivative at xr = 0:

lim
ε→0

[
∂

∂xr

ψ(xr)

]+ε

−ε
= gψ(0) . (4.10)

Inserting our general form from Eq. (4.8) and taking the limit gives

− 2kβ = gα , (4.11)

which reduces our solution to

ψk(xr) = α
[
cos(kxr)−

g

2k
sin(k|xr|)

]
. (4.12)

Using the identity sin(x + y) = sin(x) cos(y) + cos(x) sin(y) we can simplify
this to

ψk(xr) =
α

sin(θ)
sin(k|xr|+ θ) ,

θ = arctan

(
−2k

g

)
, (4.13)

which includes the familiar interaction phase-shift term θ(k/g). Considering
again the case β = iα this condition becomes

k = −ig
2

ψbound(xr) ∝ αeg|xr|/2 . (4.14)

Recalling that we require imag(k) ≤ 0, this condition can only be satisfied if
g < 0 giving a bound state with relative energy Er = −g2/4; for g > 0, no
bound state exists.
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4.1.3 The Bethe ansatz on the infinite line

We first consider the eigenstates of the system with free boundary condi-
tions. Such a system is not usually considered in the literature due to the
fact that there is no obvious way to take a constant density thermodynamic
limit (although the limit gN = constant is appropriate). In a repulsive gas,
letting any boundary L→∞ with N finite just results in a low density limit
that behaves as a non-interacting system. Periodic boundary conditions are
therefore necessary for g > 0, which we discuss briefly in Sec. 4.1.4.

However, for g < 0, bound states lead to a highly non trivial finite num-
ber system [117]. As the system obeys diffractionless scattering, multiple
scattering events can be described by a series of two body scattering events.
Therefore, similar to the two body case, we can express all the eigenstates
of the system as a symmetrised product of plane waves of (dimensionless)
asymptotic 1 momentum/wavenumber λk (collectively referred to as ~λ) in
any region where x1 6= x2 6= .. 6= xN . Since our state will possess bosonic
symmetry we may as well simply consider the region x1 < x2 < .. < xN , as
other regions can be obtained by permuting one of the indices. Such a state
is given by

Ψ(~x,~λ) = N
∑
P

AP exp

(
i
N∑
k=1

λP (k)xk

)
, (4.15)

with P denoting the set of permutations of the set {1, 2, . . . , N}, N a nor-
malisation factor and we denote AP as the “permutation coefficients” which
ensure the function satisfies the (N−1) boundary conditions where xj → xj+1

(from below due to our region of choice) due to the delta function terms:(
∂

∂xj
− ∂

∂xj+1

)
Ψ|xj→xj+1

= gΨ|xj=xj+1
. (4.16)

This boundary can be obtained by integrating the eigenvalue equation HΨ =

EΨ with respect to a variable y = xj+1 − xj over the infinitesimal range
(−ε,+ε) such as was considered in [117]. These boundaries are due to a

1These are momenta only in the sense of asymptotic scattering, and are therefore
sometimes referred to as rapidities. They do constitute good quantum numbers for the
system.
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scattering event between the jth and (j + 1)th elements which causes the
state to acquire a phase of θ(λ(j + 1) − λ(j), g) as given by Eq. (4.13).
Adjacent element permutations are sufficient to generate every coefficient
in the permutation group, as any permutation can be expressed in terms of
pair-wise swaps of adjacent elements [91]. Hence we conclude from Eq. (4.16)
that for a permutation P ′ swapping the jth and j + 1th elements of P (with
xj 6= xj+1), these permutation coefficients must satisfy

AP ′ = eiθ(λP (j+1)−λP (j),g)AP , (4.17)

=
λP (j+1) − λP (j) + ig

λP (j+1) − λP (j) − ig
AP . (4.18)

We note two things from Eq. (4.17); firstly that if g = 0 this equation reduces
to AP = AP ′ as one would expect. Secondly, that if any λk = λj with j 6= k,
then we have AP = −AP ′ despite the fact the rest of the wavefunction has
not changed, meaning these two permutations will cancel each other out.
This second point would lead to an exclusion principle regarding the relative
momenta where it not for the fact that on the infinite line they are not
quantised so one can have |λj − λk| arbitrarily small, but with boundary
conditions we will see this is the case.

Remarkably Eq. (4.17) completely determines AP up to the identity per-
mutation, which we can fix via the normalisation factor. A solution (not
normalised) satisfying Eq. (4.17) is

AP =
∏

1≤k<j≤N

√
λP (k) − λP (j) + ig

λP (k) − λP (j) − ig
. (4.19)

It is possible to verify Eq. (4.19) satisfies Eq. (4.17) by noting that switching
the `th and `+ 1th elements of a permutation P will reorder terms, but only
modify the one term in the product with j = ` + 1, k = `. By continuity
it is possible to write an expression which is valid over all space (see for ex-
ample [118]), however it is usually easier for calculations to simply consider
the region x1 < x2 < . . . < xN and include all the others by symmetry.
The energy and centre-of-mass momentum eigenvalues can again by calcu-
lated by the asymptotic method (or equivalently by noting the kinetic energy
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discontinuities cancel the interaction terms in the Hamiltonian exactly)

E =
1

2

∑
k

λ2
k, pc =

∑
k

λk . (4.20)

Additionally, it has been shown that these eigenfunctions make up a complete
set [119].

Bound state string solutions

Attractive interactions (g < 0) allow the possibility of complex components
in ~λ, as they did in the two body case. One can assume the centre-of-mass
momentum and energy eigenvalues remain real, and hence we must have
Im(pc) =

∑
k Im(λk) = 0 and Im(E) =

∑
k Re(λk)Im(λk) = 0 as a condition.

Additionally to these two conditions we must maintain the two body matrix
scattering elements, given in Eq. (4.14) [recalling that k = (p1 − p2)/2],
between particles in a bound state, implying that if the j and j+1th elements
are in a bound state

λj − λj+1 = i|g| . (4.21)

Extending this to a bound state of n atoms we must have λj to λj+n−1 all
with the same real component and with the imaginary components spaced
by ig/2. In general we can have any number η ≤ N of bound states present,
each one characterised by the number of atoms Nα and real momentum per
atom pα. Hence we introduce the parametrisation for a bound state of Nα

atoms

λaα = pα + i
g

2
(Nα + 1− 2a) , (4.22)

with α = {1, . . . , η} the string number, a = {1, . . . , Nα} the position in the
string, and the set {[p1, N1], . . . , [pη, Nη]} corresponding to good quantum
numbers for the system. To relate these labels back to the original index
label j, we have α is the minimum number satisfying

∑α
k=1 Nk < j, with Nk

the size of the kth string, and a = j −
∑α

k=1Nk.
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Reduced scattering matrix

The most important point to note about the presence of bound states is
their effect on the permutation coefficients. Taking P = I to be the iden-
tity permutation and P ′ to be the permutation switching λaα with λa+1

α , the
coefficient AP ′ is given by Eq. (4.19) to be

AP ′ =
pα + ig

2
(Nα − 1− 2a)− pα − ig2(Nα + 1− 2a) + ig

pα + ig
2
(Nα − 1− 2a)− pα − ig2(Nα + 1− 2a)− ig

AI

= 0/(−2ig) , (4.23)

i.e. we need not include in the wavefunction any permutations which switch
any elements of the bound state strings. This implies that each of these
bound state strings constitutes a structureless particle, and we should be able
to derive the scattering phase shift from one string of size Nα and momentum
per atom pα and other of size Nβ and momentum per atom pα. Denoting P̃
a permutation which moves all the positions of string one to those of string
two, we have

AP̃ = eiθ(Nα,pα,Nβ ,pβ)AP . (4.24)

This can be computed by applying Eq. (4.17)NαNβ times. We denote for con-
venience the relative momentum per atom divided by the interaction strength

pα,β =
pα − pβ

g
, (4.25)

and noting that

λbβ − λaα = pα,β + i

(
a− b+

Nβ −Nα

2

)
, (4.26)
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we have a scattering matrix element S(Nα, Nβ, pα,β) = exp[iθ(Nα, pα, Nβ, pβ)]

of

S(Nα, Nβ, pα,β) =
Nα∏
a=1

Nβ∏
b=1

pα,β + i
(
a− b+ 1 +

Nβ−Nα
2

)
pα,β + i

(
a− b− 1 +

Nβ−Nα
2

)


=

pα,β + i
(
Nβ−Nα

2

)
pα,β − i

(
Nβ−Nα

2

)
pα,β + i

(
Nβ+Nα

2

)
pα,β − i

(
Nβ+Nα

2

)


×

Nα−1∏
j=1

pα,β + i
(
Nβ−Nα

2
+ j
)

pα,β − i
(
Nβ−Nα

2
+ j
)
2

. (4.27)

This matrix element is of unit absolute value, which reinforces the idea of
these bound states as particles in their own right, with no accessible sub-
structure through interactions under the Hamiltonian Eq. (4.1). External
potentials and defects can potentially destroy this integrability and allow
mixing between bound states.

Energy and momentum of strings

Our energy and centre-of-mass momentum are given as before. Expressed in
the new quantum numbers we have

E =

η∑
α=1

Nα

[
p2
α

2
− (N2

α − 1)g2

24

]
, pc =

η∑
α=1

Nαpα . (4.28)

The ground state of the system is the state with just one string, i.e.:

λj = i
g

2
(N + 1− 2j) ,

E0 = −g
2N(N + 1)(N − 1)

24
. (4.29)

In this case only the identity permutation coefficient remains finite and the
wavefunction acquires the surprisingly simple form

Ψ(~x) = N
∏

1≤k<j≤N

exp
(g

2
|xj − xk|

)
. (4.30)
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Excited states of the centre-of-mass are possible with continuous real mo-
mentum values, which can be scaled out via Galilean invariance; excitations
breaking this bound state apart are however spaced with discrete spacings.
For example the energy required to split one atom from this state, with a
momentum relative to the centre-of-mass of the N − 1 bound state of pr, is

∆E =
p2
r

2
− g2

24
[N(N − 1)(N − 2)− (N + 1)N(N − 1)]

=
p2
r

2
+
g2N(N − 1)

8
. (4.31)

Normalisation

On an infinite space, normalisation of plane wave states can become prob-
lematic. However we adopt the following general normalisation/orthogonality
convention for many boson plane wave states in scattering theory

〈p′Mσ′M , . . . , p′1σ′1|p1σ1, . . . , pNσN〉 =

δM,N

∑
P

δΓ(p1 − p′P (1))....δΓ(pN − p′P (N)) , (4.32)

with δM,N a Kronecker delta function and

δΓ(pk − p′j) = 2πδσk,σ′jδ(pk − p
′
j) . (4.33)

In our case the parameters σk denote the number of atoms in a bound state
as each bound state is treated like a unique, structureless particle of mass
Nα. We denote a state with η bound states, each of size Nk with momentum
per atom pk, as |p1, N1, . . . , pη, Nη〉 and so we can express this orthogonality
condition (taking as read that both states have η different particles) as

〈p′1, N ′1, . . . , p′η, N ′η|p1, N1, . . . , pη, Nη〉 =
η∏

α=1

η∑
β=1

δNα,N ′β
2π

Nα

δ(pα − p′β) , (4.34)

with the factor of Nα due to the fact we have chosen to use the momentum
per atom of the bound states rather than the total momentum. For the case
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of the ground state η = 1, Eq. (4.34) reduces to

〈p′, N |p,N〉 = 2πδ(N [p− p′]) , (4.35)

which is such that the Fourier transform of the wavefunction with respect to
the centre-of-mass momentum eigenvalue N × p, is normalised to unity.

4.1.4 The Bethe ansatz with periodic boundary condi-

tions

If we take our system with the Hamiltonian Eq. (4.1) and place it in a periodic
box of length L (such as would be imposed by a wide toroidal trapping poten-
tial [120]), it is now the case that one particle scattering off the other N − 1

and making a full circle back to its initial condition must have accumulated
no phase shift, else the periodicity Ψ(x1, . . . , xN) = Ψ(x1 + L, x2, . . . , xN)

would be violated (true even for distinguishable particles). Identical parti-
cles have to satisfy the stronger constraint that permuting the two particles
at either end of the ring must cause no change (a minus sign) to the wave-
function for Bosons (Fermions), i.e. Ψ(x1, . . . , xN) = ±Ψ(x2, . . . , xN , x1 +L).
Applying this condition to Eq. (4.15) gives

∑
P

AP exp

(
i

N∑
j=1

xjλP (j)

)
=

∑
P

AP exp

(
i

N∑
j=2

xjλP (j−1) + i(L+ x1)λP (N)

)
. (4.36)

We note such a change can be also be accomplished by N−1 pairwise swaps,
and we will denote this permutation Q. Applying these permutations allows
cancellation of the x dependence:

AP = AQ exp
(
iLλQ(N)

)
, (4.37)
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noting Q(N) = P (1). From Eq. (4.17) we can show that the two coefficients
are related via

AQ = AP

N−1∏
`=1

−
λQ(N) − λQ(`) + ig

λQ(N) − λQ(`) − ig
, (4.38)

and finally we choose Q(N) = j to obtain the N Bethe ansatz equations for
the allowed values of ~λ

(−1)N−1 = eiλjL
N∏
k 6=j

λj − λk + ig

λj − λk − ig
, j = 1, . . . , N . (4.39)

This quantises ~λ, and it is now meaningful that one cannot have two identical
elements in this set. The normalisation factors for this system are also known
by the Gaudin-Korepin formula [121]. The energy of the state is related to
the scattering momenta, as it was in the free case.

These equations are necessary for the well studied case of repulsive bosons [20],
the thermodynamics limit N →∞, L→∞ with constant density is known.
The repulsive ground state is obtainable by comparisons with a Fermi sea,
and excitations behaving in a similar way to holes. Extremely repulsive sys-
tems, satisfying mg1D/~2n � 1, behave even more fermion-like, with the
states described by symmetrised Slater determinants [116]. This has allowed
for analytic work predicting correlation functions [122] and coherent states in
harmonic confinement [123]. The regime for one-dimensionality to be valid
has been investigated via extensions to the LL model [124] and the conditions
for stability with attractive interactions [125].

However, as we mentioned before if g < 0 the behaviour of the ground state
as L→∞ with N finite is non-trivial, giving rise to quantum solitons.

4.1.5 The Bethe ansatz with infinite size periodic bound-

ary conditions and attractive interactions

Attractive interactions again allow the possibility of complex components
in ~λ with periodic boundary conditions present, but additionally we require
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that Eq. (4.39) must still be satisfied, i.e.

ei Re(λj)Le−Im(λj)L =
N∏
k 6=j

λj − λk + ig

λj − λk − ig
. (4.40)

Terms of order e−CL with C > 0 will rapidly vanish as L→∞, implying at
least one of the numerators on the RHS is exponentially small. Likewise for
C < 0 this term will tend to infinity and at least one of the denominators on
the RHS is exponentially small. This can be achieved by slightly modifying
the string parametrisation to [126]

λaα = pα + i
g

2
(Nα + 1− 2a) + iδaα , (4.41)

with the labels α and a running over the same range as before and the
(almost) good quantum numbers {p1, N1, . . . , pη, Nη} characterising the state.
The elements δaα ∼ e−|C|L are referred to in the literature as string deviations
and decrease exponentially with the ring length [126]. In the limit L → ∞
these string deviations vanish, if the coefficients AP are given by Eq. (4.19)
the normalisation factor can be expressed as [118]

|N~λ|
−2 =

(|g|L)η

|g|NN !

η∏
β=1

N2
β

β−1∏
α=1

p2
α,β +

(
Nα+Nβ

2

)2

p2
α,β +

(
Nα−Nβ

2

)2 ; (4.42)

this expression2 employs the convention that an empty product is equal to
unity. By separating pα,β into centre-of-mass and relative momentum, we
can take states which are superpositions of these momentum values (either
continuously or discretely) to construct soliton like states within a harmonic
oscillator.

2The factor of |g|NN ! is not present in the derivation of [118] due to a slightly different
definition of the wavefunction.
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4.1.6 Reduction to GPE results

Density about the centre of mass

It is of interest to know where and how these many-body results reduce to
those of the GPE. The first known result is the number density (normalised
to the atom number N) about the centre-of-mass position of the ground state
(single string state) [127, 128]

ρ(x) =

∫
dx1 . . . dxN |Ψ(~x)|2δ

(
1

N

N∑
k=1

xk

)
N∑
k=1

δ (x− xk)

= N2|g|
N−2∑
k=0

[
k∏
j=0

N − j − 1

N + j

]
(−1)k(k + 1)eNg(k+1)|x| (4.43)

ρ̃(x̃) = N
N−2∑
k=0

[
k∏
j=0

N − j − 1

N + j

]
(−1)k(k + 1)e−(k+1)|x̃| (4.44)

with Ψ(~x) given in Eq. (4.30) and x̃ = N |g|x and ρ̃(x̃) normalised w.r.t. x̃;
note this rescaling is equivalent to soliton units (~ = m = gN = 1). This
result isn’t immediately obviously equivalent to the classical Nsech2(x/2)/4

profile from a GPE soliton, however we note that for real x

1

2
sech

(x
2

)
=

e−|x/2|

1 + e−|x|
= e−|x/2|

∞∑
k=0

(−1)ke−k|x| , (4.45)

with the Taylor series converging absolutely everywhere except x = 0. Using
this we can expand the classical soliton density as3

ρsol(x) =
N

4
sech2

(x
2

)
= N

∞∑
k=0

(−1)k(k + 1)e−(k+1)|x| , (4.46)

hence we can directly compare the density profiles of the many-body density
about the centre-of-mass and the mean field prediction, dropping the tildes

3The result is obtained by taking the product of series and the identity
∑∞

k,j=0 fj+k ≡∑∞
K=0

∑K
J=0 fK =

∑∞
K=0(K + 1)fK , where the reordering over K = k + j and J = k − j

is permitted because the sum is absolutely convergent.
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as all units are soliton units:

ρsol(x)− ρ(x)

N
=
∞∑
k=0

[
1−

k∏
j=0

N − j − 1

N + j

]
(−1)k(k + 1)e−(k+1)|x|

∼
∞∑
k=0

[
1

N
+O

(
k

N

)]
(−1)k(k + 1)e−(k+1)|x| . (4.47)

Because these deviations are of order 1/N for the lower order terms and
higher order terms are exponentially suppressed anyway, these two densities
can be said to be equal in the limit N → ∞. This is however the density
about the centre-of-mass, which for the cluster eigenstates is strictly delo-
calised over all space. This can be thought of purely as an uncertainty in
the centre-of-mass position, however we show the fidelity of the many-body
wavefunction with a Gaussian distribution of momentum and the Hartree
product soliton state tends to a large value in Sec. 5.5.3.

Position and phase shifts from collisions

The second important result is the position and phase shift from a collision
between two classical solitons as given in Eq. (3.14). This is again not imme-
diately clear since the Bethe Ansatz eigenstates are totally delocalised states,
and thus have total position uncertainty and also well defined number, and
hence poorly defined phase. A superposition of single cluster states (ground
states) with different centre-of-mass momentum would however be localised
like a classical soliton. This principle has been used to study quantum soli-
tons in optical fibres [117] by considering states which possess an uncertainty
in the total (photon) number. We consider a slightly different situation, of
a state which is an atomic coherent state [129], a superposition of relative
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number and (dimensionless) relative momentum-per-atom

|Ψ〉2 sol =
N∑
n=0

√(
N

n

)
cosn(ϑ/2) sinN−n(ϑ/2)ei(N−n)φ

∫∫
dpcdprel

fn(pc)g(prel)|n, pc/2 + prel/2, N − n, pc/2− prel/2〉 (4.48)

fn(pc) =
exp

[
− p2c

2∆p2
− ix0pc(n−N/2)

]
√

∆p
√
π

(4.49)

gn(prel) =
exp

[
− (prel−p0)2

2∆p2
− ix0Nprel/2

]
√

∆p
√
π

. (4.50)

Here if p1 and p2 are the momentum-per-atoms/velocities of either string
then prel = p1− p2 and pc = p1 + p2. Before the collision the state has a soli-
ton on the left of the centre with a number expectation value of N cos2(ϑ/2)

and one to the right with a number expectation value of N sin2(ϑ/2), with a
relative phase of φ between the two states. When viewed as separate objects,
all possible number distributions between these solitons have equal mean ve-
locities/momentum per atom; this implies each number configuration has
a different mean centre-of-mass momentum pcm = Npc/2 + (n − N/2)prel

(different from the setup we consider in Chap. 6 in harmonic confinement).
If the states are well separated, before the collision only the identity per-
mutation is significant, with all others decaying exponentially with the sep-
aration. After the collision and when the states are again well separated,
there can be no number transfer (as bound state numbers are good quan-
tum number), hence the number expectation values to the left and right will
have reversed, so the permutation (for each n) which switches the positions
P = [n+1, . . . , N, 1, . . . , n] will become significant. These permutations each
have a different coefficient associated with them, the ratio of which is given
by S in Eq. (4.27). This gives a scattering phase shift for each prel and n of

θ(n,N − n, prel) = −i log[S(n,N − n, prel)]

= −2
n∑
j=0

(2− δj,0 − δj,n) tan−1

(
|g|N/2− n+ j

prel

)
. (4.51)

This is essentially a rescaling of the initial relative momentum and rela-
tive number distributions (the centre-of-mass properties remain the same).
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Adapting the method of [117], we can Taylor expand θ to first order about
the expected values of n and pr

θ(n,N−n, prel) ≈ θ(nL, N−nL, p0)+(n−nL)
∂

∂n
θ|nL,p0+(prel−p0)

∂

∂prel

θ|nL,p0 ,

(4.52)
with nL = N cos2(θ/2) the left number expectation value.

The momentum derivative gives a number weighted relative position shift, a
rescale of x0 by

1

2N

∂

∂prel

θ|nL,p0 =− 1

N

n∑
j=0

(2− δj,0 − δj,n)
|g|(N/2− n+ j)

p2
rel + |g|2(N/2− n+ j)2

∼− 1

N |g|
ln

[
N2g2 + 4p2

rel

|g|2(N − 2n)2 + 4p2
rel

]
. (4.53)

The latter step is performed using the Euler-McLaurin formula to zeroth
order. In order to compare this with Eq. (3.18a) (recalling that the shift is
twice this value) we note firstly that Eq. (4.53) is equivalent to q1− q2 so the
(A1 +A2)/A1A2 prefactor is not included and that |g| = 1/N in soliton units
and take A1−A2 = (N −2nL)/2N and p1−p2 → p0; this exactly reproduces
Eq. (4.53), and so is the same up to high orders in the derivative expansion
and truncation in the Euler-McLaurin formula.

The number derivative represents a shift in the relative phase between each
soliton (a rescale of φ) due to the additional interaction; number is a discrete
variable so we take the derivative to be the symmetric difference

∂

∂n
θ|nL,p0 ∼

1

2
[θ(n+ 1, N − n− 1, p0)− θ(n− 1, N − n+ 1, p0)]

=−
[
tan−1

(
|g|N − 2nL − 2

2p0

)
+ 2 tan−1

(
|g|N − 2nL

2p0

)
+ tan−1

(
|g|N − 2nL + 2

2p0

)]
. (4.54)

Classically one expects no relative phase shift between solitons if they are
the same size. Setting nL = N/2 in Eq. (4.54) gives zero for ∂

∂n
θ|nL,p0 and

this agrees with the classical case. If nL 6= N/2 then a shift does occur.
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Comparing with Eq. (3.18b) we have a difference of

|δΦqm − δΦcls| ∼
[
tan−1

(
|g|N − 2nL − 2

2p0

)
− 2 tan−1

(
|g|N − 2nL

2p0

)
+ tan−1

(
|g|N − 2nL + 2

2p0

)]
, (4.55)

which vanishes so long as either |N − 2nL| � 1 or |(N − 2nL)g/p0| � 1,
hence the quantum corrections only show for extremely slow collisions and
low atom number.

Summary

We discussed the notion of quantum integrability in the sense of scattering
without diffraction and the Bethe ansatz. We introduced the bound state string
eigenstates to the attractive Lieb-Liniger equation, which describes cold Bose
gases in 1D, including the scattering matrix elements of two strings. Addi-
tionally we investigated the effect of periodic boundary conditions, leading to
the Bethe Ansatz equations. Finally we showed that the density about the
centre of mass and position and phase shifts after collisions were the same
for string solutions and a GPE solitons in the limit high N .

4.2 Harmonic oscillator potentials and many

body physics

4.2.1 Harmonic oscillator potentials for many non-interacting

particles

An interesting property of the harmonic oscillator potential is that having
many quanta is in principle equivalent to having many dimensions. A Hamil-
tonian for N non-interacting particles can always be split into N commuting
single particle Hamiltonians

Ĥ(r1, . . . . , rN) = Ĥ(r1) + ...+ Ĥ(rN) . (4.56)
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Likewise, each of the single particle Hamiltonians Ĥ(r) can be separated into
D commuting parts, where D is the number of spatial dimensions, and so it
seems one must simply consider N×D one dimensional problems. One could
therefore in principle define N ×D ladder operators âj,k (with j = 1, . . . , D

and k = 1, . . . , N) and derive the properties of the system this way. This
is true if the particles are all distinguishable in some way. However if they
are not then we are neglecting one of the most important symmetries in
many-body physics, the bosonic or fermionic symmetry of the wavefunction:

Ψ(. . . , rj, . . . , rk, . . .) = ±Ψ(. . . , rk, . . . , rj, . . .) , (4.57)

with the − sign occurring for particles with half integer spin (fermions). Con-
sidering for example Bosons, the state created by the action of a ladder op-
erator for particle one on the ground state a†1,1|ground〉 = |1〉1,1|0〉1,2...|0〉N,D,
does not satisfy bosonic symmetry and is not allowed. Similar properties are
true for fermions but now the ground state is more complicated to express.

4.2.2 Degeneracy of states in 1D many-body oscillators

We now restrict ourselves to the D = 1 dimensional harmonic oscillator for
simplicity. The imposition of permutational symmetry in the wavefunction
changes the degeneracy of each energy level significantly. The degeneracy in
this system has been investigated in, for example, [130–132] and references
therein. For bosons, the degeneracy of the nth excited state with energy
En = (n+N/2)~ω, is given by the number of ways to partition n usingN non-
negative integers without repetition. We will show later that this is equivalent
to using only numbers less than or equal to N [133]. It is conventional to
denote the ways to partition a number n in exactly ` numbers greater than
or equal to a as Φ(n, `, a). We can split the partitions of n into partitions
that use the number a at least once and those that do not, i.e. partitions
which have a minimum of a+ 1 or larger. There are no partitions satisfying
a > n and only one partition with a = n (the number n) and therefore ` = 1



Chapter 4. Many body quantum physics in one spatial dimension 78

or a = n = ` = 0. These properties allow us to derive the recurrence relation:

Φ(n, `, a) =


0 if a > n or a = n and ` 6= 1

1 if a = n and ` = 1

Φ(n, `, a+ 1) + Φ(n− a, `− 1, a) otherwise

(4.58)

and Φ(0, 0, 0) = 1. So the degeneracy of the nth excited state is thus

gn = Φ(n, `, 0) . (4.59)

Equally we could consider the degeneracy of fermionic states in a harmonic
oscillator, which for a state of energy En (the energy of the nth bosonic
excited state) would be the number of ways to partition n using N non-
identical non-negative integers which we can denote Φ̃(n, `, a). This function
can be split into distinct parts as before, and one obtains essentially the
same recurrence relation as Eq. (4.58), except the first non-zero value for
` = N wouldn’t occur until n = 0 + 1 + 2 + ... + N − 1 = N(N − 1)/2

with E = ~ωN2/2 the fermionic ground state energy. This leads us to
the remarkable conclusion that Φ̃(n + `(` − 1)/2, `, a) = Φ(n, `, a) and the
fermionic degeneracy for the nth excited state is exactly the same as for the
bosonic case, given in Eq. (4.59); the only difference being that the ground
state energy is larger.

We also note that Φ(n, `, 0) is equal to the number of ways to partition n

using only numbers less than or equal to `. Given ` numbers {a1, . . . , a`} ≥ 1,
which partition n, ordered such that a1 ≤ a2 ≤ . . . ≤ a`, then we can
equally partition n with b1 = a` − a`−1 ones and b2 = a`−1 − a`−2 twos
etc, in a dual partition. This property can be easily shown visually via a
Ferriers diagram such as Fig. 4.1. Naturally this dual partition has only
numbers up to `. This identity is also useful for understanding a many-
body ladder operator treatment of the system. We therefore introduce the
notation p([a, b], n) being the number of ways to partition an integer n using
only integers a ≤ z ≤ b. In order to compute these for a given b, we use the
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recurrence relation

p([a, b], n) =


0 if a ≥ min(n, b) and n 6= 0

1 if [a = n or n = 0] & a ≤ b

p([a+ 1, b], n) + p([a, b], n− a) otherwise ,

(4.60)

derived via the same logic as before.

5

3

1

3 2 2 1 1

Figure 4.1: This diagram shows a visualisation of a partition of the number
eight, this can be thought as a partition into the five integers {1, 1, 2, 2, 3}
along the top or the dual partition of three integers {5, 2, 1} along the side.

4.2.3 Creation and annihilation operators

The most common way of dealing with indistinguishably is to change to an
occupation number representation of the wavefunction

|Ψ〉 = |n0, n1, n2, . . . , n∞〉 , (4.61)

with nk denoting the number of quanta present in the kth oscillator state,
which for bosons can be any integer (subject to the constraint that the total
number is N) and for fermions must be either 0 or 1. This representation can
be converted to a normalised wavefunction via the symmetrisation operator,
which we define via its action on a many-body wavefunction or state ket:

Ŝ±[f(~x)] =
1√
N !

∑
P

(±)[P ]f(xP (1), . . . , xP (N))

Ŝ±[|n1〉1, . . . , |nN〉N ] =
1√
N !

∑
P

(±)[P ]|nP (1)〉1 . . . |nP (N)〉N , (4.62)
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with P the set of all permutations of {1, . . . , N}, and the minus sign only
for fermions where the number of pair-wise swaps to make the permutation
P from the identity permutation is odd. This operator has the disadvantage
of not preserving normalisation. On states which already satisfy the correct
symmetry, it will add a factor of

√
N ! to the norm and on states which have

the opposite permutational symmetry it will return zero. Only states which
have no permutational symmetry have their norm preserved. We can use this
to express our wavefunction as

〈x1, . . . , xN |n0, n1, n2, ...n∞〉 = Ŝ±
∏
k

1√
nk!

nk∏
j=1

φk[xn0+···+nk−1+j] , (4.63)

with the factors of 1/
√
nk! necessary to provide normalisation. We can now

define creation and annihilation operators ĉ†k and ĉk via

Ψ̂(x) =
∞∑
k=0

φk(x)ĉk , (4.64)

which satisfy

ĉ†k| . . . , nk, . . .〉 =
√
nk + 1| . . . , nk + 1, . . .〉 (4.65)

ĉk| . . . , nk, . . .〉 =
√
nk| . . . , nk − 1, . . .〉 . (4.66)

These operators have the advantage of preserving the symmetry of the state,
and we can use them to express the Hamiltonian as

Ĥ = ~ω
∞∑
k=0

(k + 1/2)ĉ†kĉk . (4.67)

4.2.4 Relation to ladder operators

Creation and annihilation operators4 are however not simple to relate back
to the original ladder operators of the Hamiltonian. However, to see that it
is possible we transform to a coordinate system known as normalised Jacobi

4We note ĉ†k and ĉk are also ladder operators to the Hamiltonian as they satisfy Eq. (2.9)
(with c ∝ k), however we are interested in Ladder operators which preserve total number.
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coordinates [134]

ξ1 ≡
1√
N

N∑
k=1

xk (4.68)

ξk ≡
√
k − 1

k

[
xk −

1

k − 1

k−1∑
j=1

xj

]
k>1 . (4.69)

Using these coordinates we can express the 1st quantized Hamiltonian as

H(ξ1, . . . , ξN) =
N∑
k=1

(
− ~2

2m

∂2

∂ξ2
k

+
mω2ξ2

k

2

)
. (4.70)

Via the identity Eq. (A.11), this is again in the form of N separable sin-
gle coordinates commuting Hamiltonians with normal Harmonic oscillator
eigenfunctions. We can then express eigenstates as being a product of these
states, but again the total wavefunction must obey the correct permutational
symmetries so we require the symmetrisation operator again:

Ψ(ξ1, . . . , ξN) ∝ Ŝ± [φn1(ξ1)φn2(ξ2)...φnN (ξN)] . (4.71)

Taking the example of N = 2, we have ξ2 = (x2−x1)/
√

2 and symmetrisation
demands that the eigenfunctions of the k = 2 component of the Hamiltonian
(4.70) satisfy φk(ξ2) = ±φk(±ξ2). Hence only even (odd) functions are al-
lowed for bosons (fermions). However, regardless of N , symmetry imposes
no constraints to functions of the (scaled) centre-of-mass position coordinate
ξ1; any function of ξ1 is unchanged by permutations of x1, . . . , xN and thus
can simply be factors out of the symmetry operator, and can therefore take
normal harmonic oscillator eigenfunctions. We can define a many-body lad-
der operator which raises the centre-of-mass mode state by one in terms of
the single particle ladder operators via

Â†1 =
1√
N

N∑
k=1

â†k . (4.72)

The action of this operator on a Fock state with energy E creates a state
which is a superposition of Fock states with energy E+~ω [the degeneracy of
the nth excited state is given in Eq. (4.59)]. We wish to express this operator
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in terms of creation and annihilation operators. In the single particle case,
N = 1, Â†1 is just the ordinary ladder operator. Given that Â†1 gives non-zero
values on a one particle state and preserves number it must be expressible in
the form

Â†1 =
∑
`,k

C`,kĉ
†
` ĉk , (4.73)

with C`,k some coefficients. Because the energy is raised by one quantum,
it is also clear that C`,k = C̃kδ`,k+1 must be only populated on the upper
diagonal. Finally given â†|n〉 =

√
n+ 1|n+ 1〉, we have that

Â†1 =
1√
N

N∑
k=0

√
k + 1ĉ†k+1ĉk . (4.74)

4.2.5 A full set of ladder operators for the N particle

system

In principle one could define more many-body ladder operators. A set of N
would be required for an N body system, based on the Jacobi coordinates

Âk ∝
√
mω

2~

(
ξ̂k +

i

mω
Π̂k

)
, (4.75)

with Π̂k the momentum in Jacobi coordinates. These operators increase/de-
crease the state they act on by one unit of ~ω and would be sufficient for
systems of distinguishable particles, but for indistinguishable particles they
must be symmetrised.

Taking the simple example of N = 2 and Â2 we see that the symmetrisation
operator simply takes ξ2 → −ξ2 and Ŝ+Â2 = 0 and Ŝ−Â2 = 2Â2. Equally(

ξ̂2 + i
∂

∂ξ2

)2

= ξ̂2
2 −

∂2

∂ξ2
2

+ i

(
1 + ξ2

∂

∂ξ2

)
, (4.76)

is symmetric in ξ2 and so Ŝ+(Â2)2 = 2(Â2)2 and Ŝ−(Â2)2 = 0. Contin-
uing this for higher powers we see that only operators (Â2)2n with n an
integer/half-odd-integer satisfy bosonic/fermionic symmetry, other states will
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vanish after the symmetrisation operator is applied.

Each application of the independent (upwards) ladder operators (in any or-
der) to the ground state gives a unique state, with an energy equal to the
energy raising of each operator applied times the number of applications.
Therefore, in order to give the correct degeneracy gn, given by Eq. (4.59),
which is equal to the number of ways to partition n using integers less than
or equal to N , each operator for the nth mode in identical particles must
have energy levels spaced by n. Therefore we define

ˆ̃Ak =
[
Âk

]k
(4.77)

as the ladder operators for identical particles, with symmetry dealt with later.
We note that the bosonic/fermionic ground states |ground〉(b/f) are related
via

|ground〉(f) ∝ Ŝ−{Â2[Â3]2...[ÂN ]N−1}|ground〉(b) . (4.78)

Similar to the case of the Â1, as given in Eq. (4.72), we can argue that we
must be able to express any symmetrised ˆ̃Ak as

ˆ̃Ak =
∞∑

j1,....,j2k=0

Cj1,...,j2kδj1+..+jk+k,jk+1+..+j2k ĉ
†
j1
...ĉ†jk ĉjk+1

...ĉj2k , (4.79)

because the application to states with N < k must be zero and it must
lower (or raise for the conjugate) the energy of a state by k~ω. One could
in principle derive a recursion relation for the constants, Cj1,...,j2k , based on
the commutator relations [ ˆ̃A†j,

ˆ̃Ak] ∝ δk,j and fix them via the expectation
value on the ground state: 〈ground| ˆ̃Aj ˆ̃A†j|ground〉. This could be set to j or
unity depending on what convention we wish to adopt; we take the latter for
simplicity, i.e. each ladder quanta is considered to have an energy of k~ω.

With these operators from Eq. (4.79), we can define any possible bosonic
eigenstate in the system as

|Ψ〉j1,...,jN ∝ Ŝ+

{
N∏
k=1

( ˆ̃A†k)
jk

jk!
|ground〉(b)

}
, (4.80)
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with energy E = ~ω(N/2+ j1 +2j2 + ...+NjN) and express the Hamiltonian
as

Ĥ = ~ω

[
N

2
+

N∑
k=1

k ˆ̃A†k
ˆ̃Ak

]
. (4.81)

The fermionic states would be defined analogously.

4.2.6 The introduction of two body interactions

Centre-of-mass separability

The full N operator algebra of Sec. 4.2.5 has proven not to be particularly
useful for computations in systems with two-body interactions, as one would
need to consider all theN commutation relations [ ˆ̃A†k, ĤI ] with the interaction
Hamiltonian

ĤI =

∫
dx

∫
dx′Ψ̂†(x)Ψ̂†(x′)V (x− x′)Ψ̂(x′)Ψ̂(x)

=
∑
jk`n

Vjk`nĉ
†
j ĉ
†
kĉ`ĉn , (4.82)

which is highly non-trivial. That is, with the expectation of the centre-of-
mass (c.o.m.) mode creation operator, as we have that [135]

[Â†1, ĤI ] = 0 (4.83)

for any two body interaction V (x− x′); we show explicitly the commutation
with the c.o.m. and interaction Hamiltonians later in Sec. 5.2. We can there-
fore consider the action of the c.o.m. Hamiltonian, ĤC = Â†Â separately to
that of the interaction and relative degrees of freedom, or equivalently con-
struct eigenstates from each Hamiltonian separately. Additionally the two
body problem can be solved analytically for a contact interaction, which we
discuss in Sec. 5.2.1.

Projection to the zero centre-of-mass excitation basis

We wish to derive a matrix which projects the occupation number notation
states into eigenstates of the centre of mass operator. This is achieved by
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Figure 4.2: Reduced basis size divided by truncated basis size, given by
Eq. (4.86), for different cut-off energies. Top to bottom lines are for cut-off
energies η = 10, 20, 40, 60, 80, 100, dotted lines are the estimate of Eq. (4.89).
Basis reduction is most significant for small N but Eq. (4.89) provides a good
estimate of the reduction for large N .

diagonalising an occupation number basis in terms of

Â†1Â1 =
∞∑

j,k=0

√
(j + 1)(k + 1)ĉ†k+1ĉkĉ

†
j ĉj+1 (4.84)

with Â1 given by Eq. (4.72). This is a reasonably simple operation as Â†1Â1

only mixes states of the same energy and so is block diagonal. Each block can
be diagonalised separately, considerably reducing the time taken; the blocks
are also relatively sparse further simplifying the problem. The eigenvectors
therefore form a new basis we call the “projected basis,” and form a matrix
which projects into this basis (which has the same eigenvalues as before).
We know via Eq. (4.83) that ĤI can only mix states to states with the
same quanta of centre-of-mass excitation and so ĤI is block diagonal in the
projected basis. Additionally we need only consider states satisfying Â|ψ〉 =

0 (zero c.o.m. excitation quanta), denoted the “reduced basis”, in order to
diagonalise a relative Hamiltonian, containing all the relative eigenstates;
excited c.o.m. states could be added via the action of Â† on these relative
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eigenstates.

We use this property to simplify exact diagonalisation routines for systems
of harmonically confined Bosons interacting with a Lieb-Linger type contact
potential [Eq. (4.6)] in chapters 5 and 6. For the purpose of computation
we impose a cut of excitation energy η (i.e. the maximum additional quanta
of energy above the ground state, implicitly in units of ~ω), with the basis
truncated so that states with E − E0 > η are excluded. Note that this also
implies a mode cut off: Nk = 0 if k > η. It is not generally possible within
this method to impose any other mode cut off as higher modes are required
to create the zero c.o.m. excitation states.

The full size of this truncated basis is given by the number of ways to partition
all the integers up to η using integers between one and N , the number of
states with zero c.o.m. excitation states can use only two to N . We define
the ratio of these two basis sizes as:

∆(η,N) =

∑η
n=0 p([2, N ], n)∑η
n=0 p([1, N ], η)

. (4.85)

We can use Eq. (4.60) to write p([2, N ], Ẽ) = p([1, N ], Ẽ)− p([1, N ], Ẽ − 1).
In the sum from 0 to η, all terms cancel apart from the one at the end point
of the sum, p([1, N ], η). Hence the size of the reduced basis is the degeneracy
of the ηth energy level in the occupation number basis, and we have

∆(η,N) =
p([1, N ], η)∑η
n=0 p([1, N ], n)

. (4.86)

The basis reduction for N = 2 can be calculated by noting there are bk/2c+1

ways to partition k using 1 and 2 (the notation bkc means round k down to
the nearest integer), thus the reduced basis is bη/2c+ 1 in size, the number
of states in the truncated occupation number basis is

η∑
k=0

(bk/2c+ 1) =

1 + η + η2/4 if η even

1 + η + (η2 − 1)/4 if η odd.
(4.87)

To leading order the reduction ∆(η,N) goes as 2/η. Such simple analytic
expressions are not known for general N , however we have the following
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expression by Ramanujan [133]

p([1, N ≥ η], η) ∼ 1

4η
√

3
exp

(
π

√
2η

3

)
as η →∞, (4.88)

which can be used to get an asymptotic estimate of the basis reduction by
replacing the sum in Eq. (4.86) with an integral, giving

p([1, N ≥ η], η)∫ η
0
p([1, N ≥ η], η′)dη′

∼ π√
6η
− 1

η
+O(η−3/2) . (4.89)

This will be our best estimate for the reduction achieved for large N , improv-
ing slower than the ∝ 1/η reduction for the N = 2 case. This asymptotic
estimate is included in Fig. 4.2, along with the reduction for intermediate
values of N .

Summary

This section described the importance of indistinguishably between particles
in a harmonic oscillator, and how many identical particles is therefore not
the same as many spatial dimensions or distinguishable particles; degener-
acy of energy levels were calculated for the former case, the latter having
been covered earlier. We derived a ladder operator formulation of the many-
body harmonic oscillator, which was used to derive a centre-of-mass separated
numerical method, which we later use to investigate systems with two-body
interactions.
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Chapter 5

A single quantum soliton in

harmonic confinement

5.1 Preamble

This chapter focuses on the work relating to publication [1], with contribu-
tions made by C. Weiss and S.A. Gardiner. The paper investigates bright
quantum-matter-wave solitons in the presence of harmonic confinement, be-
yond the Gross-Pitaevskii equation. The primary motivation behind this
work is that almost all current experimental work with attractive BECs, and
indeed most repulsive BECs, is done in the presence of harmonic confine-
ment. Periodic waveguides [136] can be achieved to an extent, but suffer
from large atom losses due to a “circle (or torus) of death” and considerable
difficulty in combining with Feshbach control of atomic interactions and/or
achieving a quasi 1D geometry. We look for regimes of agreement between
exact many-body quantum theory and mean field approximations (specifi-
cally with a Hartree product ansatz for the many body wavefunction) within
the Lieb-Liniger (LL) model. This lead to an unusual unit rescaling to keep
the energy of a Hartree product state constant.

The key results from this work were the derivation of a first order energy
correction to the internal energy of a quantum soliton, which is also used as
the basis of a variational model, and also numerical calculations of the overlap
between a product state and a centre-of-mass confined quantum soliton.

89



Chapter 5. A single quantum soliton in harmonic confinement 90

This chapter is organised as follows: Section 5.2 introduces the unit rescaling
used to keep the mean field soliton length constant throughout the paper, and
the known exact results in the absence of trapping (using the Lieb-Liniger
model [20]) in these units. Also included is the separability of the many-
body Hamiltonian and the existence of the Kohn mode, as well as the exact
eigenstates for two interacting bosons in a harmonic potential. Section 5.3
derives a perturbative energy correction to the relative ground state energy
due to the introduction of a harmonic trapping potential, along with a vari-
ational procedure to estimate the ground state in the limit of weak trapping.
Section 5.4 introduces the numerical method used to perform calculations in
the many-body system for varying 1D harmonic trapping potential, using a
basis set of harmonic oscillator eigenstates, which are projected to a centre-
of-mass excitation basis. Section 5.5 numerically investigates changes to the
relative component (i.e. having excluded the centre of mass) of the ground
state as the trapping potential is increased. These calculations are performed
for different numbers of atoms and compared with predictions based on the
GPE. Section 5.5.3 examines quantitatively the overlap between the mean
field approximation of the ground state and the many-body solutions, along
with finding a regime of agreement where the difference between the two
models is small in every respect. Section 5.6 summarizes and comments on
the results.

5.2 Unit rescalings and key results

Separation of the centre-of-mass coordinate xC in first quantisation

We consider a 1D system of identical bosonic atoms with attractive (g1D < 0)
contact interactions in an axial harmonic trapping potential. This system is
described by the first quantised Hamiltonian

H(~x) =
~2

2m

N∑
k=1

[
− ∂2

∂x2
k

+
mω2

xx
2

2

]
+ g1D

N∑
k=2

k−1∑
j=1

δ(xk − xj) , (5.1)

where ~x is a shorthand for the set of all N coordinates {x1, x2, . . . , xN}.
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As the external potential is harmonic, the centre-of-mass dynamics separate
and are independent of any two-body interactions. Consequently the centre-
of-mass eigenstates are simple harmonic oscillator eigenstates or plane waves,
respectively. In the former case this is referred to as the Kohn mode. This
may be readily seen by expressing the first-quantized form of the Hamiltonian
[Eq. (5.1)] in terms of the (unnormalised) Jacobi coordinates, i.e.,

xC =
1

N

N∑
k=1

xk, (5.2)

together with

ξk ≡ xk −
1

k − 1

k−1∑
j=1

xj, (5.3)

for k ∈ {2, 3, 4, . . . , N}, which differ from Eq. (4.69) via a scaling factor.
We choose these as these include the actual centre-of-mass position and not
a version rescaled by

√
N . The Hamiltonian can then be phrased as H =

HC +HR, where

HC(xC) =− ~2

2Nm

∂2

∂x2
C

+
Nmω2

xx
2
C

2
, (5.4)

HR(~ξ) =
N∑
k=2

[
− ~2k

2m(k − 1)

∂2

∂ξ2
k

+
(k − 1)mω2

xξ
2
k

2k

]
− g1D

N∑
k=2

δ

(
ξk +

k−1∑
`=2

ξ`
`

)

− g1D

N∑
k=2

k−1∑
j=2

δ

(
ξk +

k−1∑
`=j+1

ξ`
`
− j − 1

j
ξj

)
, (5.5)

~ξ is a shorthand for {ξ2, ξ3, ξ4, . . . , ξN}, and we have used the identity xk −
xj = ξk +

∑k−1
`=j+1 ξ`/` − [(j − 1)/j]ξj (with b > a and ξ1 ≡ xC). In cases

where the upper limit of a sum is less than its lower limit, the sum is taken
= 0.

Centre of mass separated Hartree factorisation

Just as in the 3D case [Eq. (2.50)], minimising the Hamiltonian (5.1) with a
Hartree wave-function ψH(~x) =

∏N
k=1 φ(xk) leads to a GPE with a rescaled

nonlinear factor proportional to N−1. In this chapter we choose to retain the
proportionality to (N − 1), as this way we cannot underestimate the relative
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ground state energy compared to the true value.

If instead of taking φ(x) to minimise the action functional obtained from Ĥ

we instead consider just minimising HR = H−HC, we will obtain a different
equation to Eq. (2.50). This adds an extra term to S in Eq. (2.49) (allowing
for the fact this is now in 1D) equal to

Ecm =

∫
dx1 . . .

∫
dxN

[
N∏
k=1

φ∗ (xk)

][
− ~2

2Nm

∂2

∂x2
C

+
Nω2

xx
2
C

2m

] [ N∏
k=1

φ (xk)

]

=

∫
dx1 . . .

∫
dxN

[
N∏
k=1

φ∗(xk)

]{
N∑
j=1

[
− ~2

2Nm

∂2

∂x2
k

+
ω2
xx

2
k

2Nm

]

+ 2
∑

1≤j<k≤N

[
− ~2

2Nm

∂

∂xk

∂

∂xj
+
ω2
xxkxj
2Nm

]}[ N∏
k=1

φ(xk)

]
. (5.6)

This expression consists of many identical integrals over different coordinates,
hence we can simplify it to

Ecm =

∫
dxφ∗ (x)

[
− ~2

2m

∂2

∂x2
+
ω2
xx

2

2m

]
φ (x) + (N − 1)

∫∫
dxdx′

φ∗ (x)φ∗ (x′)

[
− ~2

2m

∂

∂x

∂

∂x′
+
ω2
xxx

′

2m

]
φ (x)φ (x′) , (5.7)

and if φ (x) is symmetric about x = 0 (or any point x0 for the derivatives)
then the cross terms vanish by symmetry; if this is the case and Ecm is simply
equal to the energy of a single particle eigenstate. Minimising Eq. (2.49) after
subtracting Ecm results in

i~
N

N − 1

∂

∂t
=

[
− ~2

2m

∂2

∂x2
+
mω2

xx
2

2
−Ng1D|φ(x)|2

]
φ(x) , (5.8)

note that (assuming N 6= 1) the extra factor on the left can be removed by
rescaling to t̃ = Nt/(N − 1) giving the usual GPE with nonlinearity scaled
by N . It also tends to unity as N →∞.

This treatment would only really describe the wavefunction about the centre-
of-mass position. In order to include the centre-of-mass behaviour in a con-
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sistent way we need to consider a more complicated many-body wavefunction

ψ̃H(~x, t) =

∫
dx0f(x0, t)

N∏
k=1

φ(xk − x0, t) , (5.9)

i.e. a superposition of product states with different centre-of-mass positions,
similar to what was considered in [127] for a free soliton. The function
φ(xk − x0, t) would be determined by extremising the functional equation
S =

∫
d~xψ∗(i~ ∂

∂t
−HR)ψ with respect to variations in φ∗(x). f(x0, t) would

be set by minimising S =
∫
d~xψ∗(i~ ∂

∂t
−HC)ψ, with respect to variations in

f ∗(x0, t). This might be an interesting approach to adding centre-of-mass dis-
persion into a mean-field theory (within free space or harmonic confinement),
but we do not explore this further.

Rescaling to dimensionless form

It is convenient to rescale our description of the system in terms of an ef-
fective ~ = m = g1D(N − 1) = 1 unit system, which we will still refer to
as soliton units for this chapter, but it is important to note they are differ-
ent to Eq. (3.7). Space, time and energy scales are then given in units of
~2/mg1D(N − 1) (the classical soliton length [56]), ~3/mg2

1D(N − 1)2, and
mg2

1D(N − 1)2/~2, respectively.

We work within this system of units for the rest of this chapter. The Hamil-
tonian [Eq. (5.1)] transforms to

H(~x) =
N∑
k=1

[
−1

2

∂2

∂x2
k

+
γ2x2

k

2

]
− 1

N − 1

N∑
k=2

k−1∑
j=1

δ(xk − xj), (5.10)

or in second quantisation

Ĥ =

∫
dxΨ̂†(x)

[
−1

2

∂2

∂x2
+
γ2x2

2
− Ψ̂†(x)Ψ̂(x)

2(N − 1)

]
Ψ̂(x) , (5.11)

and the time-independent Hartree GPE [Eq. (2.50)] becomes

µφ(x) =

[
−1

2

∂2

∂x2
+
γ2x2

2
− |φ(x)|2

]
φ(x). (5.12)
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We have introduced the dimensionless parameter γ, which is the square of the
ratio of the classical soliton length to the harmonic oscillator length

√
~/Mωx

[56], i.e.,

γ =
~3ωx

Mg2
1D(N − 1)2

. (5.13)

Within our chosen system of units γ appears in the rescaled Hamiltonian
and GPE as a dimensionless effective trap frequency. This also reveals γ to
be the only free parameter in the GPE, which as a description of the system
is effectively a classical field limit, and the particle number N appears as
an additional free parameter in the fully quantal Hamiltonian. With this
dimensionless rescaling, the normalized ground-state of HC is exactly

ψC(xC) =

(
Nγ

π

)1/4

exp

(
−Nγx

2
C

2

)
, (5.14)

with eigenenergy = γ/2.

5.2.1 Known exact results

Ground states in free space

In the case where there is no axial trapping potential, i.e., γ = 0, the GPE
stationary state [Eq. (3.3)] and many-body ground state [Eq. (4.30)] are
known. Within our unit system these are given by

ψH(~x) =
1

2N

N∏
k=1

sech
(
xk − x0

2

)
(5.15)

and

ψG(~x) =

√
(N − 1)!

(N − 1)N−1
exp

(
−

N∑
k=2

k−1∑
j=1

|xk − xj|
2[N − 1]

)
. (5.16)

with the normalising factor calculated in Sec. C.2. As a result of not breaking
the translation symmetry, the many-body state is localized in the sense that
ψG(~x)→ 0 as |xk − xj| → ∞, for any k 6= j and we recalled from Sec. 4.1.6
that the density about the centre-of-mass is the same as the Hartree solution
as N →∞.
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The energies EH and EG corresponding to the wave-functions ψH(~x) and
ψG(~x) are given by

EH = −N
24
, (5.17)

EG = −N(N + 1)

24(N − 1)
≡ EH −

N

12(N − 1)
. (5.18)

As one would expect, the exact eigenenergy EG is less than EH, and the
difference in energy per particle (EH − EG)/N = 1/12(N − 1) vanishes as
N →∞.

Two interacting bosons in a harmonic potential

The case of two identical bosons in a harmonic potential with contact (δ-
function) interactions is also exactly solvable [137, 138]. In this case the
eigenfunctions of HR(ξ2), defined through HR(ξ2)φn(ξ2) = ER,nφn(ξ2), are
given by

φn(ξ2) = NnU(−νn, 1/2, γξ2
2/2)e−γξ

2
2/4, (5.19)

where U(a, b, z) is the Tricomi confluent hypergeometric function [139], and
Nn is a normalization constant. The νn are implicit solutions of

Γ(1/2− νn)

Γ(−νn)
=

1

2
√

2γ
, (5.20)

and set the eigenvalues of HR(ξ2) through

ER,n =

(
2νn +

1

2

)
γ. (5.21)

Attractive interactions must reduce ER,0 from the noninteracting case, so
that ER,0 < γ/2 ⇒ ν0 < 0. As outlined in Appendix B.1, it then follows
that in the limit γ → 0 (interaction dominated regime) ER,0 → −1/4 +

O(γ2). This is in agreement with the total ground state energy EG for
the case of two attractively interacting bosons in free space [Eq. (5.18)], as
one would expect due to the centre-of-mass energy of the free space ground
state being = 0. In the opposite limit of γ−1 → 0 (trap dominated regime)
harmonic-oscillator eigenvalues and eigenfunctions must result, i.e., En →



Chapter 5. A single quantum soliton in harmonic confinement 96

(2n + 1/2)γ and U(−νn, 1/2, γξ2
2/2) → H2n(

√
γξ2)/22n/

√
2, where the H2n

are even Hermite polynomials [due to Bose symmetry φn(ξ2) ≡ φn(−ξ2), i.e.,
eigenfunctions must be even].

5.3 Perturbative and variational methods

5.3.1 Interaction dominated limit in a harmonic poten-

tial

In the case where γ � 1, we may consider the effect of the trap to be
dominated by the effect of the interactions, and therefore negligible in HR.
As there are no interactions present in HC, the effect of the trap is in this
case always significant, even in the interaction dominated regime.

We may therefore consider a limiting case Hamiltonian H0, composed of HR

[Eq. (5.5)] with γ = 0, plus HC [Eq. (5.4)]. Written in terms of conventional
single-particle coordinates,

H0(~x) = −1

2

N∑
k=1

∂2

∂x2
k

+
γ2

2N

(
N∑
k=1

xk

)2

− 1

N − 1

N∑
k=2

k−1∑
j=1

δ(xk − xj), (5.22)

and the correctly normalized ground state ψ0 can be put together from
Eq. (5.16) multiplied by Eq. (5.14), i.e., ψ0 ≡ ψCψG, with the sum of the cor-
responding eigenvalues determining the overall energy E0. Hence, in terms
of single-particle coordinates

ψ0(~x) =

(
Nγ

π

)1/4

exp

− γ

2N

[
N∑
k=1

xk

]2
ψG(~x), (5.23)

and, from Eq. (5.18) plus γ/2 (the harmonic oscillator zero-point energy),

E0 = −N(N + 1)

24(N − 1)
+
γ

2
. (5.24)

This interaction dominated limit does not correspond to any physical system
but is a useful starting point for perturbation theory.
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5.3.2 Perturbation results

To proceed from the approximated Hamiltonian (5.22), we include the ef-
fect of the harmonic trap on the relative degrees of freedom via Rayleigh-
Schrödinger perturbation theory. The full Hamiltonian (5.1) can be written
as H(~x) = H0(~x) + ∆H(~x), with

∆H(~x) =
γ2

2

 N∑
k=1

x2
k −

1

N

(
N∑
k=1

xk

)2
 . (5.25)

As ∆H(x) ∝ γ2, we expect perturbation theory to yield particularly good
results in the limit of small γ. For the first-order energy correction to the
ground state,

E(1) = 〈ψ0|∆Ĥ|ψ0〉

=

∫
d~x ψ0(~x)∗∆H(~x)ψ0(~x) , (5.26)

which also serves as a definition of the bra-ket notation, we find (Appendix
C.4):

E(1) = γ2 (N − 1)2

N

N−1∑
k=1

1

k2
. (5.27)

The sum in Eq. (5.27) is simply the second Harmonic number, for which the
asymptotic behaviour in the N � 1 limit is given by [140]

N−1∑
k=1

1

k2
∼ π2

6
− 1

N − 1
+O

(
[N − 1]−2

)
. (5.28)

Thus, asymptotically the energy correction goes as

E(1) ∼ γ2

[
π2

6
N − π2

3
− 1 +O

(
N−1

)]
. (5.29)

For large N , this coincides with the result obtained using the free space
Hartree solution, given in Eq. (5.15), as an approximation for the ground
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state (Appendix C.5)

E
(1)
H = (N − 1)

∫ ∞
−∞

dx
sech(x/2)2

4

γ2x2

2

= γ2(N − 1)
π2

6
. (5.30)

These results are displayed in Fig. 5.1; for small N there is a large difference
between the result predicted by the Hartree product state [Eq. (5.30)] and
the result predicted by the exact many-body ground state [Eq. (5.27)] of the
approximate Hamiltonian (5.22). There is also a weak number dependence
from the Harmonic series in Eq. (5.27). However as N � 1 both methods
give the same energy correction per atom, π2γ2/6. For N = 1000 the relative
difference (E

(1)
H − E(1))/E(1) ≈ 0.0016 is already small.

5.3.3 Variational minimization

In order to improve the value for the ground state energy beyond the first-
order-perturbation-theory result (5.27), we introduce the following (normal-
ized) variational ansatz

ψ(λ)
var(~x) ≡ ψC(xC)Nλ(N−1)/2 exp

(
−λ

∑
1≤k<j≤N

|xk − xj|
2[N − 1]

)
, (5.31)

with γ > 0 and the constant N the same as Eq. (5.16),

N =

√
(N − 1)!

(N − 1)N−1
, (5.32)

which is calculated in appendix C.2. With just N as a prefactor the equation
would be normalized with respect to λ~x. Scaling this out along with γ →
γ/λ2 to keep the centre of mass the same, gives the extra factor of λ(N−1)/2.
Since the centre-of-mass wave-function is unchanged, we will only have a
correction to the relative energies. These are calculated in Appendices C.3
and C.4. The total energy for this wave-function is

〈ψ(λ)
var|Ĥ|ψ(λ)

var〉 =
(
2λ− λ2

)
EG +

E(1)

λ2
+
γ2

2
(5.33)
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Figure 5.1: First-order energy correction per atom for a many-body quan-
tum soliton with the centre-of-mass in the lowest eigenstate of a harmonic
oscillator given in Eq. (5.23). The exact solution given in Eq. (5.27) and its
expansion up to next-to-leading order, given in Eq. (5.29), begin to agree for
N ' 10 with the latter always underestimating the true value. Both curves
approach the approximate result predicted by the Hartree approximation
[Eq. (5.30)]. The relative difference between different predictions lies below
1% for N ' 165.

for the expectation values of each section of the relative Hamiltonian, with
EG being the (negative) ground state energy of the free soliton in soliton units
given in Eq. (5.18), and E(1) the first-order correction given by Eq. (5.27).
In order to calculate the energy minimum, the derivative of Eq. (5.33) with
respect to λ has to be zero:

(2− 2λ)EG −
2E(1)

λ3
= 0 , (5.34)

which (for λ 6= 0) is equivalent to a 4th order polynomial in λ

λ4 − λ3 − κ = 0 , (5.35)
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where the constant κ is defined as the ratio of the first-order correction to
the absolute value of the ground state energy

κ ≡ −E
(1)

EG

= γ2 24(N − 1)3

(N + 1)N2

N−1∑
j=1

1

j2
. (5.36)

For fixed N , κ ∝ γ2, the value of this prefactor is an increasing function of
N with a minimum of κ = 2γ2 at N = 2 with an asymptotic limit of [cf.
Eq. (5.29)]:

lim
N→∞

κ = 4π2γ2 . (5.37)

Thus, κ is small for γ � 1.

Equation (5.35) has four roots, only one of which is real and positive which
we denote λ0, corresponding to an energy minimum. This solution can be
derived analytically [140] (cf. Ref. [56]); it is given by:

λ0 ≡
1

4

(
1 +
√

Λ +
√

3− Λ + 2Λ−1/2
)
, (5.38)

with

Λ = 1 +
2 (2/3)2/3 (−9κ+

√
81κ2 + 768κ3

)2/3 − 16 (2/3)1/3 κ(
−9κ+

√
81κ2 + 768κ3

)1/3
. (5.39)

This is the value used in all the figures; however it is enlightening to take a
Taylor expansion of λ0 about κ = 0, which yields

λ0 = 1 + κ− 3κ2 +O(κ3). (5.40)

Taking Eq. (5.40) to first order in κ and substituting back into Eq. (5.33)
leads to the minimum in the energy of

E ' EG +
γ2

2
+ E(1) +

(E(1))2

EG

+O([E(1)]3/|EG|2) , (5.41)

valid in the limit κ� 1.

As the variational Ansatz (5.31) does not affect the centre-of-mass part of



Chapter 5. A single quantum soliton in harmonic confinement 101

the wave-function, the overlap between this variational Ansatz and the state
Eq. (5.23) (i.e. the λ = 1 state) is an interesting physical quantity; its mod-
ulus squared is the fraction of the relative wave-function which is projected
to the relative ground state if the trapping potential was turned off quasi-
instantaneously (cf. [127]). The overlap is given by (see Appendix C.3):

〈ψ(λ0)
var |ψ0〉 =

(
2

λ
1/2
0 + λ

−1/2
0

)N−1

. (5.42)

In the absence of external confinement this overlap can be understood as
follows: given a system initially in the ground state (a quantum soliton with
a width Nλ) and then instantaneously changing the scattering length (so
the new ground state has a width which is wider/narrower) then Eq. (5.42)
is the amount of the wavefunction projected to the new many-body ground
state. This ground state occupation is not the same as the soliton amplitude
discussed the next paragraph.

It has been shown at the mean field level that a GPE initial state φ(x) ∝
sech(x/2A2), which is broader than ground state for A > 1, tends asymptot-
ically to multiple solitons [141]. The number of solitons is found equal to the
nearest integer to A, with a radiation component (dispersing as t → ∞) of
[A − round(A)]2/A2.1 The same situation was considered at beyond mean-
field level using the MCTDHTB method [142], this work found that the state
evolved to a fragmented system. Investigating this instantaneously modifi-
cation using a full basis of LL eigenstates is a possibility for future research.

Using the approximation (5.40), the overlap (5.42) approximately is [1 +

κ2/8 + O(κ3)](1−N) and we thus expect the overlap to vanish in the limit
N → ∞ for κ > 0. Rather than investigating the total wave-function over-
lap (5.42), the Nth root of Eq. (5.42), an effective single-particle overlap,
is a more suitable value in the limit N � 1 as it tends to a constant as
N → ∞ and is related to comparing two GPE orbitals. Note that for two
Hartree-product wave-functions, the effective single-particle overlap would
be independent of N , but the Nth root of Eq. (5.42) still is N -dependent
due to the N -dependence of λ0 in Eq. (5.40).

1Note this implies there is no soliton if A < 1/2, i.e. the initial condition is too peaked.
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Figure 5.2 (a) shows the overlap Eq. (5.42) as a function of γ for various
particle numbers and the exact value of λ0. As expected, the N -dependence
is quite strong. Figure 5.2 (b) shows the Nth root of the overlap Eq. (5.42),
i.e. the effective single-particle overlap. The effective single-particle overlap is
larger than 0.99 for γ . 0.15 for all N , indicating that ψ0(~x) from Eq. (5.23)
is still a good description in this parameter regime and the trap has had
little effect on the internal degrees of freedom. The limit N → ∞ is nearly
reached for particle numbers as low as N = 100 [note that in panel (a), the
limit N →∞ would lie on the coordinate axes].
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Figure 5.2: (a) Total wave-function overlap, given by Eq. (5.42), (b) effective
single-particle overlap, given by the Nth root of Eq. (5.42), of the variation-
ally obtained solutions for different rescaled trap frequencies γ with the free
space ground state solution (γ = 0) with a Gaussian envelope for the centre
of mass. Effective single-particle overlap is treated as the Nth root of the
total overlap as for two different product states this is independent of number
and equal to the overlap between the single-particle wave-functions. Bottom
to top the solid lines on both graphs correspond to N = 100, 10, 6, 3, 2, the
dashed line corresponds to the N → ∞ limit of the variational many-body
solution [using κ from Eq. (5.37)] and is very close to the N = 100 line.
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5.4 Computational methods including a har-

monic potential

5.4.1 Overview

While the focus of the previous section lies on the case of small γ, the nu-
merical methods introduced in this section work well for γ & 0.16, as the
ground state becomes less strongly correlated. The importance of this value
is commented on later in the results section.

5.4.2 Computation procedure

We expand the field operator over the set of Hermite functions

√
Wϕk(Wx) =

√
W

k!2kπ1/2
Hk(Wx) exp

(
−W 2x2/2

)
, (5.43)

whereHk are the Hermite polynomials, giving Ψ̂(x) =
∑

k

√
Wϕk(Wx)ĉk and

W is a scaling factor, appearing as an inverse width. The Hamiltonian (5.11)
in this basis can be split into three separate parts (c.f. A.3.3):

ĤK =
W 2

4

∑
k

[
(2k + 1)ĉ†kĉk −

√
(k + 1)(k + 2)(ĉ†k+2ĉk + ĉ†kĉk+2)

]
, (5.44)

the kinetic energy part of the Hamiltonian,

ĤP =
γ2

4W 2

∑
k

(2k + 1)
[
ĉ†kĉk +

√
(k + 1)(k + 2)(ĉ†k+2ĉk + ĉ†kĉk+2)

]
, (5.45)

the external potential energy part of the Hamiltonian, and

ĤI = − W

N − 1

∑
k`mn

fk`mnĉ
†
kĉ
†
` ĉmĉn . (5.46)

the interaction Hamiltonian. The factor of fk`mn is the integral of four Her-
mite functions (with W set to unity) over all space, i.e.

fjk`n =

∫
dx ϕ∗j(x)ϕ∗k(x)ϕ`(x)ϕn(x) . (5.47)
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This can be calculated exactly in terms of gamma functions Γ(x) and a
standard hypergeometric function 3F2 evaluated at unity [143]

fjk`n =
1√
2π2

√
j!

k!`!n!(j − n)!
Γ([k + `− j + n+ 1]/2)Γ([k − `+ j − n+ 1]/2)

× Γ([−k + `+ j − n+ 1]/2)3F2([−n, (j − n+ k − `+ 1)/2,

(j − n− k + `+ 1)/2]; [1 + j − n, (j − n− k − `+ 1)/2], 1) , (5.48)

although we have found it easier to evaluate via Gauss-Hermite Quadrature,
as discussed in Sec.A.3.4. Without interactions, the ideal gas Hamiltonian is
given by

Ĥideal = ĤK + ĤP. (5.49)

For W =
√
γ, the basis states are eigenstates of the non-interacting Hamil-

tonian. The total Hamiltonian can therefore be expressed as

Ĥ = γ
∑
k

(
k +

1

2

)
ĉ†kĉk −

√
γ

2(N − 1)

∑
jk`n

fjk`nĉ
†
j ĉ
†
kĉ`ĉn , (5.50)

and we refer the ground state of this as |ψg(γ)〉 and the ground state energy
as

〈ψg(γ)|Ĥ|ψg(γ)〉 = Eg(γ) . (5.51)

In order to do computations we truncate the states to only include those with
an energy [with respect to Eq. (5.49)] which lies below an energy cut-off Ecut.
This basis is then projected into a state with zero centre-of-mass excitation
as detailed in Sec. 4.2.6, along with the considerable reduction to the basis
size shown in Fig. 4.2, with no loss of accuracy.

5.4.3 Using different-width Hermite functions

Using functions with W =
√
γ, such that they are eigenstates of Ĥideal, is

not desirable in the γ → 0 limit because the basis will consist of states much
wider than the wave-function we are using them to construct. For an infinite
basis, the ground state should be independent of the basis used to describe
the system (in our case, it should be independent of the value of W ). For
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numerical calculations, the basis will be finite and thus some choices ofW are
better than others. In Sec. 5.5, we will calculate the ground state for γ = 0

in order to determine the optimal value for W to be used in the calculations.

For arbitrary W , the full Hamiltonian reads:

Ĥ =
∑
k

W 2 + γ2W−2

2

(
k +

1

2

)
ĉ†kĉk −

W

2(N − 1)

∑
jk`n

fjk`nĉ
†
j ĉ
†
kĉ`ĉn

+
∑
k

γ2W−2 −W 2

4

√
(k + 1)(k + 2)(ĉ†k+2ĉk + ĉ†kĉk+2) , (5.52)

which includes extra mixing terms in the ideal gas Hamiltonian (5.49). This
causes a fairly significant issue in that it is no longer possible to exactly
separate centre-of-mass eigenstates in this basis, meaning the full basis would
need to be used in order to achieve the centre-of-mass ground state, making
exact diagonalisation too slow. The solution to this is therefore to reduce the
basis in the same way as before, but accept that the centre-of-mass wave-
function we end up with is given by

fC(xC) =

√
W

π1/2
exp

(
−NW 2x2

C

2

)
, (5.53)

which is not an eigenstate and has energy EC = (W 2 + γ2W−2)/4 rather than
the true γ/2. Thus we know the true ground state is the wave-function we
obtained, multiplied by

√√
γ/W exp ([γ −W 2]Nx2

C/2). This approach has
the huge advantage that, if W is kept constant, the occupation of the basis
states for the ground state should change very little as γ → 0 where they
will tend to the solutions on the infinite line.

5.4.4 Numerical ground states within the GPE approx-

imation

Within the GPE approximation, we can obtain the ground state by solving
Eq. (5.12) as the ground state is the only stationary state of the system.
The method used here is to again expand over a finite basis set of Hermite
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functions of arbitrary width scaling W

φ(x) =

η∑
k=0

ck
√
Wϕk(Wx) , (5.54)

then to produce a set of η + 1 nonlinear equations in the coefficient set ~c
(which will be real), by integrating Eq. (5.12) multiplied by ϕk(x) over all
space, for k = {0, . . . , η}, giving

0 =− µck +
W 2 + γ2W−2

2
(k + 1/2)ck −

W

2(N − 1)

η∑
`,j,n=0

fjk`nc
∗
`cjcn

+
γ2W−2 −W 2

4

(√
(k + 1)(k + 2)ck+2 +

√
k(k − 1)ck−2

)
. (5.55)

We also take an (η+2)th equation, relating to the normalization
∑

k |ck|2 = 1.
Denoting the vector with an equation at each position as ~F (~c), we wish to
solve ~F = ~0. We use Newton’s method (see, for example [135]) to iteratively
solve for ~c, via2

J(~c (n)) (~c (n+1) − ~c (n)) = ~F (~c (n)) , (5.56)

where J is the η+1 by η+2 Jacobian matrix associated with ~F . We perform
this calculating with increased η until convergence is achieved.

5.5 Effects of harmonic confinement

5.5.1 Ground state energy

Using the methods from the previous two sections, we investigate the effect
an external potential has on the relative component of the ground state
|ψg〉(γ) [cf. Eq. (5.51)]. This is important to quantify how soliton-like the
state is, along with what excitations can be expected if the state is released
quasi-instantaneously from the potential. Such dynamics have already been
considered using the GPE in [127].

Figure 5.3 shows ∆E/N , the energy difference per atom between the numer-
2This stepwise process is repeated until the stepwise change in µ and ~c are smaller than

10−7.
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ically calculated ground state energy Eg(γ) and the ground state energy of
the artificial Hamiltonian (5.22) given by Eq. (5.24), for a range of γ and N
values. It is produced by calculating the ground state energy via the three
numerical methods, namely exact diagonalisation in a basis of Hermite func-
tions with either optimized widths for weak trapping (shown in table 5.1), or
widths which are eigenstates of the non interacting problem, and variational
minimization, for a range of γ and taking the smallest value. This is because,
due to the variational principle, all of these techniques produce only values
greater than or equal to the ground state energy, hence the method leading
to the lowest value is the best estimate for this parameter set.

5.5.2 Universal behaviour

If we instead define3 γ̃ = γ(N − 1)2/N2 and ∆Ẽ = ∆E[(N − 1)/N ], a
more universal behaviour is present in ∆Ẽ, with little number dependence
as shown in fig. 5.3 (b). This is essentially the rescaling to make the GPE
obtained from the centre-of-mass separated Hartree factorisation [Eq. (5.8)
in Sec. 5.2], independent of N and dimensionless. The fact this produces
such clear agreement indicates this centre-of-mass separated factorisation
gives much better agreement with the full many body case. The increased
trapping makes the state more product like and hence less pair correlated,
meaning it can be described better by the GPE.

To see this analytically, we note that for γ̃ � 1, our variational result
of Eq. (5.41) for the energy is applicable. ∆E is obtained by subtracting
the factor of EG + γ2/2, then converting to our rescaled units we have

∆Ẽ

N
≈ γ̃2 N

N − 1

N−1∑
k=1

1

k2
− γ̃4 24N3

(N2 − 1)(N − 1)

[
N−1∑
k=1

1

k2

]2

+O(γ̃6) . (5.57)

The N dependent factor of order γ̃2 (which is the rescaled first order energy
correction) is 2 for N = 2 and decreases monotonically to π2/6 ≈ 1.6 as
N →∞, hence for very small γ̃, the N = 2 line is largest, but the difference
is very small. The order γ̃4 term has negligible number dependence and so is

3Equivalent to using the normal soliton units [Eq. (3.7) in which g1DN = 1 and time
is further rescaled by a factor of 1− 1/N .
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unlikely effect the ordering of these lines within for the range of variational
models validity. On the other end of the scale, as γ →∞ (the trap dominated
system) we can neglect interactions in Eq. (5.11), giving a ground state of
a product of Gaussians of width 1/γ, subtracting the centre-of-mass energy
gives ∆E → γ(N − 1)/2N +O(

√
γ) or, in our rescaled units, ∆Ẽ → γ̃/2 +

O(
√
γ̃) and so to leading order, the N dependence vanishes.
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Figure 5.3: Difference between the ground state energy per atom and the
energy of a free many body ground state with a Gaussian centre-of-mass
profile, (a) is in terms of E0/N [as defined in Eq. (5.24)] as a function of
rescaled trapping strength γ and (b) with a rescaled γ̃ = γ(N − 1)2/N2

and ∆Ẽ = ∆E(N − 1)/N . From bottom to top the lines on (a) are N =
2, 3, 6, 10, 100 and the dotted top line is the GPE prediction (which will
agree with the many body results as N → ∞) outlined in Sec. 5.4.4. The
markers indicate a point on the line generated by different methods, (red)
circles use the variational solution Eq. (5.33), (green) triangles use the fixed
width basis sets to find the lowest eigenvalue of the Hamiltonian (5.52), cf.
table 5.1. (Blue) squares are obtained using the basis of eigenstates of the
non interacting Hamiltonian (5.49) to find the lowest eigenvalue of Eq. (5.50).
The N = 2 line is plotted using the exact solution [Eq. (5.21)] detailed in
Sec. 5.2.1 and the mean field line is obtained by the method explain in Sec.
5.4.4. The inset shows a zoom of the low γ section, demonstrating the initial
quadratic dependence on γ. Figure (b) shows the universal behaviour present
using rescaled units, this is the same data as in (a), however the numerical
lowest eigenvalues are plotted as points to make them visible.

5.5.3 The classical soliton limit

As shown in Fig. 5.3, for low γ the variational ansatz (5.31) gives the best
estimate for the ground state energy of all the methods used in this pa-
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N η W Reduced basis size
3 84 2 631
6 38 1 3009
10 28 0.5 2534
100 24 0.5 1575

Table 5.1: This table shows the parameters used in calculating the graph in
Fig. 5.3, where N is atom number, η is the cut-off and W is the width taken
for the fixed width calculations (coarsely chosen to minimize the ground-
state energy at γ = 0). The reduced basis size is the number of states
(with zero centre-of-mass excitation) used in the exact diagonalisation of the
Hamiltonian. The bases are chosen to be a reasonable computational size,
however the numerics are less reliable for small γ

per. For low enough γ, this variational ansatz is also very close to the
product of the free many-particle solution with a Gaussian centre-of-mass
wave-function (5.23) (see Fig. 5.2). In the limit of small γ, the integral

B =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN ψ0(~x)ψH(~x) (5.58)

can thus be used to investigate deviations of the Hartree-product wave-
function (5.15) from the true many-particle ground state (which is well ap-
proximated by ψ0(~x) for γ � 1). As was the case for Fig. 5.2, the effective
single-particle overlap B1/N will also be considered, as we are interested to
see how well the wave-function is described by a product state, and when
comparing two product states with different single-particle wave-functions,
this quantity is independent of the atom number N .

In order to make an educated guess about what range of γ will give a large
overlap, we look at the expectation value of the square of the centre-of-mass
location over the Hartree-product wave-function (Appendix C.5):

〈ψH|x2
C|ψH〉 =

π2

3N
. (5.59)

This value is identical to the variance of the centre of mass, as both the many
body and Hartree states are centred about x = 0. A variance calculation can
also be performed for Eq. (5.23), this is particularly simple as the centre of
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Figure 5.4: (a) 2D projection of overlap, B as defined in Eq. (5.58), between
many-body free state with a Gaussian envelope (of width ∝ 1/γ) given in
Eq. (5.23) and the mean field soliton solution, given in Eq. (5.15), for a range
of N and γ. (b) shows Horizontal slices through (a), and the dash-dotted line
is the analytic estimate, based purely on centre-of-mass position uncertainty,
given by Eq. (5.61). (c) shows effective single-particle overlap B1/N and (d)
shows the residuals 1−B1/N for given N values again via slices through (c).
The solid lines in the lower figure (b) correspond to N = 2, 3, 10, 100, 1000
in that order from bottom to top, and this ordering is reversed for figure
(d). As expected, the effective single-particle overlap plot (c) show a rapid
convergence to unity as N increases. [(a) and (b)] suggest that most of the γ
dependence in B is due to the effective “centre-of-mass width” of the Hartree-
product solution, since the shape of each overlap curve is similar, besides a
small offset, to the dash-dotted line. This indicates that a Hartree soliton is
a very good approximation to the many body solution if the centre-of-mass
wave-function is also localized.

mass is explicitly separate and is given by

〈ψ0|x2
C|ψ0〉 =

1

2γN
. (5.60)

As the Hartree-product state is uncorrelated, for a large enough N the dis-
tribution associated with the centre-of-mass location will therefore tend to a
Gaussian (with variance of π2/3N) via the central limit theorem. We there-
fore consider an effective centre-of-mass wave-function that is the square root
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of this distribution, yielding the overlap integral

I(γ) =

∫ ∞
−∞

dxC

(
3N2γ

2π4

)1/4

exp

[
−N (γ + 3/2π2)x2

C

2

]
=

(24π2γ)1/4√
2 γ π2 + 3

, (5.61)

which reaches its maximum I (γmax) = 1 for

γmax =
3

2π2
' 0.15 . (5.62)

As the above analysis focuses on the centre-of-mass part of the wave-function,
and thus Eq. (5.61) is likely to overestimate the overlap B as defined in
Eq. (5.58), Eq. (5.61) also predicts a γ → 0 behaviour of the form I(γ) ∼
cγ1/4 with c a constant. Figure 5.4 shows a numerical calculation of B for a
range of γ and N , the integration is performed via Monte Carlo methods, i.e.
weighted sampling using random variables with a sech(x/2)2/4 distribution
(obtained via the ziggurat algorithm [144]) until a standard error of < 10−4

is obtained.

It can be seen from Fig. 5.4 (a) and (b) that maximum overlap occurs just
slightly above γ = 0.16 [close to the analytic estimate (5.62)] and improves
as N increases. Based on our previous discussion of effective centre-of-mass
width, the top value should relate to the overlap of the relative degrees of
freedom, although this is not well defined. Graphs (c) and (d) show the Nth
root of (a) and (b), effectively overlap at the level of single particles, which
tends extremely rapidly to unity as N increases for any γ over the range
shown.

A useful point that this high overlap implies is that the many-body state
Eq. (5.23), is extremely well approximated by the Hartree product state if
the centre-of-mass envelope squared is approximately the statistical distribu-
tion that would arise from taking the mean of the N independent probability
distributions |φ|2 [with φ given in Eq. (3.3) setting ξ →

√
2] associated to

single atom positions in the product state. For this reason the Hartree prod-
uct state would be expected to well approximate the ground state of the
system, even at a many-body level, if the centre-of-mass envelope is local-
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ized to the size of this distribution (i.e. γ ≈ 3/2π2) by the potential. The
converse to this is also true, an initial condition that is given by Eq. (5.15)
is well approximated by Eq. (5.23) with γ ≈ 3/2π2. This could be used to
estimate centre-of-mass position uncertainty of a state, initially given by a
Hartree product wave-function, as it evolves in time, using known results for
the spreading of Gaussian wavepackets.

We also consider how these many-body effects would affect experimental
observations. From a measurement the atomic density, one could use the
mean of this signal to determine the centre-of-mass of the system. If the
state of the system is well approximated by Eq. (5.23), the observed location
would vary shot to shot with a probability distribution given by |ψcm(xC)|2 ∝
exp(−Nγx2

C) (combined with any experimental uncertainties associated with
density measurement). For γ < γmax, this distribution would be wider than
one would expect using the product approximation. Most notably if the
centre-of-mass wave-function is wider than a classical soliton width 1/

√
γN '

1, this jumping effect would be most clearly visible. Non-zero temperature
would further increase this effect, by introducing a statistical mixture of
excited states of the centre of mass. As a purely mechanical analogy, one
could think of taking a photo of a swinging pendulum at a random time, the
shape always looks the same but its position appears random.

5.6 Conclusions

In this chapter, we studied a 1D system of identical Bosons with attrac-
tive contact interactions, a Lieb-Liniger(-McGuire) gas, in the presence of a
harmonic trapping potential. We presented variational and numerical many-
body calculations, in both cases making use of the separability of the centre-
of-mass Hamiltonian to split the problem into relative and centre-of-mass
degrees of freedom. We used a unit system such that the Hartree soliton
length is set to unity (~ = m = g(N − 1) = 1), leaving two parameters, the
number of atoms, N , and √γ, the dimensionless ratio between the Hartree
soliton and harmonic oscillator lengths.

Our key results are firstly that we have derived a first order energy correction
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to the ground state of the relative degrees of freedom from the introduction
of a harmonic oscillator potential [given in Eq. (5.27)], which is used in a
variational minimization technique. This is proportional to γ2 and the cor-
rection per atom tends to the mean field prediction from below, the relative
difference is less than 1% for N > 165.

Secondly we have determined the validity range of γ of our many body-ansatz,
consisting of the free many-body ground state with a Gaussian envelope as
given in Eq. (5.23). Essentially as the trapped ground state deviates from
this it becomes less “soliton like.” We quantify this with the “effective single-
particle overlap”, given by the Nth root of the overlap between a variationally
obtained ground state and our ansatz. For N large, this overlap is greater
than 0.99 for γ . 0.16. Numerical calculations of energy in the strongly
trapped region, γ > 1, indicate energies are still considerably lower than the
non interacting case.

Thirdly we showed, via a numerical investigation of overlap between the
free Hartree product solution and the free many-body ground state with a
Gaussian envelope [given in Eq. (5.23)] describing the centre-of-mass wave-
function, that the two wave-functions can have high agreement, even at a
many-body level. This high overlap occurs when the modulus square of the
envelope function matches the probability distribution, associated with the
Hartree product, for the centre-of-mass position, which occurs when γ ≈ 0.16.

In addition to these physical results, we outlined a numerical method for
computing many body eigenstates, using a basis set of harmonic oscillator
eigenstates, truncated at a particular energy. This is then projected into a
subspace of states with the centre-of-mass wave-function in a specific state,
as outlined in Sec. 4.2.6, allowing us to investigate the internal degrees of
freedom separately.



Chapter 6

Collisions with finite number

systems

6.1 Introduction

6.1.1 Preamble

This chapter focuses on the work relating to publication [2], entitled “Collision
dynamics and entanglement generation of two initially independent and in-
distinguishable boson pairs in one-dimensional harmonic confinement”, with
contributions made by C. Weiss and S.A. Gardiner. Some results relating to
strongly attractive interacting cases within the chapter are not yet published,
due to lack of satisfactory convergence in the numerics, which we explain in
the relevant sections. The paper [2] investigates finite number effects in
collisions between two states of an initially well known number of identi-
cal bosons with contact interactions, oscillating in the presence of harmonic
confinement. The primary motivation behind this work was to study soliton
collisions in harmonic confinement and the resulting entanglement generation
and non classical number statistics. However, investigations lead to the study
of equilibration and characterisation of states at late times via measures such
as the single-body von Neumann entropy, which proved interesting to study
for repulsive systems in addition to attractive systems, demonstrating their
qualitative difference in behaviour and entanglement generation.

114
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We consider an initial condition which is an excited state constructed by
taking two N/2 (interacting) atom ground states and placing them at an
equal and opposite distance (denoted x0) from the centre of a harmonic trap.
This setup has two free parameters, the displacement and the ratio of in-
teraction strength and harmonic oscillator length, we focus on varying the
latter. The numerics focus on the case of N = 4; the simpler case of N = 2

has been covered elsewhere [138], but due to the large number of conserva-
tion laws present, a two body system has very constrained dynamics. In the
non-interacting case, such a system would display periodic oscillations with
a half harmonic-oscillator period (due to the left-right symmetry). With the
addition of contact interactions between the bosons, collisions generate en-
tanglement between each of the states and distribute energy into other modes
of the oscillator. We study the system numerically via exact diagonalisation
of the Hamiltonian within a finite basis set, as was the case in the previous
chapter, investigating left/right number uncertainty as our primary measure
of entanglement. Additionally we study the time-evolution and equilibration
of the single-body von Neumann entropy for both the attractive and repulsive
cases. We identify parameter regimes for which attractive interactions create
behaviour qualitatively different from that of repulsive interactions, due to
the presence of bound states (quantum solitons) and explain the processes
behind this.

Our key results are that the single-body von Neumann entropy grows faster
for repulsive systems than attractive systems with the same |as|, as does the
relative number uncertainty (although small revivals are shown), indicating
the attractive system resists entanglement. That is, except for certain at-
tractive values that match resonance conditions, allowing for transfer to an
entangled state (a superposition of N − 1 atoms left and 1 right and the
reverse) to happen without cancellation. We also observe emergence of a
pseudo period, which is approximately linear with the interaction strength.

6.1.2 Motivating results and background

Negative scattering lengths give interesting possibilities in double-well and
lattice physics, both systems which are experimentally realisable with a small,
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well known number of atoms. Repulsive interactions between atoms are
known to give rise to the Mott insulator state [145], with a near-definite
atom number per lattice site. If one has a definite number of atoms per
site, there is effectively a total uncertainty in relative phase between lattice
sites and thus no phase coherence. A measurement of relative phase should
give totally random results and indeed this is what one finds when imaging
the moment distribution of such a lattice, i.e no distinguishable interference
patterns. Attractive interactions could in theory be used to squeeze num-
ber statistics the opposite way, such that the ground state would tend to a
superposition of a quantum soliton (N atom bound state) delocalised over
every lattice site. When only two sites are present, such a state is referred to
as a NOON state [146], which is useful for non shot noise limited interferom-
etry [147]. However, phase differences between the two sites have almost no
energy cost making them degenerate and hence systems where the ground
state is such a superposition are known to be extremely unstable if any cou-
pling to the environment is present, typically replacing quantum uncertainty
with statistical uncertainty. It is therefore preferable to create such states
dynamically, for example by splitting a moving quantum soliton [148, 149].

Any closed quantum system with no decoherence effects will be described by
a wavefunction that will evolve deterministically. As such, the wavefunction,
at any point in time |ψ(t)〉, maps back to a unique |ψ(0)〉 with no uncer-
tainty. Recent experiments have the potential to observe this deterministic
behaviour in systems with a small number of cold atoms [150, 151], with
dynamics that can be analytically calculated and with precise tuning avail-
able in the scattering length and confinement potentials. Strongly correlated
effects and quantum superpositions are generally much easier to achieve in
few-body systems. Despite this one can still envisage collective properties
(such as expectation values of operators) of a time-dependent finite system
tending to constant values when averaged over reasonable timescales, or re-
laxation of local operators, as shown in [152]. Non-integrable systems, upon
coupling to another larger system, usually tend to an equilibrium configura-
tion at long times, independent of the initial state of either system (except
for the total energy); however recent theoretical observations have thrown
doubt on this [153]. Additionally, when two coupled systems contain a sim-
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ilar number of elements the situation is less clear still. Our system is non-
integrable and contains two initially independent subsystems of the same
size; hence, we are interested to what extent equilibration occurs or where
it is resisted. Quantum systems, for example atoms populating sites in an
optical lattice [154], are known to show partial revivals of the initial state in
time, but are generally observed to show weaker revivals as time progresses
in an apparent damping. We are interested in whether certain measures,
specifically the number to the left and right of the trap centre and the sin-
gle body von Neumann entropy, tend to constant values when averaged over
sufficient timescales.

Entanglement between identical bosons is not as easy to define as that be-
tween distinguishable particles [114]. One can consider a bipartite partition-
ing [155] which can be into sets of lower and more highly excited states, or via
states occupying separate regions of space — in our case the left and right
of the centre-of-mass. We wish to observe the generation of entanglement
between initially independent systems develop over time. In the absence of
interactions, no real entanglement can be generated between the two subsys-
tems (although our chosen measure is only meaningful when the subsystems
are well separated). Additionally, with strong interactions the effect of the
confinement may be diminished, and the integrability of the free system (see
Sec. 4.1) may also affect entanglement generation, particularly in the attrac-
tive case where a new length scale is introduced which can be smaller than
the confinement [1].

6.1.3 Chapter breakdown

The chapter is organized as follows: Section 6.2 introduces the one dimen-
sional Hamiltonian and the unit rescaling to harmonic oscillator lengths,
used throughout this chapter. Next, the initial condition is introduced, with
specific cases of interest mentioned. Section 6.3 discusses observables and
measures of entanglement that we will use to investigate the system, includ-
ing the variation in the number to either side of the trap centre, and the
single-body von Neumann entropy. Section 6.4 begins an analytic investiga-
tion of the system, focusing on the mechanisms by which interactions mod-
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ify the dynamics of each displaced state and generate entanglement. This
model is specialised to strong attractive interactions in Sec. 6.5. Section 6.6
investigates the number exchange processes predicted in Sec. 6.4 using time-
dependent perturbation theory. Section 6.7 discusses a possible experimental
realisation of the system, using ultracold atoms in an optical lattice, with pa-
rameters discussed for Caesium. Section 6.8 contains a brief description of
the numerical method, based on exact diagonalisation. Section 6.9 presents
numerically obtained results for the evolution of our observables and entan-
glement measures in the system. Section 6.11 summarizes and concludes.

6.2 System

6.2.1 Hamiltonian and unit rescaling

We again use the Hamiltonian (5.1), but rescale to harmonic oscillator units
(codified as ~ = ωx = m = 1), meaning that length is in units of

√
~/mωx,

time in units of 1/ωx, and energy in units of ~ωx; a harmonic oscillator period
is then 2π. The Hamiltonian rescales to

H(~x) =
N∑
k=1

(
−1

2

∂2

∂x2
k

+
x2
k

2

)
+ g

N∑
k=2

k−1∑
j=1

δ(xk − xj) , (6.1)

where g = g1D

√
M/~3ωx is the new dimensionless coupling parameter, which

quantifies the relative strength of interaction. This relates to the parameter
γ [defined in Eq. (5.13)] through γ = [g(N − 1)]−2.

We again make use of the separation of the Hamiltonian into two commuting
components as described in Sec. 5.2.

6.2.2 Initial condition

General N-body case

We consider a highly non-mean-field-like initial condition, taking two N/2-
atom ground states (for a given g), equally and oppositely displaced from
the trap centre by a distance x0, and symmetrizing. The initial (t = 0)
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wavefunction is then

ψ(~x, 0) =
B√
N !

∑
{P}

f (N/2)(x1 − x0, .., xN/2 − x0)

× f (N/2)(xN/2+1 + x0, ..., xN + x0) ,

(6.2)

where f (N/2)(x1, . . . , xN/2) is the ground state for N/2 atoms (generally nu-
merically determined) in the harmonic trap, {P} is the set of all permuta-
tions of ~x, and B is a normalizing factor. Such an initial condition may be
motivated by the idea of making two separate BECs and allowing them to
collide within a harmonic trapping potential, or from rapidly modifying a
Mott insulator state in an optical lattice (as we will discuss in Sec. 6.7). If
the left and right components are well separated, i.e., the width of the atomic
density distribution corresponding to f (N/2) is significantly less than x0, then
there is a well-defined number of N/2 atoms either side of the trap, and left-
and right-atoms are distinct by virtue of their position. Furthermore, as the
centre-of-mass dynamics are decoupled [1] and straightforward to determine,
the dynamics experienced by an initial condition such as ψ can be readily
extended to incorporate any initial condition for the centre of mass, e.g., in
particular, an overall oscillation about the trap centre [100].

Conveniently, ψ(~x, t) is in the ground state of the centre-of-mass component
of H(~x). To show this, we use unnormalised Jacobi coordinates for a total
of N identical particles, as defined in Eq. (5.3) and Eq. (5.2).

Now using the Jacobi coordinates for N/2 particles, and considering these
N/2 particles in isolation, we can partition the N/2-particle ground state into
centre-of-mass dependent and independent components: f (N/2)(x1, . . . , xN/2) =

ϕ(ξ2, . . . , ξN/2) e−Nx
2
C(N/2)

/4. Substituting Eq. (A.5) into this expression, we
can then define f̃ (N/2) through

f (N/2)(x1, . . . , xN/2) =ϕ(ξ2, . . . , ξN/2) e
∑N/2
k=2[(k−1)/2k]ξ2k−

∑N/2
k=1 x

2
k/2

=f̃ (N/2)(x1, . . . , xN/2) e−
∑N/2
k=1 x

2
k/2, (6.3)

where f̃ (N/2) (as it can also be written as a function of {ξ2, ξ3, . . . , ξN/2} only)
is clearly independent of xC(N/2).
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If we now expand to a full set of N coordinates, f̃ (N/2)(x1, . . . , xN/2) is also
clearly independent of xC(N), as is (by symmetry) f̃ (N/2)(xN/2+1, . . . , xN).
Noting further that displacement by x0 will not affect that part of f (N/2) in-
dependent of the centre-of-mass coordinate, then for the identity permutation
of ψ(~x)

f (N/2)(x1 − x0, . . . , xN/2 − x0)f (N/2)(xN/2+1 + x0, . . . , xN + x0)

= f̃ (N/2)(x1, . . . , xN/2)f̃ (N/2)(xN/2+1, . . . , xN)

× e
−

∑N
k=1 x

2
k/2−x0

[∑N
k=N/2+1 xk−

∑N/2
k=1 xk

]
−Nx20/2 . (6.4)

By the identities Eq. (A.5) and Eq. (A.11), the exponential reduces to
e−Nx

2
C(N)

/2e−N(
∑N
k=N/2+1 ξk/k−x20/2), that is a term proportional to the centre

of mass ground state multiplied by a function of independent Jacobi coor-
dinates. The identity permutation of ψ can thus be written as a product
of the centre of mass ground state and a function of the other independent
Jacobi coordinates. This separation from the centre of mass ground state
occurs for every permutation of the coordinates xk, and so we conclude that
the centre-of-mass component of ψ(~x) is indeed in the ground state.

Taking a slightly different initial condition, when one combines ground states
from two trapping potentials that are not equal to the final potential (with,
e.g., tighter harmonic trapping), will introduce a breathing motion, which
can still be considered separately from the remaining dynamics. It is also
significant to note that the kind of initial condition we consider does not have
a well defined relative phase between the left and right components [156]. If
a relative number uncertainty between left and right were to develop then
this would no longer be the case, and a meaningful relative phase could in
principle be extracted.

Time evolution for the non-interacting case

If we take the case where g = 0, we can express the full time dependent
wavefunction [which we label ψ0(~x, t)] analytically, as a symmetrized product
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of two N/2-atom product states

ψ0(~x, t) =
B0√
N !

∑
{P}

N/2∏
k=1

φ(xk,−x0, t)
N∏

j=N/2+1

φ(xj, x0, t) . (6.5)

Here φ(x,±x0, 0) is a Gaussian displaced by ±x0 from the trap centre,
and [100, 157]

φ(x, x0, t) =

(
1

π

)1/4

exp

(
− [x− x0 cos(t)]2

2

)
× exp(i[t/2− x0 cos(t)x+ x0 sin(2t)/4]) ,

(6.6)

corresponding to an expectation value of the energy per particle of E =

(x2
0 + 1)/2, and the normalisation constant B0 = 1 +O(e−2x20).

Special case of four atoms

If N = 4, the f (2) appearing in Eq. (6.2) are known analytically [137, 138],
and may, if g < 0, for sufficiently large g and x0, be considered to be bound-
state dimers, held within an overall harmonic trapping potential. The general
form is given by

f (2)(x1, x2) = NU
(
−ν, 1/2, [x1 − x2]2

2

)
e−x

2
1/2 e−x

2
2/2

= NU(−ν, 1/2, ξ2
2/2) e−ξ

2
2/4 e−x

2
C ,

(6.7)

with U Tricomi’s confluent hypergeometric function, N a normalisation con-
stant, and ν the effective quantum number (equal to zero for g = 0), as
determined by the transcendental equation Γ(1/2 − ν)/Γ(−ν) = −g/23/2.
This state has an energy of 2ν + 1, where there is a contribution of 1/2 due
to the centre of mass. Equation (6.7) can then be inserted into the initial
condition

ψ(x1, x2, x3, x4, 0) =
B√
4!

∑
{P}

f (2)(x1 − x0, x2 − x0)

× f (2)(x3 + x0, x4 + x0) ,

(6.8)
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where {P} is the set of all 4! permutations of {x1, x2, x3, x4}. Note that,
as f (2)(x1, x2) = f (2)(x2, x1), the number of distinct permutations actually
reduces to 4!/2!2! = 6.

6.3 Observables and measures of entanglement

6.3.1 Left/right number

For our system, one useful measure to track the generation of entanglement
is the variance in particle number to the left and right of the system’s centre
of mass (which we will generally consider to be fixed at the origin). The
initial condition we consider has N/2 atoms to either side with essentially no
possibility of, say, N/2 + 1 to the right and N/2− 1 to the left (probabilities
for measuring such unequal partitions decrease in a Gaussian manner with
the initial separation). Hence the left- and right-particle-number-variance
will initially be zero. As the left- and right-particles approach and collide,
all number partitionings become possible, and so this measure is only in-
formative when the particle density at the location of the centre of mass is
small.

We define a number-to-the-right operator

N̂R =

∫ ∞
0

dx Ψ̂†(x)Ψ̂(x) , (6.9)

[or in first quantisation
∑N

k=1 Θ(xk), where Θ is the Heaviside step function];
imaging one side of the trap would correspond to a projective measurement
into the eigenstates of this operator, as is discussed in Sec. 6.7. The expec-
tation value of N̂R is the mean number of particles on the right-hand-side.
As the system is parity preserving, 〈N̂R〉 = N/2 for all time for the initial
conditions we consider.

The more informative number-to-the-right variance is

∆NR = 〈N̂2
R〉 − 〈N̂R〉2 , (6.10)

which, for our initial condition of two well-separated left and right compo-
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nents of definite number, should be approximately zero. From Eq. (D.6), the
variance for a product state ψ(~x) =

∏N
k=1 φ(xk) [symmetric about the trap

centre so that 〈N̂R〉 = N/2] is

∆PNR = 〈N̂R〉(1− 〈N̂R〉/N) = N/4 , (6.11)

which evaluates to unity if N = 4 (this is however the same as a symmetric
superposition of one and three atoms to the right/left). It can also be shown
(Appendix D.1.1) that for the case of N = 4 and no interactions (g = 0)
[given by Eq. (6.5)], this variance evolves as

∆PNR = 1− erf2 [x0 cos(t)] +O(e−2x20) , (6.12)

with erf the error function1. Hence, we have a function with period T = π,
which is equal to unity when t = (n+1/2)π and vanishingly small in x0 when
t = nπ.

In general our wavefunction is not an eigenstate of N̂R, and contains com-
ponents of different N̂R eigenstates (for some given overall N , meaning that
an additional specification of number-to-the-left operator eigenstates is not
necessary). One can, however, calculate expectation values of operators de-
fined over restricted regions of state space, specific to having exactly n (of N)
atoms to the right of the trap centre. An expectation value for an operator
Ô defined in this region is then

〈Ô〉n,N−n =
N !
∫∞

0
dx1 . . . dxn

∫ 0

−∞ dxn+1 . . . dxN ψ
∗(~x)O(~x)ψ(~x)

n!(N − n)!Pn,N−n
, (6.13)

with

Pn,N−n =

(
N

n

)∫ ∞
0

dx1 . . . dxn

∫ 0

−∞
dxn+1 . . . dxN |ψ(~x)|2 (6.14)

the probability that a perfect measurement of N̂R will find n of N atoms
to the right (or equivalently N − n to the left) of the trap centre. This is
equivalent to taking the usual expectation value over a new (normalised)

1The error function satisfies erf(0) = 0 and erf(±x) → ±[1 − exp(−x2)/(
√
πx)] as

x→∞.
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wavefunction ψn,N−n(~x) defined by

ψn,N−n(~x) =
ψ(~x)

∑
P
∏n

k=1 Θ(xk)
∏N

j=n+1 Θ(−xj)√
Pn,N−n

, (6.15)

where P is the set of all unique permutations, of which there are N !/n!(N −
n)!, hence the factors in Eqs. (6.14) and (6.13). Each such wavefunction
is an eigenstate of N̂R, with eigenvalue n. In principle one can partition
the Hilbert space in such a way that it is the tensor product of a subspace
describing only how many particles are to the left/right of the trap centre,
and a subspace describing all other relevant properties of the system state.
We may denote the set of eigenstates of N̂R spanning this number subspace
by {|N − n, n〉}, such that

N̂R|N − n, n〉 = n|N − n, n〉 . (6.16)

Further, it is also useful to consider distance-to-the-right and distance-to-
the-right-squared operators, i.e.,

X̂
(j)
R =

∫ ∞
0

dx xjΨ̂†(x)Ψ̂(x) (6.17)

[given by
∑N

k=1 Θ(xk)x
j
k in first quantisation], for j = 1, 2. We denote the

restricted (to having n of N atoms to the right of the trap centre) expectation
values of the position-to-the-right operator

Rn,N−n(t) = 〈X̂(1)
R 〉n,N−n . (6.18)

These trace particle like tracks, with widths around them described by

σn,N−n(t) =

√
〈X̂(2)

R 〉n,N−n −R2
n,N−n(t) . (6.19)

6.3.2 von Neumann entropy and relaxation

Averaging over all individual particles results in the single-body density ma-
trix

ρ(x, x′, t) = 〈Ψ̂†(x′)Ψ̂(x)〉 , (6.20)



Chapter 6. Collisions with finite number systems 125

which is normalised to the total particle number N [
∫
dx ρ(x, x, t) = N ].

From this, single-body properties of the many-body system may be deter-
mined, specifically the von Neumann entropy, sometimes referred to as the
Invariant Correlation Entropy (ICE) [158] as it is independent of the ba-
sis chosen, at least up to truncation errors. Equation (6.21) is simply the
position-representation rendering of SvN = −Tr {(ρ/N) ln(ρ/N)}, where the
single-body density matrix ρ may of course be expressed in terms of any
sufficiently complete basis (numerically, we employ the orthonormal Hermite
functions, and the trace becomes a sum of discrete diagonal matrix elements).

SvN(t) = −
∫
dx

(
ρ(x, x, t)

N

)
ln

(
ρ(x, x, t)

N

)
. (6.21)

Relaxation, in the sense of tending to states of higher entropy, is not thought
to be present if the system is fully integrable. This is the case when g = 0, or
if the trapping is removed and the eigenstates are given by the Bethe ansatz,
discussed in Sec. 4.1. However, as the integrability is broken by the trap-
ping, we expect some degree of thermalisation due to (previously forbidden)
mixing between states. It is of interest to determine how such thermalisation
timescales vary with the interaction strength and initial separations.

For a product state, ρ has a single non-zero eigenvalue of value N , mean-
ing SvN → 0 (this is equivalent to a Bose–Einstein condensate being exactly
described by a Gross–Pitaevskii wavefunction). A larger value of SvN in-
dicates occupancy of multiple eigenstates of ρ, equivalent to population of
non-condensate modes due to to thermal excitations, or to quantum or dy-
namical depletion [55, 159].

If the system equilibrates, SvN will tend to a constant value. As our initial
conditions result in repeated collisions at the trap centre, the value of SvN

shows distinct oscillations that decay only slowly. We therefore also consider
a time average over an oscillator period

S̄vN(t) =
1

2π

∫ t+2π

t

dt′ SvN(t′) , (6.22)
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along with its variance

∆S̄vN(t) =
1

2π

∫ t+2π

t

dt′
[
SvN(t′)− S̄vN(t)

]2
. (6.23)

If SvN(t) tends to a constant value, this will be shown by a relaxation of S̄vN(t)

to a constant value, and a relaxation of ∆S̄vN(t) to 0, with the relaxation
of S̄vN(t) tending to occur on a significantly faster time scale than that of
∆S̄vN(t).

6.4 Analysis of the interacting system

6.4.1 Left–right separation of the Hamiltonian

As our initial condition consists of left and right components that are well
separated and therefore distinguishable, we can initially treat the left and
right components separately. As these left and right clusters only interact
for a short-time during collisions in the centre (so long as they stay as dis-
tinct clusters), it makes sense to treat interactions between these clusters
perturbatively at early times. We therefore split the Hamiltonian into three,
restricting the coordinates to the region x1 ≤ x2 ≤ x3 ≤ x4, which is sufficient
due to Bose symmetry. The three components are

HL(x1, x2) =
2∑

k=1

(
−1

2

∂2

∂x2
k

+
x2
k

2

)
+ gδ(x2 − x1) ,

HR(x3, x4) =
4∑

k=3

(
−1

2

∂2

∂x2
k

+
x2
k

2

)
+ gδ(x4 − x3) ,

HI(x2, x3) = g [δ(x3 − x1) + δ(x3 − x2) + δ(x1 − x4) + δ(x2 − x4)] .

(6.24)

Due to the zero width of the delta function, only adjacent interaction terms
[δ(xk − xj) with k − j = 1] contribute to HI (so only δ(x3 − x2) remains),
as the other terms constitute a set of zero measure in the region we are
considering. The condition x1 = x2 occurs infinitely more often than x1 = x3

as this necessarily also implies x2 = x3, and so is a set of lower dimensionality.
As [ĤL, ĤR] = 0, if we neglect ĤI our system can be described by a tensor
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product of the left and right components as these components commute.
Each Hamiltonian ĤL/R can further be split into centre-of-mass Ĥ(C)

L/R and
relative Ĥ(R)

L/R parts, generating the dynamics of the left and right centre-
of-mass and relative coordinates [xC(L) = (x1 + x2)/2, xC(R) = (x3 + x4)/2,
xR(L) = x2 − x1, and xR(R) = x4 − x3, respectively], which again mutually
commute.

We consider the centre-of-mass wavefunction of an n atom cluster, which is
a Gaussian displaced from the trap centre by some value Xn. Without the
influence of ĤI our system consists of two indistinguishable clusters (with
internal degrees of freedom considered to be in the ground state) undergoing
simple harmonic motion. The primary reason for separating the Hamiltonian
in this way is that our initial condition is in the ground state of Ĥ(R)

L/R and is
a displaced ground state of Ĥ(C)

L/R, hence any change to these wavefunctions
is an excitation of the system.

6.4.2 Perturbative introduction of HI

Overview

We consider the effect of introducing the Hamiltonian HI , from Eq. (6.24),
to the system. We look at three notable effects: changes to the wavefunction
describing the left/right separation of the clusters; changes to the internal
degrees of freedom within the clusters to the left and right; and interactions
transferring atoms from one side to the other, creating a symmetric super-
position.

Inter-cluster wavefunction changes and pseudo-periodicity

The centre-of-mass wavefunctions of each side, described by Ĥ(C)
L +Ĥ

(C)
R , can

change, so long as the global centre-of-mass wavefunction remains constant.
Such changes lead to entanglement between the left and right clusters. To
see this we note initially that the two cluster wavefunction could be written
as a product of left and right sides

ψ0(xC(L), xC(R)) ∝ e−[xC(L)−x0]2e−[xC(R)+x0]2 + Tperm , (6.25)
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with Tperm denoting the permutation of R and L. This can be written in
such a way as to explicitly separate the global centre of mass:

ψ0(xC(L), xC(R)) = e−[xC(L)+xC(R)]
2/2 (6.26)

×
{

e−[xC(L)−xC(R)−2x0]2/2 + Tperm

}
.

The first term describes the global centre-of-mass and is therefore fixed, the
latter term, however, will be modified by interactions. Any such change
(other than modifying x0 or multiplying by exp(ip[xC(L)− xC(R)]), which are
simply shifts of the initial position and momentum, respectively) means that
there will be terms involving products of the form xC(L)xC(R), such that the
wavefunction cannot be separated, indicating entanglement between the left
and right sides. Such entanglement is notable in the context of solitons in free
space, as integrability means collisions cannot create entanglement once the
states are asymptotically separated, although higher order non-linearities can
also lead to entanglement [160]. Additionally, during collisions with attrac-
tive (repulsive) interactions, each cluster will accelerate (decelerate), subse-
quently returning to near its initial velocity, leading to a pseudo-periodicity.

Intra-cluster wavefunction changes

The internal degrees of freedom described by Ĥ(R)
L/R are initially in the ground

state. Interactions during collisions will introduce excitations, with the en-
ergy transferring from the centre-of-mass energy of each cluster. By conser-
vation of energy this must reduce the amplitude of the oscillation. Attractive
interactions will suppress such excitations, as the energy separation between
ground and first (even parity) exited state is greater than the harmonic oscil-
lator level spacing, whereas for repulsive interactions this gap will be smaller,
reaching a minimum of −1.85 at g = 2.28 [c.f. App. B.2]. Note that when
highly excited modes of the relative degrees of freedom xR(L), xR(R) are popu-
lated, these will always have a significant occupation for both L and R. One
expects a qualitative difference in behaviour between the attractive and re-
pulsive cases to occur when the change between the first and second relative
excited states differs by an amount of order unity in harmonic oscillator units
[~ωx]. For strongly attractive interactions, energies scale as −g2n(n2− 1)/24
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and so when x0 < |g|/
√

6(N2 − 1) there is not enough energy to break the
initial bound-state clusters, making the relative degrees of freedom effectively
inaccessible.

Left/right atom transfer

Finally, the interactions can transfer an atom from one side to the other,
mixing to a set of states with a symmetric superposition of three and one
atoms at either side of the trap (and, ultimately, back from this to the original
state). There cannot be significant transfer to a state where there is a cluster
of four atoms in the ground state (apart from the centre-of-mass degree of
freedom) on one side and zero on the other side, due to the invariance of the
centre-of-mass wavefunction, unless the state has all four atoms directly at
the trap centre. The state satisfying this condition is the ground state of the
system, and so the only possible population is that at t = 0.

A feature that distinguishes this effect from intra-cluster excitations is the
energy difference between the two configurations, denoted ∆Eint = E3,1 −
E2,2. For g < 0 the ground state of a three atom relative Hamiltonian (that
part of the Hamiltonian independent of the centre of mass) plus a single free
atom is lower in energy than two sets of two atoms in their relative ground
states. The opposite is true for g > 0, but the energy difference can only be
of the order of the harmonic oscillator energy spacings, and so suppression is
unlikely unless x0 is small. The energy difference ∆Eint can take a variety of
values when intra-cluster states are excited, but in the interest of studying
transfer interactions, we look at the energy difference between two isolated
ground states of N = 2 atoms and one N = 3 and one N = 1 atom ground
states. This can be estimated analytically in three limits:

∆Eint ∼


g/
√

2π if |g| � 1

1 if g � 1

−g2/2− 7/12g2 if g � −1,

(6.27)

the approximations used being overlapping non-interacting ground states,
effective fermionisation [161] (Tonks gas) and bound state clusters [162] with
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Figure 6.1: Energy difference ∆Eint = E3,1 − E2,2 between two+two and
three+one atom ground state clusters (in harmonic energy units ~ω) as a
function of the dimensionless coupling parameter g (quantifying the interac-
tion strength). Analytic estimates from Eq. (6.27) are shown for comparison,
with the Tonks gas being the g →∞ limit.

the first order energy correction from the trapping potential [Eq. (5.27)],
respectively. Numerically determined values of ∆Eint are shown in Fig. 6.1;
this energy proves to be an important quantity in Sec. 6.6 (note that this does
not include the energy from the momentum/displacement of the clusters).
Viewed classically, this transfer interaction causes transfer to a state where
the kinetic energy of the clusters was different from the original by an amount
equal to ∆Eint, in order to conserve energy.

6.5 Coherent state approximation in the strongly

attractive regime

6.5.1 Generalised left-right separation

The states formed by a transfer of atoms in the soliton like regime |g| � 1,
g < 0 are a superposition of two separate n and N − n body clusters, to
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the left and right respectively. We are interested in how such states evolve
in time and whether it is possible to predict quantities like the single body
density and conditional position expectation values following a measurement
of the number left and right of the centre. The suppression of intra-cluster
excitation allows us to consider this situation analytically in a way simply
not possible in the repulsive or weakly attractive cases, even for the case of
general atom number.

The symmetrisation of the available states which can be mixed to be a trans-
fer interaction is important only when the two clusters are not well separated.
Assuming they are well separated, we can consider the evolution separately
by splitting the N body Hamiltonian 6.1 in a way similar to Eq. (6.24), but
more general. Within the region x1 ≤ x2.. ≤ xN we have two separate n and
N −n body Hamiltonians ĤL and ĤR, and an interaction term ĤI , in which
we include only the term which contributes.

ĤL(n) =
n∑
k=1

(
−1

2

∂2

∂x2
k

+
x2
k

2

)
+ g

n∑
k=2

δ(xk − xk−1) ,

ĤR(n) =
N∑

k=n+1

(
−1

2

∂2

∂x2
k

+
x2
k

2

)
+ g

N∑
k=n+2

δ(xk − xk−1) ,

ĤI(n) = gδ(xn+1 − xn) . (6.28)

As before we have [ĤL(n), ĤR(n)] = 0 and we can neglect ĤI(n) if we are
considering situations when the clusters are far from the trap centre. Each
Hamiltonian ĤL(n) can again be split into a centre of mass Ĥ(C)

L/R and relative
part Ĥ(r)

L/R which again commute, (note for n = 1 there is only centre of mass).
The centre-of-mass coordinate of the left side is xC = (x1 + . . .+ xn)/n and
so we have

Ĥ
(C)
L =

1

2

(
− 1

n

∂2

∂x2
C

+ nx2
C

)
. (6.29)

6.5.2 Construction of oscillating quantum soliton states

We assume the centre-of-mass wavefunction of an n atom cluster is that of
a Gaussian displaced from the centre by Xn at t = 0. Such a state evolves
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according to Eq. (6.6), up to scaling factors, and will have a combined kinetic
and potential energy of (nX2

n + 1)/2. We must also have a right cluster of
N − n atoms, initially located at −Xnn/(N − n), due to the constraint that
the global centre-of-mass position expectation value is located at x = 0. All
possible wavefunctions that can evolve from a symmetric initial condition
must also posses left-right symmetry, and so wavefunctions must be a sym-
metrised product of both sides. The details of combining this second cluster
are shown in App. D.2.

For the relative degrees of freedom we will assume each side is in the relative
ground state for n attractive atoms, with eigenenergies εn+ ε̃n with the former
relating to the interaction and kinetic energy and the latter to the potential
energy, which we assume take the strongly interacting values [1]

εn ∼ −g2n(n+ 1)(n− 1)/24,

ε̃n ∼
n−1∑
k=1

1/k2g2n . (6.30)

For n = 2 these values are correct to one percent when g < −2.3. Adding
the left and right centre-of-mass energies 〈Ĥ(C)

L 〉 + 〈Ĥ(C)
R 〉, the total energy

of such a state is given by

En,N−n = εn + εN−n + ε̃n + ε̃N−n +
Nn

N − n
X2
n + 1

∼ −Ng
2

24

[
N2 − 3n(N − n)− 1

] Nn

N − n
X2
n + 1 . (6.31)

We define |ψn,N−n(0)〉 to be an n atom cluster to the left and an N − n

cluster to the right, displaced by Xn and −Xnn/(N − n) respectively (with
unit norm), such that our initial condition is |ψN/2,N/2(0)〉. When left and
right are well separated, the time evolution is determined by the first two
terms in Eq. (6.28)

|ψn,N−n(t)〉 = exp
{
−i[ĤL(n) + ĤR(n)]t

}
|ψn,N−n(0)〉 . (6.32)

Because of the symmetry of all states about the centre of the trap, we need
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only consider symmetric states, hence we define

|ϕn,N−n(t)〉 = Nn,N−n(t) [|ψn,N−n(t)〉+ |ψN−n,n(t)〉] , (6.33)

with the normalisation term

[Nn,N−n(t)]−2 = [〈ψn,N−n(t)|+ 〈ψN−n,n(t)|] [|ψn,N−n(t)〉+ |ψN−n,n(t)〉] .
(6.34)

If we assume the bound states in the relative degrees of freedom are suf-
ficiently like the Bethe ansatz cluster states, that states with a different
pair of bound states are orthogonal, and so if n′ 6= n and n′ 6= N then
〈ψN−n,n(t)|ψN−n′,n′(t)〉 = 0 and Nn,N−n(t)→ 1/

√
2.

Introducing back interactions, each HI(n) from Eq. (6.28) can mix different
|ϕn,N−n(t)〉. It will also affect the relative position between the two sides (by
populating inter-cluster excited states). We temporarily neglect this effect for
the purpose of this analysis, but note it will introduce a greater uncertainty
in positions at late time. Within this set of approximations, we can express
any possible wavefunction the system can take as

|ψ(t)〉 '
N/2∑
n=1

cn,N−n(t)|ϕn,N−n(t)〉 . (6.35)

The single cluster state is assumed to be negligible due to reasons of en-
ergy and centre-of-mass momentum conservation. The coefficients cn,N−n
are those considered in Sec. 6.6.3 for the strongly attractive perturbation
theory. In the case of our four atom system, these approximations give us
the simple wavefunction

|ψ(t)〉 ' c2,2(t)|ϕ2,2(t)〉+ c1,3|ϕ1,3(t)〉 , (6.36)

with the initial condition that c2,2(0) = 1. To zeroth order in HI the dimers
would simply oscillate perfectly with a period of π, this is in principle ob-
tained in the limit the initial separation tends to infinity, or trivially when
g → 0. The mixing between the N/2, N/2 and n,N − n + N − n, n states
can be seen as being due to the coupling between the Bethe ansatz eigen-
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states due to the harmonic trapping, or from the HI(n) in our coherent state
model. The rate of transfer should depend on this coupling, which we use
as a parameter in Sec. 6.6, but both coupling terms are hard to calculate
directly.

6.5.3 Predictions of oscillation amplitudes

If we assume our state remains of the form Eq. (6.35), we can make analytic
predictions of Xn, the maximum displacements of the oscillating clusters in
|ϕn,N−n(t)〉, by assuming they have the same energy as |ϕN/2,N/2(t)〉. This
condition EN/2,N/2 = En,N−n with E defined in Eq. (6.31), implies

Nx2
0 + 2ε(N/2) + 2ε̃(N/2) + 1 =

Nn

N − n
X2
n + 1 + ε(n) + ε(N − n) + ε̃(n) + ε̃(N − n) , (6.37)

with x0 the initial position of the N/2 clusters. Within the strongly inter-
acting regime, one can neglect contributions of order 1/g2 and simplify this
expression to

X2
n =

N − n
n

{
x2

0 +
g2

8

[
N2

4
− n(N − n)

]}
, (6.38)

To estimate the uncertainty in these values due to the possibility of collisions
mixing to states with a different energy, we can derive bounds based on
the Hamiltonian variance. These bounds should be considered weak and
subject to all the prior assumptions in Sec.6.5. As our Hamiltonian is time
independent, the variance of its expectation value

∆E ≡
√
〈Ĥ2〉 − 〈Ĥ〉2 , (6.39)

is constant. This is because the time evolution operator U(t) = exp(−iĤt/~)

[with |ψ(t)〉 = U(t)|ψ(0)〉] commutes with Ĥν (ν = 1, 2, 3, . . .), hence we
have: 〈ψ(t)|Ĥν |ψ(t)〉 = 〈ψ(0)|Ĥν |ψ(0)〉 for and positive integer ν. This
remains true if one shifts Ĥ by a constant offset value. We consider only the
N = 4 case as this is used in the numerics.
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In the limit x0 � 1, we can treat each side separately to get an analytic
expression (c.f. appendix D.3.1)

∆E → 2x0 . (6.40)

When the two states in our model have negligible overlap, one can derive the
bound on the energy difference (appendix D.3)

|E2,2 − E3,1| ≤
∆E√
p(1− p)

, (6.41)

with p = |c2,2|2. This bound tends to infinity as p tends to 1 or 0, but this
would imply there is no occupation of one of the states anyway, so this is
physical. This modifies Eq. (6.38) to an inequality, in the strongly interacting
limit we have(

g2

8
+ x2

0 −
∆E

2
√
p(1− p)

)
≤ X2

1

3
≤

(
g2

8
+ x2

0 +
∆E

2
√
p(1− p)

)
. (6.42)

This allows for additional discretion in the particles kinetic energy and thus
maximum position reached after each collision. The upper bound is stricter
than the lower, as we have neglected mixing to more excited states.

6.5.4 Possible Caveats of the model

We have so far ignored the possibility of mixing to states made up of more
than two clusters, e.g. one bound state and two free particles. For the case
of N = 4, the possible energies of such states are much larger than the 2,2
or 1,3 geometries in the limit of strong interactions

E2,1,1(X1,1, X1,2, X2) =

(
−g

2

4
+

3

2
+ x2

2 +
X2

1,1 +X2
1,2

2

)
E1,1,1,1(X1,1, X1,2, X1,3, X1,4) =

(
2 +

4∑
k=1

X2
1,k

2

)
. (6.43)

These states are energetically accessible if the initial kinetic energy is larger
than the interaction energy, hence initial conditions satisfying g2+1/2 > 4X2

2

should immediately see a suppressed mixing into these states. This is however
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not the case if N > 4, even with N = 6 the {4, 1, 1} state still has lower
internal energy than the {3, 3} state. However, we still expect approximate
conservation of the momentum variance over a collision, provided that the
internal length scales are much smaller than a harmonic oscillator length
(i.e. the collision is similar to one in free space). This would mean only
weak mixing could occur to states that have all the particles sitting at the
trap centre with no momentum. That said, the values of the outer positions
are much less constrained; the centre-of-mass condition implies only that
the sum of all the maximum positions vanishes, i.e.

∑
k,n nXn,k = 0. This

allows for a wide variation in trajectories with no obvious preferences between
them. These states are very difficult to include in the model, however the
effect would likely be similar to that of increased relative position uncertainty
between the clusters.

In addition to this, so far we have assumed the shape of the centre-of-mass
wavefunction of each particle to be the ground state of the corresponding
centre-of-mass Hamiltonian. If this was allowed to vary there would be free-
dom to transfer kinetic energy goes into exciting this mode. This increases
the separation uncertainty between the states until the process of a collision
is more or less continuously happening to some extent. In addition to this, if
the clusters go “out of sync” because the pseudo periodicity effect is different
for each n, the model is no longer valid.

6.6 Mixing between different number config-

urations via time-dependent perturbation

theory

6.6.1 General setup

We now investigate the atom transfer effect outlined in Sec. 6.4.2, predicted
to be most significant for g < 0. We can write our wavefunction at any point
in time as

|ψ(t)〉 = c2,2(t)|ϕ2,2(t)〉+ c1,3(t)|ϕ1,3(t)〉+ c0,4(t)|ϕ0,4(t)〉 , (6.44)
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with |ϕn,N−n(t)〉 normalised wavefunctions that are superpositions of states
with n and N − n atoms to the left and vice versa, and {cn,N−n} a set of
complex constants, the modulus squares of which are the probabilities to
find n or N − n atoms on either side. In order to qualitatively predict the
incremental changes to {cn,N−n(t)} from before to after a collision, we use
time dependent perturbation theory. We are interested in the states away
from the collision and so we ignore the c0,4(t) component and look at the
variation in c2,2(t) and c1,3(t).

In general |ϕn,N−n(t)〉 will be a set of states, made up of many different com-
ponents which are continually mixed even when the states are not in collision;
we treat these kets as being simply one time dependent state and assume the
centre-of-mass motion of each n,N − n atom cluster in |ψ3,1(t)〉 undergoes
harmonic oscillation and is periodic in time with period T = π. Formally
we therefore say |ϕn,N−n(t)〉 are the same as those given in Eq. (6.33),2 with
the time evolution of the states |ψn,N−n(t)〉 determined by Eq. (6.32). This
assumes that any internal relative excitations (in the sense of Sec. 6.4.2) in
all |ϕn,N−n(t)〉 are small compared to the ground state. This approximation
is expected to work better for g < 0, for reasons outlined in Sec. 6.4.2, and
at short-times. In the strongly attractive regime, the states will have no
intra-cluster excitations. However within this treatment we are still neglect-
ing inter-cluster excitations, which will try to address later by including a
pseudo period.

Our wavefunction

|ψ(t)〉 ' c2,2(t)|ϕ2,2(t)〉+ c1,3(t)|ϕ1,3(t)〉 , (6.45)

must solve the Schrödinger equation

i
d

dt
|ψ(t)〉 = [(ĤL + ĤR) + ĤI ]|ψ(t)〉 . (6.46)

Taking the Hamiltonian on the fundamental region x1 ≤ x2 ≤ x3 ≤ x4, and
2Although these are now general n body ground states and not quantum solitons.
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noting the time dependence of Eq. (6.32), this implies

i [ċ2,2(t)|ϕ2,2(t)〉+ ċ3,1(t)|ϕ3,1(t)〉+ c2,2(t)|ϕ̇2,2(t)〉+ c3,1(t)|ϕ̇3,1(t)〉] =

c2,2(t)
{
|ϕ̇2,2(t)〉+ ĤI(2)|ϕ2,2(t)〉

}
+ c3,1(t)

{
|ϕ̇3,1(t)〉+N1,3

[
ĤI(1)|ψ1,3(t)〉+ ĤI(3)|ψ3,1(t)〉

]}
, (6.47)

with ĤI(n) given in Eq. (6.28). Cancelling terms and using the orthonormal-
ity of ϕN,n−n(t), we can simplify Eq. (6.47) to the two coupled differential
equations

iċ2,2(t) =g {N1,3(t)c3,1(t)〈ϕ2,2(t)| [δ(x1 − x2)|ψ1,3(t)〉+ δ(x3 − x4)|ψ3,1(t)〉]

+ c2,2(t)〈ϕ2,2(t)|δ(x2 − x3)|ϕ2,2(t)〉} (6.48a)

iċ3,1(t) =g {N1,3(t)c3,1(t)〈ϕ3,1(t)| [δ(x1 − x2)|ψ1,3(t)〉+ δ(x3 − x4)|ψ3,1(t)〉]

+ c2,2(t)〈ϕ3,1(t)|δ(x2 − x3)|ϕ2,2(t)〉} . (6.48b)

We have substituted in the coordinate expression for all ĤI(n) to show the
proportionality to g. So far these is essentially an exact description of the two
state system. As we initially have c2,2 = 1, we can consider a perturbative
solution with |c3,1(t)| � |c2,2(t)| as a regime of validity.

Formally, we perturb (ĤL + ĤR) by ĤI given in Eq. (6.24) [or n = 2 in
Eq. (6.28)]. Within first order perturbation theory, this is equivalent to
solving Eq. (6.48) after dropping all terms with a prefactor of c3,1(t). Hence
we have

iċ2,2(t) ' c2,2(t)〈ϕ2,2(t)|ĤI |ϕ2,2(t)〉, (6.49)

iċ3,1(t) ' c2,2(t)〈ϕ3,1(t)|ĤI |ϕ2,2(t)〉. (6.50)

We note that 〈ϕ2,2(t)|ĤI |ϕ2,2(t)〉 is periodic with a periodicity (T = π) half
that of the oscillator period. The matrix element 〈ϕ3,1(t)|ĤI |ϕ2,2(t)〉 is a
product of a function with period T = π, and the complex exponential
exp(−i∆Eintt) of the energy difference between the intra-cluster degrees of
freedom in both configurations (as plotted in Fig. 6.1).

Denoting the periodic component of the interaction terms 〈ϕn,N−n(t)|ĤI |ϕ2,2(t)〉
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as fn,N−n(t), we must therefore solve

iċ2,2(t) ' c2,2(t)f2,2(t) , (6.51a)

iċ3,1(t) ' c2,2(t)f3,1(t) exp (−i∆Eintt) , (6.51b)

with the boundary condition c2,2(0) = 1. The interaction time between
the two states is proportional to internal size of the states and inversely
proportional to the relative velocity at collision which is proportional to 1/x0.

6.6.2 Fourier approximation

We first assume that the initial separation x0, and the coupling magnitude
|g|, are not large. Within this regime the interaction time is quite long and
we assume that we can approximate fn,N−n(t) by first order Fourier series,
f(t) ≈ g(1−cos(2t)). This implies that all fn,N−n(t) differ only by a constant
value; hence f2,2(t) = Af(t) and f1,3(t) = Bf(t), with A and B dependent, in
principle on g, and quite heavily on x0. We can use this to solve Eq. (6.51b):

c2,2(t) ' exp

(
i

∫ t

0

dt′Agf(t′)

)
' exp(iAg[t− sin(2t)/2 + . . .]),

(6.52)

and if we neglect ∆Eint under the assumption that the relative energy on
both sides is similar,

c3,1(t) ' B

A

[
exp

(
igA

∫ t

0

dt′f(t′)

)
− 1

]
. (6.53)

For short times, we can expand c31(t) ≈ B[igt+O(g2t2, g cos(2t))], i.e., pro-
portional to gt and oscillatory terms and hence giving a linear increase when
t = nπ. At longer times the phase evolution of c2,2(t) becomes important,
leading to cancellation in the terms of c3,1(t) and giving oscillatory behaviour
with a period dependent on g. The linear increase with g after a collision is
not expected to continue when g ' 1 as higher-order terms become increas-
ingly important and the perturbation theory breaks down.

We have so far neglected the difference in internal energy. This will introduce
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an additional phase between c3,1(t) and c2,2(t). With this included we have

c3,1(t) '
∫ t

0

dt′ [igBc2,2(t′)f(t′) exp (−i∆Eintt
′)]

' igB

∫ t

0

dt′ f(t′) exp(i[Ag −∆Eintt
′ − Tosc]) ,

(6.54)

with Tosc denoting oscillatory terms such as k cos(2t), which are periodic
with t → t + π or shorter fractions of π for the higher-order terms. Sum-
ming together terms of different phases will produce cancellation, hence if
the exp(i[Ag −∆Eintt]) term has the same periodicity as f(t) and the “osc”
terms, both π, the overall increase will be linear in time with no higher-order
polynomial terms. This could therefore lead to resonant (suppressed) trans-
fer if Ag − ∆Eint ≈ n with n even (odd), and slightly suppressed transfer
if n is a rational number not close to an even integer, e.g. 1/2, 1/3, 3/2. As
noted earlier, the g → ∞ limit gives ∆Eint ∼ 1 and thus should lead to
suppressed transfer if |Ag| . 1/2. We note that when |g| ∼ 0 this resonance
condition appears to be matched up to a factor g[A − (2π)−2], giving very
long cancellation periods, however, as we see in Fig. 6.4 (and by the fact the
perturbation strength scales ∝ g) the rate of atom transfer scales proportion-
ally to g and so cancellation can still occur before a significant population
transfer is achieved.

This simple analysis neglects higher-order effects such as pseudo-periodicity,the
coupling back of the c13(t) term, and intra-cluster excited states are not
treated explicitly. However, qualitatively we expect an initially weak linear
increase to c13, but the population will oscillate between the states. For small
|g| the timescale of this population cycling would be many oscillator periods,
but for g ' 1 the timescale of these oscillations should drop.

6.6.3 Instantaneous interaction approximation

Predictions for N=4

Alternatively we can assume x0 is not small and the coupling parameter g is
large and negative, i.e the regime of soliton like dynamics. This actually suits
this method better as now excited internal states of |ψn,N−n(t)〉 (states which
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are not just an n and N − n atom ground state undergoing simple harmonic
oscillation) are energetically suppressed. Therefore c3,1(t) and c2,2(t) really
do denote occupations of the states of Eq. (6.35), i.e. a single time-dependent
wavefunction, rather than a class of states in the general case. The magni-
tude of interaction term, 〈δ(xn − xn+1)〉, does not increase with the collision
velocity, but the time for which it is significant decreases asymptotically as
1/x0, along with its effect on the system. Therefore if x0 is large we can treat
the interaction as a delta function in time and thus approximate the periodic
component as

f(t) ≈
∞∑
k=0

δ(t− π/2− kπ) . (6.55)

We then assume f2,2(t) = A(g)f(t) and f3,1(t) = B(g)f(t) in a similar way
to the Fourier case, except that we have not included a factor of g in f(t)

which also implies A < 0. This perturbation theory can also be considered
valid even in the limit |g| � 1 with g < 0, as it does not make assumptions
about the interaction strength.

We can use the results for phase shifts from soliton collisions [Eq. (4.51)] in
free space, to give an expression for A(g) in the strongly interacting limit

A(g) ≈ θ(2, 2, pr(2,2)) . (6.56)

Our perturbation theory does not formally include the interaction between
left and right sides in the trimer-singlet configuration, which would cause a
phase shift of θ(3, 1, pr(3,1)). However, because we are assuming c3,1 is small,
the phase of c3,1(t) is set purely by the unperturbed time-evolution and c2,2(t).
This phase shift would only matter if we solved Eq. (6.48) with higher order
time-dependent perturbation theory. The relative momentum per atom at
collision can be approximated as pr(2,2) ≈ 2x0 and pr(3,1) ≈ 4X1/3 with Xn

given by Eq. (6.38). This model has the considerable advantage of using only
parameters known ab initio to determine A(g), but the phase shifts may be
slightly different as the solitons are modified by confinement.
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Using this new function to solve Eq. (6.51b) with c22(0) = 1 gives:

c2,2(t) ' exp

[
−iA(g)

∫ t

0

dt̃f(t̃)

]
= exp

(
−iA(g)

⌊
t

π
+

1

2

⌋)
, (6.57)

using
∫
dtδ(t)f(t) = lim∆→0

f(t+∆)+f(t−∆)
2

, bxc meaning round x down to the
next integer, and the convention that an empty sum is zero. We can therefore
calculate the time dependence of the other component to be

c3,1(t) ' −iB̃(g)

bt/π−1/2c∑
k

exp [−ik (∆Erelπ + Ag)] , (6.58)

with B̃ = Be−i∆Erelπ/2
(
1 + e−iAg

)
/2 a rescaled constant. In order to achieve

resonant transfer to the c31 state, we require all the terms in the sum to phase
match. In order to derive an accurate expression we have found it necessary
to also include a correction to the pseudo period δ(g) = Tpseudo − π ≈ αg

(which is observed in our results, c.f. Sec. 6.9) and predict the kth resonance
to occur when

2kπ = A+ ∆Erel(π + δ) , (6.59)

with ∆Erel = E2,2 − E3,1 the energy difference at g = grs and k a pos-
itive integer. Analytic solutions are not available to Eq. (6.59), so in
generally it will need to be solved numerically. However, we can ex-
pand A as a power series in g/x0 to try and predict the first resonance,
A ∼ 5g/2x0− 17g3/96x3

0 +O(g/x0)5. Using the g � −1 value of ∆Erel from
Eq. (6.27) and approximating A to lowest order A ∼ gÃ, we can use this
expression to predict low lying resonances

2kπ = Ãgrs +
g2

rsπ

2

grs = −Ã+
√
Ã2 + 4kπ2

π

∼ −2
√
k − Ã

π

(
1 +

Ã

4
√
kπ

)
−O

(
A4

k

)
. (6.60)

Additionally we can see that in the limit g/x0 → −∞, the phase shift
θ(2, 2, pr(2,2)) → −3π. Assuming also the magnitude of the pseudo period
|δ| ≈ α|g| � 1 to still be small, we can say the large g resonances should be
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given by

grs ≈
2
√

2k + 1√
2− α

√
2k + 1

∼ 2
√
k + 1/2 + α(k + 1/2) , (6.61)

In either case the proportionality to 2
√
k seems to be common feature, with

only small corrections from the interaction phase shift. We expect the pre-
dictions of Eq. (6.59) to be only approximately correct and only valid in the
regime when c13(t) is small; long time oscillatory behaviour in the population
is not possible to predict with first order perturbation theory, we can simply
say when we expect the largest early time effects.

Predictions for N>4

One can also consider the situation for N > 4, if we again assume our state
space to be limited to that of two cluster states [formalised in Eq. (6.35)]
and proceed with the same time dependent perturbation theory, assuming
all cN/2−n,N/2+n except cN/2,N/2 are small. The relative energy difference
between two clusters of N/2 atoms and a state with clusters of size N/2− n
and N/2 + n, is given in the limit |g| � 1, g < 0 as

∆Erel(N/2− n,N/2 + n) ∼ g2Nn2

4
. (6.62)

We follow the same procedure as before to derive a condition for cN/2−n,N/2+n

to increase resonantly, taking An ≈ θ(N/2, N/2, 2x0). Because we are not
going to numerically determine these resonances, we just expand An = gÃn+

O(g2) to examine the low lying resonances, which gives

grs(k) = −4|
Ãn ±

√
Ã2
n +Nkn2π2

k2Nπ
|

∼ −4

√
k

nN
−O

(
Ãn
n2N

)
, (6.63)

for the kth resonance. For simplicity, we assume all An to be negligible in
what follows. This should always be possible in the limit of x0 � 1, as the
interaction time tends to zero. Letting n = N/2 − 1, k = 1, we obtain the
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resonant condition for mixing to the singlet plus N − 1 atom bound-state
configuration, which is achieved for the weakest interaction strength of g ∼
−4/

√
(N2/2−N). Full population transfer to this state would give ∆N2

R =

N2/4−N+1, which has the same leading order term as NOON state, making
it potentially interesting for interferometry. Additionally, because this state
is the most energetically favoured, all the others are non resonant (in fact
likely close to anti-resonant) and should only accumulate small population.
The reduction in the magnitude of the rescaled interaction strengths may
make this more experimentally favourable, we discuss this in Sec. 6.7.

Another interesting result comes if we consider the k = 1, n = 1, resonance at
g ∼ −4N−1/2. In this case there is resonant mixing to all possible states (the
n = m state is at the k = mth resonance). This could prove an interesting
result if it is visible above mixing to states with 3 or more clusters (the state
with two free atoms and one N − 2 atom bound state is for example allowed
for N > 2) and the mixing between the different cluster states does not
cancel everything out.

6.6.4 Amplitude bound to oscillations

One can look at each left/right number eigenstate [Eq. (6.16)] separately,
assuming that we have a probability of p for |2, 2〉, and of (1− p)/2 for |3, 1〉
(with the same for the |1, 3〉 state), no occupation of |4, 0〉 or |0, 4〉, and that
there is no overlap between the states and no mixing via the Hamiltonian.
We can then state the energy E1,3 = 〈1, 3|Ĥ|1, 3〉 as

E1,3 = Epot,1 + Epot,3 + Ekin,1 + Ekin,3 + Eint,3 . (6.64)

Each term in this equation refers to the kinetic, potential and interaction
energy of each side, with one or three atoms, respectively (note that there is
no interaction energy for the single atom side, taken without loss of generality
as being left). Noting that the kinetic and potential energy terms must be
positive, we can derive the inequality

Epot,1 ≤ E1,3 − (Ekin,3 + Eint,3) . (6.65)
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Using the conservation of E = 〈Ĥ〉 and ∆E2 = 〈Ĥ2〉 − E2, it can be shown
that (see Appendix D.3 )

|E3,1 − E| ≤
√

p

1− p
∆E , (6.66)

which is equivalent to

E −
√

p

1− p
∆E ≤ E3,1 ≤ E +

√
p

1− p
∆E . (6.67)

Combining the upper bound of the above equation with Eq. (6.65), we obtain

Epot,1 ≤
(
E +

√
p

1− p
∆E

)
− (Ekin,3 + Eint,3) . (6.68)

Finally, noting that Epot,1 = 〈x2〉1/2 ≥ 〈x〉21/2, with 〈Ô〉1 meaning the ex-
pectation value of the 1 particle side of the wavefunction, we can obtain an
inequality for the 1 atom position expectation value

〈x〉1 ≤
√

2

√(
E +

√
p

1− p
∆E

)
− Eint,3 . (6.69)

We can see that larger, positive g will constrain this bound, up to a point
of saturation at the Tonks-gas limit, whereas potentially it is unbounded as
g → −∞ (energies in this regime scale proportional to −g2 [162]) as the
atoms gain a large amount of energy.

6.7 Possible experimental realisation of the

four atom system

6.7.1 Optical lattice scheme

Our results could be tested by creating an optical super-lattice [163], of
two overlapping lattices, with one double the frequency of the other, then
loading this with two atoms per site (in the ground state) in a Mott insulator
regime [164]. This is shown schematically in Fig. 6.2. The interactions could
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Figure 6.2: Schematic potential from an optical super-lattice created by over-
lapping two lattices (all units are arbitrary). Grey circles represent a loading
of two atoms (or N/2) in the ground state of each well. Our suggested scheme
tunes the interactions to the desired value and then turns off the double fre-
quency (dotted line) lattice leaving only the broader lattice (dot-dashed line),
after which the atomic dimers collide.

then be tuned to be attractive via a magnetic Feshbach resonance, at such
a rate that tunnelling between sites is small, but the two atoms on each site
tend to the ground state given by Eq. (6.7). The double-frequency lattice
could then be ramped down, leaving only the wider lattice, thus creating
the initial conditions of two equally separated dimers in an approximately
harmonic potential.

Some freedom with x0 could be achieved by modifying the relative strength
of the double-frequency lattice compared with the primary lattice. Reducing
it will push the minima closer together, but also make tunnelling between
the sites more significant. Careful ramping-down schemes of the laser power
of the double-frequency lattice could also be incorporated, which would give
further freedom to move the sites closer together after creating the dimers.
Slower ramping will also make things closer to adiabatic, thus reducing the
excitation in each dimer created by the switch-off. The relative velocity
between the two dimers in terms of the final harmonic oscillator units will
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equate to an effective initial separation: approximately the separation the
dimers will reach after the first collision. A faster (slower) ramping scheme
would give a larger (smaller) effective x0; however, to be most applicable to
the results of this paper, a slow scheme would be ideal to minimize excitations
and minimize the degree of anharmonicity in the potential that the dimers
sample.

After some free-evolution time, the double frequency lattice could then be
quickly restored with an extremely high lattice depth, separating the left and
right components of the wavefunction, with no further tunnelling possible.
This would allow for a direct measurement of N̂R as defined in Eq. (6.9), by
then imaging the lattice with resonant light; light-induced collisions [165] will
reduce this to a parity measurement with an empty site being either a zero
or two population, and a single atom being a one or three population. This
is actually sufficient information, assuming we know the total atom number
in the two sites was exactly 4. In terms of the states given in Eq. (6.16): no
atoms on either site is a measurement of a |2, 2〉 configuration (or a |4, 0〉 and
|0, 4〉 configuration, but this is only significant during collisions), both sites
occupied is a measurement of a |3, 1〉 and |1, 3〉 configuration. A measurement
yielding a single occupied site and an empty site would imply some inelastic
process has occurred (such as three-body recombination or background gas
collisions) and such a result would thus be null.

If the effective x0 were an appreciable fraction of the lattice width, this
scheme could also show some more interesting physics beyond the scope of
this paper, with collisions coupling energy into the centre-of-mass mode and
the tunnelling of the single atom in the single-trimer states (considered in
Sec. 6.6) to adjacent lattice sites. It could even have a kinetic energy greater
than the maximum barrier height between sites and join an effective con-
duction band [166], allowing for entanglement between lattice sites. These
effects may also be worthy of experimental investigation.

6.7.2 Experimental parameters

In terms of typical experimental parameters, the s-wave scattering lengths
would need to be very substantial in order to give measurable effects. Strong



Chapter 6. Collisions with finite number systems 148

interactions generally require tuning scattering lengths near to Feshbach res-
onances, and in such strongly interacting regimes confinement effects can
shift the effective 1D scattering length if as/a⊥ is not small [46]. The chosen
Feshbach resonance would ideally be broad, minimizing uncertainty in the
effective interaction associated with a lack of precise control of magnetic field
fluctuations.

Alternatively, some atoms such as caesium can have large background scatter-
ing lengths far from resonances [83], e.g., as ∼ ±3000a0 where a0 ≈ 5.3×10−11

m is the Bohr radius. In terms of a rescaled g parameter in harmonic os-
cillator units, if we take ωx ∼ 2π × 1Hz and very strong radial confinement
ω⊥ ∼ 2π × 0.4kHz, we have

g = 2ω⊥as

√
m

~ωx
∼ ±1.2 , (6.70)

which is of unitary order. This would be sufficient to access the resonances in
Eq. (6.63) for N ' 8 atoms, but not quite sufficient for the ones we observe
numerically for N = 4 in Sec. 6.10.

We essentially have three experimentally tunable parameters, as, ωx and
ω⊥ which can be varied smoothly with small adjustments to a magnetic
field or modifying laser powers, focusing, or detunings. However, dropping
ωx is undesirable as it increases experimental timescales, and increases the
likelihood of loss events [c.f. Sec. 2.5.2]. Increasing the scattering length also
increases the rate of unwanted three-body recombination effects, meaning
one would need to determine an appropriate compromise.

6.8 Numerical method

6.8.1 Basis set expansion

To perform many-body computations we expand the field operator over the
set of Hermite functions scaled by W as before

ϕk(Wx) =

√
W

k!2kπ1/2
Hk(Wx) exp

(
−W 2x2/2

)
, (6.71)
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with Hk(x) the Hermite polynomials, and diagonalize the Hamiltonian in a
Fock state basis |n0, . . . , n∞〉, truncated via the condition

∑
k knk ≤ η and

projected to the zero centre-of-mass excitation subspace [c.f. Sec. 4.2.6]. For
the graphs in this chapter we only use the eigenstate width W = 1, as the
harmonic oscillator length is always a relevant scale. A compromise by taking
a narrower functions (W > 1) proved to have other numerical issues.

6.8.2 Convergence testing

We first need to represent our initial condition in terms of this basis set,
noting that due to the truncation the state cannot be represented exactly,
with larger initial displacements and larger coupling magnitudes g harder
to represent in this basis. We require a reasonable fidelity of our numerical
initial condition to the true state, achieving fidelities of greater than 99.5%

for all the numerics used in [2], but are as low as 95% for g ∼ −5.

Measuring convergence during time evolution with such a method is more dif-
ficult. Performing the calculations with a variety of basis sizes and calculating
the fidelity over time can give an indication for how long the calculations are
reliable, for which we plot, in Fig. 6.3, our most extreme values of g. This
is probably the strictest measure of convergence applicable, given the large
number of degrees of freedom in a many body wavefunction, for example a
product state with a large number of atoms would have a fidelity exponen-
tially tending to zero for any finite difference in the product wavefunction.

6.9 Numerical results outside of the strongly

attractive regime

6.9.1 Preamble

All the results graphed here are calculated for N = 4 and x0 = 3 in order
to investigate the effects of varying the strength of interaction (by varying
the coupling parameter g) for small numbers. In general smaller x0 greatly
increases interaction times between clusters and thus rates of atom transfer.
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Figure 6.3: Plots of |〈ψ(ν, t)|ψ(νmax, t)〉|2, the fidelity of the wavefunction
computed with smaller basis (energy cut off at ν) to the wavefunction com-
puted using a larger basis truncated at νmax = 113. We have displayed results
for the extreme values of g (in harmonic oscillator units) employed in the nu-
merics that are trusted. For lower absolute values of g, the fidelity converges
more rapidly with increasing ν.

It also reduces the amount of free energy in the system, however a greater
amount of the wavefunction will be found towards the centre at all times and
thus expectation values of N̂R will be harder to interpret. The results here
are broken down into three sections. The first examines the variation in left
right number, the second examines the variance in position about one side
and the final section examines the single body von Neumann entropy.

6.9.2 Left and right particle number dynamics

Because our initial condition has a definite number of two atoms either side
of the trap, the left/right number uncertainty, ∆NR, in our system is ini-
tially very near zero. We note that a mean-field-like state or a symmetric
superposition of 3 and 1 atoms either side both give ∆NR = 1, which is also
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Figure 6.4: (a) Minimum value taken by ∆NR [Eq. (D.6)], after one colli-
sion. (b) Frequency difference (in harmonic units ω) of peaks in the Fourier
transform of ∆NR from the non-interacting values (t = nπ) divided by n.
(a) shows that for g > 0, the increase to number uncertainty is greatest for
g ≈ 2.3 and decreases when interaction strength is increased further. The
g < 0 behaviour is initially similar but deviates at around |g| = 0.6; rather
than saturating it appears to increase even more rapidly with |g|. It is not
clear what will happen for g < 0 and |g| � 1, which will be a topic for further
investigation. (b) Existence of pseudo-periodicity in the system (in addition
to low frequency components relating to the long time behaviour). The non-
interacting system has frequency peaks at fn = n/π, the quadratic fit (solid
line) indicates these peaks shift by an amount roughly equal to −ng/100π.

the value this quantity will take in our non-interacting system when each of
the clusters collide. We therefore first consider the minimum to minimum
values taken by ∆NR before and after each collision. This minimum value
is taken as a non biased estimate for the maximum entanglement while left
and right states are well separated. The change after the first collision is
given in Fig. 6.4 and the change over the first 150 collisions is plotted in
Fig. 6.5. Despite the fact that the increase after the first collision is similar
for both attractive and repulsive interactions of similar magnitude, the long
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time change is very different, with the timescales being much longer in the
attractive case.

In either case, the left-right number does not reach an equilibrium on the
timescales considered, with oscillations and revivals present. The time-
dependent perturbation theory of Section 6.6 indicates that atom transfer
processes are suppressed by an internal energy difference between the |2, 2〉
and |3, 1〉 configurations of the wavefunction, which leads to destructive mix-
ing over a few collisions, unless a phase matching condition occurs. If intra-
cluster excited states (discussed in Section 6.4.2) are present, the energy
difference between each configuration, ∆Erel, may be small (along with Ag)
meaning cancellation occurs on longer timescales, leading to fluctuations in
∆NR over 10s of harmonic oscillator periods.

Figures 6.6 and 6.7 (a) show the amplitude of each number component in the
wavefunction as it evolves in time for g = 3 and g = −1.7; note Fig. 6.5 takes
only the minimum values of these curves to avoid the spikes on collisions.
The maximum amplitude of the |3, 1〉 and |4, 0〉 components (at least ini-
tially) occurs on collisions (corresponding to a minimum amplitude of |2, 2〉).
Decreasing of this peak amplitude may be interpreted as the time of collisions
between clusters becoming less well defined, due to the distance between their
centres of mass becoming less well-defined (i.e., its corresponding probability
density becomes broader) and the forming of intra-cluster excitations.

At late times (t > 100) on figure 6.7, all the expectation values for n 6= 2

are almost the same as those for Gaussians centred on zero. This is due to
only the two-dimer (attractive n = 2 ground states) setup being significant,
as the exciting of intra-cluster excitations is suppressed by the large energy
gap, and atom transfer interactions are suppressed by an energy difference,
leading to a phase mismatch and hence a cancellation. However, energy is
still transferred to the relative position wavefunction (described in Section
6.4.2), increasing the uncertainty in the separation of dimers, and so some
component of the wavefunction is always undergoing a collision yielding a
finite value for the left-right number uncertainty. As a result of our scaling
in Eq. (6.13), the n 6= 2 values are just those of the dimer system in collision,
and only a small contribution to |3, 1〉 comes from states that are similar to
a superposition of a cluster of 3 atoms to the left (right) and a free atom to
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the right (left).
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Figure 6.5: Minimum value obtained by ∆NR, as given by Eq. (D.6), after
a given collision. For weak interactions (|g| < 0.1) the behaviour is the
same for attractive and repulsive, but for slightly larger values of g there is
a clear difference in the timescales (measured in harmonic units ω−1), with
repulsive interactions producing larger number uncertainties more quickly,
despite the fact that Fig. 6.4 shows there is little difference in ∆NR after one
collision. This difference is likely due to the increased (decreased) energy
spacing between the ground and first excited state of the two atom system
with attractive (repulsive) interactions, discussed in Section 6.4.2, and the
energy difference between the two-two and three-one number configurations,
as discussed in Section 6.6, which leads to a phase mismatch. For large
repulsive values (g > 2), ∆NR reaches a maximum value and then undergoes
complex partial revivals on timescales of 30 time units (tens of collisions).

6.9.3 Equilibration of energy into inter/intra-cluster ex-

cited states

We wish to quantify the amount of energy transferred from the centre-of-
mass energy of each cluster to excitations between the atoms, as discussed in
Section 6.4.2 and Section 6.4.2. We therefore study σn,N−n(t), the standard
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Figure 6.6: For g = 3, x0 = 3, (a) Probability of finding n (or N − n) atoms
to the right with the amplitudes of wavefunction components decomposed
into eigenfunctions of number L/R number operator, defined in Eq. (6.14) .
(b) Expectation value of position to the right on sections of wavefunction de-
composed into eigenfunctions of L/R number operator, defined in Eq. (6.18)].
(c) Variance in position to the right as defined in Eq. (6.19), paralleling (b).
The expectation value to the right [(b)] effectively tracks the particle-like
motion, but after long times the motion appears effectively damped. (c) can
quantify this effect — the peaks of σn,N−n increase from their initial value
and continue to oscillate about a maximum, except for σ4,0 (which is only
significantly probable during collisions) indicating a transfer of energy to the
degrees of freedom described in Sections 6.4.2 and 6.4.2. This remains true
even at very long times t ∼ 1000, with progressively smaller partial revivals
and so can be said to have equilibrated.

deviation in the position to the right, for a given number of atoms to the right,
as defined in Eq. (6.19). This is essentially the width of the atomic density
distribution on the right hand side, about the expected value for position,
given that n atoms are on the right-hand side [defined in Eq. (6.18)].

These are plotted in Fig. 6.6 (c). The repulsive case shows a consistent
increase in the height of the peaks (excepting the n = 4 peak), with only
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Figure 6.7: The same quantities as Fig. 6.6 but with g = −1.7. The short-
term behaviour of the expected one-atom position (b) is similar to the re-
pulsive case, but is increased in magnitude. At long times, the right-position
expectation values drop to an approximately constant value for all but n = 2,
this being the value of a Gaussian state in the centre of the trap, for reasons
explained in section 6.9.2. This is also the case in (c) — essentially the only
significant contribution to the n 6= 2 states comes from uncertainty in the
separation of the atomic dimers, which smooths over transfer effects.

small periodic oscillations. The attractive case however shows σn,N−n(t) to
be initially similar but then dropping to a minimum value for n 6= 2. We note
σn,N−n(t) cuts off anything on the left side, and so is difficult to relate to the
amount of excitation if the left and right states are separated by a distance
smaller than the size of their internal structure, as they will contribute to all
the n 6= 2 expectation values. Intra-cluster excitations as we have defined
them are present if the wavefunction either side of the centre does not look like
a displaced n-atom ground state; it is possible such excitations could reduce
the position uncertainty but they are generally expected to make it broader
and thus increase σn,N−n(t). These excitations are dominant processes in the
increasing of σ for the repulsive case plotted in Fig. 6.6 (c), and appear to
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persist at long times.

For the g < 0 case, at very early times, say t < 20, the contribution to σ3,1(t)

from states in the single particle and cluster-of-3 configuration is visible. By
momentum conservation, the single atom must have considerably more en-
ergy after a collision than the 3-atom state, which explains the large n = 1

position expectation values away from collision. However, in the strongly
attractive case this transfer process is cyclic, and it never transfers large pop-
ulations to these configurations. As we noted before, contributions can come
from an oscillating dimer state if the relative separation is small. Initially
this only occurs during collision, but inter-cluster excitations (which can be
interpreted as an increased uncertainty in how much the centres of each clus-
ter have shifted due to interactions), lead to an increase in relative position
uncertainty (although Fig. 6.5 indicates this process undergoes partial re-
vivals). Hence, at late times there is always significant wavefunction density
in the trap centre, that is to say at any time t > tlate some non-negligible
part of the wavefunction is always undergoing collision. Hence, if the contri-
bution from the singlet-triplet state is too small to see we can conclude that
the σ2,2(t) reaching a maximum corresponds to this mode reaching a steady
configuration. This is the dominant effect in the attractive case shown in
Fig. 6.7, but is also present for g > 0.

6.9.4 Relaxation to equilibrium

One questions of interest is whether the system reaches an equilibrium at long
times. We attempt to quantify this by looking at the single body density
matrix and its von Neumann entropy, given by Eq. (6.21); however, this
quantity (like most in our system) has a time-dependence due to the repeated
collisions that are a consequence of the system as a whole being held within
a harmonic confining potential. In order to simplify our analysis we look at
the time averaged value over a period of T = 2π and quantify the degree
of short-time change via the variance of this average. These are plotted
in Fig. 6.8 (a) For both positive and negative g, SvN increase towards a
maximum value, with small amplitude oscillations in a similar way to ∆N

but with much smaller variations. For fixed |g|, the g > 0 entropy generally
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Figure 6.8: For x0 = 3, (a) time evolution (measured in units of ω−1) of
the von Neumann entropy (averaged over a time period of 2π), as defined by
Eq. (6.21) and Eq. (6.22), (b) time evolution of the standard deviation of this
quantity, given by the square-root of Eq. (6.23), for a range of interaction
strengths both repulsive and attractive. Entropy increases gradually at early
times t < 10π, then increases at a more rapid rate before levelling off to
an almost constant value with small fluctuations. This behaviour is similar
for both attractive and repulsive interactions. The variance over the 2π
averaging range behaves very differently for strong attractive and repulsive
interactions, with the short-timescale fluctuations persisting for much longer
if g < 0. This difference is explained by a change in the dominant processes,
with the attractive system being unable to excite the relative degrees of
freedom in a cluster and thus transfer of atoms between each cluster becoming
more significant. Fig. 6.6 (b) shows atom transfer dynamics in the repulsive
case have only small fluctuations at late times.

increases slightly faster and to higher values than the equivalent g < 0 case,
but is otherwise quite similar. Fig. 6.8 b) shows the standard deviation
over the 2π averaging period, the rapidly changing (time scales of less than
2π) effects continue for much longer in the attractive case compared to the
repulsive. Transfer effects (discussed in Sec. 6.4.2) are likely the cause of this
short time oscillation as they are predicted to be cyclic on the timescale of
a few collisions when g ≈ 1. The variation dying down at long times can be
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explained for the g > 0 case by intra-cluster exited states breaking the cyclic
effect, and for g < 0, by the broadening of the inter-cluster wavefunction to
the point where the collision time is not well defined.

6.10 Preliminary numerical results for the strongly

attractive regime

6.10.1 Preamble

This section focuses on numerical results obtained via the exact diagonalisa-
tion routine for g . −1.7. These results are inherently qualitative as they
push the code to a regime in which it is unable to accurately determine en-
ergies or construct the soliton wavefunctions. This breakdown is a result of
the separation of length scales between the internal structure of the bound
states and the size of the harmonic confinement. Rescaling the basis im-
proves convergence to a small extent, but is inevitably a compromise and is
not sufficient with the basis size currently available.

Our numerics do confirm the presence of the transfer resonances predicted in
Sec. 6.6.3, but at values of g which are not in quantitative agreement. There
is also little certainty about the rates at which this occurs. The numerically
calculated total energies are generally lower than analytical values (which are
accurate in this regime) in this parameter range by the order of a harmonic
oscillator unit (more for larger |g|). Adding more states improves energy con-
vergence, but the number of states becomes infeasibly large. Convergence is
very difficult to assess using the overlap method due to the fact that the
behaviour changes dramatically near the resonances, which depend on inter-
nal energy differences, and thus shift in position as more states are added.
Despite this we still expect qualitative agreement with the real system, at
least for smaller |g|. We focus again on the x0 = 3 case, but note the effects
of varying x0 for the initial rate of number transfer are not as predicted.
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Figure 6.9: (a) Minimum value taken by ∆NR [Eq. (D.6)], after one colli-
sion. (b) Frequency difference (in harmonic units ω) of peaks in the Fourier
transform of ∆NR from the non-interacting values (t = nπ) divided by n.
Figure (a) shows the continuing quadratic increase to the transfer rate with
increasing coupling magnitude. Figure (b) shows considerably more “noise”
than was seen in Fig. 6.4, but has a similar gradient on the linear fit to the
shift in the first peak, indicating the pseudo period shift is still roughly linear
with g.

6.10.2 Left and right particle number dynamics

As before ∆NR is initially very near zero. However, strong attractive interac-
tions significantly increase the rate of the exchange processes, which appear
to scale proportional to (g−g0)2 in this regime. This can be seen on Fig. 6.9.
We note this rate may be unreliable for large |g| as the numerics cannot be
said to have converged in this regime. However, the dependence on the trans-
fer rate for small negative g depends heavily x0, as we show in Fig. 6.10. If
x0 . 2.5 the transfer rate reaches a local maximum. The large |g| behaviour
is qualitatively similar for all x0, with higher x0 values giving a larger initial
transfer over the range considered. This slightly counter intuitive behaviour
appears to result from matching a rapidly increasing behaviour at small |g|,



Chapter 6. Collisions with finite number systems 160

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−9

10
−7

10
−5

10
−3

10
−1

|g|

∆
N

a
ft
e
r
o
n
e
c
o
ll
is
io
n

 

 

2

2.2

2.5

3

3.5

4

Figure 6.10: Minimum value taken by ∆NR [Eq. (D.6)], after one collision
(log scale) for a range of initial separations x0 (given by the legend) and neg-
ative g. Smaller x0 give much larger transfers for low |g|, but the behaviour
is reversed at high |g|.

with a linear proportionality with |g| and a quadratic dependence at large
negative g.

By far the most significant result to note is the existence of transfer reso-
nances for particular values of g ∼ −2.3,−3.4,−4.3,−5.2. The minimum
value of ∆NR after each collision is shown in fig. 6.11. Again at late times
it is difficult to determine when collisions occur do to a general increase in
relative position uncertainty and an additional desynchronising effect (a dif-
ferent pseudo period for the {2, 2} and {3, 1} configurations). This measure
is useful to see the widths of the resonances on (a), noting that the larger
values of |g| are less reliable. Fig. 6.11(b) shows the same measure at the
centre of the resonances.

Near the resonances there is little destructive interference and the popula-
tion cycles on extremely long timescales. This leads to high amplitude low
frequency peaks in the Fourier transform, which are shown in Fig. 6.12 and
could also be used to identify the resonances. We wish to examine the be-
haviour of the right side displacement and variance near to a resonance. The
right-side number and displacement expectation values and position variance
for the second resonance (g = −3.39) are plotted in Fig. 6.13. It should be
noted that the initial large values with number 6= 2 of (b) and (c) are due to



Chapter 6. Collisions with finite number systems 161

numerical noise from dividing two small numbers as there is essentially no
probability of a {3, 1} number configuration.
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Figure 6.11: (a) Minimum value taken by ∆NR [Eq. (D.6)] for a range of g,
(b) Minimum value near the resonances. (a) Is the same quantity as Fig. 6.5,
but values of g at the centre of each resonance. From (a) we can see the
widths of the resonances appears to increase with |g|, (b) Shows ∆NR for the
first four resonances, the numerics become increasingly unreliable for large
|g|.

Examining Fig. 6.13 (b) we see that the line corresponding to the single
particle does follow a simple harmonic type path away from the origin. The
maximum amplitude is 5.9 where as [Eq. (6.38)] predicts an amplitude of
5.6, in reasonable agreement given the assumptions made in the model and
limited numerical convergence of the state energies.3 Again the effect of
relative displacement uncertainty “washing out” the expectation values does
occur, and has partial revivals, but the effect is not strong enough to mast
the effects of the {3, 1} state. The position variances shown in (c) do all
generally increase to a maximum with only small fluctuations in both the
short and long term, showing a degree of equilibration, even at long times.

3The total energy for these parameters is around 1 harmonic energy unit great than
would analytically be predicted.
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Figure 6.12: Height of the peaks in the Fourier transform of ∆NR nearest
to the integer values (peaks for the non-interacting system). Near the res-
onance there is a spike in the amplitude of the low frequency peak, due to
the the resonant population transfer, which cycles over long timescales, be-
yond the scope of our time-dependent perturbation theory. A low frequency
component is always present, even at g = 0 where it has zero frequency.

6.10.3 Position of the transfer resonances

In Sec. 6.6.3 we derived analytic estimates for the values of g at which the
transfer resonances were expected to occur. We need first to calculate the
correction to the period δ = Tpseudo − π. Denoting the quantity plotted on
Fig. 6.9 (a) by δ̃ ≈ −g/100, these terms are related via δ = −δ̃π/(1 + δ̃) and
can be calculated from the approximate fit. By numerically solving Eq. (6.59)
for x0 = 3 we estimate the first four resonances to be at

grs ∼ −2.4, −3.2, −3.9, −4.4 . (6.72)

At first the numerics agree without our prediction, with the first resonance
observed at g = −2.28, however the higher predicted values agree pro-
gressively less and less well with the observed positions, being found at
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Figure 6.13: The same quantities as Fig. 6.6 but with g = −3.39, at the
second transfer resonance. (a) Probability of finding n (or N − n) atoms to
the right, (b) Expectation values of position to the right on left/right number
eigenstates. (c) Variance in position to the right as defined in Eq. (6.19). The
reduction is the height of the peaks in (a) indicates greater uncertainty in
the relative displacement as before, but unlike the non-resonant attractive
case in Fig. 6.7 the population of the trimer-singlet state is large enough
that these expectation values are not totally lost by the normalisation, just
reduced slightly. The maximum displacement of the one atom state appear
to be around 5.9, the coherent state oscillation model [Eq. (6.38)] predicts a
maximum amplitude of 5.6, however this lies well within the bounds set by
Eq. (6.42) of X1 < 7.3.

g ∼ −3.4,−4.3,−5.2. The reason for this is almost certainly that the fi-
nite basis set used means that (E2,2 − E3,1) is inaccurate. We expect the
numerically calculated energy difference to be lower,4 than the analytic esti-
mates. This has the effect of shifting the resonances to higher values and our
numerical results are qualitative rather than quantitative. We note that nei-
ther the analytic nor numerical resonance position values shift significantly
as x0 is varied.

There are also the issues of the impact of confinement, which should make
4While both E2,2 and E3,1 will be overestimated in the numerics, it is possible the

difference could be larger if E2,2 is overestimated much more than E3,1.
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the solitons narrower for a given g,5 and therefore modify phase shift from
collisions. Additionally there is a distribution of momenta which has not been
accounted for, we have simply used the mean value. Finally the back-reaction
of the terms proportional to c3,1 in Eq. (6.48) could shift the resonances by
an amount of the order of the width of the resonance. However, none of these
effects are expected to be significant enough to account for the discrepancy
at large g.

6.11 Conclusions

We have considered a system of N = 4 atoms with contact interactions,
confined within in a harmonic potential. Our initial condition was a sym-
metric setup of two N/2 atom ground states, displaced from one another by
a distance x0 (taken to be 3 harmonic oscillator lengths for most of the nu-
merics), which we then left to oscillate and undergo collisions. Initially there
is no entanglement between the atoms on the left and on the right, however
interactions lead to the generation of entanglement.

We investigated left/right number variation within the system, based on an
operator which could in principle be measured directly in the experimental
setup we suggest in Sec. 6.7. Initially both (left and right) states have a
near-definite number of two atoms and hence a relative number uncertainty
∆NR, which is initially close to zero. When the left and right states are
well separated, ∆NR is a measure of entanglement between the left and
right sides. However when the two states are close, i.e., during collisions,
∆NR ∼ N/4 = 1; we therefore investigated the difference from minimum-
to-minimum value taken over a time range of around π, i.e., the minimum
value of ∆NR obtained after the nth collision. There is a marked difference
in the evolution of ∆NR between the g < 0 (attractive) and g > 0 (repulsive)
cases. When |g| & 0.5, number uncertainty builds up much more slowly with
attractive interactions than with repulsive, essentially resisting entanglement.
This is despite a large increase to the change in number uncertainty that is
generated by a single collision. This increases quadratically with |g| when

5Using Eq. (5.40) gives a width rescaling λ0 ≈ 1.09 for g = −2.2 and N = 2.
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g . −1.3, but in the repulsive case the increase reaches a maximum, and
then drops as g increases further. Additionally for g > 0 we observe long-
timescale high-amplitude number fluctuations, which continue even at late
times (over 100 collisions).

This behaviour is explained by our time dependent perturbation theory on
the atom transfer process, and the energy difference between the intra-cluster
excited states. We investigated the effect of ∆Eint, the energy difference in
intra-cluster energies between the {2, 2} (two displaced N = 2 ground states)
and {3, 1} (one free atom and one N = 3 atom ground state) configurations.
Assuming the average interaction energy between the clusters to be weak
(i.e. |Ag| � 1), increases to |∆Eint| lead to a phase mismatch and thus to
destructive interference so that the population transfer cycles periodically,
unless a resonance condition was met (only possible for g < 0). If intra-
cluster excited states are present, this picture breaks down, since each of
these excited states phase-evolves at a different rate; cancellation becomes
more complicated and the states less localized, which occurs for large g > 0 at
long times. The energy gap between the ground and excited states of each of
the N/2 atom clusters is increased (decreased) when g gets smaller (larger, so
long as g < 2.2), which reduces the maximum population that can be trans-
ferred to excited states. The excited states become effectively inaccessible as
g � 0, resulting in an effectively two-level system of the {2, 2} and {3, 1}
configurations. Our perturbation theory indicates that for sufficiently strong
attractive interactions, with very specific values, phase matching would be
possible, allowing for resonant transfer. Preliminary numerical results appear
to confirm the existence of such resonances, but due to numerical limitations
we were unable to use a sufficient basis size for the numerics to converge
and the position and transfer rate in the resonances is not expected to be
quantitatively correct.

By separating the system into components of the wavefunction with defi-
nite number (number states of the number-to-the-right operator) we have
observed the evolution of the positions associated with one/two/three atom
number states, and the right side position variance. For g = 3 the peaks in
position variance increase to a maximum for all NR = n in around 100 time
units (100/2π oscillator periods or around 30 collisions) and do not fluctuate
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greatly. Considering instead the case where g = −1.7, after 60 collisions, we
find that for NR 6= 2 position and position uncertainty are the same as they
are for a state undergoing collision, whereas the NR = 2 tends to a maxi-
mum. This indicates that the state is well described by two atomic dimers
with a significant uncertainty in their relative displacement and almost no
amplitude of a singlet-trimer like state is present in the wavefunction; this
motion again undergoes partial revivals on very long timescales. Near a res-
onance value of g = −3.39 the single particle position is far more visible and
appears to follow a path similar to that predicted by the coherent state os-
cillation model [Sec. 6.5], but relative displacement uncertainty still reduces
the values at late times.

In addition, we have investigated the von Neumann entropy of the single-
body-density matrix SvN(t), in order to investigate to what degree the sys-
tem tends to an equilibrium. We note SvN(t) is zero for a product state (all
atoms with the same wavefunction/occupying the same mode) and can be
considered a measure of how mean-field-like the state is. Additionally SvN(t)

is constant for our system if g = 0, despite the wavefunction evolving period-
ically in time. At long times with repulsive interactions, SvN (time averaged
over a period of 2π) increases to a steady value with only small fluctuations
over the averaging period. However, long-term fluctuations (over the order of
twenty π time units) are still present and appear to be due to atom transfer
processes which do not appear to equilibrate on the timescales considered
in this paper. The time required to reach maximum entropy decreases with
larger g but this appears to saturate with little change for g & 2; for an
initial separation of x0 = 3 this takes around 30 collisions. This short-term
increase appears to be due to the inter-cluster degrees of freedom discussed
in the previous paragraph; the associated probability density with the sep-
aration of the two clusters becomes less peaked. With very weak attractive
interactions, the system’s behaviour is similar to the repulsive case, however
for |g| ' 0.5 higher intra-cluster excited states become less accessible, lead-
ing effectively to a reduction in the number of accessible degrees of freedom,
such that the left/right states behave more like solitons. In this case, the
time average of SvN(t) does not tend to a long-term mean value as compared
with the case of repulsive interactions of similar magnitude; there is also a
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great deal more short-time variation, which persists for longer. The short-
time variation can be attributed to the strong atom transfer effects, which
are predicted to cycle population continually due to an energy difference.
The effect eventually reduces as displacement uncertainty between the two
bound states (which now behave like quantum solitons) increases, which is
the mechanism behind the long term entropy increase.

A pseudo-periodicity effect is also present. The non-interacting system is pe-
riodic with a period π, and thus the Fourier transform of any time dependent
expectation values will have frequency peaks at n/π. We have examined how
these peaks shift for the left/right number uncertainty as interaction strength
is varied and have found an approximately linear shift with g over the range
considered. Changes to higher order components of the frequency spectrum
deviate slightly from the linear dependence shown by the first order, with
differences only clearly manifest for g & 1).



Outlook

In this thesis we have outlined the mean-field and many-body models for
describing Bose gases with both attractive and repulsive interactions in re-
duced dimension. We have investigated the regimes of agreement between
both models for a harmonically confined ground state and also derived a
variational many-body state which could be used to predict widths and en-
ergies in the case of very weak trapping. The possibility to calculate the
overlap analytically between two states of different widths [Eq. (5.42)] al-
lowed us to see what proportion of a many-body wavefunction is projected
to the true ground state of the system after a rapid change to the scattering
length. It would, in principle, be possible to calculate the overlap between
eigenstates for different interaction strengths (assuming no harmonic trap-
ping is present), and thus examine at a many-body level the state which this
would produce. This is potentially interesting as it yields the possibility to
create fragmented states [142], which could be interesting to confirm. Addi-
tionally we could consider a continuous change to the scattering length (or
trapping potential) via the matrix elements 〈ψ| ˙̂

H|ψ′〉 with ψ and ψ′ different
many-body eigenstates.

We also investigated collisions between dimer states in harmonic confinement,
which breaks the integrability present in the free case. We predicted and
numerically observed resonance transfer from the dimer-dimer configuration
to the singlet triplet configuration for certain interactions strengths. These
resonances were observed in the numerics, but were shifted from where they
were predicted due to what we suspect is badly converged numerics. Future
work could be to either push our numerical method harder (more basis states
etc), in order to achieve convergence, or ideally develop a new numerical
method based on the Bethe ansatz, which should work even as g → −∞.
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Additionally we would like to investigate systems with more than four atoms
to see if this resonant transfer persists with more atoms, which we predict
to be possible. With more than four atoms this system has the potential to
evolve into a state with strongly squeezed relative number, with the {N−1, 1}
configuration most likely. We note that this state is qualitatively similar to
that considered in [167], and may therefore have uses in beyond shot-noise
interferometry.

Finally it would be interesting to investigate the dynamics of initially coher-
ent systems at a many body level. Eventually this could be related to systems
with many quantum solitons (soliton trains) in harmonic confinement, to see
if coherence persists for long times, and if complex entanglement builds within
the system. This situation is of interest as these trains are often formed from
collapsing BECs [14].
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Appendix A

Useful identities and integral

results

A.1 Special functions

A.1.1 Exponential integrals and the Euler Gamma func-

tion

We have the useful result for an indefinite integral, valid for integer n ≥ 0

and any constant k:∫
dxxnekx =

ekx

kn+1

n∑
j=0

kjxj(−1)n−j
n!

j!
, (A.1)

which can be proved via integration by parts. This result is used in the
calculate of the first order energy correction to a soliton state in harmonic
confinement in Sec. C.4. By setting k = −1 and taking the definite integral
between 0 and ∞ we see that the component at infinity vanishes and the
only component that remains at 0 is n!. This logic leads to the continuous
extension of the factorial, known as the Euler Gamma function, defined for
Re(z) > 0 by [133]

Γ(z + 1) =

∫ ∞
0

tze−tdt , (A.2)
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such that Γ(n + 1) = n! for n a positive integer. Values with Re(z) < 0 are
obtainable via the reflection formula

Γ(z + 1/2)Γ(1/2− z) = π/ cos(πz) . (A.3)

It is often referred to as the least special special-function due to the fact it is
very difficult to avoid and appears in many calculations. Within this thesis
it occurs in the implicit equation for the energy of two interacting particles
in a harmonic oscillator [Eq. (5.20)] and [Eq. (5.48)].

A.1.2 Riemann Zeta function

The Riemann Zeta functions is defined for real z > 1 as [133]

ζ(z) =
∞∑
k=1

k−z , (A.4)

which can be analytically extended to all complex numbers via a functional
equation. This is an important function as it occurs in many branches of BEC
theory, appearing in functions of the critical temperature in BEC, and in the
formula for the scattering amplitude of two particles in harmonic confinement
[Eq.(2.43)] and the first order energy correction to classical solitons in a
polynomial potential Eq. (C.28).

A.2 Identities involving Jacobi coordinates

A.2.1 First identity

We wish to show that the Jacobi coordinates defined by Eq. (5.3) satisfy

N∑
k=1

x2
k = Nx2

C(N) +
N∑
k=2

k − 1

k
ξ2
k , (A.5)

and note the normalised coordinates also satisfy a similar identity. We prove
(A.5) inductively. The N = 2 case can readily be verified, after which we
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may consider the increase of number from N − 1 to N . In particular,

N∑
k=1

x2
k = x2

N + (N − 1)x2
C(N−1) +

N−1∑
k=2

k − 1

k
ξ2
k. (A.6)

Noting that ξN = xN − xC(N−1), we then deduce

N∑
k=1

x2
k =x2

N + (N − 1)x2
C(N−1)

− N − 1

N

[
xN − xC(N−1)

]2
+

N∑
k=2

k − 1

k
ξ2
k.

(A.7)

Collecting terms, this reduces to

N∑
k=1

x2
k =

1

N

[
xN + (N − 1)xC(N−1)

]2
+

N∑
k=2

k − 1

k
ξ2
k

=Nx2
C(N) +

N∑
k=2

k − 1

k
ξ2
k ,

(A.8)

which completes the proof. An equivalent result also holds in 3D [134].

A.2.2 Second identity

We rephrase Eq. (5.3) as xk = ξk + [1/(k − 1)]
∑k−1

j=1 xj. Recursively
substituting in equivalent expressions for xk−1, xk−2, . . . , xN/2+1 yields (for
N/2 + 1 < k ≤ N)

xk = ξk +
k−1∑

j=N/2+1

ξj
j

+
1

N/2

N/2∑
j=1

xj, (A.9)
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and for k = N/2 + 1 we have xN/2+1 = ξN/2+1 + (2/N)
∑N/2

j=1 xj. Hence,
summing over all k ∈ {N/2 + 1, N/2 + 2, . . . , N},

N∑
k=N/2+1

xk =
N∑

k=N/2+1

ξk +
N∑

k=N/2+2

k−1∑
j=N/2+1

ξj
j

+

N/2∑
k=1

xk

=
N∑

k=N/2+1

ξk +
N−1∑

k=N/2+1

N − k
k

ξk +

N/2∑
k=1

xk

=
N∑

k=N/2+1

N

k
ξk +

N/2∑
k=1

xk ,

(A.10)

from which we deduce the desired identity:

N∑
k=N/2+1

xk −
N/2∑
k=1

xk =
N∑

k=N/2+1

N

k
ξk. (A.11)

A.3 Integral identities of Hermite and Laguerre

polynomials

A.3.1 Definition

The Hermite polynomials and (generalised) Laguerre polynomials are defined
by [168]

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

= ex
2/2

(
x− d

dx

)n
e−x

2/2 , (A.12a)

Lαn(x) =
x−αex

n!

dn

dxn
(
e−xxn+α

)
, (A.12b)

the Hermite polynomials also have the generating function

exp(2tx− t2) =
∞∑
n=0

tn

n!

dn

dtn
exp(2tx− t2)|t=0 =

∞∑
n=0

tn

n!
Hn(x) . (A.13)

and orthogonality relation∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = δnmn!2n
√
π . (A.14)
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A.3.2 Identities and recursion relations

The first notable property of the Hermite functions, is that in addition to
being eigenfunctions to the Schrödinger equation, they are also Eigenfunc-
tions to the continuous Fourier Transform, with unitary eigenvalues. This
can be shown by Fourier transforming both sides of Eq. (A.13) and equating
like powers of t, giving

1√
2π

∫ ∞
−∞

dxeipxϕn(x) = (−i)nϕn(p) . (A.15)

As a direct result of satisfying the Schrödinger equation with an energy En =

~ω(n+ 1/2), the Hermite functions satisfy the relation

ϕ′′n(x) + (2n+ 1− x2)ϕn(x) = 0 , (A.16)

(with a prime denoting differentiation with respect to the function argument)
and from the ladder relation we have

ϕn+1(x) =
1√

2(n+ 1)

(
x− d

dx

)
φn(x) . (A.17)

Combining these two equations we can derive the two useful recursion rela-
tions

ϕ′n(x) =

√
n

2
ϕn−1(x)−

√
n+ 1

2
ϕn+1(x) , (A.18)

as well as

xϕn(x) =

√
n

2
ϕn−1(x) +

√
n+ 1

2
ϕn+1(x) , (A.19)

which can be used to very efficiently tabulate the Hermite functions in the
numerics.

A.3.3 Identities for width modifications

For some numerical calculations we will perform require the use of Hermite
polynomials with a width that is not that of the eigenfunctions. For simplicity



Appendix A. Useful identities and integral results 176

we consider a single-body Hamiltonian in harmonic oscillator units

Ĥsingle = −1

2

∂2

∂x2
+
x2

2
, (A.20)

and Hermite functions γ1/2ϕn(γx) (the eigenstates rescaled by a factor γ)
satisfy the equation via Eq. (A.16):

∂2

∂x2
γ1/2ϕn(γx) = γ2γ1/2ϕ′′n(γx) = γ2(γ2x2 − 2n− 1)γ1/2ϕn(γx) , (A.21)

with the primes denoting differentiation with respect to the argument and
therefore

Ĥsingleγ
1/2ϕn(γx) =

(
(γx)2

2
(γ−2 − γ2) + γ2(n+ 1/2)

)
γ1/2ϕn(γx) . (A.22)

By Eq. (A.19) we have

x2ϕn(x) = x

√
n

2
ϕn−1(x) + x

√
n+ 1

2
ϕn+1(x)

=
1

2

[√
n(n− 1)ϕn−2(x) + (2n+ 1)ϕn(x) +

√
(n+ 1)(n+ 2)ϕn+2(x)

]
,

(A.23)

and so by the orthogonality properties the Hamiltonian only mixes ϕn(γx)

into itself and the two states with m = n± 2. We can use this to express a
many-body Hamiltonian in terms of creation and annihilation operators via
Ψ̂(x) =

∑
k γ

1/2ϕk(γx)âk, leading to Eqs. (5.44) and (5.45).

A.3.4 Quadrature rules

Usually to numerically calculate any 1D integral, the process involves break-
ing up the integral into a sum of discrete points with different weightings,
leading to an approximation (which can sometimes be exact) of the form:

∫ b

a

f(x)dx ≈
n∑
k=1

wkf(xk) , (A.24)
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Here an n point rule is taken and wk are the weights and xk the points, or
abiscuss. Quadrature rules are in general ways of choosing this abiscuss and
related weights deterministically [168], where as Monte Carlo methods (used
to obtain Fig. 5.4) choose them randomly. We consider two cases where
f(x) = p(x)W (x) with p(x) a polynomial and either W (x) = exp(−x2)

with [a, b] = [−∞,∞] (Gauss-Hermite Quadrature) or W (x) = exp(−x)

with [a, b] = [0,∞] (Gauss-Laguerre quadrature). In either case the n point
quadrature rules takes xk as the zeros of the nth Hermite (Laguerre) poly-
nomial and

wk =


2n−1n!

√
π

n2[Hn−1(xi)]2
= e−x

2

nφn−1(xi)2
Gauss-Hermite

xk
(n+1)2Ln+1(xk)

Gauss-Laguerre
(A.25)

are the weights. This rule is exact if p(x) if of order 2n − 1 (n) or less for
Gauss Hermite (Laguerre) quadrature.



Appendix B

Limiting cases of harmonically

confined dimer state

B.1 Ground state energy for HR(ξ2) in the in-

teraction dominated regime

Using the identity [169]

Γ(z + 1/2)

Γ(z)
=
√
z

(
1− 1

8z
+
∞∑
k=2

ck
zk

+ · · ·

)
, (B.1)

where the ck are coefficients for the higher order terms in the asymptotic
expansion, we see from Eq. (5.20) that

√
−ν0

[
1 +

1

8ν0

+
∞∑
k=2

ck
(−ν0)k

+ · · ·

]
=

1

2
√

2γ
. (B.2)

Hence, taking the limit γ → 0 (interaction dominated regime) implies ν0 →
−∞ , and we may truncate the asymptotic series. To lowest order

√
−ν0 ≈

1/2
√

2γ, which we substitute into the right hand side of [rearranged from
Eq. (B.2)]

√
−ν0 =

1

2
√

2γ
+

1

8
√
−ν0

+O(ν
−3/2
0 ), (B.3)
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Figure B.1: The energy difference between the ground and first relative ex-
cited state, for two boson in harmonic confinement with contact interactions.
Units are harmonic units, codified as ~ = ωx = m = 1.

squaring the result to get

ν0 = −1

γ

[
1

8
+
γ

4
+O(γ2)

]
. (B.4)

Hence, substituting Eq. (B.4) into Eq. (5.21) for n = 0 yields

lim
γ→0

ER,0 = −1

4
+O(γ2). (B.5)

B.2 Energy difference between the ground and

first exited state of the dimer state

In harmonic oscillator units, the eigenenergies of the dimer in harmonic con-
finement are set by

Γ(3/2− En/2)

1/4− En/2
+

g

2
√

2
= 0 . (B.6)

It can be seen from the location of zeros in the gamma function, that the
energy of the first excited state lies between 3/2 (as g → −∞) and 7/2 (as
g → +∞). In fact the kth excited state of the g → −∞ system maps to the
k − 1th of the g → ∞ with one less excitation quanta. By the bose-fermi
mapping theory [116], the eigenstates are given by ϕ2k−1(|x|) [with ϕk(x) a
Hermite function] with k ≥ 1 an integer and have energies 2k−1/2. Because
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of the bosonic symmetry, the energy levels of the non-interacting system are
spaced by units of 2. This must also be the case as g → ∞ and hence a
minimum must exist for finite positive g, which we see from Fig. B.1 is 1.85

for g ≈ 2.28. For large negative g the difference increases proportionally to
g2 and rapidly because large.



Appendix C

Normalization, energy and

overlap using the variational state

C.1 Preamble

In order to make use of our variational state given in Eq. (5.31), we must
calculate the normalization constant and expectation value of energy. Calcu-
lations for the energy and normalization constants for all the eigenstates in
free space (γ = 0) can readily be found in literature [118], it is also the case
that the centre-of-mass component of the Hamiltonian can be considered sep-
arately and so taking a finite centre-of-mass component does not significantly
alter the calculations. However, the choice of normalization condition for a
non local system is somewhat arbitrary and conventions vary between papers,
we choose a normalization that means both the relative and centre-of-mass
parts are normalized to unity with respect to Jacobi coordinates. Also most
derivations of the energy rely on the fact that the gradient discontinuity at
the points xk = xj in the wavefunction, exactly cancel the interaction terms
(essentially from the condition of being an eigenstate), and thus these terms
can simply be ignored. Because of our variation of λ, this will no longer be
the case and thus we are forced to make a more explicit calculation of the
kinetic energy. In addition to this we derive a first order energy correction to
the relative degrees of freedom, for both the variational ansatz and Hartree
product state.
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C.2 Normalization

In order to normalize Eq. (5.16), we could insist that two states with different
centre-of-mass momenta are orthonormal, i.e. 〈p′, N |p,N〉 = δ(p′ − p) such
as was calculated in [117] or consider wavefunction to be trapped in a box
which we allow to grow infinitely large [127]. However we are interested
in the normalization of the free space solution with a Gaussian centre-of-
mass envelope and freedom to tune a variational parameter, denoted ψ

(λ)
var

in Eq. (5.31). This result and technique will also be used in appendix C.4
and follows the method of [117]. We consider a Fourier decomposition of the
wavefunction

〈~x|ψ(λ)
var〉 =Nλ exp

− N∑
k=2

k−1∑
j=1

σ

2
|xk − xj| −

Nγ

2

[∑
k

xk
N

]2


=Nλ
∫ ∞
−∞

dp
exp(−p2/2γ)√

2πγ

× exp

(
ip
∑
k

xk√
N
− σ

2

N∑
k=2

k−1∑
j=1

|xk − xj|

)
, (C.1)

with σ = 1/(N − 1) corresponding to Eq. (5.16), however for greater gen-
erality we allow this parameter to be free in order to use these results for
variational calculations where σ → λ/(N − 1), which would correspond to
Eq. (5.31). Also one may wish to consider instead units in which the har-
monic oscillator frequency and length are set to unity and the interaction
constant rescaled to g̃, in which case the replacement σ → λ|g̃| would be
used instead, or indeed in S.I. units σ → λM |g1d|/~2. Essentially this term
serves to allow easy conversion between unit systems and making variational
manipulation easier.

In the form of Eq. (C.1), it is far simpler to perform the integrals of the
coordinate variables. Calculating 〈ψ(λ)

var|ψ(λ)
var〉 in coordinate space will require

integration over N spatial integrals and two momentum integrals, however
we only need to integrate over the simplex region x1 ≤ x2 . . . ≤ xN as by
Bose symmetry any integration over any such region will be identical, hence
we multiply by factor of N ! to include all possibilities for such a regions
construction. Within this simplex region, all arguments in the absolute value
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signs are positive and the wavefunction is given by

〈~x|ψ(λ)
var〉 =Nλ

∫ ∞
−∞

dp
exp(−p2/2γ)√

2πγ
exp

(∑
k

ipxk√
N

+
β(k)xk

2

)
, (C.2)

with β(k) = (N + 1 − 2k)σ, and using the notation
∫
−∞≤x1<x2<...<xN≤∞

≡∫∞
−∞ dxN . . .

∫ x3
−∞ dx2

∫ x2
−∞ dx1, we can now express the inner product as

〈ψ(λ)
var|ψ(λ)

var〉 = N !N 2
λ

∫∫ ∞
−∞

dp1dp2
exp(−(p2

1 + p2
2)/2γ)

2πγ∫
−∞≤x1<...<xN≤∞

exp

(∑
k

i(p1 − p2)xk√
N

+ β(k)xk

)
, (C.3)

transformation of variables p = (p1 + p2)/2 and p′ = p1 − p2 with Jacobian
unity then allows us to perform the integral over p leaving

〈ψ(λ)
var|ψ(λ)

var〉 = N !N 2
λ

∫ ∞
−∞

dp′
exp(−p′2/4γ)

2
√
πγ∫

−∞≤x1<···<xN≤∞
exp

(∑
k

ip′xk/
√
N + β(k)xk

)
. (C.4)

To perform the remaining integrals we note that
∫ y
−∞ dx exp(ax + by) =

exp[(a+ b)y]/a, denoting

a(k) =
k∑
l=1

β(l) = σk(N − k) , (C.5)

and noting a(N) = 0, we can recursively use the previous result to perform
all but one of the spatial integrals and obtain

〈ψ(λ)
var|ψ(λ)

var〉 = N !N 2
λ

∫ ∞
−∞

dp′
exp(−p′2/4γ)A(N, p′)

2
√
πγ∫

dxN exp
(
ip′xN

√
N
)
, (C.6)

with

A(`, p′) =
`−1∏
k=1

[
a(k) +

ip′k√
N

]−1

. (C.7)

Integrating the final term gives 2πδ(p′
√
N) and the momentum integral is
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then trivial, noting that A(N, 0) = 1/(N−1)!2σ(N−1) gives us the final result
for the normalization factor

Nλ =

√√
γ

Nπ
(N − 1)!σ(N−1) . (C.8)

As was mentioned before, the normalization factor for Eq. (5.31) in our units
is obtained by letting σ = λ/(N − 1), in the case of λ = 1 where this
relates the ground state in infinitesimal trapping Eq. (5.16), we refer to this
constant simply as N . It is also worth noting that both the centre-of-mass
wavefunction and the relative are both chosen to be normalized to unity with
respect to Jacobi coordinates, hence the (γ/Nπ)1/4 relates to the centre-of-
mass part and the rest to the relative component.

C.3 Kinetic and interaction energy

We wish calculate the kinetic energy and potential energy of the variational
state, i.e. the expectation of Eq. (5.10) with λ set to zero on Eq. (5.31),
which we will denote Ĥfree. Due to the separability of the wavefunction
and Hamiltonian, it is sufficient to consider only the relative part of the
wavefunction and note that the centre-of-mass kinetic energy is given by γ/4.
We first denote ϕ(x1, .., xN) = exp

(
−σ
∑N

k=2

∑k−1
j=1 |xk − xj|/2

)
, being the

relative part of the variational wavefunction (up to a normalization factor)
and calculate the second derivative with respect to some coordinate x`

− 1

2

∂2

∂x2
`

ϕ(x1, .., xN)

=
σ

4

−σ
2

(∑
k 6=`

∂

∂x`
|x` − xk|

)2

+

(∑
k 6=`

∂2

∂x2
`

|x` − xk|

)
× ϕ(x1, .., xN)

=
σ

4

−σ
2

(∑
k 6=`

sgn(x` − xk)

)2

+ 2

(∑
k 6=`

δ(x` − xk)

)
× ϕ(x1, .., xN) . (C.9)
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The first term in Eq. (C.9) can be split up into terms of the form sgn2(x` −
xb) = 1, of which there are (N−1) and terms of the form sgn(x`−xa)sgn(x`−
xb) with a 6= b, of which there are (N − 1)(N − 2). The former will evaluate
to unity by normalization of the wavefunction, however the latter terms will
equal +1 when x` < xa < xb or x` < xb < xa and when xa < xb < x` or
xb < xa < x` and −1 when xa < x` < xb or xb < x` < xb; the wavefunction
must be identical in all these 6 simplicies due to Bose symmetry and so the
expected value of these terms will equal 1/3. When the sum over all ` is
performed, these terms will total to N(N − 1)σ2(1 + (N − 2)/3)/4. The
latter terms of the form δ(x` − xk) can then be combined with those from
the interaction part of the Hamiltonian, noting that there are twice as many
terms but δ(a− b) = δ(b− a). Reinstating σ = λ/(N − 1) we have

〈ψ(λ)
var| −

1

2

N∑
k=1

∂2

∂x2
k

− 1

N − 1

N∑
k=2

k−1∑
j=1

δ(xk − xj) |ψ(λ)
var〉

=− λ2N

8(N − 1)

(
1 +

N − 2

3

)2

+
γ

4

+
λ− 1

N − 1

[
〈ψ(λ)

var|
N∑
k=2

k−1∑
j=1

δ(xk − xj) |ψ(λ)
var〉

]
. (C.10)

all that remains now to calculate the value of the expectation value of the
delta function terms. Following the method in Appendix C.2 we integrate
over a simplex region −∞ < x1 < x2... < xN < ∞, as a result of this we
need only consider the N − 1 terms of the form δ(xk − xk+1) as the rest will
be zero. Each integral will be the same as in Appendix C.2 except missing
a factor of 2/a(k) for each term δ(xk − xk+1), hence the result will equal∑N−1

k=1 a(k)/2 (using the result
∫ y
−∞ dxf(x, y)δ(x− y) = f(y, y)/2). Hence

〈ψ(λ)
var|

N∑
k=2

k−1∑
j=1

δ(xk − xj)|ψ(λ)
var〉 =

σ

2

N−1∑
k=1

k(N − k)

=
λ(N + 1)N(N − 1)

12(N − 1)
, (C.11)



Appendix C. The variational state 186

finally, substituting in this result into Eq. (C.10) we have

〈ψ(λ)
var| −

1

2

N∑
k=1

∂2

∂x2
k

− 1

N − 1

N∑
k=2

k−1∑
j=1

δ(xk − xj)|ψ(λ)
var〉

=
N(N + 1)

24(N − 1)
[−λ2 + 2λ(λ− 1)] +

γ

4

= E0(2λ− λ2) +
γ

4
, (C.12)

where E0 = −N(N + 1)/24(N − 1). This discussion has not mentioned
the harmonic envelope of the centre-of-mass function, however due to the
separability of the Hamiltonian this will only add factor of the centre-of-mass
kinetic energy, which will be independent of λ regardless of what the centre-
of-mass wavefunction is. This energy term is combined with the potential
energy calculation derived in Appendix C.4 to form the basis for a variational
principle.

C.4 Derivation of the first-order perturbation

energy

This section is related to the calculation of 〈ψ(λ)
var|V (x)|ψ(λ)

var〉, where V̂ (x) =

γ2
∑N

k=1 x
2
k/2, note that Eq. (5.27) is given by this quantity minus the centre-

of-mass energy. It is again easier not to perform this integral in Jacobi co-
ordinates but to Fourier transform out the centre-of-mass, we will also again
replace the factor 1/(N − 1) with σ to generalize the results for our varia-
tional principle. This calculation is similar to, although more complicated
than, the calculation of the normalization factor; to that end we can start the
calculation from Eq. (C.4) (as no spatial integrals are yet performed) adding
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in the potential factor V (x) giving

〈ψ(λ)
var|V (x)|ψ(λ)

var〉 =

√
N

2πA(N, 0)

∫ ∞
−∞

dp′ exp

(
−p′2

4γ

)
∫
−∞≤x1<x2<...<xN≤∞

γ2

2

∑
k

x2
k

× exp

(∑
k

ip′
xk√
N

+ β(k)xk

)
. (C.13)

The same recursive integral procedure can be applied here except we need
two additional results, true for real(k) > 0

∫ y

−∞
dx xn exp(kx) =


1
k

exp(ky) if n = 0,
ky−1
k2

exp(ky) if n = 1.
(ky)2−2ky+2

k3
exp(ky) if n = 2.

(C.14)

Let us consider only the latter part of Eq. (C.13) omitting the constant
√
Nγ2/4πA(N, 0), taking the integrals in order from x1 to xN , the integral

over x` will be over a function of the form

I(`) =A(`, p′)

(
k0(`) + k1(`)x` + k2(`)x2

` +
N∑

`′=`+1

x2
`′

)

× exp

(
a(`)x`′ +

N∑
`′=`+1

β(`′)x`′ +
ip`x`√
N

)
, (C.15)

with k0(1) = k1(1) = 0 and k2(1) = 1 and A(`, p′) defined in Eq. (C.7). The
common prefactor of A(`, p′) is the equivalent of k from Eq. (C.14). Besides
this, each integral will increase the factor in front of the x2

` term by one each
time and hence k2(l) = l. Contributions to k1(`+1) come from k1(`) and k2(`)

and as such Eq. (C.14) implies k1(`+ 1) = k1(`)− 2k2(`)(a(`) + ip`/
√
N)−1,

given that k1(1) = 0 this implies

k1(`+ 1) = −2
∑̀
k=1

k

a(k) + ikp′√
N

(C.16)

k1(N)|p′=0 = − 2

σ

N−1∑
k=1

1

k
. (C.17)
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Applying this same induction logic down to k0 gives

k0(`+ 1) = k0(`)− k1(`)

a(`) + ip′`√
N

+ 2
k2(`)

(a(`) + ip′`√
N

)2

=
∑̀
`′=1

`′∑
k=1

2k

(a(k) + ikp′√
N

)(a(`′) + i`′p′√
N

)

k0(N)|p′=0 =
2

σ2

N−1∑
`=1

∑̀
k=1

1

`(N − `)(N − k)
, (C.18)

simply evaluating these at N and performing the final integration over xN
then yields ∫ ∞

−∞
dxN I(N) =

2A(N, p′)π√
N

[
−k2(N)δ′′(p′)

N

+ i
k1(N)δ′(p′)√

N
+ k0(N)δ(p′)

]
, (C.19)

we then insert this expression back into Eq. (C.13) giving

〈ψ(λ)
var|V (x)|ψ(λ)

var〉 =
γ2

2A(N, 0)

∫ ∞
−∞

dp′ exp

(
−p′2

4γ

)
×
[
−k2(N)δ′′(p′)

N
+ i

k1(N)δ′(p′)√
N

+ k0(N)δ(p′)

]
. (C.20)

The integral over the δ(p′) term can be performed immediately and gives
γ2k0(N)/2. Considering next the integral over δ′(p′); since exp(−p′2/4γ) has
zero gradient at the origin it will not contribute, however the terms

∂

∂p
k1(N)|p′=0 =

2i

σ2
√
N

N−1∑
k=1

1

k2

∂

∂p
A(N, p′)|p′=0 = − i

σ
√
N
A(N, 0)

N−1∑
k=1

1

k
, (C.21)
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will contribute to Eq. (C.19), giving∫ ∞
−∞

dp′iδ′(p′) exp

(
−p′2

4γ

)
A(`, p′)

K1(N)√
N

= −2A(N, 0)
1

Nσ2

[N−1∑
k=1

1

k

]2

+
N−1∑
k=1

1

k2

 . (C.22)

Finally for the δ′′(p′) term we must includeA′′(N, p′)|p′=0 = −A(N, 0)
∑N−1

k,`=1(1+

δkl)k`/Na(k)a(`) and the differential of a Gaussian, hence we have

−
∫ ∞
−∞

dp′δ′′(p′) exp

(
−p′2

4γ

)
A(l, p′)

= A(N, 0)

 1

2γ
+

1

Nσ2


[
N−1∑
k=1

1

k

]2

+
N−1∑
k=1

1

k2


 . (C.23)

Summing these three terms together, and substituting k2(N) = N , we are
left with

〈ψ(λ)
var|V |ψ(λ)

var〉 =
γ2

σ2

[
σ2

4γ
+

N−1∑
`=1

1

`(N − `)
∑̀
k=1

1

N − k

− 1

2N

[N−1∑
k=1

1

k

]2

+
N−1∑
k=1

1

k2

 . (C.24)

The first term in this expression is equal to γ/4, which is simply the potential
energy of the centre-of-mass component. It can be proved via induction [170]
that the double sum is equal to

N−1∑
`=1

1

`(N − `)
∑̀
k=1

1

N − k
=

1

2N

(N−1∑
k=1

1

k

)2

+
N−1∑
k=1

3

k2

 , (C.25)

thus reinstating σ = λ/(N − 1), the remaining terms simplified down to

〈ψ(λ)
var|V |ψ(λ)

var〉 =
γ2(N − 1)2

Nλ2

N−1∑
k=1

1

k2
+
γ

4
, (C.26)

which is used in Sec. 5.3. Equation Eq. (5.27) is the first order energy correc-
tion to the free soliton with Gaussian centre-of-mass envelope and is obtained
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by subtracting the centre-of-mass energy and setting λ = 1

E(1) =
γ2(N − 1)2

N

N−1∑
k=1

1

k2
. (C.27)

C.5 Energy correction to the Hartree product

state

An energy correction for general power law potentials can be derived in the
mean field case. For Re(m) > −1

∫ ∞
−∞

dx
sech(x/2)2

4

|x|m

2
=

m!ζ(m)(1− 21−m) m 6= 1 ,

log(2) m = 1 ,
(C.28)

with ζ(m) the Riemann zeta function. The Hartree product state |ΨH〉 is a
product of N identical single-particle wavefunction Φ(x) = sech(x/2)/2 and
hence the total energy correction is thus γNtimes the correction (C.28) (π/6
for m = 2). However we are interested only in the relative energy correction
given by

E
(1)
H = γ2〈ψH|

1

2

N∑
k=1

x2
k −

N

2

(
N∑
k=1

xk
N

)2

|ψH〉

= γ2〈ψH|
N − 1

2N

N∑
k=1

x2
k −

∑
k<j

xkxj|ψH〉 . (C.29)

All the cross terms of the form xkxj will evaluate to zero as sech(x) is an
even function, thus leaving only the x2

k terms. By Bose symmetry 〈f(xk)〉 =

〈f(xj)〉 and thus the value of all the terms in the first sum will be identical
to the single-particle correction and we have

E
(1)
H = (N − 1)

γ2π2

6
. (C.30)
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C.6 Overlap of the relative components of the

variational wavefunctions

Finally we consider the overlap between the relative parts of the variational
wavefunction with λ > 1 and the ground state in infinitesimal trapping
γ = 0, λ = 1, given by

〈ψ(λ)
var|ψ(1)

var〉 =N1Nλ
∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN |ψcm|2

× exp

(
− λ+ 1

2(N − 1)

N∑
k=2

k−1∑
j=1

|xk − xj|

)
. (C.31)

This calculation can be achieved by performing the calculations in Appendix
C.2 with σ → (1 +λ)/2(N − 1), the resulting factor will not equal unity and
instead will be equal to N1Nλ/N 2

(1+λ)/2. Therefore that the overlap is given
by

〈ψ(λ)
var|ψ(1)

var〉 =
λ(N−1)/2∏N−1

k=1 (1 + λ)/2

=

(
2
√
λ

(1 + λ)

)N−1

, (C.32)

which is used in Sec 5.3.3.
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Appendix to Chapter 6

D.1 Calculations for the number-to-the-right

operator

D.1.1 Analytically determined properties of N̂ 2
R

From the definition of Eq. (6.9), it follows that

N̂2
R =

∫ ∞
0

dxdx′ Ψ̂†(x)Ψ̂†(x′)Ψ̂(x)Ψ̂(x′) + N̂R , (D.1)

and, given a general (symmetrized) many-body wavefunction ψ(~x), one may
deduce the expectation values

〈N̂R〉 =N

∫ ∞
0

dx1

∫ ∞
−∞

dx2 . . . dxN |ψ(~x)|2 , (D.2)

〈N̂2
R〉 =N(N − 1)

∫ ∞
0

dx1dx2

∫ ∞
−∞

dx3 . . . dxN |ψ(~x)|2 + 〈N̂R〉 . (D.3)

For a product-state wavefunction ψ(~x) =
∏N

k=1 φ(xk), expectation values are
simple to calculate, as all integrals are separable and most evaluate to unity.

192
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In this case

〈N̂R〉 = N

∫ ∞
0

dx |φ(x)|2 , (D.4)

〈N̂2
R〉 = N(N − 1)

[∫ ∞
0

dx |φ(x)|2
]2

+ 〈N̂R〉

= [(N − 1)/N ]〈N̂R〉2 + 〈N̂R〉 ,
(D.5)

and so the variance of N̂R for a product-state simplifies to

(∆NR)P = 〈N̂R〉(1− 〈N̂R〉/N) . (D.6)

We may determine analytic expressions when g = 0, which we limit to the
N = 4 case. Without interactions, our many body wavefunction is given by
Eq. (6.5), and we require the integrals∫ ∞

0

dx|φ(x,±x0, t)|2 =
1

2
[1± erf(x0 cos(t))] , (D.7)∫ ∞

−∞
dxφ∗(x,±x0, t)φ(x,∓x0, t) = e−x

2
0±ix0 sin(2t)/2 , (D.8)∫ ∞

0

dxφ∗(x,±x0, t)φ(x,∓x0, t) =
1

2
[1± erf(x0 sin(t))]

× e−x
2
0±ix0 sin(2t)/2 ,

(D.9)

with erf denoting the error function. Calculating 〈N̂2
R〉 in principle requires

accounting for 36 different terms, however, assuming we can neglect terms
proportional to exp(−2x2

0), only 6 are important, and we have

〈N̂2
R〉 ≈

N(N − 1)

24

{
[1− erf(x0 cos(t))]2 + 4[1− erf2(x0 cos(t))]

+ [1 + erf(x0 cos(t))]2
}

+ 〈N̂R〉

=5− erf2[x0 cos(t)] .

(D.10)

Subtracting 〈N̂R〉2 = 4 then yields the variance as given by Eq. (6.12).
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D.1.2 Numerical calculation of number variance

In order to calculate the number variance we decompose the field operator
into our basis set, Ψ̂(x) =

∑
k ĉkφk(x). In this form we can express N̂2

R as

N̂2
R =

∑
i,j,k,`

yikyj`ĉ
†
i ĉ
†
j ĉkĉ` + N̂R , (D.11)

where yj` =
∫∞

0
dxϕj(x)ϕ`(x) is the positive space overlap between two

Hermite functions, given by δj`/2 if j + ` is even, and otherwise given by

yj` = (−1)(j+`−1)/2
2F1(−j, 1− [j − `]/2; 1− [j + `]/2,−1)

× 2−j(j + `+ 2)!!√
2πj!`!

, (D.12)

where 2F1 denotes a standard hypergeometric function. Likewise the inte-
gral from minus infinity to zero is (−1)j+`yj`. This formula is useful for small
numbers and testing, but for practical purposes we calculate the integral via
Gauss Laguerre quadrature, which is numerically exact for odd j+` (all other
cases are trivially zero or one half) given a rule of order (j+`+1)/2 or higher.
Given our truncated basis and symmetry about x = 0, this can be expressed
as a finite size matrix of only even-parity functions with 〈N̂R〉 = N/2 just a
numerical constant for our initial condition.

D.1.3 Numerical calculation of restricted region expec-

tation values

In addition to this we wish to calculate expectation values in restricted re-
gions via Eq. (6.13), corresponding to sections of the wavefunction with ex-
actly n particles to the left or right, along with the associated normalization
factors when the wavefunction is divided into these regions. If our many
body wavefunction is ψ(~x) then the normalization factors are given by

Nn =
N !

(N − n)!n!

∫ ∞
0

dx1 . . . dxn

∫ 0

−∞
dxn+1 . . . dxN |ψ(~x)|2 , (D.13)
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and the expectation value of the distance to the right operator is equal to

〈x̂(n)
R 〉 =N−1

n

∫ ∞
−∞

dx1 . . . dxN

N∑
k=0

xkθ(xk)
∑
P

n∏
k=1

Θ(xk)
N∏

j=n+1

Θ(−xj) |ψ(~x)|2

=N−1
n

N !

(N − n)!n!

∫ ∞
0

dx1 . . . dxn

∫ 0

−∞
dxn+1 . . . dxN

N∑
k=n+1

xk |ψ(~x)|2 .

(D.14)

For computation, these operators are converted into matrix form by taking
the matrix elements between different elements of the basis set, and then
projected to our reduced (centre-of-mass ground state) basis.

D.2 Two cluster wavefunction evolution

Here we derive the time dependent wavefunction describing the centre of
masses of our two cluster system, i.e. the part acted on by Ĥ(C)

L/R, the centre-
of-mass components from Eq. (6.24); with ĤI ignored. Denoting y1, y2 as
the coordinates of the centre-of-masses of each cluster, up to a normalization
factor our initial two-cluster wavefunction is given by

〈y1, y2|ϕn,N−n(0)〉 ∝ exp

(
−N − n

2

[
y2 +

nXn

N − n

]2
)

× exp
(
−n

2
[y1 −Xn]2

)
+ Tperm , (D.15)

with Tperm the term obtained by permuting y1 and y2, as required by
symmetry. This gives rise to a time-dependent normalization constant
which we do not discuss here. If we instead express this in terms of
yC = [ny1 + (N − n)y2]/N and yR = y1 − y2 we have

〈yC, yR|ϕn,N−n(0)〉 ∝ exp

(
−n[(N − n)yR −NXn]2

2N [N − n]

)
× exp

(
−Ny

2
C

2

)
+ Tperm , (D.16)

where in this case Tperm is obtained by flipping the sign of yR, and we can
factor out the yC dependence. If we temporarily ignore interactions between
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the two clusters, it is straightforward to generalize this to the time dependent
case via Eq. (6.6):

〈yC, yR|ϕn,N−n(t)〉 ∝ exp

(
−n[(N − n)yR −NXn cos(t)]2

2N [N − n]

)
exp

(
−Ny

2
C

2

)
× exp

(
i

[
t− nyrXn sin(t) +

Xn

4

(
n− n

N − n

)
sin(2t)

])
+ Tperm . (D.17)

Interactions between clusters can modify only the yR dependent part of this
wavefunction.

D.3 Energy bound for Hamiltonian variance

As the Hamiltonian is time independent, the time evolution operator com-
mutes with all powers of the Hamiltonian. Denoting our state as |ψ(t)〉 we
have for any time t

〈ψ(t)|Ĥn|ψ(t)〉 = 〈ψ(0)|Ĥn|ψ(0)〉 , n = 1, 2, . . . . (D.18)

As absolute values of energy are not physically important, we consider a
re-zeroed Hamiltonian

Ĥ = Ĥ − 〈ψ(0)|Ĥ|ψ(0)〉 , (D.19)

as it will make the mathematics more convenient. Introducing the notation
for the variance of the re-zeroed Hamiltonian

∆E2 = 〈Ĥ2〉 , (D.20)

we note that this quantity must be positive and real as Ĥ is a Hermitian
operator.

Let us define two wave functions |ψ1(t)〉 and |ψ2(t)〉 as being negligibly mixed
at a certain point in time if

〈ψ1(t)|Ĥn|ψ2(t)〉 ≤ η , n = 1, 2 (D.21)
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with η a small parameter. Note that in lattice models η could be exactly
zero up to some finite power n. If both the initial wave function and |ψ1,2(t)〉
are normalized to one and the latter are negligibly mixed, the wave function
at time t can be written (up to a global phase factor) as

|ψ(t)〉 =
√
p|ψ1(t)〉+

√
1− peiα|ψ2(t)〉 (D.22)

with real α and 0 ≤ p ≤ 1. Introducing the notation

〈Ĥn〉j ≡ 〈ψj(t)|Ĥn|ψj(t)〉 , (D.23)

we can see from Eq. (D.21) and the fact that the expectation value of total
Hamiltonian is zero, that these two quantities are related via

〈Ĥ〉1 =
p− 1

p
〈Ĥ〉2 +O(η) . (D.24)

Setting η = 0 in Eq. (D.21) we have for n = 2

∆E2 = p〈Ĥ2〉1 + (1− p)〈Ĥ2〉2
≥ p〈Ĥ〉21 + (1− p)〈Ĥ〉22 , (D.25)

with the second step true again by the fact that Ĥ is Hermitian. Finally,
substituting in for 〈Ĥ〉1 via Eq. (D.24) we obtain

∆E2 ≥ 1− p
p
〈Ĥ〉22 , (D.26)

∆E2 ≥ p

1− p
〈Ĥ〉21 , (D.27)

∆E2 ≥

(
〈Ĥ〉1 − 〈Ĥ〉2

)2

p(1− p)
, (D.28)

which leads to Eq. (6.66) in the main text.

D.3.1 Analytic calculations of ∆E

For our two particle initial condition, if x0 � 1, i.e., well-separated ini-
tial clusters, we can analytically determine E and ∆E. Within this well-



Appendix D. Appendix to Chapter 6 198

separated approximation we only need to consider one cluster, displaced a
distance x0 from the centre, and multiply by 2 to get the values for the whole
wavefunction. For dimers, our wavefunction is f(x1 − x0, x2 − x0)(2) as de-
fined in Eq. (6.7), otherwise it is not analytic. This wavefunction is still an
eigenstate of the relative Hamiltonian (for n particles), with some eigenvalue
E

(n)
rel , but not of the centre-of-mass part. Therefore we need only consider

the centre-of-mass Hamiltonian

HC(xC) = − 1

2n

∂2

∂x2
C

+
nx2

C

2
, (D.29)

acting on the displaced ground state

ψC(xC) =
(n
π

)1/4

exp(−n[xC − x0]/2) , (D.30)

to get all contributions to the variance. Acting the Hamiltonian on this
wavefunction we obtain

HCψC(xC) =

(
1

2
+ nx0x+

nx2
0

2

)
ψC(xC) , (D.31)

H2
CψC(xC) =

[
1

4
+
nx0

2
(4x− 3x0) + n2x2

0(x0 − 2x)2

]
ψC(xC) ,

which can then be used to determine the expectation values

〈ĤC〉 =
1

2
+
nx2

0

2
,

〈Ĥ2
C〉 =

1

4
+ nx2

0 +
n2x4

0

4
.

(D.32)

∆E can then be calculated as the standard deviation of two times ĤC

∆E = 2

√
〈Ĥ2

C〉 − 〈ĤC〉2 =
√

2nx0 , (D.33)

which is twice the square root of the difference between the initial (dimen-
sionless) potential energy and the ground state energy. The reasons for this
are similar to why a classical coherent state with an average value of N pho-
tons has a shot noise proportional to N1/2. Note that this result relies on
exp(−nx2

0)� 1 and so can only be considered valid to this order.
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