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ABSTRACT

This thesis 1is _concerned with the development of a
computer-based, real-time monitoring scheme which 1is a
prerequisite of any form of on-line control. A new concept,
in the field of water ﬁistribution systems, of water system
state estimation 1is introduced. Its function is to process
redundant, noise-corrupted telemeasurements in order to
supply a real-time data base with reliable estimates of the
current state and structure of the network. The information
provided by the estimator can then be used in a number of

on-line programs.

In view of the strong nonlinearity of +the network
equations, two hethods of state estimation, which have
enhanced numerical stability, are examined in this thesis.
The first method uses an augmented matrix formulation of a
classical least-squares problem, and the second is based on
a least absolute value solution of an overdetermined set of
équétions. Two water systems, one of which is a realistic
34-node network, are used to evaluate the performance of the

proposed methods.

The problem of bad data processing and its extension
to the validation of network topology and leakage detection
is also examined. It is shown that the method based on

least absolute values estimation provides a more immediate



indication of erroneous measurements. In addition, +this
method demonstrates the useful feature of eliminating the

effects of gross errors on the final state estimate.

The important question of water system observability
is then sgtudied. Two original combinatorial methods are
proposed to check topological observability. The first one
is an indirect technique which searches for a maximum
measurement—to—branch matching and then attempts to build a
spanning tree of the network graph using only the branches
.with measurement assignment. The second method is a direct
search for an obsgervable spanning tree. A number of systems
are used to test both techniques, including a 34-node water

supply network and an IEEE 118-bus power system.

The p;oblem of minimisation of distributed leakages is
solved efficiently using a sState estimation technique.
Comparision of the head profile achieved for the calculated
optimal valve controls with the standard operating
conditions for a 25-node network indicates a major reduction

of the volume of leakages.

In the final part of this thesis a software package,
which Simulates the real-time operation of a water.
distribution system, is described. The programs are designed
in such a way that by repiacing simulated measurements with

live telemetry data they can be directly used for water

network monitoring and control.
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CHAPTER I

INTRODUCTION

1.1 EVOLUTION OF THE CONTROL OF WATER DISTRIBUTION SYSTEMS

During the past fifteen years there has been a
considerable investment of research in the field of water
distribution systems. The reasons for this are complex but
perhaps the most important is the fact that a typical water
network expanded to the point where the ability of the human
operator to perceive and process information became - a

hindering factor in achieving optimal operational decisions.

In the first attempt to aleviate the problem the use
of a hard-wired 1logic [240] 1later replaced by computer
software [275], [43) was proposed. In these schemes selected
telemetered variables were used for control purposes, and as
they exceeded certain limits, supplied by the operator as
set points, control action was triggered. This approach was
found to be simple aﬂd easy to implement but it suffered
_from several major drawbacks. First, it provided no insight
into the actual state of the network since it treated the

system as a control °"black box'. Secondly, the controls were




deviéed for normal operating conditions and such events as
pump failure or heavy industrial consﬁmption could result in
improper control action. And finally, the policy of a single
variable feedback ignored the interdependence of different

measurements and controls.

The application of a regyression model in a
computerised control scheme {126], (72] overcame the
latter drawback of a heuristic approach, nevertheless its

usefulness remained 1limited to standard. operation of the

network.

A natural progression f;om the heuristic approach was
to develop a mathematical model of a water network and to
compute flows and pressures for predicted consumptions. This
aproach was introduced, with respect to water systemé, by
Gilman, Goodman and Metkowski [122] and then used by Gilman,
Demoyer and Goodman [125] for controlling a pressure

digtrict in Philadelphia.

_ Better understanding of the relationships Dbetween
operqfional parameters of the water network,_which came from
simulation studies, resulted in a more systematic approach
to the problem of optimal netwofk operation. Different
researchers [106], [107], [250],‘[251] proposed new, more
efficient methods of optimisation of the pumping cost which,
from the point of view of their computational requirements,

were applicable to on-line control. However, all of these



algorithms involved solving an exactly determined set of
network equations. As a result, an erronecus estimate of a
consumer Jload, or an inaccurate value of a pipe parameter
could invaiidate all computations. This fact was realised
early and it stimulated extensive research aimed at improving
accuracy of consumption prediction [243]), [108], [201] and
validation of static and. dynamic network parameters [202],
[203]. A complementary approach, where the calculated pipe
flows are iteratively corrected so as to force an agreement
between measured and calculated nodal heads, was proposed in
[67], [68] and is known as an inverse network solution.
Unfortunately, computational requirements of this method are

prohibitively high due to the slow convergence.

The need for another, more flexible approach to water
network monitoring is also emphasized by the fact that many
of the water authorities have recently implemented
computérised telemetry systems which apart from the usual
pump head, pump flow and reservoir level indications can
provide in real-time a whole range of additional measurement
information such as control valve openings or head in

selected network nodes.

Our present work introduces a technique which i3
computationally efficient and which processes all available
measurements. This technique, new 'in the field of water

systems, is known as state estimation and has been



successfully applied in the electrical power system control
[220], [221], ([222], [161]}. In the context of the water
supply industry this research demonstrates applicability of
computer-based, advapced network monitoring which is a
prerquisite of any form of on-line control. The problems
discussed in this thesgis complement other research
concentrated on minimisation of Pumping cost. A strong
economical motivation for efficient identification of pipe
fractures and suppression of distributed leakages comes from
the fact that, according to the water authorities reports,

up to 30% of the water available may be 1lost through

leakages in the pipe network.

1.2 THE ROLE OF STATE ESTIMATION IN THE WATER

SYSTEM OPERATION

A radical change in the philosophy of water S};stem
.operation manifestsl itself by the emergence of computerised
{:elemet_ry which can potentially give greater insight into
the system state. However this potential can only be fully
realised if the appropriate information processing software
is employed in order to monitor +the network in térms of
variables which are convenient for use both by a human
operator and» control algorithms. It is now a common practice
to describe a water network by defining heads at all network
nodes and inflows at fixed-head nodes which are the
components of the state vector of the system. Given this

information and the static parameters of the network, all



other variables of interest, such as pipe flows or consumer

loads, may be calculated immediately.

The most straightforward method of obtaining the
values of the state variables is to directly measure them.
However, taking into account the size of a real-life water
network and the cost of instrumentation and associated

telemetry, this possibility becomes impractical.

Another way of finding the system state is to solve a
set of mass-balance equations which are defined using the
network topology data, the measured or estimated consumer
loads and the inflows into the system. This method, if well
implemented, is computationally efficient and is now widely
used in off-line water network simulation studies. However,

its application to on-line control scheme encounters the

following difficulties:

l) The algorithm has no systematic way of dealing with
measurement inconsistency. If one measurement 1is
incorrect or 1lost, the load-flow approach gives
incorrect results or no result at all, respectively,

since it processes a set of independent equations.

.2) The 1load-flow method provides no means to assess

the confidence on the final results.

3) The input data is limited to the system inflows and

consumer loads which, as in the case of predicted



values, may carry considerable errors. At the same
time readily available measurements of other

variables are not used.

For real-time water network monitoring it is therefore
more effective to determine the system state using a state
estimation procedure. This method overcomes difficulties
asgociated with the 1load-flow solution by processing all
available measurements and formulafing the problem in terms
of redundant equations. In effect, even in the presence of
bad data, or when pieces of data are 1lost, it 1is still
possible to obtain a good state estimate. Unlike the 1load-
flow method, the state estimator also provides an indication
of the accuracy of the estimates it produces. Another
important feature of the state estimator is its ability to

detect the presence of bad data and to evaluate the residual

errors of the measurements.

The main assumption for successful performance of a
state estimation program is that the measurement set should
possess a degree of redundancy which enables erroneous
information to be filtered out. In water distribution
systems this redundancy is usually low and can be achieved
only if +the measurement information is combined with the
pseudomeasurements (representing consumption prediction or
information about network topology). By increasing the
number of measurements it is possible therefore to improve

both the reliability and accuracy of state estimation. On



the other hand, if some measurements are lost or are found
incorrect it is necessary to check whether the measurement

set still renders the network observable.

The state estimation problem can be s8plit into the

following three distinct subproblemns:

a) Observability - This subproblem deals with the
determination of measurement sgets which allow the
estimation of the state variables. If the system is
found unobservable with respect to the measurement

set’ concerned an appropriate pseudomeasurement 1is

generated;

b) Estimation - Process of computing the state

estimates from the knowledge of the measurements,

consumption predictions, network structure and
parameters;
c) Bad Data Detection and Identification - Procedure

"to check the presence of structural errors and/or
bad data, and to identify which measurements carry

gross errors, or which part of the structure is not

Properly modelled.

The main functions of the state estimator can now be

enumerated:

1) Computation 6f,a reliable, real-time data base from

redundant, noise corrupted telemeasurements. This



includes the estimation of nodal heads and fixed-
head-node flows wherever they are not directly
measured, or where telemeter failure +temporarily

makes the data unavailable;

2) Detection, identification and  suppression of bad
measurements due to telemetry or instrumentation
malfunction, inaccuracy in network parameters and

unreported status changes;

3) Provision of data for real-time monitoring and

on-line control algorithms;

4) Provision of a log of system states which is then

used for the prediction of consumer loads.

The overall configuration of the state estimator is

given in Fig. 1.1

1.3 A REVIEW OF THE LITERATURE ON POWER SYSTEM

STATE ESTIMATION

The problem of estimating the state of a power system
was 1initially formulated and developed by Schweppe, Wildes
and Rom in a series of three papers [220], [221], [222]. The
first paper introduces the weighted least-squares method as
the algorithm to obtain the estimates. The inverse_ of the
noise covariance matrix is chosen as weighting matrix since
this choice yields the minimum variance unbiased estimates

when the measurement errors are assumed to be normally



DISPLAY
CONTROL ALGORITHMS
DATA LOGGING

. " Measurement .
REAL-TIME residuals BAD DATA DETECTION

[ ™ AND IDENTIFICATION

.DATA BASE

'1

[

State l
estimate | Detected
| bad data

STATE : *

ESTIMATION - - -

[

I

[

] N

|

OBSERVABILITY
TEST . — — —I
Measurement Prediction
noise error
Measurements . Predicted
' loads
Pseudo-
measurements

Figure 1.1 overall configuration of the state estimation




distributed. The problem of detection and identification' of
errors is outlined, and the importance of factors such as
redundancy and pseudomeasurements is also stressed.
Reference [221] addresses itself to approximate measurement
models for real-size power systems. Finally, reference [222]
deals with the actual implementation of state estimators,

especially with regard to time and storage requirements.

Stagg, Dopazo et al. compare the weighted 1least-
squares technique and a method based on the solution of
certain independent equations [238]. Their method consists
of successive conventional load flow solutions and the use
of a sensitivity transformation matrix to perform error
anaiysis and to compute the unavailable bus values. The
numerical examples presénted in the paper suggest that the
independent equations give better results. However, it would
appear that the method requires the prior conditioning of
measurements, which seems to be infeasible in practice.
Numerical problems are encountered in solving the least-
squares .problem, as a consequence of ill-conditioning of the

normal equation’for the low level of redundancy used.

Reference [235] ' uses the weighted leﬁst—squarea
approach for state estimation with a weighting matrix
depending on the relative importance of the data. As a
result, it does not yield minimum variance estimates, which
are desirable from a statishical boint of view, but it gives

a solution which is intuitively the most reliable.

10



The AEP 'lines-only’ algorithm is introduced in
reference' [85], complemented in [86] and further discussed
in reference ([87]. This method is a modification of a
weighted least-squares approach in which the voltage di‘op
across a network element is related to bus voltages and line
flows. The algorithm processes measurements of line power
flows only. It has some numerical advantages, since the
coefficient matrix of the linear system to be solved at each
iteration is constant with respect to the states. Moreover,
this matrix is as sparse as the bus admittance 'matrix, and
is also symmetrical and real. This last property allows the
separate computation of the real and imaginary parts of the
states. The method's most frequently cited disadvantages are
the lack of flexibility in choosing the measurements and

difficulties in detecting and identifying bad data.

Reference [176] deals with +tracking estimators, that
is, estimétors capable of following the time evolution of
the power system. The estimator is viewed as a digital
feedback 1loop, which uses new measurements to obtain new
estimates by improving an old estimate via a feedback error
signal operating through a gain matrix. The best gain matrix
is the error covariance matrix updated at each time step.
Several simplified gain matrices are studied in an attempt

to develop methods to save computation time and storage

while still providing good estimates.
Programming techniques for the implementation of the

11



weighted-least squares algorithm are suggested in [9].

In referehce [10], a method is developed to
accommodafe buses with zero injections by considering
equality constraints for each of them, instead of taking
their (zero) injections as measurements of high accuracy.
The results reported in [10] show that the method 1is

computationally advantageous.

Another method of power system state estimation, based
on the 1least absolute values optimisation technique, is
proposed in reference ([145]. The state estimates obtained
"are spanned by a minimal set rof linearily independent
equations with the least residual errors. The method proves
to be very efficient 1in detection of gross measurement

errors, while retaining a useful degree of noise filtering.

The matter of ill-conditioning of the normal equation
approach used in the conventional solufion of the state
estimation problem is addressed in [208]. The Levenberg-
Marquardt algorithm is suggested to cope with +the 1ill-
conditioning problem. Other techniques based on the Golub's
orthogonal method and on the Peters-Wilkinson algorithm are

investigated in [233] and [129], respectively.

Reference [223] presents a comprehensive survey of the
power system state estimation problem, including the

description of several estimation algorithms and their

computational requirements.

12



1.4 THESIS ORGANISATION

Chapter 1II1 briefly reviews the conventional state
estimation technique based on the normal equation approach
and then introduces +two methods which are designed to
overcome numerical problems and to achieve a high
computational efficiency. Both estimators are applied to the
water systems, described in Appendix C, and the

corresponding results are compared.

In Chapter III, two methods for detection and
identification of bad data are described. The first method,
based on hypothesis testing, is to be used in connection
with the least-squares estimator. The second method takes
advahtage of the characteristics of the 1least absolute
values estimator and is shown to be suitable for

identification of both topological and gross measurement

errors.,

The obser‘vability problem is investigated in Chapter
IV. By using an approximate linear measurement model the
obgservability problem is proved to be equivalent to the
search for an observable spanning tree in the augmented
network graph. Two original methods to determine topological
observability of a water network are then proposed. First,.
an algorithm based on the matchim_:} in the bipartite

measurement-to-edge graph is described and applied to

several different networks including a realistic 34-node

13



system. Next, a direct method of seeking an observable
spanning tree, using the path property, is developed and
tested on the same networks used to assess the performance

of the matching method.

Chapter V deals with the problem of reduction of
distributed leakages in the water network which complements
the identification of bursts catered for by network
monitoring. A new method of calculating the optimal valve
controls, based on the application of the state estimation
techniques, 1is presented. The econdmy of the optimal valve
control policy is shown by comparison of the volume of

leakages for uncontrolled, manually controlled and optimally

controlled network.

A general description'of the on-line software package
for real-time monitoring of a water supply network is given
in Chapter VI. The advantages of a modular structure of
the package are discussed and block diagrams presenting the
flow of information and means of coordination of the

simultaneously executed tasks are given,

Finally, Chapter VII presents the main conclusions of

this work and suggests areas of futher research work.

14



1.5 MAJOR CONTRIBUTIONS OF THIS THESIS

The main .contributions of this thesis can be

enumerated as follows:-:

a)

b)

c)

d)

e)

f)

Introduction of a state estimation technique for
the purpose of real-time monitoring of a water

distribution network;

Development of two state estimators, based on the
least absolute values and least-squares optimisa-
tion techniques, respectively, . implementation of
which includes sgparsity and numerical stability

considerations;

An efficient method of calculating the residual
sensitivity matrix to be wused in connection with

the augmented matrix state estimator;

Extension of a bad data identification procedure,
using measurement residuals calculated by the least
absolute values estimator, to the identification of

topological errors;

Development of two different combinatorial methods

to check topological obgservability of the water

system;

Development of a method of reduction of distributed

leakages by optimised control of valves installed

15



9)

in the pipe network;

Production of a software package
monitoring and control of a water
network which consists of:

- Network Simulation (SYSSYM)
- Telemetry Simulation (SYSTEL)

- Observability Test (OBSMATCH, OBSTREE)

for on-line

distribution

- Estimation (SYSESTLP, SYSESTLS)

- Bad Data Processing (POSLEAK1, RESSENS)
- Valve Control (VALCON)

- Operators' Interface (OPERATOR)
- Graphical Display (NETDIS1)

16



CHAPTER II

WATER SYSTEM STATE ESTIMATION

2.1 INTRODUCTION

This chapter deals with state estimation methods which
are suitable for real-time monitoring of a water system. In
view of the strong nonlinearity of the network equations,
low measurement redundaﬂcy and possibility of gross
meaéurement errors, the state estimation algorithms have
been selected with respect to both numerical stability and
computational efficiency. The conventional approach via the
Gauss normal equétion is briefly reviewed in order to expose
the fact that it is prone to numerical ill—conditionipg.
It is also interesting to note that the lite;ature reports
problems of ill-conditioning in least-squares solution via

the normal equation [165], [238].

One method of circumventing the possibly poorly
conditioned normal equation is +to employ +the orthogonal
factorisation method as proposed by Golub [127]. This method
‘performs an orthogonal transformation of +the linearised

measurement equations that enables ,fhe least-squares

17



solution to be <calculated by a backward substitution.
Appl:;cation of the Golub method to power system state
estimation [233] proved very successful from the numerical
stability point-of-view, but at_the same time the algorithm
showed considerable reduction in computational efficiency.
An alternative procedure, avoiding the ill-conditioning of
the direct formation of the ﬁormal equation, has been
proposed by Peters and Wilkinson [196]. Although their
method enables the selection of a compromise between the
conflic*t;.ing requirements of numerical stability and matrix
sparsity and, in general, it performs more efficiently than
the Golub's method, it may occasionally give very poor
results, as repqrted in reference [93]. The method of Peters
and .Wilkinson see;ns to be better suited to systems with high
measurement redundancy [129], which is rarely, if ever, the

case in water systens.

Another method of s8olving the least-squares problem,
thch ‘'has been adopted in this work, has been proposed by
Siegel [232]. The initial measurement equations and the
least-squares optimality conditions are incorporated into a
supermatrix system which is then solved using an appropriate
factorisation technique. The method is numerically stable
since the formation of the normal equation, which augments
the condition number, is avoided altogether. Also, the
co;nputational efficiency of this method is usually superior
‘compared with the Golub's and Peters-Wilkinson's methods,

particularly in the case of low redundancy levels [93].

i8



The augmented matrix method performs well also in its
alternative form proposed by Hachtel [93), implementation of

which has been reported in reference [149].

Numerical examples, analysed in section 2.4,
demonstrate that the augmented matrix state estimator
converges in 4-5 iterations even for weak metering
configurations. The method shows however that, as in all
least-squares type of methods, gross measurement errors tend
to have an exaggerated effect on the calculated system
state, thus requiring reestimation of the state vector after

the bad data ha_s been found and removed.

The second state estimator, proposed in this thesis,
overcomes difficulties associated with the presence of gross
measurement errors by employing a least-absolute value
estimation criterion. This method was first used for power
system state estimation by Irving, Owen and Sterling [145],
and proved very robust in presence of the error contaminated
measurements. The state estimator rejects bad data during
the estimation process so that the final estimate is defined
only by the 'valid' measurements. Details of an efficient
implementation of this algorithm exploiting sparsity consi-

derations has already been published by the author {247].

This chapter is organised as follows. The weighted
least-squares estimator is presented in section 2.2..

subsection 2.2.3 addresses itself to the classical normal

19



equafion approach and the augmented matrix method is
described in subsection 2.2.4. The 1least absolute values
estimation algorithm and the details concerning its
implementation are discussed in section 2.3. Finally,
section 2.4 compares the results obtained by applying th
estimation techniques to the water systems with differenf

measurement configurations and different measurement noise.

2.2 WEIGHTED LEAST-SQUARES ESTIMATION

2.2.1 The Measurement Model

Consider an N-node water system with F fixed-head
nodes for which m measurements are taken. It is assumed
that the structure (topology) of the water network and
element parameters are known. Under these conditions, the
knowledge of the nodal heads and fixed-head-node flows
provides enough information to calculate the pipe flows and
consumer loads. For this reason the nodal heads and fixed-

head-node flows are called the state variables of the water

system.

The measurement model for the N-node water system with

F fixed-head nodes is derived in Appendix A, and is given

by
z=g(x) +w (2.1a)
T
E{w) =0 ; E{ww } =R (2.1b)
where

20



m : number of measurements
n= N+F : number of state variables

mxl state measurement vector

N

x ¢+ nxl state vector

w : mxl zero-mean random vector relating the
measured quantities and the state
variables

E (-} : expectation operation

R : covariance matrix of the measurement
errors

The monitored variables whose measurements are the
elemehts of vector z in Eq. (2.l1la) are usually pump heads
and flows, consumer loads, reservoir levels and their rates
of qhange and selected nodal heads. Pipe flows may also be
monitored but because of the cost of instrumentation they

are less commonly used than the other types of measurements.

In addition to actual measurements it 1is common to
use nontelemetered information about some of the variables
of tﬁe water system which may be available through the
analysis of the past data or impj.ied by the network
topology. These additional pieces of information are the
so-called pseudo-measurements. Thus, the vector 2z is, in

general, formed by actual telemeasurements and by pseudo-

measurements.,

In order to obtain a meaningful solution for the state
estimation problem it is necessary that the number of

measurements m 1is greater or equal to the number of state
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variables n. In practice, m 1is usually greater than n,
since this condition is also required for bad data detection
and identification purposes, as indicated in Chapter 3.

The global measurement redundancy p is defined as

m
p= — (2.2)
n
Elements of the nonlinear vector function g(x) of

Eq. (2.1a) represent empirical head-flow relationships for
network elements and mass-balance for each network node.

Rigorously, this function should be denoted as g(x,r), where
r is the vector of network parameters. However, it is
assumed throughout this work that the network parameters are
dete;mined before the on-line state estimation is attempted,
so that the use of the simplified notation  g(x)  is

justified.

The measurement errors are represen{:ed in the
measurément model by the zero-mean random vector w. These
errors come from a variety of sources, such as meter
inaccuracies, communication errors, effects of analog-to-
digital conversions, etc. The measurement errors are usually
agsumed to be uncorrelated, thus the covariance matrix R
is taken as diagonal. The elements of matrix R are the
variances of the measured errors, and are in general
'considered as a function of meter's reading (see section
A.4, Appendix A). In case of pseudo-measurements their

variances are defined so as to reflect the degree of
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uncertainty about the information carried by them,
If a pseudomeasurement represents the predicted consumer
load its uncertainty will wusually be high, and if it
represents the topological information about the.network it

will be very low.

2.2.2 The Least-Squares Objective Function

Given the measurement model of Egq. (2.1), the weighted
leasf4squares formulation of the water system state
estimation problem is based on the minimisation of the

objective function
A A T -1 A
C(x) = [z-g(X)] R [z-g(x)] (2.3)

with' respect to thé vector of state egstimates, 2.

The weighting matrix in Egq. (2.3) is the inverse of the
covariance matrix of the measurement errors. -This choice of
weighting matrix is important for the statistical properties
of the estimator. For instance, if w is‘ normally
distributed, the estimator based on the minimisation of

C (g) yields the minimum variance unbiased eatimates.

2.2,3 Solution via the Normal Equation Approach

The minimisation of C(g) presents an unconstrained
optimisation problem which can Dbe solved using any
optimisation method applicable to this class of problem.

However, it turns out that the characteristics of the
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nonlinear function in Eq. (2.3) provide a good approximation
for its Hessian matrix near +the solution, so that it is
advantageous to wuse a second-order algorithm, such as
Newton-Raphson method. The method linearises the weighted-
least squares problem with respect to a Acurrent estimate
gk at iteration number k, such that an improved estimate of

the state vector is obtained from the iterative relationship

A A A .
Xpegp =X +a of (2.4).

where a is a parameter modifying the step length in order
to improve the convergence of the method. In particular, the
Newton-Raphson method c¢an be made norm reducing by
selecting @ so as to minimise in each iteration C (R, +abX)

In practice however, it is usually sufficient if a 1is kept

constant at 0.5<a«<l.

The correction vector AR is computed by solving at

each iteration

HAX = -G (2.5)

where H is the Hessian matrix and G is the gradient

vector of C i.e.

6C (x)
G = —m— (2.6a)
bx
2
6 C(x)
H = 2 ’ (2'6b)
6x
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For the function C(g) given by Egq. (2.3), the

gradient vector is easily computed as

¢ = -23"®) ”R™ [z-g(B)] (2.7)
where
A b6g (x)
IR = —— (2.8)
6x
T x=R
X=Xy

mxn Jacobian matrix, elements of which are given
in Appendix C

The 1least-squares procedure assumes that the Hessian

matrix can be approximated near the solution by
_ T A -1 _ A
H = 273 (X)R J(X) (2.9)

Using Egs. (2.7) and (2.9) in Eq. (2.5), the

correction vector Agk can be obtained by solving at each

iteration
-1 -1
[JT(g ) R J(X, )] aR= JT(Q ) R Az © (2.10)
k Kk’ 52 k 2 '
where
AR = Z‘%k (2.10a)
= zZ-g(R .10b
Az z-g(x,) (2.10b)

It is easy to see that Eq. (2.10) can also be obtained
by applying a linear least-squares method to the linearised

measurement model derived in section A.2 of Appendix A.
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One suitable stopping criterion for the iterations is
‘ A

max |AX, | € € (2.11)

i

where € 1is some pre-specified tolerance.

Equation (2.10) is usually solved by means of
Cholesky's factorisation of A = aTr™ s intoLLT, where L
denotes a lower trianguiar matrix. Such a factorisation 1is
possible because A is symmetric énd positive definite
since thg meter configuration should ensure that it is also
non singular. Sparsity and optimal ordering techniques are
routinely employed in the process of factorising and solving
Eq. (2.10). However, it must be noted that the sparsity of
the matrix A is much less than that of the Jacobian matrix
J due to the second order f£fill-ins 1in the process of
forming JTR- 1J. Apart from the computational effort
involved in calculating a product of the matrices it is also

laborious to establish a suitable indexing of the non-zero

terms of the normal matrix.

An additional problem associated with the normal equation
(2.10) is its inherent tendency to ill-conditioning which
comes from the fact that the singular values of aTr 1 are
the squares of those of J. Thus, the solution Ag is more
sensitive to perturbations in the normal equation than to
perturbations in the 1linearised measurement equation.

Consequently, the normal equation method gsed for the water

system state estimation may prove to be numerically unstable
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for the following reasons:

i) The Jacobian matrix is not always well
conditioned due to +the 1low global measurement
redundancy and/or weak measurement configuration;

ii) The strong nonlinearity of the network equations
implies that the computation of the state vector
reé{uires several iterations during which the
round-off error may be considerably amplified
since the condition number of the normal matrix

is big.

Next, we present another approach to 8solve least-
squares problem, whose numerical characteristics are
superior to those of the straightforward solution via the
normal equation. The procedure is capable of significéntly
reducing the ill-conditioning, thereby assuring a higher
level of accﬁracy and reliability for +the iterative

solutions.,

2.2.4 Solution via the Augmented Matrix Approach

Minimisation of the weighted sum of squared
measurement residuals Eq. (2. 3) has been shown to result in

the following adjustment procedure

T_-1 T -1
J'RTJAX = IR Az (2.12)

where J 1is an abbreviated notation forv an mxn Jacobian

matrix J (gk) .
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In order +to overcome the numerical difficulties

arising from +the direct formation of the normal matrix
T -1 .

J R J, the adjustment procedure (2.12) can be formally

written as a system of three simultaneous equations

r = Az-J AR (2.13a)
-1

A =R (2.13b)

T

J°A= o0 (2.13c)

where r and )\ are the mxl auxiliary vectors which do not
have to be calculated explicitly. These equations can now

be assembled into a supermatrix structure

0 I J Py Az

-1
-1 R ol |lxrj=]o (2.14)
3T o ol |a% o

Although»the dimension of the augmented matrix is now
(m+m+n), compared to n of the normal matrix, the equation
(2.14) can be solved very efficiently using a sparse linear
equation solution technique. The implementation of the state
estimétor, used here 1is a variant of the sparse Bartels-
Golub decomposition algorithm [210], available as the
Harwell subroutine LAOSA. This algorithm takes advantage of
the enhanced sparsity of the augmented matrix by performing
computationally inexpensive row and coiumn permutations

before any eliminations are attempted. In fact, it is often

28



possible to permute to triangular form and to avoid time
consuming pivot operations, with consequent fill-ins,
altogether. The augmented matrix formulation of the least-
squares problem is also attractive from the point of view of
handling the data. The matrix can be constructed instantly
from the original Jacobian and error covariance matrices
avoiding any arithmetical operations. Unlike +the normal
equation method, indexing of the nonzero elements of the
augmented matrix 1is also straightforward since it 1is
essentially repetition of the indexing of the Jacobian
matrix. An analysis of the conditioning of the system (2.14)
carried out by Bjork [32] demonstrates that if the singular -
values of J are 'yl<72<...<'yn then the matrix in .EQ(2.14)

has eigenvalues

2
(ot\/o+4'y J._)/2 i=1,2,...,n and ¢

wifh the eigénvalue ¢ having multiplicity (2m-n). Thus
system (2.14) shows esgsentially no deterioration in
condition number as compared with the original measurement
equation. The assumption +that +the standard deviation of
measurement errors ¢ is the same for all readings does not

affect the generality of the analysis.

The performance of the weighted least squares

estimator based on the augxnented matrix method is evaluated

in section 2.4.
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2.3 LEAST ABSOLUTE VALUES ESTIMATION

2.3.1 Formulation fo the LAV Egstimation Problem

The least-squares method, described in the previous
section, is the most common method of estimation of the
state vector from an overdetermined set of measurements
which gives a minimum-variance, unbiased esgstimate provided
that the measurementc are affected solely by Gaussian noise.
Unfortunately, this is rarely the case in on-line computer
control systems where the measurement inaccuracies afe far
from Gaussian distribution but in fact contain gross errors
such as reversed sign of measurements, large systematic
errors or zero readings due to telemetry or instrumentation
malfunction. In all these situations the least-squares
estiﬁator gives poor results since the erroneous measuremcnt
is weighted according to the square of its residual and
therefore has an exaggerated effect on the state estimate.
Geometrically, the state estimate achieved with the least-
sduares criterion represents a point in the space of
feasibleA solutions minimising the sum of squares of
distances between itself and measurement hyperplanes. Thus,
a gross measurement error, corresponding to the hyperplane
which is distantv from the +true solution point will

disproportionately affect the final solution.

In order to overcome this problem, various
modifications of the original least-squares criterion,

decreasing the weighting on large residuals, have been
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proposed. Handschin,Schweppe et al. ([131] discuss several
such modifications and compare their relative performance.
However, in general, modified cost functions prove to be

less easily handled in computations.

A more effective approach based on minimisation of the

modulus of measurement inconsistency,
C(X) = w |z-g(R) | (2.15)

was proposed in [{145]. The solution point is defined here by
the intersection of n hyperplanes with +the smallest
measurement noise. The erroneous measurement corresponding
to the deviant hyperplanes, unlike the 1least-squares
formulation, does not influence the solution point since
this would increase distances +to the remaining n-1
hyperplanes defining the state estimate. This gives rise to
a potential for the total rejection of bad data from the
measurement set providing that the number of gross errors
does not exceed m-n. The penalty incurred in achieving the
rejection of bad data is that n measurements spanning the
solution are included with their associated measurement

noise. However, in the water distribution systems field this

effect is negligible.

Solution of the unconstrained, nonlinear optimisation
problem (2.15) can be obtained by applying an iterative

procedure analogous to (2.4) where the initial guess of the
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state vector is sequentially improved until some convergence

criterion is satisfied.

A N A ' _

Xy = X +a o k=1, 2,... (2.16)
max [a%. | € € i=1,2,...n (2.17)
i.

where k is the iteration number.

Expanding the measurement vector function g(g) by

the latest state estimate g uging a first order Taylor

k

series the linearised measurement model can be expressed as

(see Appendix A.2)

bz = J(R,) AR+w : (2.18)
A
where Az = E'g(ik)

J(gk) is mxn Jacobian matrix
AR is nxl vector of state increment

w is mxl measurement noise vector same as in
the measurement equation (2.1a)

The nonlinear optimisation problem (2.15) is now

simplified to minimisation of the linearisged cost function

. T
min W |Az-J (X, ) AX| (2.19)
AR

where w is mx1 measurement weight vector elements of
which are equal to the diagonal elements of the

inverse of the measurement covariance matrix.
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Because a direct solution of Eq. (2.19) is
computationally inconvenient, due to the presence of
a modulus operator, artificial variables ¢ and 8 can be

introduced with the following definitions

_ A A R N N
( sz, Ji(zk)AZ if bz, >Ji(§k)A§

si = <
0 otherwise
( - o) D D A
(Azi Ji(gk)AEﬁf Azi <Ji(§k)A§
Q=9
0 otherwise
for i=1,2,..., m

Problem (2.19) can then be represented as

Ax
. T
min v q (2.20a)
A
r,s,ax
s
subject to
A A
AE'J(EK) Ax+g-s = 0 (2.20Db)

where V is (n+m+m)xl weight vector

T T
v =[ow =le

2.3.2 Solution via the Linear Programming Approach

The system of equations (2.20a) and (2.20b) developed
in the previous subsection presents essentially a linear

programming problem which can be written in standard form
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. T
min V'y (2.21a)
subject to
Ey =b with y2o0 ) (2.21b)

where

m
]

= [J(R,)iTi-1]

b= az+J(X,) 4
T T, T.T
Y = [(8%+d) "ig is™]
d 1is nxl vector elements of which are sufficiently

large to guarantee AS?iw‘di 20, i=1,...,n

Solution of this problem is equivalent to selection of
the (n+m+m)xl vector y £from [(m4n+n)!/(n+n)!m!] candidates
such that the objective function (2.21a) is minimised. A
solution is feasible if it satisfies (2.21b) and is basic if
at least n+m components of y are zero. The remaining m

components are called basic variables and can be assembled

into the mxl vector Yy that satisfies the equation

BxB = b (2.22)

where B is an mxm basic matrix formed of columns of E

corresponding to elements of XB'

The classical method of sSolving (2.21b) is to move
from one basic feasible solution to another improving at
each stage the objective function. This is known as the

Simplex method. Such a process is guaranteed to terminate in
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a finite number of steps since the number of corner points
of the polytope defined by (2.21b) is 1limited and each
congecutive solution for Yg gives a smaller value of the

objective function (nondegenerate case).

Since the constraint matrix E is sparse being formed
of the Jacobian matrix and two unit matrices, the basis
matrix is also sparse and consequeritly Eq. (2.22) can be
solved efficiently us‘ing the sparsity exploiting techniques.
For reasons of numerical stability and sparsity preservation
it is advantageous to wuse the elimination form of the
inverse when solving the set of linear equations (2.22). The
Bar-ﬁels—Golub decomposition' is one of the suitable
techniqﬁes [21]. This technique is also amenable for further
refinements which consist of row and column interchanges

before any pivoting is performed [210].

The algorithm, as implemented by Reid in form of
Harwell subroutine LAOSA, begins with the application to the
original basis of Gaussian elimination with row and column
interchanges. It is convenient to express this elimination

in the form of the equation

MM ..M B=PU 2,23
r r-1 M, Q ( )

where each Mi is a matrix which differs from I in just one
off-diagonal element (and therefore represents an elementary
row operation), P and Q are permutation matrices and U

is wupper triangular. The solution of (2.22) can now be
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easily obtained since the function (2.23) allows the basis

. -1
inverse B to be expressed in the form

1 T -1 T
B~ = .. .
QUTP MM ..M (2.24)

After an iteration of the Simplex algorithm the new
basis, say 1—3, differs from B in just one column and so

satisfies the equation
MM _...B = PSQ (2.25)

where S differs from U in this column in which B and
E differ. Therefore S has in general the triangular form
with a ‘'gpike’'. The algorithm attempts +to restore the
upper triangular form first by permuting columns so as to

produce the upper Hessenberg form and then by including row

interchanges to eliminate the subdiagonal elements. If these

row operations are written as Mr+1' e ,Mr then the new
factorisation can be expressed as
M ....M ...M.B = PUGQ (2.26)

r+l r 1l

which is exactly of the form (2.23).

Computational efficiency of the Simplex method clearly
depends on the efficiency‘ of updating the inverse of the
-baéis matrix and on tﬁe number of Simplex iterations. It is
the author's belief that the Reid's algorithm give the
stafe—of—the-art solution to the former problem. The latter
one has been solved by the author by proposing a procedure

which enables the construction of a feasible basis which
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needs very few Simplex iterations +to produce an optimal

solution

[247]. The procedure takes advantage of the fact

that in on-line state estimation a good approximation of the

state vector is wusually available as its wvalue from the

previous step. This procedure can be summarised as follows:

1. Construct matrix F consisting of the columns of the

Jacobian matrix corresponding +to the basic state

variables XA in the previous optimal solution.

2. Factorise matrix F into two factors FA and FR where

F

A

consists of the rows of F which represent
measurements with zero slack wvariables in
the optimal solution (dim FA € n)

consists of the remaining rows of F

3. Solve the reduced set of linear equétions

4. Form

FA xA - EA

an initial feasible basis for +the Simplex

algorithm following the scheme:
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IF

A
y‘_‘i 20 for all j=1,...,dimFA

THEN
i [
F‘A' 0
B=""Ri ™"
) F U
L ]
[ P
2% "RTIRA
b-Fy

and U is a diagonal matrix with elements

- R R A . aiemA
uii-sg-n(b:.L Fiz),l-l,..., (m-dimF )

ELSE

B 1is chosen in conventional way

The restarting algorithm also provides a means for
bypassing phase one of the Simplex method provided the set
of ‘wvalia: méasurements spans the state vector. The 1low
measurement redundancy suggests that for the purpose of
water system gtate estimation the primal wversion of the
Simplex algorifhm can be profitably used. Such a formulation
enables the error contaminated measurements to be removed
efficiently by =zeroing the associated measurement weights,
thus avoiding the need for refactorisation of +the basis
matrix. Also, the unit matrices appearing in the structure
of the constraint matrix E can be directly incorporated

into a pivotal strategy.
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Numerical stability of the linear programme depends on
the stability of the basis updating scheme. Reid's algorithm
allows a compromise to be chosen between gtability and
sparsity considerations by cohstraining the size of the
Pivot element. In case the number of fill-ins exceeds a
certain 1limit the algorithm automatically compresses the

storage of the basis matrix.

2.4 NUMERICAL RESULTS

2.4.1 Introduction

Programs have been written in FORTRAN 77 to implement
the augmented matrix and linear programming state estimators.
Spar-sity and numerical stability considerations have been
taken into account in both implementations. The programs
make use of the sparse matrix factorisation scheme developed
by Reid and available as Harwell subroutine LAOSA.' all
co@putational results have been obtained on a Perkin Elmer
3220 minicomputer with 32-bit word length and floating point

arithmetic using the FORTRAN VII Z compiler.

Two test systems, whose network diagrams and
parameters are presented in Appendix C, have been used to
evalufate the relative performance of the least-squares and
least absolute values estimators. Preliminary results were
first obtained for the 1ll-node network described in section

C.1 of Appendix C. The methods were then tested on a
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realistic 34-node water distribution network presented in

section C.2.

In every run of the state estimator the nodal heads
and the fixed-head-node flows were initialized with values
corresponding to constant pressure increases above ground
level and' average flows respectively thus giving a worst-
case guess about the state variables. Measurements were
simulated by superimposing the product of a normally
distributed random number and a fixed percentage of the
actual .readings on the values obtained from 1load flow
studies (see Appendix A, section A.4). The measured
quantities are nodal heads, fixed-head-node flows, consumer
loads and network element flows. The redundancy defined by

Eq. (2.2) varies according to each case.

The convergence criterion given by (2.11) is used in
-4 3
all studies, with € = 1x10 fm /8] for all flows and

-2
€ = 1x10 [m] for heads.

2.4.2 Performance Tests

The initial experiments with the Jacobian matrix kept
constant after two or three Newton-Raphson iterations proved
that because of the strong nonlinearity of network equations
this may slow-down the convergence of the estimators.
Consequently, inA the current version of the programgs the
Jacobian matrix is updated at each iterat;on. The computing

times displayed in Tables 2.1. 2.2, 2.3 and 2.4 give the
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total run-time of the estimators in a real-time environment
including the update of the Jacobian matrix but excluding

the I/0 operations.

case l: ll-node network

Table 2.1 shows some typical results obtained for the

ll1-node network with three fixed-head nodes. A total of 18

measurements and pseudo-measurements were taken, which

amounts to a redundancy of 1.29. An error with standard

deviation 0.001 was used in simulating the measurements.

It can be seen that the results obtained by both
estimatorsb are very similar but +the 1linear programme is

computationally more efficient.

TABLE 2.1

Computational results for Case 1

Errors in the Estimates
Average Variance Computing | N-R
Method | WSSR Heads Flows Heads Flows Time iter.
-6 -3 3 -3 -3 3 -6
10 (m)*10 fm /s1*10 (m)*10 |Iim /s]1*10 [s]
L-S 17.1 1.46 ‘ 0.0101 0.336 0.0033 1.254 4
LAV 72.0 1.12 0.0104 0.306 0.0005 0.953 4




case 2A: 34-node network. Low level of Gaussgian

measurement noise

The 34-node water distribution network used here

represen£s Doncaster. Eastern and Thorne 2Zones of the
Yorkshire water Authority network. The total number of
measurements and pseudo-measurements (54) gives a redundancy
of 1.29. The standard deviation for Gaussian measurement

noise was selected as 0.0002 while the pseudo-measurements

were assumed to be correct.

The results for case 2A are presented in Table 2.2,
part A, It can be seen that the performance of the two state
estimators is again very similar but ’this time the least-
squares estimator gave more accurate values of the state
v'ariables. Both methods converged in 4 iterations; however,

the 1linear programme proved to be computationally more

efficient than the augmented matrix method.

Case 2B: 34-node network. High level of Gaussian

measurement noise

For the same meter configuration used in case 2A, the
effect of a higher measurement noise level of 0.001 has been
in;restigated. Both es_;timators converged in 5§ iterations. The
computing time for the least-squares estimator remained
practic.ally unchanged while for the linear ‘progra.mme it
actually dec.yreased. This is due to the fact that in the

presence of greater measurement noise the simplex defined by
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the measurement: hyperplanes becomes 1less ‘'flat' in the
neighbourhood of the optimal sol‘ution thus saving some basis
interchanges. At the same time the average errors in the
estimates obtained with the linear programme were increased
~compared to Case 2A, while for the augmented matrix method
they remained unaffected. It may be argued, however, that
for the purpose of on-line control both estimates are
equally wvalid so preference could be given to a more

efficient least absolute values estimator.

TABLE 2.2

Computational results for Cases 2A and 2B

Errors in the Estimates

Average Variance Computing | N-R

Method | WSSR Heads Flows Heads Flows Time iter.
-3 -3 3 -3 -3 3 -5
10 iml*10 fm /s1*10 (m]*10 {m /s]1*10 [s)

A) L-S 0.64 6.81 0.039 0.076 0.0088 5.571 4
A) LAV 19.0 8.24 0.038 0.112 0.0085 4812 4
B) L-S 17.2 8.30 0.033 0.101 0.0027 5.582 5
B) LAV [110.0 16.04 0.043 0.692 0.0040 4.392 5

Case 3: 34~node network. Measurement data with a

single gross error

To further assess the performance of the state
‘estimators the measurement data of case A was corrupted by a

gross measurement error. Specifically the reading of the load
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measurement at node 8 was reduced to 50% of its true value.

Table 2.3 shows that despite a smaller value of the
weighted sum of .squared residuals (WSSR) the least-squares
egstimator gives significantly worse estimates. The average
residual errof for heads is approximately 50 times higher,
and its variance is 25 times higher than the corresponding
values for the LAV egtimator. The augmented matrix method
also converges slower (8 iterations) and requires more

computational time.

TABLE 2.3

Computational results for Case 3

Errors in the Estimates

Average Variance Computing | N-R
Method | WSSR Heads Flows Heads Flows Time lter.

-3 3 -3 -3} 3 -6
[m}*10  |[m /s)*10 |[(m]*10 [[Im /s}*10 {sl

L-S 1.52 193.1 0.046 2.97 0.0093 9.744 8

LAV 4.12 3.63 0.015 0.026 0.0014 4.450 5

‘' Case 4: 34-node network. Weak measurement

configuration

In order to test the numerical stability of the state
estimators a weak measurement configuration has Dbeen
purposely devised. The measured quantities have been limited

to flows at all fixed-head nodes, one head measurement at
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node 30, one pipe flow measurement between the nodes 12
and 30, and measurements or pseudo-measurements of loads at
all network nodes except node 1. This implies that the
calculation of the state variables in the subnetwork
consisting of nsdes 1, 26, 29, 33 and 34 critically depends
on calculation of the flow between the nodes 28 and 18. The
redundancy for this meter configuration is 1.024. The
standard deviation of the Gaussian measurement noise 1is

selected as 0.001.

Resglts for this case are presented in Table 2.4. The
least-squares estimator converges in 4 1iterations and
requires only 5.782 8 to produce the estimates while the
least absolute values estimator needs 6 iterations and
8.521 s of computing time. Additionally, the least-squares
estimator gives considerably smaller errors in the estimates
thus emphasizing a usefulness of this approach if the system

is structurally ill-conditioned.

TABLE 2.4

Computational results for Case 4

Errors in the Estimates
' Average Variance Computing | N-R
Method | WSSR Heads Flows Heads Flows Time iter.
-3 -3 3 -3 -3 3 -6
10 fm]1*10 Im /s1*10. |(m]*10 [m /s]*10 (s]
L-S 2.29 4.87 0.0410 0.109 0.0089 5.782 4
LAV. | 49.10 107.1 0.0204 28.64 0.0008 8.521 6
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2.5 CONCLUDING REMARKS

In this chapter the use of the weighted least-squares
and least absolute values estimators for +the purpose of
real-time water network monitoring has been studied.The
least-squares estimator implementation in its augmented
matrix formulation is computationally efficient and exhibits
very good. numerical stability characteristics, e;pecially in
the case of structurally ill-conditioned systems. However,
the 1least-squares approach 1is intrinsically sensitive to
gross measurement errors +thus requiring further bad data
processing followed by reestimation of the state variables.
In contrast, the least absolute values estimator is robust
in the sense that it is not greatly affected by the presence
of bad data which is automatically rejected, so that the
state estimate 'is defined by the 'valid' measurements only.
The algorithm based on the revised Simplex method proved
also to be computationally efficient and numerically stable.
The errors in the state estimates obtained with the linear
programme and the augménted matrix method in normal
operating conditions are very similar and are well within

the 1limits defined by on-line control requirements.

Experience based on simulation studies 1lends support
to the conclusion that the 1linear programme is somewhat
better suited for the purpose of on-line network monitoring.
In the case of a weak measurement configuration a hybrid

approach amalgamating the features of the least-squares and -
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least absolute values estimators could be ©profitably

developed.

A possible drawhack of the LAV estimator is that the
numerical complexity of the 1linear programme increases
quadraticaly with the problem size. However, an application
of the restarting algorithm in on-line operation of the

state estimator circumvents the problem.
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CHAPTER III

BAD DATA ANALYSIS

3.1 INTRODUCTION

Since the presence of bad data can in general bé
detrimental to the estimator performance, there is a need to
develop procedures to detect whether abnormally erroneous
measurements are present in the measurement set. This being
the . case, 1t 1is also necessary to ideﬁtify the faulty
observafions gso that they can be either eliminated from the

measurement set or replaced by pseudo-measurements.

In practice, the bad data are caused by a vaflety of
reasons, such as failures of communication links, defective
meters or transducers, errors in modelling pseudo-
measurements etc. If there is a high enough 1local
measuremenf redundancy it is sometimes posgsible to reject
erroneous data by prefiltering the measurements. This
procedure consists of simple checks to determine 1if the
measurements are within certain 1limits and plausibility
tests based on comparisons of redundant measurements.
However, the prefiltering tests are usually not effective if

bad data is either corrupted by 1less than a certain
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pPercentage of the meter reading or the neighbouring
measufements are not directly comparable with the faulty
one. For the purpose of this work we assume that such a pre-
processing of measuréments has already been performed but

still some gross errors creep into the measurement set.

This chapter addresses itself to the investigation of
bad data detection and identification methods to be used in
connection with the least-squares and least absolute values
estimétors described in Chapter II. The main objective 18 to
devise efficient computational procedures for bad data

processing.

The literature on the subject of bad data detection
and identification is reviewed in section 3.2. Section 3.3
presents a view on the foundations of the methods employed
'to éolve these problems with respect to the least-squares
estimatdr. A new method of computgtion of the residual
covariance matrix, based on the augmented matrix approach is
described in subsection 3.3.3. Section 3.4 is concerned with
the bad data identification procedure to be used in
connection with +the 1least absolute values estimator. The
numerical results for several tests on the detection and
identification of bad data are presented and discussed in

section 3.5. Finally, section 3.6 summarizes the main

results of this chapter.
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3.2 A REVIEW OF PREVIOUS WORK

AAnumber of papers have been devoted to the study of
the bad data processing problem especially in connection
with the on-line power system state'éstimation. In general
terms, the problem was first described by Schweppe et al. in
[220]), [221], [222]. For bad data detection, monitoring of
the weighted sum of sqﬁared residuals was suggested, while
for‘ the identification of bad data points the largest
nofmalised residuals were sought. These methods became

subsequently known as C(g)—test and EN-test respectively.

~ Another approach to the bad data detection/
bidentification problem consists in penalizing the largest
residuals so that the potential bad data have a reduced
influence in the final estimates {[178)], ([131}. This method
implies the use of a non-quadratic cost function. The most
frequently used combinations of the cosf functions are:
quadratic-straight, quadratic-square root and quadratic-
constant. When successful, the method seems to allow a
direct identification of +the bad data point through the
examination of the residuals. However, the.choice of the
most suitable cost criterion, the possibility of 1local
minima and the increase of computatipnal complexity of the
.esfimatbr are the problems that one has to take into account

when using such a method.

Irving, Owen and Sterling [145] have proposed a method
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which has the advantages of the nonquadratic estimators and
which avoids their difficulties. By using the weighted sum
of moduli of the measurement residuals the method gives an
automatic rejection of bad data so that the state estimate

is not affected by erroneous measurements.

A deterministic technigque for bad data suppression has
been presented by Debs, Larson and Hajdu - [(66]. fhe
comparison of measurements at successive time steps 1is
'utilized to detect and identify bad data. It seems however
that such a method would be unable to detect a single bad
measurement caused by a meter with a slowly increasing

error, as well as multiple interacting bad data.

‘,Dopazo et al. [85) proposed a technique based on
hypothesis testing theory. The C(g)—test is wused for
detecting bad data, and identification is performed through
a Student's t - test for the estimated value of the measured

quantity. The use of confidence limits is also suggested to

assess the estimates.

From the computational point of view, Broussolle [38]
suggests the use of the sparse inverse method to compute the
covariance matrix of residuals, which is needed in the

EN—identification test.

More recently, Clements et al. (156) have attacked the
problem by using a combinatorial approach to investigate the

'bad data detectability and how the bad data spread on the
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residuals.

3.3 BAD DATA PROCESSING IN LEAST—SQUARES ESTIMATION

3,3.1 Foundations of Bad Data Detection and Identification

Methods

The bad data detection and identification methods
developed in connection with the 1east—squares estimators
are based on examination of both the measurement residuals
and a function of them. The reason for doing so is that the
residuals convey combined information about possible
viplations of +the assumptions about meter accuracy and
dist'ribution 6f measurement noise which have been made

during the construction of the measurement model.

For a measurement model which considers m measurements,

the residual vector is an mxl vector defined by

(3.1)

N>

r= z-

- A -
where z is the mxl vector of measurements and 2 1is the

vector of estimates for the measured quantities.

Equation (3.1) clearly shows +that a residual is a
mismatch between the actual measurements and the 'value of
the measured quantity as cpmputed by the least-squares
‘algorithm. Therefore the mismatch can be seen as the amount
that the measurement model cannot account for. If it is

assumed +that +the model represents the system with the
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expected accuracy, which implies +that the values of the
parémeters in the model (hydraulic resistances of pipes,
pump characteristics, etc.) and the model structure are
ac;::urately known, then one can think of the residuals as
estimates of the measurement errors, Since certain
assumptions about the measurement errors are made when the
model is es.tablished, it should be expected that, if no bad
data are present, the residuals will tend to behave in a
manner that confifms those assumptions. If, on the other
hand, some residuals or functions of the residualé clearly
violate +the assumptions, one can infer that erroneous
measurements are present. Furthermore, by investigating the
residuals individually, it should be possible to locate the

faulty measurements i.e. to identify the bad data.

\

Consider the measurement model for water system state

estimation after linearization with respect to a point '_ﬁk

8z = I (%, ) AR+w (3.2a)

E{w}=0; E{(ww)=R (3.2b)
where

az = z-g(¥,) (3.3a)

o = x-%, (3.3b)
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: Jacobian matrix (3.3c)

x=X
= 2k

w : random vector which models measurement errors.

' In addition, assume that gk is close enough to the
solution point such that Eq. (3.2a) is a good approximation
to the nonlinear model. For example, gk can be taken as the
last 1linearisation point before convergence. Under +this
condition, one can apply the methods for residual analysis,
usually employed for +the 1linear 1least-squares case. The

Jacobian matrix computed for such a point will hereafter be

denoted simply by J.

The weighted least-squares solution 1is obtained by

minimizing the cost function

T -1
C(R) = hz-J 8X]) R pz-J %] (3.4)
C(g) is merely the weighted sum of sguares of the

residuals for the 1linearised model, where the weighting
matrix is the inverse of +the covariance matrix of the

measurement errors.

3.3.2 Bad Data Detection

The vector of measurement errors w has been
partially characterised by Eq. (3.2b). To apply the bad data

detection procedure which will be described next, an
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additional assumption concerning the distribution of w 1is
required, namely, that w is normally distributed. The

notation

w ~ N(O,R) ' (3.5)

indicates that the measurement error is considered to be

normally distributed, with zero mean and covariance matrix R

Having the complete statistical characterization of
the measurement errors in the absence of bad data, it 1is
possible now to undertake the search for a procedure for bad
data detection using the residuals. A natural candidate for
such a procedure would be an individual test on the
residuals to find out whether any of them violates the
assumptions made for the measurement errors. However, this
technique would require the use of the covariance matrix of
the residuals whose computation is costly. Considering the
fact that a bad data detection routine is to be employed on-
line after each state estimation, it may be concluded that
the individual examination of residuals would not be an
efficient technique to simply detect the presence of bad
data. Nevertheless, the technique is needed to identify the
faulty . measurement after its presence 1is detected as

discussed in the next subsection.

Because of the computational difficulty of individu-
ally examining the residuals it is a common practice to

monitor a weighted sum of squared residuals which is readily
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available as the objective function 1in the 1least-squares
pProblem and which exhibits clearly distinct behaviour under

bad data-free situations and under the presence of bad data.

To decide whether bad data are present or not, a test
must be performed on C(g). The residuals are random
variables normally distributed which implies that C(g) is
a random variable which has a chi-square distribution with
m-n degrees of freedom, where m is the number of
measurements and n is the dimension of the state vector.
If however a gross ~'measurement error 18 present the
normality assumption of w is wviolated and consequently

(04 (2) is no longer chi-square distributed.

"In view of the aforementioned facts, the bad data
detection procedure can be 8een as a  testing of the
hypothesis about the distribution of Cc (g) . This can be

formulated as follows:

H s C(g) is chi-square distributed

H : Ho is false

The significance level of the test, also called false
alarm probability, is the probability of re;jec.ting
Ho when it is actually true, and is normally denoted by «a.
Using this definition, it 1is possible to determine a

detection threshold level K corresponding to a false alarm

‘probability @ such that
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P(C(X)>K|C(X) is chi-square) = a (3.6)

where P( | ) denotes conditional probability.
From Eq. (3.6), the detection threshold level K can be

computed as
2
K = X (m-n); 8 : (3.7)

where xz(m—n);B denotes the B=(1-a) quantile of the chi-
square'distribution with m-n degrees of ffeedom. When the
number of degrees of freedom is large (in practice, greater
than 30), the chi-square distribution approaches a Gaussian
distribution with mean m-n and variance 2(m-n) [131]. In
this case K can be computed as a quantile of appropriate

normal distribution.

The C(g)-test can now be performed by comparing the
value of C(g) with a threshold K. If for a given a the
value C(g) is greater than K, then this fact is taken as

an evidence that the null hypothesis is false, i.e. that bad

data are present.

The implementation of the C(g) detection test can be
outlined as follows: After each state estimation run, the
weighted sum of squared residuals C(g) is computed. Then,
C(g) is compared yith the threshold K corresponding to a
given ievel of false alarm probability «a. If C(§)>K, one
concludes that bad data are present, and an identification
procedure can be invoked to find out which measurements are

wildly erroneous. Otherwise, the state estimates are
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accepted on the grounds that there is not enough evidence to

decide on the presence of bad data.

3.3.3 Bad Data Identification

After the presence of an abnormally inaccurate
measurement is detected, the next Sstep is to locate the
faulty meter. This requires the individual examination of

’
the measurement residuals. In the case of a single bad
measurement, a possible identification .strategy would be to
find the manimum residual and then expect’ that the
corresponding measurement is the faulty one. However, this
is not necessarily true, for two reasons: i) Meters for
different quantities have different accuracies, so that the
variances of .the corresponding measurements can be
significantly different; and ii) The residuals are in

general correlated among themselves, so that an error

associated with a measurement can sSpread over other

residuals.

In érder to allow a fair comparison of the residuals
it is' mandatory to normalize them with respect to their
standard deviation. After +this normalization is performed,
the .‘measurement corresponding to the maximum normalized

residual is most likely to.be bad data. [131]

Defining the residual vector r as
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A
r = Az-Az : (3.8)

and calculating A% using the normal equation approach

"presented in section 2.2.3

T -1_ -1_T -1 .
AR = (J'R7J) IR Az /

equation (3.8) can be written as
r = WAz . (3.9)
where W is the residual sensitivity matrix
T -1

. o 1 1
W= [I-J(J R J) JR ] (3.9b)

Using the above expression the residual covariance matrix

D = E{r ET) can be calculated as

T T -1 -1 7T -1
D= E{46z Az }-2J(J'R J) IR E{az) +
-1 -1 -1 - -1 -1 -1
J(JTR J) TR E(Az A_z_T}R J(JTR J) gt
(3.10)
which taking into account Eq. (3.2b) gives
-1 -1
D = R—J(JTR J) at (3.11)

The normalized residuals can now be obtained as

Jeai -1 | 12
ry = V(diagp) I (3.12)
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'The drawback of the identification method based on the
search for the maximum normalised residual is the amount of
computation rquired to obtain the variances of the
residuals, Even though only the diagonal elements of D are
needed it is still necessary to perform the inversion of the
normal matrix JTR—IJ. This problem has received some
attention in the 1literature and methods have been proposed
to reduce the number of required operations. One of such
methods makes use of the fact +that actually only the
elements of the inverse of the normal matrix that correspond
to nonzeros of JTJ need to be computed [38]. The method
approximately halves the computational burden but in the
same time it requires much more complicated programming. -
Additionally, the method of Broussolle is not free from the
problem posed by structural ill-conditioning of the right
hand side of Eﬁ.(3.11). This fact may lead to inaccuracies

which in turn may invalidate the whole computations of the

matrix D,

In this work an alternative method for calculating
the residual covariance matrix which avoids numerical
difficulties associated with the standard approach is
proposed. The method is based on the observation that by
using the augmented matrix state estimator, which apart from
a sfate estimate gives an estimate of the residual error,
the residual sensitivity matrix W can be easily found as

6r/6Az. Consequently, the elements of the matrix D can be

found as
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D= W R (3.13)

The consecutive columns of W are obtained by solving the

following equation

0] I J u e.
= =i
-1 )
-I R 0| v_wi= o i=1l,...,m (3.14)
3T o oflv 0
where gi is mxl vector of measurement residuals

corresponding to the unit change of the i-th
measurement (i-th column of the matrix w)

e is mxl unit vector

"u, v are mxl and nxl auxiliary vectors

.VSi.nce the factors of the augmented matrix are reédily
available from the state estimator the computation of the
residual sensitivity matrix involves only m back-
substitutions, thus giving a computationally efficient
_algorithm. Another property favouring the approach proposed
here is its numerical stability since the condition number
of -t;he augmented matrix remains unchanged compared to the
condition number of the linearised measurement matrix (see

section 2.2.4)

In the case of multiple non-interacting bad data, i.e.
when the covariances between any pairs of residuals which
correspond to the bad data are small as compared to the
respective variances, an effective identification can be

obtained by using a trivial extension of the procedures
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discussed above. It consists simply of 1looking for the
maximum normalised residual and eliminating the measurement
corresponding to it. If, after the following estimation,
bad data is stiil détected the next measurement with the
largest residual is eliminated, and so on until C(g)—test

does not indicate the presence of bad data.

Although the same approach can be used for multiple
interacting bad data, the results are usually not as good.
In fact, examples discussed in section 3.5 seem to confirm
the findings of Handschin, Schweppe et al. [131] that, 1in
such situations, the performance of non-quadratic estimator

is better than the weighted least-squares estimator.

3.4 BAD DATA PROCESSING IN LEAST ABSOLUTE VALUES

ESTIMATION

3.4.1 Identification of Gross Measurement Errors

The characteristic feature of the 1least absolute
vaiues (LAV) estimator is +that it attempts +to calculate
state variables using a minimal observable set of
measurements. In the system with n state variables and m
measurements/pseudo-measurements the LAV estimator always
accepts n measurements and rejects the remaining m-n
readings. Since the criterion according to which the
measurements are accepted or rejected is the magnitude of

the measurement noise, it is reasonable to expect that if
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anf gl;oss error is present in the initial data it will
become the first candidate for rejection. Consequently,  the
procedure to identify bad data in connection with fhe least
absolute values estimator is essentially concerned with

examining the magnitude of the measurement residuals.

The reason for the effectiveness of such an approach
is that the least absolute values estimator prevents
‘smearing' of the residual errors, provided that there
exists an error-free observable set of measurements. In this
case, each measurement residual remains unaffected by the
magnitude and location of the other bad data. Thus, it is
possible to avoid time-consuming computations of +the
residual covariance matrix, which is the main computational
burdeﬁ in the least-squares-based approach, and to calculate

orily the weighted residuals.

The implementation of +the bad data identification
method consists essentially in weighting the residuals with
respect to their standard deviation and comparing them to
the prespecified threshold. As a result, the method has very
small computational requirements. The next section extends
this approach for the case of topological errors which can

be seen as multiple interacting bad data.

3.4.2 Identification of Topological Errors

It is wusual to make a distinction between erroneous

measurements and topological errors since they represent
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different physical phenomena. However, from the point of
view of the sgstate estimator both errors substantiate bad

data points.

In the context of the water distribution systems two

main types of topological errors can be gspecified:

‘1) 1incorrect status of control valves which gives a
wrong image of actual network conneétivity, and
ii) leakages which effectively extend the network by

additional load nodes.

The presence of either of these errors is equivalent
to neglecting a part of the actual network structure thus
pfoducing an imbalance at the network nodes incident to the
questionable pipe. One can now think of the topological
error as a pair of erroneous load measurements for which the
error terms, devised by the state estimator, are carrying
information about a topology misspecification. As a further
consequence the conditions of detectability of the
topological errors can be determined by superimposing the
detectability conditions for 'tﬁo gross measurement errors,
i.e. the network must be observable after +the erroneous

mass-balance equations are rejected.

Figures 3.1 a - cC give a graphical representation of

the topological errors.,
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Type 1 (Fig.3.1 a). If in the real network the pipe
between the nodes i and J is closed, the actual flow
qij i8 zero regardless of the pressure difference between i
and Jj. On the other hand, if the network model incorrectly
assumes that the pipe is open the calculated flow
in will in general, have é nonzero value q. In order to
compensate this mismatch, the least absolute values estimator
calculates the system state not using the model of the pipe
i-j | and rejects the mass-balance measurements in the end-
nodes of this pipe. The error terms associated with the
rejécted measurements ‘represent a flow which has an equal
magnitude and opposite direction to qij so that the average

flow between the nodes i1 and Jj 1is equal zero as it is in

the real network.

Type 2 (Fig. 3.1 b). Similarily as in tl;e case 1 the
valve gstatus in the pipe i-J isrincorrect but this time
the pipe is open in the real network while it is assumed to
be cloéed in Ithe network model. The error terms devised by
the state estimator r:.L and r:j represent the actual flow bet-
ween the nodes i and j(ri=—rj=q) which cannot be allowed

through the pipe i-j since it is modelled as closed.

Type 3 (Fig. 3.1 c). If there exists a leakage between
the nodes i and J it forms an additional load node in
the actual network. The magnitude of the leakage
ql is determined by the pressurg at the nodes i, 1 and j.

At the same time, the network model has no representation of
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MODELLED

ESTIMATED

qij=q qij=o A qij=
(b)
r.,
qi].‘ i
q, - 0 91 q]‘_' q. .
1.J - J 1] rj

(c)

Figure 3.1 Identification of topological errors

(a) closed valve monitored open;

. (b) opened valve monitored closed;
(c) leakage.
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the leak-node and the flow qij is calculated as a function
of the pressure difference between the nodes i and Jj. The
magnitude of the flow qij is therefore less than qil and
greater than qu. In order to balance the whole network fhe
state estimator rejects the mass-balance equations in the
end-nedes of +the 1leaking pipe giving the error terms

r. and r_.. The sum of these residuals represents the value

of the leakage ql.

Given the estimation results and a 1list of the
- measurements rejected by the least absolute values
estimator, the identification of topological errors can be

implemented as a following post-processing procedure.

1. Perform observability tests to find out in which
part of - the network topological errors are

detectable using the current measurement configur-

ation (see Chapter 1IV).

2, Calculate the weighted residuals of the rejected

measurements/pseudo-measurements and identify the

bad data

3. Test the residuals of the maes—balance equations:
- if the residuals in the end-nodes of a pipe with

a valve have approximately equal magnitude and
opposite signs then the valve status is

incorrectly monitored;,

- if the residuals in the end-nodes of a pipe are
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negative then there exigts a leak in the pipe;
- otherwise the residual represents a gross

measurement error.

3.5 NUMERICAL RESULTS

This section presents the numerical results for the
bad data processing methods presented in sections 3.3 and
3.4. The methods are labelled as L-S (least-squares based)
and LAV (least absolute values based) respectively. The
comparison 1is concentrated on the ability of the methods to

correctly identify bad data and on their computational

efficiency.

The computer programs have been written in FORTRAN 77
and run under FORTRAN VII Z compiler on a Perkin-Elmer 3220

minicomputer with 32-bit word 1length and floating point

arithmetic.

All the test <cases refer +to the 34-node water
'distribution system described in Appendix C. The measurement
configuration is identical to the one used to assess the
performance of the estimators (Case 2A, 2B and 3). A totél
of 54 measurements and pseudo-measurements is used, yielding
a global redundancy of 1.29. The methods were tested on many
sets of measurement data containing topological and gross

measurement errors and a representative sample is given

below.
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Case 1: Gross Measurement Error of Consumer Load at Node 8

~Table 3.1 shows some .typical results obtained Ofor the
measurement data contaminated with a gross measurement
error, The magnitude of the error is eci-ual to 35 standard
deviations of the measurement concerned and the false alarm

probability is selected as 0,05.

As far as the estimation time is concerned, the
performance of both methods is very similar; however, the
least-squares based method requires additional time for
computation of the residual covariance matrix followed by
reestimation of the state vector. In contrast, the
identification of bad data by the 1least absolute values
estimator is done in the course of the estimation and only
an inexpensive search for maximum weighted residual 1is

required. Both methods correctly identify the bad data

point,.
TABLE 3.1
Computational results for Case 1
ldentification and
Method Estimation Reestimation* Bad Data Total
ldentified Time
N-R lIter. Time [s] Cycles Time ([s] [s]
L-S 4 . 4.587 1 3.355 YES 7.942
LAV 5 4,387 - 0.027 YES 4.414

* only for L-S method
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Case 2: A) Leakage in the Pipe 4-20

B) Leakage in the Pipe 12-20

The effect of the presence of a topological -error in
the form of a leakage has been studied on two examples.
First, a 1leakage in the pipe 4-20, for which a flow in
normal operating conditions is low (0.0013m3 /8), is
simulated. Next, an identical in magnitude (0.01m3 /8)
leakage 1is simulated in the pipe 20-12 which has a flow of
0.0271 ms/s.

As in Case 1, computational efficiency of the least-
squares approach is grossly affected by the necessity of
calculating' the normalised residuals and subsequent
reegtimation of the state vector. Moreover, the C(g)/EN—test
provéd to be less sensitive in the case where the relative

magnitude of the leakage, as compared to the flow in the

TABLE 3.2

Computational results for Case 2

ldentification and A

Method Estimation Reestimation* Bad Data Total
Identified Time

N-R Iter. Time [s] Cycles Time [s] [s]
A) L-S 1 1.137 2 5.595 YES 6.732
A) LAV 1 2.950 - 0.027 YES 2.997

B) L-S 1 1.248 - - NO -
" B) LAV 1 2.990 - 0.027 YES 3.017

. * only for L-S method
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leaking pipe, is smaller.

Case 3: Incorrect valve Status

For the same meter configuration as in Case 1 and 2

another type of +topological error has been introduced.

Control valve in the pipe 17-9 is monitored as closed while

in the real network it remains open. The magnitude of the

flow through the control valve is relatively small

(0.0063

3
m /8), taking into account the standard deviation of the

3
flow measurements (0.0006 m /38); however, due to the strong

local measurement configuration both methods correctly

identify bad data. The estimators converge in 4 iterations

requiring 4.525 s and 4.412 s of computation time for L-S

and LAV method respectively. In this case the least-squares

based method requires two identification/reestimation cycles

since the topological error implies two gross measurement

errors and the EN-teqt guarantees the correct identifica-

tion of a single bad data at a time.

TABLE 3.3

Computational resuits for Case 3

Identification and
Method Estimation Reestimation* Bad Data Total
Igentified Time
N-R Iter. Time (sl Cycles Time [s] {s]
L-S 4 4.525 2 5.595 YES 710.120
LAV 4 4412 - 0.027 - YES 4.439

* only for L-S method
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Case 4: Leakage in the Pipe 4-20 and Gross Measurement

Error of Consumer Load at Node 6

In order to check the 1limitations of the bad data
identification procedures a measui’ement set with multiple
interacting bad data has been devised. According to the
observability criterion it is not possible to identify bad
data points since the network becomes unobservablg after
rémoving the erroneous load measurements at nodes 4, 20 and
31. In fact, both methods fail to give a correct answer. The
state estimates converge in 6 and 4 iterations (6.625 s and
4.841 s8) for L-S and LAV method respectively but in both

cases they are affected by the presence of gross errors.

3.6 CONCLUDING REMARKS

This chapter has been devoted to the investigation of
the bad data detection and identification methods in water
gsystem state estimation. The main objective has been to
develop techniques to be used in connection with the.real—

time estimators described in Chapter II.

For the 1least-squares estimator, using the augmented
matrix formulation, a new technique  of calculating the
residual sensitivity matrix has been proposed. Apart from
the computational efficiency this technique is also
numerically more stable, compared to the corresponding
‘methods reported in the 1literature, since it avoids the

formation of the normal matrix with consequent squaring of
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the cdndition nuﬁber. The bad data identification technique
based on the combined C (g)/g_N—test is shown to perform well
in the case of a single bad data. However, as the number of
gross measurement érrors increases the method becomes
computationally less efficient due to the repeated
calculations of the residual sensitivity matrix followed by

the reestimation of the state vector.

By exploiting the fact that the least absolute values
estimator avoids 'smearing' of the measurement residuals, it
has been possible to develop an efficient procedure for
identification of the +topological errors. The procedure
merely checks the magnitude and sSign of the weighted
measurement residuals since the topological errors are shown
to be équivalent to a pair of gross mass-balance errors in
the end-nodes of the pipe concerned. The computational
overhead associated with this post-processing is negligible
so the time required to identify bad data is determined by

the efficiency of the state estimator.

A number of tests have beén carried out on the
realistic 34-node system and the corresponding results are
reported in section 3.5. The results confirm the requirement
that in order to identify bad data it is neéessaty to have
available ; local measurement redundancy. Consequently, by
performing the observability test it is possible to
.determine in which areas of +the network bad data is

detectable using the current measurement set.
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CHAPTER IV

METHODS TO DETERMINE WATER SYSTEM OBSERVABILITY

4.1 INTRODUCTION

The observability problem in water system state
estimation consists essentially in determining whether the
measurements currently available +to the state estimator

provide sufficient information to allow the computation of

the estimates.

Observability tests are important both as a design
tool in meter placement studies performed off-line, and in

the on-line implementation of the estimator.

In on-line operation, the availability of a routine to
check whether the water system is observable or not is very
important for the efficiency of the estimation process.
Before +the state estimation, the observability routine
determines whether the current measurement set renders
the system observable. If +this is the case, the state
estimation proceeds. Otherwise, the system is unobservable,
and the estimator will not be able to calculate the states

for +the whole network using the available measurements.
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This situation may arise as a result of meter or telemetry
failure, changes of network topology by means of valve
controls, and also as a consequence of the elimination of
measurements previousgly identified as bad data. In these -
c:asels, the observability routine should identify the
observable subsystems so that, in a subsequent step, either
the state estimation is applied to the subnetworks of the
original system, or appropriate pseudo-measurements are
added to the measurement set to allow the estimation of the

states for the whole system.

Observability considerations also have relevance in
the planning stage of a metering system to be used for state
estimation. In these off-line studies, the objective is to
achieve a metering system design which will guarantee
reliable estimates even in the event of meter and telemetry
failures. To take into account the possibility of bad data
elimination, measufements can be omitted singly, in pairs
etc. The observability test is then wused to assess the
resulting metering systems and to indicate where they should

be reinforced by the addition of further measurements.

There are some other questions that are related to the
observability problem. For example, the determination of a
"minimal measurement set which makes the system observable
may be used as a first step to determine how redundancy
should be added +to enhance the estimates accuracy and the

performance of bad data detection and identification. Other
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related problems are the determination of detectability
conditions for leakages in the network, limitation of the
spread of the residual error, or considerations of financial

aspects of the telemetry system and meter placement designs.

This chapter initially presents thg basic theoretical
results for topological observability in water system state
estimation. Two original methods are then proposed which
essentially aim to find an observable spanning tree of the
water network. The first technique transforms the
observability problem into a matching problem in bipartite
measurement-to-branch graph. Branches with measurement
assignment are then used to build a spanning tree of the
hefwork. The second method undertakes a direct search of the
observable spanning tree. The method starts from an
arbitrary node. The equivalence of the preservation of the
path property and the existence of the observable spanning
tree has been exploited in order to devise a procedure to
correct possible misassignments during the first stage of

the algorithm,

This chapter is organisea as follows. Section 3.2
reviews the literature on power system observability for
state egtimation since préctical methods for solving the
observability Problem originated from this area of
application. The equivalent observability considerations
with respect +to +the water network, to the author's

knowledge, have not been reported in the literature. Section
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4.3 is devoted to the introduction of the observability
definitions in the context éf water distribution networks.
The basic conditions for +topological observability are
presented in section 4.4. Sections 4.5 and 4.6 contain
descriptions ‘of two new methods to determine topological

observability.

4.2 A REVIEW OF PREVIOUS WORK

The importance and complexity of the observability
problem has been recognized since the very early staées of
research on power gystem state estimation. Schweppe and
Wildes [220], in +the first of +the three papers which
originally proposed the use of state estimation techniques
for bower systems, acknowledged the difficulties associated
with the meter placement problem and how it could affect the
performance of the estimator. They employed the covariance
matrix of the estimation errors as a tool for selecting the

type and location of meters, on a trial-and-error basis.

Observability questions, however, started to receive
more_extensive attention in the literature only after 1973,
Some proposed methods are still based on trial-and-error
procedures, ﬁsing different criteria. Thus, Edelman [97]
agsesses the metering system from the point of view of the
condition number of the information matrix, and Ariatti et
al. [8] use reliability and quality of the estimates as the

criteria to compare distinct metering schemes. A different
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approach is used by Koglin [154], which starts with the set
of all possible measurements and sequentially eliminates the
measurements which do not significantly affect the quality
of the egtimates., This is decided by comparing the
expectation of the quadratic errors against given:  limits.
Fetzer'and Anderson _[110] formulate the problem by using the
concebpt of observability from linear control theory. The
proposed method for measurement selection starts with a
given measurement set which is then sequentially augmented
by one measurement at a time. At each step, the new
measurement is the one whose component orthogonal to the
measurement hyperspace is the largest. This can actually be
seen as an application of principal component analysis. The
‘computational requirements of the method seem to be an

obstacle to its practical application,

The measurement selection problem is formulated wusing
information theory and non-linear programming by Phua and
Dillbn [197]. The aim is to maximize the information about
the state vector in the measurement set. Considerations
about measurement accuracy and financial costs are modelled

as constraints in the optimisation problem.

All the above methods make use of floating point
calculations and are actually intended for off-line meter
Placement studies. Other authors have sought methods to be
used in both on-line and off-line studies. These methods are

'usually based on logical procedures. Handshin and Bongers
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(130], for example, proposed an observability test which
consists of checking the connectivity of +the Jacobian
matrix. However, +this test only gives a weak necessary

condition for observability.

Clements and Wollenberg [58] investigate minimum
observability cénditions using network topology and the
Kirchhoff Laws. They also introduce the concept of observable
islands. The proposed algorithm is a heuristic procedure
which first considers 1line flow measurements and then
pProcesses injection measurements, one at a time. Although it
has been shown that the algorithm may give conservative
results [4], (156], the Clements and Wollenberg paper
brought about some ideas which were pursued in subsequent
workﬁ. Allemong et al. [4], who detected that Clements and
Wollenberg method could providé conservative results,
suggested a new algorithm based on the same ideas to correct
the problem. Basically, the algorithm searches for an
observable tree in the network by using the principles of
generation of trees. Krumpholz, Clements and Davis [156] use
network topology and an algorithm for +the flow problem in
transportation networks to devise a method for solving the
observability problem. The concepts of algebraic, numerical
and topological observabilities are introduced, and the
theoretical framework for the method is developed
considering a linear approximation for the measurement
model. More recently the same authors [57] have published an

enhanced version of their algorithm which avoids possible
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misassignements of measurements to branches in its attempt

to build the largest forest of full rank.

Quintana, Simoes-Costa and Mandel [199] proposed a
method which directgly searches for an observable spanning
tree in the measurement graph using an algorithm for matroid

intersection.

For the networks with a big proportion of flowl
measurements Van Cutsem and Gailly [273], [274] proposed an
enumerative procedure which examines ' all possible
meaéurement assignments. The algorithm 1is simple but has

limited applicability since in general case it can be very

expensive computationally.

4.3 OBSERVABILITY DEFINITIONS

4,3.,1 Observability and Numerical Obsgervability

Consider a set of M measurements taken in water
distribution system. It is assumed +that the measurable

quantities are nodal heads, fixed-head-node flows, consumer

loads and pipe flows.

A water system is said to be observable or solvable in

the static state estimation sense with regpect to a given
measurement set M, if the fixed-head-node flows and the
nodal heads +throughout the system can be determined Dby

processing the measurements in M by a static state
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estimator. Otherwise, +the water system is said to be

unobservable with respect to M.

From this definition it can be immediately céncluded
that a necessary condition for water system observability is

that the Jacobian matrix in Eq. (2.10) must be of full rank.

It should also be noticed that observability depends,
to a certain extent, on the operating point used for the
linearisation of the. measured model. This is so beca.use, for
a given measurement set, the numerical values of the entries
of the Jacobian matrix vary according to the operatiﬁg
point. Theoretically, +this might affect the rank of the
Jacobian matrix. Also, it may happen that the Jacobian
matrix is of full rank when, computed with respect to a
certain operating point but, in the course of the iterative
solution, numerical problems may develop such fhat the final
estimates cannot be obtained. To take into account these

factors, the definition of numerical observability,

analogous to the one by [156], can be introduced.

A water system is said to be numerically observable in

the static state estimation sense, with respect to a given
measurement set M if the estimates can be obtained using
the flat start (i.e. nodal heads equal to a fixed pressure
increase above the corresponding ground level and fixed-

head-node flows equal to average flows) as the initial guess

for the estimation algorithm.
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The use of +the flat start in the definition of
numerical observability may sSeem arbitrary. However, it
reflects the fact that the flat start is usualiy the most
severe initial guess .to start the estimation algorithm, as
.it ig used only when no better point to initialize the
iterations is known. It should also be remarked that, apart
from pbssible rank deficiency and numerical problems, a
water system is also considered as numerically unobservable
if thé flat start is too far away from the actual state so

that convergence cannot be achieved [156].

Testing numerical observability amounts to solving the
static state estimation problem from the flat start _for the
given measurement set. This procedure cannot be considered
as é feasible candidate for a practical observability test
for at least two reasons: first, observability would be
decided by solving the problem instead of being an ‘'a
priori' result, and second, the method gives no clue as to

where in the system the problem resides.

Another possible way to test observability would be
the floating point calculation of the rank of the Jacobian
matrix. But, in spite of the fact that efficient algorithms
for cbmputing the rank of a matrix are currently available,
these methods are still too time-consuming for on-line
applications. Besides, such methods would also be unable to

~pProvide indications about the location of the problem and

about the observable susbsystems.
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4.3,2 Measurement Model for Water System State Estimation

The derivation of topological observability conditions
described in the next section is based on the approximate
measurement model for water system state estimation. The
non-linear measurement model has been discussed in Appendix A

is given by

z2=g(x)+w (4.1)

where z is the mx1 measurement vector, x is the nxl
state vector, g(-) is an mxl non-linear vector function,
and w is an mx1 random vector which models <the

measurement errors.

| Consgider that the water system comprises N nodes, F
fixed-head-nodes and P pipes. A total of m measurements
are taken namely: mh head magnitudes, mq fixed-head-node
flows, m1 consumer loads and mf pipe flows. Sir;ce the
heads are usually measured with respect to the equalised
ground level the dimension of Athe state vector is n=N+F .
The state vector is of the form g_T = [h,qg], where h is
the vector of nodal heads and g 1is the vector of fixed-‘
head-node flows. In order to achieve a one-to-one

correspondence between state variables and network nodes a

concept of auxiliary nodes 1is introduced. The following

properties are inherent to the auxiliary nodes:

i) each fixed-head-node in the network has an auxiliary

node corresponding to it;
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ii) the auxiliary node can only be connected to its
fixed-head-node;

iii) the nodal pressure is not defined in the apxiliary
node,

iv) the flow between the auxiliary node ana the fixed-

head-node is defined by the fixed-head-node flow.

It is also convenient, for the purpose of analysis of the
measurement configuration, to include in the network diagram
a head reference node with 1links to the head-measgsured nodes.
The network digram now consists of n+l nodes and l=P+F+mh

links (Fig.4.1 a and 4.1 b). Each 1link contributes one
element to the diagonal 1x1 hydraulic conductivity matrix
Y. The P elements of the matrix Y corresponding to the
links between the n nodes of the original network
represent the gensitivity of the flow to the changes of the
nodal heads. The value of these elements vary according to
thev operating conditions of the network, and can be
calculated from the network element equations given in
Appendix A. The remaining F+mh elements of Y represent
the sensitivity of fixed-head flows and the sensitivity of

nodal heads to their own changes and are therefore equal

to 1.

A direction is8 assigned to each link of the augmented
network diagram, arbitrarily, so that the network can be
represented as a directed connected graph. The structure of

this graph is described by its (n+l)xl incidence matrix A,
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as defined in Appendix E, with the exception that property
(iii) and (iv) of the auxiliary nodes implies that the link
between a fixed-head-node and the auxiliary node does not
appear in the incidence 1list of the fixed-head-node.
Furthermore, let “r denote the nxl redpced incidence
matrix obtaiped from A Dby deleting the row corresponding

to t'he reference node.

Having the required definitions the measurement model

can be expressed as

Zn M, YA th
z M YA | b W
i O A D S N P O | (4.2)
% ML Y Ar g “
[ Ze ] [Me Y Rs | 9 |
where

Eh' Eq' El

measurement vectors of head, fixed-head-node flow,

' 2 are mhxl, qul, m_x1l and m_x1

£ 1 £

consumer load and pipe flow respectively;

are mhxl, qul, m_xl and m_x1

Yne Ygr Yy G 1 £

measurement noise vectors corresponding to vectors

Zyr Zgr Zye Zgi

My Mgr Myo Mg

meter placement matrices for head, fixed-head-node

M : are mhxl, qul, mlxl and mfxl

flow, consumer load and pipe flow respectively.

Construction of the matrices N%,, Mq and Mf is straightforward

since the head, fixed-head-flow and pipe flow measurements
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can bé readiiy associated with the links of the augmented
network diagram. Each row of these matrices has only one
element, correspondipg to the measured link, equal to 1 and
the remaining elements of the row equal to zero. A consumer
load at any node can be calculated as a sum of the flows in
the pipes connected to this node. Thus, construction of the
matrix Ml involves examination of the network links
incident to the measured nodes. If the link is directed ’'to
the node' the coresponding entry in the matrix is +1,

otherwise the entry is -1. All remaining elements in the

row are equal to zero.

4.3.3 Topological Observability

.In subsection 4.3.1 it has been stated that the use of
'floating point calculation. methods may be impractical for
testing observability since they provide no insight into the
location of the measurement deficiency. This question 1is
related to the network topology and motivates a
topologically based observability algorithm. In the present
thesis we turn our attention to methods which do ﬁot depend
on the numerical values of the Jacobian matrix entries, but
rather investigate whether <the measurement set provides
enough information about the network topology toothe state
estimatorr Observability determination, from this point of
view, becomes the study of the topology of a graph derived

ffom the original network according to the quality and

quantity of the measurements in the metering scheme under
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consideration.

Topological observability is derived from the
condition that the Jacobian matrix must be of full rank
[156]. To properly define +this form of observability,
consider the approximate measurement model presented in the

pPrevious section and summarised as

z = MmYArT-§+Q (4.3)
where
_g_T = [ghT:EqT:ElT:EfT] ' mxl measurement vector
_(QT = (@, :QqT:wlT:_ng] , Mxl measurement noise vector

T:'MfT] , mxl meter placement matrix

T_ T, T,
LN [Mh ,Mq My
X, nxl state vector

Y, 1x1 hydraulic conductivity matrix

Ar, nxl reduced node-to-branch incidence matrix.

The definition of topological observability then

follows from the measurement model given by Eq. (4.3).

'An n-node water system is topologically observable with

respect to a given measurement set M if and only if the

rank of the matrix G=Mm Y ArT is equal ton"'.

The structure of G does not depend on elements of Y,
which change with operating point, but is determined by the

meter placement . and the network topology.

In the remainder of this chapter attention will be
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focused on topological observability. Although the possible
occurence of numerical problems while investigating
obgervability from the topological point-of-view are not
taken into account, it will be seen that methods using this
approach can provide all the information required from an
obéervability rbutine. The conditions necessary to achieve

topologicalA observability ;are discussed in the following

section.

4.4 CONDITIONS FOR TOPOLOGICAL OBSERVABILITY

4,4,1 Preliminary Definitions

Some concepts and definitions have to be introduced
before the topological observability conditions can be
established. An appropriate starting point is an investigation

how the measurements interrelate with the state variables.

By examining the structure of meter placement matrices

M, M, M) and M, of Equation 4.2 the following remarks can

h’ 1 4

be made:

a) A nodal head measurement carries information about
the corresponding state variable;

b) A fixed-head-node flow measurement, similarly to
the head measurement, also directly provides
information about the value of the state variable;

c) The effect of a consumer load measurement is to

interrelate the head of the measured node with the
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a)

heads of the nodes connected to it; and

A pipe flow measurement will produce an equation in

the measurement model which interrelates the nodal

heads corresponding to the ends of the monitored

pipe.

Using the definition of an augmented network graph

introduced in subsection 4.3.2, the concept of measurement

assignment is a direct consequence of remarks a), b), c) and

d) above.

A measurement z can be assigned to an edge e of

the network graph if:

i)

ii)

iii)

iv)

If

z is a head measurement and e is an edge
connecting the measured node with the reference
node; or

2 is a fixed-head-node flow measurement and e
represents a link between the fixed-head node and
the auxiliary node, or

z is a consumer load measurement at either of the

two ends of the pipe which corresponds to edge e;

or

z is a flow measurement taken at the pipe of the
water distribution system which corresponds to edge

e of the network graph.

the measurement 2z is assigned to edge e, we also

say that edge e is associated with measurement z.
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Since the load measurement is the only one which can
be assigned to different edges it is useful to introduce a
concept of measured and unmeasured nodes. A node is said to

be measured (unmeasﬁred) if +there is (is not) a 1load

measurement available at this node.

The fundamental concept to be used in establishing the

topological observability conditions is that of observable

spanning trees.

Consider a set M of measurements taken in a water

distribution system. A spanning tree of the augmented

network graph G 1is an observable spanning tree if and only

if it is possible to assign a measurement zeM +to each one

of the edges of G such that no two edges are associated

with the same measurement.

4.4.2'Conditions for Topological Obgervability

" Conditions for topological observability have been
derived by Krumpholz, Clements and Davis [156]. They have
used the approximate measurement model, analogous to the one
presented in Section 4.3.2, and applied a transformation
which changes the problem from the nodal framework to the
branch framework. The observability conditions are rephrased

here to fit the definitions introduced in the. previous

sections.
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Theorem 4.1

(Necessary Condition for Topological Observability)

If a water system is topologically observable with
respect +to a measurément set M, then there exists a
spanning tree of its augmented network graph which is an
observable spanning tree and whose branches are associated
with measurements of M,

Proof: see [156]

Theorem 4.2

Suppose that there exists an observable tree in the
augmented network graph whose branches are associated with
measurements of a measurement set M. Then, if the vector
formed by the diagonal hydraulic conductivities of the pipes
does not lie on a certain (n-1) dimensional surface C, the
water system is observable with respect to the measurement
set M. | |

Proof: see [156]

Notice that, rigorously, Theorem 4.2 does not provide
a sufficient condition for' topological observability.
However, those cases in which the existence of an observable
tfee does not imply topological observability are unlikely
to appear in practice. In order for these casesgs to occur,
the hydraulic conductivities of the pipes must combine
themselves in such a way that they reduce the rank of G, as

determined by the measurement set which corresponds to the
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obgservable +tree. This matrix would be of full rank for a

different set of hydraulic conductivities of the pipes.

Thus, topological observability will be investigated -
here by seeking‘an observable spanning tree of the network
graph. It should be remembered however that the existence of
such a tree is only a necessary condition for topological
observability. Situations in which such a tree exists, and
yet, the system is topologically unobservable are
mathematically possible, although wunlikely to occur in

practice,

Theorem 4.3 defines equivalent conditions of

topological observability.

Theorem 4.3

Ssuppose that there exists a tree of the augmented
network graph, then the following are equivalent:
i) the tree is of full rank

ii) the tree has a path property

iii) there exists a measurement assignment for the tree

A tree of the network graph is said to have the path

property if every path of branches of the tree between two
nodes with unmeasured load contains at least one branch
whose flow is measured. The validity of the Theorem 4.3

follows immediately from the path property of trees of full

rank.
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4.5 OBSERVABILITY DETERMINATION BY THE MATCHING METHOD

4.5.1 The Measurement to Branch Assignment

This section proposes a new method to check if a water
system is topologically observable with respect to a given
measurement set M. This method does not attempt to directly
find a spanning tree of the network graph with the required
measurement assignment. Instead, it seeks a subset
Bo of the set of branches B of the augmented network graph
whose elements can be associated with elements of the
measurement set M in one-to-one fashion. This one-to-one
correspondence is referred as the assignment (MO,BO) and the

number of its elements is called the assignment length 8&8.

The 'search for the observable spanning tree can now be
restricted to the subgraph Go of G formed by the branches
Bo of the measurement assignment (MO,BO). If such a tree is
found the netwqu is topologically observable. Otherwise, an
attempt is made to modify Go by breaking loops. and adding
new, pr.eviously unassigned branches to enable construction
of a tree of full rank. Failing that, the network 1is
declared unobservable and the algorithm returps a maximal
observable forest of G. Figure 4.2 schematically shows the
. basic steps required by the proposed method to test
observability of a water dist;ibution system with a given

set of measurements M. The following subsections describe

the details of each block of Fig. 4.2
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4.5.2 Problem Formulation Uging Bipartite Graphs and

Matchings

The first step in the search for a measurement
assignment (MO,BO) is the formulation of the problem using

bipartite graphs.

A bipartite graph is a graph whose vertex set can be

partitioned into two subsets, X and Y, so that each edge of
the graph has one end in X and one end in Y; the partition

(X,Y) is called a bipartition of the graph [75]}, [102].

In addition, the following definitions will be

required in the sequel.The adjacency set ni of a measurement

z, in a water distribufion system is the set of all branches
of fhe augmented network graph related to the measurement
z. through the approximate measurement model (4.2). Each
element of ni is said to be adjacent to a measurement zi.

The adjacency set can be seen as another means of expressing
information contained in the -meter placement matrices

M Mq' M, and M_ defined in the subsection 4.3.2.

h’ 1 f

To associate the elements of the measurement set M
with the branch set B of the augmented network graph, a
bipartite graph of the type (M,B) is constructed. The edges

of this graph are determined by the following rules, derived

from the remarks in subsection 4.3.2

a) If meagsurement zi is a head measurement at the node

i, the corresponding vertex zieM is connected to the
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vertex bieB which represents itself a branch between

the node i and the reference node;

b) If measurementzi is a fixed-head flow measurement
the edge of +the bipartite graph (M,B) connects
z; with a branch bi which 1links the fixed-head node
with the corresponding auxiliary node of the

augmented network graph;

c) If measurement zi is a measurement of flow in a pipe
represented by bieB, the corresponding edge of the

bipartite graph connects zi and bi;

d) If measurement zi is a consumer load measurement,
and the adjacency set for this measurement is

ﬂi then the vertex zZ,€M is connected to all vertices

bieﬂi .

To illustrate the concept of +the (M,B) bipartite
graph, consider the augmented network graph with some
measurements as indicated in Fig. 4.1 b. The corresponding

(M,B) bipartite graph is presented in Fig. 4.3 b.

In the search for a (MO,BO) assignment in the bipartite
graph the concept of matching in a graph is needed. A subset

M of the set of edges of a graph G 1is a matching in G

if its elements are edges with distinct ends, such that no

two of them are incident to the same vertex. If a vertex v

is incident to some edge of the matching M, then M is

97



z4

7YY T b6
b2|22
b3 b7
z3 \_/
bl|zl
-

(b)
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said to saturate v, and v is M-saturated [75].

We are particularly interested in the case where the

graph G is a bipartite graph. For a bipartite graph with

bipa_rtition (M,B), a 'complete matching of the vertices in
set M into those in set B is a matching in which there 1is
one edge incident to every vertex in M [75]. Figure 4.4
shows a complete matching of M into B for the bipartite

graph of Fig. 4.3 b.

A matching M is a maximum matching in a graph G if

G has no matching M whose number of edges is greater than

the number of edges in M. A complete matching is a maximum

matching.

From the above definitions, it appears that an assign-

ment (MO,BO) can be seen as a maximum matching of M into B.

bl b2 b3 b4 b5 b6 b7 b8 b9

z1 z2 23 z4 z5 z6

Figure 4.4 Maximum matching of M into B

for the graph of Fig. 4.3 (b)
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The condition for the existence of a maximum matching is
stated in form of a theorem whose proof can be found in
references [75)] and [102]. Theorem 4.4 below requires the

following definitions :‘

If M 1is a matching in a graph G, an M-alternating

path in G is a path whose edges are alternately in
E-M and in M, where E is the set of edges of G. An

M-augmenting path is an M-alternating path whose endpoints

are M-unsaturated.

Theorem 4.4

A matching M in a graph G is a maximum matching if

and only if G contains no M-augmenting path.

It is important to note that the theorem is general in
that it does not restrict the number of eleménts of the
bipartite sets M and B. It also guarantees that a maximum
matching can always be found for a connected graph G. The

following corollary can be derived from the theorem 4.4.

Corollary 4.1 [102]

The number of edges in a maximum matching of a
bipartite graph G is constant and is equal to the maximum

flow Ain the network built on G.

The corollary is illustrated in Fig. 4.5. There are
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Figure 4.5 (a) Bipartite graph G .
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several possible maximum matchings; each of them however has

the same number of components.

4.5.3 An Algorithm to Find an(M_,B_)Assignment

The (MO,BO) assignment problem described in subsection
4.5.1 can now be solved using a bipartite graph formulation.
- The algorithm preéented here bases on the work .of Hopcroft
and Karp who used the concept of a layered network [81] in
order to devise a reassignment path.' An efficient
implementétion of this algorithm, specialised _fozf obtaining
'a maximum transversal of a square matrix, is given by Duff
[91] and the FORTRAN code is available as a Harwell
subroutine MC21A [S0]. The author's generalisation of the
Duff algorithm consists essentially of enabling a different

number of elements in the bipartite sets M and B.

The maximum matching is \constructed in m major
steps, where m is the number of measurements. After the
k-th step we have a maximum matching of the first k
measurements into the set of branches B. The search for a

larger matching, which includes an M-unsaturated vertex ueM

consists of forming a tree of a bipartite graph G called

an M-alternating tree rooted at u. Such a tree has the

following properties

a) The M-unsaturated vertex u is a vertex of a

tree; and
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b) For every vertex v of the tree, the edges of the
unique path connecting v to u on the tree are
edges which are alternately contained and not

contained in M.

An example of the matching M in the bipartitel graph G,
presented in Fig. 4.5 a, after processing two elements of
the set M, is given in Fig. 4.6 a, and the M-alternating
tree rooted at the third element of M is shown in Fig.4.6b
The reagsignment corresponds +to replacing the branch 2-4

with two branches 2-2 and 3-4 thus enlarging the current

matching.

There are Several different techniques available for

finding an M-alternating path. Duff [91] has found that
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(a) (b) (c)

Figure 4.6 (a) Matching M after two steps

(b) M-alternating tree rooted at 3

(c) Matching M after three steps
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application of a depth first s8earch with a look-ahead
technique gives the best practical results despite the fact
that other algorithms give better theoretical bounds on

computational complexity.

In accessing the vertices of a graph in a depth first
search (DFS), we search edges from -the current vertex and
add to our path the first vertex encountered that we have
not yet visited. This becomes +the current vertex and we
proceed from it as before. If all the vertices that can be
reached from the current one at the end of the path are
already visited,- we backtrack to the vertex added to the
path immediately before the present one, make that the
current vertex and proceed as before. The depth first search
algorithm is illustrated in Fig. 4.7, where heavy 1lines
denote edges in the path and the vertices are numbered in

the order in which they are visited.

Figure 4.7 Graph indicating DFS ordering
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In practice, the efficiency of a depth first search
scheme can be enhanced by checking all unvisited vertices
reached from the current one to see if any are free. If so,
the M-alternating péth has been found and the matching
extends by one. This look-—ahead technique of Duff saves
visiting vertices 3 to 8, of Fig. 4.7, in the case that

vertex 9 is found free.

The theoretical upper bound on computational
complexity of the DFS algorithm with a look-ahead technique
can be found as the product of the number of vertices and
edges of the bipartite graph concerned. However, in most
practical casgses the algoritﬁm performs as if its complexity

was linearily dependent on the sum of the number of vertices

and edges in the bipartite graph.

4.5.4 Determination of an Observable Spanning Tree in the

(Mo ' Bo) Assignment

Section 4.5 started by introducing the concept of
(MO,BO) asgsignment. The observability problem was then
formulated in terms of bipartite graphs and matchings.
Finélly, subsection 4.5.3 presented methods to find a
maximum matching in a bipartite graph, and to solve the

optimal assignment problem. This section will look into the

connections between the observability conditions of section

4.4 and the (MO,BO) assignment.
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To begin = investigating how conclusions about
observability can be drawn from (MO,BO) assignment, assume
that the water distribution system is topologically-
observable with respect to a certain measurement set M. By
Theorem 4.1, an observable spanning tree of the augmented
network graph of the water network exists. Let M1 be the subset
of M whose measurements are assigned to the branches of
the observable spanning tree. The length of such an
assignment (MI,BI) equals n since the number of branches
of the spanning tree of the graph with n+l1 vertices is n.
On the other hand, it is possible to find a measurement to
branch assignment (MO,BO), corresponding to the maximum
matching M, which by definition has the length at least n
and which contains (M,,B)). Thus, the gearch for an
observable spanning tree can be performed directly on the
subgraph Go of the network graph G formed by all the

branches of the measurement assignment (MO,BO) .

The important conclusion to be drawn from the above
considerations is:

‘If a water distribution system is topologically
observable with respect to a measurement set M then there

exists a measurement assignment (MO,BO) whose branches con-
tain a spanning tree of the network graph. Conversely, if
there is no assignment (MO,BO) which contains a spanning

tree of G then the water system is topologically

unobsgervable with respect to M.'

106



However, one cannot claim that for every assignment
(Mo',Bo) in the observable network the sgpanning tree of 4 G
can be found. This is because the assignment can giire rise
to loops in the network graph, which has an effect of
limiting the number of vertices incident to the branches of
BO. The possibility of creating such loops is apparent since
the water network connectivity is not taken into account
during construction of the maximﬁm matching M. Figure 4.8
presents two possible measurement to branch assignments for
the system of Fig. 4.3. The assigned branches are marked on
the network graph with bold 1lines. In the first case the
network graph Go’ formed by the branches Bo of the (MO,BO) ’

does not contain a spanning tree of G and in the second

case it does.

A procedure 1is then required which would aid the
matching algorithm in maximising +the number of vertices
incident to the branches of Bo. Such a procedure will be

described later in this subsection.

In some special cases the gquestion of topological

obserw)abilii:y can be answered: immediately by examination of

the assignment length &8,

a) If the (Mo’Bo) assignment has the length A=1, where

1 is the number of branches of the augmented
network graph G, then the water network 18

observable with respect to the measurement set M,
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Every spanning tree of the graph G is an
observable spaﬁning tree since Bo contains all the
branches of G,

b) If the length of the (Mo'Bo) assignment B<en, then
the water network is topologically unobservable due
to the fact that Bo -contains 1less branches than any

spanning tree of G. Consequently, no observable

spanning tree exists.

However, if n£B8<1l an attempt to find a spanning tree of G
in Go must be made. Because of the possibility of creating
'observable' loops by the branches of Bo , as indicated in
Fig. 4.8, a sequence of measurement assignments is generated
such that each contains no more loops than the previous one,
and é tree search procedure is reinitialised for every new
set of branches Bo. This process continues until an attempt
.has been made to diséonnect every loop or a spanning tree of
G has been found. If a spanning tree is not found for any
of the consecutive sets Bo ’ the system is declared
topologically unobservable, and a tree search procedure
réturns a maximal forest of G in Go' This is a valuable
piece of in‘formation since it can bé used to add pseudo-
‘measurements in order to make that portion of the system
observable. Alternatively, the state estimation can be

carried out only for the observable part of the system.

The procedure to maximize the number of vertices

incident to the branches of the set Bo is - outlined below.
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Essentially, it consists of identifying ‘observable loops'
'in a maximal forest and reassigning the measurements
associated with the loop edges so as to include the forest

linking edges in the updated measurement assignment (MO,BO).

Notice that the search for loops is equivalent to the
search for biconnected components of the graph Go since each
loop is wholly contained in one of the bicomponents. We
can therefore use an algorithm of Hopcroft and Tarjan [138)
to mark the bicomponents which contain more than one edge.
The algérithm performs a depth first search along the edges
of the graph. Each new vertex reached is placed on a stack,
and for each vertex a record is kept of the lowest vertex on
the - stack to which it is qonnected by a path of unstacked
veftices. When a new vertex cannot be reached from the top
of the stack, the top vertex is deleted, and the search
continues from the next one on the stack. If the top vertex
does not connect to a vertex lower than the second one on
the stack, this second vertex is an articulation vertex of
the graph. All edges examined during the search are placed
on a further stack, so that when an articulation vertex is
found the edges of the corresponding biconnected component

may be retrived.

when the stack is exhausted, a complete search for a
connected component has been performed. If the graph is
connected, the process is complete. Otherwise, an unreached

vertex is selected as a new starting point and the process
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is repeated until all the graph has been exhausted. Isolated
vertices are merely skipped, since they have no adjacent

edges,

The reassignment pProcedure can now be solved

efficiently by introducing an additional loop-measurement

incident to all loop edges of Go and performing. one step of
the maximum matching algorithm on the modified bipartite
graph. An M-alternating path rooted at the loop-measurement
is required to terminate at a forest 1linking edge- thus
diminishing the number of forest components of Go' The pro-
cedure terminates if either an observable spanning tree

of G is found or a forest cannot be linked.

The flow chart exhibited in Fig. 4.9 summarizes all

the steps in the implementation of the matching method.

Computational complexity of this algorithm is given as
max[O(A) ,0(B),0(C),0(i-D),0(i E)] where A, B, C, D and E
are the labels of those parts of the algorithm which are
critical to an estimation of the complexity and i is a
maximal number of repetitions of loop-breaking procedure D
and E. The upper bound on i is equal n since this is the
maximum number of forest components of a graph with n
vertices. The number of operations performed by the
algorithm is then proportional to max[n,n7,n,n7,nn] = nT
where 7 is the number of edges of the bipartite graph and
is of order 1 (1 is the number of edges of the agumented

network graph). However, in most practical cases the maximum
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branches., -

Solve the maximum assignment
problem on the modified (E)
bipartite graph.

Figure 4.9 Flow chart for the Matching Method
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matching algorithm shows a complexity which is far -less than

its theoretical upper bound and is approximately equal n+T,

4.5.5 Examples

Preliminary tests on the matching method were
performed using the water systems whose augmented network
grai:)hs are shown in Fig. 4.10 along with the corresponding
measurement sets. The system of Fig. 4.10 a to ¢ is the one
used to explain the observability a‘lgorithm and the system
of Fig. 4.10 4 to f has been taken from the literature on
‘water system control [205]. :!:nitial measurement assignments

are given in Fig. 4.11 and the observable trees or forests

are depicted in Fig. 4.12.

For the system in Fig. 4.10 4, a ioop-—breaking
procedure needs not to be activated since the initial
measurement assignment contains an observable tree. However,
this largely depends on the vertex labelling and all the

other examples refer to a more general case where the

maximum matching produces only a forest,

To further assess the performance of the matching
method, it has also been used to inves£igate the
obsvervability of the realistic 34-node system described in
Appendix B. A tree generation routine has been used to set
up a base case to test the method. The measurement set haé

been devised such that a different measurement is assigned
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to each branch of the tree. From this example five other
cases are derived by changing the measurement set. The

various cases are defined next.

Case 1 (base case): 42 measurements, namely 6 head
measurements, 8 fixed-head-node flow measurements, 9 flow
measurements and 19 load measurements, are taken throughout
the system such that an observable spanning-tree»e#ists.

Case 2: The measurement set of the base case is
reduced by one load measurement at node 8. The system is
unobservable with respect to this reduced measurement set.

Case 3: One new load measurement is added at node 10.
Despite the system now having the same number of
measurements as in the base case, it remains unobservable
and the added load measurement contributes only to the local
redundancy.

Case 4: The measurement set of Case 3 is augmented by
5 measurements; however, this is done in such a way that the
system remains unobservable with respect to the new
measurement set.

Case 5: Two line flow measurements are replaced by two
load measurements in the measurement set of Case 3. This
allows the redundant measurement to be used rendering the
system observable.

Case 6: Four new line flow measurements afe added to
the measurement set of Case 5. Since an observable spanning

tree can be found for the previous measurement set the new
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system is also observable.

The augmented network graphs for the six cases are
presented in Figures 4.13-4.1é. The results and computational -
times are summarizedAin Table 4.1. The computer runs were
performed on a Perkin-Elmer 3220 minicomputer, using FORTRAN
77. The following comments apply to the data displayed in

3

Table 4.1.

In all +the cases the matching method cori‘ectly
identified observable and unobservable syétems. For Case 1,
the observable spanning trée corresponding to the
measurement set is retrieved after performing three reassign-
ments. In cases 2, 3 and 4 the matching routine returns a
maximum observable forest +thus indicating parts of the
network requiring meter reinforcement. In case 5, similarily
to case 1, the observable spanning tree is  found after 3
réassignments. The addition of new measurements +to the
measurement set of case 5 results in a maximum matching
which contains an observable spanning tree. In effect the

reassignment procedure does not have to be initialised.

The computing times displayed in Table 4.1 demonstrate
strong dependence on the number of measurements regardless
,of whether the system is observable or unobservable. This
result is expected since an increase in the number of
measurements also increases the possibility that the maximal
observable tree or forest is found direct]_.y at the stage of

maximum matching. In practice, where the measurement
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TABLE 4.1

Computational results for the Matching Metchod

Case / ' 1

Observability * 0OBS.

Number of

measurements 42

Comp. time for

bipartition [s] 0.016

Comp. time for

max. matching (sl 0.008

Number of

reassignments 3

Comp. time for **

tree search [s] 0.032

Comp. time for **

loop search (s} 0.060

Comp. time for **

reassignment [s] 0.017

Total time [s] 0.133

Result * 0BS.
* 0OBS. = Observable .

UNOBS. = Unobservable

** Sum for all reassignments

2 3
UNOBS. UNOBS.
1 42
0.016 0.016
0.008 0.008
3 2
0.031 0.024
0.079 0.040
0.022 0.011
0.156 0.099
UNOBS. UNOBS.
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4
UNOBS.

47
0.017

0.008

0.015
0.020

0.005
0.065

UNOBS.

5

0OBS.

42

0.016

0.008

0.032

0.058

©0.017

0131

OBS.

6
0oBsS.

46

0.016

0.008

0.008

0.032

oBS.



reduﬁdancy is an inherent feature of the measurement set,
the matching method is likely to perform an observability
test vefy efficiently. However, even in the worst case
example the computingltime of 0.156 s qualifies the method

for on-line operation.

4.6 OBSERVABILITY DETERMINATION BY DIRECT SEARCH FOR AN

OBSERVABLE SPANNING TREE

4,6.,1 Problem Formulation

Unlike the matching algorithm, the method to be
proposed in this section 1nvestigates observability by
direqtly seeking a spanning tree in the augmented.network
graph defined in subsection 4.3.2. This graph is essentially
a network graph extended by auxiliary nodes associated with
the fixed-head-nodes of the water network and by one head-
reference node. However, the number of edges of this graph
varies according to the measurement set. Every measurement
of a nodal head results in additional edge between a

measured and a reference node.

The definition of an augmented network graph 1is
compatible with the measurement assignment rules defined in
subsection 4.4.1, The head, fixed-head-node flow and flow
measurements are uniquely associated with the corresponding
edges of the augmented network graph. Thus, according to

theorems in subsection 4.4.2, the gquestion of topological
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observability can be decided by seeking a spanning tree in
the augmented network graph. In every vertex visited during

construction of the tree, the edges which have a 1uuque.
measurement assignment are used before +those which are
adjacent to the load measured nodes. The selection of an
edge which can be assigned to a particular load measurement
is cfitical in the sense that it can isolate some unmeasured
nodes preventing the discovery of an observable spanning
tree even 'if one exists. A tree search prdcedﬁre must
therefore be assisted by a routine which is able to correct
such misassignments by checking if any of the redundant

measurements can be used to expand the network tree.

The basic steps of our observability algorithm are
schematically shown in Fig. 4.19 and are described in the

next section.

4.6.2 An Algorithm to - Identity an Observable Spanning Tree

in the Augmented Network Graph

The observability algorithm presented in this section
is based on the depth-first-search (DFSS procedure of Tarjan
[261], modified . to cater for constraints defined by the
measurement assignment rules discussed in section 4.4. In
order to build an observable tree over the largest portion

6f the network some rules of edge selection have been

established:
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i) Edges of the augmented network graph which can be
associated with head, fixed-head-node flow or flow
measurements are never assignea to load measure-
ments even 1if such are available in their end-
vertices;

ii) In every vertex, edges which have a unique
measurement assignment are selected before those
which can be associated only with a load
measurement;

iii) If an unmeasured vertex is reached through an edge
assigned to the load measurement the vertex is put

on the stack for further consideration and we

backtrack to the previous vertex.

Rules i) and ii) ensure that, 1if it is possible to
reach some vertices via the edges which have a unique
measurement assignment the algorithm will do so, and rule
iii) minimises the number of edges connecting to a single
unmeasured node, Athus saving the 1load measurements for
further assignments. However, there 18 no simple rule which
can give guidance about how to assign load measurements
[57]. In the proposed algorithm a strategy of devising an
efficient reassignment policy instead of 1looking for an
optimal assignment has been adopted. In addition to the
vertex predecessor.function an appropriate labelling of the

edges of the observable tree has been devised.
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The following definitions can now be introduced. A

connected subgraph z1 of an observable tree T is called

a tree zone if for every two vertices vi,vjez1 a path between
vs and v, contains only edges assigned to load measurements.
If all the vertices of a tree zone are measured the zone is
called active, otherwise the zone is called inactive. It
follows immediately from the path property of observable

trees that an inactive +tree zone can have only one

unmeasured vertex.

Once an observable tree of the augmented network graph
has been found the observability question can be decided

easily in the following cases:

.a) If the observable +tree spans the whole network
graph then, according to Theorem 4.3, the network
is topologically observable with respect to the
measurement set concerned;

b) If the observable tree is not a spanning tree of
the network graph and it does not contain any
active tree zone, then the path'property of +trees
of full rank ensures that the system is topologically

unobservable.

The case in which the observable tree does not span the
‘whole network graph but contains active tree zones requires

investigation of the feasibility of amending the existing

measurement assignment.
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The measurement assignment rules adopted during
construction.of an oﬁservable tree of a network gréph ensure
that, on termination of a tree-building procedure, only
unmeasured vertices remain unvisited and they are incident
to inactive +tree zones. Furthermore, if the nétwork is
topologically observable each inactive tree zone incident to
an unvisited vertex is also incident to an active tree zone
and can be reassigned such that the path property 1is
preserved. Conversely, if the network 1is +topologically

unobservable the reassignment cannot be found.

The reassignment procedure checks whether it is
possible to disconnect a path of tree edges between an
unmeasured vertex of an inactive tree zone and a vertex of
this zone which is incident to an univisited vertex. The
constraint imposed on the algorithm is that the resulting
forest must be linked into an observable tree by an edge
connected to an active tree zone. This is illustrated in
-Fig. 4.20. An inactive tree zone 3-1-2 is incident both to
an univisited node 4 and to an active tree zone formed of a
single node 5. A path of edges 3-1-2 can be disconnected by
removing an . edge 1-3, and a resulting forest can be
converted into observable spanning tree by adding edges 5-1
and 3-4 (Fig. 4.20 b). If the network graph did not include
‘the edge 4-3 the network would be unobservable since the
path I-2 could not be disconnected.

The direct +tree search observability algorithm is

presented in more details in Fig. 4.21.
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Computational complexity of this algorithm is equal to
a maximal compiéxity of its main parts A, B, C(Cl), and. D
allowing for the fact that D can be executed repeatedly. In
parts A and B of the algorithm edges and vertices of an
augmented network graph are processed a constant number of
times, thus giving a computational complexity of 1 and n
regpectively ( 1 is the number of edges and n - is the
number of vertices of the augmented network graph). Part C
consists of a depth-first-search on a network graph. The
fact that another depth-first-search (Cl) on edges with
gm'ique measurement assignment is executed in its inner loop
does not affect computational complexity of C since if an
edge is marked as traversed in Cl it is not processed in C.
The ﬁumber of operations performed in C(Cl) is therefore
proportional to 1. The upper bound on the length of the
reassignment procedure D is equal to n (the number of tree
edges) and the number of repetitions of D is limited to 1-n
(the number of co-tree edges). Consequently, the maximum
number of operations performed by the whole observability
algorithm is proportional to 1l-n. In most practical cases,

however, the direct tree search algorithm shows a 1linear

dependence on a problem size.

4.6.3 Examples

The method based on the direct tree search algorithm

has been applied to the same examples used to test the
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matching method in subsection 4.5.5. Tﬁe results are shown
in Fig. 4.22. Although only in case (b) does the observable
spanning tree coincide with the one given by the matching
methqd, it is easy to confirm by looking at the measurement
sets in Fig. 4.10 that all the results are viable

alternatives for observable spanning trees or forests.

The method was subsequently applied to the 34-node
system, which,was also used to evaluate the performance of
the matching method. The six measurement systems which have
' been investigated were defined as in subseétion 4.,5.5. The

results and computing times are summarized in Table 4.2.

The maximum computing time among all six cases, not
taking into aqcount the time for reading data, is 0.151 8.
This is an indication that also this method is suitable for
on~-line applications. The computing time displayed in Table
4.2 does not show any obvious relationship to the number of
measurements since the redundant measurements do not
influence the process of building an observable tree. It
does however depend on the numbering of vertices of the
augmented network graph and on +the 1location of the

measurement points.

In cases where the measurement set renders the system
unobservable, the algorithm returns the maximum observable
forest. By looking at its components, it is possible to find

out which measurements should be added to the measurement

set.
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TABLE 4.2

Computational results for Direct Tree Search Method

UNOBS. = Unobservable

*x Sum for all reassignments

Case / 1
Observability * 0OBS.
Number of

measurements 42
Comp. time for

construction of

augmented graph [s] 0.036
Comp. time for

tree search [s] 0.046
Number of
- reassignments [s] 1
Comp. time for

reassignments (s] 0.042
Total time (s] 0.124
Resuit 0oBsS.

* 0BS. = Observable

2
UNOBS.

41

0.035

0.049

0.058

0.142

UNOBS.
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3
UNOBS.

42

0.036

0.046

0.082

UNOBS.

4

UNOBS.

47

0.039

0.045

0.084

UNOBS.

5

OBS.

42

0.036

0.046

0.069

0.151

OBS.

6
o8s.

46

0.037

0.046

0.083

OBS.



4.7 CONCLUDING REMARKS

Chapter 4 has been concerned with the investigation of
the water system observability problem from the state
estimation point of view. After introducing the various
definitions of observability and presenting 'the conditions
for topological observability, two methods have been
proposed +to solve the problem. Both methods use a new

concept of an augmented network graph.

The first method formulates the observability problem
using a measurement-to-edge bipartite graph and a maximum
matching is sought in this graph. The edges which have a
measurement assignment are subsequently used to buiid an
observable spanning tree. If such a tree cannot be found
directly a loop-breaking procedure, also based on the
matching method, attempts to reassign measurements and 1link
forest components. In the examples considered in subsection
4.5.5 the matching method proved to be very efficient

especially for the systems with redundant measurements.

The second method proposed is based on the direct
search for an observable spanning tree in +the augmented
netv?rork graph. During construction of the tree its edges are
labelled so as to enable efficient reassignments in case the
method identifies only an observable forest and at the same
The method has

time some measurements remain unassigned.

been applied to the same systems and measurement configura-
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tions used to test the matching method. In all cases, the
results have been correct. Also, the computing times indicate

that the method is feasible for on-1line applications.

The direct tree 4search method has also been applied
to investigate observability of an eiectrical power system
[255]. An observability test on the IEEE-118 bus network
gives a computation time of 0.300 s, confirming that in

practice the algorithmic complexity of the technique grows

linearily with problem size.
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CHAPTER V

LEAKAGE REDUCTION BY

OPTIMISED VALVE CONTROL

5.1 INTRODUCTION

The primary aim of a water distribution control is to
maintain sufficient pressure +to ensure that all demands,
wherever and whenever they occur, can be met. The idealised
requirement of system operation is to keep the pressure of
the water in each individual node constant, relative to
ground level., This 1is referred to as an optimal head
profile. However, owing to the head/flow relationships in
the network, the optimal head profile can only be maintained
in a féw nodes of the network while in the others +the
operational pressure remains higher. As the complexity of a
distribution network grows, the task of achieving an optimum
~ pressure becomes more and more difficult and the average
overpressure tends to increaée. This in turn results in an
increased energy cost, increased volume of distributed
leakages and higher risk of major bursts, particularly
during the night period when the pressure additionally rises

due to decrease of consumer demand. In complex networks the
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volume of leakages can amount to approximately 25-30% of the
total production and consequently represents the main
potential for improvement of water distribution system

economy .

Minimisation of +the overpressures is poésible by
remote control of valves installed on the pipe network in
accordance with the changing demand pattern. However,
computation of the optimum valve settings is. usually a
relativelf difficult task due to the high dimensionality of
the optimisation problem and the nonlinearity of the network
model. The application of conventional optimisation methods
is consequently not realistic in v}ew of the computational
resources needed and the requirement for real time control

of the water distribution system,

In this chapter, the optimisation problem is expressed
in a form which enables application of linear programming
optimisation techniques and in particular the sparse revised
Simplex method is shown to be advantageous. This approach
makes it possible to take full advantage of the sparse
structure of the problem and to achieve low solution tihes.
A highly sparse factorisation of +the basigs matrix is
maintained using an algorithm proposed by Reid (210].
sStudies on networks of different sizes give rigse to an
estimated computation time, for a network of 100 nodes with
10 control valves, of about 20 sec using a Perkin Elmer 3220

minicomputer. An application of the computed control policy
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is shown to result in a substantial reduction of +the

distributed leakages in the system.

5.2 SUPPRESSION OF DISTRIBUTED LEAKAGES

5.2.1 Formulation of the problem

The task of minimisation of the volume of leakages can
be seen as a minimisation of discrepancies between a current
and an optimal head profile: in the network subject to

operational limits on the valve controls vk.

. o)
$1n§ |hi hi | (5.1)
k
max
s.t.
0 < vk < vk
where i =1, ,,., N- is the number of network nodes

k=1, ..., K~ is the number of control valves

_It is apparent however that because of the 1limited
number of control valves (K << N), not all heads hi can be
controlled independently, therefore it is practical to
consider only the subset of network nodes which impose the
most severe requirements for the water supply system. ".l’hese
are usually the nodes which have locally the highest ground
‘elevation or the biggest load. In effect, the optimisation

problem (5.1) can be expressed as
min | h, - h.% (5.2)
L1h; Ry
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s.t (o]
< Vk < Vk
"where j=1, ..., R is the number of reference nodes in the
network.

To be able to perform the optimisation (5.2) it is
necessary to find a functional relationship between nodal
‘heads hj and valve controls Vi These can be expressed in
many different fofms depending on the chosen set of gstate
variq.b_les. In the casgse of a water disfribution system it is
convenient to select the heads in all network nodes and

inflows in fixed head nodes as sgstate variables in order to

enhance the preservation of sparsity in the mass balance

equations
= i =1,..., 5.3
L £, (W =Db, i=1 L (5.3)
jeMy
= 1 = L+ ey 5.4
Z fij (h) +ui bi i L+1, N ( )
JEMi
o
. = u, i=L+1, . N (5.5)
i i
where h = [hl' ‘e ey hN]T is a vector of nodal pressures
ui - is the inflow in the fixed-head node
fij - is a head/flow function of i-j network element
Mi - is a set of nodes incident to node i

bi - is a nodal balance.
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A

For a network containing control valves the state
vector must be extended by the addition of variables
representing valve openings. The head/flow fundtion fij in
equations (5.3) and (5.4) is then replaced by fij (h,v) where

T
and v is the k-th valve control.

!=[v’.""vk] k

1

However vk is the control varigble and its value is not
known in advance. The info‘rmation about the value of vk can

only be expressed approximately in the following way,

V. 4w =V k=1,..., K (5.6)

V., + VY, =V k=1,..., K (5.7)

where equation (5.6) represents uncertainity about a current
appro.ximation of valve control vko, and equation (5.7)
represents an operational limit of valve control (vk>0) .

The i:roblem described by equations (5.2) - (5.7) could be
solved by a predictor-corrector type of procedure, however,
this would involve a full load flow solution followed by a
sensitivity analysis at every stage, implying unnecessarily
high computational effort. In the present paper a

formulation is proposed which allows for computation of

optimal valve controls in a single stage. For this purpose
equations (5.3), (5.4), (5.5) and (5.7) are complemented by
variables
L
Ui +1=1, . , L,
L
s = +1, . , N,
Wy i=1L
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respectively, in a similar form to equation (5.6) except
that the values of the‘se additional variables are kept zero.
Additionally, equations for +the head in the network

reference nodes are written as

hj"-"‘" = h, . j=1,..., R (5.8)
where wjh is a discrepancy between current and optimal head

profile.

Using the notation introduced above the optimisation problem
(5.2) can now be written
min ET, A (5.9)

s.t. g(x)+w=2z

where g (.) is a nonlinear functional of x.

T
X = [hl,...,hN,ul,...,uN_L,vl,..-.VK,vl,...,vK]
w=[w w L w u w u w v w v
_,,—[ 1 ’ ’ N » 1 Y2 ’ N-L ’ 1 ’ ’ K ’
(A W h h_ T
w1 R .wK ,wl , o ,wK ]
L L u u v v
w=[w1 ’ le le ’ -IwN_L 'wl ’ er 4
v 7 h h.T
wl ’ ‘IwK le 1 14 K ]
o o
z={d,,...,dg,y, Py Ve v Vi
max max o o.7T
Vl F 2NN [VK lhl 4 'hK ]
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The values of the elements of the weighting vector w are
chosen in such a way as to reflect the requirements of the
vector w. Since the mass balance equations and the
equations representing operational iimits of the valves
express physical relationships, the corresponding weights
are high which has an effect of zeroing wiL, wiu and wiv.

Conversely, the weights corresponding to the equatibns for
'valve opening wiv are set to zero s8since the cost of the
valve control is neglected in (5.2). The equations
representing a discrepaﬁcy between +the current and the
optimal head profile are biased with some 8Small positive

weights and effectively are the only ones which contribute

to the nonzero value of the performance index.

5.2.2 Solution via the Linear Programming Approach

To cope with the nonlinearity of the equations in

(5.9) a method of iterative 1linearisation based on the
Newton-Raphson process has been used. This can be

summarised as follows

1) Expand g(x) to first order using a Taylor series about

an initial guess of the state vector 50,

(5.10)

where J is PxQ. Jacobian matrix

P is a number of equations P = 2N-L+2K+R
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Q is a number of variables Q = 2N-L+2K

2) Solve the optimisation probl'em for the 1linearised
constraints,
. T
minvw - W (5.11)
Ax

tw

s.t,.4z=JA

o

where Az = g (x) - g (x )
3) Update the estimate of the state vector xk

x° = x° 5.12
E kel "Xt 8X (5.12)

4) If Ax satisfies a convergence test then stop, otherwise
repeat iteration from 1°.

The estimate of the state vector x computed according

k
to the Newton-Raphson process generally converges even. if
the initial guess 51 is not good. In practice, the initial
guegs would be the result of the most recent. state.
estimation, and convergence would be achieved in a few
steps. The structure of the optimisation problem at stagé
2) of the Newton-Raphson Process facilitates an efficient
solution using the sparse revised Simplex method. To
satisfy req'uiremen{:s for nonnegativity of the variables and

to allow a decrease of the state vector in 3) the following

substitutions are introduced
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w=r-s . (5.13)

T T
wherer = [r ey R =
r [1. rp,l . s (s, 85 ]
r.>o, S. O, .+ .= - 2 L .= ’ .= 2L
i l) I‘l Sl “’1 rlsl (e] i=1 , P
and
ox' = Ax + d (5.14)
az' = Az +J.4 (5.15)
: T . .
where d= [dl""'dQ] , and di is the maximum decrease of

the state variable xi in one iteration, thus

. - ’ T
aAx' = [Axl+dl' e 'AxQ+dQ]

Now the linear programme can be written in a standard form,

min ET-(£+§) (5.16a)
Ax'
s.t,
Ax'
Az' = [J : I :-I]]lCL (5.186Db)
s .

where I is a unit matrix.

As the dimension of the basis in the primal Simplex method
.is determined by the number of equations (P) the
introduction of variables r and 8 does not result in any
increase of dimensionality of the problem. Also the

computer memory requirements remain unchanged as the wunit
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matrices are incorporated implicitly in the Simplex

algorithm.

In order to take full advantage of sparsity in the
linear pProgramme, the ‘elimination’ form of basis
factorisation has been used. Reid [240] has proposed an
algorifhm for the elimination form which also applies a
series of row and column permutations to give enhanced
sparsity retention. An implementation of +this Dbasis
handling mechanism is widely available as a routine LAOSA in

the Harwell subroutine library.

5.3 NUMERICAL RESULTS

The performance of the optimal valve control algorithm
has been tested on several different size networks. The
detailed results of a study of the effect of incorporation
of the qontrol valves and their operation are presented for
the 25-node network shown in Figure 5.1. Parameters of the
bipes are given 1in Table §5.1. The network contains 3
pumping stations which are controlled on an on/off basis
but can accommodate $15% variation of a flow without
changing the water supply pressure. Since the variation of
the load during the 24-hour period is over 200% (Figure 5.2f
it is necessary to combine discrete and continuous control
of the pumps. The pumping schedule, presented in Figure
5.3, has been devised so as +to fully satisfy consumers

demands subject to constraints on the magnitude of the
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TABLE 5.1

Parameters of the 25-node system

LINE LENGTH DIAMETER HAZEN-WILLIAMS
(ml ~ [m] COEFFICIENT
23- 1 606. 0.457 110
23-24 454, 0.457 110
24-14 2782. 0.229 105
25-14 304. 0.381 135
10-24 3383. 0.305 100
13-24 1767. 0.475 110
14-13 1014. 0.381 135
16-25 1097. 0.381 6
2- 1 1930. 0.457 110
3-2 5150. 0.305 10
12-13 762. 0.457 110
15-16 914. 0.229 125
17-16 822. 0.305 140
18-17 411. 0.152 100
20-18 701. 0.229 110
19-17 1072. 0.229 135
20-19 864. 0.152 90
21-20 711. 0.152 90
21-15 832. 0.152 90
22-15 2334. 0.152 100
12-15 1996. 0.229 95
11-12 777 0.229 90
10-11 542, 0.229 90
8-12 1600. 0.457 110
8-10 249, 0.305 105
9- 8 443, 0.229 90
6- 8 743. 0.381 110
22- 8 931, 0.229 125
22-21 2689. 0.152 100
4- 3 326. 0.152 100
5- 4 844, 0.229 110
6- 3 1274. 0.152 100
5- 6 1115. 0.229 90
7- 6 615. 0.381 110
§5-22 1406. 0.152 100
5~ 7 500. 0.381 110
6- 9 300. 0.229 90
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change of flow and the frequency of the on/off control of
each :'gndividual pump. It is assumed that the hourly load in
each of the 15 consumer supply nodes follows the pattern
given in Figure 5.2. A The nominal consumption corresponding
to '1' in Figure 5.2 is given alongside the ground level of
the node on the network diagram. In order to prevent an
excessive service pressure in the nodes which have a low
ground level, two isolating valves (constant throttling) and
three control valves are used in pipes 2-3, 25-16 and 12-13,
13-15, 21-22 respectively. The current sgservice pressure is
measured at nodes 6, 13, 18 and 22 which have locally the

highest ground level.

. The volume of leakages V has been evaluated for each

head profile based on the empirical relationship

1.18

= i =1,..., .17
v C'Z(lihAi ) i=1 s (5.17)
where S : is the number of pipes

c : 1is a constant depending on the network

1i : 1is the length of the i-th pipe

hAi s is the average service pressure along the i-th

pipe

consequently for the optimal head profile (30mAq) the

. ] 1.18
corresponding volume of leakages is v30 = C.30 z li
i

and the water loss index can be introduced as
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W= (5.18)

Three schemes of-operation of the network have been
analysed. In the first case, the network with fully open
control wvalves is considered. The head profile achieved
during the operation of the network is identical to that for
the network with no control valves. The limit of 30mAq for
the sService pressure is exceeded for all loads since the
network has to maintain the capability of supplying some
emergency loads. Decrease of the consumer load during the
ni_ght period additionally increases overpressure in the
netwofk which is reflected by the high values of the water
loss :"Lndex given with a dotted line in Figure 5.5. In the
second case the control valves are throttled in order to
achieve the optimal head profile in the selected reference
nodes during the highest daily consumption. This
corresponds to the situation where the network has manually
controlled valves which, except in emergency, have constant
openings. The area between the dashed and dotted line in
Figure 5.5 indicates 3.5% reduction of the total leak volume‘

as a result of implementation of such a control policy.

In the third case the optimal valve controls, shown in
Figure $.4, have been applied. The discrepancy between the
current and the opfimal head profile is minimised for the

whole range of the consumer loads giving an almost constant
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No.
No.
No.

No.

No.

No.

No.

TABLE 5.2

Variation of computation requirements with network size

of var.—head nodes 13
of fixed—head nodes 3
of control vaives 1]
of check points 4
of state variabies 21
of equations 25
of N-R iterations 5-7

Computation time for
N-R iter. [s] 0.530

* @stimated value

13

25

29

5-7

0.690

158

13

31

35

5-7

0.715

22

34

38

5-7 -

0.760

32

44

48

5-7

1.078

100

10

10

130

140

5-7*

3.57*



value of the water loss index. Application of the optimal
control policy results in 19.2% reduction of distributed
leakages as compared with the network using manually
controlled valves. .The nonzero value of the water 1loss
index indicates that by increasing the number of control
valves a further reduction of leakages is possible, however
the incremental saving achieved by adding one control valve

to the network may be marginal.

The algorithm for computation of the optimal valve
controls has been coded in FORTRAN 77 and implemented on a
PerkinlElmer 3220 minicomputer with 32-bit word length and
floating-point arithmetic. Comparisons of the execution
time have been made for 16, 25 and 35-node networks having 1
to 6 control valves. The results are presented in Table 5.2

and 1include an estimated computation time for a 100-node

network with 10 control valves.

5.4 CONCLUDING REMARKS

In this chapter a new algorithm for computation of the
optimal valve controls in order +to reduce distributed
leakages in water supply network has been presented.
Since the volume of water losses due to bursts of mains and
distributed leakages can amount to approximately 30% of the
total production, the on-line implementation of the leakége
suppression algorithm together with an efficient network

monitoring scheme has a strong economical motivation. By
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controlling the network pressure profile it is also possible
to reduce the rigsk of pipe ruptures, thus saving on the

maintanance cost of the water supply system,

Simulation results, reported in section 5.3, indicate
that it is possible to achieve a ‘2095 reduction of the volume
of leakages which amounts to 6% savings of the total water
production cost. -The algorithm proves to be computationally
efficient, which makes it applicable to on-line operation

using relatively inexpensive hardware.

The proposed method may also be used at the network
planning stage to evaluate the economics of the installation

of additional control valves in the network.
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CHAPTER VI

'SOFTWARE PACKAGE

.6.1. INTRODUCTION

This chapter is concerned with description of +the
on-line software package for real-time monitoring of a
water supply network. Taking into account the size of the
FOﬁTRAN code (approx. 16500 1lines) and the complexity of
interactions between program segments, a high level
viewpoint has been adopted in describing the software. The
lower 1level Dblock-diagrams, explaining organisation of
individual programs, are not included here since they can
be easily obtained directly from the FORTRAN code by
monitoring the CALL statements in their order of execution.
Figures sfl and 6.9 essentially highlighf a general concept
of the organisation of the package by describing the flow of
information and means of coordination of the simultaneously

executed tasks.

There are three main groups of programs in the
package (Figure 6.1). The programs of the first group
simulate +the behaviour of the real network and provide

measurement information which in practice is retrieved using
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some telemetry system. This data is effectively the only
source of information for +the second group of programs

monitoring the network.

A major role of the monitoring programs is to supply
information about the system state both for +the human
operator and conj:rol algorithms. Since the telemetered data
is Dbeing updated without +the intervention of a human
intermediary the monitoring programs are said to be on-

line to the process.

After checking topological observability of the
system, with respect to the current set of Qalid
measurements, the estimates of the state vector are
caldulated. This is followed by identification of bad data
points w;vhich were not found during the pre-processing stage.
Depending on the state estimation algorithm employed, the
monitoring procedure involves either an iterative
elimination of bad data from the set of valid measurements
and recomputation of the state vector, or it éimply marks
erroneous measurements having rejected them in the course of
the estimation. The results obtained with the monitoring
programs are made available to the operator in the form of
a print-out, graphical display and data file which is also

used by control algorithms.

The +third group of programs closes the control 1loop

by devising and implementing control action. The flow of

162



information between the Programs implies that the
algorithmically calculated controls are off-line +to the
process since they are implemented by a human operator. Such
a structure is natural at the initial stage of the.
computerised monitoring and control of a water network.
However, it must be emphasized that the computer assisted
control can be easily converted into a full on-line control

scheme since the system is monitored on-line.

In order to achieve a degree of flexibility a highly
modular structure of the software package has been adopted.
Each task communicates with others via task common blocks
and is therefore insensitive to the way in which the input
data is being calculated. In particular, it is transparent
for the monitoring programs whether the telemetered data
is generated by a simulator or supplied by a telemetry
computer., It is also possible, within this structure, to

test alternative algorithms without affecting the integrity

of the software.

The following sections of this chapter describe
programs of the package in terms of their interactions

with task common blocks and give software details.

Task sizes and execution times reported in this

chapter refer to the 34-node water distribution network.
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6.2 NETWORK SIMULATION PROGRAM

The water network simulation program (Figure 6.2)
provides a facility to carry out on-line monitoring studies
without recourse to & real-life telemetry system. The input
data for the network simulator represents exact information
about the system and, as such, are not available to the
monitoring programs. They can only be modified by the

control action of the operator.

The simulator calculates an exact state vector, by
applying a Newton-Raphson iterative procedure to the square
set of nonlinear mass-balance equations, and passes it to

the telemetry simulation program which calculates the

values of the measurements.

sSoftware Details (SYSSYM)

Size - 1570 lines of FORTRAN 77 code
96 k bytes
Speed - 0.8 s/iter (PE 3220)

6.3 TELEMETRY SIMULATION PROGRAM

Using an exact state vector, supplied by the network
simulation program, and information about the meter
‘positioning the telemetry simulation program (Figure 6.3)

calculates the exact values of the measurements. In order to
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obtain a realistic set of telemeasurements pseudorandom
measurement noise is then superimposed on the. meter
readings. The program also enables the simulation of
telemetry oz; instrumehtation malfunction by making provision

for the corruption of +the measurement s8et by gross

measurement errors and/or topological errors.

Software details (SYSTEL)

Size - 570 lines of FORTRAN 77 code
38 k bytes
Speed - “0.3 8 (PE 3220)

6.4 OBSERVABILITY PROGRAMS

The 'obse;vability routine (Figure 6.4) checks whether
the current set of measurement points can provide sufficient
information to allow the computation of the state estimates.
If the system is found unobservable the program generates
péeudo—measurements which restore the observability. The
program is also used to determine the detectability of bad
data points after suppression of some measurements in the

intial telemetered data.

Two different programs to assess the topological
observability of the network have been developed. The first

program (OBSMATCH) uses the concept of maximum matching in
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the bipartite measurement-to-branch graph and the second one
(OBSTREE) is based on a direct search for an observable

spanning tree of the network.

Software details (OBSMATCH)

1

Size - 820 lines of FORTRAN 77 code

37.75 k bytes

Speed - “0.1 8 (PE 3220)

Software details (OBSTREE)

Size - 1050 lines of FORTRAN 77 code

43,25 k bytes

Speed - “0.1 8 (PE 3220)

6.5 STATE ESTIMATION PROGRAMS

The state esgtimation program (Figure 6.5) plays a
key role in the network monitoring package. It processes raw
telemetered data, augmented by pseudo-measurements which are
generated by the observability routine, and calculates an
estimate of +the state vet:tér. The output of +the state
estimator also includes estimates of the measurement

residuals, thus enabling detection and identification of bad

data points.

Using the same structure of task common blocks two
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state estimators based on the augmented matrix method
(SYSESTLS) and on the linear programming approach (SYSESTLP),

respectively, have been developed and implemented.

Software details (SYSESTLS)

Size - 3280 lines of FORTRAN 77 code

164.75 k bytes

speed - ~1.2 s/iter (PE 3220)

Software details (SYSESTLP)

Size - 3970 lines of FORTRAN 77 code

161 k bytes

Speed - “1.1 s/iter (PE 3220)

6.6 BAD DATA PROCESSING PROGRAMS

The input data of the bad data detection and
identification program (Figure 6.6) depends on the
estimator used to calculate the state vector. In the case of
the least-squares estimator the procedure requires
information about +the measurement residuals and nominal
accuracy of the measurements. If the least absolute values
estimator is employed the gross measurement errors can be
identified by simply processing the measurement residuals.
Additional information about meter positioning can be used

by either method in order to improve the reliability of the
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identification of multiple interacting bad data.

Software details (POSLEAK 1 + MAIN)

Size - © 300 lines of FORTRAN 77 code

24 k bytes
Speed - 0.027 8 (PE 3220)

Software details (RESSENS + MAIN)

Size - 400 lines of FORTRAN 77 code

28 k bytes
Speed - 1.2 s/cycle (PE 3220)

6.7 . VALVE CONTROL PROGRAM

The valve control program (Figure 6.7) uses

time data base created by the monitoring programs.

a real-

At this

stage the telemetered data is expected to be free from bad

data points and the estimate of the state vector is assumed

to reflect the actual state of the system. The output of the

program is the set of optimal valve controls which can be

implemented directly, in on-line mode, or indirectly via the

human operator.

software details (VALCON)

Size - 2900 lines of FORTRAN 77 code
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120 k bytes

Speed - “1.1 8/iter (PE 3220)

6.8 GRAPHICAL DISPLAY PROGRAM

The software package facilitates presentation of the
results of simulation, estimation and bad data processing
routines botf\ in tabular and graphical form. Consequently,
the graphical display program (Figure 6.8) has access to
the exact, telemetered and monitored data files. The network
is represented in the form of a diagram illustrating the
main hydrological elements. The program allows for
continuous zooming onto any part of the network andg,
according to the chosen magnification coefficient, for a
varying amount of detail about the network to be displayed.
Emergency states of the ﬁetwork such as leakages or control
valve failures, which need further attention of the

operator, are monitored in the form of alarms.

Software details (NETDIS1)

Size - 1680 lines of FORTRAN 77 code

110 k bytes

Speed - 3.8 CPU time
20 8 transmission (SIGMA colour

graphic with transmission line 9600

bit/sec)
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6.9 OPERATORS' INTERFACE PROGRAM

An operator interface program (Figure 6.8) enables
the operator to select and implement controls using
information provided Dby the monitoring programs and
optimal valve control algorithm. It also allows modification
of the set of measurement points, the changing of Gaussian
noise parameters and the simulation of the occurrence of bad

data by corrupting the values of the telemeasurements.

Software details (OPERATOR)

Size - 700 lines of FORTRAN 77 code

48,25 Kk bytes

Speed - depends on the display required
(average: 3 s CPU time + 20 8
transmission time with 9600 bit/s

transmission line) .

6.10 CONCLUDING REMARKS

In the previous sections of this chapter the general
architecture of the software package for real-time water
network monitoring has been described. By observing which
task common blocks are made available to each individual
program the data flow pattern within the package can be
zfeadily established. Since the number of interactions

precludes a comprehensive discussion of +the modes of
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operation of the package within the format of this thesis,
it 1is reasonable toA focus the attention on one sgpecific
state of the system and to present only a sample of displays
which are given to the operator. A detailed discussion of

the results obtained with different programs being included

in previous chapters.

The set of three graphical displays presented here
refer to +the situation where the 34-node water supply
network contains a leakage in the pipe between nodes 4 and
20, control valves are monitored correctly, the telemetered
data contains no gross measurement errors and the
measurement configuration ensures a local measurement
redundancy in every node of the network. Figure 6.10 gives
the actual state of the system calculated by the network
simulation program. The location of the metering points and
the values of +the corresponding telemeasurements are
depicfed in Figure 6.11 and the estimate of the system state
is shown in Figure 6.12. The graphical form of display makes
it easy to associate the numerical information with the
network fopology which is particularly useful in emergency
operating conditions such as pipe ruptures or instrumentation
malfunctions. While the Figures 6.10 to 6.12 give a good
example of the form of an interface offered by the package
‘they only iepresent a small fraction of the overall system
énd in particular'they do not refer to the more specialised

tasks like the valve control or observability testing.
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CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

7.1 CONCLUSIONS

In this work consideration has been given to a real-
time water network monitoring scheme which is a prerequisite
of any form of on-line control and which in itself gives a
significant saving of operational cost by providing an
indication of the leakages and information about the current

head profile in 'the whole network.

It has been argued that, because of the possibility of
the presence of bad data points among the measurements
supplied by the telemetry system, it is essential that the
measurement set possesses a degree of redundancy which
énables rejection of spurious readings. As a consequence it
has been necessary to depart from the load-flow solution of
the network and to resort to the state estimation technique

whiéh can efficiently deal with an overdetermined set of

measurement operations.

Two methods of state estimation have been proposed: a

least-squares algorithm based on the augmented matrix
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approach and a 1least absolute values algorithm which has
been formulated as a 1linear programme. The theoretical
background of both methods and their implementafion taking
into account sparsityvand numerical stability considerations
have been discussed 1in Chapter II. The results of tests
conducted on two water systems have indicated that the least
absolute values estimator is better suited for the purpose
of on-line network monitoring. However, it is thought that
in the case of a weak measurement configuration or for a
large water network a hybrid approach amalgamating the
features of the 1least-squares and 1least absolute values

estimators could be profitably developed.

"Bad data detection and identification problems have
been investigated in Chapter III. For the least-squares
estimator a new technique of calculating the residual
sengitivity matrix has been proposed. It enables an
efficient and numerically stable implementation of the bad
‘"data processing routine. The difficulty associated with this
approach seems to -be the fact that it 1is necessary to
reestimate the state vector after identification of each bad
data point since the method based on hypothesis testing

guarantees identification of one measurement error at a

time.

Another method of identification of bad data has been
developed in connection with +the 1least absolute values

estimator. The procedure merely checks the magnitude and
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sign of the weighted measurement residuals since the
topological efrors are shown to be equivalent to a pair of
gross mass-balance errors in the end-nodes of the pipe
concerned. Th_e compufa‘cional requirements of the procedure
are very small, thus favouring the latter approach for on-

’

line water network monitoring.

Numerical tests carried out on the realistic 34-node
system using both routines have highlighted the relationship
between the error detectability and measurement redundancy.
It has been concluded that by performing the observability
test .it is possible to determine 1in which areas of the

network bad data can be identified using the current

measurement set.

The observability problem has been studied in Chapter
IV. By analysing an approximate measurement model it hasA
been shown that the observability test is equivalent to the
search for a maximum sSpanning tree with measurement
assignment in the augmented network graph. Consequently, the
procedure does not require any floating-point computations.
Two original combinatorial methods have been proposed to
test topological observability of the water network. The
.first . method searches for a maximum matching in a
measurement-to-edge bipartite graph and attempts to build a
spanning tree of +the network using the branches with
measurement assignment. The second method is based on the

direct search for an obsgervable spanning tree. The
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equivalence of the preservation of the path property and the
existence of the observable~spanning tree has been exploited
in order to devise a procedure to correct possible
misassignments during'the first stage of the algorithm. Both
algorithms are computationally inexpensive, thus applicable

to on-line observability checks on currently available

measurement data.

Using a reliable data base created by the monitoring
programs the problem of reduction of distributed leakages,
which compleﬁents identification of pipe ruptures, has also
been studied. The application of the state estimation
technique proved to be an efficient method of calculating
the optimal valve controls which minimize the overpressures
in the network. The economy of the opfimal valve control
policy is shown by comparison of the volume of leakages for

uncontrolled, manually controlled and optimally controlled

network.,

A general concept of the organisation of the water

network monitoring software package has been described in
Chapter VII. A useful degree of flexibility has been
achieved by adopting a modular structure of the package in

which the programs communicate with others via task common

blocks.
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7.2 SUGGESTIONS FOR FURTHER RESEARCH WORK

The following topics related to the problems discussed
in this thesis deserve further research effort:

1) Development of the state estimation procedure which
amalgamates the useful features of the least-squares and
least absolute values estimators. The objective is to
achieve an algorithm which has a 1linear computational
complexity, good error detection features and is numerically
stable;

2) Assessment of the advantages of treating the
equations corresponding to zero load as equality constraints
for the least-squares problem using the augmented matrix
.formulation. This approach has been proposed in reference
[10] to be applied to the normal equation technique in order
to save computing time and possibly redgce the number of
iterations in Newton's method. The investigation of the
possible effects of the use of equality constraints on the
bad data identification procedures is also recommmended;

3) Study - of an alternative approach to bad data
identification problem in connection with the least-squares

estimator;

4) Use of +the reliability indices in observability

studies;

S) Development of the combinatorial method of
assessing the quality of the estimates calculated using the

prespecified measurement set;
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6) Research on the application of decomposition
techniques to the water system state estimation problem;

7) Study of the problems of bad data detection,
identification and observébility related to two-level

estimators.
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APPENDIX A

MEASUREMENT AND NETWORK MODEL

A.1 THE NONLINEAR MEASUREMENT MODEL

Strictly speaking, a water distribution system model
should represent the full dynamic behaviour since consumer
loads, system supplies and reservoir volumes are continuously
varying in time. However, even under normal operating
conditions the formulation of a valid and feasible dynamic
model for a water system is a.ver._y difficult task. To
overcome this problem, one makes use of the facf that under
normal operating conditions the variations in the system
state are slow. Therefore, it is reasonable to consider that
the water system is in sSteady state for a 1limited time
interval. with this assumption, a static model for the water

system can be formulated.

The quantities which are usually monitored in a water
gsystem are: i) nodal heads; ii) fixed-head-node flows; 1iii)
consumer loads and iv) pipe flows. Let 2z denote the mxl
vector of measurements taken in a N-node water system with F
fixed—head—nodes, and assume that 50 is the vector of the
‘actual values for the respective measured quantities. In

practice, the elements of the vector 2z differ from the
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- o . . .
corresponding elements of z . Meter inaccuracies, instru-
mentation malfunction, communication errors in transmitting
the measurements to the control centre, effects of analog to
digital conversions, etc. make up the difference between z

o .. . . .
and z . This difference is of random nature, and it is
modelled as a zero-mean random variable w with covariance

matrix R. Hence, the measurement model can be written as

z =2z + W (A.1)
: T . .
E{w} =0 ; E{(w w } =R (R.2)
where E{ } is the expectation operator.
- Assuming that the pipe and other network element
parameters are known, all the measurable quantities can be

expressed as non-linear functions of the nodal heads and

fixed-head-node flows, which are the state variables of the

system. Define n = N + F. The state vector is an nxl vector

x whose first N elements are the nodal heads and the
rema;’.ning F elements are the fixed-head-node flows. The non-
linear vector function g( ) which relates _710 to X 1is Dbased
.on Kirchhoff's laws, and depends on the network st.ructure
and parameters. The non-linear measurement model is then

expressed as

z = g(x) +w (R.3)

(A.4)

y]
€

0
|lo
m
€
€
"
o
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where
z : mxl vector of measurements

g(.) :mxl nonlinear vector function relating the
measured quantities and the states

x :nxl state vector, formed by N nodal heads and
F fixed-head-node flows

w tmxl zero-mean random vector which models the
measurement errors

R : mxm covariance matrix of the measurement errors

A.2 THE LINEARISED MODEL

Consider a given point X, of the state space around
which the linearisation of the model given by Eq. (A.3) 1is
to be performed. A first-order Taylor series approximation

for the nonlinear vector function g( ) is given by

6g (x)
g(x) = glx) + ——kx-x) (A.5)
6x
X=X,
In addition, define
6g (x)
I(x,) = (n.86)
6x  |X=X,
mm Jacobian matrix and
A - -x__.. X (A.7)
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Therefore, Eq. (A.5) may be written as

g(X) = g(x.) +I(x,) 8% (A.8)

‘By substituting Eq (A.8) to Eq (A.3) and rewriting Eq

(A.4), the linearised model is finally expressed

A£=J(§k)°A§+Q (A.9)
T
E{w}) =0 ; E{w w )} =R (A.10)
where
Az =z - g(x,) (A.11)

A.3 HEAD-FLOW RELATIONSHIPS OF NETWORK ELEMENTS

There is a wide variety of network elements existing
in a water distribution system. However, for the purpose of
the network modelling it is sufficient t‘o consider only
several types of elements which have distinctly different
characteristics. For example, there is no need to devise
separate models for different control valves since, for the
purpose of network flow calculations, the adjustment of a

valve resistance gives gufficiently good approxixhation.

The following elements are usually employed to build

up a network model [205].
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A.3.1 Pipes

The head ioss characteristics of a pipe between nodes
i and j depends on the hydraulic resistance between the

nodes and can be modelled as follows:

Ilh.-h.|0 54
! 2,63 3 i
g..=0.,27746 CHW. . D_ . —_— (A.12)
1] 1] 1] L
ij
where qij : flow from node j to node i (m3/s)
CHwij : Hazen-wWilliams coefficient for pipe
Dij : diameter of pipe (cm)
Lij : length of pipe (m)
hj : head at node j (mAq)
hi : head at node i (mAqQ)

This is usually used in the following form to give a

consistent sign for flow as:

= -0 -n S W (A.13)

where rij is the resistance between nodes i and j given by

-1.85 -4.87
" L..D

A.l4
ij i3 ( )

r.. =10.742 CHW_ .
ij 1]
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A.3.2 Parabolic Pumps

The pump characteristic can be

second order polynomial

h.-h_=zaq.. +bqg..+cC

where a, b and c are empirically determined constants,

2 0
-b t (b —4a(c—|hi-hjl)}

gqg.. =
13 2a

approximated by a

(A.15)

Thus

taking the positive root for constant 'a' positive and vice

versa, and setting qij to zero for hi-h:j

c or for negative

} 2
or equal to zero value of (b ~-4a(c- lhi—h:j 1)}

A.3.3 Pressure Reducing Valves

These may be modelled by assuming that between
i and j there is a valve with a setting equal to H

bj 2 HPRV 2 hi the valve reduces the head to H

a head drop of (H

PRV
given by:
_ -0,54 h 0,54 (A.16
957 Tij I Hppy™hy -16)
If h. > H the valve shuts off, no reverse flow
T PRV
place and hence qij =0
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and hi < H the valve acts as a pipe with

If h. < H
J PRV

PRV
a head drop of (hj—hi) .

A.3.4 Non-Return Valves

In a pipe fitted with a non-return valve, the loss in
head due to the valve itself is usually small and may be

either neglected or included in the pipe resistance, thus

r _0'54(h h_.)|h_.-h |‘°'46 h_>h
. . . M ¢ SN . > .
1
95 = J S I taan
0 hjghi

A.3.5 Control Valves

These may be manually or automatically controlled and
are currently modelled for both non-return and two-way

valves by assuming that control varies the resistance of

the equivalent pipe to give

=, 054 (h.-h_ ){h_.-h -0.48 A.18

where ri. is now the independent valve control parameter
which can vary from ri for a valve fully open to

j MIN

rij MAX for a valve fully closed
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A.3.6. Fixed-Head Nodes

These nodes correspond to reservoirs or boreholes
(feeding head dependent pumps, valves, etc) with fixed or
known head variation.' The magnitude of in/out-flow at these
nodes qi does not deﬁend on the nodal head hi and 1is consi-

dered as a separate state variable.

A.4 MEASUREMENT SIMULATION

In section A.l, the measurement errors have been
modelled as a =zero-mean random variable with covariance
matrix R. The measurement errors are usually assumed to be
uncorrelated, which is equivalent to saying that matrix R is
considered diagonal. Each diagonal eiement of R corresponds

to the variance of the respective measurement error.

In this work, the measurement errors are simulated

according to the formula

o o
. = . .2, A.19
z,=2; +a k; z; ( )
where
zi : i-th measurement;
zio : true value of the i-th measured quaritity;

obtained from a simulator;

standard normal random variable N(0,1),

R

k : constant representing meter accuracy.
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2 . .
The variance of the i-th measurements o, + is given by

0. = (a'k,-z.) (A.20)
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APPENDIX B

JACOBIAN MATRIX TERMS

B.1 MEASURABLE QUANTITIES

This appendix describes the equations to compute the
elemehtg of the Jacobian matrix used in the water system
state estimation problem. The measurable quantiéies are the
nodal heads, Hi' the fixed-head-node flows, Qi' the consumer
loads, Li’ and the pipe flows Fij' Using the notation

introduced in Appendix A these quantities may be calculated

as

H'i =.hi (B.1)
Qi = qi . ’ (B.2)
L, = q; + Lagy (hy, by (8.3)
JEM.,
l.
ij = qij (hi' hj) (B.4)

where Mi denotes the set of nodes which are incident to

the node i.
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B.2 JACOBIAN MATRIX TERMS

The Jacobian matrix used in the linearised measurement

model (Eq. A.9) can be partitioned according to the type of

measurements
| -
FGE
— 1o
6h |
- |- =
| 69
O I —
| %4
J = —_— — — - (B's)
oL | 6L
— | —
6h 1 6gq
_.__.I_—
OF
— 1o
6nh !
- - I -

where H, Q, L, F are the vectors of measurable quantities,

and h,q are the components of the state vector

The elements of matrix J in Eq (B.5) can be expressed

in terms of the quantities defined in Eqs. (B.1) - (B.4)

OH.

- - (B.6)
6hy '

Q.

— - 3 (B.7)
bqi

6Ly 6q; 4 (h;.hJ)

- - (B.B)
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6L, 6q; (b, h)

i
- = - (B.9)
6h. .
J 6h:l
6Li 1 if i#jis a fixed-head node
— = (B.10)
69 ; o] otherwise
~J
OF. . 6q..(h.,h.)
i
J . 1J 1 J (B.11)
| Ghi Ghi
6F. . 6q..(h.,h_)
3 2 1) (B.12)
6h._ .
J th
Taking into account Eqgs. (A.12) - (A.18) the partial

‘derivatives of elements flow can be calculated

‘- for pipes and control valves

5qij(hi'h') -0.5 -0

J 4%B.14
= -0.54 riJ (B.14)

4
ih.-h_|
j 1

Ohi

- for parabolic pumps

6q. . (h.,h.)
i 2 0.5
, i3 13, (b -4a(c—|hi—hj|)} (B.14)

Ohi

- for pressure reducing valves ( if hjanRV}hi )

bqij(hi'hj) -0 54 -0 46
=-0.547r; [Hyp by |

bhi
(B.15a)
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- for pressure reducing valves ( otherwise )

bqij (hi'hj) _
=0 (B.15b)

bhi
- for non-return valves ( if hj>hi )

6q; ; (h;,h)

Ghi

- for non-return valves ( if hjghi )

6q..(h_.,h.)
J T J _, (B.16b)

Ghi

Equations (B.13) - (B.16) show that the elements of
the AJacobian matrix can be obtained wusing the sgame
.expressions that appear in the computation of the measurable
quantities, By recognizing this fact, one can get noticeable

savings of computing time in the implementation of the state

estimators.
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APPENDIX C

TEST NETWORK PARAMETERS

C.1 1l1-NODE TEST WATER SYSTEM

The 1ll-node water distribution system of Fig. C.1.
with 13 pipe-lines, +two parabolic pumps, one fixed-head
pump, and three fixed-head-nodes has been used to perform
preliminary tests on estimation and bad data pfocessing
ﬁethods developed in this work. The system has been. taken

from reference [204], and its parameters are displayed in

Table C.1.

C.2 34-NODE SYSTEM (DONCASTER AND THORNE ZONES)

The realistic 34-node system representing part of the
Yorkshire WwWater Authority network is depicted in Fig. C.2.
ihis system has been previously used in water system control
studies [63], [202]. Its pipe and pump parameters are given

in.Table(:.z.
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Figure C.1 1ll-node system




LINES

9-11

PARABOLIC
PUMPS

TABLE C.1

Parameters of the 11-node system

LENGTH DIAMETER HAZEN-WILLIAMS HEAD-LIMIT

im]

914.
914,
610.
610.
610.
610.
610.
610.
610.
1219.
610.
1219.

1219,

305.

2 s
s /m}

-190.1
-1140.1

(m]

0.406
0.305
0.254
0.305
0.305
0.254
0.254
0.203
0.305

- 0.254

0.254
0.203

0.203

0.406

COEFFICIENT [mAqg]

100
120 .
110
115
110
100
110
100
110
100
120
100

110 109.73

65 65.52

ts/m>] (ml

0.0 60.96
0.0 85.39
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Figure C.2 34-node system
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TABLE C.2

Parameters of the 34-node system

LENGTH DIAMETER HAZEN-WILLIAMS
[m (m) COEFFICIENT
607. 0.457 110
454, 0.457 110

2783. 0.229 105
304. 0.381 135

3383. 0.305 105

1768. 0.457 110

1015. 0.381 135

1097. 0.381 135

1930. 0.457 110

3151. 0.305 100
762. 0.457 110
914. 0.229 125
823. 0.305 140
411. 0.152 100
701. 0.229 110

1072. 0.229 135
864. 0.152 90
711. 0.152 90
832. 0.152 90

12334, 0.152 100

1969. 0.229 95
777. 0.229 90
542, 0.229 90

1600. 0.457 110
250. 0.305 105

1028. 0.229 110
444, 0.229 90
743. 0.381 100
931. 0.229 125

2689. 0.152 100
326. 0.152 100
844. 0.229 110

1274, 0.152 100

1116. 0.229 90
615. 0.381 110

1407. 0.152 100
427. 0.254 100

2098. 0.355 100
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TABLE C.2 (cont)

LINES LENGTH DIAMETER  HAZEN-WILLIAMS
(m) tmi COEFFICIENT
25- 8 500. 0.381 110
24- 6 300. 0.229 90
26-29 1500. 0.355 100
PARABOLIC a b c
PUMPS ;s ,
{s /m} {s/m ] [m]
28- 4 -4921.8 0.0 122.44
32-20 -444.4 -385.4 102.42
27-19 - -812.3 89.7 62.03
29-18 -318.6 0.0 18.89
34- 1 -812.3 89.7 44.50
33-29 -4162.6 138.4 75.47
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APPENDIX D

STORAGE SCHEMES IN SPARSITY PROGRAMMING [89]

D.1. INTRODUCTION

Sparsity techniques are used in the implementation of
virtually all computer programs developed in connection with
this thesis. One of the most important factors in the
processing of sparse matrices is the selection of the
appropriate storage schemes. Basically, two types of storage
schemes are used, depending on whether the sparsity pattern
of the matrix is expected to change or not. If the structure
of the matrix under consideration is known ‘'a priori’', a

gtatic storage scheme may be used. For instance, this is the

scheme employed +to store the Jacobian matrix in state
estimation calculations. On the other hand, there are cases
where the processing of a sparse matrix changes its
structure; ass a result, the storage scheme for those
matrices should make provision for the changes. Such

-schemes are called dynamic_ storage schemes. Both techniques

are described in the following sections.

According to how -a matrix is formed, it can be stored
row-by-row or column-by-column. Throughout this appendix it

is assumed that the matrices are formed in a row-by-row
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fashion. The extension for columnwisge storage is

straightforward.

D.2. A STATIC STORAGE SCHEME

Static schemes are employed when the whole structure
of the sparse matrix to be dealt with is known. The static
storage scheme that is used in this work requires the use of

three different arrays to store an mxn matrix.

1) An integer array JCOL, containing the column
indices of the nonzeros as encountered when scanning the

matrix by rows, from row 1 to m;

. 2) An integer array XROW of length n+l1l, containing
the pointers to the beginning of each row in JCOL. The last

element of XROW points to the next available storage

location in JCOL; and

3) A real (double precision) array VAL of the same
length as JCOL, containing the numerical values of the

nonzero elements, in the same order as their column indices

appear in JCOL,

This method is called a row-pointer/column-index

scheme .

As an example, consider the matrix A. The row-pointer/

‘column-index scheme for this matrix is given in Table D.1.
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A = 0 -3 0 O - (D.1)

TABLE D.1

XROW JCOL VAL

1 1 1 1 -8
2 4 2 3 1
3 6 3 4 -3
4 7 4 3 4
5 9 5 4 2
6 11 6 2 -3
1 1 1
8 4 -2
9 2 6
10 3 1
11 - -

The extra element 1in XROW is Iincluded for

programming purposes.
The elements of row I of a sparse matrix stored as

above can be examined by using the flow chart of Fig. D.1.
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JBGN = XROW (I)

JEND = XROW(I+1) - 1

IS

JBGN < JEND

DO

l J = JBGN, JEND

1

|

|

|

| JELEM = JCOL (J)
[ VALUE = VAL (J)
I

S

|

I

- — CONTINUE

F‘iguré D.1 Examination of elements of row I of a

sparse matrix stored accordind to the

row-pointer/column-index scheme.
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D.3. A DYNAMIC STORAGE SCHEME

When the operations performed on a spars‘e matrix make
it possible that zero elements become nonzeros, the use of
the storage scheme described. in section D.2 1is not
convenient. To allow the storage of new nonzeros, one should
resort to a dynamic scheme. The most used type of dynamic
scheme employs linked 1lists. A simpie dynamic scheme for

row-oriented storage wusing a one-way linked list requires

four arrays:

1) An array of pointers, denoted by HEAD. HEAD(I) 1is
the address in array JCOL which starts +the 1list of

nonzeros for row i;

' 2) An integer array JCOL containing the column
indices of the nonzeros of the sparse matrix, which are not

arranged in any particular order;

3) An integer array LINK of the same 1length as
JCOL. The element LINK(k) give the position in JCOL where
the next nonzero which is in the same row as JCOL (k) can

be found. If LINK(k) = -i, it indicates the end of the list

of nonzeros for row i; and

4) A real (double precision) array VAL of the same

length as JCOL, with +the numerical values for the

corresponding elements of JCOL.

Matrix A of Eq. D.1 could be stored by using a
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dynamic scheme as shown in Table D.2.

TABLE D. 2
HEAD JcoL | VAL | LINK
1} 7 1| 4 -2 -4
2| s 2| 1 1 1
3| & 3| 2 6 10
a| 2 2| 3 1 8
5| 3 5| 3 4 9
6| 2 -3 -3
7] 1 -8 4
8| 4 -3 -1
s | 4 2 -2
10| 3 1 -5

To examine the élements of row I of a matrix stored as

a linked 1ist, the flow chart of Fig. D.2 can be used.
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K = HEAD (I)

J = JCOL (K)

VALUE = VAL (K)

f

K = LINK (K)

Figure D.2 Examination of row I of a sparse matrix

stored according to the dynamic scheme

using column links.
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APPENDIX E

GRAPH THEORY

E.1 GRAPHS AND SUBGRAPHS [75], [102]

A graph G = (V,E) consists of a set of objects
vV = {vl,vz, e} called vertices, and another set
E = {el,ez, ...} whose elements are - called edges, such that

each edge e, is identified with an unordered pair (vi,vj)

k

of vertices. The vertices vi,vj associated with edge ek are

called the end vertices of e The ends of an edge are said

K’

to be incident with the edge, and vice-versa. Graphs are
usually represented by diagrams in which the vertices are
indicated by points and each edge by a line connecting its

end vertices.,

An edge can have identical end vertices, in which case
it is called self-loop. If the end vertices of an edge are
distinct, it is called a link. It is possible to have more
1_:han one edge associated with the same pair of vertices.
Such edges are said to be parallel. Two non-parallel edges
are adjacent if they are incident to a common vertex; and
two vertices are adjacent if they are the end vertices of
the same edge. The number of edges incident on vertex v,

‘with self-loops counted twice, is called the degree of
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vertex v.

A graph is simple if it has neither self-loops nor

parallel edges. A bipartite graph is one whose vertex set

can be partitioned into two subsets, X and Y, so that each
edge has one end in X and one end in Y. The partition (X,Y)

is called a bipartition of the graph.

A gfaph g is a subgraph of the graph G if all the
vertices and all .the edges of g are in G, and each edge
of g has the same end vertices in g as in G. A spanning
subgraph of G is a subgraph of G whose vertex set is

equal to the vertex set of G.

E.2 PATHS AND CONNECTION [75]

A walk is a finite alternating sequence of vertices
and edges, beginning and ending with vertices, such that
each edge 1is incident with the vertices preceding and
following it. No edge appear more than once in a walk, but a

vertex may appear more than once.

Vvertices with which a walk begins and ends are called

its terminal vertices. If a walk begins and ends at the same

vertex, it is called a closed walk. Otherwise, it is an

open walk.

A path is a walk in which no vertex appears more than

once. A number of vertices in a path is called the length of

the path.
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A closed walk in which no vertex, except the initial
and final vertex, appears more than once is called a circuit

or a loop (not to be confused with a self-loop).

Two vertices u and v of a graph G are said to be

connected if there is a path connecting them in 'G. A graph

G is connected if there is at least one path between every

pair of vertices in G. Otherwise, G 1s disconnected. A

disconnected graph consists of two or more connected graphs,

each of them is called a component of the graph G.

E.3 TREES AND FORESTS

A +tree is8s a connected graph with no loops. The
following are some of the properties of trees, whose proofs
can be found in [75]):

.

a) There is one and only one path between every two

vertices in a tree;
b) A tree with n vertices has n-1 edges;

c) Any connected graph with n vertices and n-1

edges is a tree; and

d) Every tree with two or more vertices has at least

two vertices of degree one.

Phe distance between two vertices in a tree is the

number of edges in the (unique) path connecting them.

A tree in which one vertex, called root, is
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distinguished from all the others is called a rooted tree.

A tree T is said to be a spanning tree of a

connected graph G if T is a gpanning subgraph of G.

A  forest 1i1s a graph with no 1loops. A disconnected
graph with k components has a spanning forest, which is
the collection of k spanning trees, one for each
component. Every connected graph has at least one spanning

tree,

An edge of a spanning tree T is called a branch of
T. The edges of G +that are not in T are called chords.
A connected graph of n vertices has n-1 tree branches

and e-n+l1 chords which form a cotree.

E.4 INCIDENCE MATRIX

Let G be a graph with n vertices, e edges and no
self-loops. Define the elements of an mnxe matrix A whose
n rows correspon& to the n vertices, and e columns

correspond to the e edges, as follows:

aij =1, if the j-th edge ej is incident on the 1i-th
vertex v_;
i
a.. =0, otherwise
1]

such a matrix is called the incidence matrix A for

the graph G.

The following are some characteristics of incidence
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matrices.

a) Since every vertex 1is incident on exactly two
vertices, each column of A has exactly two 1's;
b) The number of 1's in each row equals the degree

of the corresponding vertex.

It can easily be proved that the rank of an incidence
matrix of a connected graph G with n vertices is n-1.
Therefore, by removing any one row from the incidence matrix
of a conn_ected graph, the remaining (n-1)xe matrix is of
;ank n-lk. Such an (n-1l)xe submatrix of A,Ar, is called a

reduced incidence matrix, and the vertex corresponding to

the deleted row in A 18 the reference vertex.

" Given that a +tree is a connected graph with n

vértices and n-1 edges, the reduced incidence matrix Ar

for a tree is nonsingular.

The following theorem expresses a very important

property of the submatrices of A.

Theorem E.1

Let A be an incidence matrix of a connected graph . G
with n vertices. An (n-1l)x(n-1) submatrix of A is
4nonsingular if and only if the n-1 edges corresponding to

the n-1 columns of this matrix constitue a spanning tree

in G.
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E.5 DIRECTED GRAPHS

A directed graph G consists of a set of vertices

o} and a

V=.(v1,v ;+..}, @ set of edges E = {el,e

2 2"
mapping ¥ that mapé every edge onto some ordered pair of
.vertices (vi,vj) . A directed graph can be represented by a
diagram where a vertex is indicated by a point and an edge
by a 1ine segment between v:.L and vj, with an arrow whose

tail is vi and whose head is vj.

The indegree of a vertex v in a directed graph is
the number of edges with head v, whereas the outdegree of

v is the number of edges with tail v.

A direct walk from the vertex vi to a vertex vj in a

directed graph is an alternating sequence of vertices and
edges beginning with vi and ending with v:j such that each
edge is oriented from the vertex preceding it to the vertex

following it. A directed path in a directed graph is a

directed walk in which no vertex appears more than once.

E.6 INCIDENCE MATRIX FOR DIRECTED GRAPHS

The incidence matrix of a directed graph with n

vertices, e edges and no self-loops is an nxe matrix A

whose rows correspond to vertices, and columns correspond to

edges of the directed graph, such that

aij =1, if the i~th vertex is the tail of edge j
aij =-1, if the i-th vertex is the head of edge j
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aij =0, 1if the i-th edge is not incident to i-th
vertex
The rank of the incidence matrix of a connected
directed graph of n -vertices is n-1. Deleting any one row
from A, the (n-1l)xe reduced incidence matrix Ar is obtained. .

The vertex corresponding to the deleted row 1is called

reference vertex.

As in the case of nondirected graphs, the nonsingular
matrices of order n-1 of A are in one-to-one
correspondence with the spanning trees of the connected

directed graph G of n vertices represented be A.




