W Durham
University

AR

Durham E-Theses

Formation and transmission of a dynamic graphics
display

Eshragh, Nadereh

How to cite:

Eshragh, Nadereh (1985) Formation and transmission of a dynamic graphics display, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7573

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7573/
 http://etheses.dur.ac.uk/7573/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

- Formation and Transmission of a Dynamic

Graphics Display

by

Nadereh Eshragh, B.Sc.

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

A thesis submitted in accordance with the regulation for the degree of Master of
Science in the Department of Applied Physics and Electronics at the University of

Durham.

December 1985

ABSTRACT

The NEC 7220 / GDC is a high resolution colour graphics display controller. It is
programmable, and can generate lines, arcs and rectangles at high speeds with little intervention
from the host computer. The GDC has interesting capabilities such as scrolling, DMA transfers
and read and write of its display memory through the FIFO buffer.

This thesis describes the GDC and its relation to the other components of a graphics
terminal. Software programs are developed and implemented to show how the GDC's
capabilities can be used to generate a dynamic graphics picture on the CRT screen. The
programs are written in both Pascal and 8086 assembler.

Two methods are presented for the transfer of a graphical display from one NEC/APC to
another one. The first technique sends the display memory's pixels and the second one
transfers the picture codes for the reconstruction of the image. For each of them software
programs are developed and tested thoroughly and found to perform as stipulated.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my supervisor
Professor C.T. Spracklen for his help, supervision and encouragement
throughout both the work and preparation of this thesis. I would also like
to thank Dr. J. Wood for the pleasure and privilege of working in the
Department of Applied Physics and Electronics, and Dr. C. Smythe for
his help and guidance during the preparation of this thesis.

To Mehdi

CONTENTS
ABSTRACT
ACKNOWLEDGMENTS

Glossary of Terms

CHAPTER 1 An Introduction to Computer Graphics
1.1 Introduction

1.2 Raster Scan Colour Displays

1.3 The Scope of the Work Described

CHAPTER 2 The Graphics Display Controller (GDC)
2.1 Introduction
2.2 GDC Components
2.3 GDC Command Summary
2.4 The Display Memory Architecture
2.4.1 Display Memory Contents
2.4.2 Specifying a Pixel Address in the Display Memory
2.4.3 Multiplane Systems
2.5 Read-Modify-Write
2.5.1 RMW Hardware
2.6 Figure Drawing
2.6.1 Drawing Directions
2.6.2 Preparing the GDC for figure drawing
2.7 The FIFO Buffer
2.8 Parameter RAM Contents

CHAPTER 3 Programming the GDC
3.1 Introduction
3.2 Programing the GDC using GSX-86
3.3 Direct Programming of the GDC
3.3.1 Initializing the GDC
3.3.2 Programming the GDC to draw markers

CHAPTER 4 Dynamic Pictures
4.1 Introduction
4.2 Scrolling

4.3 DMA Transfers
4.3.1 Preparing for a DMA Transfer
4.3.2 Dynamic Picture Generation

4.4 Data Read and Write through the FIFO
4.4.1 Reading the Display Memory Data
4.4.2 Writing Data into the Display Memory
44.3 Dynamic Picture Generation

CHAPTER § Graphics Picture Transmission
5.1 Introduction

5.2 The Transmission Protocol and Error Detection Method
5.3 Transfer of the Display Memory Data

5.4 Transfer of Picture Codes

CHAPTER 6 Conclusions
REFERENCES
APPENDICES

APPPENDIX A

Al 7220/GDC
A2 I/O Port addresses and Instructions for the GDC
A3 8237-5 Programmable DMA Controller

APPENDIX B
B1 Demonstration of a GSX-86 implementation
B2 Demonstration for Direct GDC Programming
B3 Demonstration for Scrolling
B4 Demonstration for DMA Transfers
B5 Demonstration for Read/Write through the FIFO buffer
B6 Demonstration for Pixel Transfers
B7 Demonstration for Code Transfers

Glossary of Terms

ACK
APC
CAD
CAE
CAL
CCHAR
CPU
CRT
CURD
CURS
X

daD
DIR
DMA
DMAR
DMAW
DS
DVST
DX

Ead
FDL
FIFO
FIGD
FIGS
GCHRD
GDC
GDOS
GIOS
GKS
HBPORCH
Hex
HFPORCH
1]
LAN
LBA

Acknowledgment

Advanced Personal Computer
Computer Aided Design
Computer Aided Engineering
Computer Aided Learning
Cursor § Character Characteristics
Central Processing Unit
Cathode Ray Tube

Cursor Address Read

Cursor Position Specify
Accumulator C

Dot Address

Direction

Direct Memory Access

DMA Read

DMA Write

Data Segment

Direct View Storage Tube
Accumulator D

Execute Address

Figure Drawing Logic
First-In-First-Out

Figure Draw

Figure Specify

Graphics Character Draw
Graphics Display Controller
Graphics Device Operating System
Graphics Input/Output System
Graphics Kernel System
Horizontal Back Porch
Hexadecimal

Horizontal Front Porch
Input/Output

Local Area Network

Line Base Address

LEN
LPRD
LSB
LSI
MOD
MSB
NAK
NDC
PB
PRAM
PSAD
RAM
RDAT
RMW
SAD
VBPORCH
VDI
VSYNC
WDAT

Length

Light Pen Address Read
Least Significant Bit

Large Scale Integrated Circuit
Modify

Most Significant Bit
Negative Acknowledgment
Normalized Device Coordinates
Parameter List

Parameter RAM

Packet starting address
Random Access Memory
Read Data

Read Modify Write

Starting Address

Vertical Back Porch

Virtual Device Interface
Vertical Sync

Write Data

Chapter One
An Introduction to Computer Graphics

1.1 - Introduction

"Graphics" is defined in the Oxford English Dictionary as "of drawing, painting,
engraving, etching, etc; vividly descriptive, lifelike; of diagrams and symbolic curves". This
definition includes much of what computer graphics can already do and what it will be able to
achieve, in the future. The key phrase from that definition is 'vividly descriptive'. For a long
time computers have been used to produce diagrams and symbolic curves but they are now
capable of painting lifelike pictures, or creating animated films of imaginary landscapes and the
creatures to fill them; a good example is the Disney World Film "TRON".

The earliest use of computer graphics was simply to output data from high-speed
computers. Many early computers (e.g MIT's Whirlwind computer) had cathode-ray tubes
(CRTs) on which data points could be displayed more rapidly and easily than they could be
plotted on any other output devices then available. Plottings on hard copy devices such as
teletypes and line printers dates from the early days of computing. MIT's 1950 Whirlwind
computer had computer driven CRT displays in the control room, while the SAGE Air Defence
System in the middle of the 1950s was the first to use command and control CRT display
consoles on which operators identified targets by pointing at them with light pens.

Modern concepts in computer graphics began in 1963, with the work of Sutherland [1]
on the Sketchpad drawing system. The objective of this work was communication by
interaction, which visualized a person sitting in front of a screen and dynamically interacting
with the displayed graphics by means of a light pen and symbol menu. Also, around 1963, a
historically significant graphics program was started independently at General Motors [2].
DAC/1 (Design Augmented by Computer) evolved into a major computer aided design effort,
which has become a key element in the design of GM cars and trucks. This was one of the
earliest computer aided design (CAD) implementations using graphics.

The display devices developed in the mid-sixties, and still in use today, were vector
refresh CRTs. These were cathode ray tubes in which an electron beam drew a picture on a
phosphor coated screen as a collection of straight lines (or vectors). Since the light output of
the phosphor decays in a fraction of a second, the picture had to be continuously redrawn at
least 30 times per second to avoid flicker. The disadvantage of refresh displays was that they

Introduction Chapter One

were complicated, expensive and had severe limitations on the number of lines they could
display and update because of the large memory requirements involved. Every line that went
into a picture had to be stored inside the display so that the picture could be repeatedly drawn.
This problem was resolved in the late sixties with the introduction of the direct view storage
tube (DVST). In a DVST, the screen is coated with long persistence phosphors such that once
an electron beam has traced a line on the screen it remains (until erased) and requires no further
refreshing. This was a step forward in making more complex diagrams than were possible with
the existing refresh systems. DVST's are still popular today for applications that demand large
numbers (tens of thousands) of high-precision lines and characters but do not need dynamic
picture manipulation.

The next major hardware advance was to relieve the central computer of the heavy
demands of the refresh display device (especially user-interaction handling and picture
updating) by attaching the display to a minicomputer. At the same time the hardware of the
display processor itself was becoming more sophisticated, taking over many of the routine but
time-consuming tasks for the graphics software.

The most significant contribution to the development of computer graphics during the
mid-seventies was that of cheap raster graphics based on television technology. In raster
displays the display primitives such as lines, characters and solid areas (typically polygon) are
stored in a refresh buffer in terms of their component points, called picture elements or pixels.
The image is formed from the raster which is a set of horizontal scanning lines each made up of
individual pixels. Therefore the raster is simply a matrix of pixels covering the entire screen
area. The size of this matrix is known as the resolution of the terminal. A common display
resolution is 480 * 640 which provides 307200 individual dots (pixels). The terminal must
have sufficient memory to describe at least two values (for a one colour system) for every
single pixel.

The development that made raster graphics possible was that of inexpensive solid state
memory that could provide refresh buffers considerably larger than those of a decade ago.
Low-cost memory and low-cost microprocessors have had a significant impact on the cost
trend of computer graphics. Companies like NEC Corporation, Tokyo, have been able to use
recent memory technology such as 64k memory integrated circuits to create inexpensive
high-resolution and highly interactive raster graphics display systems.

New LSI display processors played an important role in the recent growth of computer

Introduction Chapter One

graphics. A good example is the NEC 7220 graphics Display Controller (GDC) which is
capable of handling a display memory as large as 256k 16-bit words and of drawing lines,
arcs, circles, rectangles at a rate of less than 800 nanosecond per pixel [3].

The development of graphics software was not as rapid as that for the corresponding
hardware. From the early 1960s hardware manufacturers provided graphics software to drive
their own products. This software normally consisted of a set of routines that would allow the
user to draw dots, lines and curves - but only specific to that manufacturer's hardware. It was
left to the user to write software to accomplish anything more useful.

The most recent development in computer graphics is the arrival of an international
graphics language: The Graphics Kemel System (GKS) [4]. GKS is a graphics system which
defines a standard interface to all graphics devices. It is provided as a software package which
consists of two sections: the device independent section which handles the user required
graphics computations and the device dependent section which translates these results into
codes that can be understood by the user specific terminal. The standard provides facilities for
line-drawing, area fill, segmentation (holding independent or related drawings within the one
system), text attributes, colour indexing and many other "intelligent” functions.

The applications of computer graphics from the 60's and well into the present time
include computer aided design in the aircraft and textile industries, management information
systems, simulations, pattern recognition, graphics art and computer generated movies [2].
Some of the today's application of computer graphics are: Computer Aided Engineering
(CAE), Computer Aided Learning (CAL), art and animation, medicine, robotics, video games,
picture processing and communications.

The work presented here introduces the NEC 7220 graphics Display Controller (GDC)
and shows how dynamic graphics can be provided using its capabilities. The GDC is in the
graphics controller board inside NEC's personal computer, the APC. The graphics controller
board provides a complete high resolution 3-colour plane graphics video controller. It generates
the raster scan display and manages the video display memory. The general purpose CPU in
the NEC/APC is the 16-bit 8086 microprocessor.

*

Introduction Chapter One
1.2 - Raster Scan Colour Displays

The output device for a raster display is a television monitor that is basically the same as
a home television receiver. In raster scan an electron beam continuously traces from left to right
and from top to bottom across the display screen, figure (1.1). Changes in the beam intensity
determine what actually appears on the screen. The picture is stored in a refresh memory. As a
scan line is swept by the monitor, a controller retrieves words from the refresh memory,
converts them to an analogue voltage and applies the voltage to the beam intensity amplifier.
Each bit of a word in the refresh memory corresponds to a pixel on the display screen. Fig
(1.2) shows a picture of a house as stored in the memory and as displayed on the screen.

The front of a black-and-white display tube is coated with a phosphor that glows white
when "struck” by electrons. A colour display uses three phosphors that glow, red, green and
blue respectively when electrons strike them. This is generally performed by covering the face
of the tube with a network of tiny dots or lines of colour. The phosphor dots are excited by
using three electron beams in the tube and causing each to strike its respective phosphor colour.
The refresh memory is divided into three fields (planes), one for each primary colour. A three
colour plane system requires three bits per pixel and provides a total of 8 colour combinations,
figure (1.3). Many systems today have up to 24 bits (or planes) per pixel providing more than
16 million colour combinations (e.g. AED 512, Genisco GCT-3000).

Figure 1.1 Raster Scan

Introduction

Chapter One

Display
Processor

0000000000000
0000001000000
0000111110000
0011111111100
0011111111100
0011111111100
0011111111100
0011111111100
0000000000000

Bit map refresh
buffer.

showing a house.

Figure 1.2 Typical raster graphics display

® O
O

Red

Cyan

O
O

Green

Magenta

System.

00O ®F
®

Blue

O B0 GO
O

Yellow

Figure 1.3 Colour Combinations for a three Colour Plane

White

OO0
O

Black

Introduction Chapter One

1.3 - The Scope of the Work Described

The work described in this thesis covers the following subjects:
- Programing the Graphics Display Controller (GDC) both directly and using
software provided with the NEC Personal Computer (APC).
- Development of additional programs for the GDC to provide functions such
as window generation and scrolling.
-~ Generation of dynamic pictures by manipulating windows.

- Transmission of graphics pictures between two NEC computers,

In addition to these subjects, the text includes detailed descriptions of the
NEC graphics device and how it is programmed. This provides significantly

improved documentation for future users,

The content of each of the following chapters is now explained.

Chapter two explains the graphics display controller board (GDC) inside the
NEC personal computer (APC) and the relation of the board to other units of
the computer (eg host CPU and DMA). The host CPU is the 8086 processor. The
chapter explains some technical points which are given in the manuals but are
not at all clearly described there, together with some points that are not
covered. In particular, the documentation describing the GDC chip is
difficult to follow and several users have reported problems with
understanding some of the points mentioned. There have been revisions of the
GDC hardware (mask changes) and many errors, omissions and inaccuracies have
been discovered. The aims of this chapter are to detail the author's
interpretation of the GDC documentation, to correct the errors discovered and
to provide the reader with examples of good GDC programming practice to show

how to make the best use of the facilities provided.

Chapter three deals with programming techniques for the GDC. It can be
programmed from a high level program using GKS procedures which are provided

as a software package (GSX) with the NEC personal computfer (APC). This

package only supports the GKS functions for figure drawing. In order to
implement other functions such as window generation and scrolling, new
software must be developed by directly programming the GDC. Examples of how
the GDC can be programmed directly are alsec given in this chapter.

The GDC has been programmed to demonstrate certain facilities provided with
the NEC at hardware level which are not directly supported by the available
GSX software, The NEC documents don't describe these hardware facilities
clearly and give no examples. The documents don't even describe how to use
the available software and give no examples for this either. The first part
of the chapter 1is actually a complementary description to the provided
software and exXamples are given in Appendix Bl. The second part of chapter
three describes how the GDC can be directly programmed. Examples are given in

Appendix B2,

Chapter four explains how scrolling 1s performed and how the windows are
manipulated to generate a dynamic graphics picture. The main aim of this
chapter 1is to show the GDC capabilities (for example scrolling or DMA
transfers) with examples of how they can be implemented. A dynamic picture is
generated to show how display memory blocks can be accessed and moved around
the screen using the GDC's capabilities. Another aim is to show how double
buffering can be implemented to create a dynamic picture on the screen,

The information given 1in this chapter about the GDC's display memory or
programming the chip are either not given or not fully described 1in the NEC
manuals.

There are two limitations for creating a dynamic picture as described in this
chapter. First, the GDC can transfer a rectangular block of memory which in
the case of moving more than one object, if these objects overlap, can create

boundary problems. Second, the device operates very fast when moving one

object (the motion has to be slowed down in order for it to be seen on the
screen) but the speed will be reduced if more objects are to move at the same

time.

Chapter five 1s concerned with the transfer of graphics pictures between two
NEC/APCs. Two methods of transmission are described: pixel transmission and
picture code transmission. The original aim of the pixel transmission system
was to deliberately create a busy transmission medium to be used as a test
environment for a Spread Spectrum 1local area network [10]. However both
methods are valid ways of transfering graphics between computers. A

demonstration program is given in appendix B6.

Chapter six contains discussion of the work and conclusions.

Chapter Two
The Graphics Display Controller (GDC)

2.1 - Introduction

This chapter describes the GDC and explains how it can be used to form the basis of a
colour graphics terminal. Figure (2.1) shows a typical graphics system with the GDC as the
display controller. The host microprocessor passes the drawing instructions to the GDC. The
GDC translates these instructions into digital signals and stores the digital picture in the display
memory. The video generator circuitry continuously scans the display memory and converts its

contents into the TV signals.
Host Display video
cruU ax memory generator

Figure 2.1 Block diagram of a typical graphics system.

The GDC can draw lines, arcs, circles and rectangles at a rate of less than 800
nanoseconds per pixel. It isolates the display memory from the system memory so that the
main CPU can calculate the drawing parameters for the next figure or it can communicate with
the terminal user, while the current figure is being drawn. The display memory can be as large
as 256k words of 16 bit each. For bit-map graphics this can be organized as 2048 pixels by
2048 lines or 1024 by 1024 with 4 bits (colour planes) per pixel. The display memory is often
larger than the display area, so as to make possible double buffered display frames or
multiple-frame "movies".

In bit-mapped graphics mode each word of the display memory contains 16 horizontal
adjacent pixels while in character mode each word contains a character code and its attributes.
If each character occupies a 7*10 dot window, a 80 character by 40 row display can be
generated with a resolution of 560 by 400.

The display memory may be horizontally split into four character-display or two graphics

The Graphics Display Controller Chapter Two

display areas. Each area can be independently scrolled either in the horizontal or in the vertical
directions.

The GDC's two most important properties are its read-modify-write (RMW) cycle and
figure drawing capabilities. The GDC handles both data and address information in the display
memory. This is used to provide the RMW cycle capability and makes high speed, hardware
figure drawing practical.

Fig (2.2) shows a system block diagram of a graphics terminal with the GDC as a
graphics subsystem. The GDC provides an interface to the host CPU through data and address
buses as well as control lines. The external DMA controller also interfaces to the GDC via a
pair of handshake lines. The display memory is driven and controlled by the GDC for both
display raster scanning and RMW cycles. The time division multiplexed address and data bus
between the GDC and the display memory also passes video data to the video output circuitry.
The video circuitry then generates all the necessary video signals for the CRT display unit.

Figure 2.2 Block Diagram of a Graphics Terminal.

2.2 - GDC components

Within the GDC the functions are represented by individual subsystems, Fig (2.3).
Starting with the interface between the GDC and the host CPU there is an 8 bit bidirectional
data bus and three control lines that are generally driven from the host's address output. The
host CPU outputs commands and parameters to the GDC through a First-In-First-Out (FIFO)

8

The Graphics Display Controller Chapter Two

buffer whose contents are interpreted by the command processor. The command processor
decodes the command bytes and distributes the succeeding parameters to their proper

destinations within the GDC.

The DMA control circuitry in the GDC is interfaced to an external DMA controller via a
pair of handshake lines. The external DMA controller uses the microprocessor interface bus to
transfer the display memory data to the system memory and vice versa.

The 16 byte Parameter RAM stores parameters that are used repetitively during the
display cycle and the drawing process. In bit-mapped graphics mode it holds two sets of
partitioned display areas and the drawing pattern.

. >
PRQ «— DMA control Videosync | S v/EXT SYNG

DACK —>| generator S BLANK
[t)oB-7o Microproce = Memory timing ——>RAS
icroprocessor enerator —r
A-0 interface with | 9 ——> DBN
i Statusreg [@
R Datareg o L= Zoom & pan
. 1 op<esy controler
. |Bufferd i
FIFO buffer } © :
&8 Drawing
TF processor
> A-17
Command _ >
processor quzﬁ:g)rly —> QDH135
controller ?\%113
Parameter 13 AD-0
to 12
RAM

Light pen Je_ LPEN

Figure 2.3 GDC Biock Diagram.

The drawing processor includes figure drawing hardware to draw lines, arcs, circles,
rectangles and 8*8 pixel graphics characters. Given a starting point and the appropriate
drawing parameters the drawing controller needs no further assistance to complete the drawing

of the figures.

The Graphics Display Controller Chapter Two

The display memory controller provides a time multiplexed address and data bus to
control the memory. It also includes hardware circuitry for RMW operations and figure
drawing.

The zoom and pan controller needs additional external circuitry to perform display zoom
magnification and smooth horizontal panning. To drive the CRT display unit a video sync
timing generator provides the necessary signals for raster-scanning, partitioned display areas,
zoomed display, panning and scrolling. A light pen interface capability is also included.

2.3 - GDC command summary

Commands to the GDC can be categorised into five groups. (a) Video Control, (b)
Display Control, (c) Drawing Control, (d) Data Read and (¢) DMA control. The first two
groups allow the video timing and display formats to be specified to the GDC. The figure
drawing hardware has its own group of commands. There are commands for reading the
display memory, the cursor address and the light pen address. DMA transfers can be initiated
with the DMA control commands so that any rectangular area of the display memory can be
accessed. The command summary given below further illustrates these commands. Appendix
(A1) contains the GDC's data sheet which gives more information about commands and
parameter bytes.

Video control commands

RESET : resets the GDC to its idle state and sets the video format.

VSYNC : selects master or slave video synchronization when multiple GDC's are used.
CCHAR : specifies the cursor and character row heights.

Display control commands

START : starts the display scanning process
ZOOM : set zoom factors

CURS : set cursor position

PRAM : load the parameter RAM

PITCH : set the width of display memory

Drawing control commands

WDAT : write data into the display memory
MASK : set the mask value

10

The Graphics Display Controller Chapter Two

FIGS : specify the figure to be drawn
FIGD : start figure drawing
GCHRD : start graphics character drawing

Data read commands

RDAT : read data from display memory
CURD : cursor position read

LPRD : read the light pen address

DMA control commands
DMAR : request a DMA read operation
DMAW : request a DMA write operation

2.4 - The Display Memory Architecture

The display memory is organized like a standard computer program memory. From the
first location in memory to the last there are no discontinuities or missing memory locations.
The GDC scans this linear one-dimensional memory to generate an X,Y two-dimensional
display on the CRT without any need for actual two-dimensional addressing (line and pixel
number) in the display memory.

As an example imagine a display memory consisting of 20 words and a 3*3 CRT screen.
Figure (2.4) shows how the display memory words are displayed on the screen. Pitch (p)
shown in figure (2.4) is the width of the display memory which can be different from the CRT
display width. As the display memory size is larger than the display area, some words do not
appear on the screen.

The display memory in figure (2.4) can be represented as a two dimensional array of
words as shown in figure (2.5). The order in which the display memory words are oufput to
the CRT screen locates the origin (0,0) in the upper left hand corner. This is similar to the
fourth quadrant of the cartesian plane. Horizontal moves are accomplished with simple
increments or decrements while vertical moves require the addition or subtruction of p.

Diagonal moves require a combination of both of these operations.

11

The Graphics Display Controller

r

p

1

omw@mhmm*

Display Memory

CRT Screen
1 2 3
6. 7 8
11 12 113

Figure 2.4 The display memory words
on the display screen.

Y
1 2 13 4 5
6 7 8 9 110
11 |12 13 | 14 |15
16 117 118 119 20

Figure 2.5 The display memory as a
two dimensional array.

2.4.1 - Display Memory Contents

Chapter Two

In the graphics mode, the 16 bits of each word in the display memory are used for 16

horizontally adjacent pixels which are serially output to the CRT. The GDC assumes that the

least significant bit, 0, is sent out first. Figure (2.6) shows a word in the display memory and

figure (2.7) shows how it appears on the CRT.

12

The Graphics Display Controller Chapter Two

Bit #:
15914 113712 31131039 38 17 16 15 14 13 121110 CRT

>

Sent to the CRT display using a right shift

Fig 2.6 word in display memory.

revious Bit #: next
pword 0;1,2,3,4,5,6,7,;8,9,10,11,12,13,14,15] word
~
7

Direction of motion of the CRT beam spot

Fig 2.7 Word appearance on CRT.

2.4.2 - Specifying a pixel address in the display memory

There can be up to 2**22 pixels in the display memory, organized into 2**18, (256k)
16-bit words. The address of one of these pixels is specified to the GDC in two parts. First, an
18-bit address selects the display memory word, which contains the pixel. Second a 4-bit value
points to the individual pixel within the word. The word address is called the Execute Address,
or Ead, and effectively acts like a cursor in the GDC. The pixel address is called the daD or Dot
address. The relationship between dots and words is given in a magnified view of the upper
left-corner of the CRT screen in figure (2.8). Figure (2.9) shows the arrangment of word
addresses on the display memory. p (pitch), the width of the display memory can be defined
as: the number of 16-bit words across one line of the display memory.

origin
word address 0] Word address 1

1
01112183 5l /71819 [10]11]1

13[14]15§ 011 [2] 3[4]5]16
0(1]2]3]4]51617]1819110J11[12]13]14]15]0] 1]2]3[4

Ny

word address p

Fig 2.8 Address of dots within their respective words.

13

The Graphics Display Controller Chapter Two

1st
word 2nd 3rd
of 16 waqrd word
pixels] r
0 1 > /" 51 1st line
P p+1 p+2 /1 2p-1 2nd line
25| 2p+l [2p+2 /) 3p-] 3rd line
- 3p 3p+1 4p-1
2o //// 5p-1
5p 1 op-1
/! /1 /! /! // /1
(0-1)p_|(n-1)p+{(n-T)p+2 / np-1 last line
Figure 2.9 word addresses on the display
memory.

Given a pixel's x and y coordinates on the display memory its word and dot addresses
can be easily calculated . Figure (2.10) shows a pixel with coordinates (X,Y) on the display
memory. For the sake of simplicity the origin (0,0) is assumed to be in the upper left-corner
which is the same point as the start of the CRT raster-scan. The address of the line in which the
pixel lies is called the Line Base Address (LBA):

LBA=p*Y

To find Ead the LBA must be added to the number of words along the line due to the value of
the x-coordinate :

Ead=LBA + INTEGER (X/16)=p *Y + INTEGER (X/16) Equation (2.1).

The above division yields the integer part of the X/16 division, trancating off the remainder.
The dot address within the word is the remainder of that division treated as an integer value :
daD = REMAINDER (X/16) * 16 = RESIDUE (X/16)

14

The Graphics Display Controller Chapter Two

origin
(0’0)\‘Increasin X
9 S

Increasing
y

-(X.Y)

Figure 2.10 a pixel shown on the screen.

An example using actual values is given below.

Example : Let the display memory be configured as 1024 pixels by 1024 lines (Xmax =
Ymax = 1024) and the point be (x,y) = (357, 438) :

p = (Xmax + 1)/16 = 1024/16 = 64 words/line

Ead =p * y + INTEGER (x/16)

Ead = 64 * 438 + INTEGER (357/16) = 6D97 Hex

daD = RESIDUE (x/16)

daD = RESIDUE (357/16) =7

These two numbers, converted to base 2, can be sent to the GDC to specify the particular pixel
of interest.

2.4.3 - Multiplane systems

For colour graphics systems the most common way of implementing colour is by
building multiple planes of the display memory, each plane representing one of the main
primary colours. By sending the video data from all the planes together, a large number of
colours may be generated. For example, a three colour plane system provides a total of eight
colour combinations, figure (1.3).

The NEC/APC's display memory is organized as three 1024 by 1024 colour planes
(red, green and blue), figure (2.11). The Ead word address two most significant bits (bits 16
and 17) select one of the display memory's colour planes.The address of the word within that
plane is specified by the Ead's bits O through 15 as calculated in the previous section.

15

The Graphics Display Controller Chapter Two

red plane

blue plane \
\]

green plane

T~

from/to
hos CPU

E 50 C

Figure 2.11 A three colour plane system.

vide o to graphics

output device
driver

2.5 - Read-Modify-Write

Data transfers between the GDC and the display memory are accomplished using a
RMW memory cycle, fig (2.12). The four clock period timing of the RMW cycle is used to :
1 - output the address
2 - read data from the display memory
3 - modify the data
4 - write the modified data back into the initially selected memory address.
Figure drawing, DMA transfers, write and read data operations all use RMW cycles.

CLOCK —/__\—Wf__
ADDR/ DATA ? \7r—__/ @‘

READ DATA WRITE DATA

MODIFY
OPERATION
INTERVAL

Figure 2.12 Read Modify Write Cycle.

During a figure drawing process, the GDC must modify a number of bytes in the display
memory. In this case each RMW cycle modifies only one pixel. Since the GDC can access only
16-bit words, each RMW cycle consists of :

1 - Read 16-bits of data pointed to by Ead

16

The Graphics Display Controller Chapter Two

2 - Modify the bit pointed to by daD

3 - Write 16 bits back into the display memory.

During the other operations (e.g. DMA transfers, Write data into the dispay memory) any or all
of the bits of a 16-bit display memory word can be modified during one RMW cycle.

2.5.1 - RMW Hardware

Figure (2.13) shows the block diagram of the RMW hardware. The Figure Drawing
Logic (FDL) is responsible for calculating the addresses of the RMW cycle, figure (2.14).
Before drawing is started the Ead register is loaded with the address of the first word in the
display memory using the Cursor Specify Command (CURS). The mask register is loaded
with the address of the first pixel to be modified within that word. This address comes from the
daD field of the CURS command and is decoded into a 16-bit value with only one bit set.

From Display
memory
Read
2 Pattern Data
5\ | = Select) »
>§ Logic s
© o 3 .‘a’
8 = i o
% ! =1 ” Write \ To Display
£ Figure | Logic ?'St Data /' memory
IS M Drawing Unit =
| Logic Mask R
§ 9 3 bit 0 }=
Figure 2.13 RMW hardware block diagram.

17

The Graphics Display Controller Chapter Two

GDC Internal Data Bus

M U U

Pitch Reg Drawing MSB
Control S
Logic
Magk 15
[OR] 3
Egg [] Mask |+ ToRMW
- Reg 1 Logic
. | [D_] ' Unit
[0z] —>
N
Mask 0

LSB

L D1 |
el

Figure 2.14 GDC Figure Drawing Logic.

The six registers DIR, DC, D, D2, D1, DM (fig 2.14) are loaded with the appropriate
values to specify the details of the figure, using the Figure Specify Command (FIGS). After
the Figure Draw Command (FIGD) is given to the GDC, the first address is output to the
display memory. The content of that address goes into the GDC, is modified by the logic unit
and is written back into the display memory.

During this RMW cycle, the FDL calculates the next address. It manipulates the values in
the D, D1, D2 and DM registers, looks at the DIR register and examines the MSB and the L.SB
bits of the MASK register. This generates the next address. At this point, the FDL may
increment or decrement the Ead register by adding or subtracting from the Ead the value stored
in the PITCH register. It may also shift the contents of the MASK register right or left. The
position of the next pixel to be written determines these decisions. The results are new values
in some of the drawing control logic registers and a new value in the MASK register.

For operations such as DMA transfers and graphics character drawings the MASK
register is loaded with the MASK command. In this case all 16 bits can be set to any desired

value.

The Pattern register and Pattern select logic select the bits on which the logic operation
will be performed. During the figure drawing process, the pattern select moves a pointer from

18

The Graphics Display Controller Chapter Two

the LSB to the MSB of the pattern register; if the bit is one, the logic operation takes place, if a
zero the bit is not modified. For figure drawing the pattern register is loaded using the PRAM
command.

The Logic Unit does the actual RMW data modification. It offers four logic functions : 1)
Replace, 2) Complement, 3) Clear and 4) Set, as shown in figure (2.15). These are selectable
via the MOD fields of the WDAt and DM AW commands. Figure (2.16) shows the Logic Unit.
The pattern register holds the 16-bit data pattern, the mask register points to the pixel to be
modified and the logic operation select determines which logic function is to be performed.
Table 2.1 further illustrates function of the Logic Unit.

Drawing pattern REPLACE COMPLEMENT
11 : 277 7
AU Y : / /; / 2 (/’. 7

/////// 77//

Previous content . E‘??g‘[___________

Figure 2.15 RMW operations.

19

The Graphics Display Controller Chapter Two

RD DATA
n

Pattern
n

Logical

Operation

Select WR DATA

n
c gplerattion
Mask elec

n 00 Replace

01 Complement
A 10 Reset

11 Set

A=1 for Replace operation
A=0 for other operations

Figure 2.16 Logic Unit Circuitry.

20

The Graphics Display Controller Chapter Two

Table 2.1
Pa'rternn Maskn C A B WR DATé\ Operation
0 1 0 1 1 Patterr}]
Replace
1 1 1 1 1 Patterq1
0 1 O 0O O RD DATA
Complement
1 it 1 0 1 RODATA
0 1 0 0 O RD DATA
Reset
1 1 1 0 1 0
0 1 0O 0 © RD DATA
1 1 1 0 f 1 Set

2.6 - Figure Drawing

The GDC can draw a number of graphics figures into the display memory automatically,
under simple commands from the host CPU. These figures include lines, arcs, circles,
rectangles and graphics characters. The linear figures can be drawn as solid, dotted and dashed
lines, according to the pattern word which is loaded into the GDC by the host CPU. The
necessary parameters that describe a figure, together with the figure starting address, must be
loaded into the GDC proior to any figure drawing. After this is accomplished the GDC needs
no further assistance from the system microprocessor to draw the specified figure.

2.6.1 - Drawing directions
As figure drawing proceeds the next pixel to be modified can be any one of the eight

nearest neighbours of the current figure pixel. The GDC assigns each of these 8 directions a
number as shown in figure (2.17).

21

The Graphics Display Controller Chapter Two

Figure 2.17 Drawing Directions.

To move to the pixel below or above the current pixel, the width of the display memory,
pitch, should be added or subtracted from, the word address Ead and the MASK register
remains unchanged. In the horizontal direction the MASK register is rotated and its extreme left
or right bit is examined. If this is a zero then the next right or left pixel within the current word
is modified. If the extreme bit is a one then the word address Ead is incremented or
decremented to move to the right or left word. For diagonal directions the add or subtract of the
pitch operation must be combined with a MASK register rotation.

2.6.2 - Preparing the GDC for figure drawing

To prepare the GDC for a drawing operation the details of the desired figure must be
loaded to the GDC through the FIFO buffer. The type of the RMW cycle can be selected using
the WDAT command. The cursor can be positioned to the word and dot addresses, Ead and
daD, of the starting pixel of the figure, using the CURS command. For continuous, dotted,
dashed, etc figure lines, the PRAM locations 8 and 9 must be loaded with the drawing pattern
using the PRAM command. For graphics character drawing and patterned area filling, PRAM
locations 8 to 15 can be loaded with the desired pattern or character.

For each figure drawing operation the FIGS command is used to specify the details of
the figure; its first parameter byte determines the type (e.g. line, arc etc.) and the direction. The
rest of the parameter bytes load the five figure drawing registers, DC, D, D1, D2 and DM to

provide the necessary information about the figure.

After the FIGS command and its parameters are sent to the GDC the host CPU must
initiate the RMW operation with one of the following commands :

22

The Graphics Display Controller Chapter Two

FIGD = Figure Draw Start

GCHRD = Area Filling and graphics Character Drawing Start
WDAT = Write Data into the display memory

DMAW = DMA Write sequence initiate

DMAR = DMA Read sequence initiate.

2.7 - The FIFQO Buffer

The main pathway for information flow between the host CPU and the GDC is the
First-In-First-out (FIFO) buffer internal to the GDC. Commands and parameters are loaded
into the buffer by the host and removed at the other end by the GDC's command processor.
The command processor then handles them when it finishes execution of the previous
command. The FIFO is also used to buffer data for the host as it is read from the display
memory or internal registers.

As is true with all FIFOs, the length of the GDC's FIFO is limited, and if data is output
when the FIFQ is full, the oldest data in the FIFO will be overwritten and lost. When the host
is performing reads from the FIFO, the data is moved from the FIFO into a temporary data
register to allow fast access time onto the system data bus.

Three bits relating to the FIFO can be read in the GDC's Status register : FIFO-EMPTY,
FIFO-FULL and DATA-READY. The names of these bits describe their ONE state condition.
For example, the FIFO-FULL bit is a zero when the FIFO is not full. The two FIFO status bits
are meaningful whether the data is flowing from the host into the GDC or the reverse. The
DATA-READY bit is used only for data reads out of the GDC. None of these bits are
meaningful before the first RESET command opcode is sent to the GDC after power-up.

When commands and parameter bytes are being written into the GDC the FIFO is in Data
Write mode. After one of the commands which requests data from the GDC is executed, the
FIFO is turned around into Data Read mode. Bytes of data are then read from the Data register,
which is in turn filled from the FIFO. The host CPU must check the DATA-READY status bit
before each read operation. During the read mode if a command byte is output to the GDC, the
FIFO will automatically change direction into the Data Write mode. Any read data in the FIFO
at the time of the turn-around will be lost. Turn-arounds of the FIFO to either mode will
completely empty the FIFO of any contents.

23

The Graphics Display Controller Chapter Two

During outputs to the GDC, the FIFO must not be overflowed. There are two
approaches for preventing this. The first is to check the FIFO-FULL status bit for a zero before
outputting each command and parameter byte. The second is to wait for the FIFO to become
empty and then send 16 bytes or less, in sequence to the GDC.

2.8 - Parameter RAM Contents

The Parameter RAM is used to store two types of information. First it specifies the
details of the display area partitions, in blocks of four bytes. The four parameters stored in each
block include the starting address in the display memory of each display area and its length.
Also there are two mode bits for each area which specify whether that area is a bit-mapped
graphics area or a coded character area, and whether a 16-bit or 32-bit wide display cycle is to
be used for that area. The other use for the PRAM contents is to supply the pattern for figure
drawing when in bit-mapped graphics mode.

In character mode the PRAM can hold up to four sets of display area partitions starting
addresses (SAD) and lengths (LEN). In bit-mapped graphics and mixed graphics and character
mode, the PRAM locations 0 through 7 hold two sets of display partiton parameters and
locations 8-15 supply the pattern for figure drawing. For area filling and graphics character
drawing the PRAM locations 8-15 contain the desired character or pattern to be displayed. For
line, arc and rectangle drawing (linear figures) locations 8 and 9 are loaded into the pattern
register to allow the GDC to draw dotted, dashed, etc lines; for example if an all "1's" pattern
is loaded, continuous figures will be drawn.

The parameters stored in the PRAM, are available for the GDC to refer to repeatedly
during figure drawing and raster-scanning. In each mode of operation the values in the PRAM
are interpreted by the GDC in a predetermined fashion. The host microprocessor must load the
appropriate parameters into the proper PRAM locations. The PRAM loading command allows
the host to write into any location of the PRAM and transfer as many bytes as desired. In this
manner any stored parameter byte or bytes may be changed without influencing the other bytes.

2.9 - Summary
The GDC forms the basis of a colour graphics termianl. It translates the graphics

commands into digital signals and stores the digital picture in its display memory which is
isolated from the system memory. The GDC's internal structure is shown in figure 2.3. The

24

The Graphics Display Controller Chapter Two

host CPU outputs commands and parameters to the GDC through the FIFO buffer. The DMA
control circuitry in the GDC interfaces to the external DMA controller which uses the
microprocessor's interface bus to transfer the display memory data to the system memory and
vice versa. In bit-mapped graphics mode the PRAM holds two sets of partitioned display areas
and the drawing pattern. The FIFO buffer and PRAM were explained in greater detail, later in
the chapter, due to their importance to the rest of the work.

The GDC's display memory is like a standard computer program memory. The GDC
scans this linear one-dimensional memory to generate an X,Y two dimensional display on the
screen. In the graphics mode the 16 bits of each word in the display memory are used for 16
horizontally adjacent pixels. The address of one of these pixels is specified to the GDC in two
parts. First the address of the display memory word which contains the pixel or Ead and
second the address of the individual pixel within the word or daD.

Data transfers between the GDC and the display memory are accomplished using a
RMW memory cycle. Each RMW cycle uses four clock periods to output the address, read
data from the display memory, modify data and write the modified data back into the initially

selected memory address. The figure drawing hardware is responsible for calculating the
addresses of the RMW cycle.

25

Chapter Three
Programming the GDC

3.1 - Introduction

The graphics Display Controller (GDC) can be programmed either by using a GSX-86
standard interface or by directly programming the chip. GSX-86 allows the application
program to be written in a high level language (e.g. Pascal, Fortran) according to the GKS
(Graphics Kernel System) procedures. GSX-86 does not use all of the GDC's capabilities
(e.g. DMA transfers, Scrolling) and in order to use these capabilities the GDC must be
programmed directly.

The first part of this chapter introduces GSX-86 and describes how it can be driven from

an application program. The second part discusses the direct programming techniques for the
GDC.

3.2 - Programming the GDC using GSX-86

This section briefly describes GSX-86, the graphics System Extension of the CPM-86
operating system [5] and shows how it can be driven by a Pascal program. An example is
given for programming the GDC using GSX-86, but it should be noted that other graphics
devices (e.g. plotter, printer) can be programmed by a similar technique. The definitions given
in this chapter are as specified in the references [5], [6] and are restated here for the sake of
clarity.

GSX-86 defines a standard interface between graphics devices and applications
programs. It is an integral part of the CPM-86 operating system and consists of two
components :

* Graphics Device Operating System (GDOS).
* Graphics Input /Output System (GIOS).
GDOS provides the interface to the graphics devices and is responsible for loading the desired
device driver into the system memory. GDOS also performs coordinate scaling. Applications
programs use Normalized Device Coordinates (NDC) which range from 0 to 32767 along each
axis . The full scale NDC space is mapped to the full dimensions of the graphics devices in
each axis, e.g. the full scale values for the APC are :

X = 640 pixels , Y =474 pixels

26

Programming the GDC Chapter Three

GIOS contains a set of available device drivers that directly program the graphics devices.
These can be invoked by GSX-86 through a standard interfacing method which is called the
virtual device interface (VDI). To implement the VDI the application program calls GDOS via
an interrupt with a function code (interrupt #224 with function code 0473H in register CX as
shown in table (3.1)). Registers DS and DX contain the segment base and offset respectively,
of the parameter list (PB), to be explained later. Table (3.1) contains a listing of the procedure
written in assembly language of the 8086 processor [7] to link an application program to
GSX-86 by the VDI method. The application programs written in the Pascal MT+86 language
[8] should be linked to this assembly language module. Appendix (B1) contains a
demonstration which shows how the GDC can be programmed to draw different markers,
using the GSX-86 standard interface. %k

The parameter list (PB) consists of five double-word addresses which are the addresses
of five integer arrays as follows:
PB address of input control array
PB +4 address of input parameter array
PB +8 address of input point coordinate array
PB + 12 address of output parameter array
PB + 16 address of input point coordinate array
The parameter arrays contain the following values when GDOS is called:

Input Control Array
confrol(1) Opcode

control(2) Number of vertices in input coordinate point array
(ptsin)
control(4) Length of input parameter array

control(6-n) Opcode-dependent (intin)

Input Parameter Array (intin)
intin Array of input parameters. Length of array is
opcode-dependent and specified in control(4).

Input Point Coordinata Array (ptsin)
ptsin Array of input coordinates. Each point is specified
by an X,Y coordinate pair given in Normalized
Device Coordinates (0-32767 with length

27

Programming the GDC

control(2) * 2).

Output Control Array

control(3) Number of vertices in output point array (ptsout)
control(5) Length of input parameter array

cpntrol(6-n) Opcode-dependent

Output Parameter Array (intout)
intout Array of output parameters. Length of array is

opcode-dependent.

Output Point Coordinate Array (ptsout)
ptsout Array of output coordinates.

28

Chapter Three

Programming the GDC

Table 3.1

Chapter Three

public GSX
name gsx-module

data segment public
data ends

code segment public

mov ds, ax

assume c¢s:code , ds:data

gsx proc near
push ds ;save registers
push es

mov ax,ss ;get segment address
;0f the parameter list

mov dx, sp ;get offset address
;of the parameter list

add dx, 6 ;advance the pointer
;past the stored data

mov ¢x,473H ;GSX-86 function code

pop es ;restore registers

int 224 .call GDOS
pop ds
ret 20 return
gsx endp
code ends
end

3.3 - Direct programming of the GDC

The host microprocessor can program the GDC for graphics operations by sending the

appropriate commands and parameters to it. Commands to the GDC consist of a command
byte followed by a set of parameter bytes to specify the details of the command. The command
and its parameters are written into the GDC's FIFO. The GDC's command processor decodes

the command and loads the parameters into the appropriate internal registers and initiates the

29

Programming the GDC Chapter Three

required operation. Appendix (Al) contains an explanation of the GDC's command and
parameter bytes. Four of the GDC's registers can be accessed by the 8086 processor : Status
register, First-In-First-Out (FIFO), Command register and Data register. The input output
addresses, functions and bit maps are summarized in Appendix (A2).

3.3.1 - Initializing the GDC

To configure the GDC for the desired mode of operation it must be initialized by a series
of commands and parameters. The host microprocessor normally outputs them to the GDC.
This command sequence needs to be done only once after power up. The necessary commands
and parameters for the GDC initialization are listed below and further details about their
definitions can be found in Appendix (A1).

1 - RESET Opcode.

2 - SYNC Opcode.
P1 = mode bits
P2 = active words per line
P3 = VSYNC and HSYNC widths
P4 = HFPORCH and VSYNC widths
P5 = HBPORCH width
P6 = VFPORCH width
P7 = active lines per video field
P8 = VBPORCH width and active lines count

3 - VSYNC Opcode + Master / Slave bit

4 - PITCH Opcode
P1 - Display memory width

5 - PRAM Opcode + PRAM starting address of zero
P1 = display window starting word address, low byte
P2 = display window starting address, high byte
P3 = window length low bits + starting top bits
P4 = mode bits + window length top bits

30

Programming the GDC Chapter Three

6 - CCHAR Opcode
P1 = sweep lines per character row - 1 (P1 = 0 for graphics mode)

7 - ZOOM Opcode
P1 = display + writing zoom magnification factors

8 - START Opcode.

Except for the RESET command which must come first, the order in which the rest of
the commands are given is not important, since they do not interact with each other. After
outputing the RESET command the GDC will be in the idle mode until a START command is
issued. During the idle mode the display will be blanked and the video timing is synchronized.
The SYNC parameters may follow the RESET command and the SYNC command need not be

given.

Appendix (B2) contains a demonstration program which shows how the GDC is
programmed by sending commands and parameters to it. At the beginning of the program the
GDC is initialized for graphics mode.

3.3.2 - Programming the GDC to draw markers

Marker drawing is performed by transferring the contents of the PRAM locations 8§
through 15 to the display memory, starting at the pixel position specified by the CURS
command. The MASK register must be loaded with all ones to insure proper incrementing of
the Ead word address and the Area Fill / graphics Chracter mode should be selected via the
FIGS command.

The marker type is set by loading the PRAM locations 8-15 with the pattern to be
displayed. For example to draw a ' * ', PRAM locations 8-15 are loaded with the following set
of data :
92H, 54H, 38H, FEH, 38H, 54H , 92H , O0H
Figure (3.1) shows the PRAM after being loaded with the above set of data.

31

Programming the GDC Chapter Three

PRAM data

RA-8 10010010 92H
9 01010100 54H
10 00111000 38H
11 11111110 FEH
12 00111000 38H
13 01010100 54H
14 10010010 92H
15 00000000 OOH
Figure 3.1 PRAM locations 8 to 15 loaded

with the data of a star.

Each marker occupies an area of 8 by 8 pixels when displayed on the screen with a zoom
factor of zero. The pattern can be drawn in any of the eight orientations specified by DIR bits
of the FIGS command. If direction 2 is selected the FIGS parameters for the marker (graphics
character) drawing are as follows :

P1 = type + direction = 00010 + 010 = 00010010

P2 = DC low byte

P3 = DC high byte

P4 =D low byte

PS5 = D high byte

where :

DC = (Number of pixels in perpendicular direction) - 1
DC=8-1=7

D = Number of pixels in the initial direction.

D=8

The starting pixel position of the marker is specified by the CURS command. The
CURS command also specifies the colour plane address'. The Ead word address two most
significant bits (bits 16 and 17) which select one of the three display memory's colour planes,
are as follows:

Ead top bits plane
00 Green
01 Blue
10 Red

32

Programming the GDC Chapter Three

These two bits are positioned in the third parameter byte of the CURS command as shown
below :

curs : 0,1,0,0,1,0,0,1

p1 . EBAD | ———— FAD lowbyte
p2 ., BD ———— EAD middle byte
p3 dAD g o EAD

EAD top bits

With three main colours, red, green and blue, it is possible to have 8 different colour
combinations as follows:

Black no colour

Red Red

Green Green

Blue Blue

Cyan Blue + Green
Yellow Red + Green
Magenta Red + Blue

White Red + Green + Blue

For example to draw a yellow marker, it must be drawn once in the red plane and once in the
green plane in set or replace writing mode (writing mode is given via the WDAT command). It
should also be drawn in the blue plane in reset writing mode to clear any blue shade from
previously drawn figures.

The size of the marker is determined by the ZOOM command. Zoom magnification
factors of 1 to 16 can be given via the four LSB of the zoom parameter byte.

The necessary commands and parameters for marker drawing are listed below:

1 - ZOOM Opcode

P1 = display + writing zoom magnification factor

33

Programming the GDC Chapter Three

2 - MASK Opcode
P1 = FF (Hex)
P2 = FF (Hex)
3 - WDAT Opcode + transfer type + writing mode

4 - CURS Opcode
P1 = word address Ead, low byte
P2 = word address Ead, middle byte
P3 = Dot address daD (bits O to 3) + 00 + Ead top bits

5 - PRAM Opcode + PRAM starting address of 8
P1 = Pattern byte 8 (Last drawn)
P2 = Pattern byte 9
P3 = Pattern byte 10
P4 = Pattern byte 11
PS5 = Pattern byte 12
P6 = Pattern byte 13
P7 = Pattern byte 14
P8 = Pattern byte 15 (Drawing starts with Bit-0)

6 - FIGS Opcode
P1 = Type (00010) + DIR
P2 = DC low byte
P3 =DC high byte
P4 =D low byte
PS5 =D high byte

7 - GCHRD Opcode to initiate the drawing operation.
The above command sequence should be given three times once for each colour plane.
Appendix (B2) contains a demonstration program which implements the above techniques to
draw markers of different sizes, types and colours. %k

3.4 - Summary

Two methods for programming the GDC have been presented: a high level language

34

Programming the GDC Chapter Three

which implements GKS standard procedures and a low level or direct programming of the chip
itself. The former uses the software package provided with the NEC/APC which contains the
GSX-86 (the Graphic System Extension of the CPM-86 operating system). GSX-86 allows
the application programs to be written in a high level language according to the GKS
procedures. The application programs are linked to GSX-86 by a Virtual Device Interface
(VDI) method. The interface procedure written in 8086 assembler is listed in table (3.1).

The GDC can be directly programmed by sending the necessary commands and
parameters to it; the command series for the GDC initialization and marker drawing were listed.
Demonstration programs written in both Pascal and assembly language are given in appendices
B1 and B2.

35

Chapter Four
Dynamic Pictures

4.1 - Introduction

This chapter will demonstrate three different GDC capabilities by which a graphics
picture on the screen may be moved. These are scrolling, DMA transfers and read and write
through the FIFO buffer.

The first section explains how the screen can be divided into two independently
scrollable areas using the PRAM. The second part discusses the DMA capability of the GDC to
generate and move multiple graphics windows on the screen. The last section is similar to the
second section with the system microprocessor substituting for the external DMA controller.
Each section contains a demonstration which consists of a Pascal program and its assembly
language module. The assembly language module contains the interface procedure GSX
(explained in chapter three), which is called from the Pascal program to draw graphics figures.
It also includes new developed procedures for the performance of the above mentioned
capabilities.

The coordinates passed to the assembly language module must be in Normalized Device
Coordinates (NDC) for GSX and in actual device units for the new procedures. The NDC is in
the range from 0 to 32767 along each axis on the CRT screen. The actual device units are:

XM = 640 pixels maximum x on the CRT screen

YM = 474 lines (pixels) maximum y on the CRT screen

The display memory is larger than the display area (CRT screen) and its dimensions are:

XM = 1024 pixels

YM = 1024 lines (pixels)

The origin (0,0) is in the lower left hand comer when NDC is implemented and in the upper
left hand corner when working with the actual device units. Figure (4.1) shows the display
area dimensions in both NDC space and actual device units.

36

Dynamic Pictures Chapter Four

origin 640 pixels
for actual g P —>
device units 4 7'y
32767 oA 474 lines
origin 32767 >
for ND
Figure 4.1 The actual device units versus NDC.

I‘ 1024 pixels or 64 words >|
640 pixels or 40 wor

la—

Figure 4.2 The display area and
the display memory.

4.2 - Scrolling

The screen can be considered as a window on the display memory because the display
memory is often larger than the display area. Figure (4.2) shows a 640 by 474 CRT display as
a part of a 1024 by 1024 display memory.

37

Dynamic Pictures Chapter Four

It is possible to move the display window around and see other areas of the display
memory through it, figure (4.3). This movement is accomplished by changing the window
starting address (SAD), stored in the PRAM. To move the window to the right or left by one
word, the SAD should be incremented or decremented respectively. To move the window up
or down by one line the SAD should be increased or decreased by the pitch (width of the
display memory). Note that when the window is moved, the picture on the screen seems to
have moved in the opposite direction. For example if the window is moved by one word to the
right, it seems that the picture moves one word to the left.

In bit-mapped graphics mode in the GDC, the display can be divided into two
independently scrollable areas by loading PRAM locations O through 7 with the display
partitions starting addresses and lengths. Figure (4.4) shows the screen memory divided into
two equal areas.

Equation (2.1) is implemented to find each area's starting address :
Ead =Y * pitch + INTEGER (X/16) Equation (2.1)
If the starting point has coordinates xs and ys then:
SAD =ys * pitch + INTEGER (xs/16)
The starting address of area one with xs=0 and ys=0 (fig 4.4) can be calculated as follows:
SAD1 =0 * 64 + INTEGER (0/16) =0 area one starting address
The starting address of area two with xs=0 and ys=237 (fig 4.4) can also be calculated:
SAD2 =237 * 64 + INTEGER (0/16)
SAD2= 3B4016 area two starting address

Both areas have the same length, 237 lines therefore :
LEN1 =237 = EDi6
LEN2 =237 =ED1s6

After being loaded by the above set of data, PRAM locations 0-7 are shown below:
location content

RA-0 00H SADIL

RA-1 00 H SADI1H

RA-2 DOH LENIL (4 through 7)
RA-3 OE H LEN1H (0 through 5)
RA-4 40H SAD2L

RA-5 3BH SDA2H

38

Dynamic Pictures Chapter Four

RA-6 DOH LEN2L (4 through 7)
RA-7 OEH LEN2 H (O through 5)

- SAD2

(a)
SAD3 %“D“ (©)

() (d)

Figure 4.3 The display area in four different situations :
(a) in normal position (b) moving to the right direction
(c) moving downward and (d) moving in both directions.

39

Dynamic Pictures Chapter Four

(0,0) » (640,0)

(0,237) —p>

(0,474) —p

Figure 4.4 The screen memory divided
into two equal areas.

To scroll each area, the location of that area's starting address in the PRAM should be
given via the PRAM command's SA field. This should be followed by the area's new starting
address. For example to move area two one word to the left, if the previous start address is
3B4016, the following bytes should be sent to the GDC :

1-74 (Hex) PRAM opcode + PRAM starting address of 4
2-41 (Hex) (previous address + 1) Low byte
3 - 3B (Hex) (previous address + 1) High byte

The contents of the rest of the locations will remain unchanged.

Appendix (B3) cntains a demonstration program which divides the screen into two areas
and allows the user to move each area either horizontally or vertically using the four movement
keys on the NECAPC keyboard. In the demonstration program the graphical display is drawn
by implementing the GSX interface procedure. To divide the screen into two areas procedure
"grscrol” is called. To scroll each area the proper PRAM command + PRAM starting address,
followed by that area's new starting address are given to the GDC by calling the procedure
“scrol".

4.3 - DMA Transfers
The display memory data can be written into the system memory once the exernal DMA

controller and the GDC have been set up for the transfer. The GDC and the external DMA
controller each provide a memory address in their respective domains. The DMA controller

40

Dynamic Pictures Chapter Four

supplies successive addresses in the system memory, while the GDC provides addresses of a
two-dimentional block in the system memory. The DMA capability is useful to move data
around the display memory. Multiple windows of the display memory can be generated, stored
in the system memory and written back into any location of the display memory.

4.3.1 - Preparing for a DMA transfer

The external DMA controller, 8237-5, has four channels from which channel 2 is
reserved for graphics operations. Appendix (A3) contains a list of instructions and I/O
addresses together with bit maps of registers. The external DMA controller should be
programmed for channel 2 and memory to I/O transfers. If data is to be read from the display
memory and written into the system memory, the DMA controller should be programmed for a
write operation. If data is to be read from the system memory and written into the display
memory the DMA controller should be programmed for a read operation. The total number of
bytes to be transfered and the address of the first system memory byte to be accessed must be
given through the appropriate registers.

To program the GDC for the transfer, the cursor must be pointed to the first display
memory word address to be accessed. The mask register should be set to all ones, to make sure
of incrementing the Ead word address properly. The FIGS command is implemented to set the
TYPE, DIR, DC and D values. For DMA data writing the following command sequence
should be given to the GDC:

1 - CURS opcode
P1 = word address Ead (0 through 7)
P2 = word address Ead (8 through 15)
P3 = Dot address daD (0 through 3) + Ead (16 through 17)

2 - MASK opcode
P1=FFH
P2=FFH

3 - FIGS opcode
P1 = TYPE (00000) + DIR
P2 = DC low byte
P3 = DC high byte

41

Dynamic Pictures Chapter Four

P4 =D low byte
P5 = D high byte
4 - DMAW opcode + transfer type + RMW operation.

The FIGS parameters DC and D are defined as follows :

DC = (Number of word addresses in the direction at right angles to the initially specified DIR,
direction) - 1.

D = (Number of bytes to be transfered in the initially specified direction) - 1.

The following command sequence is used for DMA data read :
1 - CURS opcode
P1 = Ead low byte
P2 = Ead high byte
P3 = daD + Ead high bits

2 - MASK opcode
P1=FFH
P2=FFH

3 - FIGS opcode
P1 = TYPE (00000) + DIR
P2 = DC low byte
P3 = DC high byte
P4 =D low byte
P5 = D high byte
P6 = D2 low byte
P7 = D2 high byte

4 - DMAR opcode + transfer type + RMW operation.

The FIGS parameters DC, D and D2 are defined as follows :

DC = (Number of word addresses in the direction at right angles to the initially specified DIR,
direction) - 1.

D = (Number of bytes to be transfered in the initially specified direction) - 2.

D2 =D/2.

42

Dynamic Pictures Chapter Four

4.3.2 - Dynamic picture generation

The DMA transfer capability of the GDC, makes possible moving pictures across the
CRT screen. Complex movements are accomplished by storing a window of the picture in the
system memory, replacing the picture on the screen with the background and then inserting the
stored window into any desired location on the display in place of the previous one. If two
display buffers are available the process of replacement can be made invisible; while the first
display is seen through the screen, the necessary changes are performed on the second one.
The screen window is then switched from the first to the second display buffer. This process
can be continued to generate a continuous motion on the CRT screen.

Example : Appendix (B4) cotains a demonstration program which shows a graphical duck
moving across a pond. The implemented technique is described below :

At the beginning, the desired background is drawn on the display area. Using DMA
transfers, the display area is then read out of the display memory, stored in the host memory
and written back into another area of the display memory. Figure (4.5) shows the display area
starting from point (0,0) and its image starting from point (0,474) on the display memory. The
display area is called areal and the image is called area2.

The screen may be considered as a window which can switch to either area one or two.
When locations 0 and 1 of the PRAM contain the starting word address of one of the areas, that
area is seen through the screen.

The duck is drawn on areal at point A, figure (4.6). It is desired to move the duck to
point B. A window containing the duck is generated and stored in the system memory. This
window is called window one. While areal is seen on the screen, window one is drawn at
position B' on area two (B' is the image of B), Figure (4.7). After window one is drawn at B',
the display is switched from area one to area two. In this manner the new display shows the
duck in a different position and the duck seems to moved from point A to B.

To move the duck further from B' to C', a window from the background behind the

duck is generated and stored in the system memory. This is called window?2 and has the same

size as window one. Now while area2 is seen on the screen, the duck at point A on areal is

43

Dynamic Pictures Chapter Four

overwritten by window2, to replace the duck with the background. Then window1 is written
into areal's point C which is the image of C' on area2. After this is accomplished, the display
is switched from area2 to areal and the duck seems to moved from B' (B) to C' (C).

origin (0,0) (640,0) (1024,0)
I N

(0,1024)—p>

Figure 4.5 The display area and its image on the display
memory.

44

Dynamic Pictures Chapter Four

Figure 4.6 Area one. Figure 4.7 Area two.

4.4 - Data Read and Write through the FIFO

The host CPU can access the display memory through the FIFO buffer. Data can be read
from the display memory, stored in the system memory and written back into any desired
location of the display memory. A dynamic picture may be generated with the techniques
explained in the previous chapter.

4.4.1 - Reading the display memory data

For this purpose, the cursor should point to the first word to be read using CURS
command. The MASK register should be set to all ones except for directions zero and four,
for proper incrementing of the Ead word address. The FIGS parameters require Type, direction
and DC values. D1 and D2 parameters are not needed since the GDC reads data through a one
dimensional array of words. This is unlike the DMA operation in which the GDC could read a
two-dimensional block of data. Given the direction and the DC value, the GDC reads the
display memory in that direction until the DC is decremented to zero. The host CPU can
program the GDC to read a two-dimensional block by properly advancing the cursor, each time
the DC value has reached a zero. After the RDAT command has been issued the GDC loads
data into the FIFO. The GDC's data register is in turn loaded with a byte of data and the DATA
READY flag in the status register is set. After data has been fetched from the data register by
the host CPU, the next data byte is loaded from the FIFO into the data register. The host
microprocessor should check the DATA READY status bit before each data read from the data
register.

45

Dynamic Pictures

Chapter Four

After outputting the RDAT command, the FIFO will turn around from write into read
mode. Any command or parameter in the FIFO will be lost at the time of turn around. The
process of data read can be aborted by outputting a command byte to the FIFO. The FIFO
Empty bit of the status register must not be tested after the termination of the read operation,
because the FIFO might still contain some data bytes, and the system will hang. This problem

is solved by outputting a dummy command to the GDC after the read operation to turn the
FIFO from the read operation to the write mode and flush out any data.

The following command sequence is used to program the GDC to read a block of data

from the display memory in direction zero or four:

REPEAT
1 - CURS Opcode
P1 = Ead high
P2 = Ead low

P3 = dAD + plane address

2 - Mask opcode

P1 = FF (Hex)
P2 = FF (Hex)
3 - FIGS Opcode

P1 = Type and direction = 00000 + 100 = 00000100
P2 = GD Bit + DC low byte
P3 = DC high byte

REPEAT
RDAT Opcode + Transfer type + RMW operation
UNTIL end of column

increment Ead
UNTIL end of row

This command sequence should be issued three times, one time for each colour plane.

4.4.2 - Writing data into the display memory

In Graphics mode by using the mask register to hold the pattern data, any pattern of bits

46

Dynamic Pictures Chapter Four

may be written into a display memory word in one RMW cycle. First the cursor is set with the
CURS command, the mask register is then loaded with the data, which can be any arbitrary
pattern. The WDAT command should be followed by two dummy bytes with a one in bit zero
of the low byte. The reason is that in bit-mapped graphics mode, only the LSB of the first
parameter byte following the WDAT command is used to set the pattern register. This allows
the pattern register to be loaded with all ones or zeroes. If the pattern register is loaded by all
ones, the contents of the mask register is written in each RMW cycle. Since the mask register
also controls the Ead address incrementing, an arbitrary mask pattern will not always advance
Ead properly. This does not apply to directions four and zero in which the Ead will be
incremented after each RMW cycle regardless of the contents of the mask register. If a direction
other than four and zero is selected the cursor must be set for each word to be written. For
directions four and zero, Ead is incremented linearly in that direction. To write into a block of
the display memory, the cursor can be set to the beginning of a column. After writing that
column of data, the host CPU should advance the cursor to the beginning of the next column
and so on. The following command sequence is used to write data into the display memory in
direction 4:

1 - FIGS Opcode
P1 = Type + direction = 00000 + 100 = 00000100

REPEAT
2 - CURS Opcode

P1 = Word address Ead low byte
P2 = Word address Ead high byte
P3 = Dot address daD + plane address

REPEAT
3 - MASK Opcode
P1 = Pattern low byte
P2 = Pattern high byte

4 - WDAT Opcode + Transfer type + RMW operation

P1 = FF (Hex), Dummy pattern low byte
P2 = FF (Hex), Dummy pattern high byte

47

Dynamic Pictures Chapter Four

UNTIL end of column
increment Ead

UNTIL end of row

Both the read and write operations work on a word basis meaning that they start from the
first pixel of the word and dAD dot address does not play any role. A block of data can be read
from the display memory and written back into another location provided that the direction
selected is the same for both read and write operations and data is written in the same order as it
was read. A block of data should be read three times, each time in one colour plane and written
in the same order as it was read. For example if for the read operation, data is read first in the
red plane, second in the green plane and third in the blue plane, it must be written first in the
red, second in the green and third in the blue plane.

4.4.3 - Dynamic Picture generation

A dynamic picture may be generated with the same technique as explained in section
4.3.2, with only one difference : A window must be cleared prior to being replaced with the
background. The reason is that the mask register holds the data to be written and the bit pattern
in the mask register is used only as masking bits, not as new data. To perform the replace
operation the word would have to be first cleared in the display memory.

Appendix (B5) contains a demonstration program which implements Read and Write
through the FIFO to move a graphical duck across the CRT screen. s

4.5 - Summary

Locations 0 and 1 of the Parameter RAM hold the display area's start address. The
display area was moved on the display memory to show the scrolling capability by changing its
start address via the PRAM command. The display area was then divided into two equal areas
by loading PRAM locations 0-7 with the display partitions starting addresses and lengths and
each area was scrolled independently. A demonstration program is listed in appendix B3 to
show how the scrolling is performed.

The DMA capability allows access to any rectangular block of data (graphical window)
in the display memory. The GDC and the external DMA controller cooperate with each other to

48

Dynamic Pictures Chapter Four

read a window from the display memory and store it in the system memory. The stored
window can then be read from the system memory and written back into any location of the
display memory. In this manner multiple windows of the display memory can be maintained
and moved to demonstrate the dynamic picture generation. The access to the display memory
can be performed without the external DMA controller by substituting the host CPU in its role.
In this situation the host CPU can read data from or write data into the display memory through
the FIFO buffer. This was implemented to generate similar dynamic picture as with the DMA.
Software programs were developed and thoroughly tested for each of the above mentioned
capabilities and found to perform as desired. The programs use GKS procedures to draw the
graphical display (to reduce the programming effort) and use the direct programming technique
to demonstrate scrolling or dynamic picture generation. Appendices B4 and B5 contain
demonstration programs for DMA transfers and read and write through the FIFO buffer
respectively.

49

Chapter Five
Graphics Picture Transmission

5.1 - Introduction

graphics pictures may be transferred by sending either their GKS information or their
pixels in the display memory, from one computer to another one. This chapter deals with the
transfer of graphics figures between two NECAPCs. Section two introduces the transmission
protocol and error detection method which is implemented in this chapter. The third section
discusses the transfer of a graphics display by sending the display memory's pixels. Section
four explains how a graphics operation is transferred by sending its GSX-86 opcode and
parameters.

5.2 - The Transmission Protocol and Error Detection Method

The transmission protocol described in this section is a type of packetized acknowledge
based protocol chosen to send large amounts of data more efficiently. This protocol is used by
two NECAPCs to communicate with each other. The communication is point to point and
bidirectional.

The communication operation requires the transmitter and receiver to:
1 - Establish connection - the transmitter must be sure that the receiver is ready.
2 - Transfer the data reliably - no errors must occur nor must data be lost.
3 - Terminate the transfer so that the receiver knows there is no more data.

To establish the connection, the receiver sends the first ACK message and waits to
receive data. If within a period data has not arrived, the receiver sends another ACK and waits
again. If after sending a number of ACK messages the computer does not receive data it
assumes that the transmitter is not on line. Similarly if the transmitter does not receive ACK
within a certain time it assumes that the receiver is not ready. Having received the first ACK,
the transmitter knows that the receiver is ready and starts sending data.

The data is sent in packets. The first byte in each packet contains its sequence number,
the second byte specifies the length of the packet in bytes, followed by one or more data bytes
and the last two bytes are check bytes which can be the sum of all the data bytes in the packet.
The packet format is shown in figure (5.1).

50

Graphics Picture Transmission Chapter Five

sequence | packet

number | length data checksum
oné one one or more bytes two
byte byte bytes

Figure 5.1 Packet format

The sequence number is the number of the next packet to be transmitted by the sender
and the number of the next packet expected by the receiver. The sequence number is initially set
to one when the connection is established; this gives a common start value for both ends.

Having received a packet the receiver generates its own local checksum and compares it
with the received checksum. If the two checksums are equivalent then the packet is accepted
and an ACK message is returned to the data source. The receiver then waits to receive the next
packet. If the two checksums are not equivalent the receiver detects that an error has occurred
and discards the entire packet. The receiver then sends a negative acknowledgement, NAK, to
the data source. A NAK is also sent if either the received packet sequence number is not the
same as the expected one, or any of the packet bytes are lost. After sending a NAK the receiver
waits to receive the next packet.

Having sent a packet the transmitter waits for the response of the receiver. If the sender
receives ACK, it knows that its last packet has been transferred correctly and starts sending the
next one. If the transmitter gets a NAK message, it transmits the previous packet again.

To terminate the transfer the transmitter sends a termination message to the receiver.
After receiving this message the receiver knows that there are no more packets.

5.3 - Transfer of Display Memory Data

The graphics picture can be transferred by sending the display memory data bytes. The
transfer of the entire display area is implemented by the reading and the storing of the display
area using the techniques explained in the previous chapter. The display area must be read three
times, once for each of the three colour planes, Fig (5.2). Each colour plane consists of 474
lines by 40 words, so the total number of bytes to be transferred for each plane is 37920 bytes.
This large amount of data is sent in packets. To determine a packet size, the display area can be

51

Graphics Picture Transmission Chapter Five

divided into forty vertical strips, each with width = one word and length = 474 lines, shown in
figure (5.3). If each of these strips represent a packet, then each packet contains 948 bytes. The
transmitter adds a byte containing the packet sequence number to the beginning and two
checksum bytes to the end of each packet (the checksum is the sum of all data bytes in the
packet). As the packet length is fixed it is not necessary to transmit this information.

40 words
40|words
40|words

8 B

£

NS G

<t

R
Figure 5.2 The display area.

Having received an error-free packet, the receiver displays the packet data from the same
display memory address and in the same direction as was used by the transmitter. The receiver
must be programmed to display data in the same sequence of colour planes as they were read in

the transmitter.

(0,0) (640,0)
I Lo
(0,474)
AN
Figure 5.3 Packets on the display
area.

52

Graphics Picture Transmission Chapter Five

The first packet sent by the transmitter starts from point (0,474), the lower left hand
corner on the screen. After receiving this packet the computer displays the packet from (0,474)
on its screen. After successfully transferring a packet, the packet start address, PSAD, is
incremented by one word in both the transmitter and the receiver; in this manner the packet
number is synchronized at both ends. After receiving the entire display area in three sets of 40
packets, the receiver knows that the transfer is complete.

It is possible to send any window of the display memory. However the receiver must be
informed of the change of the packet size, total number of packets and the start address of each
packet within the display memory. The transmitter can be programmed to send a packet
containing the necessary information to the receiver before the start of any window data
transfer.

In the demonstration programs "PIXELTX" and "PIXELRX" the entire display area is
transferred between two NECAPCs using the above techniques. These two programs are listed
in Appendix (B6).

5.4 - Transfer of Picture Codes

A GSX-86 operation is determined by an opcode and a series of parameters which
specify the details of that opcode. It is possible to transfer these values between two
computers, by implementing the protocol described in section 5.2.

The transmitter sends a packet whose contents include the packet number, length, data,
and checksum. The first word of the packet data contains the GSX-86 opcode and the rest are
the necessary parameter values. For example if packet number 10 carries the information of the
line (0,0) to (1280,1280) on the CRT screen, its contents include:

packet number 0AH

packet length 06 H

opcode 0006 H
number of points 0002 H
first X 0000 H
first Y 0000 H
second X 0500 H
second Y 0500 H

53

Graphics Picture Transmission Chapter Five
checksum 0012H sum of all data bytes

Having received an error-free packet, the receiver inspects the first word of the packet
data (which contains the opcode) and loads the rest of the data into the proper GSX variables
relevant to the opcode and initiates the appropriate graphics operation. The transfer of
non-GSX operations (e.g. Pan, Scroll) is possible if a separate opcode is provided for each of
them.

The receiver and transmitter algorithms must be complementary. For example the
transmitter must not send the circle opcode unless the receiver has the necessary procedures for
circle drawing. If a new procedure is added to the transmitter, a similar one must also be added
to the receiver.

Appendix (B7) contains the transmission and the reception programs which demonstrate
the transfer of graphics commands between two NECAPCs. %

5.5 - Summary

A packetized acknowledge type transmission protocol has been introduced which
utilizes a simple checksum for error correction. This protocol was employed for the transfer of
the entire display area between two APCs. This was achieved by transmitting the display
memory's pixels and required the transfer of 37920 bytes per each of the three colour planes
(when the APCs resolution of 474 by 640 pixels is considered). This is a slow process and
consequently the build up of the picture can be seen on the screen. Appendix B6 contains the

Software programs which were developed to demonstrate pixel transfer between two
NEC/APCs.

As an alternative the graphical information was transfered by transmitting the relevant
GKS codes. In this manner each graphics operation required the transfer of only a few bytes of
information, thereby considerably reducing the transmission time. Demonstration programs
were developed to show the transfer of GKS codes between two NEC/APCs and are listed in
appendix B7.

54

Chapter Six
Conclusions

The aim of this work was to drive the Graphic Display Controller (GDC) inside the
NEC's Advanced Personal Computer (the APC) and to take advantage of its capabilities to
transfer a dynamic graphic picture between two APCs,

The work was initially concerned with a study of the GDC and its display memory. The
GDC's internal structure and its relation to the other parts of the graphics terminal were
discussed; the display memory was explained in detail due to its importance to the rest of the
work. The Read Modify Write (RMW) and figure drawing capabilities were also explained to
illustrate how the GDC handles data and addresses within the display memory.

Two methods were presented for GDC programming: a high level language which
implements Graphics Kernel System (GKS) standard procedures and a low level or direct
programming of the chip itself. The GKS software package provided with the NEC/APC did
not use all of the GDC's capabilities, such as scrolling, DMA transfers and data read/write
through the FIFO buffer and so the direct programming method was specifically implemented
to show these capabilities. Demonstration programs which were written in both Pascal and
assembly language (for the 8086 host CPU) were developed and implemented for the two
methods.

The technique by which the display area can be moved on the display memory was
discussed to show the scrolling capability. The display area was also divided into two equal
areas with each area being scrolled independently. The scrolling capability was used later in
dynamic picture generation in which the display was double buffered, to provide switching
between the two displays.

Access to the display memory by either the system microprocessor or the external DMA
controller, enabled the generation and movement of multiple graphical windows. Software
programs were developed to move an object against a constant background on the CRT screen.
The developed software uses GKS procedures to draw the graphical display (to reduce the
programing effort) and the direct programming technique to generate and move the graphical
windows. The programs were implemented and thoroughly tested on the NEC/APC.

The entire display area was transferred between two APCs by transmitting the display

55

Conclusions Chapter Six

memory pixels. This required the transfer of 37920 bytes per each of the three colour planes
(when the APCs resolution of 474 by 640 pixels is considered), which gives a total of 113760
bytes or the equivalent of 910080 pixels. As expected this is a slow process and consequently
the build up of the picture on the screen can be seen. Calculation of the theoretical transmission
time is determined by dividing the total number of bits on the screen by the speed of the
communication line (baud rate). The 4800 baud rate was selected experimentally for the best
performance of the system. The transmission time is calculated as follows:

910080 pixels / 4800 bits per second
= 189.6 seconds or 3.16 minutes

The actual recorded time is longer than the calculated one. This is due to software overheads
and the occurrence of errors coupled with the time required to correct them. Software programs
were developed to demonstrate pixel transfer between two NEC/APCs. The implemented
transmission protocol is a packetized acknowledge type which utilizes a simple checksum for
the error correction.

The graphical information can be transferred by transmitting the relevant GKS codes. In
this manner each graphics operation requires the transfer of only a few bytes thus reducing the
transmission time considerably. This method is preferred to pixel transfer if high speed
transmission is required. Demonstration programs show the transfer of GKS codes between
two NEC/APCs. The transmission protocol is the same as for the pixel transfer method but
each packet contains the GKS information relevant for the reconstruction of the image, instead
of carrying pixels.

A dynamic picture may be transferred by implementing either of the transmission
techniques explained above. If the pixel transfer method is implemented, the entire display is
transmitted each time a movement occurs on the screen. The movement is slowed in both the
transmitter and the receiver due to the transmission time required to transfer the display area.
Transfer of picture codes can solve the speed problem. Since the provided GKS package can
not generate dynamic pictures, the necessary software for DMA transfers, scrolling etc must be
developed with the corresponding introduction of new codes. In this manner both the GKS
codes and the new operations codes can be transferred between the two computers. It should
be mentioned that all developed software programs were implemented and thoroughly tested
and found to perform as desired.

56

Conclusions Chapter Six

Two areas of computer graphics were discussed and demonstrated in this work:
Dynamic graphics and Communication graphics. The applications of dynamic graphics are in
video games, production of cartoons, T.V commercials, computer-aided instruction, computer
aided learning, computer simulation modelling etc. Whereas communication graphics is applied
in teleconferencing, transmission of satellite and radar images , videotext and teletext etc.

The developed software for pixel transfer can be implemented as a test system for
applications which require a continuous flow of data in the transmission medium. An example
of this is the "Spread Spectrum" project [10] currently being investigated in the digital
electronics laboratory at Durham University. In this instance the pixel transmission produces a
heavy traffic environment for the new Spread Spectrum Local Area Network (LAN). This is
necessary to investigate the capability of the new network to handle a large amount of
simultaneously generated information - it is this simultaneous transmission aspect which is
unique in LANSs.

57

(1]

[2]

(3]

(4]

(]

(6]

[7]

(8]

[9]

[10]

REFERENCES

LE. Sutherland, SKETCHPAD:" A Man-Machine Graphical communication
System", PHD Thesis MIT (1962), MIT Lincoln Laboratory Technical
Report No. 296, May 1965, Abridged version in Spring Joint Computer
Conference, pp 329, Spartan Books, 1963.

John C. Beatty and Kellogg S. Booth, Tutorial: Computer Graphics,
IEEE Computer Society.

Jeffrey L. Wise and Henryk Szejnwald (NEC Microcomputer Inc.,
Wellesley, Mass), "Display controlle simplifies design of
sophisticated graphics terminals", Electronics / April 7, 1981,

pp 153-157.

Introduction to the Graphical Kernel System (GKS), by
F.R.A.Hopgood, D.A.Duce, J.R.Gallop and D.C.Sutcliffe.

NEC Information System, Inc., CP/M-86 SYSTEM REFERENCE GUIDE
Advanced Personal Computer (APC).

GSX-86 Graphics Extension Programmer's Guide, Revision 00,
November 1, 1983, Manual P/N 7100-0082.

THE 8086 BOOK, by Russell Rector - George Alexy.
Pascal/MT+86 Language Reference Manual, Copyright 1982,
Digital Research P.O. Box 579, 160 Central Avenue, Pacific Grove,
CA 93950 (408) 649-3896 TWX 910 360 5001.

Jeffrey Wise and Henryk Szejnwald (NEC Electronics Inc., Natick,
Massachusetts)," A high speed graphics display controller,

Electronic Product Design", February 1982, pp 43-47.

Smythe, C., "Direct Sequence Spread Spectrum Techniques in Local
Area Network", PHD Thesis, Durham University, 1985.

R.1

[11] Wright, J., " A picture is worth millions of words", Eng. Comps. vol.2,
no.3, May 1983, p16(21).

[12] Novac, M. ,Pinkam, R., "Inside Graphics System From Top to Bottom",
Electronics. Des. vol. 31, no. 15, 21/7/83, p.183(5).

[13] Coit, S., "Raster tech advances score high marks"”, Data Mngmt. vol.21
, n0.5, May 1983, p.14(3).

(14] Mnuel, T.,"Computer Graphics", Electronics. vol.57, no.13, June 1984,
p.113(124).

[15] Mac Donald, P., "Computer graphics as present and future
communicator”, Irish Comp. vol.4, no.2, April 1980, p.18-20.

[16] Elis, R.L, "Telecommunicating graphics", Comput.Graphics World
(USA). vol.8, no.2, Feb 1985, p.10-12.

[17] Holland, G.L, "NAPLPS standard defines graphics and text
communication”, EDN(USA). vol.30, no.1, p.179-192 (10 Jan 1985).

[18] Ellis, B., "Graphics for all seasons", Computer FX 84. Computer
Animation and Digital Effects. Proceeding of the Conference, London,
England, 9-11 Oct 1984, p.157-71.

[19] Yonezawa, H., Maejima, H., Minorikawa, K., "CRT chip controls
bit-mapped graphics and alphanumerics”, Electronic Design. vol.32,
no.12, p.247-59 (14 June 1984).

[20] "Computer Graphics and Applications" by D. Harris.

{21] "Computer Graphics Programming GKS - The Graphics Standard” by
G. Enderle, K. Kansy, G. Pfaff.

R2

Appendices

Appendix Al
7220/GDC

GRAPHICS DISPLAY CONTROLLER

Description

The uPD7220 Graphics Display Controlier (GDC) is an
intelligent microprocessor peripheral designed to be the
hean of a high-periormance raster-scan computer graphics
and character display system. Positioned between the
. video display memory and the microprocessor bus. the
GDC performs the tasks needed to generate the raster dis-
play and manage the display memory. Processor soltware
overhead 1s mnimized by the GDC's sophisticated instruc-
ton set. graphics figure drawing. and DMA transfer capa-
bilihes. The display memory supported by the GDC can be
configured in any number of tormats and sizes up to 256K
16-bit words. The display can be zoomed and panned,
while partitioned screen areas can be independently
scrolled. With its hght pen input and multiple controller
capability. the GDC is1deal for advanced computer
graphics applications.
Features
O Microprocessor interface

DMA transters with 8257- or 8237-type controllers

FIFO Command Buflering
] Display Memory Intertace

Up to 256K words of 16 bits

Read-Modity-Write (RMW) Display Memory cycles

in under 800ns

Dynamic RAM reresh cycles for nonaccessed memory
O Light Pen Input
[0 External video synchromzation mode

0O Graphics Mode:
Four megabnt. bit-mapped display memory
O Character Mode.
8K character code and attributes display memory
[J Mixed Graphics and Characters Mode
64K if all characters
1 megapixel it all graphics
0 Graphics Capabilities:
Figure drawing of lines. arc/circles. rectangles. and
graphics character in 800ns per pixel
Display 1024-by-1024 pixels with 4 planes of color
or grayscale.
Two independently scrollable areas
O Character Capabilities:
Auto cursor advance
Four independently scrollable areas
Programmable cursor height
Characters per row: up to 256
Character rows per screen: up 10 100
{JVideo Display Format
Zoom magnification factors of 1t0 16
Panning
Command-settable video raster parameters
O Technology
Single +5 volt, NMOS, 40-pin DIP
(0 DMA Capability:
Bytes or word transfers
4 clock periods per byte transferred

System Considerations

The GDC is designed to work with a general purpose
microprocessor o implement a high-performance com-
puter graphics system. Through the division of tabor
established by the GDC's design, each of the system

" components is used to the maximum extent through six-

level hierarchy of simultaneous tasks. At the lowest level,
the GDC generates the basic video raster timing, including
sync and blanking signals. Partitioned areas on the screen
and zooming are also accomplished at this level. Atthe
next level. video display memory is modified during the fig-
ure drawing operations and data moves. Third. display
memory addiesses are calcuialed pixel by pixel as drawing
progresses. Qutside the GDC at the next level. preliminary
calcutations are done to prepare drawing parameters. At
the fifth level, the picture must be represented as a list of
graphics figures drawable by the GDC. Finally, this repre-
sentation must be manipulated. stored. and communi-
cated By handling the first three levels. the GDC takes care
of the high-speed and repetitive tasks required to imple-
ment a graphics system.

GDC Components

The GDC block diagram illustrates how these tasks are
accomplished.

LY

DRawmG
COmman0 fifmd OCESSON
.
it = ¢)
COnTROL RON L]
e
. AT Lid
M wemony } EEEDEPY
s coNTACULLE
—1 [y 4+ swon
—ad a0
g COUNTLS
e GATA FATW wn
ey

IR O e

Microprocessor Bus Interface

Control of the GDC by the system microprocessor is
achieved through an 8-bit bidirectional interface. The
status register is readable at any time. Access to the FIFO
buffer is coordinated through flags in the status register
and operates independently of the various internal GDC
operations, due to the separate data bus connecting the
intertace and the FIFQ buffer. *

Command Processor :

The contents of the FIFO are interpreted by the command
progessor. The command byles are decoded, and the suc-
ceeding parameters are distributed to their proper destina-

Reprinted through courtesy of NEC Electronics, U.S.A,, Inc.

NOTE: These manufacturer's specifications are provided {or reference. The APC
may not use some of the functions described here.

tions within the GDC. The command processor yields to the
bus interface when both access the FIFQ simultaneously.
DMA Control

The DMA control circutry in the GDC coordinates transfers
over the microprocessor interface when using an external
DMA controller. The DMA Request and Acknowledge
handshake lines directly interface with a uPDB257 or
1PD8237 DMA controller. so that display data can be
moved between the microprocessor memory and the dis-
play memory.

Parameter RAM

The 16-byte RAM stores parameters that are used repet-
tively during the display and drawing processes. In charac-
ter mode, thus RAM holds four sets of partitioned dispiay
area parameters. in graphics mode. the drawing pattern
and graphics character take the place of two of the sets of
parameters.

Video Sync Generator

Based on the clock input. the sync logic generates the ras-
ter iming signals for aimost any interlaced. non-interlaced.
or “repeat field” interlaced video format. The generator is
programmed during the idle period tollowing a reset In
video sync slave mode, it coordinales iming between mul-
tipie GOCs.

Memory Timing Generator ‘

The memory iming circuilry provides two memory cycle
types: a two-clock period refresh cycle and the read-
modify-write (RMW) cycie which takes four clock penods
The memory controf signals needed to drive the display
memary devices are easily generated from the GDC's ALE
and DBIN outputs.

Zoom & Pan Controller

Based on the programmable zoom display factor and the
dispiay area entries in the parameter RAM. the zoom and
pan controller determines when to advance to the next
memory address for display refresh and when to go on to
the next display area. A horizontal zoom is produced by
slowing down the display refresh rate whiie maintaining the
video sync rates. Vertical zoom is accomphshed by repeat-
edly accessing each line a number of times equal 1o the
honzontal repeat. Once the line count for 3 display area ts
exhausted. the controller accesses the starting address
and line count of the next display area from the parameter
RAM. The system microprocessor. by modifying a display
area starting address. can pann any direchon. indepen-
dent of the other display areas

Drawing Processor

The drawing processor contains the logic necessary 10
calculate the addresses and positions of the pixels of the
vanous graphics higures. Given a starting point and the
appropriate drawing parameters. the drawing processor
needs no further assistance to complete the figure drawing
Display Memory Controller

The display memory controller's tasks are numerous Its
primary purpose is to multiplex the address and data infor-
mation in and out of the display memory. It also contains
the 16-bit logic unit used to modity the display memory con-
tents during AMW cycles. the character mode line counter.
and the refresh counter for dynamic RAMs. The memory
controller apportions the video lield ime between the var-
ous types of cycles.

Light Pen Deglitcher

Only if two rising edges on the light pen input occur at the
same point during successive video fields are the pulses

A1.2

accepled as a vahd hight pen detection. A status bit indi-
cates to the system microprocessor that the light pen regis-
ter contains a vald address.

Programmer’s View of GDC

The GDC occupies two addresses on the system micro-
processor bus through which the GDC's status register and
FIFO are accessed. Commands and parameters are writ-
ten into the GDC's FIFO and are differentiated based on
address bit AQ. The status register or the FIFQ can be read
as selected by the address line.

AQ REAO WRITE

STATUS REGISTEA

"L]
B T T N T

FIFQ READ COMMAND INTO FIFO

1 l
Jll#llJ] LLLLLILI]

GOC Micraprocessor Bus interface Registers

Commands to the GDC take the form of a command byte
followed by a sernes of parameter bytes as needed for
specitying the details of the command. The command proc-
essor decodes the commands. unpacis the parameters.
toads them into the appropniate registers within the GDC,
and imtiates the required operations.

PARAMETER INTQ FIFQ

[JLLL[I!]

The commands avainabie » the GDC can be organized
nlo hve categores as described n tne foliowng section

GDC Command Summary
Video Control Commands
1. RESET: Resets the GDC to its idle state.
2. SYNC: Specifies the video display farmat
3. VSYNC: Seiects master or slave video syn-
chronization mode.
4. CCHAR: Specifies the cursor and character

row heights
Display Control Commands

1. START: Ends ldie mode and unblanks the
display.

2. BCTRL: Controls the blanking and unblanking
of the display.

3. ZOOM: Specifies zoom factors for the display |
and graphics characters writing.

4. CURS: Sets the position of the cursor in
display memory.

5. PRAM: Defines starting addresses and lengths
of the display areas and specifies the
eight bytes for the graphics character.

6. PITCH: Specifies the width of the X dimen-

sion of display memory.
Drawing Control Commands

1. WDAT: Wnies data words or bytes into display
memory.
- 2 MASK: Sets the mask register contents.
3. FIGS: Specifies the parameters tor the drawing
processor.
4. FIGD: Draws the figyre as specified above.
5. GCHRD: Draws the graphics character into dis-
play memory.
Data Read Commands .
* 1. RDAT. Reads data words or bytes from display
memory.
2.CURD: Reads the cursor positon.
3 LPRD° Reads the light pen address.

DMA Control Commands
1. OMAR: Requests a DMA read transfer.
2. DMAW: Requests a DMA write transfer.

Gl L]I+

t L Oats Reoady
FIFO Ful
FIFQ Empty

g 1n Progr

DMA Execite

Vertical Sync Active
Blank Actrve
Light Pen Detect

Status Register (SR)

Status Register Flags

SR-7: Light Pen Detect

When this bit is set to 1. the light pen address (LAD)
register contains a deglitched value that the system micro-
processor may read. This flag is reset after the 3-byte
LAD is moved into the FIFO in response to the light pen
read command.

SR-6: Horizontal Blanking Active

A 1 value for this flag signifies that horizontal retrace blank-
ing is currently underway.

SR-5: Vertical Sync

Vertical retrace sync occurs while this flag s a 1. The verti-
cal sync flag coordinates display format modifying com-
mands to the blanked interval surrounding vertical sync
This eliminates dispiay disturbances.

SR-4: DMA Execute

This bitis a 1 duning DMA data transfers.

SR-3: Drawing in Progress)
While the GDC 1s drawing a graphics figure. this status bit
isaft.

SR-2: FIFO Empty

This bit and the FIFQ Fult flag coordinate system micro-
processor accesses with the GOC FIFQ. When itis 1. the
Empty flag ensures that all the commands and parameters
previously sent to the GDC have been processed.

SR-1: FIFO Full

A 1 atthis flag indicates a full FIFOQ in the GDC. A0
ensures that there is room for at least one byte. This flag
needs to be checked before each write into the GDC.
SR-0: Data Ready

When this flag is a 1. itindicates that a byte is avaiable to
be read by the system microprocessor. This bit must be
tested before each read operation. It drops to a 0 while the
data is transferred from the FiFQ into the microprocessor
interface data register.

FIFO Operation & Command Protocol

The first-in, first-out buffer (FIFQ) in the GDC handles the
command dialogue with the system microprocessor. This
flow of information uses a half-duplex technigue. in which
the single 16-location FIFQ is used for both directions of
data movement. one direction at a time. The FIFO's direc-
tion is controlied by the system microprocessor through
the GDC's command set. The microprocessor coordinates
these transfers by checking the appropriate status
register bits,

The command protocol used by the GDC requires the dit-
ferentiation of the first byte of a command sequence from
the succeeding bytes. This first byte contains the operation
code and the remaining bytes carry parameters. Writing

A1.3

into the GDC causes the FIFQ to store a flag value along-
side the data byte to signify whether the byte was written
ino the command or the parameter address. The com-
mand processor in the GDC tests this bit as it interprets the
entries in the FIFO.

The receipt of a command byte by the command pracessor
marks the end of any previous operation. The number of
parameter bytes supplied with a command is cut short by
the receipt of the next command byte. A read operation
from the GDC to the microprocessor can be terminated at
any time by the next command.

The FIFO changes direction under the control of the sys-
tem microprocessor. Commands writien into the GDC
always put the FIFO into write mode if it wasn'tin it already.
It it was in read mode. any read data in the FIFO at the time
of the turnaround 1s lost. Commands which require a GDC
response. such as RDAT, CURD and LPRD, put the FIFO
into read mode after the command is interpreted by the
GDC’s command processor. Any commands and parame-
ters behind the read-evoking command are discarded
when the FIFO direction 1s reversed.

Read-Modify-Write Cycle

Data transfers between the GDC and the disptay memory
are accomplished using a read-modify-write (RMW) mem-
ory cycle. The four clock period timing of the RMW cytle is
used to: 1) output the address. 2) read data from the mem-
ory. 3) modify the data. and 4) write the modified data back
nto the initially selected memory address. This type of
memory cycle 1s used for all interactions with dispiay mem-
ory including DMA transfers. except for the two clock
penod display and RAM refresh cycles.

The operations performed during the modify portion of the
RMW cycle merit additional explanation. The circuitry in the
GDC uses three main elements: the Pattern register, the
Mask register. and the 16-bit Logic Unit. The Pattern regis-
ter holds the data pattern to be moved into memory. }tis
loaded by the WDAT command or, during drawing, from the
parameter RAM. The Mask register contents determine
which bits of the read data will be modified. Based on the
contents of these registers, the Logic Unit performs the
selected operations of REPLACE, COMPLEMENT, SET, or
CLEAR on the data read from display memory.

The Pattern register contents are ANDed with the Mask
register contents to enable the actual moditfication of the
memory read data. on a bit-by-bit basis. For graphics draw-
Ing. one bit at a ime from the Pattern register 1s combined
with the Mask. When ANDed with the bit setto a 1 in the
Mask register. the proper single pixel is modified by the
Logic Unit. For the next pixel in the ligure. the next bit in the
Pattern register is selected and the Mask register bit is
moved to identify the pixel's location within the word. The
Execution word address pointer register. EAD., is also
adjusted as required to address the word containing the
next pixel.

In character mode, all of the bits in the Pattern register are
used in parallel to form the respective bits of the modify
data word. Since the bits of the character code word are
used in parallel, unlike the one-bit-at-a-time graphics draw-
ing process. this facility allows any or all of the bits in 2
memory word to be modified in one RMW memory cycle.
The Mask register must be loaded with 1s in the positions
where modification is to be permitted.

The Mask register can be loaded in either of two ways. In
graphics mode, the CURS command contains a four-bit
dAD field to specify the dot address. The command proces-
sor converts this parameter into the one-of-16 format used
in the Mask register for figure drawing. A full 16 bits can be
loaded into the Mask register using the MASK command.
In addition to the character mode use mentioned above,
the 16-bit MASK load is convenient in graphics mode when
all of the pixels of a word are to be set to the same value.

The Logic Unit combines the data read from display mem-
ory, the Pattern Register, and the Mask register to generate
the data to be written back into display memory. Any one of
four operations can be selected: REPLACE, COMPLE-
MENT, CLEAR or SET. In each case, if the respective Mask
bit is 0, that particular bit of the read data is returned to
memory unmodified. If the Mask bit is 1, the modification is
enabled. With the REPLACE operation, the modify data
simply takes the place of the read data for modification
enabled bits. For the other three operations, a 0 in the mod-
ify data aliows the read data bit to be returned to memory.

A 1value causes the specified operation o be performed in
the bit positions with set Mask bits.

Figure Drawing

The GDC draws graphics figures at the rate of one pixel per
read-modify-write (RMW) display memory cycle. These
cycles take four clock periods to complete. At a clock fre-
quency of 5MHz, this is equal to 800ns. During the RMW
cycle the GDC simultaneously calculates the address and
position of the next pixel to be drawn.)

The graphics figure drawing process depends on the dis-
play memory addressing structure. Groups of 16 horizon-
tally adjacent pixels form the 16-bit words which are
handled by the GOC. Display memory is organized as a lin-
early addressed space of these words. Addressing of indi-
vidual pixels is handled by the GDC's internai RMW logic.

During the drawing process, the GDC finds the next pixel of
the tigure which is one of the eight nearest neighbors of the
tast pixel drawn. The GDC assigns each of these eight
directions a number from 0 to 7, starting with straight down
and proceeding counterclockwise.

O O O
Q300
O O O

Drawing Directions
Figure drawing requires the proper manipulation of the
address and the pixel bit position according 1o the drawing
direction to determine the next pixel of the figure. To move
to the word above or betow the current one, it is necessary
to subtract or add the number of words per line in display
memory. This parameter is called the pilch. To move o the
word to either side, the Execute word address cursor, EAD,
musl be incremented or decremented as the dot address
pointer bit reaches the LSB or the MSB of the Mask regis-
ter. To move to a pixel within the same word, it is necessary
to rotate the dot address pointer register to the right or left.

A1.4

The table below summarizes these operations for each
direction.

Whole word drawing is usetul for filling areas in memory
with a single value. By setting the Mask register to all ts
‘with the MASK command, both' the LSB and MSB of the

oIk OPEAATIONS TO ADDRESS THE NEXT PIXEL
000 EAD « P —EAD
60 EAD + P+ EAD

GAD(MSB) 3 EAD - ' —~EAD OAD — (R
010 GAD(MS8) 1 EAD + 1 ~EAD @AD — LA
o1 EAD P —EAD

GAD(MSB) 1 EAD - 1—~EAD @AD — LR
100 EAD P —EAD
101 3 EAD P —EAD

GADILSB) 1 EAD 1'—EAD 0AD— PR
110 dAD(LSB) 1 EAD - 1—EAD dAD— AR
11 . EAD + P —EAD]

GAD(LSB) - 1 EAD: +—EAD ¢AD — RR

Whete P PR LR Lot fouie MR . Agne Bntate
EAD : famcute Ve Aooness
GAD Dot AGONRS Sioned s e Mata Regaun

dAD will aiways be 1, so that the EAD value will be incre-
mented or decremented for each cycle regardless of direc-
tion. One RMW cycle will be able to effect all 16 bits of the
word for any drawing type. One bit in the Pattern register is
used per RMW cycle to write all the bits of the word to the
same value. The next Pattern bit is used for the word, etc.
For the various figures, the effect of the initial direction
upon the resulting drawing is shown below:

ol ||| Yy, | T3] TN
N AR N NN RES
4| DE S0 =
ool G0 Y| I (1] |\
S SHEININ IRES
T4l fo] 2

Note that during line drawing, the angle of the line may be
anywhere within the shaded octant defined by the DIR
value. Arc drawing starts in the direction initially specified
by the DIR value and veers into an arc as drawing pro-
ceeds. An arc may be up to 45.degrees in length. DMA
transfers are done on word boundaries only, and follow the
arrows indicated in the table to find successive word
addresses. The slanted paths for DMA transfers indicate
the GDC changing both the X and Y components of the
word address when moving to the next word. it does not
follow a 45 degree diagonal path by pixels.

Drawing Parameters

In preparation for graphics figure drawing, the GDC'’s
Drawing Processor needs the figure type, direction and
drawing parameters, the starting pixel address, and the
pattern from the microprocessor. Once thesg are in place
within the GDC, the Figure Draw command, FIGD, initiates
the drawing operation. From that point on, the system
microprocessor is not involved in the drawing process. The
GDC Drawing Processor coordinates the RMW circuitry
and address registers to draw the specified figure pixel by
pixel.

The algorithms used by the processar for figure drawing
are designed to optimize its drawing speed. To this end. the
specific details about the figure to be drawn are reduced by
the microprocessor 10 a torm conducive to high-speed
address calculations within the GDC. In this way the repeti-
tive, pixel-by-pixel calculations can be done quickly.
thereby mimimizing the overall figure drawing time. The
table below summarizes the parameters.

DRAWING TYPE 14] 02 Ot oM
inltiol Value®] [L] -1 -1
Une 185 214D ~ ;3 2160 - .81) 2180: -
Arg** fun0 (23] Ar-1) -1 n 8
Rectangie 3 Ay B-1 -t At
Aras FNI 8- A A - -
Graphic Cherecter*** B-1 A A - -
Read b Wette Data w-1 - - - -
DMAW 0-1 c-1 - — —
DMAR D-1 C-1 (C-1H2» — - B

* initial veiuse for the varzious parameisrs are losded during the hendhing of the FIGS
0@ code byte.
"° Cleclas are dtawn with 8 arce. esch of which span 45° sothet sin 0 = V.2 and
sng -0

°°° Graphic characiers are @ specisi cane Of DIt-map srea Nling i which B and A & 8.
HA . 8there s no need to lasd D end 02

Where:

=1 » ol ONES vaive.
Al numbers are shown In base 10 for convenience. The GOC accepts base 2 numbers (23
complament notation where sppropriste)

- = No peramaetss bytes sent to GDC tor (his parameter.

&1+ The larger ot ax of ay.

AD - Thae smatier ot an or &y.
+ Radius a1 curveture. in picsis.
Angle from major sxis 10 end a1 the arc. ¢ & 45
Angile {tom major suis to wtart gt the prc. § < 45 .
Round up to the next higher Integer.
Round dawn to (he next iower integer.
Number of pizeis in ihs infiially specitied direction
Number of pizeis in the direction a1 right angles lo Ihe inittally specified direc-
tlon.

Number of words (0 be sccessed

Number of biytes 10 be transierred In the inlliatly specified drrection. (Two bytes
par word i word transter mode is seiscied).

D« Number of words (0 be scCenssd (a the direction st right angles 10 the nitisily
specified dirsciion.

OC -« Drewing count paramotar which is ane less than the number of RMW cycies lo
be executed.

DM - Dota masked trom drawing durtng arc drawing.
¢ -+ Needed oniy for word reads.

D P - e
s e n e s

o %

Graphics Character Drawing

Graphics characters can be drawn into display memory
pixel-by-pixel. The up to B-by-8 character is loaded

into the GDC's parameter RAM by the system micro-
processor. Consaquently, there are no limitations on the
character set used. By varying the drawing parameters
and drawing direction, numerous drawing options are
available. In area fili applications, a character can be
written into display memory as many times as desired
without reloading the parameter RAM.

Once the parameter RAM has been loaded with up to
eight graphics character bytes by the appropriate
PRAM command, the GCHRD command can be used

A1.5

to draw the bytes into display memory starting at the
cursor. The zoom magpnification factor for writing, set by
the zoom command, controls the size of the character
written into the display memory in integer multiples of 1
through 16. The bit values in the PRAM are repeated
horizontally and vertically the number of times specified
by the zoom factar.

The movement of these PRAM bytes to the display mem-
ory is controlled by the parameters of the FIGS com-
mand. Based on the specified height and width of the
area to be drawn, the parameter RAM is scanned to fill
the required area.

For an 8-by-8 graphics character, the first pixel drawn
uses the LSB of RA-15, the second pixel uses bit 1 of
RA-15, and so on, until the MSB of RA-15 is reached.
The GDC jumps to the corresponding bit in RA-14 to
continue the drawing. The progression then advances
toward the LSB of RA-14. This snaking sequence is
continued for the other 6 PRAM bytes. This progression
matches the sequence of display memory addresses
calculated by the drawing processar as shown above. if
the area is narrower than 8 pixels wide, the snaking will
advance to the next PRAM byte before the MSB is
reached. |f the area is less than 8 lines high, fewer
bytes in the parameter RAM will be scanned. If the area
is larger than B by 8, the GDC will repeat the contents
of the parameter RAM in two dimensions, as required to
fill the area with the 8-by-8 mozaic. (Fractions of the
B-by-8 pattern will be used to fill areas which are not
multiples of 8 by 8.)

Parameter RAM Contents: RAM Address RA

Oto 15

The parameters stored in the parameter RAM, PRAM,
are available for the GDC to refer to repeatedly during
figure drawing and raster-scanning. In each mode of
operation the values in the PRAM are interpreted by the
GDC in a predetermined fashion. The host microprac-
essor must load the appropriate parametiers into the
proper PRAM locations. PRAM loading command
allows the host to write into any location of the PRAM
and transfer as many bytes as desired. In this way any
stored parameter byte or bytes may be changed without
influencing the other bytes.

The PRAM stores two types af information. For specify-
ing the details of the display area partitions, blocks of
four bytes are used. The four parameters stored in each
biock include the starting address in display memory of
each display area, and its length. In addition, there are
two made bits for each area which specify whether the
area is a bit-mapped graphics area or a coded char-
acter area, and whether a 16-bit or a 32-bit wide display
cycle is to be used for that area.

The other use for the PRAM contents is to supply the
pattern for figure drawing when in a bit-mapped
graphics area or mode. In these situations, PRAM bytes
8 through 16 are reserved for this patlerning informa-
tion. For line, arc, and rectangle drawing (linear figures)
locations 8 and 9 are loaded into the Pattern Register
10 allow the GDC to draw dotted, dashed, etc. lines. For
area filling and graphics bit-mapped character drawing
locations 8 through 15 are referenced for the pattern or
character to be drawn.

Details of the bit assignments are shown on the foliowing
pages for the various modes of operation.

Character Mode

RAO (- [

SAD?,

. |

N

J Olspiay Pentition Ares ¢
starting address with ow &

WA significence feide
word agdreney. ~

L=

BT

) Lengin of Otapisy Pentition |
J-— {Hne count) with high snd
Iow teige

A Wise Oleplay cycte wiath
1 two wards per memory cycie

» ssiacted for this displisy

sres HiNe DN I3 ast to 8 |

Tha dlapiay s0dress COUMM s Ethen
Incremenied by 2 for sach dispiay ecan cyche
Other memory Cycie tyDes e nof infiusnced

Oraoisy Partition 7
Sa07, L._ Starting sioress snd
ngth

LEN2,
Dispisy Purtition 3
$AD3, =— swrting scdrees and
wngtn
*lo o @ L 5a0),
9 LENY, l e 0 0 o
" woxr []] L
Daoeay Parnnon &
SAD4 == 3Urtng 20areLs NG

Graphics and Mixed Graphics and Character Modes

~[

Drspiay Pertiion Ares t
SAMIY 20GTRAS WA low
muddie snd Mgh ugrihcance

Peics (word soOress|

‘|

sao1,]

2 I LENT

=[]

Langm of (eagiay Parnbon
Ares | witn \cvw et g
BPrURCance Peids (hra Count]

LENT,

I mand moos & | idscates on
WhaQe Of FRGNICE aree and 8 0

INGICEINS & CRAMIBCTAY Sran In
QrapAICE mode Inie tet must be O

A1.6

e PN, o GcHRe J
Pattern of 15 bits used for
figure drawing to pattern
ootted. dashed, ic. linaa,
v Py o acHAY
RA-10 GCHA S
1t GCHA S
12 GCHR 4 Graphics charecter bytes
| tobe movo; into dispiey
Memory with graphucs.
1l GCHR I charactor drawing.
" GCHR 2
15 GCHR 1

Command Bytes Summary

RESET:

SYNC:

VSYNC:

CCHAR:

START:

BCTRL:

200Mm:

CURS:

PRAM:

PITCH:

WDAT:

MASK:

FIGS:

FIGD:

GCHRD:

RDAT:

CURD:

LPRD:

OMAR:

OrAW:

[l]
[T
EIE
(]
[l]
[]
[l]
[=]
[]
[=)
O Do

——

— M e
o

Video Control Commands
Reset

meser.(* ¢ ¢ o ¢ o ¢ o]

This command can be executed at any time and does not

modify any of the parameters aiready loaded into the GDC.

If followed by parameter bytes. this command also sets the
sync generator parameters as described below.
Idle mode is exited with the START command.

] ooclrll};{c!s-—mwm”

=1 Aw | Attve Disoisy Words per hne -7 Mum
Be sven cumCe with D11 0 » O
mo]. vs, l]
\ v
\ N MonzomM Sync With 1
Verticat Sync Wign. ow tite
Pa [HFP I Vs, }—ms«wm.wm
\ From Poich Weath - 1
P [} nBp few— Monzomss Gace Porcn Wighn - 1
]] a vee be— Vertical From Porcn Wity
P? AL |, Acove Oieciay Lines per Video Fieid,
N o Orty
Po L var [. Active Drspiay Lirwrs por Videa Fad.
Twg brts

wertica! Bacx Porcn Whamt
In graphics mode. a word 1s a group of 16 pixels. in charac-
ter mode. a word is one character code and its attributes. if
any. _
The number of active words per fine must be an even num-
ber from 2 to 256.
An all-zero parameter value selects a count equal to 2"
where n = number of bits in the parameter field for ver-
tical parameters.
Al horizontal widths are counted in display words.
All vertical intervals are counted in lines.
SYNC Generator Period Constraints
Horizontal Back Porch Constraints
1. In general:

HBP > 3 Display Word Cycles (6 clock cycles).
2. If the IMAGE or WD modes change within one

video field:
HBP 2 5 Display Word Cycles (10 clock
cycles).

Horizontal Front Porch Constraints
1. It the display ZOOM function is used at other than
1X:
HFP 2 2 Disptay Word Cycles (4 clock cycles).
2. If the GDC is used in the video sync Slave mode:
HFP > 4 Display Word Cycles (8 clock cycles).
3. It the Light Pen is used:
HFP > 6 Display Word Cycles (12 clock
cycles).
Harizontal SYNC Constraints
1. If Interlaced display mode is used:
HS > 3 Display Word Cycles (6 clock cycles).

A1.7

Modes ot Operation 8Bits

CG Dispiay Mode

o0 Mixed Graphics & Character

01) Grephics Mode

10 Character Mode

11 Invalid

s Video Framing

00 Noninterlaced

01 * Invalid

10 Interiaced Repeal Field for Character Dispiays
11 Interiaced

Repeat Field Framing: 2 Field Sequence with ¥z line off-
set between otherwise identical
fields.
2 Field Sequence with 2 line off-
set. Each field dispiays alternate
lines. T
Noninterlaced Framing: 1 field brings all of the information
to the screen.

Interlaced Framing:

Total scanned lines in interface mode is odd. The sum
of VFP + VS + VBP + AL should equal one less than
the desired odd number of lines.

D Dynamic RAM Ralresh Cycies Ensble
] No Retresh — STATIC RAM
1 Refrash — Dynamic RAM

Dynamic RAM refresh is important when high display zoom
factors or DMA are used in such a way that not all of the
rows in the RAMs are regularly accessed during display
raster generation and for otherwise inactive display
memory.

F Orawing Time Window
0 Drawing during active display time and retrace blanking
1 Drawing only during retrace dlanking

Access o display memory can be limited to retrace blank-
ing intervals only, so that no disruptions of the image are
seen on the screen.

SYNC Format Specity

SYNC: re o o o0 1 -'ju_]

Tive Stepiey b ensbied by
© 3. ond blanted by # 0.

n [e[T o [s | tmamm e

Active Disglay Worgs per line. Musl
n Aw ™ be evon numbar wim st 0 « 0.
) va, r s
\ __wsmwum
Vertical Sync Wi, iow bits

Pe [HFP T VS, —I—'—stm:m'wﬁw
—

Frord Porch Wetth

° 0 HBP lew— Horgontal Back Porch Width
° [vFP %——Wmmm
PT AL, Active Dispiay Lines per Video Feid,
M ow bits

f var i AL, I.-mﬂmymuwmr-u.

Vertical Back Porch Wiath

3

This command also loads parameters into the sync
generator. The various parameter fields and bits are
identical 1o those at the RESET command. The GDC is
not reset nor does it enter idle mode.

Vertical Sync Mode
VSVNC:[: 1 1T e t ‘Tu]

1

O-Accept External Vernicel

Sync — Sizve Moos
1-Genarats & Output Verticel

Sync — Masior Mode
When using two or more GDCs to contribute to one image.
one GDC is defined as the master sync generator, and the
others operate as its slaves. The VSYNC pins of all GDCs
are connected together.

Slave Mode Operation

A few considerations should be observed when syn-
chronizing two or more GDCs to generate overlayed
video via the VSYNC INPUT/OUTPUT pin. As men-
tioned above, the Horizontal Front Porch (HFP) must be
4 or more display cycles wide. This is equivalent to
eight or more clock cycles. This gives the slave GDCs
time to initialize their internal video sync generators to
the proper point in the video field to match the incom-
ing vertical sync pulse (VSYNC). This resetting of the
generator occurs just after the end of the incoming
VSYNC pulse, during the HFP interval. Enough time
during HFP is required to allow the slave GDC to com-
plete the operation before the start of the HSYNC
interval.

Once the GDCs are initialized and set up as Master and
Staves, they must be given time to synchronize. It is a
good idea to watch the VSYNC status bit of the Master
GDC and wait until after one or more VSYNC pulses
have been generated before the display process is
started. The START command will begin the active
display of data and will end the video synchronization
process, so be sure there has been at least one VSYNC
pulse generated for the Slaves to synchronize to.

A1.8

Cursor & Character Characteristics

SN GO S

Oesplay Cursor d 1
] r.& _':cl crop I—r Cursor Top kne rsmber in the.
. row
L__“ . .- — 0-8unng Cursor
¥ - Steady Cursor

- Bhnk Raw. lower tits

m r cs;v - i OR " BlLins Aate. upper bits.
L

In graphics mode, LR should be set to 0.

The blink rate parameter controls both the cursor and
attribute blink rates. The cursor blink-on time = blink-off
time = 2 x BR (video frames). The attribute blink rate is
always V2 the cursor rate but with a % on-Y%a off duty cycle.

Display Control Commands
Start Display & End Idle Mode

START: F)*l '|;L|AO.|A|‘]
Display Blanking Controt
BCTHL:F OLO o 1 ol;l

L The cupiay 18 enabies
by & t, and bianked by
a0

Zoom Factors Specify

ZOOM: | o 1 o 8 0 ‘4:1
~ L “{#J e

Zoom magnification factors of 1 through 16 are available
using codes 0 through 15, respectively.

Cursor Position Specify

CURS: F Tt ¢ @ v a @ 1t]
Lal [EAD l»ummmw-m
—

L] L EAD }.wmmmm

<] | asn I- nl ean {Gemprecs toae ondy}
‘————mm.wm

Dot Adktreaa o éPun T crord

In character mode, the third parameter byte is not needed.
The cursor is displayed for the word time in which the dis-
play scan address (DAD) equals the cursor address.

In graphics mode, the cursor word address specifies the
word containing the starting pixel of the drawing; the dot
address value specifies the pixel within that word.

Parameter RAM Load

e[w]

Stertrg Addreas
povermesr RAM

}'_ 110 18 bytes Lo be iaaded

WO The parsmeter RAM
slartng ot the RAM sarrwss
specthed by SA

L

AL B

From the starting address. SA, any number of bytes may
be loaded into the parameter RAM at incrementing
addresses. up to location 15. The sequence of parameter
bytes s terminated by the next command byte entered into
the FIFO. The parameter RAM stores 16 bytes of informa-
tion in predefined locations which differ for graphics and
character modes. See the parameter RAM discussion for
bit assignments. :

Pitch Specitication

[,

This value 1s used during drawing by the drawing processor
to hind the word directly above or below the current word.
and during display to find the start of the next line.

Number of word addresses
n Glapay memary i the
horgorntal guechon

The Pitch parameter (width of display memory) is set by
two different commands. In addition to the PITCH com-
mand, the RESET (or SYNC) command aiso sets the
pitch value. The "active words per line”' parameter,
which specifies the width of the raster-scan display,
also sets the Pitch of the display memory. In situations
in which these two values are equal there is no need 1o
execute a PITCH command.

Drawing Control Commands

Write Data into Display Memory

WDAT:F [] v! e o uooj
‘—_ AMW Mernory Cycle Logecal

Operstion

[Q w=e— — REPLACE with Patiem
] t ~-—— COMPLEMENT

1 g ~=—— RESEY ta rero

[Ve SETWO 1

L———mu Transter Type

2 0 o ——e—— Word, Low thor High bris
LI] Low Byte af the Word
[)
L])

Hign Byie o the Word
invaikd

Pt WORD or [1213 J"

L) [WORD, J"

L3

Upon receiving a set of parameters (lwo bytes for a word
transfer, one for a byte transfer). one RMW cycle into Video
Memory is done at the address pointed to by the cursor
EAD. The EAD pointer is advanced to the next word.
according to the previously specified direction. More
parameters can then be accepted.

Word Low Dutas Byte or
Senge Byte Daus vaiue

Word transler only
agh Oata Byte

A1.9

For byte writes, the unspecified byte is treated as all zeros
during the RMW memory cycle.

In graphics bit-map situations, only the LSB of the
WDAT parameter bytes is used as the pattern in the
RMW operations. Therefore it is possible to have only
an all ones or all zeros pattern. In coded character ap-
plications all the bits of the WDAT parameters are used
to establish the drawing pattern.

The WDAT command operates differently from the other
commands which initiate RMW cycle activity. It requires
parameters to set up the Pattern register while the
other commands use the stored values in the parameter
RAM. Like all of these commands, the WDAT command
must be preceeded by a FIGS command and its
parameters. Only the first three parameters need be
given following the FIGS opcode, to set up the type of
drawing, the DIR direction, and the DC value. The DC
parameter + 1 will be the number of RMW cycles done
by the GDC with the first set of WDAT parameters. Ad-
ditional sets of WDAT parameters will see a DC value
of 0 which will cause only one RMW cycle to be ex-
ecuted. :

Mask Register Load

MASK: ‘ LI T T o]
P [" J———— Low smgrehcance byle
P2 [L]——n‘gn sigrehcance byte

This command sets the value of the 16-bit Mask register of
the figure drawing processor. The Mask register controls
which bits can be maodified in the display memory during a
read-modify-write cycle. ‘

The Mask register is loaded both by the MASK command
and the third parameter byte of the CURS command. The
MASK command accepts two parameter bytes 1o load a
16-bit value into the Mask register. All 16 bits can be indi-
vidually one or zero, under program control. The CURS
command on the other hand, puts a *'1 of 16" pattern into
the Mask register based on the value of the Dot Address
value, dAD. If normal single-pixel-at-a-time graphics figure
drawing is desired, there is no need 1o do a MASK com-
mand at all since the CURS command will se! up the
proper pattern to address the proper pixels as drawing
progresses. For coded character DMA, and screen setting
and clearing opertions using the WDAT command, the
MASK command should be used after the CURS com-
mand if its third parameter byte has been output.

Fig'ure Drawing Parameters Specity
FIGS:F! [] ..’,‘ °.J
»
] [_SLT ccl l DR |-——o..-wo.mw\n-u

n o]t
1 T T s Tpe Baact B

Uno (Vecton
Qroprice
AryCiria

Sianted Qrapivice Charecter

oc, i-———- DC Drawing Paremeter

J Grapnucs Orewing flag lor vea In
Mizeo Graphice snd Charscter Mode

[’ J——— D Orswing Persmeter
.

F{ o7, J___ 02 Orsawing Persmecer
A DB

o1, J——— 01 Orgwng Parsmeter
o | o, |

S

OM Orawnng Perametee

The poremeters ke on
OifTpe et interpretations for
Gifterent hgure types

Valid Figure Type Select Combinations

SL R AGCL Operation
0 ¢ 0 0 O

Character Dispiay Mode Drawing,
Individual Dot Drawing, DMA, WDAT,
-and RDAT

Straight Line Drawing

Graphics Characier Drawing and
Area filling with graphics
charactar pattern

Arc and Clrcle Drawing
Rectangle Drawing

Slanted graphics character

drawing and slanted
area filling

Only these bit combinations assure correct drawing
operation.

Figure Draw Start

FIGD: [' 1 1 [] voe ﬂ

On execution of this instruction, the GDC loads the param-
eters from the parameter RAM into the drawing processor
and starts the drawing process at the pixel pointed to by the
cursor, EAD, and the dot address, dAD.

Graphics Character Draw and Area Filling Stant

oo [v v+ 1] ‘

A1.10

Based on parameters loaded with the FIGS command, this
command initiates the drawing of the graphics character or
area filling pattern stored in Parameter RAM. Drawing
begins at the address in display memory pointed to by the
EAD and dAD values.

Data Read Commands

Read Data from Display Memory

N R EanES
|

0 O e Word low then high OYTe

Oata Teanter Tyoe

1 0 —————————————o—— L0w Brt2 Of (e Word anty

High Byts of 1he Word only

9 1

1avaitg

Using the DIR and DC parameters ot the FIGS command
to establish direction and transfer count. muitiple RMwW
cycles can be executed without specification of the cursor
address after the initial load (OC number of words or
bytes)

As this instruction begins to execute. the FIFQ bulfer direc-
tron 1s reversed so that the data read from display memory
can pass to the microprocessor. Any commands or param-
eters in the FIFO al this ime will be los!. A command byte
sent to the GDC will immediately reverse the bulter dwec-
ton back to wnite mode. and all RDAT information no! yet
read from the FIFO will be lost. MOD should be set to 00
it no modification to video buffer is desred.

Cursor Address Read

CUROD: r- T 7 0 0 0 6 o '
The Ioliowsrg Dytrs e AetuiTwd by the GDC
” ({717 EAQ A0 Eaecute Addresn (€AD) Low Byte
] ,{us €ADy At Pu«mumuuo. Modie Byte
~
41 [¢ o @ o o o I no.:P—uxm.Aomnuuonqnu.
4] { Al]& -— Dot Adaress (2AD! Low Brte

~
»” r -Ii_—-noumnum Mg Byte
The Execute Address. EAD. points to the display memory
word containing the pixel 1o be addressed.

The Dot Address. dAD. within the word is represented as a
1-0f-16 code for graphics drawing operations.

Light Pen Address Read

dAly

N

Thw 105s0wing Bytes are ratumed Dy the Q0C

-
EERTITITN Iy —

The light pen address. LAD. corresponds to the display
word address. DAD. at which the light pen input signal is
detected and deglitched.

ID}— - Light Pen Aoaress Low Byts

a !. Light Pon Adcress Wioam Byte

The light pen may pe used in graphics. charact_er. or mixed AC Characteristics
modes but only indicales the word address of light pen th = 0°Cto 70°C; Vg = 5.0V ¢ 10%; GNO = OV
position. y
DMA Read Request Read Cycle {GDC ~ CPU)
Lirmts Test
RMAR: L‘ o v v r ‘“j Symbol Parameter Nin Mar Unt Conditions
K Osta franter Type: AR Address Setup to RD:] ns
¢ 0 Word Low then high byts tRA Addross Hoid trom RD* [} ns
LI Low Byte of e Word RAY PD Puise Width tapy + 20 80 ne
1t Mg Byis of the Word _1RO1___ Date Deiay om AD. 80 ns C_ = SDpF
o Ivatig tpg Dats Flosting from ROD? ° 100 m
tacy AD Pulse Cycle 41cLK ™
DMA Write Request
DMAW: [i e J TvPE 1 uoo—l Write Cycie {(GDC —~ CPY)
- RMW Mymory Logical Operstion] Lireres Tast
0 0 - REPLACE with Potrern Symbdol Parameter Min Max Unit Canditions
[1 —s— COMPLEMENT taw Address Setup to WA, 0 ns
' 0 —u— MESET 1o Zaro wa Address Hold tram WR* [} ns
Y Ve 5T 10 One Iww WA Puise Width 100 ns
—_-— Duta Transte Type low Date Setup to WR* 80 ns
¢ o - W00 Low N high Dyte ‘wo D_'?' Hoid from Wi« ° ind
LI] Low Byt o1 the Wors ‘wey WR Putse Crcte e ~
. 1 ——————— ——— Kigh Gyta of Ine Word
@ e e DMA Read Cycle {GOC -~ CPU)
Lirmits Yost
Absolute Maximum Ratings* (Tentative) il feamae Min Max Unty _ Condhians
Ambient Temperature under Bias 0°C 10 70°C Ixa___ DACK Setuo to 80, ° i
pe ‘R DACK Hoid from RD! ° ns
Storage Temperature -65°Cto 150°C == -
Pi ith respect to Ground 0.5Vt v Ry T Puse W == ‘ooz - 22 =
Valtage .on.any' in wit e 0 bro ! il RD2 Dais Delay trom RD: 15tc k » 80 ns C = 50 pF
Power Dissipation 1.5 Watt tREQ DREQ Deiay from 2XCCLK? | Y20 s C_ = 80pF
*COMMENT: Exposing the device to stresses above tox _ DREQ Setup 1o DACK! o ~
those listed in Absolute Maximurn Ratings could cause gk DACK High Level Widtn teLx ns
permanent darnage. The device is not meant to be e DACK Pulse Cycle ek e
aperated under conditions outside the limits described ixaiR) DREQ : Daimy from DACK. ZigLk ¢ 120 m Cy = S0pF
in the operational sections of this specification. Expo-
sure to absolute maximum rating conditions for
extended periods may affect device reliability. DMA Write Cycle (GDC ~ CPY)
DC Characteristics — bmits Temt
(. = 0°C to 70°C; VCC = 5V ¢ 10%:; GND = OV Symbol Paramaeter Min Mox Unit Canditions
T txw DACK Setup to WAL 0 ns
Parameter Sympoal Min Moz Unit Test Conditions Twk DACK Hold from WR? 0 ns
tnput Low Valtage Vie -as [0 v \XQ(R) OREQ i Deiay rom DACK: tclk ¢+ 120 ms €L = S0pF
Input Migh Voitage Vin 2.0 Vee » 0.5 v
Output Low Yollage VoL 0.45 v gL = 2.2mA
Output Migh Voitags Vou 2.4 v ion = -400 A
input Low Look Current I -10 WAV} zOV R/M/W Cycle (GDC -~ Display Memory)
Input High Leak Current '™ +10 wh ¥y, = ¥co Tommis
Oulput Low Leax Current oL -10 A Vg = OV -—mrs Test
Output High Leak Currem ‘on «10 wA Vo = ¥co Symbot Parameler Min Max Unit Conditions
Clock input Low Voltage Yeu -0.5 0s v 1AD Addresa/Data Deiey 130 ns Cy = 30 pF
Clock input High Valtege Yeu 38 Veg + 10 v from 2XCCLK?!
Ve Supply Current lec 0 10FF AddressiOata Flostng 10 30 ns CL - 50 pF
trom 2XCCLK"
Capacitance 1015 . Input Data Setup to 7] s
ta = 25°C; Voc = GND = QV 2xcoLKs
o input Data Motd trom 0 ns
imite 2XCCLK
Parsmetor Symbol Min Mas unit Tost Condltiono topi DBIN Delay trom 90 na €, = 50 pF
ot Com " o . IXCCLK: °
i achance
U Cepomance o O <A \An ALE! Delay from ") 110 a8 G, = S0pF
vy 2XCCLK!
Output Capacitence Cour 20 oF (unmossurod) » OV \Rp ALE} Dotay from 20 90 ns C, = 50 pF
Clock input Capacitonco C, 20 oF - axceLK:
tRw ALE Width [T ns C = SO0gF

A1.11

Display Cycle

(GOC -- Disptay Memory)

Limits

Teut
Symbol Parametor Min Max Unht Canditlons
tvp Video Signai Oetay 120 ne C = 50 pf
from 2XCCLK!
Input Cycle (GDC - Display Memaory)
Limits Test
Symboi Parameter Min Max Unit Conditions
tpg input Signat Setup to 20 ns
2XCCLK!
tpw tnput Signai Width toLK ns
Clock
Limite Test
Symboi Puremoter Min [T unh Conditiona
e] Clock Rige Time 10 ns
teF Clock Fail Time 10 ns
cH Clock High Puise Wign 95 ns
oL Clock Low Pulse Width 95 ne
ek Clock Cycle 200 2000 ns

Al1.12

Appendix A2
I/0 Port Adresses and Instructions for the GDC

ot — - - = 7 9/ M ajgeug ydesn
00 D 2 € ¥O SO 9 IO 2L M PUBLLILLIOD SHIM
00 14 20 €Q +d sa 9a 24 el d BJEq Peay
Od ld 28d € ¥d Sd 9d <d 0L M Islaweled S}IM
HO 34 34 MG VWA S\ 8H d1 0L Y snjejg peay

sng vivd mmmw__o% \m%m\m NOLLONLLSEN]

J9jjoqu0) Aedsig solydels ay) 0} SUOINIISU| PUR SBSSAIPPY MOd O/l

A2.1

Appendix A3
8237-5 Programmable DMA Controller

2.3 DIRECT MEMORY ACCESS

Because it bypasses processor intervention, DMA provides a much faster way of
moving data between 1/0 devices and memory. Supported by the NEC LSI 8237-5
DMA Controller, DMA employs 16 address lines and 4 bits of page addressing,
thus enabling it to address one megabyte of memory. Although the DMA is a
synchronous device, it can interface with low-speed memory or I/O devices by using
the external Ready line.

The four DMA channels are assigned as follows:

Channel 0 CRT

Channel 1 FDD

Channel 2 Reserved for graphic operations option
Channel 3 Future.

See Table 2-2 for a list of instructions and 1/0 addresses. Figures 2-10, 2-11, and
2-12 show the DMA registers.

Table 2-2 DMA Instructions

INSTRUCTION READ/ 170 DATA BUS
WRITE ADDRESY 7 6 S 4 3 2 1 0
. K D w P T C A M
Write Command w 09 S S S R M E H M
M M I A T T C C
Write Mode w 1B S S D T R R § S
1 0 1 0 I 0

A3.1

Table 2-2 DMA Instructions (cont’d)

INSTRUCTION READ/ 170 DATA BUS

WRITE ADDRESY 7 6 S5 4 3 2 | 0
R Cc C
Write RQ Register w 19 —_ - = = - S S

B
1 0
M C C
Write Single Mask w 0B —_ - = = — S S

= K
1 0
M M M
Write All Mask w IF — — — — B B B B
3 2 1t 0
R R R R T T T T
Read Status R 09 Q Q Q Q ¢ Cc C cC
3 2 r 0 3 2 1 0
CHO DMA Address R/W 01 A7 A6 A5 A4 A3 A2 Al A0
AlS Al4 AI3 AI2 AIl AI0 A9 A8
CHO DMA Count R/W 11 W7 W6 WS W4 W3 W2 W1 W0
WISWHWI3WI2ZWITWIOWI W8
CHI DMA Address R/W 03 A7 A6 AS A4 A3 A2 Al A0
Al5 Al4 A13 Al12 ALl AI0 A9 A8
CHI DMA Count R/W 13 W7 W6 WS W4 W3 W2 W WO
WISWI4WIIWI2WIIWIOW9 W8
CH2 DMA Address R/W 0s A7 A6 A5 A4 Al A2 Al A0
AlS Al4 Al3 Al12 A1l A10 A9 ASB
CH2 DMA Count R/W l.5 W7 W6 WS W4 W3 W2 Wi W0
WISWIdWIIWI2WIIWIOWI W§
CH3 DMA Address R/W 07 AT A6 A5 A4 A3 A2 Al A0
Al5 Al4 A13 Al2 A1l AI0 A9 A8
CH3 DMA Count R/W 17 W7 W6 W5 W4 W3 W2 Wi W0
WISWIHIHAWIIWIR2WIITWIOWI W8

A3.2

Processor PCB
Table 2-2 DMA Instructions (cont’d)
INSTRUCTION READ/ I/70 DATA BUS

WRITE | ADDRESS] 7 6 5 4 3 2 1 0
CHO Page Register w 38 0 0 0 0 f‘;]'Aé r\.] Q
CHI Page Register W 3A 0 0 0 0 l’t‘) xAé " l’;
CH2 Page Register w cC 0 0 o0 O I‘A; l; iA:] I'Ag
CH3 Page Register w 3E 0 0 o0 0 1/; g)Af,]/2
Read Temp Register R 1D l-]) Ig 15) 13 [3) l; ll) !(:))
Master Clear w 1D —_ - = = = = = -

COMMAND REGISTER

7

0 «—— BIT NUMBER

(TTTIITL]

NORMAL TIMING

ROTATING PRIORITY

0

ﬁ‘ 0 FIXED PRIORITY
1
0

0 DREQ SENSE AC

Figure 2-10 DMA Command and Mode Registers

A3.3

LATE WRITE SELECTION

TIVE HIGH

0 DACK SENSE ACTIVE LOW

MEMORY-TO-MEMORY DISABLE
L———— X DON'T CARE

{ 0 CONTROLLER ENABLE
1 CONTROLLER DISABLE

MODE REGISTER
7 6 5 4 1 0 --—— BIT NUMBER

(TTITLIT]

i 00 CHANNEL 0 SELECT
01 CHANNEL ! SELECT
10 CHANNEL 2 SELECT
Il CHANNEL 3 SELECT

—
L
00 VYERIFY TRANSFER
01 WRITE TRANSFER
g
[
Rt
{

10 READ TRANSFER
11 ILLEGAL

0 AUTO INITIALIZATION DISABLE
1 AUTO INITIALIZATION ENABLE

0 ADDRESS INCREMENT SELECT
1 ADDRESS DECREMENT SELECT

00 DEMAND MODE SELECT
01 SINGLE MODE SELECT
10 BLOCK MODE SELECT
Il CASCADE MODE SELECT

Figure 2-10 DMA Command and Mode Registers (cont’d)

REQUEST REGISTER

4 3 2 1 0 -«—— BIT NUMBER

LIT T T]

<

. —

DON'T CARE l— 00 SELECT CHANNEL 0

01 SELECT CHANNEL 1
10 SELECT CHANNEL 2
11 SELECT CHANNEL 3

0 RESET REQUEST BIT
1 SET REQUEST BIT *

1
SOFTWARE REQUESTS WILL BE SERVICED ONLY IF THE CHANNEL IS IN BLOCK MODE.

Figure 2-11 DMA Request and Mask Register

A3.4

Processor PCB

MASK REGISTER
7 6 5 4 3 2 1 0 -=——BITNUMBER
— e — |
DON'T CARE 00 SELECT CHANNEL 0 MASK BIT
: 01 SELECT CHANNEL 1 MASK BIT
10 SELECT CHANNEL 2 MASK BIT
11 SELECT CHANNEL 3 MASK BIT

¢ CLEAR MASK BIT
1 SET MASK BIT

THE INSTRUCTION, WHICH SEPARATELY SETS OR CLEARS THE MASK BITS, IS SIMILAR IN FORM TO THAT
USED WITH THE REQUEST REGISTER.

7 6 5 4 3 2 1 0 <—— BIT NUMBER
LTIl
l {o CLEAR CHANNEL 0 MASK BIT

1 SET CHANNEL 0 MASK BIT

0 CLEAR CHANNEL 1 MASK BIT
1 SET CHANNEL I MASK BIT

0 CLEAR CHANNEL 2 MASK BIT
1 SET CHANNEL 2 MASK BIT

0 CLEAR CHANNEL 3 MASK BIT
1 SET CHANNEL 3 MASK BIT

ALL FOUR BITS OF THE MASK REGISTER MAY ALSO BE WRITTEN WITH A SINGLE COMMAND.

Figure 2-11 DMA Request and Mask Register (cont’d)

A3.5

Processor P(|

STATUS REGISTER

7 1 0 <—— BIT NUMBER

(ITITTI

1

Jj S— I CHANNEL 0 HAS REACHED TC
t— ————1 CHANNEL | HAS REACHED TC
_—————— 1 CHANNEL 2 HAS REACHED TC
1 CHANNEL 3 HAS REACHED TC

1 CHANNEL 0 REQUEST
I CHANNEL 1 REQUEST
I CHANNEL 2 REQUEST
1 CHANNEL 3 REQUEST

THIS INFORMATION INCLUDES WHICH CHANNELS HAVE REACHED A TERMINAL COUNT AND WHICH
CHANNELS HAVE A PENDING DMA REQUEST. BITS 0 THROUGH 3 ARE SET EVERY TIME A TC IS REACHED BY

THAT CHANNEL OR AN EXTERNAL EOP IS APPLIED. THESE BITS ARE CLEARED UPON RESET AND ON EACH
STATUS READ.

Figure 2-12 DMA Status Register

A3.6

Appendix B1

Demonstration of a GSX-86 implementation

(t********************************k******************k***********************)

(*This program gives an example of GDC programming by using GSX 86 standard *)

(*interface. *)
(*It has an assembly language module named GSXPAS.I86. *)
(**)
(* a: *)
(* mt+86 b:gsxdemo *)
(* asmt86 b:gsxpas *)
(* linkmt b:gsxdemo,b:gsxpas, fpreals,trancend,paslib/s *)
(* graphics *)
(* b: *)
(* gsxdemo *)

(**************************k***)
program GSX DEMO;

CONST
OPEN_CMD =1 ;
CLOSE_CMD =2 ;
CLEAR_CMD =3 ;
PMARK_CMD =17 ;

screensize = 32767 ;
TYPE

cntrl array array [1..10 1 of integer ;
intin array = array [1..80] of integer;
intout_array = array [1..45] of integer;
ptsin array = array [1..100] of integer;
ptsout_array = array {1..100] of integer;

VAR
contrl : cntrl array;
intin : intin array:
intout : intout array:
ptsin : ptsin_array;
ptsout : ptsout_array;
ch : char;

external procedure GSX(var ptsout:ptsout_array;
var intout:intout_array;
var ptsin :ptsin_array:;
var intin :intin_array;
var contrl:cntrl array):;

(**k***************)
{*Initialize the graphic device. *)
(FARIFIIRKRARKR KRR AR KR A KRk A I AR AR AR AR AR KRR AR R A KRR KA KRR KRR R AR AR KKK AR KR KRR R Rk A K)
procedure open wk(dev_no :integer);
var

i : integer;

B1.1

begin
contrl[1] := OPEN_CMD;
contrl[2 1 :=0;
contrl[4] :=10; (*length of intin *)
intin[1] :=dev no; (*workstation identifier¥)
for i :=1 to 10 do
intin(i]:=1; (*initialization parameters*)
GSX(ptsout, intout,ptsin,intin,contrl);
end;

(**)
(*Erase the CRT screen. *)
(**)
procedure clear it;
begin

contrl{ 1] := CLEAR CMD;

contrl[2 1 :=0;

GSX(ptsout,intout,ptsin,intin,contrl);
end;

(**)
(*Terminate the graphic device operation. *)
(**)
procedure exit gsx;
begin

contrl{ 1]} := CLOSE CMD;

contrl[2] :=0;

GSX(ptsout, intout,ptsin,intin,contrl);
end;

(**)
(*Set marker colour or type. *)
(**)
procedure set attrib(cmd,attrib:integer);
begin

contrl[l] :=cmd;

contrl[2]:=0;

intin[l]:=attrib;

GSX (ptsout, intout,ptsin, intin, contrl);
end;

(**)

(*This procedure draws a marker : *)
(* X,y = coordinates of the center point *)
(* scale = size of the marker *)
(* color = marker colour *)
(* ptype = marker type *)

(***********k**)

procedure draw marker (x,y,scale,color,ptype:integer);

B1.2

begin
polym scale(scale);
set_attrib(20,color);
set _attrib (18, ptype);
contrl([l]:= PMARK CMD;
contrl2]:=1; {(*number of markers%*)
ptsin[l] :=x;
ptsin(2] :=y;
GSX (ptsout, intout,ptsin, intin,contrl);
end;

(**)

(*This procedure sets marker size. *)
(**)
procedure polym scale(scale:integer);
begin

contrl[l]:=19;

contrl[2]:=1;

ptsin([1]:=0;

ptsin([2] :=scale;

GSX (ptsout,intout,ptsin, intin,contrl);
end;

(******************************** Main Program ******************************)

begin
open_wk (1) ;
clear it;
draw_marker(2000,2000,500,1,5);
draw_marker (6000, 6000,1000,2,4);
draw_marker(10000,10000,2000,3,3);
draw_marker(16000,16000,3000,4,2);
draw_marker(20000,20000,5000,5,1);
draw marker(24000,24000,2000,1,5);
draw_marker (28000,28000,1000,4,4);
draw_marker (7500,22500,5000,1,3);
draw_marker(22500,7500,5000,5,2);
read (ch) ;
clear_it;
exit gsx;

end.

B1.3

;**

;The assembly language module of the Pascal program GSX DEMO.PAS.
;**

data
data
code
GDOS

’

public
name
assume
segment
ends
segment
EQU

GSX

pasgsx

cs:code, ds:data
public

public
OEOH

;**

;GSX 86 standard interface procedure.
;**

GSX

GSX

code

proc
push
push

mov
mov
mov
add
mov
int

pop
pop
ret
endp

ends
end

near

ds ;save registers

es

ax, ss ;get segment address of the parameter list
ds, ax

dx, sp ;get offset address of the parameter list
dx, 6 ;advance pointer past the stored data

cx, 473H ;GSX 86 function code

GDOS ;call GDOS

es ;restore registers

ds

20 ;return

B1.4

Appendix B2

Direct Programming of the GDC

(***)

(* DIRECT PROGRAMMING OF GDC *)
(Fhkdkhdk kKRR Rk R KR kA KA R KA AR Kk kAR AR A AR KRR KRR KA AR IR KRR KRR KKK AR KK A Kk kKK k kK)

(*This program demonstrates the direct programming method of the GDC. *)
(*It has an assembly language module named GDCASM.I86 *)
(*****k***)
(* a: *)
(* mt+86 b:gdcdemo _ *)
(* asmt86 b:gdcasm *)
(* linkmt b:gdcdemo,b:gdcasm, fpreals,trancend,paslib/s *)
(* b: *)
(* gdcdemo *)

(***)
program marker;

const
mode_rep = $20 (*replace all bits with the pattern%*)
mode_com = $21 ; (*xor all bits with pattern¥*)
mode res = $22 ; {*reset 1 bits to zero%*)
mode_set = $23 ; (*set 1 bits to zero¥*)
gplane = 0 ; (*green plane addressk*)
bplane =1 ; (*blue plane address*)
rplane = 2 ; (*red plane address*)
red com =1 ; (*red component*)
blue com = 4 ; (*blue component*)
green_com = 2 ; (*green component*)
var
pl,p2,p4 : integer; (*FIGS parameters*)
zoomf : integer; (*zoom factort*)
pcolor : integer; (*polymarker colourt?)
pmtype : integer; (*polymarker type*)
neccol : byte ; (*device colour®)
1 : byte ; (*dummy variablet*)
gcol : integer; (*plane address*)
gattrib : integer; (*writing attributet*)
xad, yad : integer; (*x,y coordinates in actual device units¥*)
ch : char ; (*dummy variable*)
esc, s : string ; (*dummy variables*)

external procedure xycv;
external procedure gchw;
external procedure ginit;
external procedure gclear;
external procedure grmaskw;

B2.1

external procedure grzoomw;

(********************************'k**‘k***'k*************************************)

(*This procedure draws a marker of type ‘ptype' and color ‘pcolor with zoom *)

(*factor 'pzoom' at x=px,y=py on the CRT screen. *)
(*Xmax=640 pixels in actual device units *)
(*Ymax=474 pixels in actual device units *)
(*16>=pzoom<=0 *)
(*color index color *)

(* e e

(* 0 black *)
(* 1 red *)
(* 2 green *)
(* 3 blue *)
(* 4 cyan *)
(* 5 yellow *)
(* 6 magenta *)
(* 7 white *)
(* 8-n white *)

(***‘k***********)

(*marker types: 1- . 2- +

3- * 4- o 5- x *)

(***-k*’k***)

procedure polym(px,py,pcolor,pzoom,ptype:integer);

begin
pl:=$12;
p2:=7;
p4:=8;
xad:=px;
yad:=py;
XyCvV;
if ptype>5 then

end;

ptype:=5;
pmtype:=(ptype-1) *8;

if pzoom>15 then
pzoom:=15;

zoomf :=pzoom;

grzoomw;

grmaskw;

cvcolor (pcolor);

dis_char;

(*direction and type of the figure*)
(*DC,pixels in horizontal direction*)
(*D1,pixels in vertical direction¥*)

(*set x and y addresses in the display memory*)

(*convert xad,yad to display memory addresses*)

(*Find the start of the marker bits in the*)
(*assembly module*)

(*set the size*)

(*set the mask values*)

(*get the colour components*)
(*display the character*)

(**********'k**'k*********************************‘k****************************)

(*This procedure converts the color index to another number containing the *)

(*proper color components in it. x)
(***‘k**************************)

procedure cvcolor(color:integer);

B2.2

begin
case color of
0 : neccol:=0; (*black¥)
1 : neccol:=red_com; (*red*)
2 neccol:=green_com; (*green*)
3 : neccol:=blue com; (*blue*)
4 neccol:=blue com + green_com; (*cyan*)
5 neccol:=red _com + green_com; (*yellow¥*)
6 neccol:=red com + blue com; (*magenta*)
7 neccol:=red com + green_com + blue com; (*white%*)
else
neccol:=red_com + green _com + blue com; (*white*)
end;
end;

(***)\'******************************)

procedure dis_char;

begin

gcol:=gplane; (*select the green planex*)
l:=neccol & green_com; (*check for the green component in neccol¥*)
if 1<>0 then (*if there is green thent)

gattrib:=mode rep (*set writing mode to replace¥*)
else

gattrib:=mode res; (*if no green then set writing mode to reset%*)
gchw; (*draw the marker in the green plane%*)
gcol:=bplane; (*select the blue plane¥*)
l:=neccol&blue_ com; (*check for the blue component in neccol¥*)
if 1<>0 then (*1f there is blue thent*)

gattrib:=mode rep (*set writing mode to replace*)
else

gattrib:=mode res; (*if no blue then set writing mode to reset*)
gchw; (*draw the marker in the blue plane*)
gcol:=rplane; (*select the red plane*)
l:=neccol&bplane; (*check for the red component in neccol*)
if 1<>0 then (*1if there is red then¥*)

gattrib:=mode rep {*set writing mode to replace*)
else

gattrib:=mode res; (*if no red then set writing mode to reset*)
gchw; (*draw the marker in the red plane¥*)

end;

(****************'k**)

(*This procedure erases the entire screen. *)
(***************"k***k*******************************k******k******************)

procedure sc_clear;

begin
gclear; (*erase the graphic screen*)
ch_clear; (*erase the alpha screen%*)
end;

B2.3

(***)

procedure ch clear;

begin
esc:=chr (27} ;
s:=concat (esc,'["','2','J'); (*escape function to erase the alpha screen*)
writeln(s); (*erase the alpha screent*)

end;

(RFkkkxkkhkxhhhhkhhhhkkhkhhhkkkkk* MATN PROGRAM **kkhhkhkkkhkkkkk kA Xk k kX KAk hkk kK K k)

begin
ginit; (*initialize the 7220 chip*)
ch_clear; (*erase the alpha screent*)

polym(100,100,1,12,1);
polym(200,200,2,6,2);

polym(300,300,5,5,3);

polym(400,400,7,4,4);

polym(500,250,6,3,5);

polym(100,350,4,3,3);

read(ch);

sc_clear; (*clear the screen®)

end.

PR R KRR AR AR AR AR A A AR A AR AR R A AR A A A A AR AR AR A A AR A A A A I kA kAR AR R A AR R AN R AR AR AR Rk kA Ak kk k%

i The assembly language module of the Pascal program:GDCDEMO.PAS
;***
; All the procedures in this modules can be accessed by the Pascal program if
; they are declared as external there. The external declarations in the data

; segment of this module are all Pascal program global variables.
;***

public ginit , gscrol , gsync , gclear
public xycv , wdat , gchw ,pat
public grmaskw , cursw , grfigs , grzoomw
public gdccl , gdcc
public damout
name pasgsx
assume cs:code, ds:data
data segment public
ead dw ?
dad db ?
extrn gcol:byte
extrn gattrib:byte
extrn zoomf :byte
extrn pmtype:word

B2.4

extrn pl:byte,p2:word,p4:word
extrn xad:word,yad:word

data ends

code segment public

;**

;Initialize 7220 chip
;**

ginit proc near

call gsync ;set sync generator parameters

call damout ;send the following commands and parameters out

db 8 ;total number of commands and parameters to be sent
;high byte=I/0 address low byte=command or parameter
;comments describe low bytes

dw 726eh ;Vsync

dw 7601h ;Graph enable

dw 7247h ;Pitch command

dw 7040h ;pitch

dw 7246h ; Zoom command

dw 7000h ;set zoom factor to zero

dw 724bh ;CCHAR command

dw 7000h ;CCHAR parameter

call gscrol ;send scroll command and parameters out

call gclear ;clear the display area

mov al, 6bh ;get the START command

out 72h,al ;send it out

ret

ginit endp

;**

/Mode of operation and sync generator set
;**
gsync proc near

call damout ;multicommand output routine

db 9 ;Total number of commands and parameters
;high byte=I/0 address low byte=command or parameter
;comments describe low bytes

dw 7200h ;RESET command

dw 7016h ;mode of operation select bits

dw 7026h ;active display words per line

dw 7046h ;horizontal sync and vertical sync

dw 700eh ;horizontal front porch and vertical sync
dw 7003h ;horizontal back porch width

dw 7013h ;vertical front porch width

dw 70dbh ;active display lines per video field

dw 7091h ;vertical back porch width and active

;display words per line high bits
ret

B2.5

gsync endp

;**

;Scroll command and parameters output
;**

gscrol proc near

call
call
call
db

gdccl
gdcc
damout
9

;high byte=I/0 address
;comments describe low bytes

dw
dw
dw
dw

dw
dw
dw
dw
dw
ret

gscrol endp

7270h
7000h
7000h
70b0h

701dh
7000h
7000h
7000h
7000h

;GDC status check

;GDC status check

;send the following command and parameters
;total number of commands and parameters
low byte=command or parameter

;PRAM command+PRAM start address of zero
;area one starting address low bits
;area one starting address high bits
;first four bits of this parameter=LEN11l
;LENl=length of area one

; LEN1h

;area two starting address high bits
;area two starting address low bits
;LEN21

; LEN2h

;**

;This procedure uses the area filling techniques to clear the display area.
;A pattern of all ones is written into the display memory in reset writing

;mode.

sRKERKRAKRKAKRKAAAKRKAA KA KA Ak hh ko hhkhk kA Ak hhh kA hk kA kA XAk kA hhhkhhkhhhhhhhhhhkhhhkkhk

gclear proc near

mov
call
call
mov
mov
mov
mov

zoomf, 0
grzoomw
grmaskw
ead, 0

dad, 0
gattrib,22h
pmtype, 40

;set the zoom factor to zero

;write zoom

;write a mask of all ones

;starting word address in each colour plane
;starting dot address in each colour plane
;set writing mode to reset

;get the start address of the pattern bits for
;the area filling

;In the following three lines pl,p2 and p4 are FIGS parameters

mov
mov
mov

mov
gclrl:

pl, 10h
p2, 639
p4, 475

cx,3

;set the type and direction of the figure
;width of the screen memory in pixels
;hight of the screen memory in lines

;three planes to be cleared

B2.6

gclear

push
dec
mov
call
pop
loop
ret
endp

cxX
cx
gcol,cl
gchw

cxX
gclrl

;save the loop counter

;address of the plane to be cleared
;set the colour plane address
;clear the plane

;restore the loop counter

,-****************************'k***

; This procedure converts (xad,yad) coordinates on the CRT display

; to word and dot addresses ,ead and dad,in the display memory
,-********k**

Xycv

XYyCV

proc near

mov
and
push
mov
mov
sar
push
mov
mov
mul
pop
add
mov
mov
pop
shl
mov
ret
endp

cx, xad
cx,000fh
cx
cl,4
ax, xad
ax,cl
ax
ax,40h
cx,yad
cx

cxX
ax,cx
ead, ax
cl,4
ax
ax,cl
dad,al

;get the x address

;separate the first four bits of xad
;save it

;get a shift factor

;get the x address

;shift 4 bits to the right to form Intg(x/16)
;save it

;load ax with the pitch value

;get the y address

;multiply yad by pitch

;restore the calculated Intg(x/16)
;add yad*pitch to Intg(xad/16)

;drop it into ead

;get a shift factor

;restore the first four bits of xad
;shift it left

;save the dot address

gRkkAKkhkhhkhkhhkhhhhkhkhhhhhkhhhrhkhkhhhhAhhAk kA kA kAR AAAR XAk khhkkhhhdhkhhhhddhkxhkk

’

Draw a graphic character

;*********‘k***:\::k*******

gchw

gchw

proc near

call
call
call
call
mov
out
ret
endp

wdat
cursw
pat
grfigs
al, 68h
72h,al

;set writing mode

;set start address of the figure

;set pattern

;specify figure parameters

; GCHRD command

;send GCHRD command out to start drawing

B2.7

jRARAkkkAkhkkhkhkAhhhhkhhhhdhhhhhhhkhhhkhhhhhhkhhhhkhAkhhhhhkhhhhhhhkhhhkhhkhhhhhdhhkk

; Cursor Positioning
;***

cursw proc near
call gdcc ;GDC status check
mov al, 4%h ; CURS command
out 72h,al
mov ax,ead ;word address
out 70h,al ;low byte first

mov al,ah
out 70h,al

mov al,dad ;dot address

or al,gcol ;put the cursor in the proper colour plane
out 70h,al

ret

cursw endp

TR KA R AR AR A A A AR AR AR A kA A A AR AR A AR A AR AR AR AR A A AR A A AR AR AR AR AR AR KA KA A Ak hhhhkkkkk

; Send FIGS command and parameters out
;**

grfigs proc near

call gdcc ;GDC status check

mov al,4ch ;FIGS command

out 72h,al ;send it out

mov al,pl ;type and direction of the figure

out 70h,al ;send first parameter out

mov ax,p2 ;number of pixels prependicular to
;initial direction

out 70h,al ;send second parameter low byte

mov al,ah

out 70h,al ;send second parameter high byte

mov ax,pd ;number of pixels in initial direction

out 70h,al
mov al,ah
out 70h,al
ret

grfigs endp

;**

; Write a mask of all ones
;**

grmaskw proc near

call gdcc ;GDC status check

mov al, 4ah ;MASK command

out 72h,al ;send it out

mov al,0ffh ;get the first parameter

B2.8

out
mov
out
ret

70h,al ;send it out
al,O0ffh ;get the second parameter
70h,al ;send it out

grmaskw endp

;**

’

Zoom set

JARKAAKRKAAKAKARKAAKRA AR AR AR AR XA AAA R K AA R RAAAAAA KK AAA ARG AR KA AR AR A A KK A A KA ARk A AR KA kKX

grzoomw proc near

call
mov
out
mov
out
ret

grzoomw endp

gdcc ;GDC status check
al,46h ; Z00M command
72h,al

al, zoomf ;zoom factor
70h,al

;**

’

Set writing attribute

;**

wdat proc
mov
out
ret

wdat endp

near
al,gattrib ;writing mode
72h,al

JRAAKRKRRKRAAARAKRKAARAA A kAR kA hhhhhhhhhhhdhhdhhhhkhhhhhhkAkhhhhkhrhkhhhhkhhkhkhkhkkhhkkkx

;Load the PRAM with the graphic character or area filling pattern
;**

pat proc near
call gdcc
mov al,78h ;PRAM command and PRAM start address of 8
out 72h,al
mov cx, 8 ;number of parameters
mov bx, (offset dapat) ;get the markers start address
add bx, pmtype ;add address of the desired marker
patloop:
mov al,cs:byte ptr(bx] ;get a byte
out 70h,al ;load it into the PRAM
inc bx ;point to the next byte
loop patloop
ret
pat endp

B2.9

;**

;This procedure tests three bits of the STATUS Register:'Drawing in process',
;'FIFO empty' and 'VSYNC active'.
KK AR KKK KR KR KR AR A AR K AR R AR KA AR KA R K AR AR AR K AR KAk A KRR AR AR AR AR Kk Rk kk kAR KA Kk KKk &

gdccl proc near
gdcclO:
in al,70h ;read STATUS register
test al,08h
jnz gdccl0 ;jump if drawing in process
not al
test al,24h ;check FIFO empty and VSYNC
jnz gdccl0
ret

gdccl endp

;**

; This routine checks the FIFO empty bit of the STATUS Register.
;**

gdcc proc near
gdcc00:
in al,70h ;read STATUS register
test al,04h ;test FIFO empty bit
jz gdcc00 ;jump if FIFO is not empty
ret

gdcc endp

FREAR AR A KA KKK A KK AR A KK ARKRAAKAA AR AR A A Ak IR AR AR AKXk Ak A AA A hAkhhh Ak hkhhhhhkhhhkArxAkk ks

;This procedure sends the command and parameters to the I/0 addresses.It
;expects a series of data bytes starting from its return address.The first
;byte must be the total number of commands and parameters.For the rest of

;the data the high byte of each word is the I/O address and the low byte is
;the command or parameter.
;**

damout proc near

pop bx ;restore the return address

mov cl,cs:byte ptr[bx] ;load cl with the number of
;commands and parameters

inc bx ;point to the first word

mov ch,0 ;set high byte of cx to zero

mov dh, 0 ;set high byte of dx to zero

damout00:

mov ax,cs:word ptr(bx] ;get the word

mov dl,ah ;high byte is I/0 address

out dx,al ;send low byte to the I/0 address

add bx, 2 ;point to the next word

loop damout00

jmp bx ;jump to the return

B2.10

http://addresses.lt

damout endp

FRAKRK AR KA I AR AR A A AR KA A AR A ARA KA AR A A AR A A A AR A KRR AR AR AR KA A AR KRR KRR A AR A A KAk Ak Ak hhk kX

dapat.:
do O00h,00h,00h,10h,00h,00h,00h,00h ;pattern data for (.)
db 10h,10h,10h,0feh,10h,10h, 10h, 00h ;pattern data for (+4)
db 92h,54h,38h,0feh,38h,54h, 92h,00h ;pattern data for (*)
db O0feh,82h,82h,82h,82h,82h,0feh, 00h ;pattern data for (o)
db 82h,44h,28h,10h,28h,44h,82h,00h ;pattern
db O0ffh,0ffh,0ffh,0ffh,0ffh,0£f£fh,0ffh,0£f£fh ;pattern of all ones

code ends
end

B2.11

Appendix B3

Demonstration for Scrolling

(****7‘:**********‘A‘*************7‘(*)‘t**k**********k*******************************)

(*This program divides the CRT screen into two independently scrolable areas.

(*The function keys PFl and PF2 select area one and area two respectively.

(*Each area can be scrolled either horizontally or vertically using the four

(*movement keys on the keyboard.

(*This program has an assembly language module named scrolasm.iB86.
('k********)\'***************************-k'k'k*************‘k***********************)

(* a:

(* mt+86 b:scrol

(* asmt86 b:scrolasm
(* linkmt b:scrol,b:scrolasm, fpreals,trancend,paslib/s
(* graphics

(* b:

(* scrol

(************‘k***

program demop ;

const

VAR

OPEN_CMD
CLOSE_CMD
CLEAR_CMD

FILAREA CMD
GDP_CMD

FILL_STYL CMD
FILL_INDX CMD

MAX_CNTL VALS
MAX_INTIN_VALS
MAX_INTOUT_ VALS
MAX PTS_VALS

SCREENSIZE

XMAX
YMAX

cntrl _array
intin_array
intout_array
ptsin array
ptsout_array

contrl
intin
intout

= array

array
array
array
array

entrl array ;
intin_array ;
intout arrray ;

1

2 ;

3

9 ;

11

23

24

10

80

45

100 ;

327767; (*normalized device units#*)

1024; (*display memory width in pixels*)
1024; (*display memory length in pixels*)
[1..MAX CNTL VALS] of integer ;

[1..MAX INTIN VALS] of integer ;

[1..MAX INTOUT VALS] of integer ;

[1..MAX PTS VALS] of integer;

[1..MAX PTS VALS] of integer ;

(*input control array*)
(*input parameter array?*)
(*output parameter array¥*)

B3.1

*)
*)
*)
*)
*)

*

)
*)
*)
*)
*)
*)
*)
*)

ptsin : ptsin_array ; (*input point coordinate array¥*)
ptsout : ptsout_array ; (*output point coordinate array*)
s1,s : STRING;
XSAD : INTEGER; (*x _coordinate of the starting
address¥*)
YSAD : INTEGER; (*y_coordinate of the starting
address*)
SEAD : INTEGER; (*starting address*)
SCROCMD : INTEGER; (*PRAM command+PRAM start address¥*)
ESC : CHAR;
ch : char ;
STOP1 : BOOLEAN;
STOP2 : BOOLEAN;
START : BOOLEAN;
external procedure GSX(var ptsout : ptsout_array ;
var intout : intout_array ;
var ptsin : ptsin array ;
var intin intin_array ;
var contrl : cntrl array) :

EXTERNAL PROCEDURE SCROL;
EXTERNAL PROCEDURE GRSCROL;

(RAIRI AR AKR KK KA KRR KA KRR IR A AR AR K KRR KKK KR KA KA R KKK AR KA XA Xk Ak kA khkkkkkkkk Kk ok k%)
PROCEDURE MENU1;

VAR
S1 : STRING;

BEGIN
S1:=CONCAT(ESC,'[','5"',';'",'17','m"'); (*Blink and red character*)
WRITELN(S1);
S1:=CONCAT(ESC, '[','7',';','20','£"'); (*position the cursort*)
WRITELN(S1, 'ENTER ESC TO STOP ');
S1:=CONCAT(ESC,"'[','23",'m"); (*white character?*)
WRITELN(S1) ;
S1:=CONCAT(ESC,'[','3','B"); (*cursor down *)
WRITELN (S1) ;
S1:=CONCAT(ESC,'[','15','C"); {(*cursor forward *)

WRITELN(S1, 'The Screen is divided into two windows.You can roam');
WRITELN(S1, 'either of them around video memory.'):
WRITELN;
51 :=CONCAT (ESC, '[','20"','C"); (*cursor forward*)
WRITELN (S1, 'Press PFl1 for window one');
WRITELN(S1, 'Press PF2 for window two');
WRITE (S1);
END;

B3.2

(FhR KKk R A KR KR K A KRR KA AR AR AR AR R KRR R KA R KRR KA AAK AR R A KA KRR K AR AR KA KRR Kk k kX Ak kK Kk K)
PROCEDURE MENU2;

VAR
S : STRING;
BEGIN
S:=CONCAT(ESC, '[','21"','m"); (*yellow color*)
WRITELN (S) ;
S:=CONCAT(ESC,'[','7','B'); (*cursor down*)
WRITELN(S) ;
S:=CONCAT(ESC,'[','25"','C"); {*cursor forward*)
WRITELN(S, 'UP ', CHR(167));
WRITELN (S, 'DOWN ', CHR(169)) ;

WRITELN (S, '"FORWARD ',CHR(171));

WRITELN (S, 'BACKWARD ',CHR(170));

WRITELN;

WRITELN;

WRITE (S, 'PRESS ANY KEY TO CONTINUE');
END;

(FAREI KKK IR KKK KKK AR AR KRR AR AR KRR KR KKK I AR R KA Rk R R Ak hhhhhkhhkkhkkhhkhkkhhhKohok)
PROCEDURE MENU3;

BEGIN
S1:=CONCAT(ESC,'[','19','M"); (*purple color*)
WRITELN(S1l);
S1:=CONCAT(ESC,'[','8',';"','20','H"); (*cursor position¥*)
WRITELN(S1, 'DO YOU WANT ANQOTHER GO2!');
S1:=CONCAT(ESC, '[','20','C"); (*cursor forward*)
WRITE (81, ' (y=yes any other key=no)');

END;

(****************‘k****‘k******‘k**************7\-**********‘k****‘k****************)

(*This procedure sets different attributes for subsequent operations. *)
(********************-k********‘k**********k************************************)

procedure set attrib{ cmd, attribute : integer) ;

begin
contrl(l]:= cmd; (*opcode*)
contrli2]:= 0;
intin{ 1 } := attribute ;

GSX(ptsout, intout, ptsin, intin, contrl)
end;

(KRAXKAKKKAKARKKKRAKKKKKAAX, CLOSE WORKSTATTION AXFkAhkkkkhkkhkkhkkkkkxhxkohkkk)

procedure exit gsx ;
begin

B3.3

0

contrl{ 1 1} CLOSE_CMD ;

contrl[2] := 0 ;

GSX(ptsout, intout, ptsin, intin, contrl) ;
end ;

("k************************** CLEAR THE SCREEN ****************************‘k**)
procedure clear_ it ;
begin
contrl(1] CLEAR CMD ;
contrxl[2 1 := 0 ;
GSX(ptsout, intout, ptsin, intin, contrl) ;
end ;

[}

(kxkkxkhhkkhxkhhkhkhkkkxxhkk*kk*x OPEN WORKSTATION **kkkkkkkkhkkkkhhhhhkxhhxkkkx %)
procedure open_wk(dev_no : integer);

var
i : integer ;

begin
contrl[1] := OPEN_CMD ;
contrl{ 2] := 0 ;
contrl{ 4] := 10 ; (*length of input parameter array#*)
intin[1] := dev_no ; (*logical device number*)
for i := 2 to 10 do
intin[1] := 1 ; (*input parameter array*)
GSX(ptsout, intout, ptsin, intin, contrl) ;
intout [1]:=1024; '

end ;

(****7\-*************************k**)

(*This procedure draws a bar : *)
(* x1 = x coordinate of lower left hand corner of bar *)
(* y1 = y coordinate of lower left hand corner of bar *)
(* xu = X coordinate of upper right hand corner of bar *)
(* yu = y coordinate of upper right hand corner of bar *)

(****'k***)

procedure draw bar(xl,yl,xu,yu,color:integer);

begin
set_attrib(23,1); (*solid fill interior stylex)
set_attrib(25,color); (*set colour*)
contrl(1] :=GDP_CMD;
contrl[2]:=2; (*bar*)
contrl[6]:=1;
ptsin[1l]:=x1;

ptsin([2]):=yl;

ptsin[3] :=xu;

ptsin[4] :=yu:

GSX (ptsout, intout,ptsin, intin, contrl);
end;

B3.4

(******************************"k*****************************’k***************)

procedure draw_circle(color,x,y,r:integer);

begin
set _attrib(25,color); (*set colour¥*)
contrl([1l] :=GDP_CMD;
contrl([2]:=3; (*circlet*)
contrl{6]:=4;
ptsin[l] :=x; (*x coordinate of center*)
ptsin(2]:=y; (*y coordinate of center*)
ptsin([3]:=0;
ptsin{4]:=0;
ptsin[5] :=r; (*radius¥*)

ptsin[6]:=0;
GSX{ptsout, intout,ptsin,intin,contrl);
end;

(************************'k***)

(*This procedure selects the area to be scrolled. *)
(*-k***'k******'k**-k**)

PROCEDURE AREA SELECT;

BEGIN
READ (CH) ; (*read choice*)
IF CH='' THEN (*1f area one¥*)
BEGIN
SCROCMD :=$70; (*PRAM command+PRAM start address of 0%)
XSAD:=0; (*starting x _coordinate of area one¥*)
YSAD:=0; (*starting y_coordinate of area one¥*)
START :=TRUE;
END;
IF CH='' THEN (*if area two*)
BEGIN
SCROCMD :=$74; (*PRAM command+PRAM start address of 4%)
XSAD:=0; (*starting x_coordinate of area two?*)
YSAD:=237; (*starting y coordinate of area two*)
START :=TRUE;
END;

IF CH=CHR(27) THEN
STOP2 :=TRUE;
END;

(***k********‘k************)

PROCEDURE PICTURE;

begin
draw_bar(0,0,32767,16382,1);
draw _bar(0,16382,32767,32767,5) ;
draw_circle(1,16383,24575,5000) ;
draw_circle(5,16383,8191,5000);

end;

B3.5

(**)

(*This procedure moves the previously selected area in one of the four *)
(*directions using the four movement keys on the keyboard. *)
(**)

PROCEDURE MOVE_AREA;

BEGIN
REPEAT
READ (CH) ; (*read choice*)
IF CH = CHR({12) THEN RIGHT;
IF CH = CHR(29) THEN LEFT;
IF CH = CHR(1l1l) THEN UP;
IF CH = CHR(10) THEN DOWN;
SEAD := YSAD*64+XSAD DIV 16; (*calculate the starting address*)
SCROL; (*move the area*)
UNTIL CH = CHR(27); (*repeat until ESC is pressed*)
END;

(**)

(*The following four procedures adjust the x and y coordinates of the area's*)
(*starting address to move the area to the left,right,up or down. *)
(************************k***)

PROCEDURE LEFT;

BEGIN
XSAD :=XSAD+16; (*add one word to the current XSAD*)
IF XSAD=XMAX THEN
XSAD:=0;

END;

(FFI AR I AR IR KRR IR A KRR R KA AR Rk Rk khkkhhkhhhhhhkhkkhhkhkkkkkhhkhhhhkhkhhkkhkhk k)
PROCEDURE RIGHT;

BEGIN
XSAD:=XSAD-16; (*subtract one word*)
IF XSAD=-XMAX THEN
XSAD:=0;

END;

(FAkkhkhh Rk AR Ak Rk kKK KA KA AR IR Rk kKK kKA R KKK AR KK KA R KRR KA KRR AR KA KKK A KA KR AR KKK A K)
PROCEDURE UP;

BEGIN
YSAD:=YSAD+1; (*add one line to the