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ABSTRACT 

This thesis is concerned with the development of a 

computer-based, real-time monitoring scheme which is a 

prerequisite of any form of on-line control. A new concept, 

I 

in the field of water distribution systems, of water system 

state estimation is introduced. Its function is to process 

redundant, noise-corrupted telemeasurements in order to 

supply a real-time data base with reliable estimates of the 

current state and structure of the network. The information 

p:t:ovided by the estimator can then be used in a number of 

on-line programs . 

. In view of the strong nonlinearity of the network 

equations, two methods of state estimation, which have 

enhanced numerical stability, are examined in this thesis. 

The first method uses an augmented matrix formulation of a 

classical least-squares problem, and the second is based on 

a least absolute value solution of an overdetermined set of 

equations. Two water systems, one of which is a realistic 

34-node network, are used to evaluate the performance of the 

proposed methods . 

The problem of bad data processing and its extension 

to the validation of network topology and leakage detection 

is also examined. It is ShO\VYl that the method based on 

least absolute values estimation provides a more immediate 



indication of erroneous measurements. In addition, this 

method demonstrates the useful feature of eliminating the 

effects of gross errors on the final state estimate. 

The important question of water system observabili ty 

is then studied. Two original combinatorial methods are 

proposed to check topological observability. The first one 

is an indirect technique which searches for a maximum 

measurement-to-branch matching and then attempts to build a 

spanning tree of the network graph using only the branches 

,with measurement assignment. The second method is a direct 

search for an observable spanning tree. A number of systems 

are used to test both techniques, including a 34-node water 

supply network and an IEEE 118-bus power system .. 

The problem of minimisation of distributed leakages is 

solved efficiently using a state estimation technique. 

Comparision of the head profile achieved for the calculated 

optimal valve controls with the standard operating 

conditions for a 25-node network indicates a major reduction 

of the volume of leakages. 

In the final part of this thesis a software package, 

which simulates the real-time operation of a water. 

distribution system, is described. The programs are designed 

in such a way that by replacing simulated measurements with 

live telemetry data they can be directly used for. water 

network monitoring and control . 
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CHAPTER I 

INTRODUCTION 

1. 1 EVOLUTION OF THE CONTROL OF WATER DISTRIBUTION SYSTEMS 

During the past fifteen years there has been a 

considerable investment of research in the field of water 

distribution systems. The reasons for this are complex but 

perhaps the most important is the fact that a typical water 

network expanded to the point where the ability of the human 

operator to perceive and process information became · a 

hindering factor in achieving optimal operational decisions. 

In the first attempt to aleviate the problem the use 

of a hard-wired logic [240) later replaced by computer 

software (275], (43] was proposed. In these schemes selected 

telemetered variables were used for control purposes, and as 

they exceeded certain limits, supplied by the operator as 

set points, control action was triggered. This approach was 

found to be simple and easy to implement but it suffered 

from several major drawbacks. First, it provided no insight 

irtto the actual state of the network since it treated the 

system as a control 'black box'. secondly, the controls were 
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devised for normal operating conditions and such events as 

pump failure or heavy industrial consumption could result in 

improper control action. And finally, the policy of a single 

variable feedback igriored the interdependence of different 

measurements and controls . 

The application of a reg.l!(ression model in a 

computerised control scheme [ 126] , (72] overcame the 

latter drawback of a heuristic approach, nevertheless its 

usefulness remained limited to standard. operation of the 

network. 

A natural progression from the heuristic approach was 

to develop a mathematical model of a water network and to 

compute flows and pressures for predicted consumptions. This 

aproach was introduced, with respect to water systems, by 

Gilman, Goodman and Metkowski (122] and then used by Gilman, 

Demeyer and Goodman [125] for controlling a pressure 

district in Philadelphia. 

Better understanding of the relationships between 

operational parameters of the water network, which came from 

simulation studies, resulted in a more systematic approach 

to the problem of optimal network operation. Different 

res.·ea:rchers [ 106], [ 107], [ 250], [ 251] proposed new, more 

efficient methods of optimisation of the pumping cost which, 

from the point of view of their computational requirements, 

were applicable to on-line control. However, all of these 
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algorithms involved solving an exactly determined set of 

network equations. As a result, an erroneous estimate of a 

consumer load, or an inaccurate value of a pipe parameter 

could invalidate all · computations. This fact was realised 

early and it stimulated extensive research aimed at improving 

accuracy of consumption prediction (243], (lOB], (201] and 

validation of static and. dynamic network parameters ( 202], 

[203]. A complementary approach, where the calculated pipe 

flows are iteratively corrected so as to force an agreement 

between measured and calculated nodal heads, was proposed in 

[ 67], [ 68] and is known as an inverse network solution. 

Unfortunately, computational requirements of this method are 

prohibitively high due to the slow convergence. 

The need for another, more flexible approach to water 

network monitoring is also emphasized by the fact that many 

of the water authorities have recently implemented 

computerised telemetry systems which apart from the usual 

pump head, pump flow and reservoir level indications can 

provide in real-time a whole range of additional measurement 

information such as control valve openings or head in 

selected network nodes . 

Our present work introduces a technique which is 

computationally efficient and which processes all available 

measurements. This technique, new in the field of water 

systems, is known as state estimation and has been 
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successfully applied in the electrical power system control 

(220], (221], (222], (161]. In the context of the water 

supply industry this research demonstrates applicability of 

computer-based, advanced network monitoring which is a 

prerequisite of any form of on-line control. The problems 

discussed in this thesis complement other research 

concentrated on minimisation of pumping cost. A strong 

economical motivation for efficient identification of pipe 

fractures and suppression of distributed leakages comes from 

the fact that, according to the water authorities reports, 

up to 30% of the water available may be lost through 

leakages in the pipe network. 

1. 2 THE ROLE OF STATE ESTIMATION IN THE WATER 

SYSTEM OPERATION 

A radical change in the philosophy of water system 

operation manifests itself by the emergence of computerised 

telemetry which can potentially give greater insight into 

the system state. However this potential can only be fully 

realised if the appropriate information processing software 

is employed in order to monitor the network in terms of 

variables which are convenient for use both by a human 

operator and control algorithms. It is now a common practice 

to describe a water network by defining heads at all network 

nodes and inflows at fixed-head nodes which are the 

components of the state vector of the system. Given this 

information and the static parameters Of the network 1 all 
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other variables of interest, such as pipe flows or consumer 

loads, may be calculated immediately. 

The most straightforward method of obtaining the 

values of the state variables is to directly measure them. 

However, taking into account the size of a real-life water 

network and the cost of instrumentation and associated 

telemetry, this possibility becomes impractical. 

Another way of finding the system state is to solve a 

set of mass-balance equations which are defined using the 

network topology data, the measured or estimated consumer 

loads and the inflows into the system. This method, if well 

implemented, is computationally efvcient and is now widely 

used in off-line water network simulation studies. However, 

its application to on-line control scheme encounters the 

following difficulties: 

l) The algorithm has no systematic way of dealing with 

measurement inconsistency. If one measurement is 

incorrect or lost, the load- flow approach gives 

incorrect results or no result at all, respectively, 

since it processes a set of independent equations . 

. 2) The load-flow method provides no means to assess 

the confidence on the final results. 

3) The input data is limited to the system inflows and 

consumer loads which, as in the case of predicted 
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values, may carry considerable errors. At the same 

time readily available measurements of other 

variables are not used. 

For real-time water network monitoring it is therefore 

more effective to determine the system state using a state 

estimation procedure. This method overcomes difficulties 

associated with the load-flow solution by processing all 

available measurements and formulating the problem in terms 

of redundant equations. In effect, even in the presence of 

bad data, or when pieces of data are lost, it is still 

possible to obtain a good state estimate. Unlike the load­

flow method, the state estimator also provides an indication 

of the accuracy of the estimates it produces. Another 

important feature of the state estimator is its ability to 

detect the presence of bad data and to evaluate the residual 

errors of the measurements. 

The main assumption for successful performance of a 

state estimation program is that the measurement set should 

possess a degree of redundancy which enables erroneous 

information to be filtered out. In water distribution 

systems this redundancy is usually low and can be achieved 

only if the measurement information is combined with the 

pseudomeasurements (representing consumption prediction or 

information about network topology) . By increasing the 

number of measurements it is possible therefore to improve 

bo.th the reliability and accuracy of state estimation. On 
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the other hand, if some measurements are lost or are found 

incorrect it is necessary to check whether the measurement 

set still renders the network observable. 

The state estimation problem can be split into the 

following three distinct subproblems: 

a) Observability This subproblem deals with the 

determination of measurement sets which allow the 

estimation of the state variables. If the system is 

found unobservable with respect to the measurement 

set· concerned an appropriate pseudomeasurement is 

generated; 

b) Estimation Process of computing the state 

estimates from the knowledge of the measurements, 

consumption 

parameters; 

predictions, network structure and 

c) Bad Data Detection and Identification - Procedure 

to check the presence of structural errors and/or 

bad data, and to identify which measurements carry 

gros.s errors, or which part of the structure is not 

properly modelled. 

The main functions of the state estimator can now be 

enumerated: 

1) Computation of.a reliable, real-time data base from 

redundant, noise corrupted telemeasurements. This 
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includes the estimation of nodal heads and fixed­

head-node flows wherever they are not directly 

measured, or where telemeter failure temporarily 

makes the data unavailable; 

2) Detection, identification and suppression of bad 

measurements due to telemetry or instrumentation 

malfunction, inaccuracy in network parameters and 

unreported status changes; 

3) ·Provision of data for real-time monitoring and 

on-line control algorithms; 

4) Provision of a log of system states which is then 

used for the prediction of consumer loads. 

The overall configuration of the state estimator is 

given in Fig. 1.1 

1. 3 A REVIEW OF THE LITERATURE ON POWER SYSTEM 

STATE ESTIMATION 

The problem of estimating the state of a power system 

was initially formulated and developed by Schweppe, Wildes 

and Rom in a series of three papers [220], [221], [222]. The 

first paper introduces the weighted least-squares method as 

the algorithm to obtain the estimates. The inverse of the 

noise covariance matrix is chosen as weighting matrix since 

this choice yields the minimum variance unbiased estimates 

when the measurement errors are assumed to be normally 

8 
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Figure 1. 1 overall configuration of the state estimation 
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distributed. The problem of detection and identification of 

errors is outlined, and the importance of factors such as 

redundancy and pseudomeasurements is also stressed. 

Reference [221] addresses itself to approximate measurement 

models for real-size power systems. Finally, reference (222] 

deals with the actual implementation of state estimators, 

especially with regard to time and storage requirements. 

Stagg, Dopazo et al. compare the weighted least-

squares technique and a method based on the solution of 

certain independent equations ( 238]. Their method consists 

of successive conventional load flow solutions and the use 

of a sensitivity transformation matrix to perform error 

analysis and to compute the unavailable bus values. The 

numerical examples presented in the paper suggest that the 

independent equations give better results. However, it would 

appear that the method requires the prior conditioning of 

measurements, which seems to be infeasible in practice. 

Numerical problems are encountered in solving the least­

squares problem, as a consequence of ill-conditioning of the 

normal equation 'for the low level of redundancy used. 

Reference [ 235] uses the weighted least-squares 

approach for state estimation with a weighting matrix 

depending on the relative importance of the data. As a 

result, it does not yield minimum variance estimates, which 

are desirable from a statiSical point of view, but it gives 

a solution which is intuitively the most reliable. 
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The AEP 'lines-only' algorithm is introduced in 

reference [85], complemented in (86] and further discussed 

in reference [87). This method is a modification of a 

weighted least- squares approach in which the voltage drop 

across a network element is related to bus voltages and line 

flows. The algorithm processes measurements of line power 

flows only. It has some numerical advantages, since the 

coefficient matrix of the linear system to be solved at each 

iteration is constant with respect to the states. Moreover, 

this matrix is as sparse as the bus admittance matrix, and 

is also symmetrical and real. This last property allows the 

separate computation of the real and imaginary parts of the 

states. The method's most frequently cited disadvantages are 

the lack of flexibility in choosing the measurements and 

difficulties in detecting and identifying bad data. 

Reference [ 176] deals with tracking estimators, that 

is, estimators capable of following the time evolution of 

the power system. The estimator is viewed as a digital 

feedback loop, which uses new measurements to obtain new 

estimates by improving an old estimate via a feedback error 

signal operating through a gain matrix. The best gain matrix 

is the error covariance matrix updated at each time step. 

several simplified gain matrices are studied in an attempt 

to develop methods to save computation time and storage 

while still providing good estimates. 

Programming techniques for the implementation of the 
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weighted-least squares algorithm are suggested in [9]. 

In reference [ 10]' a method is developed to 

accommodate buses with zero injections by considering 

equality constraints for each of them, instead of taking 

their (zero) injections as measurements of high accuracy, 

The results reported in [10] show that the method is 

computationally advantageous. 

Another method of power system state estimation, based 

on the least absolute values optimisation technique, is 

proposed in reference [ 145 ] . The state estimates obtained 

are spanned by a minimal set of linearily independent 

equations with the least residual errors. The method proves 

to be very efficient in detection of gross measurement 

errors, while retaining a useful degree of noise filtering. 

The matter of ill-conditioning, of the normal equation 

approach used in the conventional solution of the state 

estimation problem is addressed in [ 208] . The Leveriberg-

Marquardt algorithm is suggested to cope with the ill­

conditioning problem. Other techniques based on the Golub's 

orthogonal method and on the Peters-Wilkinson algorithm are 

investigated in [233] and [129], respectively. 

Reference [223] presents a comprehensive survey of the 

power system state estimation problem, including the 

description of several estimation algorithms and their 

computational requirements. 

12 



1.4 THESIS ORGANISATION 

Chapter II briefly reviews the conventional state 

estimation technique based on the normal equation approach 

and then introduces two methods which are designed to 

overcome numerical problems and to achieve a high 

computational efficiency. Both estimators are applied to the 

water systems, described in Appendix -C, and the 

corresponding results are compared. 

In Chapter III, two methods for detection and 

identification of bad data are described. The first method, 

based on hypothesis testing, is to be used in connection 

with the least- squares estimator. The second method takes 

advantage of the characteristics of the least absolute 

values estimator and is shown to be suitable for 

identification of both topological and gross measurement 

errors. 

The observabili ty problem is investigated in Chapter 

IV. By using an approximate linear measurement model the 

observabili ty problem is proved to be equivalent to the 

search for an observable spanning tree in the augmented 

network graph. Two original methods to determine topological 

observabili ty of a water network are then proposed. First,­

an algorithm based on the matching in the bipartite 

measurement-to-edge graph is described and applied to 

several different networks including a realistic 34-node 
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system. Next, a direct method of seeking an observable 

spanning tree, using the path property, is developed and 

tested on the same networks used to assess the performance 

of the matching method. 

Chapter V deals with the problem of reduction of 

distributed leakages in the water network which complements 

the identification of bursts catered for by network 

monitoring. A new method of calculating the optimal valve 

controls, based on the application of the state estimation 

techniques, is presented. The economy of the optimal valve 

control policy is shown by comparison of the volume of 

leakages for uncontrolled, manually controlled and optimally 

controlled network. 

A general description of the on-line software package 

for real-time monitoring of a water supply network is given 

in Chapter VI. The advantages of a modular structure of 

the package are discussed and block diagrams presenting the 

flow of information and means of coordination of the 

simultaneously executed tasks are given. 

Finally, Chapter VII presents the main conclusions of 

this work and suggests areas of futher research work. 
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1. 5 MAJOR CONTRIBUTIONS OF THIS THESIS 

The main contributions of this thesis can be 

enumerated as follows:. 

a) Introduction of a state estimation technique for 

the purpose of real-time monitoring of a water 

distribution network; 

b) Development of two state estimators, based on the 

least absolute values and least-squares optimisa-

tion techniques, respectively, . implementation of 

which includes sparsity and numerical stability 

considerations; 

c) An efficient method of calculating the residual 

sensitivity matrix to be used in connection with 

the augmented matrix state estimator; 

d) Extension of a bad data identification procedure, 

using measurement residuals calculated by the least 

absolute values estimator, to the identification of 

topological errors; 

e) Development of two different combinatorial methods 

to check topological 

system; 

observabili ty of the water 

f) Development of a method of reduction of distributed 

leakages by optimised control of valves installed 

15 



in the pipe network; 

g) Production of a software package for on-line 

monitoring and control of a water distribution 

network which consists of: 

- Network Simulation 
- Telemetry Simulation 
- Observabili ty Test 
- Estimation 
- Bad Data Processing 
- Valve Control 
- Operators• Interface 
- Graphical Display 
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CHAPTER II 

WATER SYSTEM STATE ESTIMATION 

2.1 INTRODUCTION 

This chapter deals with state estimation methods which 

are suitable for real-time monitoring of a water system. In 

view of the strong nonlinearity of the network equations, 

low measurement redundancy and possibility of gross 

measurement errors, the state estimation algorithms have 

been selected with respect to both numerical stability and 

computational efficiency. The conventional approach via the 

Gauss normal equation is briefly reviewed in order to expos~ 

the fact that it is prone to numerical ill-conditioning. 

It is also interesting to note that the literature reports 

problems of ill-conditioning in least-squares solution via 

the normal equation [ 165], [ 238). 

One method of circumventing the possibly poorly 

conditoned normal equation is to employ the orthogonal 

factorisation method as proposed by Golub [127). This method 

performs an orthogonal transformation of the linearised 

measurement equations that enables _the least-squares 
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solution to be calculated by a backward substitution. 

Application of the Golub method to power system state 

estimation [233] proved very successful from the numerical 

stability point-of-view, but at the same time the algorithm 

showed considerable reduction in computational efficiency. 

An alternative procedure, avoiding the ill-conditioning of 

the direct formation of the normal equation, has been 

proposed by Peters and Wilkinson [196]. Although their 

method enables the selection of a compromise between the 

conflicting requirements of numerical stability and matrix 

sparsity and, in general, it performs more efficiently than 

the Golub's method, it may occasionally give very poor 

results, as reported in reference [93]. The method of Peters 

and Wilkinson seems to be better suited to systems with high 

measurement redundancy [129], which is rarely, if ever, the 

case in water systems . 

Another method of solving the least-squares problem, 

whic~ has been adopted in this work, has been proposed by 

Siegel [232]. The initial measurement equations and the 

least-squares optimality conditions are incorporated into a 

supermatrix system which is then solved using an appropriate 

factorisation technique. The method is numerically stable 

since the formation of the normal equation, which augments 

the condition number, is avoided altogether. Also, the 

computational efficiency of this method is usually superior 

. compared with the Golub. s and Peters-Wilkinson. s methods I 

particularly in the case of low redundancy levels [ 9 3] . 
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The augmented matrix method performs well also in its 

alternative form proposed by Hachtel (93), implementation of 

which has been reported in reference ( 149) . 

Numerical examples, analysed in section 2.4, 

demonstrate that the augmented matrix state estimator 

converges in 4-5 iterations even for weak metering 

conf-igurations. The method shows however that, as in all 

least-squares type of methods, gross measurement errors tend 

to have an exaggerated effect on the calculated system 

state, thus requiring reestimation of the state vector after 

the bad data has been found and removed. 

The second state estimator, proposed in this thesis, 

overcomes difficulties associated with the presence of gross 

measurement errors by employing a least-absolute value 

estimation criterion. This method was first used for power 

system state estimation by Irving, Owen and Sterling (145), 

and proved very robust in presence of the error contaminated 

measurements. The state estimator rejects bad data during 

the estimation process so that the final estimate is defined 

onl.y by the • valid • measurements. Details of an efficient 

implementation of this algorithm exploiting sparsity consi­

derations has already been published by the author [ 247] . 

This chapter is organised as follows. The weighted 

least-squares estimator is presented in section 2.2. 

subsection 2. 2. 3 addresses itself to the classical normal 
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equation approach and the augmented matrix method is 

described in subsection 2. 2. 4. The least absolute values 

estimation algorithm and the details concerning its 

implementation are discussed in section 2.3. Finally, 

section 2. 4 compares the results obtained by applying two 

estimation techniques to the water systems with different 

measurement configurations and different measurement noise. 

2. 2 WEIGHTED LEAST-SQUARES ESTIMATION 

2. 2.1 The Measurement Model 

Consider an N-node water system with F fixed-head 

nodes for which m measurements are taken. It is assumed 

tha~ the structure (topology} of the water network and 

element parameters are known. Under these conditions, the 

knowledge of the nodal heads and fixed-head-node flows 

provides enough information to calculate the pipe flows and 

consumer loads. For this reason the nodal heads and fixed-

head-node flows are called the state variables of the water 

system. 

The measurement model for the N-node water system with 

F fixed-head nodes is derived in Appendix A, and is given 

by 

(2.la} 

E{W} = 0 
T 

E {~ W } = R (2.lb} 

where 
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m 

n= N+F 

z 

X 

w 

E {.} 

R 

number of measurements 

number of state variables 

·: mxl state measurement vector 

nxl state vector 

mxl zero-mean random vector relating the 
measured quantities and the state 
variables 

expectation operation 

covariance matrix of the measurement 
errors 

The monitored variables whose measurements are the· 

elements of vector z in Eq. (2.la) are usually pump heads 

and flows, consumer loads, reservoir levels and their rates 

of change and selected nodal heads. Pipe flows may also be 

monitored but because of the cost of instrumentation they 

are less commonly used than the other types of measurements. 

In addition to actual measurements it is common to 

use nontelemetered information about some of.the variables 

of the water system which may be available through the 

analysis of the past data or implied by the network 

topology. These additional pieces of information are the 

so-called pseudo-measurements. Thus, the vector z is, in 

general, formed by actual telemeasurements and by pseudo-

measurements. 

In order to obtain a meaningful solution for the state 

estimation problem it is necessary that the number of 

measurements m is greater or equal to the number of state 
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variables n. In practice, m ~s usually greater than n, 

since this condition is also required for bad data detection 

and ide:ntification purposes, as indicated in Chapter 3. 

The global measurement redundancy p is defined as 

m 
p = (2.2) 

n 

Elements of the nonlinear vector function sz (~) of 

Eq. (2 .la) represent empirical head-flow relationships for 

network elements and mass-balance for each network node. 

Rigorously, this function should be denoted as sz<~·~), where 

r is the vector of network parameters. However, it is 

assumed throughout this work that the network parameters are 

determined before the on-line state estimation is attempted, 

so that the use of the simplified notation 

justified. 

The measurement errors are represented 

measurement model by the zero-mean random vector 

is 

in the 

w. These 

errors come from a variety of sources, such as meter 

inaccuracies, communication errors, effects of analog-to­

digital conversions, etc. The measurement errors are usually 

assumed to be uncorrelated, thus the covariance matrix R 

is taken as diagonal. The elements of matrix R are the 

variances of the measured errors, and are in general 

considered as a function of meter • s reading (see section 

A.4, Appendix A). In case of pseudo-measurements their 

variances are defined so as to reflect the degree of 
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uncertainty about the information carried by them. 

I£ a pseudomeasurement represents the predicted consumer 

load its uncertainty will usually be high, and if it 

represents the topological information about the network it 

will be very low. 

2. 2. 2 The Least-Squares Objective Function 

Given the measurement model of Eq. (2.1), the weighted 

least..:. squares formulation of the water system state 

estimation problem is based on the minimisation of the 

objective function 

..-. T -1 ..-. 
[~-g: (~) ] R [_~-g: (~) ] (2. 3) 

"' with respect to the vector of state estimates, x. 

The weighting matrix in Eq. (2.3) is ttie inverse of the 

covariance matrix of the measurement errors. ·This choice of 

weighting matrix is important for the statistical properties 

of the estimator. For instance, if w is normally 

distributed, the estimator based on the minimisation of 

c (2) yields the minimum variance unbiased estimates. 

2, 2, 3 Solution via the Normal Equation Approach 

The minimisation of presents an unconstrained 

optimisation problem which can be solved using any 

optimisation method applicable to this class of problem. 

However, it turns out that the characteristics of the 
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nonlinear function in Eq. (2.3) provide a good approximation 

for its Hessian matrix near the solution, so that it is 

advantageous to use a second-order algorithm, such as 

Newton-Raphson method. The method linearises the weighted-

least squares problem with respect to a current estimate 

"' ~k at iteration number k, such that an improved estimate of 

the state vector is obtained from the iterative relationship 

2 =~+a A~ -k+l -k (2.4) 

where a is a parameter modifying the step length in order 

to improve the c~vergence of the method. In particular, the 

Newton-Raphson method can be made norm reducing by 

selecting a so as to minimise in each iteration c (gk +aA~) 

In practice however, it is usually sufficient if a is kept 

constant at 0. S(a< 1. 

The correction vector is computed by solving at 

each iteration 

HA2 = -G (2.5) 

where H is the Hessian matrix and G is . the gradient 

vector of c i.e. 

G = 

H = 

oc (~) 

Ox 

2 
0 C(~) 

2 
Ox 

(2. 6a) 

(2.6b) 
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For the function C(~) given by Eq. (2.3), the 

gradient vector is easily computed as 

where 

= 
Ox 

A x=x - -k 

(2.7) 

(2.8) 

mxn Jacobian matrix, elements of which are given 
in Appendix C 

The least- squares procedure assumes that the Hessian 

matrix can be approximated near the solution by 

(2. 9) 

Using Eqs. (2. 7) and ( 2. 9) in Eq. (2.5), the 

A 
correction vector ~~k can be obtained by solving at each 

iteration 

where 

Cx = A x-x - -k 

(2.10) 

(2.10a) 

(2.10b) 

It is easy to see that Eq. (2.10) can also be obtained 

by applying a linear least-squares method· to the linearised 

measurement model derived in section A. 2 of Appendix A. 
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One suitable stopping criterion for the iterations is 

max ~~~- 1 ~ 
1 

€ (2.11) 
i 

where € is some pre-specified tolerance. 

Equation (2.10) is usually solved by means of 

T -1 T Cholesky • s factorisation of A = J R J into LL , where L 

denotes a lower triangular matrix. Such a factorisation is 

possible because A is symmetric and positive definite 

since the meter configuration should ensure that it is also 

non singular. Sparsity and optimal ordering techniques are 

routinely employed in the process of factorising and solving 

Eq. (2.10). However, it must be noted that the sparsity of 

the matrix A is much less than that of the Jacobian matrix 

J due to the second order fill-ins in the process of 

forming JTR-
1 
J. Apart from the computational effort 

involved in calculating a product of the matrices it is also 

laborious to establish a suitable indexing of the non-zero 

terms of the normal matrix. 

An additional problem associated with the normal equation 

(2.10) is its inherent tendency to ill-conditioning which 

. T -1 
comes from the fact that the singular values of J R J are 

the squares of those of J. Thus, the solution is more 

sensitive to perturbations in the normal equation than to 

perturbations in the linearised measurement equation. 

consequently, the normal equation method used for the water 

system state estimation may prove to be numerically unstable 
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for the following reasons: 

i) The Jacobian matrix is not always well 

conditioned due to the low global measurement 

redundancy and/ or weak measurement configuration; 

ii) The strong nonlinearity of the network equations 

implies that the computation of the state vector 

requires several iterations during which the 

round-of£ error may be considerably amplified 

since the condition number of the normal matrix 

is big. 

Next, we present another approach to solve least-

squares problem, whose numerical characteristics are 

superior to those of the straightforward solution via the 

normal equation. The procedure is capable of significantly 

reducing the ill-conditioning, thereby assuring a higher 

level of accuracy and reliability for the iterative 

solutions. 

2. 2. 4 Solution via the Augmented Matrix Approach 

Minimisation of the weighted sum of squared 

measurement residuals Eq. (2.3) has been shown to result in 

the following adjustment procedure 

T-1" T-1 J R J ·~X = J R '~Z (2.12) 

where J is an abbreviated notation for an mxn Jacobian 

matrix J (~k). 
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In order to overcome the numerical difficulties 

arising from the direct formation of the normal matrix 

JTR-
1
J, the adjustment procedure (2.12) can be formally 

written as a system of three simultaneous equations 

r = £:.z-J £:.2 (2.13a) 

-1 
~ = R r {2.13b) 

JT~ = 0 (2 .13C) 

where r and ~ are the nul auxiliary vectors which do not 

have to be calculated explicitly. These equations can now 

be assembled into a supermatrix structure 

0 I J £:.z 

-1 
-I R 0 r = 0 (2.14) 

0 0 0 

Although the dimension of the augmented matrix is now 

(m+m+n), compared to n of the normal matrix, the equation 

(2.14) can be solved very efficiently using a sparse linear 

equation solution technique. The implementation of _the state 

estimator, used here is a variant of the sparse Bartels-

Golub decomposition algorithm [210], available as the 

Harwell subroutine LAOSA. This algorithm takes advantage of 

the _enhanced sparsity of the augmented matrix by performing 

computationally inexpensive row and column permutations 

before any eliminations are attempted. In fact, it is often 
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possible to permute to triangular form and to avoid time 

consuming pivot operations, with consequent fill-ins, 

altogether. The augmented matrix formulation of the least-

squares problem is also attractive from the point of view of 

handling the data. The matrix can be constructed instantly 

from the original Jacobian and error covariance matrices 

avoiding any arithmetical operations. Unlike the normal 

equation method, indexing of the nonzero elements of the 

augmented matrix is also straightforward since it is 

essentially repetition of the indexing of the Jacobian 

matrix. An analysis of the conditioning of the system (2.14) 

carried out by Bjork [32) demonstrates that if the singular 

values of J are 'Y 1 ~'Y 2 (. · · ~'Yn then the matrix in .Eq (2. 14) 

has eigenvalues 

i=1,2, ... ,n and a 

with the eigenvalue a having multiplicity (2m-n) . Thus 

system (2.14) shows essentially no deterioration. in 

condition number as compared with the original measurement 

equation. The assumption that the standard deviation of 

measurement errors a is the same for all readings does not 

affect the generality of the analysis. 

The performance of the weighted least squares 

estimator based on the augmented matrix method is evaluated 

in section 2. 4 . 
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2. 3 LEAST ABSOLUTE VALUES ESTIMATION 

2. 3. 1 Formulation fa the LAV Estimation Problem 

The least-squares method, described in the previous 

section, is the most common method of estimation of the 

state vector from an overdetermined set of measurements 

which gives a minimum-variance, unbiased estimate provided 

that the measurements are affected solely by Gaussian noise. 

Unfortunately, this is rarely the case in on-line computer 

control systems where the measurement inaccuracies are far 

from Gaussian distribution but in fact contain gross errors 

such as reversed sign of measurements, large systematic 

errors or zero readings due to telemetry or instrumentation 

malfunction. In all these situations the least-squares 

estimator gives poor results since the erroneous measurement 

is weighted according to the square of its residual and 

therefore has an exaggerated effect on the state estimate. 

Geometrically, the state estimate achieved with the least­

squares criterion represents a point in the space of 

feasible solutions minimising the sum of squares of 

distances between itself and measurement hyperplanes. Thus, 

a gross measurement error, corresponding to the hyperplane 

which is distant from the true solution point will 

disproportionately affect the final solution. 

In order to overcome this problem, various 

modifications of the original least-squares criterion, 

decreasing the weighting on large residuals, have been 
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proposed. Handschin, Schweppe et al. ( 131) discuss several 

such modifications and compare their relative performance. 

However, in general, modified cost functions prove to be 

less easily handled in computations. 

A more effective approach based on minimisation of the 

modulus of measurement inconsistency, 

(2.15) 

was proposed in [145]. The solution point is defined here by 

the intersection of n hyperplanes with the smallest 

measurement noise. The erroneous measurement corresponding 

to the deviant hyperplanes, unlike the least-squares 

formulation, does not influence the solution point since 

this would increase distances to the remaining n-1 

hyperplanes defining 'the state estimate. This gives rise to 

a potential for the total rejection of bad data from the 

measurement set providing that the number of gross· errors 

does not exceed m-n. The penalty incurred in achieving the 

rejection of bad data is that n measurements spanning the 

solution are included with their associated measurement 

noise. However, in the water distribution systems field this 

effect is negligible. 

Solution of the unconstrained, nonlinear optimisation 

problem {2.15) can be obtained by applying an iterative 

procedure analogous to (2.4) where the initial guess of the 
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state vector is sequentially improved until some convergence 

criterion is satisfied. 

"' X 
-k+1 k=1,2, ... (2.16) 

max j~~- 1 ( € 
i l. 

i=1,2, ... n (2.17) 

where k is the iteration number. 

Expanding the measurement vector function by 

the latest state estimate _gk using a first order Taylor 

series the linearised measurement model can be expressed as 

(see Appendix A . 2) 

~z (2.18) 

"' J (~k) is mxn Jacobian matrix 

~2 is nx1 vector of state increment 

w is mx1 measurement noise vector same as in 
the measurement equation ( 2. 1a) 

.-

The nonlinear optimisation problem (2.15) is now 

simplified to minimisation of the linearised cost function 

min 
~2 

where w is 

(2.19) 

mx1 measurement weight vector elements of 

which are equal to the diagonal elements of the 

inverse of the measurement covariance matrix. 
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Because a direct solution of Eq. (2.19) is 

computationally inconvenient, due to the presence of 

a modulus operator, artificial variables g 

introduced with the following definitions 

S. 
l. 

= 

= 

{ 

A A 
ll.z. -J. (Xk) ll.x 
-l. l. - -

0 

if A A 
ll.z. ~ J. (Xk) ll.x 

l. l. - -

otherwise 

{ 

- (ll.zi-Ji (_gk)ll._g)if ll.zi < Ji cgk)ll._g 

o otherwise 

for i = 1, 2, ... , m 

Problem ( 2. 19) can then be represented as 

and s can be 

min (2.20a) 
A 

r,s,.o.~ 

subject to 

s 

where V is (n+m+m) x1 weight vector 

(2.20b) 

2. 3. 2 Solution via the Linear Programming Approach 

The system of equations (2.20a) and (2.20b) developed 

in the previous subsection presents essentially a linear 

programming problem which can be written in standard form 
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. T 
m~n y ~ 

subject to 

E~ = b with ~ ;) o 

where 

E = (J (~k) III-I] 

b = ~z+J (gk) ~ 

A T T T T 
l:: = ( (~~+~) lg Is ] 

(2.2la) 

(2.2lb) 

d is nxl vector elements of which are sufficiently 
large to guarantee ~~.+d. ~ o, i = 1, ... ,n 

~ ~ 

Solution of this problem is equivalent to selection of 

the (n+m+m) xl vector ~ from [ (m+n+n) ! 1 (n+n) 1m 1 ] candidates 

such that the objective function (2.2la) is minimised. A 

solution is feasible if it satisfies (2.2lb) and is basic if 

at least n+m components of ~ are zero. The remaining m 

components are called basic variables and can be assembled 

into the mxl vector ~B that satisfies the equ~tion 

(2.22) 

where B is an mxm basic matrix ·formed of columns of E 

corresponding to elements of ~B . 

The classical method of solving (2. 2lb) is to move 

from one basic feasible solution to another improving at 

each stage the objective £unction. This is known as the 

Simplex method. such a process is guaranteed to terminate in 
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a finite number of steps since the number of corner points 

of the polytope defined by (2.21b) is limited and each 

consecutive solution for l:: 
B 

gives a smaller value of the 

objective function (nondegenerate case) 

Since the constraint matrix E is sparse being formed 

of the Jacobian matrix and two unit matrices, the basis 

matrix is also sparse and consequently Eq. (2. 22) can be 

solved efficiently using the sparsity exploiting techniques. 

For reasons of numerical stability and sparsity preservation 

it is advantageous to use the elimination form of the 

inverse when solving the set of linear equations (2.22). The 

Bartels-Golub decomposition is one of the suitable 

techniques ( 21] .. This technique is also amenable for further 

refinements which consist of row and column interchanges 

before any pivoting is performed [ 210 ]. 

The algorithm, as implemented by Reid in form of 

Harwell subroutine LAOSA, begins with the application to the 

original basis of Gaussian elimination with row and column 

interchanges. It is convenient to express this elimination 

in the form of the equation 

MM ... MB=PUQ 
r r-1 1 

(2.23) 

where eachM. is a matrix which differs from I in just one 
l. 

off-diagonal element (and therefore represents an elementary 

row operation) , p and Q are permutation matrices and U 

is upper triangular. The solution of (2. 22) can now be 
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easily obtained since the function (2.23) allows the basis 

. -1 
~nverse B to be expressed in the form 

-1 T -1 T 
B =QU PMM r r-1 (2.24) 

After an iteration of the Simplex algorithm the new 

basis, say B, differs from B in just one column and so 

satisfies the equation 

M M 
1 

•• ~ 
1
a = P S Q r r- (2.25) 

where s differs from u in this column in which B and 

B differ. Therefore s has in general the triangular form 

with a 'spike'. The algorithm attempts to restore the 

upper triangular form first by permuting columns so as to 

produce the upper Hessenberg form and then by including row 

interchanges to eliminate the subdiagonal elements. If these 

row operations are written as M 
1

, ... , M 
r+ r 

then the new 

factorisation can be expressed as 

-Mr+l ... Mr ... M1 B = P U Q (2.26) 

which is exactly of the form (2. 23). 

Computational efficiency of the Simplex method clearly 

depends on the efficiency of updating the inverse of the 

basis matrix and on the number of Simplex iterations. It is 

the author's belief that the Reid's algorithm give the 

state-of-the-art solution to the former problem. The latter 

one has been solved by the author by proposing a procedure 

which enables the construction of a feasible basis which 
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needs very few Simplex iterations to produce an optimal 

solution [ 247] . The procedure takes advantage of the fact 

that in on-line state estimation a good approximation of the 

state vector is usually available as its value from the 

previous step. This procedure can be summarised as follows: 

1. Construct matrix F consisting of the columns of the 

Jacobian matrix corresponding to the basic state 

variables ~A in the previous optimal solution. 

A R 
2. Factorise matrix F into two factors F and F where 

consists of the rows of F which represent 

measurements with zero slack variables in 

1 . d. A the optimal so utJ.on ( J.m F ~ n) 

FR consists of the remaining rows of F 

and the corresponding right-hand-side vector is 

3. Solve the reduced set of linear equations 

4. Form an initial feasible basis for the Simplex 

algorithm following the scheme: 

37 



IF 

THEN 

ELSE 

yjA~o forall j=l, ... ,dimFA 

B • [-;:t~-j 

b" [ ~R~;R;A l 
and U is a diagonal matrix with elements 

U = (b R F R A) . 1 ( d. mFA) . . sgn . - . ~ , ~= , ... , m- ~ 
~~ ~ ~ 

B is chosen in conventional way 

The restarting algorithm also provides a means for 

bypassing phase one of the Simplex method provided the set 

of 'valid • measurements spans the state vector. The low 

measurement redundancy suggests that for the purpose of 

water system state estimation the primal version of the 

Simplex algorithm can be profitably us.ed. Such a formulation 

enables the error contaminated measurements to be removed 

efficiently by zeroing the associated measurement weights, 

thus avoiding the need for refactorisation of the basis 

matrix. Also, the unit matrices appearing in the structure 

of the constraint matrix E can be directly incorporated 

into a pivotal strategy. 
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Numerical stability of the linear programme depends on 

the stability of the basis updating scheme. Reid's algorithm 

allows a compromise to be chosen between stability and 

sparsity considerations by constraining the size of the 

pivot element. In case the number of fill-ins· exceeds a 

certain limit the algorithm automatically compresses the 

storage of the basis matrix. 

2. 4 NUMERICAL RESULTS 

2.4.1 Introduction 

Programs have been written in FORTRAN 77 to implement 

the augmented matrix and linear programming state estimators. 

Sparsity and numerical stability considerations have been 

taken into account in both implementations. The programs 

make use of the sparse matrix factorisation scheme developed 

by Reid and available as Harwell subroutine LAOSA. All 

computational results have been obtained on a Perkin Elmer 

3220 minicomputer with 32-bit word length and floating point 

arithmetic u~ing the FORTRAN VII z compiler. 

Two test systems, whose network diagrams and 

parameters are presented in Appendix c, have been used to 

evaluXate the relative performance of the least-squares and 

least absolute values estimators. Preliminary results were 

first obtained for the 11-node network described in section 

c.1 of Appendix c. The methods were then tested on a 
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realistic 34-node water distribution network presented in 

section c . 2. 

In every run of the state estimator the ·nodal heads 

and the fixed-head-node flows were initialized with values 

corresponding to constant pressure increases above ground 

level and average flows respectively thus giving a worst-

case guess about the state variables. Measurements were 

simulated by superimposing the product of a normally 

distributed random number and a fixed percentage of the 

actual readings on the values obtained from load flow 

studies (see Appendix A, section A. 4). The measured 

quantities are nodal heads, fixed-head-node flows, consumer 

loads and network element flows. The redundancy defined by 

Eq. (2. 2) varies according to each case. 

The convergence criterion given by (2.11) is used in 

- 4 3 
all studies, with € = 1x10 [m 1 s] for all flows and 

-2 
€ = 1x10 [m] for heads. 

2. 4. 2 Performance Tests 

The initial experiments with the Jacobian matrix kept 

constant after two or three Newton-Raphson iterations proved 

that because of the strong nonlinearity of network equations 

this may slow-down the convergence of the estimators. 

consequently, in the current version of the programiB!s the 

Jacobian matrix is updated at each iteration. The computing 

times displayed in Tables 2. 1. 2. 2, 2. 3 and 2. 4 give the 
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total run-time of the estimators in a real-time environment 

including the update of the Jacobian matrix but excluding 

the I/O operations. 

case 1: 11-node network 

Table 2.1 shows some typical results obtained for the 

11-node network with three fixed-head nodes. A total of 18 

measurements and pseudo-measurements were taken, which 

amounts to a redundancy of 1. 29. An error with standard 

deviation 0. 001 was used in simulating the measurements. 

It can be seen that the results obtained by both 

estim~tors are very similar but the linear programme is 

computationally more efficient. 

TABLE 2.1 

Computational results for Case 1 

Errors in the Estimates 

Average Variance Computing N-R 
Method WSSR Heads Flows Heads Flows Time Iter. 

-6 -3 3 -3 -3 3 -6 
10 lmJ" 10 [m /s1"10 lmJ" 1 o [m /s1"10 [S] 

L-5 17.1 1.46 0.0101 0.336 0.0033 1.254 4 

LAV 72.0 1.12 0.0104 0.306 0.0005 0.953 4 

/ 
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Case 2A: 34-node network. Low level of Gaussian 

measurement noise 

The 34-node water distribution network used here 

represents Doncaster Eastern and Thorne Zones of the 

Yorkshire water Authority network. The total number of 

measurements and pseudo-measurements (54) gives a redundancy 

of 1. 29. The standard deviation for Gaussian measurement 

noise was selected as o. 0002 while the pseudo-measurements 

were assumed to be correct. 

The results for case 2A are presented in Table 2. 2, 

part A. It can be seen that the performance of the two state 

estimators is again very similar but this time the least­

squares estimator gave more accurate values of the state 

variables. Both methods converged in 4 iterations; however, 

the linear programme proved to be computationally more 

efficient than the augmented matrix method. 

case 2B: 34-node network. High level of Gaussian 

measurement noise 

For the same meter configuration used in case 2A, the 

effect of a higher measurement noise level of 0.001 has been 

investigated. Both estimators converged in 5 iterations. The 

computing time for the least-squares estimator remained 

practically unchanged while for the linear programme it 

actually decreased. This is due to the fact that in the 

presence of greater measurement noise the simplex defined by 
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the measurement hyperplanes becomes less 'flat• in the 

neighbourhood of the optimal solution thus saving some basis 

interchanges. At the same time the average errors in the 

estimates obtained with the linear programme were increased 

compared to case 2A, while for the augmented matrix method 

they remained unaffected. It may be argued, however, that 

for the purpose of on-line control both estimates are 

equally valid so preference could be given to a more 

efficient least absolute values estimator. 

TABLE 2.2 

Computational results for Cases 2A and 28 

Errors In the Estimates 

Average Variance Computing N-R 
Method WSSR Heads Flows Heads Flows Time Iter. 

-3 -3 3 -3 -3 3 -6 
10 [m]* 10 rm /s1*10 [m)* 1 o rm /s1* 1 o [S) 

A) L-S 0.64 6.81 0.039 0.076 0.0088 5.571 4 

A> LAV 19.0 8.24 0.038 0.112 0.0085 4.812 4 

B> L-S 17.2 8.30 0.033 0.101 0.0027 5.582 5 

B> LAV 110.0 16.04 0.043 0.692 0.0040 4.392 5 

case 3: 34-node network. Measurement data with a 

single gross error 

To further assess the performance of the state 

estimators the measurement data of case A was corrupted by a 

gross measurement error. Specifically the reading of the load 
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measurement at node 8 was reduced to 50% of its true value. 

Table 2.3 shows that despite a smaller value of the 

weighted sum of squared residuals (WSSR) the least-squares 

estimator gives significantly worse estimates. The average 

residual error for heads is approximately 50 times higher, 

and its variance is 25 times higher than the corresponding 

values for the LAV estimator. The augmented matrix method 

also converges slower (8 iterations) and requires more 

computational time. 

TABLE 2.3 

Computational results tor Case 3 

Errors in the Estimates 

Average Variance Computing N-R 
Method WSSR Heads Flows Heads Flows Time Iter. 

-3 3 -3 -3 3 -6 
lml"'10 [m /sJ-'10 lml"' 10 [m /sJ'"1 0 [S] 

L-S 1.52 193.1 0.046 2.97 0.0093 9.744 8 

LAV 4.12 3.63 0.015 0.026 0.0014 4.450 5 

case 4: 34-node network. weak measurement 

configuration 

In order to test the numerical stability of the state 

estimators a weak measurement configuration has been 

purposely devised. The measured quantities have been limited 

to flows at a11 fixed-head nodes, one head measurement at 
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node 30, one pipe flow measurement between the nodes 12 

and 30, and measurements or pseudo-measurements of loads at 

all network nodes except node 1. This implies that the 

calculation of the state variables in the subnetwork 

consisting of nodes 1, 26, 29, 33 and 34 critically depends 

on calculation of the flow between the nodes 29 and 18. The 

redundancy for this meter configuration is 1.024. The 

standard deviation of the Gaussian measurement noise is 

selected as o. 001. 

Results for this case are presented in Table 2.4. The 

least-squares estimator converges in 4 iterations and 

requires only 5. 782 s to produce the estimates while the 

least absolute values estimator needs 6 iterations and 

8. 5 21 s of computing time. Additionally, the least- squares 

estimator gives considerably smaller errors in the estimates 

thus emphasizing a usefulness of this approach if the system 

is structurally ill-conditioned. 

TABLE 2.4 

Computational results for Case 4 

Errors in the Estimates 

Average Variance Computing N-A 
Method WSSA Heads Flows Heads Flows Time Iter. 

-3 -3 3 -3 -3 3 -6 
10 £m1•1o [m 1s1•1o. [m]•lO [m 1s1•1o (s] 

L-S 2.29 4.87 0.0410 0.109 0.0089 5.782 4 

LAV 49.10 107.1 0.0204 28.64 0.0008 8.521 6 
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2. 5 CONCLUDING REMARKS 

In this chapter the use of the weighted least- squares 

and least absolute values estimators for the purpose of 

real-time water network monitoring has been studied.The 

least-squares estimator implementation in its augmented 

matrix formulation is computationally efficient and exhibits 

very good numerical stability characteristics, especially in 

the case of structurally ill-conditioned systems. However, 

the least-squares approach is intrinsically sensitive to 

gross measurement errors thus requiring further bad data 

processing followed by reestimation of the state variables. 

In contrast, the least absolute values estimator is robust 

in the sense that it is not greatly affected by the presence 

of bad data which is automatically rejected, so that the 

state estimate is defined by the ·valid' measurements only. 

The algorithm based on the revised Simplex method proved 

also to be computationally efficient and numerically stable. 

The errors in the state estimates obtained with the linear 

programme and the augmented matrix method in normal 

operating conditions are very similar and are well within 

the. limits defined by on-line control requirements. 

Experience based on simulation studies lends support 

to the conclusion that the linear programme is somewhat 

better suited for the purpose of on-line network monitoring. 

In the case of a weak measurement configuration a hybrid 

approach amalgamating the features of the least-squares and· 
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least absolute values estimators could be profitably 

developed. 

A possible drawback of the LAV estimator is that the 

numerical complexity of the linear programme increases 

quadraticaly with the problem size. However, an application 

of the restarting algorithm in on-line operation of the 

state estimator circumvents the problem. 

47 



CHAPTER III 

BAD DATA ANALYSIS 

3.1 INTRODUCTION 

Since the presence of bad data can in general be 

detrimental to the estimator performance, there is a need to 

develop procedures to detect whether abnormally erroneous 

measurements are present in the measurement set. This being 

the case, it is also necessary to identify the faulty 

observations so that they can be either eliminated from the 

measurement set or replaced by pseudo-measurements. 

In practice, the bad data are caused by a var1ety of 

reasons, such as failures of communication links, defective 

meters or transducers, errors in modelling pseudo-

measurements etc. If there is a high enough local 

measurement redundancy it is sometimes possible to reject 

erroneous data by prefiltering the measurements. This 

procedure consists of simple checks to determine if the 

measurements are within certain limits and plausibility 

tests based on comparisons of redundant measurements. 

However, the prefiltering tests are usually not effective if 

bad data is either corrupted by less than a certain 
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percentage of the meter reading or the neighbouring 

measurements are not directly comparable with the faulty 

one. For the purpose of this work we assume that such a pre­

processing of measurements has already been performed but 

still some gross errors creep into the measurement set. 

This chapter addresses itself to the investigation of 

bad data detection and identification methods to be used in 

connection with the least-squares and least absolute values 

estimators described in Chapter II. The main objective is to 

devise efficient computational procedures for bad data 

processing. 

The literature on the subject of bad data detection 

and identification is reviewed in section 3.2. section 3.3 

presents a view on the foundations of the methods employed 

to solve these problems with respect to the least- squares 

estimator. A new method of computation of the residual 

covariance matrix, based on the augmented matrix approach is 

described in subsection 3.3.3. section 3.4 is concerned with 

the bad data identification procedure to be used in 

connection with the least absolute values estimator. The 

numerical results for several tests on the detection and 

identification of bad data are presented and discussed in 

section 3.5. Finally, section 3.6 summarizes. the main 

results of this chapter. 
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3. 2 A REVIEW OF PREVIOUS WORK 

A number of papers have been devoted to the study of 

the bad data processing problem especially in connection 

with the on-line power system state· estimation. In general 

terms, the problem was first described by Schweppe et al. in 

[220], [221], [222]. For bad data detection, monitoring of 

the weighted sum of squared residuals was suggested, while 

for the identification of bad data points the largest 

normalised residuals were sought. These methods became 

" subsequently known as c (~)-test and £_N-test respectively. 

Another approach to the bad data detection/ 

identification problem consists in penalizing the largest 

residuals so that the potential bad data have a reduced 

influence in the final estimates [ 178], [ 131]. This method 

implies the use of a non-quadratic cost function. The most 

frequently used combinations of the cost functions are: 

quadratic-straight, quadratic-square root and quadratic-

constant. When successful, the method seems to allow a 

direct identification of the bad data point through the 

examination of. the residuals. However, the choice of the 

most suitable cost criterion, the possibility of local 

minima and the increase of computational complexity of the 

estimat.or are the problems that one has to take into account 

when us·ing such a method. 

Irving, owen and sterling [145] have proposed a method 
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which has the advantages of the nonquadratic estimators and 

which avoids their difficulties. By using the weighted sum 

of moduli of the measurement residuals the method gives an 

automatic·rejection Qf bad data so that the state estimate 

is not affected by erroneous measurements. 

A deterministic technique for bad data suppression has 

been presented by Debs, Larson and Hajdu [ 66]. The 

comparison of measurements at successive time steps is 

utilized to detect and identify bad data. It seems however 

that such a method would be unable to detect a single bad 

measurement caused by a meter with a slowly increasing 

error, as well as multiple interacting bad data . 

. o·opazo et al. (85) proposed a technique based on 

hypothesis testing theory. The "' c (~)-test is used for 

detecting bad data, and identification is performed through 

a student's t - test for the estimated value of the measured 

quantity. The use of confidence limits is also suggested to 

assess the estimates. 

From the computational point of view, Broussolle [38] 

suggests the use of the sparse inverse method to compute the 

covariance matrix of residuals, which is needed in the 

r -identification test. -N 

M~re recently, Clements et al. (156] have attacked the 

problem by using a combinatorial approach to investigate the 

· bad data detectabili ty and how the bad data spread on the 
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residuals. 

3. 3 BAD DATA PROCESSING IN LEAST-SQUARES ESTIMATION 

3. 3. 1 Foundations of Bad Data Detection and Identification 

Methods 

The· bad data detection and identification methods 

developed in connection with the least- squares estimators 

are based on examination of both the measurement residuals 

and a function of them. The reason for doing so is that the 

residuals convey combined information about possible 

violations of the assumptions about meter accuracy and 

distribution of measurement noise which have been made 

during the construction of the measurement model. 

For a measurement model which considers m measurements, 

the residual vector is an mx1 vector defined by 

where 

"" r = z-z 

z is the 

(3.1) 

mx1 vector of measurements and 

vector of estimates for the measured quanti ties. 

"" z is the 

Equation (3.1) clearly shows that a residual is a 

mismatch between the actual measurements and the value of 

the measured quantity as computed by the least-squares 

·algorithm. Therefore the mismatch can be seen as the amount 

that the measurement model cannot account for. If it is 

assumed that the model represents the system with the 
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expected accuracy, which implies that the values of the 

parameters in the model (hydraulic resistances of pipes, 

pump characteristics, etc.) and the model structure are 

accurately known, th~n one can think of the residuals as 

estimates of the measurement errors. Since certain 

assumptions about the measurement errors are made when the 

model is established, it should be expected that, if no bad 

data are present, the residuals will tend to behave in a 

manner that confirms those assumptions. If, on the other 

hand, some residuals or functions of the residuals clearly 

violate the assumptions, one can infer that erroneous 

measurements are present. Furthermore, by investigating the 

residuals individually, it should be possible to locate the 

faulty measurements i.e. to identify the bad data. 

Consider the measurement model for water system state 

A 
estimation a;fter linearization with respect to a point ~k 

{3.2a) 

E {~} = 0 
T 

E (~ ~ } = R (3.2b) 

where 

{3.3a) 

(3.3b) 
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"' x=x - -k 

Jacobian matrix (3.3c) 

w random vector which models measurement errors. 

"' In addition, assume that ~k is close enough to the 

solution point such that Eq. (3.2a) is a good approximation 

"' ~k can be to the nonlinear model. For example, taken as the 

last linearisation point before convergence. Under this 

condition, one can apply the methods for residual analysis, 

usually employed for the linear least-squares case. The 

Jacobian matrix computed for such a point will hereafter be 

denoted simply by J. 

The weighted least-squares solution is obtained by 

minimizing the cost function 

"' "' T - l "' C (~) = jp.~-J ~~] R ~-J ~~] (3.4) 

is merely the weighted sum of squares of the 

residuals for the linearised model, where the weighting 

matrix is the inverse of the covariance matrix of the 

measurement errors. 

3. 3. 2 Bad Data Detection 

The vector of measurement errors w has ·been 

partially characterised by Eq. (3.2b). To apply the bad data 

detection procedure which will be described next, an 
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additional assumption concerning the distribution of w is 

required, namely, that 

notation 

W - N(O,R) 

w is normally distributed. The 

(3.5) 

indicates that the measurement ·error is considered to be 

normally distributed, with zero mean and covariance matrix R 

Having the complete statistical characterization of 

the measurement errors in the absence of bad data, it is 

possible now to undertake the search for a procedure for bad 

data detection using the residuals. A natural candidate for 

such a procedure would be an individual test on the 

residuals to find out whether any of them violates the 

assumptions made for the measurement errors. However, this 

technique would require the use of the covariance matrix of 

the residuals whose computation is costly. Considering the 

fact that a bad data detection routine is to be employed on­

line after each state estimation, it may be concluded that 

the individual examination of residuals would not be an 

efficient technique to simply detect the presence of bad 

data. Nevertheles_s, the technique is needed to identify the 

faulty measurement after its presence is detected as 

discussed in the next subsection. 

Because of the computational difficulty of individu­

ally examining the residuals it is a corranon practice to 

monitor a weighted sum of squared residuals which is readily 
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available as the objective function in the least-squares 

problem and which exhibits clearly distinct behaviour under 

bad data- free situations and under the presence of bad data. 

To decide whether bad data are present or not, a test 

must be performed " on C(~). The residuals are random 

variables normally distributed which implies that is 

a random variable which has a chi-square distribution with 

m-n degrees of freedom, where m is the number of 

measurements and n is the dimension of the state vector. 

If however a gross ·measurement error is present the 

normality assumption of is violated and consequently 

c (~) is no longer chi-square distributed. 

In view of the aforementioned facts, the bad data 

detection procedure can be seen as a testing of the 

hypothesis about the distribution of " c (~) . This can be 

formulated as follows: 

H c (g) is chi-square distributed 
0 

H is false 
0 

The significance level of the test, also called false 

alarm probability, is the probability of rejecting 

H when it is actually true, and is normally denoted by a. 
0 

Using this definition, it is possible to determine a 

detection threshold level K corresponding to a false alarm 

probability a such that 
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A A 
P (C (x) > Kl c (~) is chi- square) = a (3.6) 

where P ( I ) denotes conditional probability. 

From Eq. ( 3. 6) , the detection threshold level K can be 

computed as 

2 
K = X (m-n); P (3.7) 

2 
where X (m-n);P denotes the P=(1-a) quantile of the chi-

square distribution with m-n degrees of fteedom. When the 

number of degrees of freedom is large (in practice, greater 

than 30), the chi-square distribution approaches a Gaussian 

distribution with mean m-n and variance 2(m-n) (131]. In 

this case K can be computed as a quantile of appropriate 

normal distribution. 

The 
A 

C(~)-test can now be performed by comparing the 

value of with a threshold K. If for a given a the 

value is greater than K, then this fact is taken as 

an evidence that the null hypothesis is false, i.e. that bad 

data are present . 

The implementation of the detection test can be 

outlined as follows: After each state estimation run, the 

weighted sum of squared residuals 
A 

c (~) is computed. Then, 

is compared with the threshold K corresponding to a 

given level of false alarm probability a. If 
A 

c (~) >K, one 

concludes that bad data are present, and an identification 

procedure can be invoked to find out which measurements are 

wildly erroneous. Otherwise, the state estimates are 
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accepted on the grounds that there is not enough evidence to 

decide on the presence of bad data. 

3. 3. 3 Bad Data Identification 

After the presence of an abnormally inaccurate 

measurement is detected, the next step is to locate the 

faulty meter. This requires the individual examination of 
/ 

the measurement residuals. In the case of a single bad 

measurement, a possible identification strategy would be to 

find the maximum residual and then expect· that the 

corresponding measurement is the faulty one. However, this 

is not necessarily true, for two reasons: i) Meters for 

different quantities have different accuracies, so that the 

variances of the corresponding measurements can be 

significantly different; and ii) The residuals are in 

general correlated among themselves, so that an error 

associated with a measurement can spread over other 

residuals. 

In order to allow a fair comparison of the residuals 

it is mandatory to normalize them with respect to their 

standard deviation. After this normalization is performed, 

the measurement corresponding to the maximum normalized 

residual is most likely to.be bad data. (131] 

Defining the residual vector r as 
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"' r = ~z-~z 

where 

"' "' Az = J ·~X 

(3.8) 

and cal.cul.ating using the normal. equation approach 

presented in section 2. 2 . 3 

"' T-1 -1T-1 
~X = (J R J) J R ~~ 

equation ( 3. 8) can be written as 

r = W ~z 

where W is the residual. sensitivity matrix 

T -1 -1 T -1 
W = [ I-J (J R J) J R ] 

(3.9) 

(3.9b) 

Using the above expression the residual. covariance matrix 

T 
D = E {£. £. } can be cal.cul.ated as 

T T -1 -1 T -1 
D = E{~~ ~~ }-2J(J R J) J R E{~~} + 

T -1 -1 T -1 - T -1 T -1 -1 T 
J(J R J) J R E{~z ~~ }R J(J R J) J 

which taking into account Eq. ( 3. 2b) gives 

T -1 -1 T 
D = R-J (J R J) J 

(3.10) 

(3.11) 

The normalized residuals can now be obtained as 

~ = (3.12) 
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The drawback of the identification method based on the 

search for the maximum normalised residual is the amount of 

computation required to obtain the variances of the 

residuals. Even though only the diagonal elements of D are 

needed it is still necessary to perform the inversion of the 

T -1 normal matrix J R J. This problem has received some 

attention in the literature and methods have been proposed 

to reduce the number of required operations. one of such 

methods makes use of the fact that actually only the 

elements of the inverse of the normal matrix that correspond 

T to nonzeros of J J need to be computed ( 38) . The method 

approximately halves the computational burden but in the 

same time it requires much more complicat~d programming. 

Additionally, the method of Broussolle is not free from the 

problem posed by structural ill-conditioning of the right 

hand side of Eq. (3.11). This fact may lead to inaccuracies 

which in turn may invalidate the whole computations of the 

matrix D. 

In this work an alternative method for calculating 

the residual covariance matrix which avoids numerical 

difficulties associated with the standard approach is 

proposed. The method is based on the observation that by 

using the augmented matrix state estimator, which apart from 

a state estimate gives an estimate of the residual error, 

the residual sensitivity matrix W can be easily found as 

Of! 0.6z. Consequently, the elements of ·the matrix D can be 

found as 
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D = W R (3.13) 

The consecutive columns of w are obtained by solving the 

following equation 

0 I 

-I R 

JT 0 

where w. 
-~ 

e. 
-~ 

-1 

J u e. 
-~ 

0 w. = 0 i=1, ... ,m (3.14) 
-~ 

0 v 0 

is mx1 vector of measurement residuals 
corresponding to the unit change of the i-th 
measurement (i-th column of the matrix W) 

is mx1 unit vector 

~, v are mx1 and nx1 auxiliary vectors 

Since the factors of the augmented matrix are readily 

available from the state estimator the computation of the 

residual sensitivity matrix involves only m back-

substitutions, thus giving a computationally efficient 

algorithm. Another property favouring the approach proposed 

here is its numerical stability since the condition number 

of the augmented matrix remains unchanged compared to the 

~ondition number of the linearised measurement matrix (see 

section 2. 2. 4) 

In the case of multiple non-interacting bad data, i.e. 

when the covariances between any pairs of residuals which 

correspond to the bad data are small as compared to the 

respective variances, an effective identification can be 

obtained by using a trivial extension of the procedures 
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discussed above. It consists simply of looking for the 

maximum normalised residual and eliminating the measurement 

corresponding to it. If, after the following estimation, 

bad data is still detected the next measurement with the 

largest residual is eliminated, and so on until "' C(?£)-test 

does not indicate the presence of bad data. 

Although the same approach can be used for multiple 

interacting bad data, the results are usually not as good. 

In fact, examples discussed in section 3.5 seem to confirm 

the findings of Handschin, Schweppe et al. ( 131) that, in 

such situations, the performance of non-quadratic estimator 

is better than the weighted least-squares estimator. 

3. 4 BAD DATA PROCESSING IN LEAST ABSOLUTE VALUES 

ESTIMATION 

3. 4. 1 Identification of Gross Measurement Errors 

The characteristic feature of the least absolute 

values (LAV) estimator is that it attempts to calculate 

state variables using a minimal observable set of 

measurements. In the system with n state variables and m 

measurements/pseudo-measurements the LAV estimator always 

accepts n measurements and rejects the remaining m-n 

readings. Since the criterion according to which the 

measurements are accepted or rejected is the magnitude of 

the measurement noise, it is reasonable to expect that if 
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any gross error is present in the initial data it will 

become the first candidate for rejection. Consequently, the 

procedure to identify bad data in connection with the least 

absolute values estimator is essentially concerned with 

examining the magnitude of the measurement residuals. 

The reason for the effectiveness of such an approach 

is that the least absolute values estimator prevents 

'smearing• of the residual errors, provided that there 

exists an error-free observable set of measurements. In this 

case, each measurement residual remains unaffected by the 

magnitude and location of the other bad data. Thus, it is 

possible to avoid time-consuming computations of the 

residual covariance matrix, which is the main computational 

burden in the least-squares-based approach, and to calculate 

only the weighted residuals. 

The implementation of the bad data identification 

method consists essentially in weighting the residuals with 

respect to their standard deviation and comparing them to 

the prespecified threshold. As a result, the method has very 

small computational requirements. The next section extends 

this approach for the case of topological errors which can 

be seen as multiple interacting bad data. 

3. 4. 2 Identification of Topological Errors 

It is usual to make a distinction between erroneous 

measurements and topological errors since they represent 
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different physical phenomena. However, from the point of 

view o£ the state estimator both errors substantiate bad 

data points. 

In the context of the water distribution systems two 

main types of topological errors can be specified: 

i) incorrect status of control valves which gives a 

wrong image of actual network connectivity, and 

ii) leakages which effectively extend the network by 

additional load nodes . 

The presence of either of these errors is equivalent 

to neglecting a part of the actual network structure thus 

producing an.imbalance at the network nodes incident to the 

questionable pipe. one can now think of the topological 

error as a pair of erroneous load measurements for which the 

error terms, devised by the state estimator, are carrying 

information about a topology misspecification. As a further 

consequemce the conditions of detectability of the 

topological errors can be determined by superimposing the 

detectability conditions for two gross measurement errors, 

i.e. the network must be observable after the erroneous 

mass-balance equations are rejected. 

Figures 3.1 a - c 

the topological errors. 

give a graphical representation of 
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Type 1 (Fig. 3. 1 a) . If in the real network the pipe 

between the nodes i and j is closed, the actual flow 

i qij is zero regardless of the pressure difference between 

and j. On the other .hand, if the network model incorrectly 

assumes that the pipe is open the calculated flow 

qij will in general, have a nonzero value q.. In order to 

compensate this mismatch, the least absolute values estimator 

calculates the system state not using the model of the pipe 

i- j and rejects the mass-balance measurements in the end-

nodes of this pipe. The error terms associated with the 

rejected measurements ·represent a flow which has an equal 

magnitude and opposite direction to qij so that the average 

flow between the nodes i and j is equal zero as it is in 

the real network. 

Type 2 (Fig. 3. 1 b) . Similarily as in the case 1 the 

valve status in the pipe i-j is incorrect but this time 

the pipe is open .in the real network while it is assumed to 

be closed in the network model. The error terms devised by 

the state estimator r. and r. represent the actual flow bet-
1 J 

ween the nodes i and j (r. =-r =q) 
. 1 J 

which cannot be allowed 

through the pipe i- j since it is modelled as closed. 

Type 3 (Fig. 3.1 c). If there exists a leakage between 

the nodes i and j it forms an additional load node in 

the actual network. The magnitude of the leakage 

ql is determined by the pressure at the nodes i, 1 and j. 

At the same time, the network model has no representation of 
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. ACTUAL HODELLED 

(a) 

(b) 

(c) 

ESTINATED 

q .. 
~] 

F' igure 3. 1 Identification of topological errors 

(a) closed valve monitored open; 
(b) opened valve monitored closed; 
(c) leakage. 
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the leak-node and the flow q. . is calculated as a function 
1J 

of the pressure difference between the nodes i and j. The 

magnitude of the flow qij is therefore less than qil and 

greater than qlj In order to balance the whole network the 

state estimator rejects the mass-balance equations in the 

end-nodes of the leaking pipe giving the error terms 

r. and r . . The sum of these residuals represents the value 
1 J 

of the leakage q
1

. 

Given the estimation results and a list of the 

. measurements rejected by the least absolute values 

estimator, the identification of topological .errors can be 

implemented as a following post-processing procedure. 

1, Perform observabili ty tests to find out in which 

part of the network topological errors are 

detectable using the current measurement configur-

ation (see Chapter IV) . 

2. Calculate the weighted residuals of the rejected 

measurements/pseudo-measurements and identify the 

bad data 

3. Test the residuals of the mass-balance equations: 

- if the residuals in the end-nodes of a pipe with 

a valve have approximately equal magnitude and 

opposite signs then the valve status is 

incorrectly moni tared;. 

- if the residuals in the end-nodes of a pipe are 
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negative then there exists a leak in the pipe; 

otherwise the residual represents a gross 

measurement error. 

3. 5 NUMERICAL RESULTS 

This section presents the numerical results for the 

bad data processing methods presented in sections 3. 3 and 

3.4. The methods are labelled as L-S (least-squares based) 

and LAV (least absolute values based) respectively. The 

comparison is concentrated on the ability of the methods to 

correctly identify bad data and on their computational 

efficiency. 

The computer programs have been written in FORTRAN 77 

and run under FORTRAN VII z compiler on a Perkin-Elmer 3220 

minicomputer with 32-bit word length and floating point 

arithmetic. 

All the test cases refer to the 34-node water 

distribution system described in Appendix c. The measurement 

configuration is identical to the one used to assess the 

performance of the estimators (Case 2A, 28 and 3). A total 

of 54 measurements and pseudo-measurements is used, yielding 

a global redundancy of 1.29. The methods were tested on many 

sets of measurement data containing topological and gross 

measurement errors and a representative sample is given 

below. 
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Case 1: Gross Measurement Error of Consumer Load at Node 8 

. Table 3. 1 shows some typical results obtained for the 

measurement data contaminated with a gross measurement 

error. The magnitude of the error is equal to 35 standard 

deviations of the measurement concerned and the false alarm 

probability is selected as o. 05. 

As far as the estimation time is concerned, the 

performance of both methods is very similar; however, the 

least-squares based method requires additional time for 

computation of the residual covariance matrix followed by 

reestimation of the state vector. In contrast, the 

identification of bad data by the least absolute values 

estimator is done in the course of the estimation and only 

an inexpensive search for maximum weighted residual is 

required. Both methods correctly identify the bad data 

point. 

TABLE 3.1 

Computational results for Case l 

Identification and 
Method Estimation Reestlmatlon* Bad Data Total 

Identified Time 
N-R Iter. Time (sJ Cycles Time lsJ lsJ 

L-S 4 4.587 1 3.355 YES 7.942 

LAV 5 4.387 - 0.027 YES 4.414 

• only for L -s method 
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case 2: A) Leakage in the Pipe 4-20 

B) Leakage in the Pipe 12-20 

The effect of the presence of a topological error in 

the form of a leakage has been studied on two examples. 

First,· a leakage in the pipe 4-20, for which a flow in 

normal operating conditions is low ' (0.0013m js), is 

simulated. Next, an identical in magnitude (0.01m 3 js) 

leakage is simulated in the pipe 2~12 which has a flow of 

3 
0.027lmjs. 

As in Case 1, computational efficiency of the least-

squares approach is · grossly affected by the necessity of 

calculating the normalised residuals and subsequent 

reestimation of the state vector. Moreover I the c (l?');r -test 
- -N 

proved to be less sensitive in the case where the relative 

magnitude of the leakage 1 as compared to the flow in the 

TABLE 3.2 

Computational results for Case 2 

Identification and 
Method Estimation Reestimatlon* Bad Data Total 

Identified Time 
N-R Iter. Time (s] Cycles Time Cs1 (S] 

A> L-S 1 1.137 2 5.595 YES 6.732 

A> LAV 1 2.950 - 0.027 YES 2.997 

B> L-S 1 1.248 - - NO -

B> LAV 1 2.990 - 0.027 YES 3.017 

* only for L -s method 
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leaking pipe I is smaller . 

Case 3: Incorrect Valve Status 

For the same meter configuration as in case 1 and 2 

another type of topological error has been introduced. 

Control valve in the pipe 17-9 is monitored as closed while 

in the real network it remains open. The magnitude of the 

flow through the control valve is relatively small (0.0063 

3 
m /S) 1 taking into account the standard deviation of the 

3 
flow measurements (0. 0006 m 1 s) ; however I due to the strong 

local measurement configuration both methods correctly 

identify bad data. The estimators converge in 4 iterations 

requiring 4. 525 s and 4. 412 s of computation time for L-S 

and LAV method respectively. In this case the least-squares 

based method requires two identification;reestimation cycles 

since the topological error implies two gross measurement 

errors and the !:.N -te~t guarantees the correct identifica-

tion of a single bad data at a time. 

TABLE 3.3 

Computational results for Case 3 

Identification and 
Method Estimation Reestimation • Bad Data Total 

Identified Time 
N-R Iter. Time [sJ Cycles Time [sl [S] 

L-S 4 4.525 2 5.595 YES 10.120 

LAV 4 4.412 - 0.027 YES 4.439 

• only for L -s method 
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case 4: Leakage in the Pipe 4-20 and Gross Measurement 

Error of Consumer Load at Node 6 

In order to check the limitations of the bad data 

identification procedures a measurement set with multiple 

interacting bad data has been devised. According to the 

observability criterion it is not possible to identify bad 

data points since the network becomes unobservable after 

removing the erroneous load measurements at nodes 4, 20 and 

31. In fact, both methods fail to give a correct answer. The 

state estimates converge in 6 and 4 iterations (6.625 s and 

4. 841 s) for L-5 and LAV method respectively but in both 

cases they are affected by the presence of gross errors. 

3. 6 CONCLUDING REMARKS 

This chapter has been devoted to the investigation of 

the bad data detection and identification methods in water 

system state estimation. The main objective has been to 

develop techniques to be used in connection with the real­

time estimators described in Chapter II. 

For the least- squares estimator, using the augmented 

matrix formulation, a new technique of calculating the 

residual sensitivity matrix has been proposed. Apart from 

the computational efficiency this technique is also 

numerically more stable, compared to the corresponding 

·methods reported in the literature, since it avoids the 

formation of the normal matrix with consequent squaring of 
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the condition number. The bad data identification technique 

. "' based on the combJ..ned c (~) /.!:.N -test is shown to perform well 

in the case of a single bad data. However, as the number of 

gross measurement errors increases the method becomes 

computationally less efficient due to the repeated 

calculations of the residual sensitivity matrix followed by 

the reestimation of the state vector. 

By exploiting the fact that the least absolute values 

estimator avoids 'smearing• of the measurement residuals, it 

has been possible to develop an efficient procedure for 

identification of the topological errors. The procedure 

merely checks the magnitude and sign of the weighted 

measurement residuals since the topological errors are shown 

to be equivalent to a pair of gross mass-balance errors in 

the end-nodes of the pipe concerned. The computational 

overhead associated with this post-processing is negligible 

so the time required to identify bad data is determined by 

the efficiency of the state estimator. 

A number of tests have been carried out on the 

realistic 34-node system and the corresponding results are 

reported in section 3.5. The results confirm the requirement 

that in order to identify bad data it is necessary to have 

available a local measurement redundancy. Consequently, by 

performing the observabili ty test it is possible to 

determine in which areas of the network bad data is 

detectable using the current measurement set. 
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CHAPTER IV 

METHODS TO DETERMINE WATER SYSTEM OBSERVABILITY 

4.1 INTRODUCTION 

The observability problem in water system state 

estimation consists essentially in determining whether the 

measurements currently available to the state estimator 

provide sufficient information to allow the computation of 

the estimates. 

Observability tests are important both as a design 

tool in meter placement studies performed off-line, and in 

the on-line implementation of the estimator . 

In on-line operation, the availability of a routine to 

check whether the water system is observable or not is very 

important for the efficiency of the estimation process. 

Before the state estimation, the observability routine 

determines whether the current measurement set renders 

the system observable. If this is the case, the state 

estimation proceeds. Otherwise, the system is unobservable, 

and the estimator will not be able to calculate the states 

for the whole network using the available measurements. 
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This situation may arise as a result of meter o:r telemetry 

failure, changes of network topology by means of valve 

controls, and also as a consequence of the elimination of 

measurements previously identified as bad data. In these 

cases, the observability routine should identify the 

observable subsystems so that, in a subsequent step, either 

the state estimation is applied to the subnetworks of the 

original system, or appropriate pseudo-measurements are 

added to the measurement set to allow the estimation of the 

states for the whole system. 

Observability considerations also have relevance in 

the planning stage of a metering system to be used for state 

estimation. In these off-line studies, the objective is to 

achieve a metering system design which will guarantee 

reliable estimates even in the event of meter and telemetry 

failures. To take into account the possibility of bad data 

elimination, measurements can be omitted singly, in pairs 

etc. The observabili ty test is then used to assess the 

resulting metering systems and to indicate where they should 

be reinforced by the addition of further measurements. 

There are some other questions that are related to the 

observability problem. For example, the determination of a 

minimal measurement set which makes the system observable 

may be used as a first step to determine how redundancy 

should be added to enhance the estimates accuracy and the 

performance of bad data detection and identification. Other 
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related problems are the determination of detectability 

conditions for leakages in the network, limitation of the 

spread of the residual error, or considerations of financial 

aspects of the telemet;ry system and meter placement designs. 

This chapter initially presents the basic theoretical 

results for topological observability in water system state 

estimation. Two original methods are then proposed which 

essentially aim to find an observable spanning tree of the 

water network. The first technique transforms the 

observability problem into a matching problem in bipartite 

measurement-to-branch graph. Branches with measurement 

assignment are then used to build a spanning tree of the 

network. The second method undertakes a direct search of the 

observable spanning tree . The method starts from an. 

arbitrary node. The equivalence of the preservation of the 

path property and the existence of the observable spanning 

tree has been exploited in order to devise a procedure to 

correct possible misassignments during the first stage of 

the algorithm. 

This chapter is organised as follows. section 3.2 

reviews the literature on power system observability for 

state estimation since practical methods for solving the 

observability problem originated from this area of 

application. The equivalent observability considerations 

wit}). respect to the water network, to the author's 

knowledge, have not been reported in the literature. section 
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4. 3 is devoted to the introduction of the observabili ty 

definitions in the context of water distribution networks. 

The basic conditions for topological observability are 

presented in section. 4.4. Sections 4.5 and 4.6 contain 

descriptions of two new methods to determine topological 

observability. 

4. 2 A REVIEW OF PREVIOUS WORK 

The importance and complexity of the observability 

problem has been recognized since the very early stages of 

research on power system state estimation. Schweppe and 

Wildes (220], in the first of the three papers which 

originally proposed the use of state estimation techniques 

for power systems, acknowledged the difficulties associated 

with the meter placement problem and how it could affect the 

performance of the estimator. They employed the covariance 

matrix of the estimation errors as a tool for selecting the 

type and location of meters, on a trial-and-error basis. 

Observabili ty questions, however, started to receive 

more extensive attention in the literature only after 1973. 

Some proposed methods are still. based on trial-and-error 

procedures, using different criteria. Thus, Edelman (97) 

assesses the metering system from the point of view of the 

condition number of the information matrix, and Ariatti et 

al. (8] use reliability and quality of the estimates as the 

criteria to compare distinct metering schemes. A different 
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approach is used by Koglin [154], which starts with the set 

of all possible measurements and sequentially eliminates the 

measurements which do not significantly affect the quality 

of the estimates. . This is decided by comparing the 

expectation of the quadratic errors against given · limits. 

Fetzer and Anderson [110] formulate the problem by using the 

concept of observabili ty from linear control theory. The 

proposed method for measurement selection starts with a 

given measurement set which is then seqtientially augmented 

by one measurement at a time. At each step, the new 

measurement is the one whose component orthogonal to the 

measurement hyperspace is the largest. This can actually be 

seen as an application of principal component analysis. The 

computational requirements of the method seem to be an 

obstacle to its practical application. 

The measurement selection problem is formulated using 

information theory and non-linear programming by Phua and 

Dillon [197). The aim is to maximize the information about 

the state vector in the measurement set. Considerations 

about measurement accuracy and financial costs are modelled 

as constraints in the optimisation problem. 

All the above methods make use of floating point 

calculations and are actually intended for off-line meter 

placement studies. Other authors have sought methods to be 

used in both on-line and off-line studies. These methods are 

usually based on logical procedures. Handshin and Bongers 
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[ 130], for example, proposed an observabili ty test which 

consists of checking the connectivity of the Jacobian 

matrix. However, this test only gives a weak necessary 

condition for observabi.li ty. 

Clements and Wollenberg [58] investigate minimum 

observability conditions using network topology and the 

Kirchhoff Laws. They also introduce the concept of observable 

islands. The proposed algorithm is a heuristic procedure 

which first considers line flow measurements and then 

processes injection measurements, one at a time. Although it 

has been shown that the algorithm may give conservative 

results [ 4] 1 (1.56], the Clements and Wollenberg paper 

brought about some ideas which were pursued in subsequent 

works. Allemong et al. (4], who detected that Clements and 

Wollenberg method could provide conservative results, 

suggested a new algorithm based on the same ideas to correct 

the problem. Basically, the algorithm searches for an 

observable tree in the network by using the principles of 

generation of trees. Krumpholz, Clements and Davis (156] use 

network topology and an algorithm for the flow problem in 

transportation networks to devise a method for solving the 

observability problem. The concepts of algebraic, numerical 

and topological observabilities are introduced, and the 

theoretical framework for the method is developed 

considering a linear approximation for the measurement 

model. More recently the same authors [57].have published an 

enhanced version of their algorithm which avoids possible 
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misassignements of measurements to branches in its attempt 

to build the largest forest of full rank. 

Quintana, Simoes-costa and Mandel [199] proposed a 

method which directJSJ.y searches for an observcible spanning 

tree in the measurement graph using an algorithm for matroid 

intersection. 

For the networks with a big proportion of flow 

measurements Van Cutsem and Gailly (273], (274] proposed an 

enumerative procedure which examines all possible 

measurement assignments. The algorithm is simple but has 

limited applicability since in general case it can be very 

expensive computationally. 

4. 3 OBSERVABILITY DEFINITIONS 

4. 3. 1 Observabili ty and Numerical Observabili ty 

Consider a set of M measurements taken in water 

distribution system. It is assumed that the measurable 

quanti ties ar·e nodal heads, fixed-head-node flows, consumer 

loads and pipe flows. 

A water system is said to be observable or solvable in 

the static state estimation sense with respect to a given 

measurement set M, if the fixed-head-node flows and the 

nodal heads throughout the system can be determined by 

processing the measurements in M by a static state 
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estimator. Otherwise, the water system is said to be 

unobservable with respect to M. 

From this definition it can be immediately concluded 

that a necessary condition for water system observability is 

that the Jacobian matrix in Eq. (2 .10) must be of full rank. 

It should also be noticed that observabili ty depends, 

to a certain extent, on the operating point used for the 

linearisation of the measured model. This is so because, for 

a given measurement set, the numerical values of the entries 

of the Jacobian matrix vary according to the operating 

point. Theoretically, this might affect the rank of the 

Jacobian matrix. Also, it may happen that the Jacobian 

matrix is of full rank when, computed with respect to a 

certain operating point but, in the course of the iterative 

solution, numerical problems may develop such that the final 

estimates cannot be obtained. To take into account these 

factors, the definition of numerical observability, 

analogous to the one by ( 15 6] , can be introduced. 

A water system is said to be numerically observable in 

the static state estimation sense, with respect to a given 

measurement set M if the estimates can be obtained using 

the flat start (i.e. nodal heads equal to a fixed pressure 

increase above the corresponding ground level and fixed­

head-node flows equal to average flows) as the initial guess 

for the estimation algorithm. 
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The use of the flat start in the definition of 

numerical observability may seem arbitrary. However, it 

reflects the fact that the flat start is usually the most 

severe initial guess.to start the estimation algorithm, as 

it is used only when no better point to initialize the 

iterations is known. It should also be remarked that, apart 

from possible rank deficiency and numerical problems, a 

water system is also considered as numerically unobservable 

if the flat start is too far away from the actual state so 

that convergence cannot be achieved ( 156]. 

Testing numerical observability amounts to solving the 

static state estimation problem from the flat start for the 

given measurement set. This procedure cannot be considered 

as a feasible candidate for a practical observability test 

for at least two reasons: first, observability would be 

decided by solving the problem instead of being an ·a 

priori' result, and second, the method gives no clue as to 

where in the system the problem resides. 

Another possible way to test observabili ty would be 

the floating point calculation of the rank of the Jacobian 

matrix. But, in spite of the fact that efficient algorithms 

for computing the rank of a matrix are currently available, 

these methods are still too time-consuming for on-line 

applications. Besides, such methods would also be unable to 

:r;>rovide indications about the location of the problem and 

about the observable susbsystems. 
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4. 3. 2 Measurement Model for Water System State Estimation 

The derivation of topological observability conditions 

described in the next section is based on the approximate 

measurement model for water system state estimation. The 

non-linear measurement model has been discussed in Appendix A 

is given by 

z = g(x)+~ (4. 1) 

where z is the mxl measurement vector, x is the nxl 

state vector, g(·) is an mxl non-linear vector function, 

and w is an mxl random vector which models the 

measurement errors. 

Consider that the water system comprises N nodes, F 

fixed-head-nodes and P pipes. A total of m measurements 

are taken namely: head magnitudes, m 
q 

fixed-head-node 

pipe flows. Since the flows, m
1 

consumer loads and m f 

heads are usually measured with respect to the equalised 

ground level the dimension of the state vector is n=N+F. 

The state vector is of the form xT = (Q, g), where h is 

the vector of nodal heads and is the vector of fixed-

head-node flows. In order to achieve a one-to-one 

correspondence between state variables and network nodes a 

concept of auxiliary nodes is introduced. The following 

properties are inherent to the auxiliary nodes: 

i) each fixed-head-node in the network has an auxiliary 

node corresponding to it; 
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zh - head measurement 

z - fixed-head-node flow measurement 
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z - load measurement 
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zf - p1pe flow measurement 

?igure 4. 1 (a) Original network graph 

(b) Augmented network graph 
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ii) the auxiliary node can only be connected to its 

fixed-head-node; 

iii) the nodal pressure is not defined in the auxiliary 

node, 

iv) the flow between the auxiliary node and the fixed­

head-node is defined by the fixed-head-node flow. 

It is also convenient, for the purpose of analysis of the 

measurement configuration, to include in the network diagram 

a head reference node with links to the head~measured nodes. 

The network digram now consists of n+1 nodes and l=P+F+~ 

links (Fig. 4. 1 a and 4. 1 b) . Each link contributes one 

element to the diagonal lxl hydraulic conductivity matrix 

Y. The p elements of the matrix Y corresponding to the 

links between the n nodes of the original network 

represent the sensitivity of the flow to the changes of the 

nodal heads. The value of these elements vary according to 

the operating conditions of the network, and can be 

calculated from the network element equations given in 

Appendix A. The remaining F+~ elements of y represent 

the. sensitivity of fixed-head flows and the sensitivity of 

nodal heads to their own changes and are therefore equal 

to 1. 

A direction is assigned to each link of the augmented 

network diagram, arbitrarily, so that the network can be 

represented as a directed connected graph. The structure of 

this graph is described by its (n+1) xl incidence matrix A, 
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as defined in Appendix E, with the exception that property 

(iii) and (iv) of the auxiliary nodes implies that the link 

between a fixed-head-node and the auxiliary node does not 

appear in the incidence list of the fixed-head-node. 

Furthermore, let A 
r 

denote the nxl reduced incidence 

matrix obtained from A by deleting the row corresponding 

to the reference node. 

Having the required definitions the measurement model 

can be expressed as 

~h ~ YAr ~h 
-----

z M YA 

-[~-] 
w -q q r -q 

(4. 2) = ----- + 
~1 M Y A ~1 L r 

-----
~f Mf y Ar ~f 

where 

~h' ~q' ~1 , ~f : are ~xl, mqxl, m1 x1 and mfxl 

measurement vectors of head, fixed-head-node flow, 

consumer load and pipe flow respectively; 

wh, ~· ~l, ~f : are ~xl, mqxl, m1 xl and mfxl 

measurement noise vectors corresponding to vectors 

zh, z , z 1 , zf; - -q - -

meter pl.acement matrices for head, fixed-head-node 

fl. ow, consumer l.oad and pipe fl. ow respecti vel.y. 

construction of the matrices K ,. M and Mf . . -b q is straightforward 

since the head, fixed-head-fl.ow and pipe fl.ow measurements 
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can be readily associated with the links of the augmented 

network diagram. Each row of these matrices has only one 

element, corresponding to the measured link, equal to 1 and 

the remaining element.s of the row equal to zero. A consumer 

load at any node can be calculated as a sum of the flows in 

the pipes connected to this node. Thus, construction of the 
Q 

matrix M
1 

involves examination of the network links 

incident to the measured nodes. If the link is directed 'to 

the node' the coresponding entry in the matrix is +1, 

otherwise the entry is -1. All remaining elements in the 

row are equal to zero. 

4. 3. 3 Topological Observabili ty 

In subsection 4.3.1 it has been stated that the use of 

floating point calculation. methods may be impractical for 

testing observability since they provide no insight into the 

location of the measurement deficiency. This question is 

related to the network topology and motivates a 

topologically based observability algorithm. In the present 

thesis we turn our attention to methods which do not depend 

on the numerical values of the Jacobian matrix entries, but 

rather investigate whether the measurement set provides 

enough information about the network topology to the state 

estimator. Observability determination, from this point of 

view, becomes the study of the topology of a graph derived 

from the original network according to the quality and 

quantity of the measurements in the metering scheme under 
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consideration. 

Topological observability is derived from the 

condition that the Jacobian matrix must be of full rank 

[ 156]. To properly define this form of observability, 

consider the approximate measurement model presented in the 

previous section and summarised as 

T 
Z = M Y A ·X+ W m r (4. 3) 

where 

T z mxl measurement vector 

T 
w T, T T T 

= [~h ·~ :w1 :~f ] , mxl measurement noise vector 

M T= (M.. T,M T,M T,M T] mxl meter placement matrix m --h I q I 1 I f I 

~' nxl state vector 

Y, lxl hydraulic conductivity matrix 

A , nxl reduced node-to-branch incidence matrix. 
r 

The definition of topological observability 

follows from the measurement model given by Eq. (4. 3) . 

then 

• An n-node water system is topologically observable with 

respect to a given measurement set M if and only if the 

rank of the matrix G=M Y A T is equal to n • . 
m r 

The structure of G does not depend on elements of Y, 

which change with operating point, but is determined by the 

meter placement .and the network topology. 

In the remainder of this chapter attention will be 
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focused on topological observability. Although the possible 

occurence of numerical problems while investigating 

observability from the topological point-of-view are not 

taken into account, i·t will be seen that methods using this 

approach can provide all the information required from an 

observabili ty routine. The condi tiona necessary to achieve 

topological observability are discussed in the following 

section. 

4. 4 CONDITIONS FOR TOPOLOGICAL OBSERVABILITY 

4. 4. 1 Preliminary Defini tiona 

Some concepts and defini tiona have to be introduced 

before the topological observability conditions can be 

established. An appropriat·e starting point is an investigation 

how the measurements interrelate with the state variables. 

By examining the structure of meter placement matrices 

Mh, M , M
1 

and Mf of Equation 4. 2 the following remarks can 
q . 

be made: 

a) A nodal head measurement carries information about 

the corresponding state variable; 

b) A fixed-head-node flow measurement, similarly to 

the head measurement, also directly provides 

information about the value of the state variable; 

c) The effect of a consumer load measurement is to 

interrelate the head of the measured node with the 
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heads of the nodes connected to it; and 

d) A pipe flow measurement will produce an equation in 

the measurement model which interrelates the nodal 

heads corresponding to the ends of the monitored 

pipe. 

Using the definition of an augmented network graph 

introduced in subsection 4.3.2, the concept of measurement 

assignment is a direct consequence of remarks a), b), c) and 

d) above. 

A measurement z can be .assigned to an edge e of 

the network graph if: 

i) z is a head measurement and e is an edge 

connecting the measured node with the reference 

node; or 

ii) z is a fixed-head-node flow measurement and e 

represents a link between the fixed-head node and 

the auxiliary node, or 

iii) z is a consumer load measurement at either of the 

two ends of the pipe which corresponds to edge e; 

or 

iv) z is a flow measurement taken at the pipe of the 

water distribution system which corresponds to edge 

e of the network graph. 

If the measurement z is assigned to edge e, we also 

say that edge e is associated with measurement z. 
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Since the load measurement is the only one which can 

be assigned to different edges it is useful to introduce a 

concept of measured and unmeasured nodes. A node is said to 

be measured (unmeasured) if there is (is not) a load 

measurement available at this node. 

The fundamental concept to be used in establishing the 

topological observabili ty conditions is that of observable 

spanning trees . 

Consider a set 

distribution system. 

M of measurements taken in a water 

A spanning tree of the augmented 

network graph G is an observable spanning tree if and only 

if it is possible to assign a measurement z€M to each one 

of the edges of G such that no two edges are associated 

with the same measurement. 

4. 4. 2 Conditions for Topological Observabili ty 

Conditions for topological observability have been 

derived by Krumpholz, Clements and Davis [ 156]. They have 

used the approximate measurement model, analogous to the one 

presented in section 4. 3. 2, and applied a transformation 

which changes the problem from the nodal framework to the 

branch framework. The observability conditions are rephrased 

here to fit the definitions introduced in the previous 

sections. 
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Theorem 4.1 

(Necessary Condition for Topological Observabili ty) 

If a water system is topologically observable with 

respect to a measurement set M, then there exists a 

spanning tree of its augmented network graph which is an 

observable spanning tree and whose branches are associated 

with measurements of M. 

Proof: see [156) 

Theorem 4. 2 

suppose that there exists an observable tree in the 

augmented network graph whose branches are associated with 

measurements of a measurement set M. Then, if the vector 

formed by the diagonal hydraulic conductivities of the pipes 

does not lie on a certain (n-1) dimensional surface c, the 

water system is observable with respect to the measurement 

set M. 

Proof: see [156) 

Notice that, rigorously, Theorem 4. 2 does not provide 

a sufficient condition for topological observability. 

However, those cases in which the existence of an observable 

tree does not imply topological observability are unlikely 

to appear in practice. In order for these cases to occur, 

the hydraulic conductivities of the pipes must combine 

themselves in such a way that they reduce the rank of G, as 

determined by the measurement set which corresponds to the 
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observable tree. This matrix would be of full rank for a 

different set of hydraulic conductivities of the pipes. 

Thus, topological observabili ty will be investigated 

here by seeking an observable spanning tree of the network 

graph. It should be remembered however that the existence of 

such a tree is only a necessary condition for topological 

observability. Situations in which such a tree exists, and 

yet, the system is topologically unobservable are 

mathematically possible, 

practice. 

although unlikely to occur in 

Theorem 4.3 defines equivalent conditions of 

topological observability. 

Theorem 4. 3 

suppose that there exists a tree of the augmented 

network graph, then the following are equivalent: 

i) the tree is of full rank 

ii) the tree has a path property 

iii) there exists a measurement assignment for the tree 

A tree of the network graph is said to have the path 

property if every path of branches of the tree between two 

nodes with unmeasured load contains at least one branch 

whose flow is measured. The validity of the Theorem 4. 3 

follows immediately from the path property of trees of full 

rank. 
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4. 5 OBSERVABILITY DETERMINATION BY THE MATCHING METHOD 

4. 5. 1 The Measurement to Branch Assignment 

This section proposes a new method to check if a water 

system is topologically observable with respect to a given 

measurement set M. This method does not attempt to directly 

find a spanning tree of the network graph with the required 

measurement assignment. Instead, it seeks a subset 

B of the set of branches B of the augmented network graph 
0 

whose elements can be associated with elements of the 

measurement set M in one-to-one fashion. This one-to-one 

correspondence is referred as the assignment (M , B ) 
0 0 

and the 

number of its elements is called the assignment length {J. 

The search for the observable spanning tree can now be 

restricted to the subgraph G of G formed by the branches 
0 

B of the measurement assignment (M , B ) . If such a tree is 
0 0 0 

found the network is topologically observable. Otherwise, an 

attempt is made to modify G 
0 

by breaking loops and adding 

new, previously unassigned branches to enable construction 

of a tree of full rank. Failing that, the network is 

declared unobservable and the algorithm returns a maximal 

observable forest of G. Figure 4.2 schematically shows the 

basic steps required by the proposed method to test 

observabili ty of a water distribution system with a given 

set of measurements M. The following subsections describe 

the details of each block of Fig. 4. 2 

94 



1.0 
U1' 

Measurement -set M 

Network 

structure 

Bipartite --MEASUREMENT MAXIMUM graph 
Maximum ASSIGNMENT TRANSVERSAL 

transversal 
RULES ALGORITHM 

LOOP 
Renumbered BREAKING 
branches 

PROCEDURE 

figure 4.2 Basic steps in the Matching Method 

Observable 
TREE tree ---

SEARCH 

PROCEDURE -

Observable -forest 



4. 5. 2 Problem Formulation Using Bipartite Graphs and 

Hatchings 

The first step in the search for a measurement 

assignment (M , B ) is the formulation of the problem using 
0 0 

bipartite graphs. 

A bipartite graph is a graph whose vertex set can be 

partitioned into two subsets, X and Y, so that each edge of 

the graph has one end in X and one end in Y; the partition 

(X,Y) is called a bipartition of the graph (75], (102]. 

In addition, the following definitions will be 

required in the sequel. The adjacency set ni of a measurement 

z. in a water distribution system is the set of all branches 
~ 

of the augmented network graph related to the measurement 

z. through the approximate measurement model ( 4. 2) . Each 
~ 

element of n. is said to be adjacent to a measurement z .. 
~ ~ 

The adjacency set can be seen as another means of expressing 

information contained in the meter placement matrices 

Mh, M , M1 and Mf defined in the subsection 4. 3. 2. 
q . 

To associate the elements of the measurement set M 

with the branch set B of the augmented network graph, a 

bipartite graph of the type (M,B) is constructed. The edges 

of this graph are determined by the following rules, derived 

from the remarks in subsection 4. 3. 2 

a) If measurement z. is a head measurement at the node 
~ 

i, the corresponding vertex z. EM is connected to the 
~ 
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vertex b. €B which represents itself a branch between 
~ 

the node i and the reference node; 

b) If measurement z. is a fixed-head flow measurement 
~ 

the edge of the bipartite graph (M,B) connects 

z. with a branch b. which links the fixed-head node 
~ ~ 

with the 
' 

corresponding auxiliary node of the 

augmented network graph; 

c) If measurement z. is a measurement of flow in a pipe 
~ 

represented by b. €B, the corresponding edge of the 
~ 

bipartite graph connects z. and b. ; 
. ~ ~ 

d) If measurement z. 
l. 

is a consumer load mea.surement, 

and the adjacency set for this measurement is 

n. then the vertex z. EM is connected to all vertices 
~ ~ 

To illustrate the concept of the (M,B) bipartite 

graph, consider the augmented network graph with some 

measurements as indicated in Fig. 4.1 b. The corresponding 

(~,B) bipartite graph is presented in Fig. 4. 3 b. 

In the search for a (M , B ) assignment in the bipartite 
0 0 

graph the concept of matching in a graph is needed. A subset 

M of the set of edges of a graph G is a matching in G 

if its elements are edges with distinct ends, such that no 

two of them are incident to the same vertex. If a vertex v 

is incident to some edge of the matching M, then M is 
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said to saturate v, and v is M-saturated ( 75]. 

We are particularly interested in the case where the 

graph . G is a bipartite graph. For a bipartite graph with 

bipartition (M,B), a complete matching of the vertices in 

set M into those in set B is a matching in which there is 

one edge incident to every vertex in M ( 75]. Figure 4. 4 

shows a complete matching of M into B for the bipartite 

graph of Fig. 4. 3 b. 

A matching M is a maximum matching in a graph G if 

G has no matching M whose number of edges is greater than 

the number of edges in M. A complete matching is a maximum 

matching. 

From the above definitions, it appears that an assign-

ment (M ,B ) can be seen as a maximum matching of M into B. 
0 0 

bl b2 b3 b4 

zl z2 z3 

bS 
0 

z4 

b6 b7 b8 

zS z6 

Figure 4. 4 Maximum matching of Minto B 

for the graph of Fig. 4. 3 (b) 
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The condition for the existence of a maximum matching is 

stated in form of a theorem whose proof can be found in 

references [ 75] and [ 102] . Theorem 4. 4 below requires the 

following definitions: 

If M is a matching in a graph G, an M-alternating 

path in G is a path whose edges are alternately in 

E-M and in M, where E is the set of edges of G. An 

M-augmenting path is an M-alternating path whose endpoints 

are M-unsaturated. 

Theorem 4. 4 

A matching M in a graph G is a maximum matching if 

and only if G contains no M-augmenting path. 

It is important to note that the theorem is general in 

that it does not restrict the number of elements of the 

bipartite sets M and B. It also guarantees that a maximum 

matching can always be found for a connected graph G. The 

following corollary can be derived from the theorem 4. 4. 

Corollary 4.1 (102] 

The number of edges in a maximum matching of a 

bipartite graph G is constant and is equal to the maximum 

flow in the network built on G. 

The corollary is illustrated in Fig. 4. 5. There are 
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several possible maximum matchings; each of them however has 

the same number of components . 

4. 5. 3 An Algorithm to Find an (M , B ) Assignment 
0 0 

The (M , B ) assignment problem described in subsection 
0 0 

4.5.1 can now be solved using a bipartite graph formulation. 

The algorithm presented here bases on the work .of Hopcroft 

and Karp who used the concept of a layered network [81] in 

order to devise a reassignment path. An efficient 

implementation of this algorithm, specialised for obtaining 

a maximum transversal of a square matrix, is given by Duff 

(91] and the FORTRAN code is available as a Harwell 

subroutine MC21A [ 90]. The author • s generalisation of the 

Duff algorithm consists essentially of enabling a different 

number of elements in the bipartite sets M and B. 

The maximum matching is constructed in m major 

steps, where m is the number of measurements. After the 

k-th step we have a maximum matching of the first k 

measurements into the set of branches B. The search for a 

larger matching, wh~ch includes an M-unsaturated vertex u€M 

consists of forming a tree of a bipartite graph G called 

an M-al ternating tree rooted at u. Such a tree has the 

following properties 

a) The M-unsaturated vertex u is a vertex of a 

tree; and 
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b) For every vertex v of the tree, the edges of the 

unique path connecting v to u on the tree are 

edges which are alternately contained and not 

contained in M. 

An example of the matching M in the bipartite graph G, 

presented in Fig. 4.5 a, after processing two elements of 

the set M, is given in Fig. 4.6 a, and the M-alternating 

tree rooted at the third element of M is shown in Fig.4.6b 

The reassignment corresponds to replacing the branch 2-4 

with two branches 2-2 and 3-4 thus enlarging the current 

matching. 

There are several different techniques available for 

finding an M-alternating path. Duff (91) has found that 

0 0 0 0 
0 

0 0 
8 8 8 
0 0 0 0 

(a) (b) (c) 

Figure 4, 6 (a) Matching M after two steps 

(b) M-alternating tree rooted at 3 

(c) Matching M after three steps 
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application of a depth first search with a look-ahead 

technique gives the best practical results despite the fact 

that other algorithms give better theoretical bounds on 

computational complexity. 

In accessing the vertices of a graph in a depth first 

search (DFS) I we search edges from ·the current vertex and 

add to our path the first vertex encountered that we have 

not yet visited. This becomes the current vertex and we 

proceed from it as before. If all the vertices that can be 

reached from the current one at the end of the path are 

already visited, we backtrack to the vertex added to the 

path immediately before the present one 1 make that the 

current vertex and proceed as before. The depth first search 

algorithm is illustrated in Fig. 4. 7 I where heavy lines 

denote edges in the path and the vertices are numbered in 

the order in which they are visited. 

Figure 4. 7 Graph indicating DFS ordering 
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In practice, the efficiency of a depth first search 

scheme can be enhanced by checking all unvisited vertices 

reache~ from the current one to see if any are free. If so, 

the M-al ternating path has been found and the matching 

extends by one. This look- ahead technique of Duff saves 

visiting vertices 3 to 8, of Fig. 4.7, in the case that 

vertex 9 is found free. 

The theoretical upper bound on computational 

complexity of the DFS algorithm with a look-ahead technique 

can be found as the product of the number of vertices and 

edges of the bipartite graph concerned. However, in most 

practical cases the algorithm performs as if its complexity 

was linearily dependent on the sum of the number of vertices 

and edges in the bipartite graph. 

4. 5. 4 Determination of an Observable Spanning Tree in the 

(M ,B ) Assignment 
0 0 

section 4.5 started by introducing the concept of 

(M , B ) 
0 0 

assignment. The observability problem was then 

formulated in terms of bipartite graphs and matchings. 

Finally, subsection 4.5.3 presented methods to find a 

maximum matching in a bipartite graph, and to solve the 

optimal assignment problem. This section will look into the 

connections between the observability conditions of section 
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To begin investigating how conclusions about 

observabili ty can be drawn from (M , B ) 
0 0 

assignment, assume 

that the water distribution system is topologically· 

observable with respe~t to a certain measurement set M. By 

Theorem 4 . 1, an observable spanning tree of the augmented 

network graph of the water network exists. Let M
1 

be the subset 

of M whose measurements are assigned to the branches of 

the observable spanning tree. The length of such an 

n since the number of branches 

of the spanning tree of the graph with n+l vertices is n. 

on the other hand, it is possible to find a measurement to 

branch assignment (M ,B), 
0 0 

corresponding to the maximum 

matching M, which by definition has the length at least n 

and which contains {M 
1

, B 
1

) • Thus, the search for an 

observable spanning tree can be performed directly on the 

subgraph G 
0 

of the network graph G formed by al·l the 

branches of the measurement assignment (M , B ) . 
0 0 

The important conclusion to be drawn from the above 

considerations is: 

'If a water distribution system is topologically 

observable with respect to a measurement set M then there 

exists a measurement assignment (M , B ) whose branches con­o 0 

tain a spanning tree of the network graph. Conversely, if 

there is no assignment (M , B ) 
0 0 

which contains a spanning 

tree of G then the water system is topologically 

unobservable with respect to M. ' 
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However, one cannot claim that for every assignment 

(M ·, B ) in the observable network the spanning tree of G 
0 0 

can be found. This is because the assignment can give rise 

to loops in the network graph, which has an effect of 

limiting the number of vertices incident to the branches of 

B . T~e possibility of creating such loops is apparent since 
0 

the water network connectivity is not taken into account 

during construction of the maximum matching M. Figure 4.8 

presents two possible measurement to branch assignments for 

the system of Fig. 4.3. The assigned branches are marked on 

the network graph with bold lines. In the first case the 

network graph G , formed by the branches B of the (M , B ) , 
0 0 0 0 

does not contain a spanning tree of G and in the second 

case it does . 

A procedure is then required which would aid the 

matching algorithm in maximising the number of vertices 

incident to the branches of B . 
0 

Such a procedure will be 

described later in this subsection. 

In some special cases the question of topological 

observability can be answered'immediately by examination of 

the assignment length IJ, 

a) If the (M ,B ) assignment has the length IJ=l, where 
0 0 

1 is the number of branches of the augmented 

network graph G, then the water network is 

observable with respect to the measurement set M. 
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Every spanning tree of the graph G 

observable spanning tree since B 
0 

contains 

branches of G. 

b) If the length of the (M , B ) 
0 0 

assignment 

is an 

all the 

then 

the water network is topologically unobservable due 

to the fact that B contains less branches than any 
0 

spanning tree of G. Consequently, no observable 

spanning tree exists. 

However, if n(P<l an attempt to find a spanning tree of G 

in G must be made. Because of the possibility of creating 
0 

·observable' loops by the branches of i3 
0 

as indicated in 

Fig. 4.8, a sequence of measurement assignments is generated 

such that each contains no more loops than the previous one, 

and a tree search procedure is reinitialised for every new 

set of branches B . This process continues until an attempt 
0 

has been made to disconnect every loop or a spanning tree of 

G has been found. If a spanning tree is not found for any 

of the consecutive sets B 
0 

the system is declared 

topologically unobservable, and a tree search procedure 

returns a maximal forest of G in G 
0 

This is a valuable 

piece of information since it can be used to add pseudo-

· measurements in order to make that portion of the system 

observable. Alternatively, the state estimation can be 

carried out only for the observable part of the system. 

The procedure to maximize the number of vertices 

incident to the branches of the set B 
0 
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Essentially, it consists of identifying 'observable loops' 

in a maximal forest and reassigning the measurements 

associated with the loop edges so as to include the forest 

linking edges in the updated measurement assignment (M , B ) . 
0 0 

Notice that the search for loops is equivalent to the 

search for biconnected components of the graph G 
0 

since each 

loop is wholly contained in one of the bicomponents, we 

can therefore use an algorithm of Hopcroft and Tarjan [138) 

to mark the bicomponerits which contain more than one edge. 

The algorithm performs a depth first search along the edges 

of the graph. Each new vertex reached is placed on a stack, 

and for each vertex a record is kept of the lowest vertex on 

the stack to which it is connected by a path of unstacked 

vertices. When a new vertex cannot be reached from the top 

of the stack, the top vertex is deleted, and the search 

continues from the next one on the stack. If the top vertex 

does not connect to a vertex lower than the second one on 

the stack, this second vertex is an articulation vertex of 

the graph. All edges examined during the search are placed 

on a further stack, so that when an articulation vertex is 

found the edges of the corresponding biconnected component 

may be retr i ved. 

When the stack is exhausted, a complete search for a 

connected component has been performed. If the graph is 

connected, the process is complete. Otherwise, an unreached 

vertex is selected as a new starting point and the process 
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is repeated until all the graph has been exhausted. Isolated 

vertices are merely skipped, since they have no adjacent 

edges. 

The reassignment procedure can now be solved 

efficiently by introducing an additional loop-measurement 

incident to all loop edges of G and performing one step of 
0 

the maximum matching algorithm on the modified bipartite 

graph. An M-alternating path rooted at the loop-measurement 

is required to terminate at a forest linking edge. thus 

diminishing the number of forest components of G • 
0 

The pro-

cedure terminates if either an observable spanning tree 

of G is found or a forest cannot be linked. 

The flow chart exhibited in Fig. 4. 9 summarizes all 

the steps in the implementation of the matching method. 

Computational complexity of this algorithm is given as 

max(O(A),O(B),O(C),O(i·D),O(i·E)] where A, B, c, D and E 

a~e the labels of those parts of the algorithm which are 

critical to an estimation of the complexity and i is a 

maximal number of repetitions of loop-breaking procedure D 

and E. The upper bound on i is eqUal n since this is the 

maximum number of forest components of a graph with n 

vertices. The number of operations performed by the 

algorithm is then proportional to max [ n, n T, n, n T, nn] = n T 

where T is the number of edges of the bipartite graph and 

is of order 1 (1 is the number of edges of the agumented 

network graph). However, in most practical cases the maximum 
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Figure 4. 9 Flow chart for the Matching Method 
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matching algorithm shows a complexity which is far.less than 

its theoretical upper bound and is approximately equal n+T. 

4 . 5 . 5 Examples 

Preliminary tests on the matching method were 

performed using the water systems whose augmented network 

I 

graphs are shown in Fig. 4.10 along with the corresponding 

measurement sets. The system of Fig. 4.10 a to c is the one 

used to explain the observability algorithm and the system 

of Fig. 4.10 d to f has been taken from the literature on 

water system control (205). Initial measurement assignments 

are given in Fig. 4.11 and the observable trees or forests 

are depicted in Fig. 4. 12. 

For the system in Fig. 4. 10 d, a loop-breaking 

procedure needs not to be activated since the initial 

measurement assignment contains an observable tree. However, 

this largely depends on the vertex labelling and all the 

other examples refer to a more general case where the 

maximum matching produces only a forest. 

To further assess the performance of the matching 

method, it has also been used to investigate the 

observability of the realistic 34-node system described in 

Appendix B. A tree generation routine has been used to set 

up a base case to test the method. The measurement set has 

been devised such that a different measurement is assigned 
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for the systems of Fig. 4. 10 (a)- (f) 
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Figure 4. 12 Observable trees; forests obtained through 

.the Matching Method 
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to each branch of the tree. From this example five other 

cases are derived by changing the measurement set. The 

various cases are defined next. 

case 1 (base case) 42 measurements, namely 6 head 

measurements, 8 fixed-head-node flow measurements, 9 flow 

measurements and 19 load measurements, are taken throughout 

the system such that an observable spanning tree exists. 

Case 2: The measurement set of the base case is 

reduced by one load measurement at node 8. The system is 

unobservable with respect to this reduced measurement set. 

case 3: One new load measurement is added at node 10. 

Despite the system now having the same number of 

measurements as in the base case, it remains unobservable 

and the added load measurement contributes only to the local 

redundancy. 

case 4: The measurement set of Case 3 is augmented by 

5 measurements; however, this is done in such a way that the 

system remains 

measurement set. 

unobservable with respect to the new 

case 5: Two line flow measurements are replaced by two 

load ·measurements in the measurement set of case 3. This 

allows the redundant measurement to be used rendering the 

system observable. 

case 6: Four new line flow measurements are added to 

the measurement set of case 5. Since an observable spanning 

tree can be found for the previous measurement set the new 
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system is also observable. 

The augmented network graphs for the six cases are 

presented in Figures 4.13-4.18. The results and computational 

times are sununarized in Table 4 .1. The computer runs were 

performed on a Perkin-Elmer 3220 minicomputer, using FORTRAN 

77. The following comments apply to the data displayed in 

Table 4 .1. 

In all the cases the matching method correctly 

identified observable and unobservable systems. For case 1, 

the ·observable spanning tree corresponding to 1;:he 

measurement set is retrieved after performing three reassign­

ments. In cases 2, 3 and 4 the matching routine returns a 

maximum observable forest thus indicating parts of the 

network requiring meter reinforcement. In case 5, similarily 

to case 1, the observable spanning tree is ·found after 3 

reassignments. The addition of new measurements to the 

measurement set of case 5 results in a maximum matching 

which contains an observable spanning tree. In effect the 

reassignment procedure does not have to be initialised. 

The computing times displayed in Table 4. 1 demonstrate 

strong dependence on the number of measurements regardless 

.of whether the system is observable or unobservable. This 

result is expected since an increase in the number of 

measurements also increases the possibility that the maximal 

observable tree or forest is found directly at the stage ·Of 

maximum rna tching. In practice, where the measurement 
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Figure 4. 13 Augmented network graph for the 

measurement configuration of Case 1 
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• zh, zq, or zf measurement 

0 z
1 

measurement 

Figure 4. 14 Augmented network graph for the 

measurement configuration of Case 2 
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Figure 4.15 Augmented network graph for the 

measurement configuration of Case 3 
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~ zh, zq, or zf measurement 

0 z
1 
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Figure 4. 16 Augmented network graph for the 

measurement configuration of case 4 
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~ zh, zq, or zf measurement 

0 z1 measurement 

Figure 4. 17 Augmented network graph for the 

measurement configuration of case 5 
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~ zh' zq' or zf measurement 

0 zi measurement 

Figure 4: 18 Augmented network graph for the 

measurement configuration of Case 6 
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TABLE 4.1 

Computational results for the Matching Metchod 

Case I 1 2 3 4 5 6 
Observabllity * OBS. UNOBS. UNOBS. UNOBS. OBS. OBS. 

Number of 
measurements 42 41 42 47 42 46 

Comp. time for 
bipartition (S] 0.016 0.016 0.016 0.017 0.016 0.016 

Comp. time for 
max. matching [sJ 0.008 0.008 0.008 0.008 0.008 0.008 

Number of 
reassignments 3 3 2 1 3 0 

Comp. time for ** 
tree search [sJ 0.032 0.031 0.024 0.015 0.032 0.008 

Comp. time for ** 
loop search [S] 0.060 0.079 0.040 0.020 0.058 

Comp. time for ** 
reassignment [S] 0.017 0.022 0.011 0.005 . 0.017 

Total time [sJ 0.133 0.156 0.099 0.065 0.131 0.032 

Result * OBS. UNOBS. UNOBS. UNOBS. OBS. OBS. 

* OBS. = Observable . 
UNOBS. = Unobservable 

** Sum for all reassignments 
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redundan-cy is an inherent feature of the measurement set, 

the matching method is likely to perform an observabili ty 

test very efficiently. However, even in the worst case 

example the computing time of 0.156 s qualifies the method 

for on-line operation. 

4. 6 OBSERVABILITY DETERMINATION BY DIRECT SEARCH FOR AN 

OBSERVABLE SPANNING TREE 

4. 6 . 1 . Problem Formulation 

Unlike the matching algorithm, the method to be 

proposed in this section investigates observability by 

directly seeking a spanning tree in the augmented network 

graph defined in subsection 4.3.2. This graph is essentially 

a network graph extended by auxiliary nodes associated with 

the fixed-head-nodes of the water network and by one head­

reference node. However, the number of edges of this graph 

varies according to the measurement set. Every measurement 

of a nodal head results in additional edge between a 

measured and a reference node . 

The definition of an augmented network graph is 

compatible with the measurement assignment rules defined in 

subsection 4. 4. 1. The head, fixed-head-node flow and flow 

measurements are uniquely associated with the corresponding 

edges of the augmented network graph. Thus, according to 

theorems in subsection 4 . 4 . 2, the question of topological 
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observability can be decided by seeking a spanning tree in 

the augmented network graph. In every vertex visited dur~ng 

construction of the .tree, the edges which have a unique 

measurement assignment are used before those which are 

adjacent to the load measured nodes. The selection of an 

edge which can be assigned to a particular load measurement 

is critical in the sense that it can isolate some unmeasured 

nodes preventing the discovery of an observable spanning 

tree even if one exists. A tree search procedure must 

therefore be assisted by a routine which is able to correct 

such misassignments by checking if any of the redundant 

measurements can be used to expand the network tree. 

The basic steps of our observability algorithm are 

schematically shown in Fig. 4 . 19 and are described in the 

next section. 

4. 6. 2 An Algorithm to· Identity an Observable spanning Tree 

in the Augmented Network Graph 

The observability .algorithm presented in this section 

is based on the depth-first-search (DFS) procedure of Tarjan 

( 261), modified . to cater for constraints defined by the 

measurement assignment rules discussed in section 4. 4. In 

order to build an observable tree over the largest portion 

of the network some rules of edge selection have been 

established: 
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i) Edges of the augmented network graph which can be 

associated with head, fixed-head-node flow or flow 

measurements are never assigned to load measure­

ments even if such are available in their end­

vertices; 

ii) In every vertex, edges which have a unique 

measurement assignment are selected before those 

which can be associated only with a load 

measurement; 

iii) If an unmeasured vertex is reached through an edge 

assigned to the load measurement the vertex is put 

on the stack for further consideration and we 

backtrack to the previous vertex. 

Rules i) and ii) ensure that, if it is possible to 

reach some vertices via the edges which have a unique 

measurement assignment the algorithm will do so, and rule 

iii) minimises the number of edges connecting to a single 

unmeasured node, thus saving the load measurements for 

further assignments. However, there is no simple rule which 

can give ·guidance about how to assign load measurements 

[57]. In the proposed algorithm a strategy of devising an 

efficient reassignment policy instead of looking for an 

optimal assignment has been adopted. In addition to the 

vertex predecessor function an appropriate labelling of the 

edges of the observable tree has been devised. 
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The following definitions can now be introduced. A 

connected subgraph z
1 

of an observable tree T is called 

a tree zone if for every two vertices v. , v. €Zl a path between 
1 J 

v. and v. contains only edges assigned to load measurements. 
1 J 

If all the vertices of a tree zone are measured the zone is 

called active, otherwise the zone is called inactive. It 

follows immediately from the path property of observable 

trees that an inactive tree zone can have only one 

unmeasured vertex. 

Once an observable tree of the augmented network graph 

has been found the observabili ty question can be decided 

easily in the following cases: 

a) If the observable tree spans the whole network 

graph then, according to Theorem 4. 3, the network 

is topologically observable with respect to the 

measurement set concerned; 

·b) If the observable tree is not a spanning tree of 

the network graph and it does not contain any 

active tree zone, then the path property of trees 

of full rank ensures that the system is topologically 

unobservable. 

The case in which the observable tree does not span the 

whole network graph but contains active tree zones requires 

investigation of the feasibility of amending the existing 

measurement assignment. 
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The measurement assignment rules adopted during 

construction of an observable tree of a network graph ensure 

that, on termination of a tree-building procedure, only 

unmeasured vertices remain unvisited and they are incident 

to inactive tree zones. Furthermore, if the network is 

topologically observable each inactive tree zone incident to 

an unvisited vertex is also incident to an active tree zone 

and can be reassigned such that the path property is 

preserved. Conversely, if the network is topologically 

unobservable the reassignment cannot be found. 

The reassignment procedure checks whether it is 

possible to disconnect a path of tree edges between an 

unmeasured vertex of an inactive tree zone and a vertex of 

this zone which is incident to an univisi ted vertex. The 

constraint imposed on the algorithm is that the resulting 

forest must be linked into an observable tree by an edge 

connected to an active tree zone. This is illustrated in 

Fig. 4.20. An inactive tree zone 3-1-2 is incident both to 

an univisited node 4 and to an active tree zone formed of a 

single node 5. A path of edges 3-1-2 can be disconnected by 

removing an . edge 1-3, and a resulting forest can be 

converted into observable spanning tree by adding edges 5-1 

and 3-4 (Fig. 4.20 b). If the network graph did not include 

the edge 4- 3 the network would be unobservable since the 

path 1-2 could not be disconnected. 

The direct tree search observability algorithm is 

presented in more details in Fig. 4. 21. 
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Figure 4. 21 Flow chart for the Direct Tree Search Method_ 
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Computational complexity of this algorithm is equal to 

a maximal complexity of its main parts A, B, C(Cl), and o 

allowing for the fact that D can· be executed repeatedly. In 

parts A and B of the algorithm edges and vertices of an 

augmented network graph are processed a constant number of 

times, thus giving a computational complexity of 1 and n 

respectively 1 is the number of edges and n 

number of vertices of the augmented network graph) 

is the 

Part c 

consists of a depth-first-search on a network graph. The 

fact that another depth-first-search (Cl) on edges with 

unique measurement assignment is executed in its inner loop 

does pot affect computational complexity of c since if an 

edge is marked as traversed in Cl it is not processed in c. 

The number of operations performed in c (Cl) is therefore 

proportional to 1. The upper bound on the length of the 

reassignment procedure D is equal to n (the number of tree 

edges) and the number of repetitions of D is limited to 1-n 

(the number of co-tree edges) . Consequently, the maximum 

number of operations performed by the whole observabili ty 

algorithm is proportional to l·n. In most practical cases, 

however, the direct tree search algorithm shows a linear 

dependence on a problem size. 

4. 6 . 3 Examples 

The method based on the direct tree search algorithm 

has been applied to the same examples used to test the 

134 



matching method in subsection 4.5.5. The results are shown 

in Fig. 4.22. Although only in case (b) does the observable 

spanning tree coincide with the one given by the matching 

method, it is easy to confirm by looking at the measurement 

sets in Fig. 4.10 that all the results are viable 

alternatives for observable spanning trees or forests. 

The method was subsequently applied to the 34-node 

system, which .was also used to evaluate the performance of 

the matching method. The six measurement systems which have 

been investigated were defined as in subsection 4.5.5. The 

results and computing times are summarized in Table 4. 2. 

The maximum computing time among all six cases, not 

taking into account the time for reading data, is o. 15.1 s. 

This is an indication that also this method is suitable for 

on-line applications. The computing time displayed in Table 

4.2 .does not show any obvious relationship to the number of 

measurements since the redundant measurements do not 

influence the process of building an observable tree. It 

does however depend on the numbering of vertices of the 

augmented network graph 

measurement points. 

and on the location of the 

In cases where the measurement set renders the system 

unobservable, the algorithm returns the maximum observable 

forest. By looking at its components, it is possible to find 

out which measurements should be added to the measurement 

set. 
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(a) 

7 

(c) 

(e) 

7 

(b) 

(d) 

(f) 

Figure 4. 22 Observable trees/ forests obtained through 

the Direct Tree search Method 
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TABLE 4.2 

Computational results for Direct Tree Search Method 

Case I 1 2 3 4 5 6 
Observablllty "' OBS. UNOBS. UNOBS. UNOBS .. OBS. OBS. 

Number of 
measurements 42 41 42 47 42 46 

Comp. time for 
construction of 
augmented graph [sJ 0.036 0.035 0.036 0.039 0.036 0.037 

Comp. time for 
tree search [sJ 0.046 0.049 0.046 0.045 0.046 0.046 

Number of 
reassignments [sJ 1 1 0 0 2 0 

Comp. time for 
reassignments [sJ 0.042 0.058 0.069 

Total time [sJ 0.124 0.142 0.082 0.084 0.151 0.083 

Result OBS. UNOBS. UNOBS. UNOBS. OBS. OBS. 

"' OBS. = Observable 
UNOBS. = Unobservable 

... Sum for all reassignments 
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4. 7 CONCLUDING REMARKS 

Chapter 4 has been concerned with the investigation of 

the water system opservability problem from the st~te 

estimation point of view. After introducing the various 

definitions of observabili ty and presenting the conditions 

for topological observability, two methods have been 

proposed to solve the problem. Both methods use a new 

concept of an augmented network graph. 

The first method formulates the observabili ty problem 

using a measurement-to-edge bipartite graph and a maximum 

matching is sought in this graph. The edges which have a 

measurement assignment are subsequently used to build an 

observable spanning tree. If such a tree cannot be found 

directly a loop-breaking procedure, also based on the 

matching method, attempts to reassign measurements and link 

forest components. In the examples considered in subsection 

4.5.5 the matching method proved to be very efficient 

especially for the systems with redundant measurements. 

The second method proposed is based on the direct 

search for an observable spanning tree in the augmented 

network graph. During construction of the tree its edges are 

labelled so as to enable efficient reassignments in case the 

method identifies only an observable forest and at the same 

time some measurements remain unassigned. The method has 

been ap~lied to the same systems and measurement configura-
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tions used to test the matching method. In all cases, the 

results have been correct. Also, the computing times indicate 

that the method is feasible for on-line applications. 

The direct tree search method has also been applied 

to investigate observability of an electrical power system 

[255]. An observability test on the IEEE-118 bus network 

gives a computation time of o. 300 s, confirming that in 

practice the algorithmic complexity of the technique grows 

linearily with problem size. 
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5.1 INTRODUCTION 

CHAPTER V 

LEAKAGE REDUCTION BY 

OPTIMISED VALVE CONTROL 

The primary aim of a water distribution control is to 

maintain sufficient pressure to ensure that all demands, 

wherever and whenever they occur, can be met. The idealised 

requirement of system operation is to keep the pressure of 

the water in each individual node constant, relative to 

ground level . This is referred to as an optimal head 

profile. However, owing to the head/flow relationships in 

the network, the optimal head profile can only be maintained 

in a few nodes of the network while in the others the 

operational pressure remains higher. As the complexity of a 

distribution network grows, the task of achieving an optimum 

pressure becomes more and more difficult and the average 

overpressure tends to increase. This in turn results in an 

increased energy cost, increased volume of distributed 

leakages and higher risk of major bursts, particularly 

during the night period when the pressure additionally rises 

due to decrease of consumer demand. In complex networks the 
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volume of leakages can amount to approximately 25-30% of the 

total production and consequently represents the main 

potential for improvement of water distribution system 

economy. 

Minimisation of the overpressures is possible by 

remote control of valves installed on the pipe network in 

accordance with the changing demand pattern. However, 

computation of the optimum valve settings is usually a 

relatively difficult task due to the high dimensionality of 

the optimisation problem and the nonlinearity of the network 

model. The application of conventional optimisation methods 

is consequently not realistic in v.iew of the computational 

resources needed and the requirement for real time control 

of the water distribution system . 

. In this chapter, the optimisation problem is expressed 

in a form which enables application of linear programming 

optimisation techniques and in particular the sparse revised 

Simplex method is shown to be advantageous. This approach 

makes it possible to take full advantage of the sparse 

structure of the problem and to achieve low solution times. 

A highly sparse factorisation of the basis matrix is 

maintained using an algorithm proposed by Reid (210]. 

studies on networks of different sizes give rise to an 

estimated computation time, for a network of 100 nodes with 

10 control valves, of about 20 sec using a Perkin Elmer 3220 

minicomputer. An application of the computed control policy 
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is shown to result in a substantial reduction of the 

distributed leakages in the system. 

5. 2 SUPPRESSION OF DISTRIBUTED LEAKAGES 

5. 2. 1 Formulation of the problem 

The task of minimisation of the volume of leakages can 

be seen as a minimisation of discrepancies between a current 

and an optimal head profile· in the network subject to 

operational limits on the valve controls vk. 

min [ 
i 

s.t. 

where i = 1, 

k = 1, 

h. -h. 
0 

l. l. 
(5. 1) 

I •• I N - is the number of network nodes 

• I I I K - is the number of control valves 

It is apparent however that because of the limited 

number of control valves (K < < N) , not all heads h. 
l. 

can be 

controlled independently, therefore it is practical to 

consider only the subset of network nodes which impose the 

most severe requirements for the water supply system. These 

are usually the nodes which have locally the highest ground 

·elevation or the biggest load. 

problem ( 5 . 1) can be expressed as 

E 
j 

h. - h .
0 

J J 
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s.t. 

where j=1, • t I I R is the number of reference nodes in the 

network. 

To be able to perform the optimisation (5. 2) it is 

necessary to find a functional relationship between nodal 

heads hj and valve controls v k. These can be expressed in 

many different forms depending on the chosen set of state 

variables. In the case of a water distribution system it is 

convenient to select the heads in all network nodes and 

inflows in fixed head nodes as state variables in order to 

enhance the preservation of sparsity in the mass balance 

equations 

[ f .. (:!}) = b. i = 1, ... , L (5. 3) 
~J ~ 

jEMi 

[ f. (:!}) + u. = b. i = L+1, ... , N (5. 4) 
~j ~ ~ 

jEMi 

0 
i L+1, ... , N (5. 5) u. = u. = 

~ ~ 

where h = [h , .... , h ] T is a vector of nodal pressures 
- 1 N 

u. - is the inflow in the fixed-head node 
~ 

f .. - is a head/ flow function of i- j network element 
~J 

M. - is a set of nodes incident to node i 
~ 

b. -is a nodal balance. 
~ 
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For a network containing control valves the state 

vector must be extended by the addition of variables 

representing valve openings. The head/ flow function f .. 
~J 

equations (5. 3) and (5. _4) is then replaced by f .. (h 1 v) 
~J --

in 

where 

is the k-th valve control. 

However vk is the control variable and its value is not 

known in advance. The information about the value of vk can 

only be expressed approximately in the following way, 

v 0 
vk + wk = vk k=1 1 .,.,K (5. 6) 

k=1~ ... 1 K (5. 7) 

where equation (5,6) represents uncertainity about a current 

approximation of valve control vk 0 
I and equation (5. 7) 

represents an operational limit of valve control (vk>O). 

The problem described by equations (5. 2) (5. 7) could be 

solved by a predictor-corrector type of procedure, however, 

this would involve a full load flow solution followed by a 

sensitivity analysis at every stage, implying unnecessarily 

high computational effort. In the present paper a 

formulation is proposed which allows for computation of 

optimal valve controls in a single stage. For this purpose 

equations (5.3), (5.4), (5.5) and (5.7) are complemented by 

variables 

wi L i = 11 ... 1 L 1 

L 
wi i = L + 1 I ••• I N I 
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u 
i w. = l, , N-L 

~ 

v 
i l, K wi = , 

respectively, in a similar form to equation (5. 6) except 

that the values of these additional variables are kept zero. 

Additionally, equations for 

reference nodes are written as 

h +w h= h.o. 
j j J j = 

the head in the network 

l, ... , R (5. 8) 

h where wj is a discrepancy between current and optimal head 

profile. 

Using the notation introduced above the optimisation problem 

(5. 2) can now be written 

. T 
m~n w w (5. 9) 

X 

s . t . !I (~) + w = z 

where g ( . ) is a nonlinear functional of ~. 

T 
' ' hN' u 1 ' ' ' ' ' UN- L ' v l ' ' . ' ' v K ' V 1 ' ' ' ' ' V K ] 

u v 
' ' WN- L ' W l ' ' ' 

h T 
• 'WK ] 

0 0 
z=[dl, .. , ,dN,ul, ... ,uN-L'vl , ... ,vK , 

max max o o T 
v 

1 
, ... , v K , h 1 ; . . . , hK ] 
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The values of the elements of the weighting vector ~ are 

chosen in such a way as to reflect the requirements of the 

vector w. Since the mass balance equations and the 

equations representing operational limits of the valves 

express physical relationships, the corresponding weights 

L u 11 
are high which has an effect of zeroing w

1
. , w. and w. . 

l. l. 

Conversely, the weights corresponding to the equations for 

1 
. v va ve open1.ng w. are 

l. 
set to zero since the cost of the 

valve control is neglected in (5. 2) . The equations 

representing a discrepancy between the current and the 

optimal head profile are biased with some small positive 

weights and effectively are the only ones which contribute 

to the nonzero value of the performance index. 

5. 2. 2 Solution via the Linear Programming Approach 

To cope with the nonlinearity of the equations in 

(5.9) a method of iterative linearisation based on the 

Newton-Raphson process has been used. This can be 

summarised as follows 

1) Expand g(~) to first order using a Taylor series about 

0 
an initial guess of the state vector ~ , 

.6x + w 

where i!_ is PxQ. Jacobian matrix 

(5.10) 

P is a number of equations P = 2N-L+2K+R 
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Q is a number of variables Q = 2N-L+2K 

2) Solve the optimisation problem for the linearised 

constraints, 

. T 
m~n w 
6x 

w 

s . t . 6z = J 6x + w 

0 
where 6z = g: (~) - Sl. (~ ) 

(5.11) 

3) Update the estimate of the state vector xk 

0 0 
~ k+1 = ~ k +Ax (5.12) 

4) If 6~ satisfies a convergence test then stop, otherwise 

repeat iteration from 1°. 

The estimate of the state vector ~k computed according 

to the Newton-Raphson process generally converges even. if 

the initial guess ~1 is not good. In practice, the initial 

guess would be the result of the most recent. state 

estimation, and convergence would be achieved in a few 

steps. The structure of the optimisation problem at stage 

2) of the Newton-Raphson process facilitates an efficient 

solution using the sparse revised Simplex method. To 

satisfy requirements for nonnegativity of the variables and 

to allow a decrease of the state vector in 3) the following 

substitutions are introduced 
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w = r- s (5.13) 

T T where r = [ r 1 ••• I r ] I s = [ s I ••• 1 s ] - 1 p - 1 p 

r. >01 s. >01 r.+s.=w. I r.·s.=O~ i=1 1 ••• 1 P 
l. l. l. l. l. l. l. 

and 

Ax' = Ax+ d (5.14) 

Az • = Az + J. d (5.15) 

T 
where d= [ d

1 
1 ••• 1 dQ] I and di is the maximum decrease of 

the state variable x. in one iteration 1 thus 
l. 

Ax' 

Now the linear programme can be written in a standard form, 

s.t. 

min 
Ax' 

T 
~ . (.!: + ~) 

lAX'] A~' = [ J : I : -I ]- ~ 

where I is a unit matrix. 

(5. 16a) 

(5.16b) 

As the dimension of the basis in the primal Simplex method 

is determined by the number of equations (P) the 

introduction of variables r and s does not result in any 

increase of dimensionality of the problem. Also the 

computer memory requirements remain unchanged as the unit 
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matrices are incorporated implicitly in the Simplex 

algorithm. 

In order to take full advantage of sparsity in the 

linear programme, the 'elimination• form of basis 

factorisation has been used. Reid [ 240] has proposed an 

algorithm for the elimination form which also applies a 

series of row and column permutations to give enhanced 

sparsity retention. An implementation of this basis 

handling mechanism is widely available as a routine LA05A in 

the Harwell subroutine library. 

5. 3 NUMERICAL RESULTS 

The performance of the optimal valve control algorithm 

has been tested on several different size networks. The 

detailed results of a study of the effect of incorporation 

of the control valves and their operation are presented for 

the 25-node network shown in Figure 5.1. Parameters of the 

pipes ar~ given in Table 5 . 1. The network contains 3 

pumping stations which are controlled on an on/ off basis 

but can accommodate ±15% variation of a flow without 

changing the water supply pressure. Since the variation of 

the load during the 24-hour period is over 200% (Figure 5.2) 

it is necessary to combine discrete and continuous control 

of the pumps . The pumping schedule, presented in Figure 

5. 3, has been devised so as to fully satisfy consumers 

demands subject to constraints on the magnitude of the 
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TABLE 5.1 

Parameters of the 25-node system 

LINE LENGTH DIAMETER HAZEN-WILLIAMS 
[ml [mJ COEFFICIENT 

23- 1 606. 0.457 110 
23-24 454. 0.457 110 
24-14 2782. 0.229 105 
25-14 304. 0.381 135 
10-24 3383. 0.305 100 
13-24 1767. 0.475 110 
14-13 1014. 0.381 135 
16-25 1097. 0.381 6 
2- 1 1930. 0.457 110 
3- 2 5150. 0.305 10 

12-13 762. 0.457 110 
15-16 914. 0.229 125 
17-16 822. 0.305 140 
18-17 411. 0.152 100 
20-18 701. 0.229 110 
19-17 1072. 0.229 135 
20-19 864. 0.152 90 

21-20 711. 0.152 90 

21-15 832. 0.152 90 
22-15 2334. 0.152 100 

12-15 1996. 0.229 95 
11-12 777. 0.229 90 

10-11 542. 0.229 90 

8-12 1600. 0.457 110 

8-10 249. 0.305 105 

9- 8 443. 0.229 90 

6- 8 743. 0.381 110 

22- 8 931. 0.229 125 

22-21 2689. 0.152 100 

4- 3 326. 0.152 100 

5-4 844. 0.229 110 

6- 3 1274. 0.152 100 

5- 6 1115. 0.229 90 

7- 6 615. 0.381 110 

5-22 1406. 0.152 100 

5- 7 500. 0.381 110 

6- 9 300. 0.229 90 
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change of flow and the frequency of the on/ off control of 

each individual pump. It is assumed that the hourly load in 

each of the 15 consumer supply nodes follows the pattern 

given in Figure 5.2. The nominal consumption corresponding 

to '1' in Figure 5.2 is given alongside the ground level of 

the node on the network diagram. In order to prevent an 

excessive service pressure in the nodes which have a low 

ground level, two isolating valves (constant throttling) and 

three control valves are used in pipes 2-3, 25-16 and 12-13, 

13-15, 21-22 respectively. The current service pressure is 

measured at nodes 6, 13, is and 22 which have locally the 

highest ground level . 

. The volume of leakages v has been evaluated for each 

head profile based on the empirical relationship 

1.18 
v = c . L (li hAi ) i=1, ... ,s (5.17) 

where s 

c 

1. 
l.. 

i 

is the number of pipes 

is a constant depending on the network 

is the length of the i-th pipe 

hAi : is the average service pressure along the i-th 
pipe 

consequently for the optimal head profile (30mAq) the 

1.18 
corresponding volume of leakages is V 30 = c. 30 I:· li 

.1. 

and the water loss index can be introduced as 
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v- v3o 
W= (5 .18) 

Three schemes of operation of the network have been 

analysed. In the first case, the network with fully open 

control valves is considered. The head profile achieved 

during the operation of the network is identical to that for 

the network with no control valves. The limit of 30mAq for 

the service pressure is exceeded for all loads since the 

network has to maintain the capability of supplying some 

emergency loads. Decrease of the consumer load during the 

night period additionally increases overpressure in the 

network which is reflected bY, the high values of the water 

loss index given with a dotted line in Figure 5.5. In the 

second case the control valves are throttled in order to 

achieve the optimal head profile in the selected reference 

nodes during the highest daily consumption. This 

corresponds to the situation where the network has manually 

controlled valves which, except in emergency, have constant 

openings. The area between the dashed and dotted line in 

Figure 5.5 indicates 3.5% reduction of the total leak volume 

as a result of implementation of such a control policy. 

In the third case the optimal valve controls, shown in 

Figure 5.4, have been applied. The discrepancy between the 

current and the optimal head profile is minimised for the 

whole range of the consumer loads giving an almost constant 
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TABLE 5.2 

Variation of computation requirements with network size 

No. of var. -head nodes 

No. of fixed-head nodes 

No. of control valves 

No. of check points 

No. of state variables 

No. of equations 

No. of N-R iterations 

Computation time tor 
N-A Iter. [s) 

• estimated value 

13 13 13 22 32 100 

3 3 3 3 3 5 

1 3 6 3 3 10 

4 4 4 4 4 10 

21 25 31 34 44 130 

25 29 35 38 48 140 

5-7 5-7 5-7 5-7 5-7 5-P 

0.530 0.690 0.715 0.760 1.078 3.57• 
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value of the water loss index. Application of the optimal 

control policy results in 19. 2% reduction of distributed 

leakages as compared with the network using manually 

controlled valves. The nonzero value of the water loss 

index indicates that by increasing the number of control 

valves a further reduction of leakages is possible, however 

the incremental saving achieved by adding one control valve 

to the network may be marginal . 

The algorithm for computation of the optimal valve 

controls has been coded in FORTRAN 77 and implemented on a 

Perkin Elmer 3220 minicomputer with 32-bit word length and 

floating-point arithmetic. Comparisons of the execution 

time have been made for 16, 25 and 35-node networks having 1 

to 6 control valves. The results are presented in Table 5.2 

and include an estimated computation time for a 100-node 

network with 10 control valves. 

5. 4 CONCLUDING REMARKS 

In this chapter a new algorithm for computation of the 

optimal valve controls in order to reduce distributed 

leakages in water supply network has been presented. 

Since the volume of water losses due to bursts of mains and 

distributed leakages can amount to approximately 30% of the 

total production, the on-line implementation of the leakage 

suppression algorithm together with an efficient network 

monitoring scheme has a strong economical motivation. By 
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controlling the network pressure profile it is also possible 

to reduce the risk of pipe ruptures, thus saving on the 

maintanance cost of the water supply system. 

Simulation results, reported in section 5.3, indicate 

that it is possible to achieve a 20% reduction of the volume 

of leakages which amounts to 6% savings of the total water 

production cost. The algorithm proves to be computationally 

efficient, which makes it applicable to on-line operation 

using relatively inexpensive hardware. 

The proposed method may also be used at the network 

planning stage to evaluate the economics of the installation 

of additional control valves in the network. 
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CHAPTER VI 

SOFTWARE PACKAGE 

6.1. INTRODUCTION 

This chapter is concerned with description of the 

on-line software package for real-time monitoring of a 

water supply network. Taking into account the size of the 

FORTRAN code (approx. 16500 lines) and the complexity of 

interactions between program segments, a high level 

viewpoint has been adopted in describing the software. The 

lower level block-diagrams, explaining organisation of 

individual programs, are not included here since they can 

be easily obtained directly from the FORTRAN code by 

monitoring the CALL statements in their order of execution. 

Figures 6.1 and 6.9 essentially highlight a general concept 

of the organisation of the package by describing the flow of 

information and means of coordination of the simultaneously 

executed tasks. 

There are three main groups of programs in the 

package (Figure 6 .1) . The programs of the first group 

simulate the behaviour of the real network and provide 

measurement information which in practice is retrieved using 
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some telemetry system. This data is effectively the only 

source of information for the second group of programs 

monitoring the network. 

A major role of the monitoring programs is to supply 

information about the system state both for the human 

operator and control algorithms. Since the telemetered data 

is being updated without the intervention of a human 

intermediary the monitoring programs are said to be on­

line to the process. 

After checking topological observability of the 

system, with respect to the current set of valid 

measurements, the estimates of the state vector are 

calculated. This is followed by identification of bad data 

points which were not found during the pre-processing stage. 

Depending on the state estimation algorithm employed, the 

monitoring procedure involves either an iterative 

elimination of bad data from the set of valid measurements 

and recomputation of the state vector, or it simply marks 

erroneous measurements having rejected them in the course of 

the estimation. The results obtained with the monitoring 

programs are made available to the operator in the form of 

a print-out, graphical display and data file which is also 

used by control algorithms. 

The third group of programs closes the control loop 

by devising and implementing control action. The flow of 
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information between the programs implies that the 

algorithmically calculated controls are off-line to the 

process since they are implemented by a human operator. such 

a structure is .natural at the initial stage of the 

computerised monitoring and control of a water network. 

However, it must be emphasized that the computer assisted 

control can be easily converted into a full on-line control 

scheme since the system is monitored on-line. 

In order to achieve a degree of flexibility a highly 

modular structure of the software package has been adopted. 

Each task communicates with others via task conunon blocks 

and is therefore insensitive to the way in which the input 

data is being calculated. In particular, it is transparent 

for · the monitoring programs whether the telemetered ·data 

is generated by a simulator or supplied by a telemetry 

computer. It is also possible, within this structure, to 

test alternative algorithms without affecting the integrity 

of the software. 

The following sections of this chapter describe 

programs of the package in terms of their interactions 

with task conunon blocks and give software details. 

Task sizes and execution times reported in this 

chapter refer to the 34-node water distribution network. 
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6. 2 NETWORK SIMULATION PROGRAM 

The water network simulation program (Figure 6. 2) 

provides a facility to carry out on-line monitoring studies 

without recourse to a real-life telemetry system. The input 

data for the network simulator represents exact information 

about the system and, as such, are not available to the 

monitoring programs. They can only be modified by the 

control action of the operator. 

The simulator calculates an exact state vector, by 

applying a Newton-Raphson iterative procedure to the square 

set of nonlinear mass-balance equations, and passes it to 

the telemetry simulation program which calculates the 

values of the measurements. 

Software Details (SYSSYM) 

Size 

speed 

1570 lines of FORTRAN 77 code 

96 k bytes 

0. 8 S/ iter (PE 3220) 

6 . 3 TELEMETRY SIMULATION PROGRAM 

Using an exact state vector, supplied by the network 

simulation program, and information about the meter 

positioning the telemetry simulation program (Figure 6. 3) 

calculates the exact values of the measurements. In order to 
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obtain a realistic set of telemeasurements pseudorandom 

measurement noise is then superimposed on the meter 

readings. The program also enables the simulation of 

telemetry or instrumentation malfunction by making provision 

for the corruption of the measurement set by gross 

measurement errors and/ or topological errors. 

Software details (SYSTEL) 

Size 570 lines of FORTRAN 77 code 

38 k bytes 

speed ·a. 3 s (PE 3220) 

6. 4 OBSERVABILITY PROGRAMS 

The observabili ty routine (Figure 6. 4) checks whether 

the current set of measurement points can provide sufficient 

information to allow the computation of the state estimates. 

If the system is found unobservable the program generates 

pseudo-measurements which restore the observability. The 

program is also used to determine the detectability of bad 

data points after suppression of some measurements in the 

intial telemetered data. 

Two different programs to assess the topological 

observability of the network have been developed. The first 

program (OBSMATCH) uses the concept of maximum matching in 
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the bipartite measurement-to-branch graph and the second one 

(OBSTREE) is based on a direct search for an observable 

spanning tree of the network. 

Software details (OBSMATCH) 

Size 820 lines of FORTRAN 77 code 

37. 75 k bytes 

speed ·o. 1 s (PE 3220) 

Software details (OBSTREE} 

Size 1050 lines of FORTRAN 77 code 

43.25 k bytes 

Speed ·o .1 s (PE 3220) 

6. 5 STATE ESTIMATION PROGRAMS 

The state estimation program (Figure 6.5) plays a 

key role in the network monitoring package. It processes raw 

telemetered data, augmented by pseudo-measurements which are 

generated py the observabili ty routine, and calculates an 

estimate of the state vector. The output of the state 

estimator also includes estimates of the measurement 

residuals, thus enabling detection and identification of bad 

data points. 

Using the same structure of task common blocks two 
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state estimators based on the augmented matrix method 

(SYSESTLS) and on the linear programming approach (SYSESTLP), 

respectively, have been developed and implemented. 

Software details (SYSESTLS) 

Size 3280 lines of FORTRAN 77 code 

164.75 k bytes 

Speed - 1 . 2 s; iter (PE 3220) 

Software details (SYSESTLP) 

Size. 3970 lines of FORTRAN 77 code 

161 k bytes 

speed • 1 . 1 S/ iter (PE 3220) 

6. 6 BAD DATA PROCESSING PROGRAMS 

The input data· of the bad data detection. and 

identification program (Figure 6.6) depends on the 

estimator used to calculate the state vector. In the case of· 

the least-squares estimator the procedure requires 

information about the measurement residuals and nominai 

accuracy of the measurements. If the least absolute values 

estimator is employed the gross measurement errors can be 

identified by simply processing the measurement residuals. 

Additional information about meter positioning can be used 

by either method in order to improve the reliability of the 
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identification of multiple interacting bad data. 

Software details (POSLEAK 1 + MAIN) 

Size 300 lines of FORTRAN 77 code 

24 k bytes 

speed 0, 027 s (PE 3220) 

Software details (RESSENS + MAIN) 

Size 400 lines of FORTRAN 77 code 

28 k bytes 

speed 1. 2 s;cycle (PE 3220) 

6, 7 . VALVE CONTROL PROGRAM 

The valve control program (Figure 6. 7) uses a real­

time data base created by the monitoring programs. At this 

stage the telemetered data is expected to be free from bad 

data points and the estimate of the state vector is assumed 

to reflect the actual state of the system. The output of the 

program is the set of optimal valve controls which can be 

implemented directly, in on-line mode, or indirectly via the 

human operator. 

software details (VALCON) 

Size 2900 lines of FORTRAN 77 code 
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120 k bytes 

Speed • 1 . 1 S/ iter (PE 3220) 

6. 8 GRAPHICAL DISPLAY PROGRAM 

The software package facilitates presentation of the 

results of simulation, estimation and bad data processing 

routines both in tabular and graphical form. Consequently, 

the graphical display program (Figure 6. 8) has access to 

the exact, telemetered and monitored data files. The network 

is represented in the form of a diagram illustrating the 

main hydrological elements. The program allows for 

continuous zooming onto any part of the network and, 

according to the chosen magnification coefficient, for a 

varying amount of detail about the network to be displayed. 

Emergency states of the network such as leakages or control 

valve failures, which need further attention of the 

operator, are monitored in the form of alarms. 

Software details (NETDIS1) 

Size 1680 lines of FORTRAN 77 code 

110 k bytes 

speed 3 s CPU time 

20 s transmission (SIGMA colour 

graphic with transmission line 9600 

bit/sec) 
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6. 9 OPERATORS' INTERFACE PROGRAM 

An operator interface program (Figure 6.9) enables 

the operator to select and implement controls using 

information provided by the monitoring programs and 

optimal valve control algorithm. It also allows modification 

of the set of measurement points, the changing of Gaussian 

noise parameters and the simulation of the occurrence of bad 

data by corrupting the values of the telemeasurements. 

Software details (OPERATOR) 

Size 700 lines of FORTRAN 77 code 

48. 25 k bytes 

Speed depends on the display required 

(average: 3 s CPU time + 20 s 

transmission time with 9600 bit/ s 

transmission line) . 

6. 10 CONCLUDING REMARKS 

In the previous sections of this chapter the general 

architecture of the software package for real-time water 

network monitoring has been described. By observing which 

task common blocks. are made available to each individual 

program the data flow pattern within the package can be 

readily established. Since the number of interactions 

precludes a comprehensive discussion of the modes of 
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operation of the package within the format of this thesis, 

it is reasonable to focus the attention on one specific 

state of the system and to present only a sample of displays 

which are given to the operator. A detailed discussion of 

the results obtained with different programs being included 

in previous chapters. 

The set of three graphical displays presented here 

refer to the situation where the 34-node water supply 

network contains a leakage in the pipe between nodes 4 and 

20, control valves are monitored correctly, the telemetered 

data contains no gross measurement errors and the 

measurement configuration ensures a local measurement 

redundancy in every node of the network. Figure 6.10 gives 

the actual state of the system calculated by the network 

simulation program. The location of the metering points and 

the values of the corresponding telemeasurements are 

depicted in Figure 6.11 and the estimate of the system state 

is shown in Figure 6.12. The graphical form of display makes 

it easy to associate the numerical information with the 

network topology which is particularly useful in emergency 

operating conditions such as pipe ruptures or instrumentation 

malfunctions. While the Figures 6. 10 to 6. 12 give a good 

example of the form of an interface offered by the package 

they only represent a small fraction of the overall system 

and in particular they do not refer to the more specialised 

taE:JkS like the valve control or observabili ty testing. 
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CHAPTER VII 

CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER RESEARCH 

7.1 CONCLUSIONS 

In this work consideration has been given to a real­

time water network monitoring scheme which is a prerequisite 

of any form of on-line control and which in itself gives a 

significant saving of operational cost by providing an 

indication of the leakages and information about the current 

head profile in the whole network. 

It has been argued that, because of the possibility of 

the presence of bad data points among the measurements 

supplied by the telemetry system, it is essential that the 

measurement set possesses a degree of redundancy which 

enables rejection of spurious readings. As a consequence it 

has been necessary to depart from the load-flow solution of 

the network and to resort to the state estimation technique 

which can efficiently deal with an overdetermined set of 

measurement operations. 

Two methods of state estimation have been proposed: a 

least-squares algorithm based on the augmented matrix 
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approach and a least absolute values algorithm which has 

been formulated as a linear programme. The theoretical 

background of both methods and their implementation taking 

into account sparsity and numerical stability considerations 

have been discussed in chapter II. The results of tests 

conducted on two water systems have indicated that the least 

ab,solute values estimator is better sui ted for the purpose 

of on-line network monitoring. However, it is thought that 

in the· case of a weak measurement configuration or for a 

large water network a hybrid approach amalgamating the 

features of the least-squares and least absolute values 

estimators could be profitably developed. 

Bad data detection and identification problems have 

been investigated in Chapter III. For the least-squares 

estimator a new technique of calculating the residual 

sensitivity matrix has been proposed. It enables an 

efficient and numerically stable implementation of the bad 

data processing routine. The difficulty associated with this 

approach seems to ·be the fact that it is necessary to 

reestimate the state vector after identification of each bad 

data point since the method based on hypothesis testing 

guarantees identification of one measurement error at a 

time. 

Another method of identification of bad data has been 

developed in connection with the least absolute values 

estimator. The procedure merely checks the magnitude and 
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sign of the weighted measurement residuals since the 

topological errors are shown to be equivalent to a pair of 

gross mass-balance errors in the end-nodes of the pipe 

concerned. The computational requirements of the procedure 

are very small, thus favouring the latter approach for on­

line water network monitoring. 

Numerical tests carried out on the realistic 34-node 

system using both routines have highlighted the relationship 

between the error detectability and measurement redundancy. 

It has been concluded tha~ by performing the observability 

test it is possible to .determine in which areas of the 

network bad data can be identified using the current 

measurement set. 

The observability problem has been studied in Chapter 

IV. By analysing an approximate measurement model it has 

been shown that the observability test is equivalent to the 

search for a maximum spanning tree with measurement 

assignment in the augmented network graph. Consequently, the 

procedure does not require any floating-point computations. 

Two original combinato,rial methods have been proposed to 

test topological observabili ty of the water network. The 

first method searches for a maximum matching in a 

measurement-to-edge bipartite graph and attempts to build a 

spanning tree of the network using the branches with 

measurement assignment. The second method is based on the 

direct search for an observable spanning tree. The 
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equivalence of the preservation of the path property and the 

existence of the observable spanning tree has been exploited 

in order to devise a procedure to correct possible 

misassignments during the first stage of the algorithm. Both 

algorithms are computationally inexpensive, thus applicable 

to on-line observability checks on currently available 

measurement data. 

Using a reliable data base created by the monitoring 

programs the problem of reduction of distributed leakages, 

which complements identification of pipe ruptures, has also 

been studied. The application of the state estimation 

technique proved to be an efficient method of calculating 

the optimal valve controls which minimize the overpressures 

in the network. The economy of the optimal valve control 

policy is shown by comparison of the volume of leakages for 

uncontrolled, manually controlled and optimally controlled 

network. 

A general concept of the organisation of the water 

network monitoring software package has been described in 

chapter vrr. A useful degree of flexibility has been 

achieved by adopting a modular structure of the package in 

which the programs communicate with others via task common 

blocks. 
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7. 2 SUGGESTIONS FOR FURTHER RESEARCH WORK 

The following topics related to the problems discussed 

in this thesis deserve ·further research effort: 

1) Development of the state estimation procedure which 

amalgamates the useful features of the least- squares and 

least absolute values estimators. The objective is to 

achieve an algorithm which has a linear computational 

complexity, good error detection features and is numerically 

stable; 

2) Assessment of the advantages of treating the 

equations corresponding to zero load as equality constraints 

for the least-squares ·problem using the augmented matrix 

formulation. This approach has been proposed in reference 

[10) to be applied to the normal equation technique in order 

to save computing time and possibly reduce the number of 

iterations in Newton's method. The investigation of the 

possible effects of the use of equality constraints on the 

bad data identification procedures is also recomrranended; 

3) study· of an alternative approach to bad data 

identification problem in connection with the least-squares 

estimator; 

4) Use of the reliability indices in observability 

studies; 

5) Development of the combinatorial method of 

assessing the quality of the estimates calculated using the 

prespecified measurement set; 
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6) Research on the application of decomposition 

techniques to the water system state estimation problem; 

7) Study of the problems of bad data detection, 

identification 

estimators. 

and observabili ty related to two-level 
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APPENDIX A 

MEASUREMENT AND NETWORK MODEL 

A. 1 THE NONLINEAR MEASUREMENT MODEL 

strictly speaking, a water distribution system model 

should represent the full dynamic behaviour since consumer 

loads, system supplies and reservoir volumes are continuously 

varying in time. However, even under normal operating 

conditions the formulation of a valid and feasible dynamic 

model for a water system is a ver.y difficult task. To 

overcome this problem, one makes use of the fact that under 

normal operating condi tiona the variations in the system 

state are slow. Therefore, it is reasonable to consider that 

the water system is in steady state for a limited time 

interval. With this assumption, a static model for the water 

system can be formulated. 

The quanti ties which are usually monitored in a water 

system are: i) nodal heads; ii) fixed-head-node flows; iii) 

consumer loads and i v) pipe flows. Let z denote the mxl 

vector of measurements taken in a N-node water system with F 

fixed-head-nodes, and assume that :!:_
0 

is the vector of the 

actual values for the respective measured quanti ties. In 

practice, the elements of the vector z differ from the 
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0 corresponding elements of z . Meter inaccuracies, instru-

mentation malfunction, communication errors in transmitting 

the measurements to the control centre, effects of analog to 

digital conversions, .etc. make up the difference between z 

0 
and z . This difference is of random nature, and it is 

modelled as a zero-mean random variable w with covariance 

matrix R. Hence, the measurement model can be written as 

0 
z = z + w (A .1) 

E {~} = 0 ~T} E{~ = R (A. 2) 

where E { } is the expectation operator. 

Assuming that the pipe and other network element 

parameters are known, all the measurable quantities can be 

expressed as non-linear functions of the nodal heads and 

fixed-head-node flows, which are the state variables of the 

system. Define n = N + F. The state vector is an nx1 vector 

x whose first N elements are the nodal heads and the 

remaining F elements are the fixed-head-node flows. The non-

linear. vector function .51 ( ) which relates ~ 0 
to x is based 

on Kirchhoff's laws, and depends on the network structure 

and parameters. The non-linear measurement model is then 

expressed as 

z = ..5l. (~) + w 

J 
E{W} = 0 

T 
E{~ ~ ) = R 

(A. 3) 

(A.4) 
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where 

z : mxl vector of measurements 

.sr (.) : mxl nonlinear vector function relating the 
measured quanti ties and the states 

x :nxl state vector, formed by N nodal heads and 
F fixed-head-node flows 

w : mxl zero-mean random vector which models the 
measurement errors 

R : mxm covariance matrix of the measurement errors 

A. 2 THE LINEARISED MODEL 

Consider a given point ~k of the state space around 

which the linearisation of the model given by Eq. (A.3) is 

to be performed. A first-order Taylor series approximation 

for the nonlinear vector function .sr< } is given by 

.sr (~) = g (~k) + --- ·(~-~k) 
Ox 

x=x - -k 

In addition, define 

mxn Jacobian matrix and 
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(A. 6) 
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Therefore, Eq. (A. 5) may be written as 

(A. 8) 

By substituting Eq (A.B) to Eq (A.3) and rewriting Eq 

(A. 4), the linearised model is finally expressed 

(A. 9) 

E {~} = 0 
T 

E {~ ~ } = R (A. 10) 

where 

(A.ll) 

A. 3 HEAD-FLOW RELATIONSHIPS OF NETWORK ELEMENTS 

There is a wide variety of network elements existing 

in a water distribution system. However, for the purpose of 

the network modelling it is sufficient to consider only 

several types of elements which have distinctly different 

characteristics. For example, there is no need to devise 

separate models for different control valves since, for the 

purpose of network flow calculations, the adjustment of a 

valve resistance gives sufficiently good approximation. 

The following elements are usually employed to build 

up a network model [ 205] . 
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A.3.1 Pipes 

The head loss characteristics of a pipe between nodes 

i and j depends on the hydraulic resistance between the 

nodes and can be modelled as follows: 

2 631h.-h.j0,54 
= 0. 27746 CHW· .. D. . . J ~ 

~J ~J 
L .. 
~J 

(A. 12) 

where qij : flow from node j to node i (m 
31 s) 

CHW. . : Hazen-Williams coefficient for pipe 
~J 

D. . diameter of pipe (em) 
~J 

L. . length of pipe (m) 
~J 

h. head at node j (mAq) 
J 

h. head at node i {mAq) 
~ 

This is usually used in the following form to give a 

consistent sign for flow as: 

(A.l3) 

where r .. is the resistance between nodes i and j given by 
~J 

r .. 
~J 

-1,85 -4 87 = 1 0 . 7 4 2 CHW. . L . . D . . . 
~J ~J ~J 

21.7 

(A.l4) 



A. 3. 2 Parabolic Pumps 

The pump characteristic can be approximated by a 

second order polynomial 

h. -h. 
l. J 

2 
=aq .. +bq .. +c 

l.J l.J 
(A. 15) 

where a, b and c are empirically determined constants. Thus 

2 0 5 
-b ± {b -4a(c-lhi-hjl)} · 

qij = 
2a 

taking the positive root for constant •a• positive and vice 

versa, and setting q .. to zero for h.-h. > c or for negative 
l.J l. J 

or equal to zero value of 
2 

{b -4a(c-lh.-h.l)} 
l. J 

A. 3. 3 Pressure Reducing Valves 

These may be modelled by assuming that between nodes 

i and j there is a valve with a setting equal to HPRV. If 

?j ) ffpRV) hi the valve reduces the head to HPRV to give 

a head drop of (HPRV -hi) and flow takes place from j to i 

given by: 

-0,54 0 54 
= rij I~RV-hi I . (A.l6) 

If hi > HPRV the valve shuts off, no reverse fl.ow takes 

place and hence q .. = o 
l.J 
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If h. < H and h. < H 
J PRV 1 PRV the valve acts as a pipe with 

a head drop of (h.-h.) . 
J 1 

A. 3. 4 Non-Return Valves 

In a pipe fitted with a non-return valve, the loss in 

head due to the valve itself is usually small and may be 

either neglected or included in the pipe resistance, thus 

{ 

-0 54 -0 46 
r.. · (h.-h.) lh.-h.l · = 1J J 1 J 1 

0 

h. >h. 
J 

1
(A.l7) 

hj(hi 

A. 3. 5 Control Valves 

These may be manually or automatically controlled and 

are currently modelled for both non-return and two-way 

valves by assuming that control varies the resistance of 

the equivalent pipe to give 

-0,54 = r ... 
1J 

-0 46 
(h.-h.)lh.-h.l . 

J 1 J 1 
(A. 18) 

where r. . is now the independent valve control parameter 
1J 

which can vary from r ij MIN for 

r .. MAX for a valve fully closed 
1J 
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A.3.6. Fixed-Head Nodes 

These nodes correspond to reservoirs or boreholes 

(feeding head dependent pumps, valves, etc) with fixed or 

known head variation. The magnitude of injout-flow at these 

nodes q. does not depend on the nodal head h . 
1 1 

and is consi-

dered as a separate state variable. 

A. 4 MEASUREMENT SIMULATION 

In section A.l, the measurement errors have been 

modelled as a zero-mean random variable with covariance 

matrix R. The measurement errors are usually assumed to be 

uncorrelated, which is equivalent to saying that matrix R is 

considered diagonal. Each diagonal element of R corresponds 

to the variance of the respective measurement error. 

In this work, the measurement errors are simulated 

according to the formula 

where 

Z. 
1 

0 z. 
1 

a 

k. 
1 

(A. 19) 

i-th measurement; 

true value of the i-th measured quantity; 
obtained from a simulator; 

standard normal random variable N(O, 1), 

constant representing meter accuracy. 
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,j 

2 
The variance of the i-th measurements ai , is given by 

= 
0 2 

(a·k.·z.) 
l. l. 

(A.20) 
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APPENDIX B 

JA~OBIAN MATRIX TERMS 

B. 1 MEASURABLE QUANTITIES 

This appendix describes the equations to compute the 

elements of the Jacobian matrix used in the water system 

state estimation problem. The measurable quantities are the 

nodal heads, Hi, the fixed-head-node flows, Qi, the consumer 

loads, L. , and the pipe flows F ... 
1 1J 

Using the notation 

introduced in Appendix A these quantities may be calculated 

as 

H. 
1 

Qi 

L. 
1 

F. 1j 

where M. 
1 

= 

= 

= 

= 

the node i. 

h. (B. 1) 
1 

qi (B. 2) 

qi + E qij (hi, hj) (B. 3) 
jEMi 

qij (hi 1 hj) (B. 4) 

denotes the set of nodes which are incident to 
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B. 2 JACOBIAN MATRIX TERMS 

The Jacobian matrix used in the linearised measurement 

model (Eq. A.9) can be partitioned according to the type of 

measurements 

where H, .Q_, ~' .E are the vectors of measurable quantities, 

and h, g are the components of the state vector 

The elements of matrix J in Eq (B.S) can be expressed 

in terms of the quanti ties defined in Eqs. (B .1) - (B. 4) 

OHi 
(B. 6) = 1 

Ohi 

OQi 
(B. 7) = 1 

Oqi 

OLi 
[ 

Oqij(hi,hj) 
{B. B) = 

Ohi jEMi Ohi 
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OLi Oq .. (h. I h.) 
~J ~ J 

= (B. 9) 
Oh. 

J Ohj 

OLi 

={: 
if i~·j is a fixed-head node 

(B.10) 
o· qj otherwise 

OFij Oqij(hi1hj) 
(B. 11) = 

Obi Obi 

OF .. Oq .. (h. I h.) 
~J ~J l. J (B. 12) = 

Ohj Ohj 

Taking into account Eqs. (A. 12) (A. 18) the partial 

derivatives of elements flow can be calculated 

·- for pipes and control valves 

Oq .. (h. I h.) 
~J ~ J 

Ohi 

- for parabolic pumps 

- for pressure reducing valves ( if hj)~RV)hi ) 

Oq .. (h. I h.) 
l.J l. J 

Oh. 
l. (B.15a) 
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- for pressure reducing valves otherwise ) 

Oq .. (h. I h.) 
~J ~ J 

--~~----=- = 0 

Ohi 

- for non-return valves ( if h. >h. 
J ~ 

(B. 15b) 

Oq .. (h., h.) 
~J ~ J - 0 54 - 0 4 6 --=----=-- = -o. 54 r. . · Jh .-h. 1 · (B .16a) 

Ohi 
~J J 1 

- for non-return valves ( if h. (h. ) 
J 1 

Oq .. (h., h.) 
~J ~ J 

--~~----~- = 0 

Ohi 
(B. 16b) 

Equations (B. 13) (B. 16) show that the elements of 

the Jacobian matrix can be obtained using the same 

expressions that appear in the computation of the measurable 

quantities. By recognizing this fact, one can get noticeable 

savings of computing time in the implementation of the state 

estimators. 
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APPENDIX C 

TEST NETWORK PARAMETERS 

C. 1 11-NODE TEST WATER SYSTEM 

The 11-node water distribution system of Fig. C.1. 

with 13 pipe-lines, two parabolic pumps, one fixed-head 

pump, and three fixed-head-nodes has been used to perform 

preliminary tests on estimation and bad data processing 

methods developed in this work. The system has been. taken 

from reference ( 204], and its parameters are displayed in 

Table c .1. 

C. 2 34-NODE SYSTEM (DONCASTER AND THORNE ZONES) 

The realistic 34-node system representing part of the 

Yorkshire water Authority network is depicted in Fig. C.2. 

This system has been previously used in water system control 

studies (63), [202]. Its pipe and pump parameters are given 

in Table c . 2. 
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fixed- head node 

parabolic pump 

fixed-head pump 

one-way valve 

pressure reducing valve 

measurement point 

Figure c. 1 11-node system 
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TABLE C.1 

Parameters of the 11-node system 

LINES LENGTH DIAMETER HAZEN-WILLIAMS HEAD-LIMIT 
[mJ [mJ COEFFICIENT [mAql 

10- 1 914. 0.406 100 
2- 1 914. 0.305 120 
3- 2 610. 0.254 110 
4- 2 610. 0.305 115 

10- 4 610. 0.305 110 
4- 3 610. 0.254 100 
6- 7 610. 0.254 110 
8- 7 610. 0.203 100 

11-8 610. 0.305 110 
7-11 1219. . 0.254 100 
8- 6 610. 0.254 120 
6- 5 1219. 0.203 100 

3- 5 1219. 0.203 110 109.73 

9-11 305. 0.406 65 65.52 

PARABOLIC a b c 
PUMPS 2 5 2 

[s /m 1 [s/m 1 (mJ 

7- 4 -190.1 0.0 60.96 
9-10 -1140.1 0.0 85.39 

228 



~ load or inflow 

0 load node 

D fixed-head node 

---{>- parabolic pump 
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0 measurement point 

Figure c. 2 34-node system 
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TABLE C.2 

Parameters of the 34-node system 

LINES LENGTH DIAMETER HAZEN-WILLIAMS 
[mJ [mJ COEFFICIENT 

4- 3 607. 0.457 110 

20- 4 454. 0.457 110 
23-20 2783. 0.229 105 

23-19 304. 0.381 135 
20-12 3383. 0.305 105 

20-22 1768. 0.457 110 

22-23 1015. 0.381 135 

19-18 1097. 0.381 135 

3-31 1930. 0.457 110 

31- 2 3151. 0.305 100 

22-21 762. 0.457 110 

18-17 914. 0.229 125 

18-16 823. 0.305 140 

16-14 411. 0.152 100 

14-15 701. 0.229 110 

16-13 1072. 0.229 135 

13-15 864. 0.152 90 

15-10 711. 0.152 90 

10-17 832. 0.152 90 

17- 9 ·2334. 0.152 100 

17-21 1969. 0.229 95 

21-11 777. 0.229 90 

11-12 542. 0.229 90 

21-30 1600. 0.457 110 

30-12 250. 0.305 105 

2- 5 1028. 0.229 110 

30-24 444. 0.229 90 

30- 6 743. 0.381 100 

30- 9 931. 0.229 125 

9-10 2689. 0.152 100 

5-7 326. 0.152 100 

7- 8 844. 0.229 110 

5-6 1274. 0.152 100 

6- 8 1116. 0.229 90 

6-25 615. 0.381 110 

8- 9 1407. 0.152 100 

1-29 427. 0.254 100 

1-26 2098. 0.355 100 
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TABLE C.2 <conU 

LINES LENGTH DIAMETER HAZEN-WILLIAMS 
(mJ (mJ COEFFICIENT 

25- 8 500. 0.381 110 
24- 6 300. 0.229 90 
26-29 1500. 0.355 100 

PARABOLIC a b c 
PUMPS 

2 5 2 
(s /m 1 (s/m I (mJ 

28- 4 -4921.8 0.0 122.44 
32-20 -444.4 -385.4 102.42 
27-19 . -812.3 89.7 62.03 
29-18 -318.6 0.0 18.89 
34- 1 -812.3 89.7 44.50 
33-29 -4162.6 138.4 75.47 
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APPENDIX D 

STORAGE SCHEMES IN SPARSITY PROGRAMMING [ 89] 

0.1. INTRODUCTION 

sparsity techniques are used in the implementation of 

virtually all computer programs developed in connection with 

this thesis. One of the most important factors in the 

processing of sparse matrices is the selection of the 

appropriate storage schemes. Basically, two types of storage 

schemes are used, depending on whether the sparsity pattern 

of the matrix is expected to change or not. If the structure 

of the matrix under consideration is known ·a priori' , a 

static storage schem~ may be used. For instance, this is the 

scheme employed to store the Jacobian matrix in state 

estimation calculations. on the other hand, there are cases 

where the processing of a sparse matrix changes its 

structure; as- a result, the storage scheme for those 

matrices should make provision for the changes. such 

schemes are called dynamic storage schemes. Both techniques 

are described in the following sections. 

According to how a matrix is formed, it can be stored 

row-by-row or column-by-column. Throughout this appendix it 

is assumed that the matrices are formed in a row-by-row 
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fashion. The extension for columnwise storage is 

straightforward. 

D. 2. A STATIC STORAGE SCHEME 

static schemes are employed when the whole structure 

of the sparse matrix to be dealt with is known. The static 

storage scheme that is used in this work requires the use of 

three different arrays to store an mxn matrix. 

1) An integer array JCOL, containing the column 

indices of the nonzeros as encountered when scanning the 

matrix by rows, from row 1 tom; 

. 2) An integer array XROW of length n+l, containing 

the .pointers to the beginning of each row in JCOL. The last 

element of XROW points to the next available storage 

location in JCOL; and 

3) A real (double precision) array VAL of the same 

length as JCOL, containing the numerical values of the 

nonzero elements, in the same order as their column indices 

appear in JCOL. 

This method is 

scheme. 

called a row-pointer/column-index 

As an example, consider the matrix A. The row-pointer; 

. column-index scheme for this matrix is given in TableD .1. 
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-8 0 1 -3 

0 0 4 2 

A = 0 -3 0 0 (0.1) 

1 0 0 -2 

0 6 1 0 

TABLE 0.1 

XROW JCOL VAL --

1 1 1 1 -8 

2 4 2 3 1 

3 6 3 4 -3 

4 7 4 3 4 

5 9 5 4 2 

6 11 6 2 -3 

7 1 1 

8 4 -2 

9 2 6 

10 3 1 

11 - -

The extra element in XROW is included for 

programming purposes. 

The elements of row I of a sparse matrix stored as 

above can be examined by using the flow chart of Fig. D . 1 . 
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JBGN = XROW (I) 

JEND = XROW (I+ 1) - 1 

DO 

J = JBGN, JEND 

JELEM = JCOL (J) 

VALUE = VAL (J) 

CONTINUE 

Figure D. 1 Examination of elements of row I of a 

sparse matrix stored accordind to the 

row-pointer/column-index scheme. 
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D. 3. A DYNAMIC STORAGE SCHEME 

When the operations performed on a sparse matrix make 

it possible that zero elements become nonzeros, the use of 

the storage scheme described in section 0.2 is not 

convenient. To allow the storage of new nonzeros, one should 

resort to a dynamic scheme. The most used type of dynamic 

scheme employs linked lists. A simple dynamic scheme for 

row-oriented storage using a one-way linked list requires 

four arrays: 

1) An array of pointers, denoted by HEAD. HEAD(I) is 

the address in array 

nonzeros for row i; 

JCOL which starts the list of 

2) An integer array JCOL containing the column 

indices of the nonzeros of the sparse matrix, which are not 

arranged in any particular order; 

3) An integer array LINK of the same length as 

JCOL. The element LINK(k) give the position in JCOL where 

the next nonzero which is in the same row as JCOL(k) can 

be found. If LINK(k) = -i, it indicates the end of the list 

of nonzeros for row i; and 

4) A real (double precision) array VAL of the same 

length as JCOL, with the numerical values for the 

corresponding elements of JCOL. 

Matrix A of Eq. 0.1 could be stored by using a 
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dynamic scheme as shown in Table D . 2. 

TABLED. 2 

HEAD JCOL VAL LINK -- --

1 7 1 4 -2 -4 

2 5 2 1 1 1 

3 6 3 2 6 10 

4 2 4 3 1 8 

5 3 5 3 4 9 

6 2 -3 -3 

7 1 -8 4 

8 4 -3 -1 

9 4 2 -2 

10 3 1 -5 

To examine the elements of row I of a matrix stored as 

a linked list, the flow chart of Fig. D. 2 can be used. 
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K = HEAD (I) 

J = JCOL (K) 

VALUE = VAL (K) 

K = LINK (K) 

Figure D. 2 Examination of row I of a sparse matrix 

stored according to the dynamic scheme 

using column links. 
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APPENDIX E 

GRAPH THEORY 

E. 1 GRAPHS AND SUBGRAPHS ( 75], ( 102] 

A graph G = (V,E) consists of a set of objects 

called vertices, and another set 

E={e1 ,e2 , ... } whose elements are called edges, such that 

each edge ek is identified with an unordered pair (v., v.) 
l. J 

of vertices. The vertices v. , v. associated with edge ek are 
l. J 

called the end vertices of ek. The ends of an edge are said 

to be incident with the edge, and vice-versa. Graphs are 

usually represented by diagrams in which the vertices are 

indicated by points and each edge by a line connecting its 

end vertices . 

An edge can have identical end vertices, in which case 

it is called self-loop. If the end vertices of an edge are 

distinct, it is called a link. It is possible to have more 

than one edge associated with the same pair of vertices. 

such edges are said to be parallel. Two non-parallel edges 

are adjacent if they are incident to a common vertex; and 

two vertices are adjacent if they are the end vertices of 

the same edge. The number of edges incident on vertex v, 

with self-loops counted twice, is called the degree of 
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vertex v. 

A graph is simple if it has neither self-loops nor 

parallel edges. A bipartite graph is one whose vertex set 

can be partitioned into two subsets, X and Y, so that each 

edge has one end in X and one end in Y. The partition (X,Y) 

is called a bipartition of the graph. 

A graph g is a subgraph of the graph G if all the 

vertices and all the edges of g are in G, and each edge 

of g has the same end vertices in g as in G. A spanning 

subgraph of G is a subgraph of G whose vertex set is 

equal to the vertex set of G . 

E. 2 . PATHS AND CONNECTION [ 75] 

A walk is a finite alternating sequence of vertices 

and edges, beginning, and ending with vertices, such that 

each edge is incident with the vertices preceding and 

following it. No edge appear more than once in a walk, but a 

vertex may appear more than once. 

Vertices with which a walk begins and ends are called 

its terminal vertices. If a walk begins and ends at the same 

vertex, it is called a closed walk. Otherwise, .it is an 

open walk. 

A path is a walk in which no vertex appears more than 

once. A number of vertices in a path is called the length of 

the path. 
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A closed walk in which no vertex, except the initial 

and final vertex, appears more than once is called a circuit 

or a loop (not to be confused with a self-loop). 

Two vertices u and v of a graph G are said to be 

connected if there is a path connecting them in G. A graph 

G is connected if there is at least one path between every 

pair of vertices in G. Otherwise, G is disconnected. A 

disconnected graph consists of two or more connected graphs, 

each of them is called a component of the graph G. 

E. 3 TREES AND FORESTS 

A tree is a connected graph with no loops. The 

following are some of the properties of trees, whose proofs 

can be found in ( 75] : 

a) There is one and only one path between every two 

vertices in a tree; 

b) A tree with n vertices has n-1 edges; 

c) Any connected graph with n vertices and n-1 

edges is a tree; and 

d) Every tree with two or more vertices has at least 

two vertices of degree one. 

The distance between two vertices in a tree is the 

number of edges in the (unique) path connecting them. 

A tree in which one vertex, called root, is 
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distinguished from all the others is called a rooted tree. 

A tree T is said to be a spanning tree of a 

connected graph G if T is a spanning subgraph of G. 

A forest is a graph wi, th no loops. A disconnected 

graph with k components has a spanning forest, which is 

the collection of k spanning trees, one for each 

component. Every connected graph has at least one spanning 

tree. 

An edge of a spanning tree T is called a branch of 

T. The edges of G that are not in T are called chords. 

A connected graph of n vertices has n-1 tree branches 

and ~-n+1 chords which form a cotree. 

E. 4 INCIDENCE MATRIX 

Let G be a graph with n vertices, e edges and no 

self-loops. Define the elements of an nxe matrix A whose 

n rows correspond to the n vertices, and e columns 

correspond to the e edges, as follows: 

a. = 1 I if the j-th edge e. is incident on the i-th 
~j J 

vertex vi; 

a. = 0 I otherwise 
~j 

such a matrix is called the incidence matrix A for 

the graph G. 

The following are some characteristics of incidence 
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matrices. 

a) Since every vertex is incident on exactly two 

vertices, each column of A has exactly two 1'S; 

b) The number of 1's in each row equals the degree 

of the corresponding vertex. 

rt. can easily be proved that the rank of an incidence 

matrix of a connected graph G with n vertices is n-1. 

Therefore, by removing any one row from the incidence matrix 

of a connected graph, the remaining (n-1) xe matrix is of 

rank n-1. Such an (n-1}xe submatrix of A, A , 
r 

is called a 

reduced incidence matrix, and the vertex corresponding to 

the deleted row in A is the reference vertex. 

Given that a tree is a connected graph with n 

vertices and n-1 edges, the reduced incidence matrix A 
r 

for a tree is nonsingular. 

The following theorem expresses a very important 

property of the submatrices of A. 

Theorem E .1 

Let A be an incidence matrix of a connected graph G 

with n vertices. An (n-1) x (n-1) submatrix of A is 

nonsingular if and only if the n-1 edges corresponding to 

the·· n-1 columns of this matrix constitue a spanning tree 

in _G. 
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E. 5 DIRECTED GRAPHS 

A directed graph G consists of a set of vertices 

and a 

mapping '.It that maps every edge onto some ordered pair of 

vertices (v. , v . ) . A directed graph can be represented by a 
l.. J 

diagram where a vertex is indicated by a point and an edge 

by a line segment between v. and v . , with an arrow whose 
l.. J 

tail is v. and whose head is v .. 
l.. J 

The indegree of a vertex v in a directed graph is 

the number of edges with head v, whereas the outdegree of 

v is the number of edges with tail v. 

A direct walk from the vertex v. to a vertex v . in a 
l.. J 

directed graph is an alternating sequence of vertices and 

edges beginning with v. and ending with v . 
l.. J 

such that each 

edge is oriented from the vertex preceding it to the vertex 

following it. A directed path in a directed graph is a 

directed walk in wh.:i;ch no vertex appears more than once. 

E. 6 INCIDENCE MATRIX FOR DIRECTED GRAPHS 

The incidence matrix of a directed graph with n 

vertices, e edges and no self-loops is an nxe matrix A 

whose rows correspond to vertices, and columns correspond to 

edges of the directed graph, such that 

a .. = 1 , if the i-th vertex is the tail of edge j 
.l.J 

a .. =-1 , if the i-th vertex is the head of edge j 
l..J 

244 



a .. = o, 
~J 

if the i-th edge is not incident to i-th 
vertex 

The rank of the incidence matrix of a connected 

directed graph of n vertices is n-1. Deleting any one row 

from A, the (n-1)xe reduced incidence matrix A 
r 

is obtained. 

The vertex corresponding to the deleted row is called 

reference vertex. 

As in the case of nondirected graphs, the nonsingular 

matrices of order n-1 of A are in one-to-one 

correspondence with the spanning trees of the connected 

directed graph G of n vertices represented be A. 
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