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Abstract 

A semiautomat ic measurement system has been developed for 

invest igat ing the electronic structure of the interface between an 

insulator and a semiconductor. The associated microcomputer possesses 

advanced software which leads to simple operation part icular ly when 

used in the real t ime mode. An a t t rac t ive feature of the technique is 

tha t admit tance data are evaluated in the voltage domain using a 

modif ied version of the Simonne method. 

The system has been used to investigate the ef fects of gases on 

the interface state spectrum of MIS devices; the action of hydrogen 

upon the pal ladium-si l icon dioxide-si l icon system receiving the most 

a t t e n t i o n . An a l t e r n a t i v e insu la to r to s i l i con dioxide has been 

cons idered, namely organic Langmuir f i lms. Overall there has been 

l i t t l e d e t e c t a b l e change in the su r face state density, although 

results w i th d i f fe rent semiconductors appear to be more encouraging. 
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Chapter I 

Introduction 

The electronic structure of the interface between an insulator 

and a semiconductor is of paramount importance in f ie ld e f fec t devices 

such as the metal-oxide-semiconductor (MOS) capacitor shown in f igure 

I. I . The electr ical properties of this type of device are dependent 

upon t h e p r e s e n c e o f t r a p p i n g cen t res loca ted at the 

insulator-semiconductor boundary known as surface or interface states. 

These are able to communicate wi th mobile carr iers in the 

semiconductor and make a contr ibut ion to the measured admittance 

character is t ic . The interface state density (N ) is influenced by 

impurit ies or defects which may be introduced accidental ly during the 

processing of the device. In this thesis, a novel development of the 

standard interface state density determinat ion procedure is presented. 

The microprocessor-control led instrumentation described enables not 

on ly rap id evaluation of the surface state density, but also easy 

locat ion of this density w i th respect to the band edges which 

previously had required a separate measurement. 

The necessary theory for the comprehension of the operation of 

metal- insulator-semiconductor (MIS) devices is outl ined in Chapter 2. 

This is done by progressing f rom a microscopic atomic view of the 

system through a consideration of the role of charge in various 

regions of the device to a macroscopic c i rcu i t element type of 

approach. (As in Chapter 3, only a br ief summary is given; ful ler 

details w i l l be found in the references.) In Chapter 3, a review is 

presented of the various electr ical techniques that ut i l ise MIS 

devices to obtain interface state density informat ion. The technique 

that of fers the most detai l w i th the best accuracy is the eondue-tance 
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technique of Nicol l ian & Goetzberger ( I ) . Unfortunately, however, ii 

is ex t remely tedious in pract ice and part of this work has been spent 

developing a method to reduce the e f fo r t involved. This was achieved 

w i t h the aid of a microprocessor used in a real t ime mode. This and 

ancillary equipment are described in Chapter 4 whilst the measurement 

procedure is outl ined in Chapter 5. 

The recen t need to e f f i c i e n t l y i n t e r f a c e m i c r o e l e c t r o n i c 

equipment to the outside wor ld has led to a renewed interest in 

comprehend ing the e f f e c t of the amb ien t on electronic device 

s t ruc tu res . We were par t icu lar ly interested in the change in surface 

s t a t e dens i ty o f MIS capac i t o r s a l t hough , as o u t l i n e d in the 

i n t r o d u c t i o n to Chap te r 6, other parts of the structure can be 

inf luenced. These ef fects are monitored through measurement of the 

e l e c t r i c a l response. Several workers (2,3) have indicated that 

surface states may be influenced by the ambient surrounding the device 

but, owing to the lack of a fast accurate measurement technique, this 

sub jec t has been l i t t l e explored. One part icular example is the 

controversy over the role of hydrogen in palladium-coated MOS devices 

(3 ,4) , which we have t r ied to resolve using our equipment. The 

resu l ts that we have obtained are described in Chapter 6. We have 

also investigated the e f fec t of gas on MIS devices incorporating novel 

L a n g m u i r f i l m insu la to rs . The p repa ra t i on of these organ ic 

monomolecular based f i lms and the gas ef fects upon them are described 

in Chapter 7. 



Chapter 2 

Theory of the Insulator-SNicon Interface 

2„! Introduction 

There are two main ways to acquire an understanding of the 

a c t i o n of defects at the insulator-si l icon inter face. The f i rs t , a 

microscopic approach, gives an atomic view, and is obtained through a 

chemica l consideration using opt ical and electron scanning techniques 

such as ESR ( I ) . A l te rna t ive ly the interface can be viewed in a 

macroscop ic f ash ion , c h a r a c t e r i z e d by parameters derived f rom 

e l e c t r i c a l measurements. Accordingly, in this chapter, a physical 

model is in i t ia l ly out l ined which is then developed into an electronic 

cons ide ra t i on of the m e t a l - i n s u l a t o r - s e m i c o n d u c t o r diode whose 

properties we have examined. 

2.2 The Atomic Approach 

When a col lect ion of semiconductor atoms comes together to form 

a c r y s t a l , there is an interact ion between the extreme orbitals wi th 

the format ion of bands of permi t ted energy where electrons are allowed 

to reside. The outermost occupied bands are known as the valence and 

conduction bands and are separated by a forbidden band (or gap) in 

e l e c t r o n energy, which in a perfect lat t ice is devoid of electrons. 

Whenever the per iodic i ty of the crystal matr ix is interrupted by the 

presence of la t t ice defects or impur i ty atoms, then this arrangement 

w i l l be perturbed. General ly this perturbat ion manifests i tself as an 

e x t r a amount of energy levels that may be situated in the forbidden 

gap. Such levels located in the bulk of the mater ia l are known as bulk 

t r aps , whereas at the surface or at an interface they are called 



sur face or interface states. The surface of the crystal i tself also 

represents an interrupt ion of this la t t ice and gives rise to surface 

s ta tes . In s i l icon these are thought to be due to dangling bonds 
3 

f o r m e d by incompletely f i l led orbi tals of the sp hybridisation of 

t he atoms; one per surface atom on clean cleaved si l icon, except for 

the ( I I I ) d i rect ion (2). 

The growth of si l icon dioxide reduces the number of surface 

states by saturat ing dangling bonds; however, as can be seen f rom 

f i gu re 2 . 1 , the s i l i con dioxide la t t i ce does not quite match the 

s i l i con one, and so there w i l l always be a f ract ion of unsaturated 

b o n d s . As a c o n s e q u e n c e o f t h i s m i s f i t t i n g , t he re w i l l be 

imperfect ions which wi l l give rise to strain and other defects. In 

fac t there is a transi t ion region 0.5 to I nm wide where S iO x (x < 2) 

occurs; thus it can be seen that there w i l l be various unsatisfied 

bonds in d i f f e r e n t e n v i r o n m e n t s . Several models (3) have been 

proposed to t ry and corre late the chemical and electronic nature of 

the interface in order to explain the or igin of two d i f fe rent types of 

de fec ts that are found. These are fast states which are able to 

exchange charge very quickly w i th the si l icon and f ixed charge ( Q $ s ) 

which cannot. We shall concentrate on two of them. 

( I ) The Trivalent Silicon Model (4) 

This model is based on the concept of t r ivalent si l icon which can 

take three d i f ferent forms (see f igure 2.2): 

:S i s bound to three si l icon atoms 

:S i Q bound to three oxygen atoms 

'•Si bound at the inter face 

-4-



0 0 0 
1 

- Si 
I 

- 0 
l 

- Si 
1 

- 0 
l 

- Si -
I 

thermal 
Si 0 2 

0 
I 1 

0 
1 1 

0 
i 

Interface 

- Si 
1 

- Si 
1 

- Si 
1 

- Si 
I 

- Si -
t Silicon 

- Si - Si - Si - Si - Si -

F igure 2.1 

in ter face. 

Simple schematic diagram of the si l icon-si l icon dioxide 

(19) 

SiOj 

Si 

* Siftcon atom 

O O«yoen atom 

Figure 2.2 The si l icon-si l icon dioxide in ter face w i th three t r iva lent 

si l icon defects (4) 

cr ( I T ) 

C ! <3T) 

C ! <3T> Tr 3C) 
C ! (3T) 

C? ( I T ) 

T r <3T T ? 3T 
b) a 

© S I L I C O N O O X Y G E N 

F igu re 2.3 The si l icon-si l icon dioxide in ter face w i th various defect 

pair conf igurat ions. (5) 



The f i r s t is considered to be a surface state whi lst the second two 

are assumed to be hole traps; the lat ter much deeper energywise due to 

i t s i n t e r a c t i o n w i th the si l icon surface. This is possibly of the 

image force type and leads to a lowering of the energy of the defect , 

so much so that i t is assumed to be above the conduction band edge and 

t h e r e f o r e p e r m a n e n t l y i on ized to : S i + . I t is t h e r e f o r e the v os 

source of the f ixed oxide charge. 

The above model can be used t o exp la in several of the 

experimental ly encountered propert ies. For example, it is well known 

t h a t the su r face s ta te dens i t y o f S i -S iC^ is reduced by low 

tempera ture annealing in a hydrogen atmosphere (3). The fol lowing 

r e a c t i o n o f t h e : S J s c e n t r e w i t h i n t e r s t i t i a l hydrogen (H.) 

accounts for this by bond saturat ion: 

:Si + H. # :Si H (2.1) s i s 

The reverse react ion represents the increase of surface state density 

t h a t occurs on annealing at high temperatures and corresponds to the 

thermal dissociation of the SiH bond. Hydrogen annealing has no 

e f f e c t on oxide charge because S i * s is in an unreactive low energy 

c o n d i t i o n . However, the concentrat ion of the above three defects is 

c o r r e l a t e d a t h i g h t e m p e r a t u r e s whe re the f o l l o w i n g occurs 

O OS s 
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(2) The Defect Pair Model (5) 

The second model is based on defect pairs rather than single 

ones, as above, and fol lows on f rom the Street & Mott concept (6) that 

t w o dangling bonds might be energet ical ly more stable as two charged 

centres, the more posit ive centre lowering its energy by forming three 

bonds. This r e a c t i o n is rep resen ted by the fol lowing equation: 

2 C ° -» C3 + C ] (2.3) 

The superscript refers to the charge state, C represents an oxygen 

a t o m (we shall use T for si l icon), and the subscript refers to the 

covalent coordination (that is, the number of atomic bonds). For 

examp le , in bulk s i l i con d i o x i d e , C"J c o u l d be a non-b r idg ing 

negat ively-charged oxygen atom bonded to a :Si a tom, whereas 

cou ld be an oxygen atom bonded to three si l icon atoms of the 

network. Such a pair of defects is shown on the lef t of f igure 2.3a. 

Howeve r , the defects r ight at the in ter face are more interesting 

since they can be used to explain various phenomena there. If we 

assume that the electron associated w i th the C~ centre has been 

i n j e c t e d i n to the bu lk , w h i c h is h igh l y l i ke l y cons ider ing i t s 

l o c a t i o n , we t h e n h a v e C ° ( I T ) , (3T) - the t e rms in 

b racke ts specifying the atoms that are bonded to the oxygen atoms. 

The former, which is ESR-active, accounts for the P £ centre seen by 

Nish i (7) , whereas the lat ter can be associated w i th the posit ive 

space charge, Q , which again is in a low energy state and thus 

impervious to the act ion of hydrogen. If oxygen vacancies are present 

through imperfect ion then we have the s i tuat ion in f igure 2.3b that 

exp la ins the origin of two other ESR defects P and P. . The P. 

-6-



c e n t r e represents the aforementioned dangling bond which can be 

annealed by hydrogen action through a simi lar react ion to the above; 

indeed i t has been shown by experiment (8) that the magnitude of the 

ESR signal is reduced at the same t ime. 

Now let us consider the influence of extr insic impurit ies which 

may also give rise to surface states. Again there is no absolute 

t h e o r e t i c a l e v a l u a t i o n of their e f fec t and, to fur ther compl icate 

m a t t e r s , some o f the e x p e r i m e n t s which indicate that extr insic 

impur i t i es are the source of surface states are open to question. For 

examp le , sodium ions, wel l known for causing instabi l i ty problems 

th rough the i r high mobi l i ty in si l icon dioxide, have been shown to 

in t roduce a surface state 0.05 eV below the conduction band edge (9). 

Some workers (10), however, maintain this is a spurious result due to 

surface potent ia l f luctuat ions (see section 2.54). Another example is 

t ha t supposed surface states introduced by ion implanted impuri t ies, 

previously thought to be due to those impur i t ies ( I I ) , have been shown 

to be caused by the damage that the implantat ion produces (12). This 

was proved by high temperature annealing of the samples which made the 

above surface states disappear. 

It may be the case that the location of the extr insic impuri t ies 

r e s t r i c t them f rom contr ibut ing to the surface state density for the 

f o l l o w i n g t w o reasons. F i rs t ly , in te rs t i t ia l impuri t ies, because of 

t h e i r va r ious possib le i n t e r s t i t i a l spa t i a l locations, do not give 

r ise t o i d e n t i c a l energy level positions w i th in the band gap and 

t h e r e f o r e do not augment each other to produce a signi f icant state. 

Secondly, in general, most imperfect ions that lie in the oxide w i l l 

have their resultant energy levels outside the bandgap (13). Since 

-7-



t h i s is where they are l i k e l y to be g e t t e r e d , ow ing to the 

p re fe ren t i a l incorporation of impuri t ies in a disturbed region, then 

th is might also explain their lack of e f f ec t . On the other hand 

though, cer ta in elements such as gold (see section 4.24), germanium 

(14) and the group III & V standard dopant atoms (15) have been 

c o n c l u s i v e l y shown to i n t r o d u c e su r f ace s ta tes , but the actual 

mechanism is yet to be fu l ly explained. 

The d i s t r i b u t i o n of surface states in energy throughout the 

bandgap can have various forms: i t can be a single level which could 

be caused by a specif ic impur i ty as has just been outl ined (a in 

f i g u r e 2.4a); i t may be spread throughout the bandgap (b in f igure 

2.4a) ; or i t may be a c o m b i n a t i o n o f t he t w o . In pract ica l 

s i l i c o n - s i l i c o n dioxide devices, an intr insic U-shaped distr ibut ion is 

ob ta ined , upon which is superimposed st ructure introduced by extr insic 

impur i t ies. The intr insic spectrum can be separated into two groups 

o f s ta tes due to the d i f fe rent response of the N distr ibut ion to 

phys ica l and chemical influences across the bandgap (16). The central 

p o r t i o n is found to be p a r t i c u l a r l y i n f l u e n c e d by technological 

p rocess ing and the states here may be a t t r ibu ted to dangling bonds. 

The s ta tes t h a t compose the r ise t o w a r d s the band edges are 

insens i t i ve to a wide range of t reatments and are thought to result 

f rom bond distort ion and st ra in. 

-8-
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2.3 The Charge Approach 

2.31 The Fermi Function 

Sur face states are localized energy levels that can be occupied 

by e l ec t r ons . The degree of occupancy of all levels, including 

surface and energy band states, is determined by the Fermi funct ion, 

F(E) , g iven be low and shown in f igure 2.4. In the expression, 

degeneracy factors have been ignored: normally, these are equal to 1/2 

or 2, but in many situations, for example those where mult ivalent 

impur i t ies are involved, the spin degeneracy factor can depart f rom 

these two values. 

F(E) = 1/(1 + exp ( E - Ep)/kT ) (2.4) 

where: 

E = Energy of the state 

Ep =Fermi (level) energy 

k = Boltzmann's constant 

T = Absolute temperature 

Energy levels far below the Fermi level are occupied since F(E) 

is approx imate ly equal to one, whilst those far above are essentially 

empty . Whenever the Fermi level is shif ted w i th respect to the band 

edges, the occupancies of the energy levels wi l l a l ter , part icular ly 

those c lose to the Fermi level. It fol lows f rom the latter that the 

s ta tes c lose to the Fermi energy usually dominate the electr ical 

response of the structure. Positive holes obey the same stat is t ical 

laws as electrons and their behaviour can be described in terms of the 

same parameters. If F(E) is the f ract ion of quantum states occupied 

by e l e c t r o n s , then (I - F(E)) is the f ract ion occupied by holes. Thus 

-9-



the Fermi funct ion for these part icles is: 

I - F(E) = l/( I + exp ( Ep - E )/kT ) (2.5) 

The energy required to eject an electron at the Fermi energy to 

the vacuum level is defined as the work funct ion, $ of the mater ia l . 

When a metal and semiconductor are joined, it is the di f ference in 

the i r work funct ion values that determines the nature of the contact 

between them. That is, to maintain a thermodynamic equi l ibr ium, the 

two Fermi levels must coincide. In an ideal si tuation where there are 

no surface states, the f low of charge that results w i l l give rise to a 

bending of the bands at the semiconductor surface. If the work 

funct ion of the metal is the larger, then electrons f low f rom the 

semiconduc to r to the metal producing a depletion region in the 

semiconductor (see f igure 2.5b,h). A potential barr ier to electron 

flow f rom the metal to the semiconductor whose height is independent 

of applied potential is also formed. This is the situation normally 

envisaged fo r a Schottky barrier diode (17). Conversely, if the 

semiconductor has the larger work funct ion, then electron f low is 

reversed and an Ohmic contact is obtained (see f igure 2.5d,f). Unlike 

a Schottky barr ier, an Ohmic contact permits current f low in both 

directions. However, the f low may not necessarily be Ohmic in nature, 

as the name implies; under certa in conditions, space charge l imited 

conduction can occur. 

-10-
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2.32 The Surface Space Charge Region of the Semiconductor 

When a bias is applied to a Schottky barrier diode, the width 

of the depletion region al ters, which in turn af fects the amount of 

charge stored at the semiconductor surface. The charge storage 

s i tua t ion is complicated when an interfacial layer exists between the 

semiconductor and the metal for, i f the layer acts as an insulator, 

a c c u m u l a t i o n of f r ee c a r r i e r s a t the semiconductor surface is 

possible. This structure is known as a metal- insulator-semiconductor 

diode (see f igure I . I ) . The state of the semiconductor surface can be 

c lass i f i ed by the value and polar i ty of the surface potential 4>s, 

wh ich corresponds to the degree of bandbending and is defined in 

f i g u r e 2.6. Pract ica l ly , there are three possible cases for a biased 

surface state free diode; these are shown in f igure 2.7 for an n-type 

s e m i c o n d u c t o r (see f i g u r e 2.8a fo r a p - type sem iconduc to r ) : 

a) ACCUMULATION, f o rYs<0 for p-type and 4*s>0 for n-type, major i ty 

carriers are a t t rac ted to the surface and accumulate there. The Fermi 

level at the surface is in the prox imi ty of the major i ty carr ier band 

edge. 

b) DEPLETION, for Ys>0 for p-type and Ys<0 for n-type, major i ty 

ca r r i e r s are repelled f rom the surface leaving uncompensated ionized 

(donor or acceptor) impuri t ies. 

CONVERSION, if ^ s increases fur ther , the minor i ty carr ier density 

exceeds the major i ty carr ier bulk density and forms an inversion 

reg ion . The onset of inversion corresponds to the point at which the 

Fermi level crosses the intr insic Fermi level, E., at the surface. 



S i / S i 0 2 

In ter face 

Semiconductor Oxide 

Figure 2.6 Band diagram of an MIS diode (Deplet ion si tuat ion). 



(a) Accumulat ion 

I 

F y + -fr + + + + + + + 

M 

± 
V > 0 

E 
Fm 

(b) Dep le t ion 

p _ <+ 
+ + + + + + + + + + + 

t Fm 
V < 0 

(c) Invers ion 

F 
E : 

t y + + + + + + + + + + + + + + + + 

T Fm 

V < 0 

Figure 2.7 Energy band diagrams for an MOS st ructure depict ing (a) 
accumulat ion, (b) deplet ion, (c) inversion. 



The surface potent ial may be substituted into the standard 

expressions r e l a t i n g bulk po ten t i a l to concentrat ion in order to 

obtain the electron and hole surface densities (18). 

n s "bulk e x p M s / k T ) (2.6) 

p s = p bu lk exp(q * s / k T ) 

In a d d i t i o n t he su r face e l e c t r i c f i e l d , p o t e n t i a l and charge 

concen t ra t ion can be found by integrating Poisson's equation and by 

using Gauss's law (see f igure 2.8). 

When surface states are present, charge is distr ibuted among 

these s ta tes and the sil icon space charge region, such that the 

fol lowing charge neutra l i ty condit ion holds: 

Q s s + Q s c = - Q G (2.7) 

where these quanti t ies correspond to charge in surface states, in the 

s i l i con space charge region and at the metal electrode respectively. 

These quantit ies represent e f fec t ive charges without regard to the 

c o m p l e x i t y o f t h e i r d i s t r i b u t i o n ; charge exchange equil ibria also 

exist between these various regions. 

2.4 The Capacitance Approach 

2.41 Semiconductor Surface Capacitance 

Since the net charge in the semiconductor varies as the surface 

p o t e n t i a l across the su r face layer is changed, a d i f f e r e n t i a l 
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capaci tance, C g c , can be associated wi th the semiconductor surface. 

This capacitance per unit area is defined as: 

dQ 
C sc (2.8) 

sc d Y s 

and i t is measured by superimposing an al ternat ing voltage upon the 

app l ied dc bias. For a Schottky barr ier, the surface potential is 

d i r e c t l y r e l a t ed to the app l ied bias, V, and the semiconductor 

capacitance is simply: 

is assumed to be the constant doping density of the semiconductor. 

Exper imenta l values for these can obviously be obtained f rom an 

a p p r o p r i a t e p lo t of t h i s express ion . For an MIS d iode , the 

relat ionship between capacitance and surface potent ial is far more 

comp l i ca ted (19), although it does reduce to a similar expression to 

the above in the depletion region. In the depletion and accumulation 

regions, the semiconductor capacitance is independent of frequency 

bu t , in the invers ion r eg ion , i t depends on the abi l i ty of the 

minor i ty carriers to fo l low the applied bias and/or ac signal. 

A d i f f e r e n t i a l capacitance can also be associated wi th the 

charge in the surface states, when present, which is defined as: 

C 
2 ( V b - V - kT/q) 

(2.9) 
sc 

£ s N d 1 

where V, is dependent on the barrier height wi th in the diode and N 

dQ 
C ss (2.I0) 

ss d * s 
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Unl ike C s c , which is a unique funct ion of ^s for a given impur i ty 

c o n c e n t r a t i o n and t e m p e r a t u r e , C § s depends upon the part icular 

spa t ia l and energy distr ibut ion of surface states, their occupancy as 

d e t e r m i n e d by an e x t e r n a l f i e l d and the frequency of the ac 

measurement signal. Since the to ta l surface charge is the sum of Q s c 

and Q s s , the semiconduc to r su r face capac i tance, Cp, is thus: 

C p = C s s + C s c (2.11) 

The re fo re , it can be seen that the semiconductor surface capacitance 

is a parallel combination of C and C . 
ss sc 

2.42 Capacitance of an Ideal MIS Diode 

An MIS capacitor is formed by the addit ion of an insulator in 

series w i th the semiconductor, so the capacitance, C, of the whole 

structure is: 

I I I 
+ (2.12) 

C C o x C s c + C s s 

where Cqx is the geometr ical capacitance per unit area of the 

insu la to r . The voltage bias applied to an MIS diode fal ls part ia l ly 

across the insulator and part ia l ly across the semiconductor so 

V G = V o x + * s (2.13) 

where Vqx is the voltage dropped across the insulator given by 
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V = (2.14) 
ox „ 

^ o x 

In an idealized case where the insulator is charge free, there is no 

work funct ion di f ference between metal and si l icon, and no surface 

charges exist; the C-V curve is called " ideal" . Figure 2.9 shows such 

a cu rve w i th three d i f ferent inversion options: ( I ) i f the minor i ty 

c a r r i e r s can fol low the applied ac signal; (2) if they cannot; and (3) 

i f they cannot fol low the ac signal but if they can fol low the dc 

signal. The lef t of the curve corresponds to accumulation where there 

is a high concentrat ion of major i ty carr iers at the surface, holes in 

th i s case. As a resu l t the t o t a l capacitance is close to the 

insulator capacitance. By increasing the applied voltage, the bands 

are made f la t which corresponds to a surface potential of zero as 

indicated on the curve. Further increase produces a depletion region 

which acts as a die lectr ic in series w i th the insulator and therefore 

decreases the capacitance. Eventually inversion is reached and in 

equi l ibr ium a minimum capacitance is obtained. 

The shape of the capacitance-voltage character ist ic varies for 

d i f f e r e n t insulator thicknesses and semiconductor doping densities. 

Goetzberger (20), has provided not only a set of ideal characterist ics 

with respect to these two parameters, but also curves relat ing surface 

potent ial to applied voltage, and f la t band capacitance to the above 

parameters. 

In a real s i tuat ion, the fol lowing cases can be d i f fe rent ia ted: 

( I ) If no surface states are present but there is a non-zero work 

f u n c t i o n d i f f e r e n c e be tween meta l and si l icon, there wi l l be a 

pa ra l l e l shi f t of the C-V curve without distort ion along the voltage 

-15-



1.0 1° 0.20 0 8 0 
0.10 

0.70 
o.os 0 6 ACCUMU 

t AT ION 
RIGION 

0 6 5 
u 0 6 

0 . 0 

0 .20 0.60 W 0.4 INVERSION 0.30 
RIGION 

C 0 0.8S 0.75 0 5 0 
0 .60 0 8 0 1.00 (3) I SO 

so 

- C - 4 - 2 0 2 4 6 8 
t T F r C T I V E G AT C VOLTAGE, V (VOLTS) 

Figure 2.9 Normalised MIS capaci tance vs Gate VoHage for the case of 
no sur face states. The value of the si l icon surface potent ia l is 
shown for several values of capaci tance. (34) 

UPPER HALF OF LOWER HALF OF 
BANDGAP BANDGAP 

* T Y P E P T Y P E 

10 / 

/ 
io-> 

tr> 

»- / 
a < 10 

ID"' 

b) 

I 0 ' 6 

M1DGAP 

T = 3 0 0 * K 

10 J I 12 8 8 12 

Figure 2.10 Var iat ion of t ime constant w i t h surface potent ia l . 

Of p lo t ted w i t h respect to midgap) ( |8) 



axis by an amount equivalent to this d i f ference. 

(2) If surface states are present whose occupation is independent of 

app l ied bias, a similar simple lateral shi f t wi l l occur which is a 

measure of the charge in the surface states. These states^correspond 

to the de fec t s :Si + or ment ioned in section 2.3 that are 
os J 

either outside the band gap or too far into the oxide to respond. 

(3) If surface states are present that do not fo l low the applied ac 

signal but whose occupancy depends on the dc bias (ie states that are 

w i t h i n the sil icon forbidden gap), the C-V curve wi l l be displaced and 

distorted along the voltage axis, but the rat io of maximum to minimum 

capac i t ance wi l l remain unchanged. This is the case for very high 

frequencies and forms the basis of the high frequency method of 

analys is as described in section 3.22. A t lower frequencies the 

fol lowing situation prevails. 

(4) If surface states are present that can fol low the ac signal then 

they w i l l displace and distort the C-V curve as well as change the 

rat io of minimum to maximum capacitance. Whether surface states can 

fo l low the applied signal depends on their inverse t ime constant as 

compared to the applied frequency. The var iat ion of t ime constant 

th rough the band gap is given in f igure 2.10 as a funct ion of surface 

po ten t i a l . It is important to note that the t ime constant is d i rect ly 

proportional to the surface potent ia l : this w i l l be used later. 
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2.43 Insulator Effects 

The above assumes that an ideal insulator is present, but real 

insulators possess defects that introduce instabi l i ty into the 

measured C-V curves. One type of instability is a hysteresis (19) in 

the measured response, ie the forward and reverse characteristics not 

overlaying one another. Particularly in early work with silicon 

dioxide, such hysteresis was caused by the presence of mobile sodium 

ions. A simple explanation of this phenomenon is that, as the applied 

bias is made more positive, positive sodium ions are repelled from the 

top contact to the semiconductor interface where they reside. Thus a 

larger negative bias is required to overcome their presence when the 

bias is reversed. If the insulator is a polarizable one, such as 

phosphosiIicate glass, then a similar hysteresis direction will be 

observed; but since there is a large effective dipole layer within the 

insulator, the whole curve will be shifted laterally along the voltage 

axis. 

Charge inject ion (21) into the insulator causes the opposite 

hysteresis direction. The initial bias now becomes important: a large 

value in accumulation causes injection from the metal whilst a large 

value in inversion causes injection from the semiconductor. If this 

biasing is done at elevated temperature, then large horizontal shifts 

in the measured C-V curves occur when the device is returned to room 

temperature. This is known as Bias Temperature Stressing and the 

results can be used to ident i fy the nature of the particular 

instability (22). 



We have also assumed that the carrier transport in the insulator 

is zero. However, real insulators do pass current, albeit small 

amounts, which can be characterized by various conduction mechanisms. 

Di f ferent ones exist depending on what factor dominates the current 

f low (18). In the case of Langmuir films, discussed in Chapter 7, the 

Poole-Frenkel mechanism has been found to be predominant where the 

current is given by 

In Joe K p F F l / 2 /kT (2.15) 

in which 1 pp ^ ( q ^ / W E j E ) ' ^ . The actual process corresponds 

to hopping of carriers between localized states or traps within the 

bulk of the insulator. The factor 2 depends on the charged state of 

these traps and disappears if the trap can be regarded as neutral. 

The mechanism then resembles the Schottky one, and distinction can 

only be made by fur ther experiments investigating contact and 

thickness effects. If the insulator is thin, tunnelling can occur; 

this is considered later in this chapter. 

2-5 The Conductance Approach 

The surface state response to an ac signal is also characterized 

by a loss. This is a consequence of the complex nature of the silicon 

band structure: more energy is required to f i l l the interface states 

than to empty them, since electron promotion involves additional 

phonon interact ion. Therefore each cycle of the signal requires 

energy to be contributed by the source, and so the diode appears to 

have a resistive element (conductance). This conductance combined 
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with the capacitance of the surface states produces a time constant 

ef fect which means that the ac current produced will lag behind the 

applied signal. Put another way, it can be said that the non-

instantaneous nature of the charge exchange processes will cause the 

measured current to be out-of-phase with the applied signal. The 

fol lowing sections calculate the values of the capacitance and 

conductance of the surface states for various distributions, starting 

wi th a single level situation and finishing with the experimentally 

encountered continuous distribution. As previously mentioned, the 

surface states that respond to the signal most are those nearest the 

Fermi level. This is because the fluctuation of the degree of 

occupancy is greatest at this point. 

2.51 Admittance of a single level state 

Let us consider first the case of a single level of surface states 

in the semiconductor bandgap. Nicollian & Goetzberger (23) have shown 

through consideration of Shockley-Read-Hall statistics that the 

admittance can be given as 

Y = j U 2 q N F + ( l - F . ) / ( k T ( I +ju> F / c n )) s J M s t o to 1 t o n so 

(2.16) 

period of applied ac signal (rad/s) 

electron concentration at the surface with no ac voltage 

applied ( c m ^ ) 

value of the Fermi function at the trap energy Ê . with 

no applied gate voltage 

where 

n 
so 
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3 c n = capture probability for electrons (cm /s), which 
equals v ^ „ 0 n , where v ^ i s the thermal velocity of 
electrons and 0 their capture cross section (cm ) 

N = number of states in Ej_(cm~ ) 

Inspection of the function Y g shows that it corresponds to a series 

admittance of resistance G~^ and capacitance C § (figure 2.11) 

where 

Y s = Gs + l/>"Cs 

G-J = k T / ( q 2 N s ( l - F t o ) c n n s o ) (2.17) 

C s = ^ N s F t o ( | - F t o > / k T 

The time constant previously mentioned is defined as 

T = G„ C = F. /c n / 0 1 0 \ s s s to' n so (2.18) 

Both C g and G g are independent of frequency of the applied gate 

voltage, since they depend only on Ep and 

It is found to be more convenient to express Y s in terms of a 

paral lel conductance G , and a parallel capacitance Cp (figure 

2.1 I) 

G / = C WT / ( I + u , 2 T 2 ) p s s s 

C p = C s / (I + u 2 x 2 ) (2.19) 

Thus 

Y

s = G n + j " C n (2.20) 
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As can be seen in figure 2.12, Gp/u> has a maximum as a function of 

frequency for <*Xs = I. The maximum of the Gp/w versus the position 

of the Fermi level at the surface occurs for maximum C ie for 
s 

Ep = E j . Thus if a Gp/w versus frequency plot is done at a bias 

such that the Fermi level is maintained at the trap level which gives 
F t o ( | - F t o ) = l / 4 t h e n 

Gp/w (max) = C s /2 = q 2 N s /8kT (2.21) 

Therefore it can be seen that the surface state density can be 

evaluated. Of course we can obtain C from a measurement of C , 
s p' 

but in pract ice the extraction is diff icult since a value of C r sc 

needs to be accurately known first, which can lead to error. This 

point wi l l be returned to in the next chapter when various analysis 

methods are considered. 

Unfortunately, experimental conductance curves do not display the 

single time constant character of the single level model (except in 

the inversion region which does not interest us): they are much 

broader. This is due to the fact that, as outlined in section 2.2, the 

surface state distribution in practical device is more complicated, 

being of a continuous nature rather than a single level. In order to 

account for this, Nicollian & Goetzberger (23) have extended their 

model, as outlined in the next section. 
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2.52 Admittance of a Continuum of Surface States 

We can envisage a continuous distribution of surface states as a 

set of infinitely close single levels. In the electrical analogue, we 

can obtain the total admittance Y s s by connecting all the single 

levels in parallel. Mathematically this is represented by integrating 

Y § over all the trap energies in the gap: 

E juq 2 E N F. ( I -F . )dE+ c J ^ c ss to to t 
Y ss = / Y s ( E t ) d E t = — - • • / 

E kT E ( l+juF + /c n ) 
v v J to n so (2 22) 

The integral when it is evaluated (23) gives 

2 2 
qN InO+u-c ) juqN arctan(cox ) 

Y ss m ss m = — + — 
ss 2 T t 

m m 

or Y s s = G p + ju,Cp (2.23) 

where 

G p A.= q N s s In ( I + u> 2 ^ 

C p = ^ s s ^ c t a n ( u , x m )fam (2.24) 

with "t- = I / c n m n so 

The expression for Y is only correct if both N and c are 
ss ' ss n 

slowly varying functions of energy, because then we can treat them as 

constants in a limited area of energy. This is generally true for 

reasonable frequencies and systems. 
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The resulting G p/iu versus frequency curves are wider than those 

for the single level case and the maximum now occurs foruJT - 1.98. 
m 

However, experimentally it is found that the parallel conductance 

curves with frequency are wider stil l and the maximum occurs a t u x ^ 

= 2.5 rather than ux = 1.98 (see figure 2.13). 

2.53 The Surface Potential Fluctuation Model 

Another factor is necessary to explain the discrepancy. If we 

assume that the built-in charges and charged interface states are 

randomly distributed in the plane of the interface, the electric field 

at the silicon surface will then fluctuate over the plane of the 

interface. Fluctuations in the electric field will cause corresponding 

fluctuations in the surface potential. There are several models (24) 

which take this into consideration and produce expressions for the 

paral lel conductance of the device. Effect ively, the previous 

expressions for parallel conductance and capacitance are integrated 

over the various surface potential values which means that the 

paral lel conductance curves will have their maxima at different 

frequencies and wi l l ensure that the resultant curve is broader. 

U n f o r t u n a t e l y i t is not possible to s impl i fy the result ing 

expressions, and therefore the surface state information is found from 

a f i t t ing of the theoretical curves to the experimental ones. This is 

accomplished accurately on a computer by adjusting the three variables 

c , N , and 6„ which represents the variance of the surface n ss «* 

potential. The starting values of these variables can be obtained from 

the experimental curves using those equations derived for the 
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continuum model. 

A l ternat ive, more expedient, techniques that do not require 

computer curve f i t t ing are outlined in the next chapter. The benefits 

gained by the faster analysis are offset by the requirement for an 

accurate determination of the experimental curve maximum. The height 

of this is proportional to the surface state density. 

2.54 The Tunnelling Model 

A d i f ferent explanation for the experimental Gp/w curve 

broadening was proposed by Preier (25) based on work by Heiman & 

Warfield (26). They assumed that the interface states were not 

located at the interface, but were distributed into the oxide from 

where they communicated with the conduction band by means of 

tunnel l ing. Preier proposed that a variable tunnelling parameter 

should be used to f i t the theoretical curves to the data. 

A modification by Warashina & Ushirokowa (27) requires only a 

single set of measured capacitance and conductance versus bias curves 

for analysis. They have derived expressions for the parallel 

conductance which can be used around the maximum in the voltage domain 

to get the value of N s s . However, their expressions are complex and 

the results obtained for N seem to be double-valued in certain 
ss 

parts of the bandgap. 

The tunnelling model has not received wide acceptance because 

most workers (24,28) have been unable to f i t their experimental data 

to it, and also most do not find the predicted low frequency asymmetry 

in the parallel conductance curve. Therefore most prefer the surface 
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potential fluctuation approach of Nicollian & Goetzberger (23). 

2.6 More Complex Equivalent Circuits 

We now have the concept of a simple admittance of two effective 

elements to represent the surface states. Its validity, though, is 

l imi ted to the depletion region, as the in i t ia l equations only 

included the charge exchange processes of the majority carriers. At 

other potentials, the action of minority carriers may have to be 

considered. A full equivalent circuit describing all bias situations 

has been derived by Lehovec & Slobodskoy (29) by following step by 

step the flow of charge from the bulk of the semiconductor to the 

interface under an ac excitation. Each loss can be associated with a 

resistance, whereas charge storage can be associated wi th a 

capacitance (see figure 2.14). The positions of the valence and 

conduction band can be seen with associated resistances R and R 
ns ps 

which represent charge exchanges due to electrons and holes. 

R. is a resistance representing the effects of the inversion inv 3 

layer and R^ is the bulk lifetime resistance. Using this model, a 

mathematical representation of the loss mechanisms of surface states 

outside the depletion region has been made (30): however, the matching 

of the representation to the experimental results is complicated and 

questionable. The analyses described in this thesis are restricted to 

the depletion region; even though this gives a limited range of 

surface potential, simplified analysis enables results to be obtained. 
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In the equivalent circuits so far, we have assumed that the 

insulator is thick and perfect; it has been shown (23) that for high 

accuracy the oxide must be as thin as possible. When it becomes very 

thin it reaches tunnelling dimensions when the carriers can pass 

through the insulator into either the conduction band or into the 

interface states themselves, depending on the insulator thickness. 

The latter also determines the additional components introduced into 

the equivalent circuit, which have been reviewed by Deneuville (31). 

It is possible to calculate the surface state density in spite of the 

added complication; for example, Kar & Dahlke (32) have obtained 

values for surface state density over the whole of the bandgap. 

Final ly, an additional complication when dealing with p-type 

samples is the interaction of the charge beneath the top contact with 

an external inversion layer that has been formed by positive charge 

within the insulator. The process is known as lateral ac current flow 

(33) and it introduces a second conductance peak into the admittance 

voltage characteristics. From an equivalent circuit point of view, a 

distributed resistance capacitance can be considered to have been 

introduced in parallel with the semiconductor capacitance. 

2.7 Summary 

In this chapter, the theoretical parameters used to describe the 

interface have been related to their physical or igin and the 

electr ical quantities used to measure them. This has been done by 

starting with a theoretical atomic perspective, developing through a 
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consideration of the role of charge exchange processes and finishing 

wi th an appreciation of the equivalent circuits involved. The 

approach has included a consideration of the effect of temperature, 

since its variation can be used to probe surface states close to the 

band edge. The same order will be preserved in the next chapter which 

contains a review of most of the current electrical methods that may 

be used to obtain surface state density information. The chapter 

begins with a consideration of capacitance techniques performed at 

room temperature and progresses through methods where temperature 

variation is important, finishing with the standard ac conductance 

method. Complications arise when temperature variation is used which, 

unt i l the recent development of the DLTS technique, have meant a 

restricted range of measurement within the bandgap. 
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Chapter 3 

Determination of Surface State Parameters from Measured 
Electrical Data 

3.1 Introduction 

The current electrical methods fall into two main groups: first, 

those which measure charge in (quasi) equilibrium with the electric 

f i e ld ; and second, the ones based on the transient charging and 

discharging of surface states. The former category covers most 

capacitance methods and the latter group encompasses the charge 

pumping, transient capacitance and low temperature hysteresis methods. 

The choice of technique is determined not only by the information 

required, but also by the practical ease of obtaining that information 

ie the complexity of measurement including preparation and data 

ana lys is . Since MIS devices are easy to fabr icate, we have 

concentrated upon techniques that utilize them: thus the charge 

pumping technique (I) and simpler l-V curve (2) measurement procedures 

which require the use of MOS transistor structures are precluded from 

t h i s d i scuss ion . However , the data analys is is not as 

straightforward; the required information is obscured by the influence 

of competing factors which can introduce imaginary surface state 

density values. In order to recognise and compensate for this, more 

complicated measurement or analysis procedures are necessary, but the 

result is a limitation in the valid range of the following techniques. 

These are now considered in turn. 
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3.2 The Capacitance Techniques 

The capacitance of an MIS device as a function of applied voltage 

may be determined under various conditions of frequency and 

temperature. The frequency of the ac measurement signal is important 

because d i f ferent characterist ics wil l be obtained, depending on 

whether or not the surface states are able to respond. At low 

frequencies, al l the surface states are in equilibrium with the 

applied signal. However, as the frequency increases, less and less of 

the surface states are able to fol low it and, at very high 

frequencies, none at all. The two methods outlined below are based at 

the frequency extremes. 

3.21 High Frequency Method 

Terman (3) suggested that even though surface states did not 

respond to a high frequency signal, they would still be manifest 

through the presence of their trapped charge, which would give rise to 

a lateral shift in the high frequency C-V curve as compared to an 

ideal theoretical one. This displacement corresponds to an additional 

voltage, V n ^ , developed across the oxide depending on the amount 

of trapped charge, Q s s> that appears for various band bending 

conditions. The resultant lateral shift for several different surface 

state distributions are given in figure 3.1. At each energy position: 

Q' = C .V , . f . (3.1) ss ox shift 

Since G>ss represents the sum of the charge (integral) in the states, 

a graphical d i f fe rent ia t ion of Q § s versus surface potential is 

required to find N a s a function of energy: 
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N = - - - - - - (eV" 1 c m " 2 ) (3.2) 
S S q s 

Zaininger & Warf ield (4) demonstrated that the method was part icular ly 

sens i t i ve to inaccuracies in the determined values of C and the 
ox 

doping density used in the calculat ion of the ideal curve. These 

cou ld g ive r ise to e f fec t i ve surface state densities that do not 

really exist. Sah and co-workers (5) put forward improved formulae 

and cu rve f i t t i n g techn iques fo r de r i v i ng these quantit ies thus 

overcoming the above problems. However, they did not take into 

account the e f fec t of surface potent ial f luctuations which can also 

i n t roduce spur ious su r face s t a t e dens i t ies (6 ,7) . F ina l l y , the 

measurement signal has to be very large to ensure that al l the surface 

states do not respond; the standard frequency of I MHz is inadequate 

fo r states near the band edges, where the reciprocal t ime constant is 

of this value, as f igure 2.10 i l lustrates. 

3.22 Low Frequency Method 

At low frequencies, where the period of the measurement signal is 

long compared to the t ime constants of the surface states, there is a 

con t r i bu t ion f rom these states to the to ta l capacitance. This means 

tha t simple equations, rather than graphical d i f ferent ia t ion, can be 

used to determine the surface state density. Furthermore, the surface 

po ten t ia l is easily found by integrat ion of the experimental curve; in 

Terman's technique, i t is found by comparison wi th the theoret ical 
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one. Berglund's (8) original technique is perfected in the quasistatic 

approach of Kuhn (9) where the low frequency becomes equivalent to 

zero w i t h a dc voltage ramp. The displacement current produced is 

d i rect ly proportional to the low frequency capacitance: 

dQ dQ dV dV 
i = — = — . — = C | f (V) . — (3.3) 

dt dV dt dt 

Now recall ing the simple representation for the MIS device capacitance 

(see equation 2.5): 

(3.4) 
C C C + C ox sc ss 

I t can be seen by rearrangement and assuming that C g s = q . N ^ . A 

C l f 
N .q.A = ( — - C ) (3.5) 

ss i . r /c s c 

1 L l f ox 

C s c can be theoret ical ly calculated or derived experimental ly f rom a 

h igh frequency curve. The lat ter is done by assuming that C s s is 

zero in equation 3.4, thus equation 3.5 can be wr i t ten as: 

m a / If ox hf ox s N .q.A - ( - ) 
S C - C . , C - C, , (3.6) ox If ox hf 

Since i t is not necessary to compute a theoret ical curve, this 

equation is far easier to use. However, whereas equation 3.5 is 

applicable to the whole of the bandgap, equation 3.6 has a l imi ted 

range depending on the measurement frequency such that C g s is zero. 
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The interval extends f rom the inversion threshold to a value of the 

su r face potent ia l where the surface state t ime constant has just 

become equal to the ac signal period. For an ac frequency of 500 kHz 

this point is 250mV f rom the major i ty carr ier band edge. 

Again, as wi th Terman's method, if surface potential f luctuations 

are p resen t , the t h e o r e t i c a l l y calculated value for C wi l l be 
sc 

i n c o r r e c t and give rise to an apparent N s s (10). It is better to 

compare the high and low frequency curves, using equation 3.6, since 

the ef fects of the f luctuat ions wi l l be approximately the same and 

coun te rac t i ng . The error is expected to be small for large surface 

s ta te densities, small surface potent ial f luctuat ions and for energy 

values near midgap result ing in an accuracy in N g s values of about 
m I O -2 . . - I 10 cm ev . 

The r e l a t i o n be tween sur face potent ial and applied bias is 

obtained using the expression below 

Y s = y ( I - C | f / C o x ) dV + @ (3.7) 

^acc 

The integrat ion is done either numerical ly on a computer or direct 

f r o m the equipment using electronic modules ( I I ) . The addit ive 

constant, @, may be determined in various ways; normally it is f rom 

the horizontal intercept of the inverse capacitance squared versus 

app l ied p o t e n t i a l c u r v e . Another technique 

was suggested by Lopez (12); it calculates the to ta l 

surface potent ial and compares i t to the theoret ical value of l . leV. 

The addit ive constant is simply the di f ference between the two. 
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3.23 Quasistatic Measurement Conf igurat ion 

The basic c i rcu i t for performing quasistatic MIS C-V measurements 

is g iven in f igure 3.2. It is essentially an analog d i f ferent ia tor 

incorporating the MIS device as the capacit ive element. The ampl i f ier 

i dea l l y maintains point N of the c i rcu i t at ground potent ial so that 

the output voltage can be wr i t t en as 

Vo(t) = - RC(t) dV(t)/dt (3.8) 

T h e r e f o r e when V(t) is a ramp of the form V(t) = + a t , the 

o u t p u t v o l t a g e is d i r e c t l y p r o p o r t i o n a l to the d i f f e r e n t i a l 

capacitance, 

Vo(t) = ~ aRC(t) (3.9) 

An example of a resultant plot is shown in f igure 3.3; by 

super imposing a high frequency curve as in f igure 3.4, the surface 

s ta te density of the system can be calculated using equation 3.6. 

3.3 Temperature Techniques 

Alternat ive ly , var iat ion of the sample temperature can be used as 

a basis for obtaining surface state density informat ion. The simplest 

technique (13) is related to Terman's method, where the high frequency 

capac i tance curve is used to monitor the charge occupancy of the 

surface states. Instead of al ter ing the bias, i t is held constant and 

t e m p e r a t u r e change is used to sweep the Fermi level. Then, using 

expressions very similar to Terman's, surface state densities in a 

range f rom 0.2eV to 0.05eV near the major i ty carr ier band can be 

obtained when the device is cooled to liquid nitrogen temperature. 
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The technique has drawbacks though: i t is d i f f i cu l t to interpret the 

resul ts over small temperature changes, and the method also produces 

anomalous peaks in N § s close to the band edges that do not agree 

w i t h the latest data. Recent computation (14) has shown that these 

may be due to the combined e f fec t of an inadequately low measurement 

frequency and a decreasing capture cross section value nearer to the 

band edge. 

3.31 Low Temperature Hysteresis Method 

This technique only gives N s s values averaged over a large 

p o r t i o n of the band gap rather than w i th respect to energy (15). It 

re l ies on the di f ference in capture and emission t imes of carr iers 

react ing w i th the surface states at l iquid nitrogen temperature which 

causes a hysteresis in the high frequency C-V curves. This can be 

exp la ined by considering a voltage cycle. Start ing in accumulat ion, 

w i t h on ly m a j o r i t y carr iers f i l l ing the surface states, i t is only 

a f t e r the dev ice has reached invers ion, where there is a high 

concent ra t ion of minor i ty carr iers, that the occupancy w i l l a l ter . On 

going f rom inversion to accumulat ion, the states then remain f i l led 

w i t h m i n o r i t y c a r r i e r s . The di f ference, dV, in the two curves 

corresponds to the charge contained by the surface states. 

Q 
ss 

= C .dV 
ox 

(3.10) 

and 

V a - A N 
ss 

(cm~ z ) (3.11) 
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3.32 The Transient Capacitance Method 

By actually measuring the emission processes, whilst scanning the 

temperature at the same t ime, far more information can be obtained. 

In the normal transient spectroscopy technique, an MIS capacitor is 

pulsed into accumulation and the result ing high frequency capacitance 

transient measured as the temperature is increased. The transient is 

a resu l t of the return to equi l ibr ium of the electron population in 

the depletion region which has been disturbed by major i ty carr iers 

in t roduced by the applied voltage. The overall decay is monitored in 

the DLTS technique (16) through the use of a " rate window", which 

produces a peak in the output when the decay rate passes through a 

predetermined value. When the temperature is a l tered, the thermal 

emission rate and hence the capacitance decay rate change. This gives 

r ise to such a peak, which can be used to calculate the surface state 

densi ty. However, the equipment can be complicated (17), especially 

i f i t is to measure the smallest surface state emission t imes. The 

analysis, too, is not simple and there is even some doubt as to the 

val id i ty of some interpretat ions( 18). 

We have not used temperature techniques because of the addit ional 

v a r i a b l e t h a t wou ld be i n t roduced when cons ider ing gaseous 

interactions which could well be temperature dependent. We have 

concentrated upon the conductance technique, which is the standard, 

although a l i t t l e t ime consuming. With the aid of a microcomputer, we 

have been able to cut down the e f fo r t involved in extract ing the 

required informat ion. Moreover, we have developed a novel technique 

that enables fast surface state determinat ion; this is described in 

Chapter 5. 
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3.4 The Conductance Technique 

More informat ion on interface states can be obtained if the loss 

mechanisms in the system are considered and a fu l l frequency response 

is measured. This involves determining the small signal admittance of 

the MIS dev ice reso lved as a capacitance and conductance and 

ex t rac t ing the parallel conductance using algebraic manipulation. The 

parallel conductance is then examined using the theory in section 2.5 

and the surface state informat ion calculated. 

3.41 Equivalent Circui ts 

The measured capacitance and conductance (see f igure 3.5a) have 

to be r e l a t e d to the parallel conductance of the surface states 

th rough the use of equivalent c i rcui ts . This is because the to ta l 

a d m i t t a n c e of an MIS capacitor consists of several components whose 

e f f e c t has to be compensated for . A c i rcu i t model of the device is 

shown inset in f i g u r e 3.5b w i t h a typical corresponding set of 

measured character ist ics. The semiconductor capacitance in parallel 

w i t h G represents the c o m b i n a t i o n of the surface state and 
P 

dep le t ion layer capacitance; the increased contr ibut ion of the former 

produces the rise in Cp as the frequency decreases. The c i rcu i t 

e l e m e n t s C and R a r e assoc ia ted w i t h the g e o m e t r i c a l ox s 3 

capacitance of the oxide and the bulk resistance of the substrate, 

respect ively. Their values can be calculated f rom the measured values 

of C and G in strong accumulat ion: 
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R = G / ( G 2 + u 2 C 2 ) (3.12) s m' m m 

C = C m ( l + ( G 2 / t o 2 C 2 )) ox m m m 

The terms defined by these equations are bias and frequency 

independent fo r ideal dev ices , but in a pract ical si tuation the 

insulator may, for example, have a frequency dependent pe rm i t t i v i t y . 

Therefore, compensation is required at each frequency. The fact that 

such compensation is necessary is not commonly recognised. 

The in te r face state contr ibut ion is contained ent i rely in the 

terms and Gp, which are bias and frequency dependent. These 

terms are extracted f rom the measured values using the equations below 

( A is the top contact area ). 

^ £ ox m m s s m 
P 

^ 2 c « v R c C - G ) 2 + w 2 ( C - C - C R G ) 2 

ox s m m ox m ox s m 

w 2 C C (C - C ) - C G 2 

^ q _ ox m ox m ox m 
P 

(u 2 C R C - G ) 2 + w 2 ( C - C - C R G ) 2 

ox s m m ox m ox s m 

( 3 . 13) 

As can be seen, C contains the same informat ion, but to obtain 
P 

N , a theoret ical value for C would have to be assumed, leading ss ' sc 3 

t o the same problems as suffered by the capacitance techniques 

previously described. It is better to use the parallel conductance to 

d e t e r m i n e N s § as th is is d i r e c t l y r e l a t e d (see sec t ion 2.5). 

However , a fact not generally appreciated is that i t is possible to 

use Cp in the depletion region to obtain a value for the surface 
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potent ia l thus obviating the need 

c a r r i e d out (equation 3.7). This 

If h igh ly-doped epitaxial 

assumed equal to zero and 

A.G =w 2 C 2 G / ( G 2 + ( C p ox m m o> 

to perform the integrat ion normally 

is explained further in section 5.4. 

samples are used then R can be r s 

- C ) 2 ) (3.14) 

In the conven t i ona l r e a l i s a t i o n of the conductance technique, 

frequency response curves are not d i rect ly measured as the equipment 

has to be cal ibrated at every frequency due to the ef fects introduced 

by s t ray capac i t ances . Ins tead, capac i t ance and conductance 

c h a r a c t e r i s t i c s are measured w i t h respect to bias a t several 

f requencies; the paral lel conductance is then extracted, compensating 

fo r C q x and R g , and replot ted in the frequency domain to give the 

peaks ready for analysis. 

3.42 Surface State Evaluation 

In order to obtain N s s values f rom parallel conductance versus 

f requency curves, it is not necessary to go to complicated computer 

curve f i t t ing procedures. Two graphical techniques have been proposed 

t h a t enable desktop evaluation of N to be performed. The f i r s t , 

suggested by Goetzberger et al (19), involves comparing the shape of 

the experimental ly determined curves wi th standard G /u»C curves K ' p ox 

that have been plot ted in a normalized fashion. The shape of the 

l a t t e r (see f i g u r e 3.6) depends on ly on the variance 0^ so, by 

comparison, the value of the variance for the experimental curves can 

-38-



.01 100 

Figure 3.6 Normal ized paral le l conductance plots p lo t ted w i th respect 

to the variance cr of the surface potent ia l 

F igu re 3.7 A plot of the funct ion f f / i i -, 
surface potent ia l . N ( V v e r s u s var.ance of the 

(19) 

7.8 

20 Li rncx 

F igu re 3.8 The general func t ion f (O) p lo t ted w i th respect to the 
variance of the surface po ten t ia l . 9 respecr To the 



be found. The surface state density and the relaxat ion t ime are then 

obtained f rom the fo l lowing: 

N s s = ( l / q A ) . G p / W m Q X . f N ( 0 g ) 

T = ' / " m a x ^ <°g> ( 3 J 5 ) 

The func t ions f ^ and f t are given in figures 3.7 and 3.8. They are 

dependent only on . The capture cross section can be determined 

f r o m if the surface potent ial is known, using equation 3.16 ( v ^ 

is the thermal veloci ty taken as 10^ cms" ' ). 

n = ( v f h . T . n b u | ( <exp(qM's/kT)r ' (3.16) 

The surface state density is seen to be determined by the peak 

he ight and a variable dependent on the curve w id th . From inspection 

o f f igure 3.6, i t can be realised that curve f i t t i ng is not absolutely 

necessary; for , s i t t ing at any part icular frequency, there is only one 

possible va lue o f G /u)/(G_/u) ) f o r any part icular variance. 
p p mux 

Thus i t can be seen that only two values of the G /w curve are 
P 

necessary This is the essence of the Simonne technique (20) which goes 

one s tep fur ther and combines the curves given in figures 3.6 & 3.7 

in to one. Pract ica l ly , an approximate G p / " versus U curve is f i rs t 

p lo t ted ; then, by taking addit ional data points, the peak position is 

precisely located. Next , the rat io of the peak parallel conductance 

compared to the value of Gp/ui at a frequency a factor of f ive 

d i f ferent is determined and, f rom the curve reproduced f rom (17), N s s 

is simply found. This is by far the simplest evaluation method, but 

it does have its drawbacks which are discussed more in Chapter 5 where 

they are used to jus t i fy the development of our novel technique. 
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3.5 Summary 

This chapter has progressed f rom simple capacitance techniques that 

are highly susceptible to error to the more accurate, but also more 

complicated, transient capacitance and conductance methods, where the 

response t imes of the states are measured. There are a few other 

techniques, such as the stat ic (21) and photovoltage (22), but these 

are not widespread in use and hence were excluded f rom this study. A 

br ie f out l ine of the accuracies and val id range of the above is now 

given: 

Method Accuracy Range 

1) Terman's Hf C-V 5 X m I O . . - I -2 
10 eV cm E . + 0.3eV 

2) Quasistatic C-V 1 X m I O v - l -2 10 eV cm E. + 0.3eV 

3) Hf Temperature 1 X m l l .,-1 -2 10 eV cm E. - (E i maj 

4) Low Temp. C-V 5 X m I O . . - I -2 10 eV cm E. +_ 0.4eV 

5) Transient Cap 2 X 
9 -1 -2 \0y eV 1 cm L 0.9eV 

6) Conductance in? \ / - ' " 2 

10 eV cm E. - (E i maj 
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Chapter 4 

Experimental Details 

4.1 Introduction 

A complete character izat ion of the semiconductor surface would 

requ i re many d i f ferent types of technique which would obviously be 

experimental ly complex to a t tempt simultaneously. This work has 

concentrated on e lectr ica l measurements of MIS structures w i th a view 

to ob ta in ing i n f o r m a t i o n on the surface state d ist r ibut ion. The 

e x p e r i m e n t a l a r rangemen ts fo r the quas i - s ta t i c and admittance 

techniques are described below. The microcomputer which has been 

added to the standard admit tance measurement equipment and used to 

develop our novel technique is also described. In addit ion, this 

chap te r contains details of sample preparation. The description of 

the Langmuir f i lm deposition technique and equipment, however, is le f t 

unt i l Chapter 7. 

4.2 The Quasi-static Technique 

4.21 Use of Equipment 

The exper imental set-up for this technique is shown in f igure 

4 .1 , corresponding to the funct ional layout given in f igure 3.2. The 

MIS dev ice was driven w i th a high l ineari ty low noise ramp 

vo l tage generator whose internal c i rcui t was based on a standard 

O P - A M P integrator. This unit was constructed wi th in the University 

and possessed presettable start and finish points over a 200 V range, 

and variable sweep rate down to as low as 5 mV/s. It was connected to 

the shielded l ight- t ight cryostat which held the sample through s t i f f 

cables. A gold wire probe which was ball-shaped at the end to avoid 

damaging the top electrode completed the contact . The current 
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produced was monitored w i th a Kei th ley 4 I OA picoammeter that acted as 

the c u r r e n t to vo l t age converter. Its output voltage, which is 

d i rec t l y proport ional to the low frequency capacitance of the device, 

was then displayed on a Bryans 26000 chart recorder. This not only 

provided addit ional gain to the system, but also a source of response 

t i m e type distort ion i f any f i l t e r , eg a capacitor, was used at the 

input to remove noise. Such distort ion is a crucial consideration in 

such t ime domain measurements since i t can introduce error. The 

p icoammeter rise t ime on its low ranges is 0.25s; thus, a capacitor 

with a value less than 0.25mF had to be used (the input impedance of 

the char t recorder being I megohm). These sources of t ime constant 

dispersion lead to a l imi t ing of the ramp rate if distort ion of the 

resultant curve is not to occur. 

In p r a c t i c e , though, the requirement that the sample be in 

t h e r m a l equi l ibr ium is more important: this l imits the ramp rate to 

less than 50 mV/s. Thermal equi l ibr ium can be seen to exist by 

sweeping the cu rve in both direct ions. Ideally, the two curves 

obtained above and below the zero line should be mirror images of each 

o t h e r , as shown in f igure 4.2. The zero line does not represent zero 

capac i t ance because of a c u r r e n t c o n t r i b u t i o n f rom the stray 

capacitances present in the c i rcu i t . These have to be compensated for 

and are evaluated by performing a second scan wi th the sample 

d i sconnec ted . Any slope in the resultant curve indicates leakage, 

possib ly th rough the input connections. The cryostat used had 

wel l - insulated independent entry points to prevent such a problem. If 

the low frequency capacitance curve slopes, then this means that the 

dev ice i tself posesses a non-ideal insulator which is unsuitable for 

the fol lowing analysis. 
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Before the curve can be used to determine surface state density 

values, i t has to be cal ibrated in terms of capacitance. This was 

accomplished in two ways: 

(1) Compar ison w i th the result ing structureless curve obtained by 

ramp ing w i t h the dev ice s u b s t i t u t e d by a standard polystyrene 

capacitor. 

(2) Use of the high frequency capacitance curve: this requires in i t ia l 

match ing of the two zero positions fol lowed by a superposition of the 

measured characterist ics in the accumulation region. is thus 

given by 

C | f = C q x (Height of C | f ) / (He igh t of C Q X ) (4.1) 

This procedure is made easier by using the normalised version of 

equation 3.6 below. 

C C,, /C C. , /C 
N = - ° * ( ! L - P2L . h - L - O X ) (4.2) 

S S q.A I - CJC I - C. r /C M If ox hf ox 

It is best to use the f i r s t method in i t ia l ly to ensure that the 

insulator capacitance is not frequency-dependent which could indicate 

the presence of a non-Ohmic back contact . 

4.22 Experimental D i f f i cu l t ies 

(a) The ou tpu t current f rom the MOS device is extremely small 

(picoampere range) and, therefore, the technique suffers f rom the 

usual noise problems brought about by vibrat ion and poor screening. 

One example of the former was the periodic hum of the the chart 
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recorder, caused by an internal fan, which meant that i t was necessary 

to mount i t away f rom the main equipment on a separate bench. The 

lat ter meant that the entry points to the cryostat had to be careful ly 

screened and earth loops avoided. 

(b) Under such low c u r r e n t conditions, leakage currents became 

obv ious . In the case of the organic mult i layers used, these currents 

gave r ise to an intolerable slope in the measured character ist ic 

making surface state determinat ion impossible. 

(c) D r i f t , ie ver t ica l shi f t of the experimental curves, also occurred 

under certa in experimental conditions such as gas exposure, possibly 

caused by the presence of water vapour. 

4.3 The Admittance Measurement System 

The MIS devices were mainly analysed through measurement of their 

sma l l signal admit tance which was done using a t radi t ional phase 

sensitive detector system ( I ) . In order to reduce the e f f o r t involved 

in col lect ing and analysing the data, a microcomputer was added to the 

equipment. The associated hardware and software are described af ter a 

cons iderat ion of the input c i rcu i t to the lock- in-ampl i f ier and the 

cal ibrat ion procedure ut i l ized. 

A Brookdeal Ortholoc, Model 9502, lock- in-ampl i f ier was the phase 

sensitive detector used. It measures the magnitude and phase of an ac 

signal produced by a sample that has been excited by an ac source, and 

resolves them into the in-phase and out-of-phase component w i th 

respect to the applied signal. These can be seen to be proport ional 

t o the capac i t ance and conductance of the sample by a simple 

consideration of the c i rcu i t elements involved. 



4.31 Input C i rcu i t 

For the purposes of measurement, the sample admittance may be 

represented as the parallel combination of a capacitance C m and a 

conductance G thus (see f iqure 3.5) m 

Y = G + j«C (4.3) m m 1 m 

If the sample is driven w i th a sinusoidal voltage v. a current i r i m 

is generated, (see f igure 4.3a) which f rom elementary theory is 

given by 

Therefore f rom equation 4.3 

G m = R e ( i m > / v i & * C m = l m ( i m > / v i ( 4 ' 5 ) 

where the real and imaginary parts of i can be considered as the 

in-phase and out-of-phase components of the signal. 

C o m m o n l y a sense a d m i t t a n c e is used to d e t e r m i n e i ' m 

and the voltage developed across this is measured w i th a voltage 

sensi t ive detector. If the input impedance of the lat ter and that of 

the interconnecting cables are neglected, it can be seen how a simple 

sensing res is to r (see f i g u r e 4.3b) or capacitor (see f igure 4.3c) 

complicates the above analysis. 

The output voltage across the sense resistor, using the pr inciple 

of voltage division, is: 

v^ = v. R (G + juC )/( I + R G + i R " C ) o i o m 1 m ' o m 3 o m 

(4.6) 
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S u p p o s i n g R Q G m < I , ( R Q W C m ) 2 < I , R Q ( C m ) 2 < G m ie the 

impedance of the sample is much greater than that of the sense 

resistor, then: 

v o = v i R o < G m + **n? ( 4 ' 7 ) 

which is as required. If a capacitor is used as the sense element the 

output voltage is now; 

v o = v i ( C m / C o " i G m * C o » < 1 + C m ' C o + G r r / i W C o> ^ 8 > 

S i m i l a r l y i f C m / C 0 < I , ( G J U c / < I , (GmM2/CQ< C m 

then the above reduces to : 

v o = v i ( C m " i G m / w ) / C o ^ 

The advantage of using a capacitor as the sense admit tance is that the 

output is frequency-independent. 

In both cases, the set of conditions necessary so that the sense 

e lemen t does not disturb the voltage dropped across sample creates 

o p e r a t i o n a l f requency l i m i t s . For a t y p i c a l set of possible 

measurement values 30pF < C < 500pF, G < IOUS , G L)<\pF, it 
m r ' m ' m K ' 

is found that the c i rcu i t shown in f igure 4.3b can only be uti l ised 

when R =10 ohm at frequencies less than I kHz and C = 0.03uF for o o 

f requenc ies g rea te r than I k H z , in f i gu re 4.3c. In order to 

accommodate other frequencies, the sense impedance has to be made 

sma l le r , thereby leading to loss of resolution due to detector noise. 
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Figure 4.7 E f fec t i ve ro ta t ion of admi t tance vectors in the presence of 
a parasi t ic capaci tance. 



A bet te r approach is to use a v i r tua l -ear th ampl i f ier (VEA) as 

the detector. This type of detector has a very low input impedance 

and measures the c u r r e n t d i r e c t l y . The cable admittance has 

neg l ig ib le e f fec t in this conf igurat ion as i t is shunted by the very 

large input admit tance of the detector. 

4.32 Input C i rcu i t w i th VEA. 

A VEA can be formed f rom an operational ampl i f ier w i th shunt 

feedback as in f igure 4.4. It produces an output voltage: 

v f = - Z F i m (4.10) 

where Zp is the feedback impedance. By choosing this as a 

c a p a c i t o r , the frequency dependence of the conversion factors is 

el iminated. Thus def ining: 

Zp = I / j " C F (4.1 I) 

we obtain f rom equations 4.5 and 4.6: 

G = C r / v« lm( v , ) (4.12) m r $ t 

C = - C F / vo Re( v ) m ' f T 

The actua l design is very similar to that described by Boudry (2) 

where a detai led appreciation is given. The c i rcu i t , shown in f igure 

4 . 5 , inc ludes an a c t i v e feedback s e c t i o n , in add i t i on to the 
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capaci t ive one. This act ive feedback section acts as a dc leakage 

pa th f o r d i sp lacemen t cu r ren t s t h a t might otherwise upset the 

ampl i f ier output. 

4.33 Bias Injection Ci rcu i t 

The c i rcu i t that mixes the dc and ac signals and applies them to 

the sample is also i m p o r t a n t as i t is a source of phase and 

capacitance error. In i t ia l ly the ac signal was coupled inductively 

i n to the system using an r f t ransformer, but in pract ice this was 

found to have a low frequency l im i t of I kHz which meant that a second 

m ixe r was required to funct ion below this frequency. Fortunately, 

th i s coincided wi th a change of lock-in input preampl i f iers. For high 

f r equenc ies , a vo l t age p r e a m p l i f i e r fo l lowed the variable sense 

e lement , whilst at low frequencies a current sensitive preampl i f ier 

was used. The actual input impedance of the lat ter (nominally I ohm 

at a gain of 10"** A/V) acted as the sense element and thus replaced 

the need for a variable sense element. The mixer c i rcu i t that was 

used w i th the VEA is shown in f igure 4.6 and again fol lows that of 

Boudry (2). 

4A Calibration 

Stray admittances introduce frequency-dependent error that has to 

be compensated for by cal ibrat ion of the equipment at every frequency. 

The loss can be represented by an e f fec t ive rotat ion or change in 

phase of the reference signal as demonstrated in f igure 4.7. The 

resultant output voltage is al tered f rom: 
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v cosB = j(G /U) C ) v. o 1 m o 1 
(4.13) 

to 

V 
g 

= V q cos (B + 9) = v j S> ( G M / U - 9 C m ) / C o 

(4.14) 

where 9 is the loss angle and, assuming cos9=l , sin9=9. Therefore, a 

phase e r ro r introduces a te rm C m in the expression for G m . If we 

do a rough calculat ion, assuming that 9 C m is not greater than 5/ of 

G m A u , for typical values of conductance and capacitance of IpF and 

500 pF respectively we f ind that 9 < I 0 ~ \ That is, the phase control 

on the f ront of the lock- in-ampl i f ier must be adjusted to wi th in less 

than a thousandth of a degree for accurate cal ibrat ion; obviously this 

is very d i f f i cu l t . An a t tempt was made to automate this tedious 

procedure by connecting this control to a stepper motor and f rom there 

to the microcomputer. However, the backlash on the control and the 

stringent accuracy requirement meant that this a t tempt at automation 

was unsuccessful. 

The ac tua l process of cal ibrat ion is done by substitut ing the 

sample wi th standard components. Polystyrene capacitors were found to 

be the best low loss capacitors; variable air-spaced ones suffered 

f rom slight var iat ion owing to humidi ty changes, whilst mica ones were 

found to be too lossy. The capacitor is t reated as ideal and the 

phase control adjusted unt i l there is no def lect ion on the conductance 

meter . This is checked by inserting a known resistor in parallel and 

ensur ing that the value registered on the conductance channel is 
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correct. A t the same t ime , the chart recorder is cal ibrated so that an 

i n t eg ra l number of v e r t i c a l divisions correspond to a part icular 

va lue. Before the above is carr ied out, the zero of fset controls of 

t he lock- in -ampl i f ie r are used to adjust the meter deflections to 

zero. These are rechecked a f ter cal ibrat ion as they are found to be 

dependent on the position of the phase contro l . A summary of the 

above procedure is given below: 

(1) Wi th the sample disconnected, the zero of fset controls on the 

lock- in-ampl i f ier are used to set both capacitance and conductance 

meters to zero. 

(2) An " ideal" capacitor is inserted and the phase control adjusted 

unt i l the conductance meter registers zero. 

(3) The sample is disconnected and the zero offsets checked and reset 

i f necessary; (2) is then repeated. 

(4) A resistor is then added in parallel w i th the capacitor. The 

r a t i o of the measured values of capacit ive and conductive voltage 

should be equal to \A/CR if the equipment is cor rect ly cal ibrated. This 

relat ion is simply derived f rom equation 4.7. 

4.5 The Microcomputer 

4.51 The Hardware 

In the conductance technique many admit tance-vol tage plots are 

made at d i f ferent frequencies f rom which the parallel conductance is 

e x t r a c t e d by compensating for C and R . The transfer of data 
ox s 

from graph paper to computer for this compensation can lead to errors. 

It was therefore decided at an early stage in the work to incorporate 

a microcomputer to do the data col lect ion and transmission to a 
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mainframe computer. A t that t ime there was no " fu l ly dressed" 

microcomputer such as the re lat ive ly modern Commodore PET. There were 

severa l s ing le board computers on the market , but they lacked 

expandabil i ty and did not represent a complete system. An SWTPc 6800 

system hobby-kit was purchased, w i th the l imi ted funds available, to 

emulate the sophisticated university system which was used in i t ia l ly 

t o demonstrate the idea. It was of modular construct ion where extra 

memory or pe r iphera l boards could be f i t t ed on the spare slots 

p rov ided . A l l these were assembled by soldering the components into 

the bare boards supplied. A tota l of four 4kbyte memory boards and 

seven peripheral inter face boards were made. 

There were two d i f fe rent types of peripheral board, serial and 

para l le l , based on the Motorola 6850 and 6820 integrated c i rcui ts 

respect ive ly . The serial boards were for communicat ing w i th other 

computers or terminals and the parallel ones for interfacing w i th A / D , 

D/A converters, a d ig i ta l vo l tmeter and a cassette recorder. The A / D , 

D /A conve r t e r s were used to connect the microcomputer to the 

exper imenta l equipment. The Ferrant i ZN425E dual mode 8 bi t data 

acquisit ion chip was the integrated c i rcu i t around which both A / D and 

D/A converters were bu i l t . Few external components were required and, 

t h e r e f o r e , it was possible to redesign one of the peripheral boards to 

accommodate two such units. It was found that the 1 /2 /accuracy of 

the A/D converter was insuff ic ient when subsequent mathematical data 

manipulation had to be undertaken. Hence, this part of the system was 

upgraded wi th a 3h d ig i t DVM, w i th the advantage that the data 

acqu i red was visible and able to be ver i f ied. The accuracy of this 

has been found to be suf f ic ient . The D/A converter can be used under 
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program control to provide the gate bias. Any required dc of fset is 

derived f rom the same power supply that is used to run the cassette 

r e c o r d e r . An ope ra t i ona l a m p l i f i e r is used to combine the two 

voltages. 

The data and programs are encoded digi ta l ly on an industrial 

Raca l P70 Digideck cassette recorder. The information is stored on 

the cassette tape in I kbyte large blocks, each of which corresponds 

t o approximately one terminal screen fu l l of characters. Reliable 

f l oppy disc systems were unavailable when the original system was 

cons t ruc ted , but , nevertheless, magnetic tape is st i l l the preferred 

storage medium for datalogging systems. 

The most expensive i t e m of hardware associated wi th the 

microcomputer was a Ci fer Systems termina l . This part icular model was 

chosen because i t was the standard in the department and also because 

i t was compatible wi th the mainframe computer that was used. 

4.52 The Software 

In order to run a computer system that col lects data, stores and 

d ispatches i t to a ma in f rame computer, an operating system is 

required. SIXTH, developed in this department by Dr B.J. Stonier, and 

based on FORTH (3) is not only an operating system, but also an 

assembler, edi tor, interpreter and compiler. It is a complete package 

which provides the experimental physicist wi th a high element of 

control over his equipment. 
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SIXTH is a dictionary-based language consisting of words which 

correspond to cer ta in operations. READ, for example, wi l l transfer 

one block of informat ion f rom the cassette to a buffer area wi th in the 

ma in memory of the microcomputer. There are words to control 

peripherals and ones that do the normal programming type operations 

such as IF and DO. New definit ions may be defined mnemonicaily in 

terms of old ones to build up a user-oriented vocabulary that carries 

out various tasks. An example of a short program is given below where 

the word DOUBLE is defined to be a program that gets a let ter f rom the 

termina l , duplicates i t and then prints i t out on the screen. 

: DOUBLE GET DUP SEND SEND; 

The individual commands are separated by spaces and concatenated into 

the new command by the enclosing : and ;. 

S IXTH is a stack oriented language manipulating numbers in a 

reverse Pol ish fashion. In this respect, i t can be likened to a 

H e w l e t t Packard calculator in tha t , in ar i thmet ic operations, the 

ope ra to r fo l lows the operand, e.g. 2 2 * . (. prints the result). 

On the basic system, only integer manipulation is available; but for 

ease of use and in te l l ig ib i l i ty (since very small capacitance values 

were to be displayed), i t was decided to add a f loat ing point package 

t o the sys tem. This was ins ta l l ed a t the ve ry top of the 

microcomputer memory. The linking programs between i t and SIXTH are 

g iven in the f i rs t section of Appendix I. Numbers on the stack in 

floating point format can be manipulated wi th commands such as X. and 

+ .. B i n a r y - w i s e , the numbers are 4 bytes wide: I byte for the 
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exponent, 3 for the mantissa. Since the stack is only two bytes wide, 

then a f loat ing point number takes up two locations. 

The assembler level of SIXTH makes the interfacing of peripherals 

very easy. The subsequent block of programs in Appendix I are used to 

interface to the 3h digi t DVM. The next set of programs convert the 

input data into a presentable exponential-type fo rm. Various programs 

have been wr i t ten to manipulate this data: a list of them and their 

corresponding actions is given in Appendix 2. Their actual use in 

d e t e r m i n i n g su r face state density values is outl ined in the next 

chapter. 

4.53 SIXTH in Detai l 

On a programming level, the SIXTH format , where new commands are 

w r i t t e n in t e rms o f lower level def ini t ions, can be seen to be 

p y r a m i d a l in f o r m . ( T r e e l i k e wou ld be another desc r ip t i on . ) 

Structured programs are developed which consist of small easily-tested 

modules that are linked together to perform a desired process. When 

many programs are wr i t ten which use the same basic routines, the above 

neat pyramidal analogy breaks down as the system control goes f rom one 

de f in i t i on at one level to another somewhere else; on a machine code 

level, this gives rise to what is known as threaded code (4). 

When a def in i t ion is implemented, by typing a word in at the 

termina l , the microcomputer system monitor passes control to that 

wo rd . The lat ter consists of a series of branches to those definit ions 

tha t const i tute the word; in machine code, this appears as a series of 
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JSR ( jump to subroutine) instructions. Besides the lat ter , a word 

also conta ins what is known as a header. This includes four bytes 

that act as a label for that word and a link address which holds the 

d ic t ionary together. The same format is used for kernel words (basic 

sys tem definit ions that interface the language to the microcomputer) 

and machine code interfacing routines where the bulk of the def in i t ion 

is no longer a series of JSR instructions, but rather the computer's 

basic instruct ion set. 

The programs are stored on cassette and compiled into the memory 

o f the microcomputer when needed. With the above knowledge, i t is 

possible to undertake modif icat ions of the compiled code which saves 

t ime edit ing the original source text and the consequent reloading. A 

simple example is the accounting of the mul t ip l ier buttons on the 

f r o n t of the lock- in-ampl i f ier . This is performed by substituting the 

JSR instruct ion that implements the appropriate mul t ip l icat ive routine 

w i t h NOP (do no th ing ) i n s t r u c t i o n s . This is done using the 

microcomputer 's own monitor. Another example is the abi l i ty to 

restore pointers using the monitor editor a f ter a system crash. This 

enables data to be recovered intact . 

4.6 Sample Details 

4.61 Source of Samples 

The s i l i c o n w a f e r s w e r e p r o v i d e d by th ree indus t r i a l 

es tab l i shmen ts : Phi l ips Research Laboratories, Redhi l l ; GEC Hirst 

Research Centre, Wembley; and the Plessey Al len Clark Research Centre, 

Caswell. The f i rs t supplied a standard sample which had already been 
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analysed to give some informat ion on the surface states wi th in the 

bandgap. This sample was used to check our equipment and ensure that 

i t was g i v i n g the c o r r e c t resul ts . The others provided simple 

substrates w i th various oxide thicknesses, predominantly 100 nm, but 

some as thin as 5 nm. Two oxides were also grown in the Department of 

Applied Physics at Durham - one 60 nm thick on an epitaxial substrate 

and another 12 nm thick on a simple bulk substrate. In addit ion, a 

s i l i con sample which was doped wi th gold, di f fused in f rom the rear 

side, was used. This was supplied by Dr P.G.C. Al lman and originated 

f rom Dr A.G. Nassibian. 

4.62 Sample Character ist ics 

(1) The Philips sample was n-type, I I I or ientat ion, w i th an epilayer 

doped wi th arsenic to give an electron concentrat ion of approximately 

17 -3 
10 cm . The oxide was wet grown at 1200 K in oxygen. 

(2) The bulk GEC samples were n-type, I I I or ientat ion, predominantly 

15 -3 
w i th a doping concentrat ion of 1.3 x 10 cm . The oxides were 

of various thicknesses grown in dry oxygen at 1400 K. A set of p-type 

epitaxial samples f rom GEC had an epilayer wi th doping concentrat ion 

14 -3 

of 5 x 10 cm oxide layer 100 nm thick. 

(3) The Plessey samples were both n-type and p-type 100 or ientat ion of 

2 ohm cm and 4-6 ohm cm resist iv i ty respectively. They possessed 5 nm 

dry oxides. 

(4) Two wet oxides were grown in the department - one I2nm on a 3 

ohm cm bulk p-type substrate and the other 60 nm on a epitaxial p-type 

substrate. 

-56-



4.63 Sample Contact ing Procedure 

Before an ohmic contact could be made to the back of the samples, 

the oxide had to be removed. In i t ia l ly this was done wi th a PTFE 

s t ick and diamond paste, but an etching procedure using buffered HF 

was found to be easier. For p-type si l icon, aluminium was then 

evaporated and, for n-type, a gold-antimony al loy. This was fol lowed 

by a high temperature anneal in nitrogen at 770 K for ten minutes for 

p - t ype , and at 730 K for f i f teen minutes w i th n-type. The Ohmic 

contacts were then checked on a curve t racer; usually, a straight line 

was s u f f i c i e n t p roo f , but c a l c u l a t i o n of the r e s i s t i v i t y and 

compar ison w i t h the bulk value would be a complete procedure. 

Sometimes, especially on n-type mater ia l , fur ther anneals were found 

to be necessary. 

Top contacts of I mm diameter were evaporated through a brass mask 

using an Edwards Mk IV evaporator f rom a tungsten f i lament . Langmuir 

f i l m s required the substrate to be cooled by liquid nitrogen and also 

a ve ry slow evaporation ra te . A l ternat ive top contacts such as 

mercury drops and graphite paste were used when a quick evaluation of 

the sample was required. 

4.64 Sample Measurement 

Physical contact to the top electrode was made wi th a gold 

ball-shaped probe that was control led wi th a micromanipulator, whilst 

contact to the back was through f ly ing lead attached to the sample 

with silver paste (Acheson Electrodag 915). The sample was mounted on 

an insu la t ing base and measured in a stainless steel cryostat , 
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although sometimes a specially constructed glass sample chamber wi th 

integral heater was used. Between measurements, the samples were 

stored in a desiccator under dry ni trogen. 

4.7 Experimental Results 

The experimental layout for the admit tance measurement system is 

shown in f igure 4.8. In this section, some basic results using this 

sys tem are presented. These are divided into two parts, f i rs t ly those 

obtained wi thout ut i l is ing the microcomputer and those obtained w i th 

i t . 

4.71 Admit tance-Vol tage Characterist ics 

The low frequency ( IkHz) admit tance-vol tage characterist ics for 

an n-type epitaxial MOS sil icon structure are shown in f igure 4.9. 

The f la t portions of the capacitance character ist ic on the lef t and 

r i g h t sides of the curve indicate the presence of inversion and 

a c c u m u l a t i o n of the dev ice . The depletion region, in between, 

exh ib i t s a peak in the conductance character ist ic produced by the 

a c t i o n of surface states. The almost zero value of accumulation 

conductance denotes a very small series resistance value, which is to 

be expected w i th an epitaxial substrate. However, the influence of 

the series resistance increases w i th frequency and i t was found, even 

on ep i tax ia l substrates, that as the frequency increases, a plateau 

s i m i l a r to that in f igure 3.5 is observed. Thus compensation for 

ser ies resistance can be seen to be necessary even for epitaxial 
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samples. 

The admittance-voltage character ist ics, measured at 10kHz, for a 

p - t y p e e p i t a x i a l s i l i c o n s a m p l e a re shown in f i g u r e 4.10. 

Accumulation now occurs at the opposite voltage value (ie le f t ) , where 

aga in an almost zero accumulat ion conductance can be seen. The 

presence of a second conductance peak and capacitance inversion (which 

normally does not occur unt i l wel l below 100Hz) is due to the presence 

of an external inversion layer outside the top contact , formed by the 

a c t i o n of posit ive charge wi th in the oxide. This charge is the f ixed 

ox ide charge mentioned in section 2.2. It is also apparent through 

the displacement of all the MOS measured characterist ics to the lef t 

of the zero voltage axis. 

4.72 Results obtained w i th the Microcomputer 

In f i g u r e 4 . 1 1 , t he measured characterist ics (100kHz) for a 

p - t ype bulk sample are shown. It can be seen that the high 

a c c u m u l a t i o n conductance, caused by the larger series resistance, 

actual ly obscures the surface state induced conductance peak. The 

paral le l conductance calculated using the microcomputer is shown for 

t w o d i f fe rent conditions to emphasize the importance of the series 

res is tance compensation. That is, i t is calculated using equations 

3.13 and 3.14 where, in the lat ter case, series resistance is not 

taken into consideration. This may be more clear in f igure 4.12, 

where the parallel conductance for an n-type bulk sample is shown, (a) 

wi thout and (b) w i th series resistance compensation. A series of 

pa ra l l e l conduc tance p lo ts versus bias fo r an epi tax ia l n-type 
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structure are given in the next chapter where they are used to obtain 

a parallel conductance versus frequency curve. 
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Chapter 5 

Surface State Density Measurement -
A Novel Approach Using a Microcomputer 

5.1 Introduction 

In t h i s chapter, a semi-automatic interface character izat ion 

system based on a microcomputer is introduced. The abi l i ty of the 

microcomputer to work in real t ime has enabled a development of the 

conductance technique to be made which signi f icant ly reduces the 

e f f o r t required to obtain surface state density information for an MIS 

device. Furthermore, by regarding the parallel capacitance of the 

semiconductor surface in a d i f ferent w a y , ^ , the surface potent ia l , 

can also be easily found. 

5.2 Practical Drawbacks of the Conductance Technique 

The conductance technique may be theoret ical ly the best method 

f o r ob ta i n i ng the su r face s ta te densi ty of an MIS device, but 

p r a c t i c a l l y i t has several problems. For example, i t is d i f f i cu l t to 

p red ic t f rom the measured values of capacitance and conductance the 

l i ke l y l oca t i on in the frequency domain of the resultant paral lel 

conductance peak. Thus, the procedure of admittance measurement at 

var ious frequencies, outl ined in section 3.4, is obviously wasteful , 

s ince t he re w i l l be only a small voltage range which wi l l y ield 

pa ra l l e l conduc tance peaks w i t h i n the f requency range of the 

equipment. Computed curves of parallel conductance versus frequency 

f o r d i f f e r e n t su r face p o t e n t i a l s shown in f i gu re 5.1 help to 

d e m o n s t r a t e th is p o i n t . In a d d i t i o n , the exped ien t analys is 

techniques require accurate location of the parallel conductance peak 

so extra scans are normally required. 
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A second problem is that identical voltage values at d i f fe rent 

f requenc ies m igh t not correspond to the same value of surface 

potent ia l : this may be due to ion mot ion, or trapping of charge in the 

ox ide o r , poss ib ly , po la r iza t ion . Consequently, distort ion of the 

der ived curve can result. The presence of the lat ter e f fects can be 

de tec ted by examining the hysteresis characterist ics when the device 

is cyc led be tween negat ive and posit ive bias (see section 2.43). 

Since the start of this work, equipment has been described ( I ) which 

circumvents the above problems by operating in a swept frequency mode 

where the gate bias is held constant; however, i t is complicated and 

great care is required in its construct ion. We wanted to maintain the 

s impl ic i ty of our apparatus but reduce the e f f o r t necessary to obtain 

results. 

5.3 Real Time Processing 

Computer-aided measurement is becoming more widespread as 

m i c r o c o m p u t e r s become cheaper and more usable. I n i t i a l l y 

microcomputers were used simply as data logging systems; in fac t , ours 

began in this way acting as an intel l igent interface to a mainframe 

computer. However, small microcomputers have now become powerful 

enough to be used for control and/or signal processing on their own. 

Hence we have developed our own microcomputer as a real t ime 

processor , in part icular to convert the measured data to values of 

paral lel conductance as the bias scan proceeds. 
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5.4 Parallel Conductance Peaks 

A set of real t ime parallel conductance versus bias curves for 

d i f f e r e n t frequencies are shown in f igure 5.2. The fact that the 

curves exhibit maxima can be seen f rom a consideration of the simple 

s ingle t ime constant expression for the parallel conductance given in 

sect ion 2.51. The la t ter , though not s t r i c t l y val id for real data 

analysis, is adequate for i l lustrat ive purposes as any consideration 

o f the actual equations is obscured by mathematical complexi ty ; and, 

in any case, the var iat ion is qual i tat ively the same. Since equation 

2.19 is symmetr ical in both X as well as <J and, as t is d i rect ly 

proport ional to bias, curves of parallel conductance w i l l peak in the 

voltage domain in a fashion similar to that in f igure 2.12. The 

actual curve width, however, is now determined by two factors: surface 

s ta te density and the t ime constant dispersion. This is not the case 

for peaks in the frequency domain where only the lat ter influences 

their w id th , thus explaining their preferred use. 

I f we si t at the bias on the experimental curves in f igure 5.2 

t h a t corresponds to a paral lel conductance maximum we can see that 

pa ra l l e l conduc tance values at h igher or lower frequencies are 

sma l l e r . S i m i l a r l y , in f i g u r e 5 . 1 , i f we fo l l ow a ver t ical line 

corresponding to a single frequency, by interpolat ion between the 

curves, i t can be seen that the parallel conductance curve peaks 

vol tage-wise at the same point. That is to say that the peaks in the 

vo l t age and frequency domains are equivalent. We have shown this 

experimental ly by s i t t ing at the parallel conductance maximum position 

of a parallel conductance versus bias scan. It was found that the 

paral lel conductance diminishes as the frequency is a l tered, either up 
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or down. 

A g rea te r a p p r e c i a t i o n of the above can be obtained by 

considering the single level distr ibut ion again, but at biases away 

f r o m the t rap level. The above principle of s i t t ing at any paral lel 

conductance peak maximum in f igure 5.3, changing the bias and seeing 

the pa ra l l e l conductance diminish no longer holds. Thus, i t can be 

seen tha t only slowly-varying distr ibut ions, such as the U-shaped one 

that f igure 5.1 corresponds to , produce the above parallel conductance 

peak equivalence. This wi l l not present problems since these are the 

on ly ones entertained by the mathematical theories that match the 

experimental curves. 

5.5 Novel Surface State Density Measurement Procedure 

The purpose of demonstrat ing that the parallel conductance 

maximum is equivalent in both domains is the basis of the proposed 

surface state density measurement technique. It was shown in Chapter 

3 t h a t the determinat ion of the paral lel conductance maximum in the 

frequency domain is of pr ime importance in calculat ing surface state 

densi ty in format ion. Since i t has been demonstrated that the parallel 

conductance maximum is identical in the voltage domain, the proposal 

is t o discover i t there, which is far more easily done in real t ime 

w i t h our microcomputer system. If the bias corresponding to the 

maximum is held constant while the frequency is varied by a factor of 

f i v e and the parallel conductance is then measured, i t can be seen 

that the Simonne ra t io , and thus the surface state density, w i l l be 

obtained. This procedure is obviously quicker than the conventional 

method where all the data has to be col lected before any analysis can 
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take place. Repet i t ion of this procedure at d i f fe rent frequencies 

w i l l bu i ld up a series of values of surface state density across the 

bandgap. Each point takes about half an hour to obtain, including 

t ime for cal ibrat ion and calculat ion of bandgap position using the 

fo l lowing. This is an est imat ion for the production of an accurate 

va lue ; i t is possib le to obtain quicker less accurate answers in 

m inu tes . This compares very favourably w i th the period of days 

necessary in the standard conductance technique. 

5.6 Semiconductor Capacitance 

The semiconduc to r surface capacitance, Cp, calculated using 

equa t ion 3.13, is the sum of the surface state and depletion layer 

capaci tances (see section 2.41). It has been shown (2) that , at the 

parallel conductance maximum, the parallel conductance value is equal 

t o H^xlf' t he su r face s t a t e capac i tance . Therefore, by simple 

subt rac t ion , a value for the depletion layer capacitance can be found. 

This is a single-valued funct ion of the surface potent ial and in the 

depletion region is given by the simple expression: 

Consequently, if the doping density is known, the above equation can 

be used to relate a part icular surface state density to a bandgap 

posit ion. The advantage of this method is that the surface potent ial 

is ob ta ined f rom the same data which gives surface state density; no 

fur ther separate measurement is necessary. 

2 (S» s - kT/q) /q £ c N C 
sc 

(5.1) 
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5.7 Assisted Peak Location 

Precise determinat ion of the parallel conductance peak position 

is obviously very important , but i t is not easy to do this by eye f rom 

a g raph , especially in the presence of experimental noise. A more 

reliable semi-automatic peak locator has been developed which removes 

the u n c e r t a i n t y in the location of the peak. It is run on the 

microcomputer in the form of a low noise d i f ferent ia tor which measures 

t he gradient of the experimental curve accurately in the presence of 

noise. 

The process is based on the method of least squares, which is an 

elegant technique for handling corrupted experimental data. Here a 

representation of the data in the form 

y = a Q + OjX + a2X^ + agX^ + ap*^ (5.2) 

is ca lcu la ted by minimising the sum of the squares of the residuals 

i .e. the di f ference between y above, assuming various values of the 

c o e f f i c i e n t 'a 1, and y-measured, al l squared. The second coef f ic ient 

represents the gradient of the funct ion at x=0 and can be calculated 

in terms of local values of y which have an appropriate weight ing. We 

assume that the data can be represented by a second order parabola by 

t runcat ing the series a f ter the th i rd t e rm ; the gradient is then given 

by the fol lowing expression: 
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c=+k 

cf(x + ch) 

c=-k 
f t ( x ) = (5.3) 

+k 

•I. <* 
-k 

t h a t is , the sum of the points on either side of the point of 

in teres t , mul t ip l ied by c, the unit distance on either side, divided 

by some weighting factor . The actual derivat ion of the above is given 

by Lanczoz (3) and comes f r o m a solution of a whole set of 

simultaneous equations. The expression above is known as a central 

d i f ference formula type solution which requires knowledge of fu ture 

exper imen ta l results. It is implemented by s i t t ing at a position on 

the cu r ve and m u l t i p l y i n g ne ighbour ing po in ts by a factor as 

determined by equation 5.3 and listed in (4). The greater the number 

of po in ts used, the higher the accuracy - but the lengthier the 

computat ion. 

If the basic equations are resolved w i th a view to obtaining a 

backward di f ference formula solution, then knowledge of future values 

is no longer necessary and the gradient of the curve can be produced 

fo r the last measured point. In pract ice, the lat ter f i l t e r , w i th its 

p r e d i c t i v e nature, is found to be less accurate and, indeed, a l i t t l e 

wayward in the presence of large amounts of noise. However, when used 

in c o n j u n c t i o n w i t h the f i rs t f i l t e r , a good appreciation of the 

s i tua t ion is obtained. The name "low noise d i f fe rent ia tor " is derived 

f r o m a consideration of the frequency response of the above shown in 

f i g u r e 5.4. It can be seen to be a d i f ferent ia tor w i th its high 
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frequency response supressed. D i f fe rent ia t ion is an inherently noisy 

process since i t emphasises high frequency signals; the Lanczoz f i l te r 

e f fec t i ve ly introduces zeroes into the upper end of the frequency 

spectrum which minimizes its response there. 

5=8 Practical Procedure 

In order to provide some idea of how the microcomputer is used in 

conjunction w i th the lock- in-ampl i f ier , a typical run is now outl ined. 

This description wi l l include reference to the SIXTH commands that 

are used to get the system to perform the various tasks. It is not 

necessary for the operator to understand the in t r icate nature of SIXTH 

s ince i t has been designed to be simple to use. The commands (see 

A p p e n d i x I f o r a c o m p l e t e l i s t i ng ) are use r -o r i en ted w i t h 

mnemonic-type names to make them easy to remember. 

The f i rs t step is to manually adjust the lock- in-ampl i f ier to 

compensate for the e f fec ts of stray capacitance. This procedure was 

ou t l i ned in sec t i on 4 .4 , and inc luded c a l i b r a t i o n of the chart 

recorder . The microcomputer has to be cal ibrated as well i f the 

i n te rna l r e p r e s e n t a t i o n of the measured values is to be in a 

meaningful fo rm, rather than the digi ta l one inputted by some analogue 

to d ig i t a l converter. This is done wi th the instruction CALIB which 

def ines a factor that is used to compensate all the measured data. 

The voltage corresponding to a standard capacitance whose value has 

been previously entered into the computer is taken. The quotient of 

these two is, then, the factor by which al l other input data must be 

m u l t i p l i e d . A further reason for having the internal data values in 

t e rms of capacitance and conductance is that it makes compensation 
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f o r the e f fec t of strays so much easier. We have only compensated 

fo r the stray capacitance of the sample mount, for i t was found that 

t h e c o n d u c t a n c e losses in the leads were neg l i g i b l e in our 

measurements. 

Be fo re the microcomputer is used to produce values of parallel 

conductance, the MIS device is checked to ensure that i t gives good 

reproducible character ist ics. This means that the forward and reverse 

sweeps overlay one another, but does not preclude the presence of an 

amount of hysteresis. The examination wi l l also reveal gross defects 

such as whether the measured conductance maximum is double peaked (see 

sect ion 5.8.), which we are unable to analyse, or the presence of a 

leaky insulator. The lat ter of these defects is best discovered by a 

qu ick quasi-static measurement of the system. The location of the 

measured conductance maximum is noted since i t is in this v ic in i ty , on 

the accumulation side in fac t , that the parallel conductance peak wi l l 

o ccu r ; in order to save t ime, i t is best to star t the computer 

scanning close to this point. 

The next stage is to acquire the oxide capacitance and series 

resistance values into the system. The device is biased into strong 

accumulat ion w i th a voltage greater than 20 volts if possible, and the 

command OX typed at the terminal . The computer measures the 

capaci tance and conductance and uti l izes equation 3.12 to obtain the 

values of oxide capacitance and Rs/u. The awkward frequency division 

is an outcome of the mathematics, and is tolerated since i t makes 

p r o g r a m m i n g eas ier , o b v i a t i n g the need to enter the operating 

frequency of the lock- in-ampl i f ier . The system is now ready to give 

parallel conductance values. 
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The analogue ramp generator that has been used so far to bias the 

dev ice is replaced by a voltage supply based on a D/A converter 

control led by the microcomputer. The in i t ia l position is set f rom an 

examination of the exploratory curves and is usually on the zero volts 

side of the ant ic ipated peak posit ion, so that the sweep direct ion is 

away from zero. By typing SCANNER, the output of the D/A converter, 

and hence the bias applied to the device, is incremented. The 

para l l e l conductance is calculated at each step and output to the 

t e r m i n a l screen and also a chart recorder. In addit ion, ongoing 

gradient values are produced by digi tal f i l ters which help locate the 

paral lel conductance peak posit ion. If the central d i f ference formula 

is used for peak location, then the voltage at which the maximum 

occurs has to be sl ight ly exceeded. 

Once the operator has decided that the peak position has been 

found, he stops the ramp by pressing any key on the terminal . This 

ac ts as an interrupt to the program and returns control to the user. 

If necessary, the bias is reset to the peak location using the on 

screen i n f o r m a t i o n . The cor respond ing value of semiconductor 

capac i tance is found by typing in SEMICAP. The frequency is now 

a l t e r e d by a factor of f i ve , usually upwards because, pract ical ly , 

th i s has been found to give the best results. The reason for this is 

that the parallel conductance wi l l then be on the inversion side of 

the peak and, hence, more accurate, since i t has been shown by (5) 

t h a t the e r ro r in the pa ra l l e l conduc tance increases towards 

accumulat ion. The lock- in-ampl i f ier has to be readjusted before this 

measurement can take place which involves temporary replacement of the 

sample wi th a standard capacitor. A second CALIB command is then 
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en te red to r e c a l i b r a t e the microcomputer. When the device is 

reconnected, i t should be in its former bias state, but, if charge has 

leaked away, then the tested-for reproducibi l i ty should ensure that 

the sample is in the same state. An at tempt was made to construct 

c i rcui t ry that maintained the bias on the sample as the frequency was 

al tered, but this was found to be unsatisfactory. 

Before the value of parallel conductance at the new frequency can 

be obtained, the values of compensating oxide capacitance and series 

res is tance have to be measured. This is done by biasing the device 

into strong accumulation again, and typing OX. The commands CALCUL 

OUT are then used to produce the value of parallel conductance which, 

when compared wi th Gp/w (max), gives the Simonne ra t io f rom which 

the surface state density is found. 

5.9 Experimental Results 

In order to check the procedure developed to measure surface 

s ta te densities, a previously characterized standard MOS sample was 

obtained and examined. This was the Philips n-type epitaxial sample 

descr ibed in section 4.7. Its surface state density was calculated in 

both the novel way that we had developed, and also conventionally by 

co l lec t ing many d i f ferent admit tance-vol tage curves. The result ing 

paral le l conductance curves versus frequency for the lat ter case are 

shown in f igure 5.5. The corresponding surface state density values 

are shown inset where they are compared wi th the results obtained f rom 

our technique. The parallel conductance versus bias data for this are 

d isp layed in f igure 5.2. As can be seen, the surface state density is 

I I 2 I 
approx imate ly 3 x 10 c m " eV~ . This compared favourably wi th 
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t he midgap va lue of 5 x 10 , supplied by Philips, and also a 

similar value obtained using the quasi-static method. 

The l oca t i on of the surface state density values wi th in the 

bandgap was determined using the procedure outl ined in section 5.6. 

As previously mentioned, the advantage of this technique is that there 

is no need for any separate measurement or theoret ical calculat ion to 

be performed. However, in order to ver i fy our values, we did perform 

a Berglund (6) integrat ion of our data and compared the results. Good 

agreement was found. 

An epitaxial sample was used since i t was found that , as wi th the 

ox ide capacitance (2) i t was best i f these impedances were as low as 

possible so that only a small amount of the applied voltage was wasted 

by being dropped across these components. Thus, w i th bulk samples, 

the measured paral lel conductance was less easy to obtain as i t was 

obscured by the e f fec t of the large series resistance. The values 

I I - 2 - 1 
ob ta ined were gene ra l l y 3 x 10 c m eV for the wet grown 

12 -2 - I 
samples and of the order of 10 cm eV for the dry grown ones. 

Two measurements were undertaken to see whether our system could 

d e t e c t surface state density change. The f i rs t was the conventional 

" a l n e a l " process which consisted of a post-metal l izat ion anneal of a 

dry grown sample at 770K for fo r ty minutes. The result ing surface 

state density was almost beyond the measurement range of the equipment 

and requ i red f ine adjustment of the phase contro l . On calculat ion, 

i t was seen to be approximately lo'^cm~^eV~'. 
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In the second experiment, a gold-doped sample and an identical 

undoped control one were compared wi th this technique and also w i th 

the quasi-stat ic method. The results for the lat ter are shown in 

f igure 5.6. Similar values were obtained wi th our technique, but 

owing to the poor Ohmici ty of the back contact, a complete analysis 

was prohibi ted. 

There were other problems when uti l is ing our new technique, 

m a i n l y produced by the presence of sodium ions. For example, 

double-valued measured conductance peaks seemed to give spurious 

resul ts wi th anomalous Simonne ratios and negative values for the 

semiconductor capacitance. Mobile ions were proved to be responsible 

through the measurement of an intent ional ly sodium-contaminated sample 

wh ich gave such tw in peaks. The reason for this is that the sodium 

congregates in regions where i t changes the surface potent ial on a 

large enough scale to produce another peak. 

5.10 Summary 

In this chapter, a novel surface state density measurement method 

t ha t ut i l izes the real t ime processing abi l i ty of a microcomputer has 

been demonstrated. This has been done by outl ining the pract ical 

p rocedure involved in the determinat ion of a single value of N . 
M ss 

The advanced software makes the equipment easy and convenient to use, 

and is def in i te ly more f lexible than any other experimental control 

language such as BASIC. In addit ion, the results obtained using this 

method have been shown to be consistent wi th the values obtained by 

other techniques. 
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I t was decided to apply this technique to the analysis of gas 

ef fects on MIS devices, since i t was fe l t that its speed would be 

usefu l in such an area of work. However, i t was discovered that the 

ca lcu la ted value of surface state density might be inaccurate if other 

elements in the equivalent c i rcu i t had been changed by the gas and 

i nco r rec t l y compensated for. A br ief consideration of such ef fects is 

given at the star t of the next chapter. 
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Chapter 6 

Gas Effects on MOS Devices 

6=1 Introduction 

The p h y s i c a l p r o p e r t i e s o f severa l areas of a m e t a l -

insulator-semiconductor structure device could be a f fec ted by the 

presence of a gas. This would normally result in a change in the 

measured e l e c t r i c a l charac ter is t i cs of the device. The possible 

i n f l uence of a gas is best analysed by dividing the MIS structure into 

its component parts. For example, in f igure 6.1, the structure is 

s p l i t i n t o t h r e e a n d t h e c o r r e s p o n d i n g c h a n g e in t h e 

capaci tance-vol tage curve is i l lustrated. If the gas influences the 

m e t a l insulator region, then i t is liable to change the work funct ion 

of the device and introduce a lateral shi f t in the C-V curve. If i t 

a f f e c t s the i nsu la to r , possibly by changing the pe rm i t t i v i t y , the 

magn i tude of the curve wi l l be al tered. This is due to the fact that 

the maximum height is d i rect ly related to the insulator capacitance 

which is dependent on its pe rm i t t i v i t y . 

However, a varied number of interesting possibilit ies exist if 

t h e gas p e r m e a t e s th rough the insu la to r and in f luences the 

insulator-semiconductor inter face. If surface states are introduced 

or removed, the resultant change is in such a form that the analysis 

techniques of Chapter 3 may be applied; but if the e f fec t is to simply 

alter the occupancy of already present surface states, by changing the 

surface potent ia l , then a lateral shi f t similar to that for the work 

funct ion change case would be observed. 

Any change in surface state density is best monitored through 

measurement of the parallel conductance of the device; but care must 

be taken in deriving this f rom the measured characterist ics because a 
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Figure 6.1 Possible changes in- the C-V character is t ic of an MIS 

s t r u c t u r e brought about by the e f f e c t of gas on d i f fe rent parts 

that s t ruc ture . 



combinat ion of gas ef fects might have occurred ie both the surface 

s ta te density and the oxide capacitance could have been al tered. If 

the ox ide capac i t ance was then incorrect ly compensated for , an 

imaginary surface state density change would be introduced. 

The gas most extensively investigated was hydrogen as i t has been 

shown to be a very important element in the si l icon-si l icon dioxide 

s y s t e m ( 1 , 2 ) . Most of our measurements were made on a 

hydrogen-sensitive structure that has been developed as a hydrogen 

sensor (3), but whose operation is not completely understood. We have 

also carr ied out measurements using other gases on MIS structures 

where the insulator is si l icon dioxide; results wi th an al ternat ive 

insulator are described in the next chapter. 

6.2 Hydrogen Interactions on Palladium MOS Structures 

6.21 Introduction 

The palladium/hydrogen system has been the most extensively 

invest igated metal/gas regime. Interest was original ly centred on its 

phys ica l p r o p e r t i e s , espec ia l l y i ts a b i l i t y to absorb and pass 

hydrogen; more recent ly, the cata ly t ic decomposition of hydrogen by 

pa l l ad i um has been examined. Lundstrom (3,4) and others (5,6) have 

ut i l ised these properties in an MIS-type hydrogen sensor which has the 

f o l l o w i n g s t r u c t u r e : pal ladium-si l icon dioxide-si l icon. There is a 

controversy as to the actual operational mechanism: are surface states 

a t the insulator- semiconductor interface involved or is the influence 

of the hydrogen r e s t r i c t e d to the pa l l ad ium surface? Before 

discussing results using Pd MOS devices and a Pd Schottky barrier 
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7.51 The action of Moisture 

F igu re 7.12 shows the change in the capac i tance-vo l tage 

characterist ics that occurs on exposure to ammonia (similar results 

were ob ta ined w i t h hydrogen c h l o r i d e ) : bo th the accumulat ion 

capacitance and the amount of hysteresis have been increased. The 

change in the f o r m e r is due to an increase in the d ie lectr ic 

th i ckness , w h i l s t t h a t in the lat ter is due to an increased ion 

concent ra t ion in the f i l m . Since the gases were derived by bubbling 

n i t rogen through aqueous solution then these ef fects could possibly be 

accounted for by the presence of moisture in them. Indeed this was 

the case, for drying removed the e f fec t and bubbling nitrogen through 

plain water produced similar results. 

Fur ther evidence that moisture was an important contaminant in 

Langmuir f i lm devices was provided when graphite water-based top 

con tac ts were used, and not le f t to dry out for long enough. An 

anomalous step in the C-V character ist ic in the accumulation region 

was ob ta ined . This step in the C-V character ist ic and the rate of 

accumulation conductance increase could be reduced by evacuation of 

the c r y o s t a t , wh ich p resumab ly e x t r a c t e d the moisture trapped 

underneath the top contact . The decrease in the magnitude of the 

accumulation conductance also reduced the magnitude of the surface 

s ta te peak. Hence the increase in the conductance peak height that 

was found on some gaseous exposures (see f igure 7.13) does not 

correspond to an al terat ion in the surface state density, but rather 

is due to a change in the acccumulat ion conductance. This was 

confirmed by the fact that the forward bias dc conduct iv i ty changed at 

the same t ime. Since this is related to the ac conductance, then i t 
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dev i ce , a b r i e f review of the general properties of palladium is 

g iven. This wi l l demonstrate the extent of the e f fec t of hydrogen and 

the important role played by the surface of the pal ladium. 

6.22 General Physical Properties 

Thomas Graham, as ea r l y as 1866, no t i ced not only the 

pe rmeab i l i t y of palladium to hydrogen, but also that large volumes of 

i t were absorbed by, or as Graham termed i t "occluded" by, the 

specimen when i t was allowed to cool to room temperature in an 

a tmosphere of the gas. The dif fusion rate obviously increases w i th 

tempera tu re , but at low temperatures (below approximately 500K), i t 

was found that the rate l imi t ing step was not the hydrogen transport, 

bu t ra the r reac t i ons at the palladium surface, thus showing the 

l a t t e r ' s i m p o r t a n c e . Such temperature var iat ion also fac i l i ta ted 

analysis of the thermodynamic nature of pal ladium, part icular ly its 

change of phase under d i f f e r e n t cond i t i ons . In addi t ion, the 

adsorpt ion of the hydrogen was discovered to a f fec t the physical 

p rope r t i es (eg l a t t i c e cons tan t , t ens i l e strength) and e lectr ica l 

c h a r a c t e r i s t i c s (eg res is tance) of pal ladium. The most str ik ing 

change is the a l terat ion of the shape of a piece of palladium when 

cont inuously temperature-cycled: a f la t rectangular specimen is seen 

to constr ict and deform an enormous amount, probably due to phase 

changes wi th in the meta l . 

Recent ly , the chemical interact ion of hydrogen wi th palladium 

has been examined , using electron spectroscopy in part icular (7). 

D e m u t h (8), for example, came to the conclusion that the bonding 
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process of hydrogen on palladium mainly involved 3d binding electrons, 

whereas when hydrogen reacted w i th n ickel , 4s electrons played a part . 

This di f ference manifests i tself in the st icking coef f ic ients: 0.9 for 

hydrogen on palladium as compared wi th 0.25 for nickel (9). 

6.23 Palladium MOS Device Properties 

The f l a t band capacitance of a Pd MOS device is altered in the 

presence of hydrogen; a graph of concentrat ion versus change is given 

in f igure 6.2 to demonstrate this. The change corresponds to a 

la tera l shi f t of the whole capacitance-voltage curve. Lundstrom (10) 

maintains that this is due to a simple work funct ion change of the top 

contact (see f igure 6.1). However, Keramat i & Zemel ( I I ) have stated 

t h a t surface state change at the si l icon-si l icon dioxide interface is 

involved. Our equipment, which measures the parallel conductance of 

the dev i ce , should be able to resolve whether any surface state 

densi ty change has occurred on the interact ion of hydrogen wi th a Pd 

MOS device. 

6.231 Work Function Change 

In Lundstrom's model, hydrogen molecules dissociate into atoms on 

the pa l lad ium surface and some dissolve in the meta l . A f ract ion of 

these are then adsorbed at the Pd-Si02 ' n ^ e r f a c e where they sit w i th 

t he i r electrons sl ight ly displaced towards the pal ladium, thus acting 

as d ipo les. The resultant charge layer produces a voltage drop that 

must be added to the external applied voltage, which then gives rise 
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t o a le f tward lateral shi f t of the C-V characterist ics for both p and 

n - type s i l i con (see f i g u r e 6.3). This act ion can be more fu l ly 

understood by the fol lowing microscopic consideration. Zero bias 

idea l l y corresponds to the f la t band situation for both semiconductor 

t ypes ; when such dipoles are introduced into a p-type device, they 

w i l l repel holes f r o m the surface, thus driving the device into 

deplet ion. The capacitance at zero volts must then decrease, and 

everywhere else on the C-V curve must change accordingly, thus 

e f f e c t i v e l y introducing a shi f t of the curve to the le f t . Conversely, 

fo r n-type, the dipole a t t rac ts negative charge to the surface, giving 

r ise to accumulation at zero volts ie a capacitance rise which, when 

extended over the whole curve, again corresponds to a le f tward shi f t . 

Steele and Mclver (5) suggested that absorption rather than 

adsorption took place - for i t had been shown (12) in vacuum that the 

lat ter gave a voltage shi f t in the wrong d i rect ion. They suggested an 

a l t e r n a t i v e explanation based on the format ion of bulk palladium 

hydr ide wh ich wou ld g i ve the c o r r e c t f l a t band voltage shi f t . 

However, Lundstrom subsequently (13) explained the anomaly by pointing 

out that the presence of air and the fact that the dipole layer was at 

the internal interface produced an ent irely d i f ferent si tuat ion. He 

fu r the r proved that the reactions involved were predominantly surface 

ones using Langmuir adsorption isotherm plots. 
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6.232 Surface State Change 

Contrary to Lundstrom, Keramat i and Zeme! maintain that surface 

s ta tes are i nvo l ved . They have made measurements using thin 

tunnel l ing oxides and, by comparing their results wi th a theoret ical 

model (14), they propose that two donor levels at 0.4 and 0.6 eV below 

the conduct ion band are introduced by the act ion of hydrogen. This 

approach is u n s a t i s f a c t o r y in two respects. First of a l l , i t is 

i n c o m p a t i b l e w i t h the su r face s ta te reduct ion of si l icon-si l icon 

dioxide structures brought about by low temperature annealing in the 

presence of hydrogen (see section 2.2). Secondly, it cannot be used 

to explain the results of Lundstrom et al on thicker oxides, as wi l l 

be demonstrated below. 

There are severa l d i f f e r e n t ways t h a t the sur face state 

d i s t r i b u t i o n cou ld change and induce the experimentally-observed 

l a t e ra l sh i f t in the high frequency C-V curve. The introduction of 

donor states, as shown in f igure 3. le , or the removal of acceptor 

s ta tes which would give the opposite e f fec t (see f igure 3. Ih) are both 

possible examples. However, closer inspection of these curves reveals 

t h a t i f the states are scanned by the Fermi level as the bias is 

altered, their occupancy would change and the lateral shi f t of the C-V 

cu rve would acquire some fo rm. This is, a f ter a l l , the basis of the 

Terman technique. Hence the suggested levels of 0.4 and 0.6 eV, 

should have some e f fec t , if not noticeably on the high frequency C-V 

c u r v e , then surely on the paral lel conductance curves which are more 

sensitive to surface state change. 
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6.3 Experimental Difficulties 

Before the presentation of the results of the interact ion of hydrogen 

w i t h our devices, the problems that were encountered mer i t a br ief 

discussion. Hydrogen is, by nature, a dangerous gas and measurements 

were c a r r i ed out w i th due regard of its " l ighter than air" nature. In 

order t o prevent i t accumulating in the laboratory, the cryostat was 

pumped out at the end of each experiment, or i t was used in an 

enclosed environment such as a fume cupboard or glove box f rom where 

the hydrogen could be vented outside. 

6.31 Top Contact area change 

The adhesion of noble metals, l ike gold and pal ladium, on sil icon 

d iox ide is very poor. Gold can be easily scratched by probing and so 

i t is o f ten used in conjunction wi th another more adhesive metal in a 

double top con tac t conf igurat ion. Palladium also suffers in this 

respect, but our greatest d i f f i cu l t y was that the top contact of the 

pa l l ad ium ac tua l l y l i f ted o f f in the presence of hydrogen. This 

resu l ted in a decrease in the measured value of C on some MOS 
ox 

2 

dev ices and an increase in slope of the l /C versus voltage curve 

fo r a Schottky barrier device that was investigated. Ini t ia l ly, a 

phase change similar to that mentioned in section 6.2 which caused 

c o n s t r i c t i o n of a laminar sample, was thought to be responsible. 

However, l i f t o f f of the metal could be actual ly seen if a sample was 

v iewed under a microscope as i t was being exposed to hydrogen. 

Visually the electrode appeared to have a mat t , sometimes granular, 

appearance. Not all palladium top contacts suffered f rom this problem, 
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not even al l electrodes on the same sample. It seemed to be a 

part icular problem on the dry oxides, but some of the wet oxides made 

in the Universi ty also seemed to be sl ightly prone. With the former, 

an i n i t i a l hydrogen exposure of a sample could be used to discern 

wh i ch electrodes were worst a f fec ted - they would be the ones which 

possessed the mat t appearance previously mentioned. Even so, those 

top contacts that were considered good f rom this test o f ten degraded 

w i t h t i m e . Somet imes the ox ide capacitance change could be 

compensated for by the microcomputer and a new parallel conductance 

value calculated, but in other cases when the accumulation conductance 

value altered drast ical ly, this was not possible. Svensson (15) has 

suggested a technique to improve adhesion that involves heating the 

sample for th i r t y minutes in air at 473K. We t r ied this but found i t 

t o be unsuccessful. We discovered that evaporating onto a liquid 

n i t r ogen cooled substrate sometimes gave improved adhesion. Results 

using this method are given in section 6.41 for a specially prepared 

Schottky barrier s t ructure. 

6.32 Variation in Series Resistance 

The value of the accumulation conductance which determines the 

ser ies res is tance of the sample was also found to change in 

con junc t ion w i th the oxide capacitance on hydrogen exposure. Small 

dif ferences could be compensated for, but drastic changes would not 

resu l t in sensible values of parallel conductance. Smaller changes in 

the measured conductance such as the appearance of an anomalous step 

on the n o r m a l l y f l a t a c c u m u l a t i o n region of the response also 

occur red . This e f fec t , though, is d i f f i cu l t to explain; possibly the 
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change in resistance of the palladium mentioned in section 6.22 is to 

blame. 

6.33 Bias Stress Ef fects 

If a sample is biased at an elevated temperature for a period of 

t i m e then a lateral shi f t in the characterist ics wi l l be observed on 

re tu rn ing the sample to room temperature. This is known as bias 

tempera ture stressing and has already been discussed in section 2.43. 

Such stressing can occur at room temperature where i t might be 

confused wi th a gas e f fec t , i f the gas is admit ted wi th a bias applied 

to the sample. The ionic contamination of a sample indicated by the 

presence of clockwise hysteresis on p-type structures is not to be 

unexpected considering the method of palladium deposition. A tungsten 

f i lament which is a wel l-known source of sodium ions was used. Even 

pre-heating of the f i lament and masking o f f of the in i t ia l evaporated 

m a t e r i a l d id not stop sodium contaminat ion. An electron beam 

evaporator would have been a far better method of deposition, but this 

was not available to us. The simple solution to the above problem is 

to admit gas at zero bias. 

6A Experimental Results 

6.41 Palladium-Sil icon Schottky Barrier Results 

Palladium was evaporated onto both n and p-type 3-10 ohm cm bulk 

sil icon af ter the lat ter had been etched wi th buffered hydrof luoric 

ac id ( I part HF, 4 parts ammonium f luoride). Since palladium has a 
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large work funct ion (5.12 eV), it is expected to give contacts of a 

d i f f e r e n t na tu re to the t w o sil icon types (see section 3»"3): for 

p-type an Ohmic contact , for n-type a Schottky barr ier. This was 

indeed found to be the case. 

Two sets of measurements were made on a single n-type sample. In 

the f i r s t set, area change of the top electrodes was found to be a 

problem; this was not the case in the second set of measurements when 

the palladium was deposited at l iquid nitrogen temperature. An area 

change problem for the f i rs t sample was seen to be present through the 

m a t t appearance of the electrode and the change of gradient of the 

inverse capacitance squared plot that occurred on recovery of the 

dev i ce . Figure 6.4 i l lustrates the change f rom the in i t ia l standard 

Scho t t ky barrier type character ist ic (curve I) to a steep ver t ica l 

r ise (curve 2) curve on exposure to hydrogen, fol lowed by recovery 
2 

th rough curves w i th various l /C versus voltage gradients (eg curve 

3). This reaction and subsequent recovery was rapid and reproducible. 

There seems to have been a work funct ion change combined wi th an area 

change; the fact that the lat ter causes a change in the gradient of 

the inverse capacitance squared versus voltage plot is demonstrated in 
2 

f i g u r e 6.5 where a l /C plot is shown for two d i f ferent capacitor 

areas. One of these has e f fec t ive ly twice the area of the other, and 

is ob ta ined p r a c t i c a l l y by connecting two identical capacitors in 

paral le l . 
In the second set of measurements, no such area change occurred 

on exposure to hydrogen. The curve simply shif ted to the lef t and the 
2 

l / C intercept value decreased. The results are shown in f igure 

6.6. In this case, the sample took much longer to return to its 
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Figure 6.6 Lateral shi f t in capacitance character ist ics for Schottky 

barr ier diode corresponding to before (o) and a f te r (x) 

exposure to hydrogen. 



in i t ia l state. 

6.42 MOS Device Results 

( I ) Wet oxide samples. 

The oxides grown in the department (on epitaxial and bulk p-type 

s i l i con) and that on the Philips sample (on epitaxial n-type silicon) 

were classif ied as wet oxides, since water vapour was present in the 

ambient during their format ion. The presence of water leads to 

fur ther oxidation mechanisms in addit ion to the simple reaction of 

oxygen w i th si l icon, which is the basis of dry oxidat ion. These are: 

H 2 0 + Si-Si - Si-O-Si + H 2 (6.41) 

H 2 0 + Si-O-Si - 2 (Si-OH) (6.42) 

and 

2 (Si-OH) + Si-Si - 2 (Si-O-Si) + H 2 (6.43) 

The hydrogen formed may di f fuse away or form defects by the fol lowing 

react ion: 

H 2 + Si-O-Si - Si-OH + H-Si (6.44) 

Fu r the r , the silanol group (OH) and hydrogen wi l l saturate dangling 

bonds at the surface leading to the observed lower surface state 

density of wet oxides as compared to dry ones (16). Thus, the surface 

s ta te density value for a device cannot be regarded as a measure of 

the perfect ion at the interface since it depends only upon the number 

of a c t i v e defects present. Defects can be act ivated by various 
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t r e a t m e n t s such as bias stress and irradiat ion which can lead to 

degradation of device performance. For example, i l lumination w i th UV 

l igh t of energy 3 eV increases the surface state density, probably 

through the breaking of the sil icon-hydrogen bond whose energy is of 

the same order (17). 

When hydrogen was exposed to palladium-covered wet grown oxide 

s a m p l e s , t h e r e was a s i m p l e l a t e r a l s h i f t b o t h in t h e 

c a p a c i t a n c e - v o l t a g e and t h e p a r a l l e l c o n d u c t a n c e - v o l t a g e 

c h a r a c t e r i s t i c s fo r a l l f r equenc ies , implying that no detectable 

su r face s ta te change was taking place. A typical shi f t in the 

p a r a l l e l conduc tance charac te r i s t i c is given in f igure 6.7. The 

response t ime was fa i r l y quick, a mat ter of seconds, but recovery 

depended on the oxide thickness and for the thickest oxide (100 nm) 

was severa l hours, sometimes as long as eight. The value of the 

voltage shi f t was sample-dependent but was generally less than one 

volt. The adhesion of the top contact was also sample-dependent. The 

samples w i th oxides grown in the department were very susceptible to 

such top contact area change whereas the Philips structure gave no 

such d i f f i cu l t ies . 

(2) Dry Oxide Structures 

The absence of the above silanol-based oxidation mechanisms in 

t h e p r e p a r a t i o n of " d r y " ox ides produces both a p r e d i c t a b l e 

eas i ly -cont ro l led growth rate and a large surface state density - the 

l a t t e r being presumably due to the presence of a greater number of 
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dangl ing bonds. Hence, the e f fec t of atomic hydrogen might be 

expected to be more pronounced on such oxides. This was not found to 

be the case, for a simple le f tward shi f t was measured not only on 

t h i c k ox ides , but also on th inne r t unne l l i ng ones (5nm) t h a t 

approached the dimensions used by Keramati & Zemel. It was not 

possible to calculate the parallel conductance of the tunnell ing oxide 

st ructures because of the associated steep rise in the accumulation 

conductance that prevented calculat ion of the series resistance value. 

The above authors (14) c ircumvented this part icular problem by f i t t i ng 

a theoretical model to their experimental results which in fact showed 

a d e f i n i t e character ist ic change on exposure to hydrogen. Since the 

high frequency curves in our results simply shif ted to the le f t , i t 

may be assumed that no detectable surface state density change has 

occurred. 

6.5 Summary of Hydrogen Work 

6.51 Discussion of Results 

The results of the interact ion of hydrogen wi th palladium are 

summarised in Table 6 .1 . It can be seen that no measurable surface 

s t a t e density change has been observed. This was conf i rmed by 

quas i -s ta t ic measurements where there was also simply a lateral shi f t 

in the charac ter is t ic . A typical curve is shown in f igure 6.8. This 

e f f e c t was sometimes obscured by the appearance of a peak in the 

quas i -s ta t i c character ist ic such as the one shown in f igure 6.9. The 

o r i g i n of th is peak may be su r face state-related (this wi l l be 

discussed in the next section). 
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T A B L E 6.1 

Oxide Dopant Lateral G / (max) 

Thickness (nm) Type Shift (V) Change 

100 p 0.6 0 

100 n 1.0 0 

60 p 0.5 0 

15 p 0.7 0 

5 n 0.3 * 

5 p 0.6 * 

T a b l e 6.1 S u m m a r y o f t h e change in pa ra l l e l conduc tance 

characteristics on exposure of an MIS device to hydrogen. * refers to 

t h e f a c t t ha t i t was not possible to c a l c u l a t e the p a r a l l e l 

conductance of tunnell ing structures. However, in this case as w i th 

the rest of the structures, a simple lateral shi f t of the measured 

characterist ics was observed. 



CM 

O 

UJ 

O 

o B) fl) 

O 0) 
O a 

LU 
oo v 
VO o 
b CD 
e1 

CM 
I 

CO CN CO CT) CO 
I 

(Vd) iN3cJcJnO 



8 

+ 

CM CM I 

(vd) iN3aarK) iN3W30vidsia 



6.52 A Hydrogen-Induced Surface State ? 

The above conclusion that no surface states are introduced by 

gases on MOS s t r u c t u r e s may we l l sat isfy all the quant i tat ive 

measurements made, but some results imply that hydrogen, which does 

permeate the oxide as shown by the long recovery t imes of some of the 

dev ices , m i g h t i n t r oduce su r face states. This would hardly be 

surprising considering its concentrat ion at the inter face ( I ) . It is 

proposed that a donor-type surface state is introduced, which is so 

close to the band edge that i t is above the Fermi level and therefore 

always posit ively ionized. Such a positive charge would account for 

some of the measured lateral sh i f t , for the external inversion layer 

e f fec ts described by Zaininger & Warf ield (18) who noticed the onset 

o f inversion at lower frequencies in the presence of hydrogen. They 

proposed that the hydrogen induced posit ively-charged surface states 

around the top contact that gave rise to external inversion layer 

ef fects similar to those described in section 2.6. 

The lack of d i rect evidence for surface states beneath the top 

c o n t a c t is due t o the l i m i t e d sur face p o t e n t i a l range of the 

admittance measurement technique as pointed out by Lopez (19). Even 

i f the surface state level was wi th in the range, its e f fec t could be 

obscured owing to the position on the characterist ics where i t would 

occur. On n-type si l icon, i t would be close to accumulation where the 

capacitance of the semiconductor is large and overwhelms any surface 

s ta te capac i t ance change as we l l as dom ina t i ng the measured 

conductance response. The lat ter can be appreciated f rom inspection 

of equation 6.5 which is a rewr i t ten equivalent c i rcu i t expression of 

equat ion 3.13 w i th the series resistance assumed to be zero. It can 
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be seen that i f the semiconductor surface capacitance C is large, 

then the measured conductance G is necessarily small . 
m ' 

G A-o G / w .C 
— ~ - = _ E . . o x (6.5) 
c (G>r + (c + c y 

m p p ox 

With p-type samples the influence of such a state would occur in 

inversion, where usually i t would be swamped by the conductance 

con t r ibu t ion of the external inversion layer. Secondary conductance 

peaks that did occur just in inversion were checked to ensure that 

they were due to an external inversion layer. This was carr ied out by 

mon i to r i ng their bias position as the frequency was increased; as 

p r e d i c t e d by Kar & Dahlke (20) for such a condit ion, it was found to 

move into the inversion region. 

Fur ther evidence for the presence of a hydrogen-induced surface 

s ta te was obtained at a late stage in the work f rom some DLTS 

measurements that were performed on the Schottky barrier structure 

characterized in section 6.41. The DLTS plot in f igure 6.11 shows the 

development of structure under hydrogen exposure. The large peak that 

is introduced corresponds to the presence of a surface state level of 

12 I 2 
dens i ty 3 x 10 eV cm at 0.1 eV below the conduction band. 

This is possibly hydrogen-induced, although several other explanations 

are feasible, in the light of the calculated capture cross section 

19 -2 

value of 10 c m " . According to DiMaria (21) a sodium ion could 

be responsible - or even a dipole, which would conf i rm Lundstrom's 

model. 
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The discrepancy w i th Keramat i & Zemel as to the location of the 

peak can be rec t i f ied by point ing to a possible f law in the assumed 

values of their constants. Perhaps the electron a f f i n i t y value of 

4.05 eV is incorrect for the situation where atomic hydrogen is 

present : a lower value of 3.7 eV, as suggested by Kasprak & Gaind 

(22) , might be more l ikely. This would possibly al ter the predicted 

locat ion of their surface state to nearer the conduction band. Also, 

when using theoret ical 

modell ing techniques, several surface state distr ibutions can usually 

be made to f i t the data. Possibly a t rap more in line w i th the ideas 

suggested above might f i t the data bet ter . 

U n f o r t u n a t e l y , i t is p r a c t i c a l l y impossible to d i f fe rent ia te 

be tween the act ion of the hydrogen states proposed above and the 

e f fec t of sodium ions. It is quite possible to explain the above 

e f f e c t s equally plausibly by the presence of sodium that is ionized or 

inactive and then act ivated. For example, the peak that occurs in the 

quasi-stat ic measurements may be at t r ibuted to the act ion of sodium 

ions. A g a i n , the d r i f t in the steady s ta te c h a r a c t e r i s t i c s of 

Lundst rom's devices (10) may well be due to the d r i f t on act ivated 

sodium and not, as Keramat i suggests, due to the influence of surface 

states. 
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6.6 Other Gas Ef fects 

Several gases such as carbon monoxide, hydrazine and ammonia were 

exposed not only to palladium covered MOS devices but also to other 

MOS s t r u c t u r e s . Apart f rom parasit ic e f fec ts , no surface state 

related change was observed. In the case of carbon monoxide on 

pa l lad ium MOS, similar e f fec ts to those obtained w i th hydrogen have 

been reported but we found none. The reason for this is probably the 

inabi l i ty of the carbon monoxide to dif fuse through the top contact . 

According to a recent paper (24), the lat ter has to be made porous by 

some spec ia l procedure which needs further investigation. When 

hydrazine was exposed to the same structure, an e f fec t was observed. 

The same lateral shi f t that was found wi th hydrogen occurred. In 

f i g u r e 6.10, the e f fec ts on the measured character ist ics of a 5 nm 

Plessey bulk si l icon sample are shown. The rising conductance in the 

accumulation region is due to the presence of a tunnell ing current . 

This makes surface state calculat ion very d i f f i cu l t . It can be seen 

t h a t no surface state change has occurred; this implies that the 

hydrazine has not penetrated the oxide, since one might expect a known 

sil icon etchant to cause some measurable change at the inter face. 

The lack of e f fec t on the interface of the ambient can probably 

be a t t r i b u t e d to the high density of sil icon dioxide which prevents 

the p e r m e a t i o n of gases. It was decided to use an al ternat ive 

i n s u l a t o r w i t h a m o r e open s t r u c t u r e : the resu l ts o f th is 

investigation are described in the next chapter. 

-91-



diopter 7 

Gcs Effects on Langmuir Film Devices 

7.1 Introduction 

U n t i l recent ly , there has been l i t t l e interest in the development 

of an a l t e r n a t i v e insu la to r to s i l i con 's na tura l oxide for MOS 

d e v i c e s , o w i n g to i ts a lmos t ideal p r o p e r t i e s . The newest 

semiconductor materials (lnP,GaAs), which promise higher logic speeds, 

have no equivalent insulator and, at present, much e f f o r t is being 

expended in the search for a suitable one ( I ) . Langmuir "bui l t -up" 

o rgan ic mu l t i l ayers , whose properties are a t t rac t ing an increasing 

degree of interest (2), fo rm one such possibil i ty. These thin f i lms 

cons is t of a series of monolayers of a suitable organic mater ia l , w i th 

each monolayer being deposited on the previous one unt i l the required 

th ickness is reached . P rov ided certa in conditions are careful ly 

c o n t r o l l e d , a f i l m o f g rea t p e r f e c t i o n can be obtained whose 

e lec t r i ca l properties may be extremely useful. The process is carr ied 

out at room temperature and hence leads to l i t t l e disruption of the 

semiconductor surface, which might be an important consideration in 

the case of binary semiconductors where one of the components is 

vo la t i le . A f te r a description of the manufacture of Langmuir f i lms, 

resul ts w i l l be discussed of their u t i l izat ion as insulators wi th in an 

MIS device and the e f fec t of gases therein. 
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7.2 Preparation of Langmuir Films 

Langmuir f i lms are formed by depositing a small quant i ty of a 

so lu t ion of a suitable mater ia l on the surface of previously pur i f ied 

w a t e r , wai t ing for the solvent to evaporate and then compressing the 

mono-molecu lar layer so produced unt i l it forms a quasi-solid one 

mo lecu le th ick . In order to remove the f i lm f rom the water, a 

su i t ab le substrate is dipped through the quasi-solid and then removed. 

One monolayer is t ransferred to the substrate during this process, 

p rov ided c e r t a i n s t r i n g e n t requirements have been met . If the 

substrate is repeatedly dipped through the water, a mult i layer of 

o rgan ic substance is b u i l t up, w i th a high degree of structural 

p e r f e c t i o n . The process by which the mult i layers are produced is 

i l l us t ra ted in f igure 7.1 . Using this method, Langmuir f i lms may be 

b u i l t up f rom an in i t ia l thickness of approximately 1.2 nm to depths 

in excess of one m i l l ime t re . The method is a t t rac t ive ly simple in 

p r i n c i p l e , but m e t i c u l o u s a t t e n t i o n to e x p e r i m e n t a l d e t a i l is 

essent ia l in order to obtain deposited layers that are well-ordered 

and s t ruc tura l ly stable. Furthermore, only a l imi ted range of organic 

mater ia ls can be formed into Langmuir f i lm mult i layers. Both these 

points are discussed in the fol lowing sections. 

7.21 Suitable Materials for Langmuir Fi lms 

In gene ra l , mo lecu les to be deposited using the Langmuir 

technique must possess both a hydrophobic and a hydrophil ic component 

(3). Furthermore, to obtain mult i layers as opposed to monolayers, the 

hyd roph i l i c group must no rma l l y be quite strong. An al iphatic 

s ide-cha in is normally used as the hydrophobic part of the molecule. 
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In order to avoid excessive water-solubi l i ty , the al iphatic component 

must also be quite large. Accordingly, suitable molecules generally 

c o n t a i n one or more long ( a p p r o x i m a t e l y 18 carbon) al iphatic 

hydrocarbon chains. Materials which immediately suggest themselves 

are the long-chain f a t t y acids (3), whose structure is i l lustrated in 

f igure 7.2. 

Recent ly , a number of authors (4,5,6) have investigated the 

e lec t r i ca l properties of such fa t t y acid monomolecular layers. The 

most common materials examined were the Cd salts, cadmium arachidate, 

cadmium stearate and cadmium palmi ta te . These f i lms were studied in 

two ways: sandwiched between evaporated metal (MIM), or deposited on a 

semiconduct ing surface (MIS). The general conclusion was that fa t t y 

ac id Langmu i r f i lms are good insulators w i th die lectr ic strengths 

greater than 10^ V /cm. Aromat ic hydrocarbons, polymeric materials 

and biological molecules such as chlorophyll have also been deposited 

using the Langmuir f i lm technique (2), but their character izat ion is 

less complete. 

7.23 Preparation of Langmuir Films 

The Langmuir trough used for the deposition of the organic 

monolayers is shown schematical ly in f igure 7.3. The cadmium stearate 

dissolved in chloroform was spread on the surface of the water using a 

micrometer syringe, at a temperature of approximately 290 K. The 

solvent usually evaporated in a few minutes, a f ter which the surface 

area of the monolayer was varied by means of motor driven PTFE-coated 

glass f ib re barr iers. In order to investigate the structure of the 
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mono laye r , and to es tab l i sh opt imum dipping conditions, surface 

pressure-area isotherms were recorded. These were achieved by 

compressing the monolayer at a constant ra te, typical ly 0.3 nm per 

molecule per minute, and recording the surface pressure and area on an 

X - Y chart recorder. Such a plot is shown in f igure 7.4. The surface 

pressure is monitored using a piece of paper of known dimensions 

i n s e r t e d in t h e m o n o l a y e r t h a t is a t t ached to a sens i t i ve 

m i c r o b a l a n c e . There are th ree d i s t i n c t regions to the curve, 

corresponding to the d i f ferent phases that the f i lm can be in. A t the 

r igh t side of the plot , the molecules are spread out corresponding to 

a gas phase; here, some of the upright stearate molecules tend to bend 

over due to the relat ively large amount of space available for them. 

Compression of the f i lm decreases the surface area per molecule unt i l 

even tua l l y a quas i -so l id is fo rmed where all the molecules are 

u p r i g h t ; th i s is the reg ion on the l e f t side o f the plot and 

corresponds to the steeply rising part of the curve. In between these 

t w o regions, delineated by the two breakpoints, the f i lm is in a 

liquid phase. Further increase in the surface pressure simply makes 

the f i lm more compact, unt i l f inal ly at the top of the graph the 

monolayer buckles and collapses. It is best to dip a f i lm at a 

pressure corresponding to this quasi-solid region; in the main, we 

-3 -1 
used a pressure of 25 x 10 Nm . 

In order to obtain good f i lms, the chemicals used have to be of 

the best available commercial grade and the environment has to be kept 

dust f ree , as far as possible in clean room conditions. High pur i ty 

wa te r fo r the trough is also necessary; a "M i l l i -Q" pur i f icat ion unit 

was employed wi th the Langmuir trough used in this work. The 

soph is t i ca t ion of the components of the trough is also cruc ia l , as the 
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feedback sys tem ma in ta ins ident ica l dipping conditions for each 

monolayer. 

The substrates were dipped at a rate of 3 mm/min using a variable 

speed motor attached to a micrometer . The f i lms were dry when they 

emerged f rom the subphase and the process of deposition was monitored 

th rough the recorded values of the area and pressure. Before top 

contacts were made to the f i lms, they were stored under dry nitrogen 

in a desiccator for three days. Several methods of making top contact 

were at tempted: sputtering or thermal evaporation performed at room 

t e m p e r a t u r e was found to result in shorted f i lms. This could be 

overcome by evaporation onto the f i lm whi lst i t was cooled using 

l i qu id n i t rogen. Mercury drops were t r ied , but found to get d i r ty a 

l i t t l e too easily. Graphite water based paste was also explored: the 

wa te r base was necessary since the organic solvent bases of other 

conduc t i ng pastes were found to be solvents for Langmuir f i lms. 

However , these contacts were found to be not very adhesive and, in 

addition, i t was suspected f rom our measurements that the water might 

have possibly had a deleterious e f fec t on the f i lms. 

7.3 Experimental Results 

7.31 Langmuir F i lm Metal- Insulator-Metal (MIM) Structures 

The nature of the e lectr ical characterist ics of a Langmuir f i lm 

MIM s t ruc tu re is determined by not only the mater ia l type, but also 

i t s thickness. In order to avoid the complications of tunnell ing, we 

used structures bui l t up of many monolayers w i th dimensions similar to 

those of the MOS devices previously described. A typical dc response 
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f o r a 15 monolayer thick cadmium stearate (CdSt2) Langmuir f i lm is 

112 

given in f igure 7.5; the log J versus V dependence is indicative 

of a barrier l imi ted conduction mechanism. (In contrast, anthracene 

f i lms can give Ohmic type characterist ics and, at higher f ields above 

about 10^ V /cm, charge inject ion may occur resulting in a quadratic 

response (7).) Such measurements were made under a low pressure in an 

atmosphere of dry nitrogen as i t was found that currents, orders of 

magnitude larger, were sometimes obtained in the presence of moisture. 

The d i f f e r e n c e in magn i tude be tween the forward and reverse 

c h a r a c t e r i s t i c s may be at t r ibuted to the presence of an internal 

voltage w i th no external applied bias. This voltage probably arises 

f rom chemical reactions w i th in the layer or at the inter face (8). 

The capac i tance character ist ics of an MIM structure w i th a 

different number of monolayers can be used to demonstrate the degree 

of order w i t h i n the f i lms. The linear dependence of a plot of 

r ec ip roca l capacitance against the number of layers, N, suggests an 

a lmos t ideal build-up (see f igure 7.6). The non zero intercept on the 

capaci tance axis indicates the existence of an extra capacitance in 

the st ructure. Since the f i lms were deposited on an aluminium-coated 

substrate, i t is reasonable to assume that this extra capacitance is 

due to aluminium oxide. When this capacitance is included the to ta l 

capacitance per unit area may be expressed as; 

, , d N.d 
I -1 ox n C = £ . + (7.1) 

° £ E. 
OX I 

where £ j is the d ie lectr ic constant of each layer, approximately 2.5 

for cadmium stearate Langmuir f i lms. This compares w i th the value of 
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2.9 ca l cu la ted f rom the slope of the dc current plot of f igure 7.5, 

assuming a neutral t rap Poole Frenkel conduction-type mechanism. 

Measurements were also performed to check the var iat ion of 

capacitance wi th frequency. It was found to be constant over the 

measurement range of 10 Hz to 100 kHz, indicating the presence of a 

good insulator. Typical ac conduct iv i ty data for Langmuir f i lms are 

shown in f igure 7.7. The f i lm exhibits a frequency independent 

c o n d u c t i v i t y w i th " n . Below 10 kHz, n is equal to I, whereas 

above that frequency i t takes a value in the region of 2.0. Street et 

al (9) have at t r ibuted the lat ter to a series resistance associated 

w i th the electrodes. Indeed, i t was found in pract ice that the long 

t h i n a lumin ium strips used to make contacts possessed a non-zero 

res i s tance . A c c o r d i n g to Street (9) , the conductance depends on 

various parameters such that : 

G o c W

2 C 2 R (7.2) x o 

where C x represents the sample capacitance and R Q its series 

resistance. Thus, provided that the lat ter are frequency independent, 
2 

the conductance is proport ional to 

7.4 Langmuir Film Metal Insulator Semiconductor (MIS) Structures 

Several MIS device configurations (10,11,12) have been fabr icated 

using d i f ferent combinations of organic and semiconductor mater ials. 

We dec ided to use the f a t t y acid salt cadmium stearate and single 

c r y s t a l s i l i con because of t he i r i nd i v i dua l l y we l l -charac ter ized 

na tu re . Various f i lm thicknesses were deposited on bulk and epitaxial 

si l icon which yielded qual i tat ive ly the same results. 
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Langmui r f i lm deposition on sil icon was found not to be as easy 

as on aluminium oxide. That is, pick-up of the f i lms f rom the 

subphase was more d i f f i cu l t , possibly due to the less receptive nature 

of the sil icon surface towards Langmuir f i lms. Various substrate 

preparation procedures were at tempted to see i f i t could be improved; 

these are discussed in section 7.43. The result was poorer e lectr ical 

charac te r i s t i cs . For example, the dc current response, although st i l l 

112 

log J versus V , giving the correct d ie lectr ic constant value, had 

a c u r r e n t magnitude that was considerably larger. As before, a 

di f ference in the forward and reverse characterist ics was measured, 

but th i s can be explained by the presence of a depletion layer in the 

measurement of the la t ter . 

7.41 Admit tance-Voltage Character ist ics 

A typical set of admit tance-vol tage characterist ics for a cadmium 

s tea ra te Langmuir f i l m on p-type sil icon is given in f igure 7.8. True 

capaci tance accumulation can be seen on the le f t , its value agreeing 

w i t h that expected for such an insulator thickness and top contact 

a rea ; and inversion on the righthand side of the curve. The converse 

o f these curves is obtained on n-type si l icon. In f igure 7.9, the 

capacitance curves for two d i f ferent thicknesses of Langmuir f i lm are 

shown, indicating the e f fec t on accumulation and inversion capacitance 

values; i t can be seen that a change in the die lectr ic thickness of 

the Langmuir f i lm can be distinguished f rom an area change of the top 

contact when the magnitude of the whole of the curve decreases. 
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Recent ly, H ickmot t (13) has reported that a f la t band voltage 

versus insu la to r thickness curve gives information concerning the 

presence of charge wi th in the insulator or dipoles at its surface. 

The f la t band voltage is graphical ly obtained f rom the position of the 

flat band capacitance. The lat ter may be found by various techniques, 

the easiest of which is the use of Goetzberger's ideal curves (14). 

He has provided normalised plots of f la t band capacitance against 

insu lator thickness w i th doping density as a parameter. The curves 

are actual ly for sil icon dioxide and compensation has to be made, 

which is performed by mul t ip ly ing the thickness by the rat io of the 

t w o d i e l e c t r i c cons tan ts . This has been carr ied out for three 

Langmui r f i lm thicknesses deposited on the same substrate and the 

value of normalised f la t band capacitance obtained. The corresponding 

va lue o f f l a t band vo l t age has been found f rom the measured 

c h a r a c t e r i s t i c s o f the dev ices and is p l o t t e d against insulator 

th ickness in f i gu re 7.10. The line is straight as predicted by 

H i c k m o t t , but possesses the opposite slope to that normally found for 

MOS devices, also shown in f igure 7.10. The lat ter is indicative of a 

pos i t i ve charge wi th in the oxide, hence the positive slope we have 

found is indicative of negative charge. This result is reinforced by 

examinat ion of the admittance characterist ics themselves, which seem 

to be gene ra l l y to the r i gh t of the zero volts axis; this, too, 

indicates the presence of negative charge. 

The conductance-voltage character ist ic shown in f igure 7.8 is 

obviously non-ideal, possessing an anomalous increase in accumulat ion. 

In order to show that i t was independent of surface preparation 
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t echn ique , three d i f ferent preparation procedures were undertaken. 

These were: ( I ) etching in buffered hydrof luoric acid, fol lowed by 

immediate dipping; (2) etching then ieaving the sample around for a 

wh i le to col lect a th in layer of atmospheric oxide; and (3) etching 

f o l l o w e d by a long (g rea te r than one hour) cleansing procedure 

cons is t ing of a thorough rinsing in pure water and an iso-propyl 

a lcoho l re f lux . The purpose of the lat ter is to remove any f luorine 

ions which are thought to be lef t behind a f ter etching. However, i t 

was found that these procedures al l gave basically the same results. 

D i f f e ren t Langmuir f i lms on sil icon also give the same e f fec t . For 

example Tanguy ( I © discovered the same wi th orthophenanthroline and 

we have obtained similar characterist ics w i th a polymer f i lm which is 

discussed in section 7.54. 

The r ise in accumulat ion conductance is reminiscent of the 

tunnel l ing conductance plots given in the previous chapter, implying 

some current f low type mechanism. A possible explanation for the rise 

is the poorer insulator characterist ics of Langmuir f i lms on si l icon, 

as indicated by the larger dc current passed. If the current was 

Ohmic then the associated ac conductance would be constant w i th bias 

and able to be compensated for. However, since the current mechanism 

possesses a power law dependence, then the corresponding conductance 

r ises w i th applied bias. A l ternat ive ly , carr ier injection f rom the 

si l icon surface could account for the observed e f fec t . However, this 

seems un l ike ly in view of its invariance wi th surface preparation. In 

a d d i t i o n , the increase in conductance in forward bias was observed 

wi th both n-type and p-type samples. 
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One par t icu lar bulk sample did give a good f la t accumulat ion 

conductance over a l imi ted region. The reason for this was possibly 

t ha t , since this sample was a bulk one, its series resistance may have 

swamped the conductance contr ibut ion f rom the f i lm leakage. However, 

a complete character izat ion was made d i f f i cu l t by the instabi l i ty of 

measured character ist ics. Reproducible measurements could only be 

made by cyc l ing the sample w i th a tr iangular waveform bias. The 

resu l tan t hysteresis was d i f ferent f rom that obtained wi th the rest of 

the samples. With the major i ty , hysteresis that can be at t r ibuted to 

ion mo t ion dominated (see f igure 7.11a), but w i th this sample, the 

charge seemed to leak away in accumulat ion, giving rise to the 

hys teres is shown in f igure 7.11b. If the scan was slow enough ( I 

mV/s) then a mixture of the two hysteresis types was obtained, where 

ion mo t ion type hysteresis dominated at low biases. (see f igure 

7.1Ic) 

7.42 Surface State Analysis 

Unfortunately, i t is not possible to use the standard techniques 

to analyse the surface state spectrum at the si l icon-Langmuir f i lm 

inter face. The various reasons are outl ined below: 

( I ) Quasi-static Method 

As has been pointed out in section 5.2, this technique requires 

insulators w i th leakage currents less than picoamps. It can be seen 

f r o m f igure 7.5 that the dc current passed by a Langmuir f i lm MIM 

-102-



u 

B I A S V O L T A G E CV> 

Figure 7.11 D i f fe ren t hysteresis forms for Langmuir f i lms. 



structure is larger by comparison, and i t was mentioned in section 7.4 

that the leakage current for MIS structures was larger s t i l l . Thus it 

can be seen that such leakage wi l l tend to swamp the displacement 

current , making surface state analysis impossible. 

(2) Conductance Technique 

The problem wi th a rising value of accumulation conductance is 

that i t makes parallel conductance calculat ion impossible owing to the 

f a c t t h a t the series resistance value cannot be determined. In 

a d d i t i o n , the e x t r a conduc tance w i l l obscure the value of the 

conductance peak in a similar way to the series resistance e f fec t 

mentioned in section 4.6. Thus the use of the conductance technique 

is ru led out. On the single sample that did have a l imi ted f la t 

a c c u m u l a t i o n conduc tance reg ion , the app l i ca t ion of the novel 

technique that we have developed was prevented owing to the d r i f t of 

the character is t ics at constant bias. In fac t , the presence of the 

leakage current probably invalidates the approximations impl ic i t in 

the modif ied Nicol l ian & Goetzberger analysis technique. 

(3) Terman's Technique 

It was shown in Chapter 3 that the theoret ical curve calculated 

fo r the est imation of the surface state density could easily be in 

e r ro r and hence lead to spurious results. However, if we are 

i n t e res ted in the change i n t roduced by a gas, then it is not 

absolutely necessary to calculate the theoret ical curve: we need only 
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be concerned wi th the d i f ference between ini t ia l and f inal values of 

the measured capacitance. The Terman technique is good for the case 

where only the surface states are liable to be a f fec ted (or not, as 

was the case wi th MOS devices), but if the insulator capacitance 

changes as wel l , then the technique cannot be used. The reason for 

th i s is t ha t i f C. changes, then the voltage distr ibut ion in the 

dev ice does too. If the voltage drop in the semiconductor al ters, 

then the occupancy of the surface states wi l l be d i f fe rent and shape 

w i l l be introduced into the high frequency C-V curve that might be 

m is i n te rp re ted as surface state change. With our results, to be 

discussed in the next sect ion, insulator capacitance change was found 

to occur, thus inval idating this technique. 

7.43 Comparison wi th Langmuir Fi lms on Al ternat ive Semiconductors 

Langmu i r f i l m s have been sucessful ly deposited on several 

sem iconduc to rs ; and good reproducible admittance character ist ics 

reported (11,12). In al l cases, however, considerable emphasis was 

placed on the surface preparation prior to the f i lm deposition. Both 

t he measured hysteresis and the surface state peak conductance 

magnitude were found to be sensitive to the etching technique. 

The Langmu i r f i lms deposited on sil icon are generally more 

conduct ing than those prepared on other semiconductors. The reason 

fo r th is is unc lea r , but is p robab ly related to the d i f f i cu l t ies 

experienced in picking up the f i lm f rom the subphase. We have 

examined e l e c t r o n d i f f r a c t i o n patterns of the f i lms prepared on 

s i l i c o n and o t h e r subs t ra tes , but have found no d e t e c t a b l e 

-104-



d i f f e r e n c e s . It is possible nevertheless that poor stacking of the 

f i l m could result in a higher defect-induced conduct iv i ty . Clear ly , 

more research work is required to discover an al ternat ive suitable 

su r face preparation technique which wi l l make the sil icon substrate 

more r e c e p t i v e to the Langmu i r f i l m . One possibil i ty is the 

si Ionization (15) of the surface prior to deposition, w i th an organic 

sur fac tant e.g. t r imethylcholrosi lane. This produces a monolayer 

coverage of methyl groups upon the surface. 

7.5 Gas Effects on Langmuir Films 

In sp i te of the above d i f f i c u l t i e s in the determinat ion of 

su r face s ta te density in format ion, several gaseous exposures were 

performed to see i f any change occurred in the measured admit tance 

charac te r i s t i cs which might be a t t r ibuted to a surface state e f f ec t . 

The gases exposed to d i f fe rent Langmuir f i lm structures were carbon 

monoxide, methane, ammonia and hydrogen chloride; the last two are of 

opposite chemical type. Since Langmuir f i lms have a more open 

structure, i t might be expected that gases would penetrate to the 

interface more easily and be more l ikely to have an e f fec t . However, 

t h i s was not found to be the case: most of our results could be 

explained by the action of moisture. It w i l l be shown that the 

presence of moisture is s igni f icant. 
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is fur ther proof that the e f fec t is water- re la ted. 

Carbon monoxide and methane did not give such dramatic variations 

in t h e m e a s u r e d c h a r a c t e r i s t i c s : only smal l changes in the 

accumulation admit tance values were observed which were seen to simply 

alter the to ta l magnitude of the curve. Such ef fects can be explained 

by changes in the water content of the f i l m , either its extract ion or 

displacement. 

7.52 Palladium/Langmuir Fi lm/Si l icon 

The e f fec t of hydrogen on MOS structures has been described in 

the previous chapter. It is only when the top electrode is palladium 

that there is any noticeable change. When a Langmuir f i lm was used as 

the insulator, a simple lateral shi f t in the measured curves of about 

0.5V was observed. The rate of reaction was similar to that obtained 

w i th the MOS structures. 

7.53 Ef fec t of Gases on other Langmuir f i lm MIS structures 

Cadmium stearate Langmuir f i lms have also been deposited on 

ind ium phosphide in order to investigate the e f fec t of various gases 

(15) . This work has shown some encouraging results regarding possible 

su r face s ta te change. Unlike the simple lateral shi f t e f fec t of 

hydrogen on palladium MOS structures, hydrogen on aluminium top 

contacted Langmuir f i lm structures seems to introduce a reversible 

change in the magnitude of the measured surface state conductance 

peak. A t the same t ime, there is no corresponding signif icant change 
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in the capacitance character is t ic . This might well imply a surface 

state e f fec t . 

Further evidence that surface state changes are induced by gases 

is provided by d i f fe rent gases, chloroform and ammonia, respectively, 

producing opposite lateral shif ts in the measured conductance bias 

curves. There are at least three possible explanations for why we 

should observe apparent change in the surface state spectrum in indium 

phosphide, but not in si l icon. The f i rs t relates to the oxide layer 

on si l icon. Maybe the residual oxide layer on the sil icon surface 

that grows almost instantaneously af ter etching is impermeable to gas, 

even a t such smal l th icknesses. Possibly this oxide could also 

accoun t fo r the poor q u a l i t y of the deposited Langmuir f i lms. 

Secondly, the suspect insulating properties of Langmuir f i lm may cause 

any change in surface state density to be obscured. Final ly, as has 

been mentioned previously (section 6.5), the accessible range wi th in 

the bandgap for the admit tance technique is l imi ted; possibly, owing 

to the d i f ferent semiconductor, the ef fected region in the bandgap now 

fal ls wi th in this accessible range. 

7.54 Summary and Suggestions for Further Work 

Resu l ts fo r an a l t e r n a t i v e insu la tor to si l icon dioxide on 

sil icon, namely cadmium stearate Langmuir f i l m , have been presented 

in th i s chapter. The good capacitance-voltage characterist ics were 

undermined by the re lat ive ly high leakage current passed by these 

films when they were deposited on si l icon. This has prevented the use 

o f the standard surface state analysis techniques and also complicated 
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t h e i n t e r p r e t a t i o n o f the e f f e c t of gases. The change of 

character is t ics induced by the act ion of gas has been accounted for 

w i t h o u t recourse to sur face state density change. It has been 

proposed that the presence of moisture has been responsible for the 

e f fec ts observed. However, as has been outl ined in the previous 

s e c t i o n , encourag ing resu l t s have been ob ta ined w i t h another 

semiconductor which means that there might be a chance to develop a 

solid state gas detector. 

The drawback w i th cadmium stearate Langmuir f i l m , though, is its 

i n s t a b i l i t y , manifest by its low melt ing point which is less than 

370K. A t present there is considerable e f fo r t being expended on 

f i n d i n g a suitable a l ternat ive: di-acetylene polymer (16) may be a 

possible contender. 

An alternative path of research for MIS-based gas detectors is to 

u t i l i z e the py roe lec t r i c e f fec t rather than surface state change. 

Certa in organic materials are known to be pyroelectr ic ie develop a 

vo l t age on exposure to heat. It may be possible to deposit them in 

the form of Langmuir f i lms in an MIS structure. The top metal could 

conceivably be some form of mater ia l such as a catalyst specif ical ly 

sens i t i ve to certa in gases. The heat of the resultant reaction could 

be monitored indirect ly through the f la t band voltage of the MIS 

device, and the interact ing substance ident i f ied. 

It should also be possible to synthesize monomolecular layers 

t h a t d isp lay p i e z o e l e c t r i c p r o p e r t i e s ; the requ i red change of 

polarization thus occurs f rom a mechanical stress change produced by a 

gas col lect ing on the top contact . Selective detect ion would again be 
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achieved by making the metal of a mater ia l that selectively absorbs or 

reacts w i th the pol lutant to be monitored. 

Finally the Langmuir f i lm structure might possibly provide the 

veh ic le for the fabr icat ion of solid state biological sensors. Such 

structures where the insulator reacts w i th act ive biological molecules 

or enzymes have already been proposed (17). 
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Chapter 8 

Summary 

In th i s work, a semiautomatic measurement system has been' 

deve loped for evaluating the electronic structure of the inter face 

b e t w e e n an i n s u l a t o r and a s e m i c o n d u c t o r . The assoc ia ted 

m i c r o c o m p u t e r possesses advanced sof tware which leads to simple 

o p e r a t i o n , par t icu lar ly when used in a rea l - t ime mode. By ut i l i z ing 

the la t te r f ac i l i t y , we have been able to reduce the e f f o r t involved 

in the conventional ac conductance technique. Previously, al l the 

admi t t ance data had to be col lected before analysis was possible. 

This was ine f f i c ien t as i t produced a lot of redundant data. Such a 

qu ick analysis technique might f ind use in the semiconductor industry 

in areas where fast surface state evaluation is necessary. 

The fas t operation of this system has been capi ta l ized upon in 

the analys is of the e f fec t of the ambient on MIS devices. With MOS 

s t r uc tu res , we placed the emphasis on the e f fec t of hydrogen, whose 

ro le in hydrogen sens i t i ve Pd MOS sensors is s t i l l a subject of 

controversy. We have shown that hydrogen introduces no measurable 

su r face state density, although we do suggest that possibly there are 

su r face s ta tes i n t r o d u c e d beyond the range o f our equipment. 

Unfortunately, Langmuir f i lms were not found to be ideal insulators on 

s i l i c o n : this prevented complete surface state analysis of the MIS 

devices that we produced. In addi t ion, gaseous reactions w i th the 

s t r uc tu res we re dominated by moisture which introduced parasit ic 

e f fec ts that compl icated the results. Nevertheless, gas ef fects were 

found w i t h L a n g m u i r f i l m s deposited on indium phosphide, which 

suggests that a select ive sensitive solid state gas detector might be 

developed. 
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Even though Langmuir f i lms in this work have not produced 

p e r f e c t results, i t is fe l t that they are a very interest ing f ie ld of 

research. We have a t tempted to use their insulator qual i t ies upon 

sem iconduc to r s , neg lec t i ng 1heir opt ical ones which show greater 

promise. Langmuir f i lm monolayers have been proposed for use in MIS 

solar c e l l s , i n t e g r a t e d o p t i c devices, and as l i thographic agents. 

Cer ta in l y , then, there is scope for considerable fur ther research in 

the area of Langmuir Fi lms and their appl icat ion. 
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APPENDIX 1 : SIXTH WORD DEFINITIONS 

1.BASIC FLOATING POINT PACKAGE (FPP) LINKAGES 

FPAC Floating point (F.pt.) accumulator No. 1 

FPOP Floating point accumulator No. 2 

POP.O Puts address of top of stack on stack 

RETFPAC Store i n FPAC (4 regs) contents of N and 3 addresses up 

FPOPRET Store i n FPOP (4 regs) contents of N and 3 addresses up 

TSTFPAC Store i n N and 3 addresses up contents of FPAC 

FPACST Store M,N in LSB's of FPAC 

x10,/10 Change FPAC by factor of 10 

ADD, SUB,' i Use algebraic routines i n FPP to manipulate FPOP 

MUL,DIV -' and FPAC 

INP Input to FPAC from terminal 

OUT P r i n t contents of FPAC 

2. FLOATING POINT LINKAGES TO STACK 

CL Clears FPAC and FPOP 

RETFPACS Store M,N i n FPAC 

FPOPRETS Store M,N i n FPOP 

INTER Store M,N i n FPAC and K,L i n FPOP 

TSTFPACS Store FPAC at M,N 

Put entered data onto stack as f l o a t i n g point number 

+. Add two f l o a t i n g point numbers on the stack 

Subtract two fl o a t i n g point numbers on the stack 

x. Multiply two fl o a t i n g point numbers on the stack 

/. Divide two f l o a t i n g point numbers on the stack 

Z,J,V,Q Integers 

EX Gives f l o a t i n g point number L SM exponent N 



3. DVM INTERFACE ROUTINE 

INIT I n i t i a l i s e PIA's to receive data from DVM 

DVM Get data from DVM and put i t back on stack 

CAP Set DVM to measure capacitance voltage 

COND Set DVM to measure conductance voltage 

ZA Compensate for d i f f e r e n t p a r i t y b i t and do ASCII 

conversion 

YY Contains decimal point indicator 

SS Put decimal point ASCII code on stack 

DPT Sets YY depending on decimal point location 

MV? MV being measured 

SIG Test f or sign 

FDIG Put value of f i r s t d i g i t on stack 

SDIG Put value of second d i g i t on stack 

TDIG Put value of t h i r d d i g i t on stack 

LDIG Put value of l a s t d i g i t on stack 

DT»2 Act i f YY s e t to 0 

DTE2 Act i f YY s e t to 1 

KONV Convert M,N from BCD format to flo a t i n g point 

BCD Take data and convert 

4. ALGEBRA AND GRAPHIC WORDS 

OF Offset value of capacitance used 

YX,YC,YG Sc a l i n g f a c t o r for use with XDRAW, CDRAW, GDRAW 

corresponding to values i n A064 

K1,K2 Integer l o c a t i o n reserved for storage of flo a t i n g point 

value of data taken for Cox 



C1,C2 As above but for actual values of Cox 

J1,J2 As above but for data f or Rs 

R1,R2 As above but for actual value of Rs 

F1,F2 As above but for value of frequency 

P1,P2 As above but for value of c a l i b r a t i o n capacitor 

FS Store M,N ( i e f l o a t i n g point number on top of stack) 

as frequency value 

FREQ Put F.pt. value of frequency onto stack 

PP Store M,N - F.pt. as c a l i b r a t i o n capacitor value 

PF Put c a l i b r a t i o n capacitor value on top of stack 

YAXIS N un i t s along y a x i s 

XAXIS N un i t s along x a x i s 

ST Compensate measured capacitance for stray capacitance 

$/DATA Take C(v),G(v) and store i n memory 

CG Take capacitance and conductance voltage for Cox and 

Rs determination 

KST Store measured values of capacitance for Cox and Rs 

determination 

JST Store measured values of conductance for Cox and Rs 

determination 

RSS Store calculated values of Rs 

COXS Store calculated values of Cox 

KRET Put on stack measured value of capacitance 

JRET Put on stack measured value of conductance 

Cox Put on stack calculated value of Cox 

Rs Put on stack calculated value of Rs 

OX Get data and perform Cox, Rs compensation 

DR Plotting routine, s h i f t s MSB of FPAC into N 



HH 

CALC 

CALCUL 

CALIB 

ORIGIN 

STORE 

PLANT 

RETR 

DIGU 

C(v) 

G(v) 

SCAN 

XDRAW 

CDRAW 

GDRAW 

Plo t t i n g routine compensation for value of A064 

Calculate GP 

Calculate GP but compensate for Rs 

Cali b r a t e s computer so measurement made i n Pf 

Sets pens to or i g i n 

Stores array of C(v),G(v) i n block buffer 

Stores Cox and Rs at s t a r t of block buffer 

Retrieves C(v) and G(v) arrays from buffer 

Retrieves Cox and Rs values 

Puts F.pt. value of capacitance for array value of V 

on stack 

Puts F.pt. value of conductance for array value of V 

on stack 

Scans x a x i s , accepts data and stores i t 

Draws appropriate curve out 



APPENDIX2: PROGRAM LISTING 

CODE POP.O . 0 LDX $ PUSHX JMP 

CODE RETFPAC $ POPX JSR 

0 X A L D A A06I A STA I X A LDA A062 A STA 

2 X A LDA A063 A STA 3 X A LDA A064 A STA RTS 

CODE FPOPRET $ POPX JSR 

0 X A LDA A069 A STA I X A LDA A06A A STA 

2 X A LDA A06B A STA 3 X A LDA A06C A STA RTS 

CODE TSTFPAC $ POPX JSR 

A 0 6 I A LDA 0 X A STA A062 A LDA I X A STA 

A063 A LDA 2 X A STA A064 A LDA 3 X A STA RTS 

CODE FPACST $ POP JSR A06I B STA A062 A STA 17 A LDA 

A064 A STA A CLR A063 A STA A060 A STA 32CB JSR RTS 

CODE XIO 3 I7D JSR RTS CODE / I 0 3 I 9 A JSR RTS 

CODE ADD 3314 JSR RTS CODE SUB 339C JSR RTS 

CODE DIV 345A JSR RTS CODE MUL 33A7 JSR RTS 

CODE INP 3078 JSR RTS CODE OUT 3 IC9 JSR RTS :S 

CODE INIT A CLR 800D A STA 800C A STA 800F A STA 800E A STA 35 CODE 

CL A CLR A060 A STA A068 A STA RTS 

: RETFPACS POP.O RETFPAC CL 2DR0P ; : .. RETFPACS OUT ; 

: FPOPRETS POP.O FPOPRET CL 2DR0P ; : INTER RETFPACS FPOPRETS 

: TSTFPACS 0 0 POP.O TSTFPAC ; : FPACST TSTFPACS ; 

: +. INTER ADD TSTFPACS ; : - . INTER SUB TSTFPACS ; 0 INTEGER J 

: X. INTER MUL TSTFPACS ; : / . INTER DIV TSTFPACS ; 0 INTEGER Q : EX 

2R0T RETFPACS DUP 4 IF 4 - - I * I DO /10 LOOP ELSE 

4 - I DO XIO LOOP THEN TSTFPACS ; 0 INTEGER OF 0 INTEGER YC 

0 INTEGER K l 0 INTEGER K2 0 INTEGER C I 0 INTEGER C2 0 INTEGER Z 



0 INTEGER J I 0 INTEGER J2 0 INTEGER R l 0 INTEGER R 2 0 INTEGER V 

0 INTEGER F l 0 INTEGER F2 : FS F l ! F2 ! ; ; F $ F Q F2 @ F l @ 5 

0 INTEGER PI 0 INTEGER P2 ; PS PI ! P2 ! ; s PF P2 @ PI @ ; 

CODE YAXIS $ POP JSR 8014 B STA RTS 0 INTEGER y g 0 INTEGER YX 

: C(V) 3600 V @ 2 * + @ KONV TSTFPACS OF @B +• P F X . ST ; 

: G(V) 3800 V @ 2 * + @ KONV / I 0 / I 0 TSTFPACS p f X . -08 EX ; :S 

: $DATA COND 5FF MSEC DVM CAP 5FF MSEC DVM 3 6 0 0 J @B 2 * + ! 

3800 J @B 2 * + ! ; : SQ RETFPACS TSTFPACS T S T F P A C S X. ; 

: CG COND 5FF MSEC BCD / I 0 / I 0 TSTFPACS CAP S F F M S E C B C D TSTFPAC 

S ; : KST K M K2 ! ; : COXS C I ! C2 ! ; : JST J l ! J 2 ! ? 

: RSS R l ! R2 ! ; : JRET J2 @ JI @ PF X . -08 E x ? 

: KRET K2 @ K l @ OF @B +. PF X . ST ; 

: OX CG KST JST JRET JRET X. KRET / . KRET +•. COXS JRET JRET JRET 

X. KRET KRET X . +. / . RSS ; : RS R2 @ R l @ 5 5 COX C2 @ C I @ ; 

: DR A063 @B 7F LAND I LEFT A062 @B 80 L A N D 7 RIGHT + ; 

: C A L L COX G(V) X. G(V) SQ COX C(V) SQ +. RETFPACS ; 

: CALCUL G(V) C(V) C(V) X. RS X. - . G(V) G(V) X . R5 X. - COX X. 

COX RS X. C(V) X . G(V) - . SQ COX C(V) - . COX R S x - G(V) X. - . 

SQ +. / . RETFPACS ; : CALIB 03FD 3 EX CAP 5 F F MSEC BCD TSTFPAC 

S OF @B +. / . PS ; : HH DUP A064 @B % IF @ B 

100 - ELSE A064 @B THEN - DUP 0= IF DROP ELSE RIGHT THEN ; 

: ORIGIN0 YAXIS 400 MSEC 0 XAXIS 400 MSEC ; :S : FPAv-ST TSTFPACS ; 

20 A R R A Y COE : DR 3 HH ; DECIMAL 

; C 1754 3509 5263 7018 8772 10526 12281 14035 \5lP ' 9 ° 0 COE 

1 2 * + ! - I +LOOP ; HEX : / I 0 0 6 I DO / I 0 LOOI 3 5 0 INTEGER J 



: $DATA COND 5FF MSEC DVM CAP 5FF MSEC DVM 3600 J @B 2 * + ! 

3800 J @B 2 » + ! ; ; O/P 3A00 V @ 4 * + RETFPAC TSTFPACS ; 

; DIFF 0 9 ! DO J @B 9 + I + V ! O/P J @B 9 + 

I - V ! O/P -. COE I 2 * + @ FPACST /100 TSTFPACS X. +. LOOP ; 

: SCANNER FF J !B INIT O FF I DO J @B 2DUP XAXIS V ! I - J !B 

400 MSEC VDU? IF ABORT THEN $DATA CALCUL DR 0 HH OUT YAXIS 

2 SPACES I 14 IF DIFF OUT SPACE J @B I + . THEN LOOP ; 

: GDRAW AO FF DO I XAXIS I V ! G(V) DR YG @B HH YAXIS OUT . IS 

- I +LOOP ; : GPDRAW F0 J !B F0 AO DO J @B 2DUP XAXIS V ! I - J ! 

B O/P 2DROP DR YX @B HH YAXIS OUT . IS LOOP ; 

: CSRS COX C(V) ~. C(V) X. COX X. COX G(V) SQ X. - . 

COX RS X. C(V) X . G(V) - . SQ 

COX C(V) - . COX RS X . G(V) X . - SQ +. / . ; 

: SCS COX C(V) - . C(V) X . G(V) SQ - . G(V) / . CALCUL TSTFPACS X. ; 

: SEMICAP CSRS CALCUL TSTFPACS COX X. 2 X. - . ; 


