
Durham E-Theses

Number theoretic techniques applied to algorithms and

architectures for digital signal processing

Ward, Jeremy S.

How to cite:

Ward, Jeremy S. (1983) Number theoretic techniques applied to algorithms and architectures for digital

signal processing, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7191/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7191/
 http://etheses.dur.ac.uk/7191/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

fo~ Digital Signal Pcocessing

Jeremy Sa Ward BaSe (Dunelm)

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Department of Applied Physics and Electronics

University of Durham

August 1983

A Thesis submitted for the degree of

Doctor of Philosophy of the University of Durham

25. JAN. 1984

Number Theoretic Techni~ues Applied to ~lgoritr~s &n6 Lr-chi~0ct~res

Many of the techniques for the computation of a two­
dimensional convolution of a small fixed window with a picture are
reviewedo It is demonstrated that 'i'Jinograd9s cyclic convolution and
Fourier Transform Algorithms 9 together with Nussba~mer 9 s two­
dimensional cyclic convolution algorithms 9 have a common general forma
Many of these algorithms use the theoretical minimum number of general
multiplications a

A novel implementation of these algorithms is proposed which
is based upon one-bit systolic arrayso These systolic arrays are
networks of identical cells with each cell sharing a common control and
timing functiono Each cell is only connected to it's nearest
neighbourso These are all attractive features for implementation using
Very Large Scale Integration (VLSI)o The throughput rate is only
limited by the time to perform a one-bit full additiono

In order to assess the usefulness to these systolic arrays a
'cost function' is developed to compare them 1r1i th more conventional
techniques 9 such as the Cooley-Tukey radix-2 Fast Fourier Transform
(FFT)o The cost function shows that these systolic arrays offer a good
way of implementing the Discrete Fourier Transform for transforms up to
about 30 points in lengtho The cost function is a general tool and
allows comparisons to be made between different implementations of the
same algorithm and between dissimilar algorithmso

Finally a technique is developed for the derivation of
Discrete Cosine Transform (DCT) algorithms from the Winograd Fourier
Transform Algorithmo These DCT algorithms may be implemented by
modified versions of the systolic arrays proposed earlier 9 but
requiring half the number of cellso

2

I would like to thank my supervisor at Dur{lam, Dr BoJcStanier 9

and my supervisor at the Royal Signa:s aLd ~ad&r Estaolishmsnt (~SRE) 9

Dr J.G.Mct.Vhirter for their help and er.cot:.rageme;:t throug}lOut the course

of this project.

I should also like to thank Dr J.G.B.Roberts and

Dr ,J. V .M cCanny 9 both of RSRE 9 for many helpful discussions and

constructive comments.

This work was supported by a Science and Engineering Reseach

Council Co-operative Award in Science and Engineering. The sponsoring

body was the Royal Signals and Radar Estabishment •

. -

Cbatpt~R"' ~ &paR"'iodic ~d Cyclic Cc~vollit!o~
1.1 Introduction to Chapter 1

1 0 2 Aperiodic and Cyclic Convolution
1 0 2 0 1 Overlap-Save
1o2o2 Overlap-Add

1.3 The Cyclic Convolution Property
1.4 Rectangular Transforms having the CCP

1.5 Radervs Theorem N:p

1. 50 1 Radervs Theorem N:p r

1.6 Summary of Chapter 1

Coo~t.®R"' 2 o Sll:noT't-N o Dfi' arrnllil C<mlllwolut.iam &lgolf'::':. 'i:.~

2o1 Convolution and Polynomial Algebra
2o1o1 The Toom-Cook Algorithm

2.2 The Chinese Remainder Theorem

2.3

2o4

2o2o1 The Chinese Remainder Theorem for Integers
2o2.2 R~sidue Polynomials
2o2.3 The Chinese Remainder Theorem for Polynomials
Computation of Convolutions using the Chinese
Remainder Theorem

2 0 3 0 1 The Cannonical form of Winogradvs Algorithms

2o3.2 Cyclotomic Polynomials
Construction of Short Convolution and DFT Algorithms of
the Winograd Type
2.4o1 A 4-point Cyclic Convolution Algorithm
2.4.2
2.4o3

The Transpose System
The Application of Short Convolution Algorithms
to DFTs

Summary of Chapter 2

2

3

..
.:..~

8
9
9

11

12

13
15

19
23

25
25
26

29
29
31
32

3~

36
37

39

39
42

45
48

Cmpter 3 lP'olynomal l'li"SlD$f'onrEJ~ 50
3.1 Two-Dimensional Convolutions Expressed using Polynomials 50

3o2
3.1o1 Convolutions of Polynomials 51
Two-Dimensional Convolution AlgorithEs using the CRT
3o2.1 A pxp Cyclic Convolution, pan odd prime
3o2o2 Generalised Polynomial Transforms
3o2.3 A Polynomial Transform 9 length p 9 root z,

modulo C (z)
p

4

52
53
54

55

3o6

Other Applications of ?olynomial Transforms
3 o 3 o 1 Polynomial Trar.sforms vfi th Roots in a Field

of Polynomials
A Cyclic Convolution of p2 xp 2 points 9

p an odd prime
Polynomial Transforffis with Composite Roots

Operation Counts
Other Approaches
3o5o1 F~st Biased Polynomial Transforms
3o5o2 Polyno~ial Transforms in Modified Rings
3o5o3 Other Two-Dimensional Cyclic Convolution

Algorithms
Summary of Chapter 3

C~pt®~ ~ ~~ti~~ensio~ M&ppings

4 o 1 The DFT
4o2
4o3

4.4

4.5

4o6
4o7

The FFT
Prime Factor Mappings

Good's Algorithm
An Unscrambling Constant
An In-Place 9 In-Order PFA ALgorithm

The Kronecker Product Structure of DFT Matrices
The Nested Winograd Fourier Transform Algorithm
4.5o1 Operations Counts for the Nested WFTA
Block Stucture and Nesting of Convolution Algorithms
Summary of Chapter 4

C~p~~ 5 ~~i~ of DFT an~ Conwol~ti~ QlgoPit~~
5o1 Operation Counts for the One-dimensional DFT

5o2

5.3

5o1o1 The FFT
501.2
50 1. 3

The PFA
The WFTA

5o1o4 Comparison of DFT Algorithms
One-Dimensional Convolutions
5o2o1 Nesting 'Short~N' Convolution Algorithms
5.2.2

5.2o4

Cyclic Convolutions Calculated by Transforms

Comparison of ways of computing 1-D Cyclic
Convolutions
Optimum Block length for 1-D filters

Two-Dimensional Convolutions
Nested 1~D ~7TAs

Nested 2-D DFTs
2-D Cyclic Convolutions calculated using
2-D DFTs

5

55

57

58

59
6~

62
62

63

65
65

67

67
68
69
70

72

73
76

76

77

79
82

83
83
84
84
85

87
87
88

89

90
91

93
94
95

97

2-D Cyclic Convolutions calculated t:si:::g
Nested 1-D Convolution A:gorith~ 98
2-D Cyclic Convolutions Based upon Polyaomial
Transforms 99
Comparison of 2-D Cyclic Convolution Computation
Methods 10:
Opti~um Block Size for 2~D Convolutions

Summary of Chapter 5

Chapter 6 Io;plr.s::::~11:1tirrtg tlbe Enid u.si.r.a;g ~ -ltf.ib ~;ysl'[.::J)I..ic ~l!"if"<O!Ji'S

6.1 Proposed Architecture
6.1.1 A and C Matrix Implementation
6.1.2 Pipelined Systolic Multiplier
Practical Implementation of these Algorithms
6.2.1 The A and C Matrix Arrays

6.2.1.1 Matrix Multiplication Array Sizes

6.2.1.2
6 .2. 1o3
6.2.1.4
6.2.L5

Basic Cell Area
Matrix Array Chip Size and Pinout
A and C Matrix Storage and Entry
Summary of A and C matrix
Implementation

6.2.2 A Pipelined Systolic Multipler
6.2.3 Data Skew and Word Order Swapping
The Overall Syste.n
6.3.1 Performance
6.3.2 Chip Designs
An A Matrix Systolic Array design
Summary of Chapter 6

10~

103

106

107

107
112

1'!5
115
115
117
118
119

120
120
121
122
123
123
124
125

C~pter 1 & Cos~ ~~~iOil f~~ C~~isc~ o~ Qlgo~i~lli0 Ioplsmen~ticns
127

7.1 Introduction to the Cost Function 127
The Cost Function
Assumptions about Arithmetic and Memory Functions
Implementing the FFT
7.4.1 A Four-Cycle 'In-Place' Butterfly
,.., It ""'

(0 4.f 0 c. A Single-Cycle vrn-Place'
Log

2
N Butterflies

A Totally Parallel FFT
A Pipelined Butterfly

Implementing the WFTA
7.5. 1 A Low Power WFTA

WFTA~ Groups of ALUs
Completely Parallel WFTA
A WFTA Implementation Using One-bit Systolic

Arrays

6

129
131
132
132
134

134
135
135
137
137
138
141

142

Comparison of Algor·i thrr:.s
7.6.1 Comparison of FFT Algorith~s
7 .6.2 Comparison of t.-JFTA Implementations
7.6.3 Conclusion to Algorithm Comparison

Chapte~ S A Disc?ate Cosi~e T~~s?cTU kl~?i~~
8.1 The Discrete Cosir.e Tra~sfor=

Application of the t~TA
Derivation of a 4-point DCT
Implementing the DCT
8.4.1 A and C Matrix Reduced Arrays
8.4.2 A Reduced Pipelined Multiplier

8.5
8.6

Implementing a 15-point DCT
Summary of Chapter 8

~ Con~l~i~~ aTh~ S~sti~ ~o~ ~~e~ ~o~~

Summary and Conclusions
Suggestions for Further Work

Chapter 1 ~efere~ces

~~te~ 2 ~efe~n~s
Chapter 3 ~efe~e@ces
cma~ter ~ ~e~eren~s

Chapter 5 ~e~ere~ces
cma~ter 6 ~e~e~n~es
Chapter 7 ~eferences
Cha~ter 8 ~eferen~es

!ppendix I 'Short-N' Convolution and DFT Algorithms

~ppen~iz II A FORTRAN program to generate the matrices
for a 9x9 cyclic convolution algorithm

~ppen~iz III A 15-point DCT Algorithm

7

1 L; 3
1:.j4

11..15

148
150

151
152
152
155
156

157
157
159

161
163
164
166
169
171
173
174

176

188

195

C~J?iG~ ~

!pa~iodic and Cyclic Con~ol~tions

An increasingly important digital signal processing function

is the calculation of two dimensional convolutions, Such convolutions

are widely used 9 for example 9 in image processing and synthetic

aperture radar. This thesis addresses the question 9 what is the 9best'

method of calculating a two-dimensional convolution? In order to place

some bounds upon the problem the case where one of the arrays is fixed

and is small compared to the other is considered, A typical problem

might be the convolution of a fixed 15x15 window with a varying picture

of 9 say 9 500x500 points.

The thesis falls into two parts. The first part 9 which

consists of the chapters one to five 9 is a detailed review of many of

the techniques and algorithms for calculating convolutions. The close

relationship between Fourier transforms and convolutions is discussed,

In particular a general form is derived which describes the most

computationally efficient algorithms for both one- and two-dimensional

convolutions &~d Discrete Fourier Transforms (DFTs). The final chapter

of this first part compares all these algorithms in terms of the number

of multiplications and additions performed for a given convolution.

The second part of the thesis proposes a novel implementation

of algorithms having the general form developed in part one, This

implementation is based upon one-bit systolic arrays and is extremely

well suited for realisation using Very Large Scale Integration (VLSI)

techniques. Finally a much more searching comparison is made between

algorithms and different implementations of these algorithms. The

comparison is made by developing a Cost Function. This Cost Function

accounts for potential throughput 9 number of gates used 9 power

8

consumption and control overheads.

The conclusion 9 reached at the end of the t~esis 9 is that

minimal complexity algorithms of the general cannonical form

implemented using one-bit systolic arrays offer a very goJd solution to

the problem of calculating one- and two-dimensional convolutions and

DFTs.

1.1 Introduction to Chapter 1

Chapter 1 deals firstly with partitioning techniques which

split long convolutions into a series of shorter ones and secondly with

the relationship between DFTs and convolutions. It is shown that the

convolution of two sequences is the inverse transform of the product of

the foward transforms of the two sequences. Rader's theorem is then

introduced. It shows that Fourier-like transforms can be re-expressed

as convolutions. So there is an apparent paradox of a convolution

being calculated using transforms and these transforms themselves being

calculated by convolutions. The computational advantage of this nested

structure will become apparent in Chapter 2.

1. 2 AperiodJc and Cyclic Convolution

Many applications calling for the use of convolution demand

the aperiodic convolution of two sequences. However most 'fast'

algorithms apply only to periodic functions and yield cyclic or

circular convolutions. The term 'fast' means using a smaller number of

arithmetic operations. This section defines aperiodic and cyclic

convolutions and shows how to calculate aperiodic convolutions from

cyclic ones.

In the one dimensional case the aperiodic convolution y
1

of a

sequence x of N terms and the sequence h of L terms is defined as n m

9

En-k = 0 if n-k<O (1o 1)

This is generalised to the two-dimensional case with the a~rays being

(1o2)

In many instances only one-dimensional functions are

discussed in this chapter but the results 9 for the most part 9 are

easily generalisable to two-dimensionso

The aperiodic convolution of two sequences of lengths N and L

(1.1) results in a sequence of N+L-1 values.

In contrast cyclic convolution convolves two length N

sequences gving a length N sequence as the result. Cyclic convolution

is defined by

(1 0 3)

In (1.3) the notation<.> denotes reduction modulo N. Thus to

calculate the aperiodic convolution of two sequences of lengths L and N

using a cyclic convolution algorithm a N+L-1 point cyclic convolution

is needed, The two input sequences ~rR R~tended to length N+L-1 by

appending N-1 zeroes to the h sequence and L-1 zeroes to the x

sequence.

To take advantage of the various fast cyclic convolution

algorithms to speed-up the calculation of extremely long convolutions

we need a technique to split a long convolution into a series of cyclic

convolutions. There are two methods 9 Overlap=Add and Overlap-Save

10

[1.1]. The methods are similar and yield results of comparable

complexity.

1.2.1 Overlap-Save

Suppose we have a very long sequence x 9 M values long with
m

which we wish to convolve a sequence h 9 N values in length. In the
n

Overlap-Save method the resultant convolution y
1

is sectioned into

blocks 9 each block containing K values. That is

(1o4)

N-1

I (1 0 5)
n=O

Consider the first ;v
1

in any given block 9 i.e. 1 1=0 and 1 2 fixed 9 then

the xm and hn terms which contribute to this y
1

are

N-1

yl2K = n~O hn~2K-n (1 0 6)

so the first E term which contributes to the result is ~ Now m 1 K-N+1"

turn to the last value of y
1

in the block 9

the last X m

N-1
= r

n=O
1

2
fixed

term contributing to (1.7) is E} K+K- 1 •
2

2

(1. 7)

So the total

number of different x terms contairled ln lhe block ls -N+ i -?> K- i i.e.
m

N+K-1 terms in total. Thus to calculate each of the aperiodic

convolutions in (1.5) N+K-1 point cyclic convolutions are needed. K-1

zeroes are appended to the hm sequence. The output of each of these

cyclic convolutions is given by

1 1

n

~ --= I\ =-- ~j

xml•~--------------~~------------------~
~ N1-K-1 ~

l .q K-n
~ 2 J save

hn ~
~Nit-

~ K --91

,.

w save

t save

M-c-K-1

xm ~------~------~~========~==~==~
M

Y, .I!(~=~===!=
lfli' ~ add

-----~

t add

Yl~~--~~--~==~---===~~===========
M-:. K -1

Fig '1.2 Overlap- Add

(1o8)

where <1
1
-n> is evaluated modulo N+K=1. Only the last K output samples

from each of the cyclic convolutiot"..s are used. T:he other values are

discarded. As the last value of E used in a block is z 1 K+K-l and n
2

the first value of E used in the next block is E m (12 + 1)K=N+ i

the blocks into which the E series is divided into overlap by (N-1)
m

terms. The Overlap-Save algorithm derives it's name from these N-1

terms of x 'saved' between successive cyclic convolutions. Figure 1.1
m

illustrates the Overlap-Save principle.

1.2.2 Overlap-Add

In the Overlap-Add technique the input sequence

sectioned in contiguous blocks of length K such that

Jr
m m

1
= 0 9 1 9 ••• 9 K-1

is

m2 = 0 9 1 9 ••• for successive blocks (1.9)

The aperiodic convolution of each of these blocks 1~ m
1

+m2K with the

sequence h is then computed and yields an output sequence :I of n m291

K+N-1 samples. The successive aperiodic convolutions Y. m291
are

computed using K+N-1 cyclic convolutions. The input sequences are

extended by appending K-1 zeroes to them.

The Overlap-Add method derives it's name from the fact that

the output of each section overlaps it's neighbours by K-1 samples.

These samples must be added to find the desired y1. Thus the Overlap­

Add method requires an additional K-1 additions when compared with the

Overlap-Save method. Consequently the Overlap-Save method is often

perfered. The Overlap-Add method is illustrated in figure 1.2.

1 2

1o3 The Cyclic Convolution Property

The Discrete Fourier Transform is one of the most important

mathematical aids to signal processingo One of the more important

properties of the DFT is that the inverse DFT of the product of the

DFTs of two sequences is the cyclic convolution of those two sequences.

This property is known as the Cyclic Convolution Propertyo The

existence of fast DFT algorithms enables convolutions to be calculated

more efficiently than by direct computationo

The Discrete Fourier Transform Xk of a sequence xm 9 of N terms

is defined by

k:0 9 1 9 ooo 9 N-1 (L 10)

W
-j2TT/N

N = e 9

xm and Xk are uniquely related by a transform pair with the foward

transform given by (1o10) and the inverse transform given by

(L 11)

It can be verified that (lo11) is the inverse of (lo10) by substituting

forXkin(1o11L Thisgives

N-1 N-1
Yl =)' x 2 2: w<m-l)k

m";"b m N k:O N

However ~ -1 so m-1 is defined modulo No N -

N-1
~ .. (m-1)k ••
~ WN =l\1

k:O

If m-ljO mod N9 then

N-1 w<m-l)N_ 1

I:; wCm-l)k N
N =

~-1 k=O N -1

For m-1=0 modulo N

(L 12)

(1 1 ":) \
\ I o I ..) I

(L 14)

since wm-l i1 the sum (1o14)
N

is zeroo So the only non-zero case

corresponds to l~m 9 which gives y1 = ~lo

1 3

The DFT can be used to compute a cyclic convo:ution y1 of N

terms with

(1 0 3)

This\done by computing the DFTs JErk and Rk of tl:nn and ~m 9 by multiplying

Bk by ~ and by computing the inverse transform c
1

of Bk~o

rearranging gives

N-1 N-1
«::1 = L: E

n=O m=O

1
h :rr -N n m

N-1
L.

k=O

By using a similar argument to the inverse DF'!' case

becomes

and

N-1
s = L:

k=O

w(m+n-l)k
N

S=O for m+n-liO Mod N

S=N for m+n-1=0 Mod N

(L 15)

(L 16)

so m=l-n Mod Nand substituting into (1a16) gives c1=:v1 a The

calculation of convolutions using DFTs is of little value if the DFTs

are evaluated using N2 complex multiplicationsa However the existence

of many fast DFT algorithms makes the approach given in (1a15) an

extremely useful techniquea

Transforms having the property that c1 =Yl in (L 15) are said

to have the Cyclic Convolution Property (CCP)o The DFT is not the only

transform having the CCPa The above proof of the CCP relied on the

Q -1 ~
exist\J.nce of the value N and the exist~nce of the Nth root of unity

in the field under considerationa This is the complex field in the

case of the DFTa Provided that N- 1 and the Nth root of unity exist

other fields may be used to calculate cyclic convolutionsa Pollard

[1a2] was the first to suggest the use of finite fields 9 in particular

1 4

the Galois field of pn elements 9 where p is prime and n a positive

integero Such transforms are known as Number Theoretic transforms

(NTTs)o No further discussion of NTTs is given in this thesiso More

recently Nussbaumer [1o3] 9 and Nussbaumer and Quandalle [1o4] have

introduced a transform based upon a ring of polyno~ialso These

polynomial transforms are an important adjunct to the development 16'
two~dimensional convolution algorithms and are considered in more

detail in chapter 3o

An alternate way [1o 11] to express the cyclic convolution of

two sequences x and h is as followso The transforms of x and h are

defined by

1ffi = Blill

where A and B are matrices representing the foward DFTo

point by point product of the two sequences is obtained

Finally the inverse DFT of Y is obtained

(L17)

Then the

(1o18)

y = c~ (1o19)

C is the matrix representing the inverse DFTo The processes given by

the equations (1o17)-(1o19) can be described by the single equation

y = C (Ax x Bh) (1 0 20)

1o4 Rectangular Transforms having the CCP

Agarwal and Cooley [1a5] have shown that other transforms 9

besides the DFT-like transforms discussed above 9 have the CCPo This is

provided that the A9 B and C matrices are non-squareo Agarwal and

Cooley called these transforms 'Rectangular Transforms' o

Suppose that the A and C matrices are of dimensions MxN and

the C matrix MxMo Here N is the length of the cyclic convolution and M

1 5

is the number of points in the •transformt domair.. 9 lY1>IITo So (lo17) can

be rewritten as

N-1

~=L:
q=O

and

Equation (1o18) becomes

~-1

yn = ~0 cn9k~~

Substituting fo,r ~and ~from (1 o21) into (1 o22)

Reordering the summations gives

N-1
J'Tn = L,

p:O

N-1

'L
q=O

xlhl
q p

(1o21)

(1o22)

(1o 23)

(1o24)

A necessary and sufficient condition for (1o24) to represent cyclic

convolution is

M-1
E

=1 if p:n-q Mod N

k=O =0 otherwise (1o25)

In the case where M:N Agarwal and Burrus [1o6] have shown that the

matrices must have the DFT structureo However if M>N then many

different choices are possibleo As M is increased the entries in the

A9 B and C matrices become simplero In the extreme case where M:N 2

each row of the A and B matrices will have only one non-zero element

and the algorithm is equivalent to the direct computation of cyclic

convolutiono The remainder of this thesis is concerned with algorithms

in which N<M<N 2 o In particular 9 convolution algorithms of this form in

which the entries in the A and C matrices are restricted to the values

+ 1 9 -1 and 0 are considered in detaiL Chapter 6 gives a novel

implementation of algorithms of this form which is based upon the use

of one-bit systolic arrayso

16

This section and the subsequent sub-section show how certain

DFTs can be converted into circular convolutions (or correlations) by a

method proposed by Rader in 1968 [1o7L The first and least complex

case is of a DFT for N:p 9 where p is an odd prime. Then the DFT is

given by

p-1
wnk

~ = ~ :rrn N k = Q919ooqp-1
n=O -j21T/p

WN = e 9 j:{7! (L 10)

For k=O ~ is simply the swmnation

p-1
Ro = 2: li

n=O
n (1 0 26)

For k.tO

X' k = pi:1x ~k
n=1 n N

~ = :rro + YI..k k = 1 9 2 9 0 0 0 9 p- 1 (1o 27)

The indices n and k are defined modulo p. As N is prime there is some

number 9 not necessarily unique 9 such that there is a one-to-one mapping

of the integers i:1 9 2 9 ••• 9N-1 to the integers j:1 9 2 9 ••• 9 N-1 given by

j = gi Mod N

The integer g is known as a primitive root of N [1o8]. So for n 9 ki0 we

can replace n and k by the transformations

n = gu mod p

v k = g mod p

so (1.27) becomes

In (1.29) the exponents of g are taken modulo p-1.

rewritten as

17

(1.28)

(1.29)

This may be

lrJhere

p-2
=)I :rrfm u7o U U+V

V= 0 9 1 9 0 0 0 9 P= 2 (1o30)

and

Equation (1 o30) represents a circular correla tiono To obtain a

circular convolution we change the sign of u in (1.29)" This

corresponds to fixing x
0

and reversing the remainder of the permuted
g

input sequence" The convolution is

p-2
X' = L v

g U=O

v-u
x wg

-u g
(1o31)

By combining (1o31) and (1.26) a DFT of prime length p can always be

calculated as a p-1 point convolution with some additions.

As an example consider the calculation of a seven point DFT.

This may be written in matrix vector notation as

xo 1 1

r:: 1 x1 w1 w2 w3 w4 w5 w6

x2 w2 w4 w6 w1 w3 w5 : II

R2 j

x3 = w3 w6 w2 w5 w1 w4
~

w7 =

x4 w4 w1 w5 w2 w6 w3
x4

xs
w5 w3 w1 w6 w4 w2

~

:x:6 w6 w5 w4 w3 w2 w1
x6J

(1o32)

For N=7 a suitable primitive root is 3. Thus 9 excluding x 09 and by

using the mapping given in (1.28) with g=3 9 the input vector is

18

w 1 tv5 vJ4
C

1.'1!2 w31
-f \

:lr' TTO
pr1 1 -~

I' w3 w1 w5 w4 w6 w2 I
3 ~~

X' w2 w3 \v 1 w5 w4 w6 '
2 \x4

'frJ7 =
w6 w2 w3 w1 w5 w4

. =
1[1 i li6 6

:R:' lw4 w6 w2 w3 w1 w5j I
4 IE2

1:' w5 w4 w6 w2 w3 w 1 , (:033)
5 lx3

Equation (1.33) has the form of a cyclic convolution.

With a fast algorithm for calculating p-1 point convolutions

it is possible to use Rader's theorem to calculate p point DFTs - this

is one of the key points in the derivation of the Winograd Fourier

Transform Algorithm. The case where N=Pr is more complex and is

described below.

r
1.5.1 Rader's Theorem N=P

r The case when N=p 9 p prime 9 has been discussed by several

authors; Kolba and Parks [1.9] 9 Nussbaumer [1. 10] and by McClellan and

Rader in the introduction to [1.11]. It is possible to convert a DFT

of N=pr points into a series of convolutions. The first step is to

change the index k so that

k2 = 0 9 1 9 ••• 9 p-1 (L34)

Subsequently 9 for k2:0 we have k=O modulo p and Xk becomes

r
p -1

=2: (1. 35)
n=O

r By way of an illustration of the decomposition of the N=P point case a

9-point is used as an example. The 9-point DFT matrix is

19

xo

!(1

][2
!

R3l

:14

li5

:16

][7

)'{8

=

1 . 1 1)

w1 w2 w3 w4 w5 w6 w7 wB

w2 w4 w6 wB w, w3 w5 w7

w3 w6 1 w3 w6 1 w3 w5

w4 w8 w3 w7 H2 t-u6 toJ 1 w5

itJ5 w 1 w6 w2 TsJ7 1nJ3 t;Y8 t·J4

w6 w3 1 w6 w3 1 1116 w3

w7 w5 w3 w' w8 w6 w4 w2

wB w7 w6 w5 w4 w3 w2 w, (1. 36)

Equation (1.35) describes the rows corresponding to X09 z
3

and x6•

xo 1 1 1
{

xo l
:13 = w3 w6 w3 w6 1 w3 w6 z1

:16 w6 w3 w6 ttJ3 w6 w3
I 1t2
1

~

! 2&3

I x4

'~
x6

~

z8 (1. 37)

Then in (1.35) since
pnk

1 defines n modulo r-1 i.e. Modulo 3 in w p 9

(1.37) 9 we change the index n to

r-1
n = p n

1
+ n

2
n

1
= 0 9 1 9 ••• 9 p-1

r-1
n 2 = 0919•••9P -1

r-1 Then for k
2

=0 9 Xk becomes a DFT of p points 9

20

pk n
w 1 2

(1.38)

(1 0 39)

So in the 9-point DFT example (1.37) can be reHri tten as a 3~·poii1'c JFT 9

=

We now return to the k index given by (1.34). For kiO ~odulo p 9 we

compute separately the terms corresponding to ~0 mod p (ilk) and to n~O

mod p (Bk) 9

(L41)

Firstly 9 for n~Qmod p

n = pn1 (1o42)

So by reordering k 9 we have

k =
r-1

+ k2 p k1 k1 = 091, ••• 9p-1

k2 !_ 0 mod p k2 ·1pooopP r-1
-1 = (1.43)

so

= (1. 44)

The righthand side of (1.44) is independant of k
1

so &k is a DFT of

r-1 .
p polnts in which the terms corresponding to k2~o are not

calculated 9 In the 9-point DFT example we have (equation (1.42)) 9

21

' ";] (

!&o 1 xo

.Al w3 w6 R3

fd2
lrJ6 w3 :l{6

[13

£.\.4 = H3 H6

fd5 1rJ6 u3

A6 1

/l7 w3 w6

[;\8 w6 w3j (1.45)

Using this example (1o 44) describes

[;\0 £3 r .a_. 1 1 :rro 0

Jil = £4 = £7 = w3 w6 x3

A2 £5 .&.8 w6 w3 R6 (1o 46)

The condition that k2~o mod p in (1 .43) is because the values of Xpl

r-1 l=0 9 1 9 ••• 9 p -1 9 have already been calculated in (1.39).

Finally we consider lBk of (1.41). This consists of terms for

r-1 which n 9 k~O mod p. Bk is of length p (p-1) points. Then 9 in a

similar manner to the N=P case above 9 the indices n and k can be

r generated by a primitive root g defined modulo p with

n = gu mod pr

r-1 Thus a correlation of length p (p-1) is obtained

T'-1 . .
p- . (p-1)-1 UvV

L :rr uwg
U=O g

(1 0 47)

(1. 48)

For the 9~point DFT the 6-point convolution is obtained using a

primitive root equal to 2. This gives (1.48) as

22

~ o - r-::: r;-, .._~---'

<(- -~~ ~~(~ . ~·
c:-:!J = r..~ \.:_y • , ~ oJ .:.-_J ~

-= <-=, = = ~ '-'> =--- = ==> =-> <= .---, < _, ~ <-.J "'--> ~ .:;> <..:....> . .
J.p---o-~=~~=~~/=1':

x(0]?X{3~?X~6) a >===~~==~-~-=~1.--t~~X10~
-1 I' '7 II \.

I n

~-~ cjc ~~c=~ V' 17 ~ ;
: .f~ \. (!, !;

'
G J
~C.:O =:> <:;:) c::> = C.=:> C:> <-= c=> = = = c::::> = c::::> ~ = c::> d

3 =po~nt OFT
r--- = =- = = - - - - - - - u

o~~--------~==~~

P3:~~

E 6~=?.;:::l

R 1 I
I

I li

\"!.I •n•FJ•
~--==='J:= x \ n
·'==-~===<:>=)((5 ~

"===='!

Fig 1.3 9~ point OFT Decompos~t [or.

r

t,Y 1 w5 W 7 H8 H4 t'12,
I

I i '& B
1 " 1

B2 w2 w 1 w5 ~17 1rJ8 w4
~

B4 w4 w2 w 1 w5 w7 b,ya
~ u9 =

w8 L' t1)'2 \1)' 1 TJI)'5 t-J 7
=

Ba wl x8

w7 1\18 \,J4 \"2
<

r,y5
37 ~ W' TI' 4

;B\5 w5 w7 wa w4 w2 w,
l:rr2J (1.49)

Each of the subsiduary DFTs (1.39) and (1o44) in the calculation of a

pr point DFT can themselves be decomposed into convolutions. So as

noted by Kolba and Parks [1.9]~ this 9-point DFT requires a 6-point

cyclic convolution (1.49) and two 3-point DFTs (1.40) and (1.46).

Figure 1.3 illustrates this decomposition of the 9-point DFT.

When N is a power of two~ the N-point DFT is partitioned into

DFTs of size N/2 by the same method 9 and the DFTs corresponding to n

and k odd are computed as correlations. However 9 there are no
n n

primitive roots for N>4. For N>4 the composite root (-1)
13 2

9 with

n 1=0 9 1 and n
2

=0 9 ••• 9 (N/4-1) should be used. These roots generate a

two-dimensional correlation of size 2x(N/4).

So Rader's decomposition yields a method of computation 9 based

upon convolutions 9 for p and r p point DFTs. The major significance of

Rader's algorithm is that it allows one to compute large DFTs very

efficiently when it is combined with other techniques.

1.6 Summary Chapter 1

This chapter has provided a review of some of the fundamental

techniques for calculating convolutions and DFTs. Firstly the

techniques of Overlap-Add and Overlap-Save were introduced to show how

long aperiodic convolutions can be calculated from a series of shorter

cyclic convolutions. Then the Cyclic Convolution Property (CCP) was

derived to show how cyclic convolutions may be calculated using

23

transform techniqueso However Rader 1 s theorem sho'rJS how tfl.ese

tranforms themselves may be expressed as convolutionso The use of this

structure of convolutions within convolutions is used in latter

chapters concerned with the development of twe=di::ne::1sional convolution

and Fourier Transform algorithmso

24

This chapter deals with the derivation of fsEt convolution

algorithms by the means of polynonia: algebra and the Chinese Remainder

Theorem (CRT). These short convolution algorithms-are then applied to

the DFT using Rader's Theorem as outlined at the end of chapter one.

2.1 Convolution and Polynomial Algebra

Consider the aperiodic convolution yn of two sequences hk and

x 9 each of N terms? m

N-1
y; = L hz

n k=O 1<: n-k
(2. 1)

Now suppose that the N elements of the hk and xm are assigned

to be coefficients of the polynomials lHf(z) and X(z) of degree N-1 in z.

i.e.

N-1
\:Zk H(z) = L:

k=O

N-1 k
K(z) = E ~z (2.2)

k=O

Taking the product ~(x)R(z) the resulting polynomial ~(z) will be of

order 2N-2. Thus

2N-2
Y(z) = ~(z)R(z) = L

n:O

n a z
n

In this polynomial multiplication each coefficient 9 ffi
n

n
of z 9

(2.3)

is found

by summing all the products hkzm so that n=k+m 9 i.e. m=n-k. It

follows that

25

and so

N-1
at = L: ~:IT y n k=O n-k - n

2N-2
li (z) = L:

n=O

n
Y. z n

The implication of this is that the multiplication of hro polynomials

is equivalent to the convolution of two sequences. Moreover 9 if the

convolution defined by (2o1) is cyclic the indices are all defined

modulo N. Thus in a length N cyclic convolution we have N~0 9 implying

N that z =1. So a cyclic convolution is the product of two polynomials

N modulo the polynomial z -1.

li(z) = lffi(z)R(z) mod (zN-1)

2o1.1 The Toom-Cook Algorithm

The Toom-Cook algorithm provides a method of constructing the

polynomial product (2.3) by using the Lagrange interpolation formula.

The Toom-Cook algorithm is a special case of a method for constructing

polynomial products using the Chinese Remainder Theorem. The more

general case is considered latero

Knuth [2.1] discusses the use of the Toom-Cook algorithm for

multiplications. Agarwal and Cooley [2.2] discuss the use of the Toom-

Cook algorithm for the calculation of aperiodic convolutions 9 i.e.

polynomial products.

Theorem (The Toom-Cook Algorithm)

The polynomial product (2.3) can be computed in 2N-1 general

multiplications.

A general multiplication is one where both multiplicands

depend upon the data. The theorem is proved by constructing the

algorithm.

Suppose the polynomials given by (2o2) are formed and the

26

product Y(z) (2.3) found. Y(z) is a po~ynomj.al of degree 2[-2. To

determine the 2N-1 a s of (2.3) one can select 2N-1 distir.:.ct m:mbers 0\.
n J

j:0 9 1 9 .,. 9 2N-2 9 and substitute them for z in (2.3) and obtain the 2N~1

products

x(O(j) = m::coc.mCO{.)
J J

(2.5)

Then the Lagrange interpolation formula may be used to uniquely

determine the 2N-2 degree polynomial

2N-2
l7(z) = l:

j=O
Y(O{_)l[•• (z)

J J

where the interpolating polynomials are

2N-2
=IT

k=O
kij

(2.7)

(2.8)

So the polynomial product (2.3) is found using the 2N-1 multiplications

in (2.6). As an example of the use ~__: the Toom-Cook algorithm

consider the product of two polynomials

H(z) 2 X(z) = x
2

z + x 1z + x0
2

+ y2z + y 1z + Yo (2.9) giving

As both these polynomials are of degree two the Toom-Cook algorithm

states that their product may be found with five general mul tipl ic-

ations. Suppose the ~j are chosen as

0(0 = 0 9 <X 1 = 1 9 0<.2 = 2 9 0(
3

= 3 and 0(4 = 4 •

This is a purely arbitrary choice 9 negative values of ~j could have

been employed. Then the lZ'(~) of (2.6) are found by substituting the

values ofO<. above into (2.9).
J

lZ'(O) = IBI(0)E(0) = hoxo

Y(1) = (h2 + h1 + ho) (x2 + x, + xo)

iC(2) = (4h2 + 2h1 + h 0)(4x2 + 2x 1 + xo)

27

Y(3) = (9h2 + 3h 1 + h0)(9x2 ? 3x1 + x0)

~(4) = (16h2? 4h1 + ho)(~6x2 + 4x, + xo) (2. 10)

The interpolating polynomials (2.8) are functions of the O(ks (2.10) 9

not the coefficients of the polynomials Bl(z) and iZ(z) (2.9L These

interpolation polynomials are 9

(z~1)(z-2)(z-3)(z~4)

--------- = 1/24 Cz4~1oz3+35z2~50z+2i..l)

l!..1(z) =

l!..2(z) =

L
3

(z) =

IL.4(z) =

(0-1)(0-2)(0-3)(0~4)

(z-O)(z-2)(z-3)(z-4)

(1-0)(1-2)(1-3)(1-4)

4 3 2 1/4 (z -8z +19z -12z)

-1/6 4 3 2 (z -7z +14z -8z)

1/24 4 3 2 (z -6z +11z -6z)

Collecting terms in like powers of z in (2.11) gives

y
0

= 1l(O)

25 4 1 y
1

= - T21l(O) + 4Y(1) - 317(2) + 3"Y(3) - 1fl7(4)

y2 = ~~YC(O) -
1 ~Y(1) + ~'\7(2) - ~Y(3) + ~l7(4)

5 3 7 1 y
3

= - 12Y(O) + 2YC1) - 2'\7(2) + 0Y(3) - 4YC4)

1 1 1 1 1
y4 = 24~(0) - b'\7(1) + 4!(2) - oY(3) + 24Il(4)

(2. 11)

(2.12)

Although this polynomial product algorithm 9 ·described by (2.9) 9 (2.10)

and (2.12) 9 may appear to contain more than 5 multiplications 9 the only

9 general' multiplications are those in (2.10). All the multiplications

by constants in (2.12) do not count as general multiplications.

As mentioned above the choice of the 2N~1 distinct values of

Ofj is arbi tary. The example shows how the use of integers other than

+1 9 -1 and 0 9 in the choice of the ~js 9 quickly involves multiplications

by inconvenient constants which are not counted as general multiplic-

ations. These constants limit the usefulness of the Toom-Cook

algorithm to very short polynomial products.

Nussbaumer [2.3 pp 27-29] explains how the Overlap-Add method

28

can be derived from the Toom-Cook algorithm by choosing the O(j = '\t>J~N-l

j=0 9 1 9 ••• 9 2N-1. Agarwal and Burrus [2o2] sh01rJ that the Toom-Cook

algorithm is of the general canonical form

y = c (Ali X Bb) (1o 2C)

The polynomial representation of convolution is an extremely useful

tool for developing convolution algorithms. An essential part of this

development is the use of the Chinese Remainder Theoremo

2o2 The Chinese Remainder Theorem

This theorem 9 which was first known in ancient China [2o 1]

allows you to construct the solution to the following type of problemo

Given

x = 4 mod 5

x = mod 4

x = 2 mod 3

find the smallest integer x that satisfies these conditionso

Expressing the same problem more formally the Chinese Remainder Theorem

(CRT) allows you to construct a unique solution from a set of

congruences in mutually prime modulL Whilst the integer version of

the CRT is used in chapter 4 here 9 we are more concerned with a

polynomial version of it. Before the polynomial form is introduced the

concepts of residue polynomials and irreducibility are discussedo

2.2.1 The Chinese Remainder Theorem for Integers

Let m19 m? 9 ooo 9m be positive integers which are relativ;ly
- r

prime in pairs 9 ioeo 9

when jik

where (.) denotes greatest common di vis oro 0009

(2o 13)

u be
r

integerso Then there is exactly one integer u which satisfies the

29

conditions

a < u < a+M and u = u.
J

mod m. for 1 ~ j ~ r
J

(2.14)

Proof~ If u ~ v mod mj for 1~j~r 9 then u-v is a multiple of mj for all

j. So (2.13) implies that u-v is a multiple of M=m
1

m2o •• ml."'. This

argument shows that there is at most one solution to (2.14). The proof

is completed by showing the existence of at least one solution.

As u runs through the M distinct values a < u < a+M 9

the r-tuples (u mod m
1

, ••• 9 u mod m) must also run through M
r

distinct values since (2.14) has at least one solution. There are

however m
1
m

2
••• mr possible r-tuples. Therefore each r-tuple must occur

exactly once, and there must be some value of u for which (u mod m
1

,

••• 9 u mod mr) = (u 19 ••• 9 ur).

Given the residues the integer u may be determined by means of

the formula

(2.15)

where <.>k denotes reduction modulo k. The use of this formula is now

illustrated.

First the quantities M. are found 9 where
l

M
M1 = m~ 0 0 0 s> M

r =
f·j
m

r
(2.16)

Each Mi is relatively prime to its corresponding mi. It is possible to

find (see [2.4]) number Ni solving

modulo mi (2.17)

Now consider the quantity

(2.15)

Then taking the residue of U modulo m19 each of the factors containing

Mj ji1 has rn 1 as a common factor 9 so

(2.18)

30

modulo m1

u = u, modulo m
1

(2.19)

similarly u = ui ,modulo mi (2.20)

Thus U is a solution to a given set of congruences. The problem stated

at the beginning of this section is now solved~

x = 4 mod 5

x = mod 4

x = 2 mod 3 Find x.

The three moduli are 3 94 and 5 so M=60. TheM. are
l

M1
60

12 9
60

159 and M3
60

20. = 5 = M2 = 4 = =3 =

Then N
1

is the sol uti on to 1 2N
1
= 1 mod 5 9 which is equivalent to 2N

1
=1

mod 5 9 Le. N
1

=3. Similarly 15N
2

=1 mod 4 gives N
2

=3 and 20N
3

::..:1 mod 3

gives N
3

=2. So

x = 12.3.4 + 15.3.1 + 20.2.2 mod 60

X = 29.

2.2.2 Residue Polynomials

We now turn to polynomial arithmetic and define polynomial

equivalents of 'congruent' and 'remainder'. The idea of irreducibility

of' polynomials is introdu£,~ed; the factorization of (zN-1) into

irreducible factors is of great importance in the derivation of the

Winograd minimal complexity convolution algorithms.

A polynomial d(z) divides a se~ond polynomial H(z) if a

polynomial p(z) exists such that

JBI(z) = dl(z)JPl(z) (2.21)

A polynomial H(z) whose only divisors are of degree equal to zero or

deg(]pl(z)) is said to be irreducible in the field 9 F 9 of the

coefficients of H(z). Notice that the irreducibility of H(z) depends

upon the field of coefficients. This is illustrated by the folloHing

31

example~

a) 5 z -1
4

factors as n (z - 1,/) over the field of complex
k=O

5

numbers.

b) () (2 217 <) (2 2 4 Tf •) t h As z - 1 z - 2cos5 z + : z - cos5 z + ! over _e

real n urn bers

c) As (z -1)(z 4 + z 3 + z 2
+ z +1) over the rationals.

In a similar manner to the case for integers every polynomial can be

written uniquely in the form

d
p(z) = k TT

i=1
[pi (z)]

r.
l

where k is a constant 9 pi(z) are irreducible monic polynomials and dis

the number of factors of p(z). A monic polynomial is one whose leading

coefficient is unity. Equation (2.22) implies that

d
Z r. [deg p. (z)] = deg[p(z)].

i= 1 l l

For two polynomials lHr(z) and lDl(z) it is always possible to

write

H(z) = P(z)lDl(z) + R(z) (2.23)

where deg[R(z)]<deg[D(z)] 9 R(z) is known as the remainder or residue

polynomial. The representation in (2.23) is unique [see 2.4 p55].

Two polynomials p
1

(z) and p
2

(z) are said to be congruent

modulo d(z) if they have the same residue modulo d(z).

2.2.3 The Chinese Remainder Theorem for Polynomials

There exists a unique polynomial Y(z) satisfying

a) Y(z) ~ Yi~z) mod ~i(z) 9 i=1 9 2 9 ••• 9 d

d
b) O<deg[I(z)]< L

i=1
deg [M. (z)]

l
(2.24)

Provided that the monic polynomials ~i(z) are relatively prime in

32

pairso

A proof of this theorem is given in [2o4L ll(z) may be

constructed from the congruences by means of the form~la 9

d
ll(z) = r: si (z)lli (z)

i:1
mod. ~-:J(z)

where the auxilary polynomi.'lis ~. (z) are defined by
l.

d
3. (z) _:_ [[TT ~41 (z)

J i:1
mod ~j (z)} 1

iij

where

The d auxilary polynomials are such that

Sj(z)_:_O modM
1

(z) iij

mod ~(z)

(2o26)

= 1 mod ~ . (z) (2o27)
' J

Reducing S.(z) defined by (2o26) modulo M.(z) gives (2o27) provided
J J

that

d n ~i(z)
i= 1
iij

This last condition is ensured by the polynomials ld /z) being

relatively primeo

As an example 9 which is applied to a 4-point convolution

algorithm in the latter parts of this chapter 9 the Sj(z)s are

constructed for the three polynomials (z-1) 9 (z+1) and (z 2+1)o

2
M

3
= (z + 1)

then s 1(z) ={[<z+1Hz
2?1)]/{ [(z+1Hz 2+1)] mo"d z-1]} mod (z 4

-1)

but (z+1)(z2+1) = z3+z2+Z+1

and z 3+z2+z+1= 4 mod (z-1)

ii eo 1 3 2 g v ng .:J> 1 (z) = "If (z + z + Z+ 1) (2o28a)

33

s
2
c z) =H c z- ,)(z 2 -~- n J 1 (r c z _ n c z

2
.;.. -:) 1

2 3 2 but (z-1)(z +1) = z ~z -:-z-1

and z3-z2+z-1= -4 mod (z+1)

giving S 2Cz) = - ~(z~ -z2 +Z-1) (2.28b)

s;
3

Cz) =fr<z-1Hz+nl/{r<z-1)(z+1)1 mod z
2

-:-1}} mod (z
4-n

but (z-1)(z+1) = z2-1

2 2 and z -1= -2 mod (z +1)

1 2 giving s
3

Cz) = - 2 cz -1) (2.28c)

This is a particularly simple set of recombination polynomials. Often

the calculation of

d [[n Mi (z)] mod
i:1
iij

mod R·L (z)
J

is more difficult and involves the long division of polynomials to

determine the remainder.

In the Toom-Cook algorithm 9 ~i(z) = z-zi and the Lagrangian

interpolation formula provides a method of constructing Y(z).

2.3 Computation of Convolutions using the Chinese Remainder Theorem

We now consider the problem of calculating

Y(z) = IHI(z)IC(z) mod JP>(z)

In section 2.1 above 9 (2.29) was shown to be a circular convolution

N when JP>(z) is chosen as z -1. The problem in (2.29) can be re-expressed

if the polynomial P(z) can be factored as

d
lP'(z) = n JP>i (z)

i= 1

The major simplification comes, from noting that if

(2.30)

(2.31)

Then the Chinese Remainder Theorem can be used to construct ll(z) from

34

the JI
1

(z) provided that the ?
1

(z) are mu'C.ually prima in pairs.

As shown in section 2.2.2 the factorization of ~(z) depends

upon the field of coefficients. For the moment this field is left

unspecified.

The convolution (2.29) can now be represented as d

subproblems. Each subproblem being to reduce X(z) and H(z) to find

K
1

(z) and JBii (z). The product JEJ.(z)TI:.(z) is then found modulo l?.(z).
l l l

This product can be calculated using the Toom-Cook algorithm derived

earlier. Since l!:. (z) and lEI. (z) will be of degree (deg[JP>. (z)]-1) 9 the
l l l

Toom-Cook algorithm will need 2deg[JP>
1

(z)]-1 general multiplications.

As stated earlier some multiplications by fixed constants in the field

of coefficients of Xi(z) and Hi(z) may be needed- these are not

counted. The residue reduction modulo ~ i (z) will require additions 9

subtractions and multiplications by fixed constants in the field of

coefficients. So each of the d subproblems can be computed with

2deg[P. (z)]-1 multiplications. The final step of the computation of
l

(2.29) is the reconstruction of Y(z) from the Jii (z) using the Chinese

Remainder Theorem. The general form of this being

d
vcz) = 'L si cz)l7i cz) mod JP>(z)

i=1
(2.25)

The coefficients of each polynomial S.(z) lie in the same field as the
l

coefficients of the P. (z).
l

So (2.25) requires only additions 9

subtractions and multiplications from the field of coefficients of the

P.(z).
l

Then the total number of general multiplications used in the d

subproblems for the calculation of (2.29) is

d

2: 2deg[lP'i (z)]-1
i=1

= 2deg[lP'(z)]-d (2.32)

This does not include multiplications by constants. For the case of

35

cyclic convolution deg ?(z) = l~ so l:.i.18 nur•.ber of 88n.e·ra1

mul tipl:l.cations needed ts

2N .. d (2o33)

This result is a case of a theoreB due to Winogz'ad [2o5] 0

Winograd's Minimum Complexity Theoreill

The polynomial product li(z)=lffi(z)IC(z) modulo IP(z) may be

computed with a minimum of 2N-d general mul tiplicationso Where N =

deg lF'(z) and dis the number of irreducible factors of lF(z) over the

field F o

The preceeding section showed how an algorithm using 2N-d

general multiplications can be foundo In [2.5] tVinograd shows that at

least 2N-d multiplications are needed and that any algorithm using the

minimum number of multiplications must use the Chinese Remainder

Theoremo

2o3o1 The Canonical Form of Winograd 9 s Algorithms

Winograd [2o6 9 2o7] derived a series of 'short N' convolution

algorithms using the Chinese Remainder Theorem recombination method

outlined in the previous sectiono These algorithms were derived with

the field of coefficients as the rational numberso It is interesting

to consider the more general form of the minimal algorithms in other

fields 0

Winograd's algorithms all have the same form

Y = C (Ax x Bh) (1o 20)

The A 9 B and C matrices are rectangular and their entries are

constrained to lie in the field 9 Fo For 'minimal' algorithms the A and

B matrices are of dimension (2N-d)xN and the C matrix Nx(2N-d)o The

general multiplications are contained in the step (Ax x Bh) o

McClellan and Rader [2o4] show that it is possible to derive

36

the Cyclic Convolution Property (CCP) from vJinograd's theoremo

Furthermore 9 by choosing the field of coefficients as the complex

numbers 9 they show that the.£. and B matrices must be fo'j-Jard DFTs and

that the C matrix is cons trained to be the inver-se DFT. I~otice tl".at in

this case all the multiplications associated with the DFTs are not

counted as 'general' multiplications as they are constants in the

field!

Winogr~d's minimal algorithms are only of interest if the

fixed constants in the field are simple. Choosing the field of

constants as the rational numbers 9 whilst eliminating complex values 9

could still leave awkward values to implement. There is no way to

force the multipliers to be simple 9 but the use of the Rational

numbers 9 at least for small algorithms 9 does give simple valued

multipliers.

When the field of the coefficients is the field of rational

numbers 9

N z -1 factors into polynomials whose coefficients are rational

numbers. These polynomials are called cyclotomic polynomials [2.8].

In view of their importance the next section is devoted to cyclotomic

polynomials.

2.3.2 Cyclotomic Polynomials

This section deals with a few of the properties of cyclotomic

polynomials. There is an excellent section on these polynomials in

[2.4]. Some of the properties of these polynomials are listed here.

Many of the results are proved in [2.4].

The kth cyclotomic polynomial Ck(z) is defined to be

(z - (2.34)

Some important properties of these polynomials are~

37

(i) Cyclo'comi.:~ polynomials are irreduciole ovei~ the field of

rational numbers. This is proved in [2.8].

(ii) For a given N the number 9 d 9 of distln8t polynomial

N " factors of z ~1 J.S equal 'co the numbc!' of divisors of [1~

including 1 and N.

(iii) The degree of <Ck(z) is G'(k) where QJ(k) is E1;ler?s

totient function. The value of this function is the number of

integers that are smaller than k and that are relatively prime

to k.

(iv) For p prime

C (z) =
p

p~1 p-2
z + z + ••• + z +1

(v) For any choice of integers m and p

k-1
C

1
(z) = C (zP)

< mp mp

(2.35)

(2.36)

(vi) For p prime and if p does not divide m (i.e. (p 9 m)=1)

then

C (z) = pm
C (z)
m

(vii) For n odd and n > 3.

c2 (·z) = c (-z)
n n

(viii) The coefficients of the Ck(z) are integers.

(ix) Ck(z) has coefficients from the set 0 9 19 -1 when k

has at most two different odd prime factors. Since 105 =

3.5. 7 it is the smallest integer to be divisible by three odd

primes and so all cyclotomic polynomials will have this

property for k<105.

Examples of some cyclotomic polynomials are given in table 2.1.

38

C
1

(z) z-1 c
8

(z) 4 1 --, = = z +-

IC 2Cz) Z+1 !Cg(z) 6 + z3 +-= = z

C
3

Cz) 2 1 C 10 (z)
4 3 2

1 l = z + z + = z z -~ z - z + I

l :c
4

(z) 2 + 1 «:; 12(z)
4 2

1 = z = z - z +

c
5

Cz) 4 z3 2
C 16(z)

8
1 = z + + z + z + = z +

c
6

(z) = z 2 1 - z +

'::a:Ole 2o ~
Some Cyclotomic Polynomials

2.4 Construction of Short Convolution and DFT Algorithms

of the Winograd Type

This section deals with the derivation of short convolution

and DFT algorithms by the method discussed in the preceeding section.

An important result i's derived in section 2.4.2. This result is the

Matrix exchange or Transpose system.

2.4.1 A 4-point Cyclic Convolution Algorithm

As an example of the method of deriving cyclic convolution

algorithms a 4-point convolution algoritru~ is found.

A 4-point cyclic convolution is equivalent to polynomial

4 4 product modulo z -1. The cyclotomic factors of z -1 are z-1 9 Z+ 1 and

2 z +1. The first step in the construction is to reduce the input

polynomials X(z) and E(z) by each of these moduli in turn.

X(z) 3 2 lBI(z) 3 2
= x

3
z +x2z +XlZ+XQ = h

3
z +h 2z +h 1z+h0

x1Cz) = X(z) Mod (z-1) JEI 1Cz) = JBI(z) Mod (z-1)

= XQ+X1+X2+x3 = ho+h 1+h2+h3

= xlO = h10

39

TI2Cz) = IC(z) Mod (Z+ 1) ~ ('\
~2 Z; -· 3:(z) ~;0d ~ z-:- ~)

= x0-X1+X2-x3 = h0-h1+h2-h3

= x20 = h20

x
3

(z) X(z) Mod (z 2 +!) E:
3

(z) E(z) Mod (z 2
+1) = =

= cx,~x3)z + (x0-x2) = (h1-h
3

)z + (h0-h2)

= x31z + x30 = h31z -:- h30

The second stage of the algorithm is to perform the three polynomial

products

(i) li
1

(z) = l'r
1

(z)IBI
1

(z) mod (z-1) = (x10h10) = y 10

(ii) Y
2

(z) = X2
(z)l8!

2
(z) mod (z-1) :::- (x20h20) = Y2o

2 (iii) 1I3(z) = :I3(z)l8!3(z) mod (z + 1) = (X31 Z+X30) (h3l+h30) = Y31Z+Y30

The first two polynomial products are accomplished using one

multiplication each as the reductions modulo (z-1) and (z+1) yield

scalars. An algorithm for the product of the two polynomials x
3

Cz) and

l8!
3

(z) using 3 multiplications is given below. This is a general

algorithm but is expressed using the notation of this example.

ao = x30 + x31 bo = h30

a, = x31 b1 = h30 + h31

a2 = x30 b2 = h31 - h30

~ = akbk k=091,2

y30 = m -0 m1 y31 = mo + m2

The quanti ties ai 9 bi and mi 1=09192 are intermediate values.

penultimate step in the construction of the algorithm ..t - L l-­
.L;::; v Ut'

Chinese Remainder Theorem reconstruction. The recombination

polynomials for this example were derived in section 2.2.3. They were

s, (z)
1 3 2

1) (z-1) = -z:rCz + z + z + (2. 28a)

s
2

(z) 1 3 2 1) (z+ 1) = - 4(z - z + z - (2.28b)

s
3

Cz) 1 2 1) (z2+ 1) = - -(z -
2

(2.28c)

The final algorithm is given by

40

(2o39)

These polynomial products are

1 3
~,

(z4-1) S1(z)'.:71(z) = 7f Ylo (z + z.:::. + z + 1) mod

s2 Cz)Y2 Cz) 1 3 2 1) mod (z4-1) = - lJ Y2o (z - z + z -

s
3

(z)'.:7
3

(z) 1 2
1) (y31z + Y3o)

4
= - 2 (z - mod (z -1)

1 3 2
- Y31z - Y30) = 2 (y 31z + Y3oz

The final step is to collect terms of equal powers of z together,

giving

~(z) = {c<-2Y31 - Y2o + Y1o)z
3

+ C-2Y3o + Y2o + Y1o)z
2

(2y31 - Y2o + Y1o)z + (2y30 + Y2o + Y1o))

3 2
= Y3z + Y2z + Y1z +Yo

This completes the derivation of the 4-point cyclic convolution

algori thmo This derivation can be represented in terms of matrices so

that it has the general form of C 1 o20L The algorithm is split into

two stages 9 pre- and post-multiplication operations a In the matrices

below which represent this 4-point cyclic convolution algorithm the

first row of the A and B matrices corresponds to R
1

Cz)IHI
1
(z), the second

to XzCz)IBI
2

Cz) and the last three rows to the multiplications needed to

find :K
3

(z)E
3

(z L

AE =

M = (Ax x Bh) and ld

and the C matrix is

T
= (m 0 9 m 1 ? m 2 Y m 3? m 4)

41

'

[i
ol f " [Yo 1 2 -2

m
0j y1 1 -1 2 0

JJ
m1

y = y2 = 4 1 -2 2 m3
l\.y3 -1 -2 0 m4

This algorithm gives a cyclic con vol uti on exactly as defined by (1 .3)

1r1i th N=4,

As 4 has 3 factors~ including 1 and itself~ Winograd's theorem

gives the minimum number of multiplication for a 4-point convolution as

5. Thus 9 in this case we have designed an algorithm with the minimum

number of multiplications. In general it is not possible to attain the

minimum number of multiplications due to difficulties in writing

minimal polynomial product algorithms.

2.4.2 The Transpose System

Consider the general canonical form of these minimal

al go rit hms 9

v = c (AE X Bh) (1,20)

When a minimal algorithm is constructed using the Chinese Remainder

Theorem the A and B matrices correspond to the reductions into each of

the moduli Ci (z) and the first part of the polynomial product

algorithms. The C matrix cor res ponds to the latter part of the

polynomial products and to the CRT reconstruction. Whilst the CRT

reconstruction can be regarded as the inverse of the reduction process

1 t is 9 in general 9 more complex. Consequently the entries in the C

matrix are not as simple as those in the A and B matrices. This can be

seen in the matrices for the 4-point convolution. Here the C matrix

contains twos but the ii and B matrices do not.

In many digital filtering applications one of the sequences~ h

is fixed and the matrix product Bh may be precalculated. It would be

most desirable if the C and B matrices could be interchanged. Winograd

[2. 7] introduced the 'Transpose System' to accomplish this. The same

42

idea is described by Nussbaumer as the 'Matrix Exchange Algorithm: 9 see

[2.3L

The form (1.20) can be described by

Y. = n

N-1
I:

P=O
(1. 24)

We have already noted that a necessary and sufficient condition for

(1.24) to represent cyclic convolution is

M-1
T = r c A B = if p = n-q Mod N

k=O
n 9k k 9 q k9p

= 0 otherwise (1. 25)

The Bk matrix is now replaced by a matrix R 1 \vhich has tqe elements
9P ""k9p

C and the C k matrix is replaced by C' with elements Bk N • N-p 9 k 9 n 9 n 9k 9 -n

The summation is now 9

M-1
T' = L

k=O
(2.41)

Comparison between T' and T (1.25) shows that the subscripts of (1.25)

are replaced by

n -.;> (N-p) and p ~ (N-n) (2.42)

substitution of these new variables in the equality

p = n-q mod N

gives (N-n) = (N-p)-q mod N

i.e. p = n-q mod N

Thu."l t.he t.ra...11sposed summation T~ still rcprcs cnts a ,......,......,.,.._,.e.C..~--
'-..;Vl..1 VV..l.. U.'-'...l. VL.l

provided that

T = if p = n- q mod N

and = 0 otherwise.

So we have developed a method of exchanging the elements of

the B and C matrices. The procedure for this exchange may be

summarised as follows 9

43

(i) Exchange and transpose the B and C matrices.

(ii) Leaving the first column of the new B matrix (Le. Ct)

in place the remaining col wnns should be reversed.

(iii) Leaving the first rotor of the nev.r :C matrix (Le. Bt) in

place the remaining rows should be reversed.

In the case of the 4-point convolution algorithm the transpose system

1 1 1
-1 1 -1

1
-1 -1

A = 1 -1 -1 B = 4 2 -2 -2 2
0 1 0 -1 -2 0 2 0
1 0 -, 0 0 -2 0 2

li
1

-1] c -1 0 -1 -1
= 1 -1 -1 1

-1 0 1 1 (2.43)

The transpose system can be extended to two or more dimensions for

cyclic convolutions by the use of suitable indexing. The idea is also

applicable to cyclic correlations. For the cyclic correlation case the

condition (1.25) becomes

T = if n=p+q

= 0 otherwise (2.44)

Table 2.2 gives the number of multiplications needed for various short

convolution algorithms 9 and the minimum number of additions. The

figures are for real data .
Convolution No. of No. of

Length Mul tiplication8 Addl t.ions
2 2 4
3 4 11
4 5 15
5 10 31
6 8 34 Table 2. 2
7 16 70
8 14 46
9 22 98

16 41 141
16 35 155

There are three sources of 'small N9 convolution algorithms in the

44

literature. Winograd [2.7] gives cyclic correlation algorithms for

2 9 3 9 4 9 5 and 6 points. All Winograds algorithms are of the form of

(1o20) and have A and C matrices containing only + 19 -1 and 0. Agarwal

and Cooley [2.2] give algorithms for 29 39 49 59 6 9 7 9 8 and 9 poin'cs. Again
cv--"-

all \of the form of (1.20) but with matrices containing other values
/'

and 9 point convolutions. All his algorithms are of the general form

of (1.20). His 8-point algorithm has the +1 9 -1 and 0 form and his 9-

point algorithm may be altered 9 at the expense of 3 additional

multiplications so that it also has A and C matrices containing only

+1 9 -1 and 0. Nussbaumer states that it is possible to derive a

variety of 16-point algorithms with different numbers of

multiplications. The 16-point cyclic con vol uti on algorithm given in

Appendix I uses L~1 multiplications. So in Table 2.2 above all the

algorithms have A and C with entries restricted to +1 9 -1 and 0 except

for the 7-point and 35 multiplication 16-point algorithms.

2.4.3 The Application of Short Convolution Algorithms to DFTs

Chapter 1 showed how Rader's theorem could be applied to

r express DFTs of p or p points, p prime 9 as convolutions. Consequently

it is possible to apply Winograd's short convolution algorithms to the

calculation of short length DFTs. As an example a 5-point DFT

algorithm is found from the 4-point convoluticm Algllrithm which has

just been derived.

45

The 5-point DFT can be written as

X)
:rr01 0

x1
w1 ~,r2 w3 '\oJ4 J~,

x2 ~v2 v.r4 M 1 \A!3 5
= E2 t<J =

x3 tv 3 w 1 vJ 4 r;J 2
x3

1I
4

w4 w3 w2 w, R4 (2o46)

Then the non-unity multiplications are arranged Y usii1g the mappings

given in (1.28)y to form the convolution

x, w 1 w3 w4 w2 :rr,

x2 w2 w 1 w3 w4
R3

=
w4 w2 w 1 w3

~~:
:g4

w3 w4 w2 w 1 J :rr2 (2o47)

where !Ci = xi - x
0

• It iSy however 9 better to calculate lii-:liO

i=1929394 and having found x
0

add it to each term to find the Jr • So
1.

1fi -: 1,(0 = xi - lio and

:rr1 - !{
0

w
1
-1 w3-1 w

4
-1 W2-1 :E1

X -
2 xo W

2
-l w1_, w3-1 w4

-1 x3
-= 4 2 1 3

x4 - lio w -1 w -1 w -1 w -1 x4

x3 - xo w3-1 w
4-1 w

2
-1 w1-1 x2 (2.48)

Notice this does not disrupt the form of the convol utiono The 4-point

cyclic convolution algorithm may now be applied to (2.48). The 5-point

DFT algorithm may now be calculated with 6 multiplicationso The

5-point DFT A matrix is

1 1 1
0 1 1
0 1 -1 -1 1

A matrix 0 1 -1 -1
0 0 -1 0
0 0 0 -1 (2. 49a)

The top row of this matrix calculates x
0

• The bottom right-hand block

of 5 rows and 4 columns is the 4-point cyclic convolution 9 transpose

46

the input sequence in (2o49L

The B matrix is replaced by a list of 6 precalculated

coefficients 9 they represent the product of the transpose system B

The first coefficient

in this list preserves the value x
0

• These coefficients are 9

M1 ~ cw
1

+w
2
+w\w

4
)

1 + cos (2u))- 1 = = 2 ccos (u)

M2 ..2.cw 1_W2+W4-W3) 1 cos (2u)) = = -(cos(u) -
4 2

M3 = .]_(W 1-W2-w4+W3)
2 = j (sin(u) - sin(2u))

M4 = ..2.c-w \w 4)
2 = -jsin(u)

M5 = ..2.c-w2+w3)
2 = -jsin(2u) u :: 2W5 (2.49b)

Finally the C matrix for this 5-point DFT algorithm is

1 0 0 0 0 0
1 1 -1

C matrix 1 -1 0 -1 -1
1 -1 0 1

1 -1 -1 (2.49c)

In this matrix the top row preserves x
0

and the first column represents

the addition of x
0

to each of the Ri-XO i=1 9 2 9 39 4. The other terms are

the 4-point cyclic convolution transpose system C matrix (2.43) with

it's rows rearranged in the order 19 2 9 4 9 3 9 Le. the order of the output

sequence in (2.48).

This completes the derivation of a 5-point DFT algorithm.

NotP. t-,hat this :::~1 gorithm is cf the general form of (1.20) and thaL i Vs

A and C matrices contain only +1 9 -1 and 0. Furthermore note that the

coefficients are either real or imaginary numbers 9 never general

complex numbers. This is a general pr'operty of DFT algorith.ms derived

in this manner. A proof is given by Winograd in [2. 7]. The essence of

th~ proof is to show that the coefficients are always either of the

k -k k -k) form (W + W) or (W - W •

47

Table 2.3 gives the number of general multiplications for

various 'short N' DFT algorithms. Except for the 9 9 11 and 13-point

DFTS all the algorithms are due to Winograd [2.7]. All of these

algorithms are listed in Appendix L All the algorithms are of the

general form of (1.20) and have L'l and C matrices which contain only +1 9

-1 and 0. The 9-point DFT algorithm 9 taken from Nussbaumer [2.3L has

been modified at the expense of one additional multiplication so that

it's matrices have the required form. Table 2.3 gives the number of

multiplications and additions for the algorithms for real only input

data.

Transform No. of No. of
Length Multiplications Additions

2 2 2
3 3 6
4 4 8
5 6 17
7 9 36 Table 2.3
8 8 26
9 11 45

11 21 84
13 21 106
16 18 74

2.5 Summary

This chapter has been devoted to the derivation of short

convolution and DFT algorithms. Firstly a cyclic convolution was shown

N to be equivalent to the product of two polyr.omials modulo z -1. As

N z -1 can be factored by Cyclotomic polynomials 9 Ck(z) 9 over the

rationals 9 the Chinese remainder theorem for polynomials can be used to

N reconstruct the product modulo z -1 from a series of products modulo

Ck(z). Winograd has shown that convolutions constructed in this manner

use the minimum number of multiplications possible. The minimum number

of 'general' multiplications for a N-point cyclic convolution is 2N-d 9

where dis the number of factors of N including 1 and itself.

48

These cyclic convolution algorithms are then applied to the

. DFT using Rader's theorem which was developed in chapter~ 1 0

A key point to note is that all these algorithms? both for

convolutions and DFTsv have the general form of

:Z = C (AE X Blb) o (1o 20)

Furthermore these algorithms can be derived so that their A and C

matrices only contain +1 9 -1 and Oo

49

~olyno~al Transforms

The techniques discussed in chapters One and Two dealt mainly

with one-dimensional convolution and DFT algorithms 9 particularly those

algorithms based upon the work of Winograd and Rader" This chapter is

devoted to the derivation of two-dimensional convolution algorithms,

These two-dimensional convolution algorithms fall into two categories,

The first and more important group are those algorithms derived by

Nussbaumer [3,1] using 'Polynomial Transforms', Nussbaumer's

derivation may be viewed as an extension of Winograd's method for

deriving one-dimensional convolution algorithms, Nussbaumer's

algorithms have the general form of equation (1,20). The second set of

two-dimensional convolution algorithms 9 whilst still based upon

polynomial transforms 9 do not have the general form of (1,20),

This chapter starts by showing that two-dimensional

convolutions may be represented in terms of polynomials,

3,1 Two-Dimensional Convolutions Expressed using polynomials

points)

The non-cyclic convolution y
n1 9n2

and the array ~ k CL 1xL 2 points)
1 9 2

is defined by

(1. 2)

where n 1 = 0 919,,, 9N1+L 1-2 and n2 = 0 919,,. 9N2+L 2-2 with ~n,-k 19 n2-k2=0
if k 1 >n 1 or k2>n

2
. Then in a similar manner to the previous chapter 9

the two arrays E and h are assigned to be the coefficients of the two-

dimensional polynomials X(u 9v) and E(u 7 v),

50

N -1 N -1 11 12

t t TI: u v
1 1=0 12=0 1.1912

L -1 L -1 k1 k2 t ~]hi<, k u v (3. 1)

k 1=o k2=0 9 2

So Bl(u 9 v) and X(u 9 v;, are polynomials of degree (N
1
-1) 8.nd CL

1
-1) in u

and of degree CN
2
-n and (L

2
-1) in v. If the polynomials JI(u 9 v) and

Pl(u 9 v) are multiplied together the resu1 ting polynomial will have the

foY'lll

(3 0 2)

Each coefficient y of (u 9 v) is found by summing all the products
n,9n2

of ~ k and ~
1

such that n
1

=1
1
+k

1
and n

2
=1

2
+k

2
• Substituting

1 9 2 1 9 2
1 1=n 1-k 1 and 1

2
=n

2
-k

2
gives (1.2). Thus a two dimensional convolution

may be written as a polynomial product.

As the degree of Y(u 9 v) is of (N
1
+l.

1
-2) in u and CN

2
-tl

2
-2) in

V 9 (3.2) may be replaced by

(3 .3)

Provided that degree [f(u)]=d
1

>N
1
+L

1
-2 and degree [g(u)]=d

2
>N

2
+1-

2
-2.

For cyclic convolutions of two NxM point sequences it is necessary that

N M
f(u):. I.A. -1 and g(v)= u -1.

3.1.1 Convolutions of Polynomials

Equation (3.2) shows that a two-dimensional convolution is

equivalent to a two dimensional polynomial product. Nussbaumer and

Quandalle [3.2] show that a two-dimensional convolution is equivalent

to a one-dimensional convolution of polynomials. Consider a two-

dimensional cyclic convolution of NxN points 9

Yu 1 =
9

N-1 N-1

Z t
m=O n=O

h X n 9 m u-n 9 l-m
(3 .4)

The subscripts in (3.4) are evaluated modulo N. Then expressing this

5 1

as as polynomial product 9

N-1 N
JYl (z) = [H (z) IS_ (z) mod (z -1)

m:O m -m

where

N-1
lBI (z) 1: h

n
Q919ooopN-1 = z m = m

n=O
n 9m

N-1
X (z) [s

Op1pooo?N-1 = X z r = r
S=O

s 9r
(3.6)

and y
1

is obtained from the N polynomials by taking the coefficients
Up

of z u in Y
1

(z).

N-1

L:
U=O

u
y lz

Up
r = 0 P 1 9 ••• P N-1

For convenience this example is a two-dimensional cyclic convolution 9

the method could be extended to non-cyclic convolutions by changing the

modulus in which (3,.5) is evaluated.

3.2 Two-Dimensional Convolution Algorithms using the CRT

Since the two-dimensional cyclic convolution (3.4) is

expressed by 1'
1

(z) modulo (zN-1) in (3.5)p JY
1

(z) may be computed by

reducing H (z) and X (z) modulo each of the cyclotomic factors of m r

(zN-1) 9 computing the polynomial convolutions in each of the moduli and

finally reconstructing Y1(z) using the Chinese Remainder Theorem. This

is analogous to ~·Jinograd' s metl:1od of the pr·evious chaptero

The difficulty with this method is the calculation of the

polynomial convolutions modulo cyclotomic polynomials. The calculation

of two-dimensional convolutions by this method is first considered for

N=P 9 p an odd prime.

52

. 3.2.1 A pxp Cyclic Convolution 9 pan odd prime

where

When p is an odd prime zp-1 has two cyclotomic factors,

(zp-1) = (z-1)C (z)
p

p-1 p-2 C(z)=z +Z + ••• +Z+1
p

(3.8)

Then the polynomial convolutions 9 which correspond to the reductions

modulo (z-1) and Cp(z) are JI
191

(z) = Y
1

(z) Mod ~p(z) andl7
291

(z) =
)

Y1 (z) mod (z-1) respectively. The final reconstruction using the

Chinese Remainder Theorem is

(2.25)

The auxillary polynomials S 1(z) and s
2

(z) are found from (2.26), they

are

= [p-Cp.(z)]/p

= C (z)/p
p

(3o9)

(3. 10)

1L
2

,
1

(z) is found relatively easily because it is defined modulo (z-1).

So it's calculation reduces to that of a single one-dimensional scalar

convolution with

p-1

L: <3. 1 n
m=O

where
p-1

1:
:0=0

and
p-1 r
S=O

(3.12)

The p-point one-dimensional cyclic convolution of (3. 11) may be

calculated by the techniques of the previous chapter.

To complete the calculation of Y~ (z) we still need tn find
.L

JZ
1 1

(z) 9 i.e. a polynomial convolution modulo C (z). The technique
? p

used to calculate Y l,l (z) involves the use of Polynomial transforms.

These are discussed in the next section.

53

3.2.2 Generalised Polynomial Transforms

Consider a one-dimensional cyclic convolution of order N9 in a

residue class polynomial ring R/f(z) 9 where R is a ring or field. The

polynomial algebra is performed mod f(z) 9 Le. mod C (z) in the above
p

case 9 1r1hilst the coefficients of the polynomials are taken to lie in R

- the real numbers for most cases. Suppose .ldi (z) and IDi (z) are one­

dimensional sequences of length N whose elements are polynomials in

R/f(z) 9 then their cyclic convolution D
1

(z) is given by

(3.13)

The notation <.> denotes modulo N. f(z) is assumed to be a monic

polynomial. Then as proposed by Nussbaumer [3.1] 9 Nussbaumer and

Quandalle [3.2 9 3.3] and by Arambepola and Rayner [3.8] this convolution

may be calculated by DFT-like discrete transforms. Provided that p(z)

is an Nth primitive root of unity in the polynomial ring 9 then these

transforms are defined by

~(z) = mod f(z) (3. 14a)

N-1
L: mod f(z) (3. 14b)
j=O

Then multiplying te~ by term

(3, 15)

The sequence D1 (z) is recovered from IDk(z) using the inverse transform

given by

Provided that

-1 = N

54

mod f(z) (3.16)

N-1 (i . l)k = N if i+j=l mod N
(i) S = ;[(p (z)) + J- mod f (z)

k=O = 0 if i+jil mod N (3.17a)

(ii) N has an inverse in a. (3 0 17b)

The condition (3.17a) may be refined by noting that

N-1 tN
tk p(z) - 1

I: p(z) = t k=O p(z) - 1
(3. 18)

Hence (3.17a) will be true provided that

t (p(z) - 1 i 0) for all t t 0 mod N (3.19)

Having defined the general case the next section returns to the problem

of calculating l7
191

(z), a cyclic polynomial convolution of length p 9

modulo C (z) 9 p an odd prime.
p

3.2.3 A Polynomial Transform, length p9 root z 9 modulo C (z)
---p-'--

Using the results of the previous section we now calculate

Y1 1 (z) using polynomial transforms. The simplest root for the foward
9

polynomial transform length p mod C (z) is z. This may be seen by
p

noting

a)
N

z =

b)
p-1
E

k=O

mod C (z) and zt i 1 mod C (z) for ti 0 mod p
p p

tk
z = p mod C (z) for t = 0 mod p.

p

c) For t !._ 0 mod p, the set of exponents tk, defined mod p 9 is a

permutation of the integers 0,1 9 ••• 9p-1. Thus

s =
tk

z =
t

= C (z) = 0 mod C (z)
p p

t i 0 mod p

d)
-1 p exists as the field of coefficients is the real numbers.

Thus all the conditions of the previous section are met and z

is a suitable root for a polynomial transform of length p mod C (z).
p

Using this method Y
191

(z) is computed with three polynomial

transforms and p polynomial multiplications H
19

k(z)Y
19

k(z) defined

55

~

Ordering of
Polynomials

p Polynomia:::.s of p terms

J, l
p Reductions l p Reductions

modulo I modulo (z-1)

C (z) = (zp-1)/(z-1)
p

" Polynomial
Transform

Modulo C (z)
12 Root z, s1ze p

"' p Polynomial
Multiplications

Modulo C (z) p

'1.

Inverse
Polynomial
Transform

Modulo C (z) p

p

1 polynomial of p t

L 1
Reduction Reduction

Modulo C (z) Modulo (z-1)
p

1 Polynomial ' Multiplication 1 Multiplication

Modulo C (z) p

~ J;

1 Chinese Remainder
Reconstruction

J, ~
Chinese Remainder
Reconstructions

y
u 9 1

"" Figure 3o1

& pxp point Cyclic Co~~lution
Computed Using Polynomial Transforms

erms

modulo C (z).
p

In many digital filtering applications one of the input

sequences 9 is fixed and its polynomial transform H
19

k(z) can be

precomputed. In this case only two polynomial transforms are required.

Figure 3.1 illustrates the computation of a two-dimensional

cyclic convolution of size pxp 9 p an odd prime 9 by the use of

polynomial transforms.

Using the polynomial product algorithms given by Nussbaumer

[3.6] 3x3 and 5x5 cyclic convolution algorithms were derived. These

algorithms have the general form of (1 .20). Having applied the

transpose system derived in chapter 2 to these 3x3 and 5x5 algorithms

their A and C matrices contained only +1, -1 and 0. The use of the

transpose system obviates the use of a technique suggested by

Nussbaumer [3.6] to simplify the Chinese Remainder Theorem

reconstruction.

Provided that the root of a polynomial transform is simple it

may be calculated without multiplications. In particular when the root

is z, or a power of z, the polynomial transform may be calculated using

additions, subtractions and word-shifts between the words of the poly-

nomial corresponding to different powers of z.

3.3 Other Applications of Polynomial Transforms

So far only one class of two-dimensional convolution

algorithms has been discussed 9 pxp points, p an odd prime. However the

derivation of polynomial transforms in section 3.2.2 was of a far more

general nature. This section considers the application of polynomial

transforms to other convolution sizes.

56

3.3.1 Polynomial Transforms with Roots in a field of Polynomials

As we have seen a tHo~dimensional cyclic convolution of NxN

points can be represented as a polynomial convolution Hhere all the

polynomials are defined modulo (zN-1). For the pxp point case zN-1 has

only two cyclotomic factors. N In general z -1 has d factors 9 Bhere d is

the number of factors of N9 including and itself. When N is not

prime how should the calculation proceed?

Both Nussbaumer [3o6] and Arambepola and Rayner[3o8] show that

a polynomial transform of length N and root z always exists modulo

CN(z) 9 the largest cylotomic factor of zN-1.

Thus the convolution y
1

of dimension NxN might be computed
u9

by ordering the input array as N polynomial::! of N terms t...rhich are

d-1
reduced modulo CN(z) and modulo C(z) = ~=~ Ci (z). CN(z) is the largest

N cyclotomic factor of z -1. The result y
1

is found using a Chinese
u,

Remainder Theorem reconstruction from the polynomial convolutions

Y
191

(z) mod CN(z) and Y
291

(z) mod C(z). The polynomial convolution

Y 1 1
(z) mod CN(z) is found using polynomial transforms of length N9

9

root z and N polynomial products modulo CN (z) 9 which 9 as noted above 9

always exist. There are two possible ways of calculating Y
2 1

(z).
9

The first method is to reduce Y
291

(z) modulo the various

cyclotomic factors of C(z) 9 d-1 of them, and define the corresponding

polynomial transforms, when they exist 9 to calculate each of these

further polynomial convolutions. Unfortunately polynomial transforms

of length N and root z will not exist in these other moduli. Some

transforms with simple roots exist 9 this approach is discussed further

in section 3.3.3.

The second possibility for the calculation of Y
291

(z) is to

consider 1f
2 1

(z) as a two-dimensional polynomial product modulo
9

57

N C(z),z -1. This approach is illustrated for the case of a convolution

of p2 xp 2 points, p an odd prime.

3.3.2 A Cyclic Convolution of p 2 xp 2 points 9 p an odd prime
2

The cyclotomic factorization of zp -1 is given by

p2
z -1 = cP2(z).CP(z).c1Cz) C3o20)

where Cp 2 (z) = zp(p- 1) + zp(p- 2) + oo• + zp + 1 (3o21)

and CP(z).C
1

(z) = zp-1 (3o22)

Equations (3.21) and (3.22) may be deduced from equations (2.35) and

(2.36) in the list of properties of cyclotomic polynomials.

Then proceeding as outlined in the previous section 9 W
191

(z)

is computed by polynomial transforms of length p 2 and root z defined

modulo Cp 2 (z) 9 while Y
291

(z) is a convolution of size p 2 xpo This

second convolution can be viewed as a polynomial convolution of length

p on polynomials of p 2 terms. It 9 in turn 9 may be evaluated as a

polynomial convolution of length p defined modulo C 2 (z) and a convol­
p

ution of pxp points. The length p convolution defined modulo C 2 (z)
p

can be calculated by polynomial transforms of length p with root zP o

The pxp point convolution evaluation using polynomial transforms has

been discussed above. This whole procedure is illustrated in figure

3.2.

A 9x9 cyclic convolution algorithm was derived using this

method. A FORTRAN listing of this derivation is given in Appendix II.

This algorithm, which uses 229 multiplications 9 yields A and C matrices

which contain only + 19 -1 and 0 after the application of the transpos'e

system.

The p 2 xp 2 example is the simplest case of a more general

algorithm for pcxpc points 9 p an odd prime. The pcxpc case was

originally mentioned by Nussbaumer and Quandalle [3.2] but explained in

58

\~
Reduction Modulo

Ordering of
Polynomials·

I K (z)
r v . ~~

l Reduction
IC 2 (z) = (zp

2

-1)/(zp-1) Modulo zP-1 I p

l x
1

(z) 1:2 (z) 9r ' 9r
r I p2 polys of p ter

Polynomial '
Transform Reordering j

Modulo C 2 (z)
size p2

9 ~oot z p polys of p 2 ter

t w "' p2 polynomial Reduction Reduction
Multiplications Modulo C 2 (z) Modulo zp-1 I p

Modulo C 2(z) J, p
Polynomial

Inverse polynomial Transform ~~

Transform Modulo 1C 2(z) Modulo C 2 (z) Convolution
size p2 p

size p 9 ~oot zP of size pxp

"" p polynomial
multiplications

Modulo C 2 (z) p
w

Inverse
Polynomial
Transform

Modulo IC 2 (z)
p -p

size p 9 root z

·!· J .];.
Reordering and Chinese

Remainder Reconstruction

I

Figure 3o2

iCOJilll]pJ1ll!tat:ll.Oilll of' CoorwolUit:ll.Oilll of' p 2 :l!J!I>!l]l!Oillllts

ms

ms

more deta·Ll. by i\1us.'3baumcr ln [3. 6].

c c
P xp

The case of convolutions of size

case. The cyclotomic factorization

«:; t(z) =
2

t-1
2 z + 1

very similar to the

is si~pler bacause

2t
This gives z -1 9 t-1 cyclotomic factors of the general form of (3.23).

3.3.3 Polynomial Transforms with Composite Roots

The derivation of polynomial transforms in section 3.2.2

relied on the existance of a pr~mitive Nth root p(z) defined in the

ring .of polynomials. Nussbaumer and Quandalle [3.2] suggested a way of

extending the size of pol)~omial transforms by taking advantage of the

field of coefficients. If a N
1
-point polynomial transform supports

cyclic convolution mod f(z) with root p(z) 9 it is possible to use roots

of unity of order N
2

in the field of coefficients for the definition of

transforms of length N
1
N

2
which also have the cyclic convolution

property.

Suppose the field of coefficients is the complex numbers 9 so

DFTs of length N29 root W= exp(-2Wj/N
2

) are defined which support

cyclic convolution.

root Wp(z) defined modulo f(z) supports a cyclic convolution of length

This is verified by considering the conditions given in

section 3.2.2.
N2 N;

Firstly 9 since W = 1 and p(z) : 1 mod f(z) 9

N N N N
[Wp(z)]N = (W 2) 1[p(z) 1J 2 = 1 mod f(z) (3.24)

Condition (3.17b) that N has an inverse 9 is met because N
1

and N2 both

have inverses. We now consider condition (3.17a) 9

N-1
S = ~ [Wp(z)]tk mod f(z) (3.25)

k=O

59

As the exponents tk are defined modulo I\'1 9 S:::N for t:O modulo N. For
- -

tiO mod N 9 S may be mapped into a two-dimensional summation becau~e N
1

and N2 are mutually prime.

giving

k _:_ N 1k2 + N2k1

k 1 : 0919ooo9N
1
-1

Mod N

mod f (z)

The existence of the two transforms of length N
1

and N
2

with roots p(z)

and W implies that S_:_O for k 1~o mod N1 and k2~ 0 mod N
2
• Therefore S=O

for ki'O mod N. Thus (3. 17a) is satisfied. So polynomial transforms

with composite roots may be defined.

The condition that (N 19N2):1 means that this method is of most

value when N1 is odd and N2=2 or 4. In these cases 'W=-1 or j 9 j:{::-:t.

So if the N
1
-point polynomial transform has a simple root then the 2N 1 ~

point and 4N
1
-point polynomial transforms will also have simple roots.

A 6x6 cyclic convolution algorithm was derived using a

composite polynom~al transform of length 69 root -z 9 mod c
3

(z):z 2 +Z+ 1.

Utilising the transpose system the algorithm was,of the general form of

(1.20) with the A and C matrices containing only +1 9 -1 and 0.

Table 3.1 9 taken from Nussbaumer [3.6] lists all the

polynomial transforms that can be calculated without multiplications

together with their associated rings=

60

1 Transform ring Transform
[

Size of convolution
Length Root

(zp -1) I { z-1) p z pxp

(zp ~ 1) I (z-1} 2p -z 2pxp

2p 2 (z -1)1(z -1} 2p -z P-+ 1 2px2p
2 2 (zP -1} I (zp -1) p zP pxp -
2 2 2 2 (zp -1} I { zP -1} p z p xp

2
2p2

2 2 2 (z2p -1)/(z2p_1) p +1 -z 2p x2p
p1p2 p2 p2

(z -1)/{z -1) p1 z p1xp1p2
2t-1

+1 2t 2tx2t z z

Table 3.1 p 9 p1 and p2 odd primes.

Multiplication free polynomial transforms

3.4 Operation Counts

Table 3.2 9 extracted from Nussbaumer's work [3.2 9 3.6] 9 gives

the number of multiplicetion~ and additions for a variety of

convolution sizes. The number of additions is the minimum required to

evaluate the algorithm. It is not equivalent to the number used when

performing the matrix operations for the canonical form (1.20).

Convolution Number of Number of Mults. Adds.
Size multiplications Additions per point per point

3x3 13 70 1.44 7.78
4x4 22 122 1.38 7.62
5x5 55 369 2.20 14.76
6x6 52 424 1.44 11 0 78
7x7 121 1163 2.47 23o73
8x8 130 750 2o03 11o72
OvC'l 1f'l"' 1382 2o38 ·- _,.
..I~J i:J.J I (o UO

10x10 220 1876 2o20 18o76
14x14 484 5436 2.47 27o73
16x16 634 4774 2.48 18o65
18x18 772 6576 2.38 20o30
30x30 2860 31088 3 018 34.54
32x32 3658 24854 3.57 24.27
64x64 17770 142902 4.34 34.89

128x128 78250 720502 4o78 43.98

Table 3o2
Operation count for two dimensional convolutions evaluated using

polynomial transforms

61

3o5 Other Approaches

As mentioned at the beginning of the chapter the approach

adopted by Nussbaumer and Quandalle is not the only possible technique

for applying applying polynonial transforms to the calculation of

cyclic convolutionso Here three other schemes are consideredo

3o5o1 Fast Biased Polynomial Transforms

Pei and Wu [3o 12] proposed a method of performing two-

dimensional cyclic convolutions using biased polynomial transforms in

the ring zN-1 itselfo This technique eliminates the reductions into

the various moduli and the Chinese Remainder Theorem recombinationso

'Phe derivation of these biased polynomial transforms is the

same as that for the general polynomial transform given in section

N 3a2o2p LeP equations (3o13-3a16) inclusive with f(z):z -1 and root

p(z)::Zo

The biased polynomial transforms of the two polynomial

~(z) =
N-1
L:

i::O

ik N &
1

(z)z mod (z -1)

k::Op1pooopN-1 (3o28)

Multiplying term by term and performing the inverse biased polynomial

transform yields the sequence Ci(z)

Ci (z)

giving

N-1

r:
i::O

N-1
[, £1 (z)B j (z)

j::O

N-1
1[
N k::O

(30 30)

62

There are now several poss~ble cases dspencir.g ~pon No Just one case 9

N an odd prime 9 is considered.

tk z = N

For t = (i+j~l) i 0 mod N 9 the set of exponents tk mod N is a

permutation of the integers 0 9 1 9 ooo 9 N-1 and

N-1
E
k:O

Then

tk
z =

N-1
I: -f: 1 N-1

z = + z+ • o o + z
N mod (z -1) (3.32)

k=O

N-1 N-1 N- 1 L, [lEn (z) A (z)(1 + Z+ ••• + z ,)
m:O n=O m

n+m-1=0 mod N

convolution term biased term (3.33)

The righthand term of (3.33) forms a constant bias to each term of the

final results. For N an odd prime the biases for each row of the

result are always equal to a constant 9 the value depending upon the

input data. These biases must be subtracted from (3.33) to obtain the

correct convolution. Pei and Wu suggest that the biases may be

calculated by extending the input sequences with zeroes so that

otherwise zero terms in the convolution will be biased and easily

identified.

3.5.2 Polynomial Transforms in Modified Rings

, A polynomial transform of length N and root z 2 can alwayS be

N N · defined modulo (z +1) but the modulus (z +1) does not support cyclic

convolution. However Arambepola and Rayner [3.7 9 3.8] developed a

mapping to change a convolution modulo (zN -a) into one modulo (zN -b).

A special case of this mapping is the mapping of cyclic convolutions

modulo (zN-1) into iskew-circular' convolutions modulo (zN+1). ·The

63

skew circular convolution can then he evaluated using polynomial

transforms of.length Nand root z 2 modulo (zN+1) and N polynomial

N products modulo (z +1). This way of performing two-dimensional cyclic

convolutions may be described as fol:ows

Then

with

and

lBl (z)
m

R (z) r

~ (z)

l.ll{z)

N-1 N-1
= I: L:

m:O n=O

N-1

= E
n=O

N-1

= L:
S:O

N-1
= 'L

m=O

N-1
= l:

U:O

llil Wnzn
n 9m

:rr Wszs
s 9 r

u a 1 z
u9

-u
Yu91 = au91 W

N mod (z + 1)

(3.14)

(3.34)

(3 0 35)

(3.36)

(3.37)

This calculation is illustrated in figure 3.3. When compared with some

of the previous methods this algorithm trades computational efficiency

for structural simplicity. Furthermore the multiplications in {3.34) 9

n (3.35) and (3.38) by W involve complex arithmetic.

Whilst offering some advantages this algorithm is not the most

computationally efficient method of calculating two-dimensional

convolutions and does not have the general form of (1. 20) 0

64

Ordering of
Polynomials

'
;z: (z)

r

Polynomial
Transform

Modulo zN+1

N Polynomial
Multiplications

Modulo ZN+1

Inverse Polynomial
Transform Modulo

ZN+l

size n 9 root z 2

,,
X "'f-----w-u

I

J
X 4----wn

J
Ordering of
Polynomials

lEI (z)
m

Polynomial
Transform

Modulo ZN+1
size n 9• root z 2

Convolution of NxN points
Calculated by polynomial transforms

in modified rings

3.5.3 Other Two-DimensionalCycl:i.c Convolution Algoritr..ms

Truong 9 Reed 9 Lipes and Wu [3.9] 9 Reed 9 Shea and Truong [3. 10]

suggest a procedure for calculating a cyclic convolution of d
1
xd

2

points with m · rc-r+ 1
d2:2 and d~=2 for 1<r<m. The essence of their

d2
technique is to factorize z =1 9 the longer dimension 9 into r+1 factors

so that

The pgint
d /2r

of this factorization is that each of the factors 9

(z 2
-1) supports length d

1
-point polynomial transforms with

(3.39)

except

root

2r-i
z for the ith factor. So the first r factors maybe evaluated using

polynomial transforms and N polynomial products each. The polynomial
d r

convolution corresponding to the last factor (z 212 -1) is more

difficult

mapping

to calculate. It may be evaluated by using Arambeopla's
d2/2r

to convert it into a convolution modulo (z +1) for which a

suitable polynomial transform exists.

In the original paper by Truong et al. [3.9] the way of

calculating the polynomial products using the FFT is inefficient.

Although an improvement is suggested by Martens [3.11] 9 cyclic

convolutions calculated by this method are very inefficient when

compared to Nussbaumer and Quandalle 9 s method for the convolution of

2tx2t points discussed at the end of section 3.3.2.

3o6 Suwma~y of Chapter 3

This chapter has dealt with two-dimensional convolutions

calculated using polynomial transforms. The method involves treating

the two-dimensional convolutions as one-dimensional convolutions of

polynomials. These polynomials are then reduced in each of the

cyclotomic factors of N z -10 Polynomial transforms can be used to

calculate these polynomial convolutions in certain of these moduli.

65

The Chinese Remainder Theorem is used to reconstruct the result from

each. of the polynomial convolutions in the compontent modulio It is

possible to derive .some of these algorithms in the general form of

(1o20) with their A and C matrices containing only +1 9 -1 and Oo In

particular algorithms for 2x2 9 3x3 9 4x4 9 5x5 9 6x6 and 9x9 point cyclic

convolutions exist and have this formo

66

The preceedling chapters considered algorithms for specific

transform and convolution lengthso This chapter deals with

multi~dimensional mapping techniques which allow longer transforms and

convolutions to be built up from a set of smaller oneso From these

mappings the fully nested form of the Winograd Fourier Transform

Algorithm (WFTA) is built up 9 together with the equivalent nested

convolution algori thmso

Throughout the chapter the number of operations required to

compute the various algorithms is given 9 allowing a preliminary

comparison to be made between algorithmso

4o1 The DFT

Consider the calculation of a one-dimensional DFT

N-1
!: (1o10)
n:O

where WN is the Nth root of unity and the index nk is evaluated modulo

No A direct implementation of (1.10) for complex data would require

Real multiplications

2N (N-1) + 2Na Real additions

assuming 4 real multiplications and 2 r~al additions per complex

mul tiplicationo It is possible to perform a complex multiplication in

3 real multiplications and 5 real additions [4.1]; however this is not

usually donee This is because the 3 multiplication algorithm is less

well suited to parallel hardware implementationso

67

4o2 The Fast Fourier Transform (FFT)

If N is composite 9 then it is possible to map a one-

dimensional sequence into a multi-dimensional oneo These are many such

mappings but only a few have suitable propertieso Perhaps the simplest

set of mappings applicable to the DFT occurs when N=N 1N
2

and the

indices 1t1 and k in (1o 10) are redefined as

m = n
1

+ N
1
n

2

k = N
2
k 1 + k2

n 19k1 = 0 91 9 ooo 9N1-1

n29 k2 = 0 9 19ooo 9N2-1

(4o2}

(4o3)

There are no restrictions on the values of N
1

and N
2

o Substituting

(4o2) and (4o3) into (1o10) gives

Further note that

be written as

N -1

~1,k2 = n~O
The computation of (4o6)

and

n,k, [n1k2 e2-1
WN WN !;

1 n
2
:0

n k
2 = W 2 then (4o4)

N2

A wn2k2]
:rrn1 9n2 N 2]

is carried out in three stages 9

(4o4)

may

(4o6)

·i) Calculate N19 N2-point DFTs along the second index of

" X o n. on_
I . C.

ii) Multiply the result of step (i) by

iii) Calculate N29 N1-point DFTs along the first index of

The multiplications in step (ii) are known as 9 twiddle factors 9 o

68

The method can be extendE,d to more than two factors of N. If

there are L factors of N then there will be L-1 sets of twiddle

" factors. The numbe~ of operations .for this two factor example is given

by

4N(N 1+N2+ 1) Real multiplications

2N(2N1+2N2-1) Real additions (4.7)

This is clearly an advance over (4. 1). The computational advantage is

increased with a greater number of factors.

When N 1 :N2=2 the mappings (4.2) and (4.3) become the basis for

the decimation-in-time radix-2 FFT. The Fast Fourier Transform (FFT)

was first proposed by Cooley and Tukey in 1965 [4.2]. When N1=N2=2 or

4 the DFTs in stages (i) and (iii) above may be calculated without

multiplications using only additions and subtractions. The operation

count for complex data for the radix-2 FFT is

Real multiplications

Real additions

Equation (4.8) includes one extra set of twiddle factors (all ones) to

increase the regularity of the algorithm. Equation (4.8) also includes

some other multiplications by unity. There are many variants of the

FFT 9 see 9 for example 9 Brigham [4.3].

4.3 Prime Factor Mappings

The mappings (4.2) and (4.3) for n and k placed no

restrictions on the values of N 1 and N2• By constraining N 1 and N2 to

be relatively prime many other mappings are possible. Some of these

possibilities are now discussed. Burrus [4.4] considers the general

case of mapping a one-dimensional sequence of length N:N 1N
2

into a two-

dimensional array that is N1 byN2 in size.

the conditions for the mapping

69

He considers in detail

n
1

= Op1 9 ••• 9 N
1
-1

n
2

= 0 9 1 9 ••• 9N2-1

which is cyclic in N 9 to be cyclic in N
1

and N
2

as well as being one­

to~one (unique). The conditions foZ" this to be true i;vhen CN 19N2)=1 are

that

. These conditions are now applied to a N=N
1
N

2
point DFT. Suppose the

indices n and k are mapped as

n = otN
2

n 1 + ~N 1n2 mod N

k =1<N2k 1 + $N
1
k

2
mod N

Then substituting these mappings into (1.10) and defining

and

gives

(4.11)

(4. 12)

(IL13)

dimensional DFT (1. 10) into a two-dimensional function. Note that the

inner summation 9 in brackets 9 only involves n
1

as an index. Some

possible choices of 0(9 ~ 9"15 and J are now considered.

4.3.1 Good's Algorithm

Good [4.5] considered using

O{=f3=1 c- -1
d= N1 mod N

2
and mod N1

(4. 15)

Then the mapping (4. 12) becomes the Chinese Remainder Theorem.

Substituting (4.15) into (4.14) gives

n k] n k
3! w22 w11
n 9 n N N

1 2 2 1
(4.16)

Equation (4.16) represents a true two-dimensional DFT which eliminates

all the twiddle factors associated with (4.6). Explicitly the mappings

70

are

(4o 17)

(llo18)

Good calls the n mappir.g the Rurita~ian mapping and the k mapping the

Sino correspondanceo Equation (4o16) could also have been derived by

choosing 15 = ~ = 1 and using the CRT form on Df and r$ o This Hould have
~

;reversed the forms of (4o 17) and (4o 18L The mappings as given by

(4o17) and (4o18) are the same as those used Kolba and Parks

[4o6 9 4o7]o Direct computation of (4o16) requires

4(N 2 + N 2
)

1 2
Real multiplications

2[N1(2N 1-1) + N2(2N
2
-1)J Real additions (4o 19)

Kol ba and Parks [4o6] consider the use of Winograd9 s 1 short NQ

algorithms for the N 1 and N2-point transformso Their paper contains

some 1short N1 algorithms derived in a manner analogous to Winograd 9 so

If Mi and Ai are the number of multiplications and additions for a N
1

-

point short-N WFTA for real data 9 then the number of operations for an

algorithm with L factors for complex data is

L N 2 L: N Mi
i:1 i

Real Multiplications

L N 2 L, N Ai
i:1 i

Real Additions (4o20)

L
where N = TT Ni

1:1

For the worst small N algorithm M
1

e:: 1o3Ni (7-pto WFTA)o Then at most a

two factor algorithm would require 5o2N multiplicationso

Figure 4o 1 illustrates a 15~point DFT calculated by this

methodo The use of the mappings (4o17) and (4o18) coupled with the use

of Winograd 9 s small N DFT algorithms is often refered to as the ~Prime

Factor Algorithm 1 (PFA)o

lf1
~

~
~

~
~

U1
I

u
tJ
dl
=r

=o w ~lll

J9:> ~

uu
'U
:=¥

~ +
~li]

9
~ X
~

=·~

Perhaps the most inconvenient feature of the PFA is the

implementation of the data reorderings associated with (1-lo 18). Two

schemes are now introduced to ease this problem.

4.3.2 An Unscrambling Constant

Burrus and Eschenbacher [4.8] give a simple way of calculating

the reordering corresponding to the Chinese Remainder Theorem mapping.

The scheme is illustrated here for a two factor example. Using Good9 s

mapping

n =

k = <Kl1 + K4k2>N

where K3 =
-1 and K4

. -1
<N2<N2>N >N = <N,<N1>N >N

1 2
At the end of the calculation the location of the

is given by

n =

corresponding to the frequency index

k = <K3k1 + K4k2>N

But k1 =k mod Ni 9 so (4.21) becomes

n = <N2<k>N + N1<k>N >N
1 2

or

n = <(N
1

+ N2)k>N

for L factors

(4.17)

(4.18)

calculated DFT values

(4.21)

(4.22)

(4.23)

(4.24)

This gives a simple method of calculating the unscrambling of the

result. This result could ease address generation problems 9 both in

software and hardware implementations of the DFT.

72

4.3.3 An In-Place 9 In-Order PFA A:::.gorHrun

Burrus and Eschenbacher [4.8] also consider an in~order 9 in~

place algorithm in 'V'Thich then and k mappings are the same. This is

done by choosing the Ruritanian correspondance for both naps 9 i.e. 9

n = <N2n1 + N1n2>N (4.17)

k = <N2k1 + N1k2>N (4.25)

This is equivalent to setting «=~=o=&=1 into (4. 11) and (4.12) giving

N -1 N -1 N1n2k2 N2n1k1

~,pk2 = t t :ll: w WN (4.26)
n,=o n2:o n 19 n

2
N

2 1

The exponents in (4.26) are evaluated mod N2 and N1 respectively.

Burrus and Eschenbacher point out that since N1 and N2 are relatively

prime the operations <N 1n2>N or <N 1k2>N and <N2n 1>N or <N2k1>N are
. 2 2 1 1
merely permutations. So the modified DFTs required (4.26) may be

obtained by reordering the inputs or outputs to each of the small N DFT

modules. Burrus and Eschenbacher explicitly reorder the small N DFTs

so that modules in their FORTRAN program depend upon the transform

length. Rothweiler [4.9] uses the same principle but utilises a

pointer to reorder the output of standard WFTA modules. Arambepola

[4. 10] derives a similar method to Rothweiler's for the reordering of

the outputs from 'short-N' bit serial WFTA res.

73

Consider a 10-point DFT t-rri tten as matrix vector product

)(0 l
' I

XI

x~!
xl

3

x4

x5

x6

x7

][8

xg

=
. 1

1 1 1 1 1 1 1 1 1 l
w 1 w2 trJ3 t-J4 t.u5 1,i6 v.r7 TJJs w91

u2 ~,1 4 tv6 'L-Ja 1 H2 H4 w6 vJ8

w3 w6 w9 w2 irl5 wB w 1 M4 ~r7

w4 w8 'tf2 tv6 1 w4 w8 tv2 u/1

w5 1 w5 1 w5 1 w5 1 w5

w6 w2 w8 w4 1 w6 w2 w8 w4

w 7 w4 w 1 w8 w5 t112 w9 w6 w3

w8 w6 w4 w2 1 w8 w6 w4 w2

w9 w8 w 7 w6 w5 w4 w3 w2 w 1

I

(4o27)

Now consider the mappings given by (4o 17) and (4o 18) with N
1
:2 and

N
2

=5o Then the mappings are

n = 5n1 + 2n2

k = 5n1 + 6n2

n 1 = 0 9 1

n 2 = 091 9293 94 (4o28)

with n 29 the innermost factor 9 varying most rapidly 9 the columns of the

above matrix and the input vector 9 are both rearranged according to the

n sequence 9 ioeo 9

the rows of the matrix and the output vector are rearranged by the

k sequence

this yields the following rearra~gement of the 10-point DFT matrix

74

(~
x

0
1

1(6

x2

K8

x4

:15

x,
x7

x3

x9

=

(
' 1 1 1 1 1 1

w2 w4 w6 t-18

w4 t;J8 w2 ¥J6

w6 ~l ~'18 't,/l

8 6 4 2 til toJ t·J t·J 1

H2 H4 vJ6 ws

'(AJ4 t-J8 ~l 't"J6

H6 w2 w8 -,;,74

H8 '&J6 t;J4 1iJ21

1!J2 w4 -,;,y6 wB w5 w7 H9 w 1 t-v3

w4 w8 w2 w6 w5 w9 w3 w 7 w 1

w6 w2 ws w4 w5 w 1 w 7 w3 w9

w8 w6 w4 w2 w5 w3 w 1 w9 w7

This matrix exhibits a block structure 9 each block having the form

~59 where o
5

is the 5x5 OFT matrix. Suppose we define

~,

xo

)!6

Yo = x2

)l8

x4

Then rewritten as

However since the values

:!::J [:~]
rw~ w~l
.. o .• 1 I
c~ 2 w 2)

si nee W ~ 0 = W ~
(4.31)

are the 2x2 DFT matrix o2• Then

(4. 3.0 can be writ ten in terms of the Kronecker product [4.11] of 0 2

(4.32)
....,

X and x are the reordered vectors X and x respectively. If 2 had been

chosen as the inner factor 9 rather than 59 the matrix (4.29) would have

exhibited 5x5 blocks of 2x2 matrices rather than 2x2 blocks of 5x5

.75

matrices. The Kronecker product. can be applied to any number of

mutually prime factors 9 i.e •• in general

(4.33)

4.5 The Nested Winograd Fourier Transform Algo?>itr..m

The l-ray the 'small-W DFT modules can be nested together into

longer transforms has been discussed by Winograd [4.12 9 4.13] 9 Silverman

[4.14-4.16 L Kol ba and Parks [4.6] and by Agarwal and Cooley [4.17].

Perhaps the simplest approach to this nesting is that adopted by

Silverman [4. 14] 9 the following discussion is based upon his approach.

As discussed in chapter 2 each of Winograd's 'small-N' DFT

algorithms has the form

lZ' = c (AJJ X B ~) (1.20)

This can be rewritten as

(4.34)

where the A and C matrices are as before and B' is a diagonal MxM

matrix 9 the values along the diagonal being the M values B~ of (1.20).

Substituting (4.34) into (4.33) gives

(4.35)

Matrix multiplication is associative and a property of the Kronecker

product [4.11 p11] is that

AB m CD= (Aga)(Cmu) (4.36)

Then repeated application of (4.36) to (4.35) gives

(4.37)

The form (4.37) has several interesting consequences. As all the :J:N
i

matrices are diagonal 9 their Kronecker product will also be diagonaL

As the diagonal matrices only contain real and imaginary terms 9 so will

76

their Kr<:;>necker product. Similarly if the AN and BtJ r:r;.atrices only

contain + 19 -1 and 0 9 their Kronecker products v-rill also only cont.ain

+ 1 9 -1 and 0" Thus the nested form for the WFTA (4.37) is of the same

general form as (1.20).

·When the nested A and C matrices are generated in this manner

the input and output of the algorithm are ordered by (4o17) and (4.18) 9

exactly the same as the matrix vector product (4.29). To give a

transform using data in natural order and giving an output in natural

order 9 the columns of the nested A matrix should be reordered by (4. 17)

and the rows of the nested C matrix reordered by (4.18). There is no

need to reorder the coefficientso

Figure 4o2 9 taken from Kol ba and Parks [4.6] 9 gives another

way of viewing the nested form of (4.41).

4o5o1 Operations Count for the Nested WFTA

If each of the short-N WFTAs of Ni points requires Mi

multiplications and A
1

additions for real data 9 then the operation

counts for the fully nested form (4o37) with L factors 9 for complex

data 9 are

Real Multiplications (4.38)

!i . !i .!:!,
2 N A1 + N N A2

1 . 2 1 .
Real Additions (4.39)

N1 is the innermost and most rapidly varying factor. 't-Thilst the number

of multiplications needed is independent of the order of the factors

the number of additions is not. Agarwal and Cooley [4o17] discuss this

problem and show that in order to achieve the minimum number of

77

0

1

.--::-:

Fig. 4 .2 A 15-point WFT A
-~ ·'

··~~~- ::> .. .,..

~--""-"<~ s i ® , I s !----A)==:~
5 I I (X !'i-=~-~ S' ~ ~ ·.=1

~..6----=='==;,

I II / ~ ""'~~~.~+-====::='~it==t=l II ~QQ k ... ! rL r=-t==-h / I ~·2

12~ I
13==1 I -

14-=-=-l l I

6

~--------

't2 /

/ 3
;/

3pt
Pre-Mulr
Matrix

X
"""'-
X

I \ 1\ t I I I """'

--===QS
=-..

X
"'='

E)=-
I

29===1
X l) I

7~ \1 \ I I I
~

I (X)

/==! 1\ \ I I I (x) I
~

~-==---~IXF=====9

D.! ~X~ ~

Pre-Mul t.
Matrix Multi plic at ions

,,
i

~~ I I i I

i v I I !
Kl\ I I=\,

I \1 I I I
I 1\ I ~

Matrix

::=:-=~~

':.:'t .: ·-

7 /~- --'~ ~ - -- ---.

;/ j "' /
43

-I -- _. ·!

B~-- - ·1

7 9 " ,j I

~~ i . -

7 ~~-· ···· .. ·.·1
~4 . i

A -- '_ --~C: ~--=-- ·1

3 pt
Post-Mutt

Matrix

additions the factors should be ordered so that the quantity

Ai

increases towards the innermost factoro For example~ in the 63-point

Hence 7 should be the innermost factoro The number of additions needed

is

7 as the innermost factor

9 as the innermost factor

2[6 ~ 45 +
6 ~0 1 ~ 36] = 1422

2[~ 36 + ~02 45] = 1458
7 9 7

As predicted 9 less additions are required if 7 is the innermost factoro

These considerations do not apply if (4o37) is taken as a set of matrix

products.

It is interesting to consider the computational savings 9 if

any 9 of the nested form over the Prime ~actor Algorithmo For the

nested form to require less multiplications than the PFA 9 then

{4o41)
..

In general M
1

>N
1

and M
2

>N
2

• For the smaller
0
N algorithms M

1
and M

2
are

only slightly larger than N
1

and N
2

• As Ni/Mi decreases only slowly

with increasing N19 condition (4o41) is almost always meto Condition

(4o41) is not met for extremely large DFTs or when sub-optimal 'small-

N' algorithms are used. An example of the latter case is described by

Johnson and Burrus [4o 19].

As the nested form computes the N
1

N
2

point DFT with Ni.
1

: M
1
A

2

additions and the PFA with N
2

A
1

+N
1

A
2

additions 9 the PFA will ahvays

require less additions than the nested form except when M
1

=N
1

o Thus

there will always be a tradeoff between the nested WFTA and the PFA in

terms of number of multiplications and additionso

78

4.6 Block Structure And Nesting of Convolution Algorithms

So far in this chapter only DFTs have been discussed. Do

mappings and block structures similar to the DFT exist for

convolutions?

Burrus [4.2] 9 AgarHal and Burrus [4.18] both discuss the

mapping of a one-dimensional convolution into a multi-dimensional form.

Consider a length N cyclic convolution

"JJ. = n

N-1
r:
k=O

(1o 3)

where the subscripts are evaluated modulo N. Then substituting the

mapping

n = K1n 1 + K2n 2

k = K1k 1 + K2k2

i.e. the same mapping for both indices 9 into (1.3) gives

Then by defining suitable two-dimensional arrays

Equation (4.44) represents a true two-dimensional convolution. This

convolution is cyclic along n 1 if and only if K 1 :~N29 and cyclic along

n 2 if and only if K 2:~N 1 • If N1 and N2 are relatively prime 9 it is

possible for the mapping to be cyclic in both N1 and N29 if they have a

common factor this is not so.

In the simplest case ~=p=1 and 9 for a two factor example 9 the

map reduces to

and

79

As an example consider a 10-point cyclic convolutionp which when

written in matrlx vector notation becomes

=

E3 x 2 E1 EO z 9 z8 z
7

x6 x
5 E4

x4 x3 x2 x 1 xo x9 x8 '1"-f lt6 x5

y5 ES z4 E3 z 2 z 1 EO z9 Eg z7 z 6 ®5

Y6 it6 x5 x4 x3 x2 x, EO x9 x8 x7 h6

y7 ~ z6 E5 z4 E3 E2 E1 EO Jl:9 Eg @7

y8 x8 x
7

x6 x
5

x4 x
3

x2 x1 x0 x
9

h8

Yg Eg lig ~ x6 ~ x 4 E 3 x 2 x 1 x 0 hg

Both the rows and the columns are reordered by the mapping

with n
2

varying most rapidly the mapping is

09 29 49 69 89 59 79 99 19 3

This gives

y0 z
0

x8 x6 x4 x2 x
5

x
3

x 1 x
9

x
7

h0

y2 x2 x0 x8 x6 x4 x7 x5 x
3

x1 x
9

h2

y4 E4 E2 EO E8 E6 E9 :1!:7 E5 X3 E1 @4

y6 x6 x4 x2 x0 x8 x1 x
9

x
7

x
5

x
3

h6

y8 x8 x6 x4 x2 x
0

x
3

E 1 x
9

x
7

x
5

h8
=

Eg x7 E5 x3 E1 E4 x2 x0 x8 E6

x1 x9 x7 x5 x3 x6 x4 x2 x0 x8

h'7
I

Again this reordered matrix exhibits a block structureo Proceeding in

a similar manner to the 10-point DFT case 9 we define

80

and

z, =

("" Ys

J! 7

y1 = Yg

:v,
y

3;

x2 xO :lrg x6 x4

:rr4 :rr2 :rro :rrs :rr6

x6 x4 x2 x0 x8

x8 :rr6 :rr4 :rr2 :rro

So (4.46) may be rewritten as

ll?.
2

JBIO = h4

llil6

h
' 81 t J

lEI 1 =

:rrg "il.7 :rr5 :rr3 :rr,

"il.1 xg x7 x5 x3

3 :rr, :rrg :rr7 :rr5

This clearly shows that (4.46) is a convolution of convolutions. Thus

Winograd's small-N convolution algorithms 9 which have the three matrix

structure of (4.34) 9 may be nested together. No intermediate form

equivalent to the Prime Factor Algorithm exists for convolutions.

The nested form applicable to the 10-point convolution example above is

As before this nesting can be extended to any number of mutually prime

factors. Using the same notation as before the number of operations

for a real cyclic convolution evaluated using the nested form is given

by

Real multiplications

81

N

-A
N 1

1

Additions (4.49b)

4.7 Summary of Chapter 4

This chapter has dealt with the use of multi-dimensional

mappings to construct longer algorithms for convolution and the DFT

from sets of short length algorithms. For the DFT the main algorithms

considered were the FFT 9 the Prime Factor Algorithm (PFA) and the

nested Winograd Fourier Transform Algorithm (WFTA). The nested WFTA

has the same form as the 9 s mall-N' algorithms 9 i.e, equation (1o20) 9

and the A and C rna trices of the nested form will only contain + 19 -1

and 0 provided that the 'small-N' A and C did so.

The number of multiplications required by the WFTA will

normally be less than the PFA 9 but the PFA will require less additions.

A more detailed comparison is made between the algorithms in the next

chapter,

Finally this chapter showed that 'small N' convolution

algorithms can be nested to form longer convolutions, Again the nested

algorithm preserves the form of (1.20) with A and C matrices containing

only + 1 9 -1 and 0.

82

We now return to the problem stated at the beginning of the

t.hesiso 91 What is the 1 best 1 way of calculating the convolution of a

large picture with a small (fixed) window?" This chapter considers 9

in purely arithmetic terms 9 the best algorithm to choose so that the

minimum number of multiplications are calculated.

The latter parts of the thesis are concerned with the

implementation of algorithms having the general form of (1 o20) with A

and C matrices containing only +1 9 -1 and 0. An important feature of

this implementation is that the dimensions of the arrays of one-bit

full adder cells depends upon the word length and the number of

multiplications used in the algorithm. The dimensions of the arrays

are unaffected by the number of additions required to find the matrix

products involving the A and C matrices" Consequently algorithms are

compared with a view to minimising the number of multiplications needed

for the function.

Before considering two-dimensional convolutions the number of

operations for one-dimensional DFTs and convolutions 9 calculated using

the methods outlined in Chapters 2 and 49 are compared.

5.1 Operation Counts for the One-Dimensional DFT

This sect.ion compares three :J.lgori truns for the one-dimen.sio~nal

DFT for complex data 9 the FFT 9 the Prime Factor Algorithm (PFA) and the

nested Winograd Fourier Transform Algorithm (WFTA).

83

5o1o1 The FFT

The operations counts for a N=2n-point radix-2 FFT 9 for

coffiplex data 9 are given by

Real Multiplications

Real Additions n N=2 only

Whilst this is not the best FFT algorithm it is taken as being

representative of these types of algorithmo Table 5o1o1 gives the

operations counts for some transform lengthso

Transform Real Real Mul ts o Additions
Length Mul ts o Additions per point per point,

8 48 72 6 9

16 128 192 8 12

32 320 480 10 15

64 768 1152 12 18

128 1792 2688 14 21

256 4096 6144 16 24

512 9216 13824 18 27

1024 20480 30720 20 30

Table 5o1o1 The Radix-2 FFT

5o1o2 The Prime Factor Algorithm

The PFA uses Good 9 s mapping and TrJ inograd 9 s 9 s mall-N'

algorithms to calculate the DFTs along each of the dimensions resulting

from the multi-dimensional mappingo If Mi and A1 are the number of

muliplications and additions for aNi-point 'short-N' WFTA for real

data 9 then the number of operations for an algorithm with L factors

with complex data is

L

N = TT Ni
i:1

84

L N
2 L; (-)M

i=1 N. i
l

L N
2 .L (-) A1

1.= 1 Ni

Real Multiplications

Real Additions

The number of operations for the 'small-N1 WFTA algorithms is given by

table 2.3 in chapter 2. Table 5.1.2 gives the factorizations and

operation counts for complex data. The 11 and 13-point DFT algorithms

given in table 2.3 are not used as they do not offer a low number of

multiplications per point.

Transform Factors Real Real Mults. Additions
Length Mul ts. Additions per point per point

12 3,4 48 96 4.00 8.00

20 495 88 216 4.40 10.80

30 2,395 192 384 6.40 12.80

60 3,495 384 888 6.40 14.80

120 3,5,8 768 2076 6.40 17.30

240 3,5,16 1596 4812 6.65 20.05

504 7,899 3536 13500 7.02 26.79

1008 798,16 7324 29772 7.27 29.54

Table 5o1.2 The Prime Factor Algorithm

The number of multiplications given in table 5.1.2 includes those

+ + involving -1 and -j.

5.1.3 The WFTA

Using the notation of the previous section the number of

operations for the WFTA is given by

Real Multiplications (4.38)

85

2
N

Real
Addi'cions

(4.39)
Table 5.1.3 gives the operation counts 9 for complex data 9 the same

transform lengths as the PFA. The factorisation is given in optimal

order 9 with the innermost factor last.

Transform I Optimal Real Real Mults. Addition
Length Factor Order Mul ts. Additions per point per point

12 394 24 96 2.00 8.00

20 495 48 216 2.40 10.80

30 29395 72 384 2.40 12.80

60 49395 144 888 2.40 14.80

120 89395 288 2076 2.40 17.30

240 391695 648 5016 2.70 20.90

504 89997 1584 14652 3.14 29.07

1008 169997 3564 34920 3.54 34.64

Table 5.1.3 The WFTA

Nussbaumer [5.1] introduces a technique called 'split-nesting' to

reduce the number, of additions with no change in the number of

multiplications. This 9 however 9 increases the algorithm complexity and

is not considered here.

Note that all these nested algorithms will have A and C

rna trices containing only + 19 -1 and 0. As with the PFA the number of

+ + mu:L tiplications includes some apparently trivial ones by -1 and -j.

They are included so as to preserve the general form of (1.20).

86

5.1o4 Comparison of DFT Algorithms

Comparison of tables 5o1o1~5.1.3 sholrJS that the WFTA always

offers the minimum number of multiplications for roughly comparable

transform lengths. The PFA requires less additions than the WFTA for

longer transform lengths. All three algorithms use roughly the same

number of additions for comparable transform lengths.

Much has been written [5.2-5.8] in the recent literature on

the comparison between programs and algori thins to implement DFTs on

general purpose computerso There appears to be no firm conclusion to

be drawn from these studies. However it seems that on general purpose

machines the 'in-order in-place' PFA may be the fastest algorithm

[5. 2]o

One point in common in these studies is that the arithmetic

savings of the WFTA are largely outweighed by it's relative

complexity.

5.2 One-Dimensional Convolutions

There are two main alternatives for evaluating one-dimensional

cyclic convolutions. These are the nesting of 'short-N' convolution

algorithmsp such as those derived in Chapter 2p or the the calculation

of convolutions by transforms having the cyclic convolution property.

In the comparison that follows it is assumed that one of the sequences

to be convolved is fixed - the filter coefficients - and that two real

convolutions are computed by each complex DFTo Finally the optimum

block length for one-dimensional filters involving a fixed filter tap

length and a semi-infinite sequence is discussed.

87

5.2. 1 Nesting 'Short-N' Convolutior. Algor··ithms

Using the same notation as the PFA for the number of

operations for each of the factors 9 the operation count for the nested

algorithm is given by

L
TT M. Multiplications (4.49a)
i: 1 l

N N[it (~/ fiU~j} l A1 + Additions (4.49b)
N1

Table 5.2.1 gives the number of operations for a variety of convolution

lengths. The number of operations for the 'small-N' convolutions are

taken from table 2.2. The factorisation is given in optimal order to

produce the minimum number of additions 9 with the innermost factor

being given last.

Convolution Optimal Real Real Mults. Additions
Length Factorisation Mults. Additions per point per point

12 493 20 100 1 .67 8.33

20 495 50 230 2.50 11.50

30 695 80 418 2.67 13.93

60 49395 200 1120 3.33 18.67

120 39895 560 3096 4.67 25.80

240 395916 1640 8504 6.83 35.43

504 89997 5852 34678 11 0 61 68.81

1008 a 7. 1,;
..;')'I)I'_. 17138 952S8 17.00 94.50

Table 5.2. 1
Real Cyclic convolutions calculated using nested 'short-N' convolution

Algorithms.

Again all these nested algorithms 9 except those containing the factor

7 9 will have A and C matrices containing only +1 9 -1 and 0.

88

------- -- ---

5o2o2 Cyclic Convolutions Calculated by Trc.nsfct'llls having the CCP

By definition transforms possessing the Cyclic Convolution

Property may be used to compute cyclic convolutions! One useful

property when deal l.ng with real convolutions ls to calculate two· real

only convolutions using one complex DFTo Assume that b is fixed 9 the
n

convolution of @ with the two N-point sequences TI and TI 1 is found by n m m

first constructing the complex sequence TI ~ jTIQo The complex convol-m m

ution of @ with x + jE 1 is the computed Qy DFTs to yield the complex n m m

convolution y + jy1o Thus the convolution of h with E is defined by m m n m

the real part of the complex convolution and the corresponding

convolution of h and x' by the imaginary. Using this method the n m

number of operations to compute a real convolution is half that of a

complex convolutiono

Suppose a DFT algorithm computes aN-point complex DFT with 2M

real multiplications and 2A real additionso Then 9 assuming 4 real

multiplications and 2 real additions per complex multiplication 9 a N-

point real cyclic convolution is computed with

2[N + M] Real Multiplications (5. 1a)

and [2A + N] Real Additions (5.1b)

Table 5o2o2 below gives the number of operations for real convolutions

evaluated using the WFTA and PFA (using figures from tables 5o 1o 1 and

5.1.2)

89

-------T :
Convolution lATFTA HFTA PFA l ?F'A

Length Real Mul ts Rea.l Adds Real JViults Real Adds

12 48 108 72 108

20 88 236 128 236

30 132 41!; 252 414
I

60 264 948 50Ll ' gL}8 I

120 528 2195 1008 2196

240 1128 5256 2076 5052

504 2592 15156 4544 14004

1008 5580 35928 9340 30780

Table 5.2.2
Number of real operations for real cyclic convolutions computed using

the WFTA and PFA.
(2 real convolutions per DFT9 one input sequence fixed)

5.2.3 Comparison of Ways of Computing 1-D Cyclic Convolutions

Comparison of tables 5.2. 1 and 5.2.2 shows that in terms of

numbers of multiplications the 'best' method of calculating one-

dimensional cyclic convolutions depends upon the convolution length.

For smaller convolutions the nested 'short-N' convolution algorith~s

use less multiplications than either the WFTA or PFA solutions. For

long convolutions the WFTA uses less multiplications and additions than

~he nested 'short-N' convolution algorithms. t-lhere is the cross-over

between the two methods? Inspection of the previous two tables

suggests somewhere between 60 and 120-point convolutions. Table 5.2.3

below considers a few more convolution lengths in this region.
\

90

Convolution Nested ~ shor-t~N'? Nes'c.&d 0 sl:or'c~l\J 1 1-j}7TS1 i:J'J?lll
Length Real Multso Real Addso Real Mu:tso Real Adds o

60 200 1120 264 9Li8

80 410

I
1906 376

I
1!.)32

9C 440 252l} ~4!!· 19\8

112 779 3831 548 2i.:44

120 560 3096 528 2196

Table 5o2o3
Comparison of Operations for 1-D convolutions of 60 to 120 points

Examination of table 5o2o3 immediately shows that there is no clear

crossover between the algori thmso It also illustrates that longer-

algorithms may use less operations than some shorter ones - compare

the 112 and 120-point cases aboveo In terms of multiplications the

cross-over point between the two methods is around 90 pointso

For convolutions up to 9 0- points use nested 9 short~W

convolution algorithms 9 such as those derived in chapter 2o

Convolutions of greater length should be evaluated using the WFTAo The

exact crossover point depends upon the assumptions made abcut the w~y

the DFT method calculates real convolutionso

5.2o4 Optimum Block Length for 1-D Filters

In many digital filtering applications one sequence 9 h often
n

\ comprises o\ a limited number of points 9 N
19

and represents the

impulse response of the filtero The other seq,JenC'!P.., :rr • is often very
Til' -

largeo The aperiodic convolution of these two sequences may be

obtained by sectioning x 9 performing a series of N-point cyclic
m

convolutions and using the Overlap-Save or Overlap-Add techniques 9

described in chapter 19 to reconstruct the filter outputo

9~

;
:

intn blocks of lenp;th N2, 8i1Ch block over1App·:n::; cl1o pr'C:VLOU;j 0!10 by

N
1
-1 sampleso The window is extended to N=N

1
+N

2
-1 points by appending

ro2~1 zeroes and a cyclic convolution of N points is performedo Only N
2

samples of each block are retained 9 the otl:er valt.:es &._,e cliscardect

If M
1

(N) ~d is the number of multiplicat~ons per output

point for cyclic convolution of length N and M
2

(N 9 N
1

) the number of

multiplications per output point for a N
1
-tap digital filter, then

M
2

CN 9N1
) is given by

M
2

(N 9 N
1

) = M
1

(N)N/(N-N
1
+1) (5o2a)

Similarly 9 A
2

CN 9 N
2

) 9 the number of additions per output point of the

filter 9 when using Overlap-Save 9 is given as

A
2

CN9N
1

) = A
1

(N)N/(N-N
1
+1) (5o2b)

where A
1

(N) is the number of additions per point for a cyclic

convolution of length No If M
1

(N) was an increasing function of N9

then 9 as N/(N-N
1
+1) is a decreasing one, there would be an optimum

block size N which minimised the number of multiplications in the

filtero Despite M
1

(N) not being a monoto~ically increasing function of

N for the WFTA and the nested 'short-N' algorithms it is still

possible to find a minimum for a given tap lengtho Table 5o2o4 gives

the optimal block length for the minimum number of multiplications for

a variety of filter tap lengths evaluated using 'short-N' convolution

algorithmso The choice of possible convolution lengths was restricted

to algorithms containing only +i 9 -i and 0 in their A and C matrices 9

Leo algorithms containing a factor of 7 were excludedo

92

" Filter Tap 0 p·i:;im c.:a MU:. ti~J]_icc.'::;ior:.s " Al'lc.l tions ;
Length Block size per ~~ t o- ~ ~ ~

Pvl..~-~- P-• _'"0~
2 6 1.60 6.80

4 12 2.22 :1.11

8 24 3o29 16o00

16 60 tl 0 ~ll:. 32o00

32 120 6o29 31L79

64 21;0 9.27 48o05

128 360 13.22 79o30

256 720 19.40 175o98

512 720 43o16 238 014

Table 5.2.4
Optimum block sixes and number of operations per point for 1-D filters

computed using nested 9 short-N 9 algorit~s

5.3 Two-Dimensional Convolutions

In a similar manner to the previous section the number of

operations to calculate two-dimensional cyclic convolutions is

discussed in this section. There are several additional techniques for

computing 2-D convolutions apart form those applied to the 1 ~D
"--""

convolutions above. These include the use of 2-D cyclic convolution

algorithms derived using polynomial transforms and 2-D DFT algorithms

also derived from polynomial transforms.

The methods are discussed in the following order~ nested 1-D

WFTAs 9 2-D DFTs based on polynomial transforms 9 nested 1-D 1 short~N9

convolution algorithms and 2-D convolution algorithms based upon

polynomial transforms.

Finally the optimum block size for the window-picture

convolution problem is considered.

Throughout this chapter only NxN-point convolutions are

93

considered. It should be notert that it is often possible to ~erive

5.3.1 Nested 1-D WFTAs

It follows from the aeri vation in chapter 4 that a nested HFTA

can be built up not only froc one-dicensional data uhich has been

mapped into a multi-dimensional array 9 but also from data that is

inherently multi-dimensionaL Furthermore because the data is multi-

dimensional no mappings are required and the constraint that the

lengths of the dimensions be mutually prime is lifted. Hot..rever there

is still the restriction that the length of any one dimension may

itself not contain any factors having a greater common divisor greater

than one.

The above comments apply equally to other algorithms utilising

multi-dimensional mappings. It should be apparent that a lvhole host of

algorithms are possible 9 all with varying degrees of nesting. For

example 9 it is possible to calculate a two-dimensional DFT using a 1-D

WFTA along one dimension and a PFA along another.

The minimum number of multiplications will occlll' when a fully

nested WFTA is used. Suppose a N
1
-point WFTA requires 2Mi real

multiplications and 2A. additions (4.38 9 4.39) for complex data 9 then
l.

the number of operations for aN
1

xN
2
-point two-dimensional DFT for

complex data will be

2M 1M2
Real Multiplications

2[N 1A2 + M2A1J Real Additions (5 D 3b)

Table 5.3.1 below lists the number of operations for some NxN-point

DFTs calculated by nesting 1-D WFTAs.

94

-
! ' Raal : Mul 'cs. I 1\.adi'Gior"s ' DFT Real ~

Size Multiplications ! Additions per point I per poi~'c I I I
12x12 288 l 2304

I
2.00 16.00 I

I i 20x20 1152 9504 2.88 23,76

I
~

30x30 2592 2534Ll 2.88 28.i6 I

I
!

'
60x60 10368 117216 2.88 32o56 i I

120x120 41472 548064 2o88
I

38oOO f

;

240x240 209952 2829024 3o65 49 0 12 i
I
' l

504x504 1254528 18988992 4o 94' 74o76 I

1008x1008 6351048 97426800 6 o25 95 o88

Table 5o3o 1
Operation counts for complex DFTs evaluated by Nested WFTAs

Again it should be noted that if the 1-D HFTAs have A and C matrices

containing only +1 9 -1 and 0 then so will these 2-D DFTs.

5o3.2 Nested 2-D DFTs

Nussbaumer and Quandalle [5.9 9 5o 10] introduced a way of

computing multi-dimensional DFTs using polynomial transforms. These

algorithms have the form of (1.20). Judging from their structure m&>y

of these algorithms will have A and C matrices containing only +1 9 -1

and 0. Table 5.3.2a 9 taken from Nussbaumer [5.1 9 p192L lists the

operation counts for real data for some of these polynomial transform

based algorithms and the corresponding nested 2-D WFTAs.

95

I j I
1

'DFT PolyoTranso PolyoTranso Nested \rJFTA Nested 1:JFTA I
Size Multso Additions Multso Additions

2x2 4 8 4 8 1
!

j j

3x3 l 9 36 9 36 i

4x4 16 6Ll 16 64

5x5 31 221 36

I
187

7x7 65 635 81 576 i

8x8 64 408 64 416

9x9 105 785 121 900

16x16 ' 2516 304 2264 I 324 ,, <'I

Table 5o3o2a
Operations for 2-D DFTs evaluated using polynomial transforms

As these polynomial transform based algorithms are of the general form

of (1 o20) they may be nested together in a similar manner ot the tJFTAo

If a Ni xNi -point DFT requires Mi multiplications and A
1

addition for

real data then the number operation required for a nested algorithm for

complex data is

M.
l

NxN-point DFT

Real Multiplications

Real Additions

(5o4a)

(5o4b)

Table 5o3o2b gives the number of operations used for the same DFTs as

table 5o3o 1 but using the polynomial transform based 2-D DFT

algorithmso

96

DFT j Rea.l I Ras.l ·. Mu.l ts. : .A.ddi ·uons 1

Size Multiplications Additions I par point I [)e::' point 1

~----+-----·------·- --}---- -·--·-- -- i
12x12 288

20x20 992

30x30 2232

60x60 8928

120x120 35712

240x240 169632

504x504 873600

1008x1008 4149600

2304

10272

26712

121248

553392

2688912

16353584

80267312

Table 5o3o2b

16.00

25.68

Operation counts for complex 2-D DFTs computed by
transforms and Nesting

polynomial

Comparison of tables 5o3o 1 and 5.3.2b shows that the polynomial

transform based 2-D DFT algorithms use an equal number or less

multiplications than the nested WFTA and less additions for DFTs

greater than 120x120-pointso

Nussbaumer [5.1] discusses some techniques for reducing the

number of addi tionso

Having foundp from the minimum number of multiplications point
c

of view P the optimal way of ca~ulating a 2-D DFT P we now consider the

number of operations for 2-D cyclic convolutions evaluated using

polynomial transform based 2-D DFT algorithms.

5.3.3 2-D Cyclic Convolutions Calculated using 2~D DFTs

Proceeding in a manner analogous to the one-dimensional caseP

the DFTs of the previous sub-section are applied to the calculation of

2-D cyclic convolutions. Again it is assumed that a complex

multiplication requires 4 real multiplications together with 2 real

additions and each complex DFT performs two real convolutions. The DFT

97

operation cour:'cs are for ti1e 2~'J I>fTs O.er':l v::;d using :poly:'1o7'lial

transfonns.

Convolutl.on Real Real Mult~-.-1 ~ddltions
s t 7.~ Mul ttpUcatlons A ddt tlons psr point per point

---- -·------·---- ----

12x12 576 2448 4.00

I
17.00

20x20 1792 10672 4.48 26.68 I

30x30 4032 27612 4.48 30.68

60x60 16128 1248L;8 4. L!8 34.68

120x120 64512 567792 4.48 39.43

240x240 284832 2746512 4.95 47.68

504x504 1381632 16607600 5.44 65.38

1008x1008 6181728 81283376 6.08 80.00

Table 5. 3. 3
Number of operations for real cyclic 2-D convolutions computed using

2-D DFT algorithms based upon polynomial transforms
(2 real convolutions per DFT 9 one input sequence fixed)

5.3.4 2-D Cyclic Convolutions Calculated using
Nested 1-D Convolution Algorithms

Another method for the calculation of 2-D cyclic convolution

algorithms is the use of nested 1-D 1 short-N' convolution algorithms.

As noted at the beginning of the section on 2-D DFTs a NxN-poi nt

convolution may be calculated provided that the factors of N are

mutually prime. Remember that for convolutions no intermediate form

similar to the PFA exists 7 the algorithm must be the fully nested form.

If aNi-point 1-D cyclic convolution algorithm requires Mi

multi pl icat.:tcns a!'ld A
1

additions then a N
1

Y..N
2
-point cyclic convolution

algorithm for real data will require

Multiplications

Additions.

A lower number of additions may be obtained by treating a N
1
N

2
xN

1
N

2
-

point convolution as a (N 1xN
1

)x(N
2

xN 2)-points rather than

98

CN 1 xN2)x(N 1 m~2)-points ,whenever

N1A2 + M2A1 > A2M1 + A1N2

Table 5.3.4 gives the number of operations for a variety of

convolution sizes using (5.5a~b). It uses the figures taken from table

5.2.1 9 no attempt was made to minimise the number of additions.

Consideration of the 1-D case for nested 9 short-N 9

convolutions shows that in the 2-D case this method will only be

better than the 2-D DFT solutions for N2!!:.90. This borne out by the

values in table 5.3.4.

Convolution Real Real Mul ts. Additions
Size Multiplications Additions per point per point

12x12 400 3200 2.78 22.22

20x20 2500 16100 6.25 40.25

30x30 6400 45980 7 0 11 51.09

60x60 40000 291200 11 0 11 80.89

120x120 313600 2105280 21.78 146.20

240x240 2689600 15987520 46.69 277.56

504x504 34245904 220413368 134.82 867.71

Table 5.3.4
Operation Count for real 2-D cyclic convolutions computed using Nested

1-D 'short-N' convolution algorithms

5. 3. 5 2-D Cyclic Convolutions Based Upon Polynomial Transforms

We now turn to the application of the 2-D cyclic convolution

algorithms derived in chapter 3 to various 2-D convolutions. Although 9

as shown in chapter 39 it is possible to derive quite long algorithms,

n n in particular 2 x2 points 9 it can be quite difficult and involved.

The range of possible convolution lengths may be increased by the use

of nesting. In this method a convolution of size N
1

N
2

xN
1

N
2

gcd(N 19 N2)=1 9 is converted into the four-dimensional convolution

99

CN
1

xN
1

)xCN
2

xN
2

). Tf M
1

and A
1

are the nurr.b8r-s of mul.tipllcatlons and

additions for a 2-D convolution of size N
1

xN
1

, then the number of

operations to evaluate the 2-D convolution of size N1N2xN1N2 is

Multiplications

Additions

Table 5.3.5 lists the number of operations fm" the same convolution

lengths as before. The number of operations for the various small 2-D

convolution algorithms are taken from table 3.2 (chapter 3). Note that

with the number of multiplications used here the i and C matrices

contain only +1 9 -1 and 0. The optimal factor order, for the minimum

number of additions, is given with the innermost factor last.

Convolution Optimal Real Real Mul ts. Additions
Size Factor Order Mul ts. Additions per point per point

12x12 4,3 286 2638 1.99 18.32

20x20 4,5 1210 11168 3.03 27.92

30x30 2,3,5 2860 29788 3.18 33.10

60x60 4,3,5 15730 171484 4.37 47.63

120x120 3,5,8 92950 955258 6.45 66.34

240x240 3,16,5 453310 5040848 7.87 87.51

504x504 7,9,8 3035890 34245950 11 0 95 134.82

1008x1008 7,16,9 148.05802 176924690 14.57 174.13

Table 5.3.5
2-D Cyclic convolutions computed by nested polynomial transform

algorithms

100

In terms of nwnbers of mul tiplicatlons comp::w:Lson of tables

5.3.3 9 5.3.4 and 5.3.5 shows that nested 1-D convolution algorithms do

not form a good way of computing 2-D cyclic convolutions. The choice

lies betHeen the other tvJO methodso For 2=D cyclic convolutions up to

about 60x60 points the nested polynomial transform algorithms offer the

least number of multiplications. For 2-D cyclic convolutions of larger

sizes the best approach is to use the 2-D DFT algorithms based upon

polynomial transforms. The DFT approach usually offers the least number

of additions per point.

5.3.7 Optimum Block Size for 2=D Convolutions

What is the 'best' way of calculating the convolution of a

small window with a large picture? Again we take the 1/>Jord best to

mean the minimum number of multiplications. However this may not be

the overriding criterion for algorithm selectiono For example 9 some

solutions 9 particularly those involving large DFTs 9 demand knoHledge of

the entire picture before the computation can begin. The amount of

storage required may be prohibitiveo In other situations it may be

appropiate to store as few lines of the picture as possible and start

the convolution immediately. Clearly the 'best 9 solution is

e~

application dependant.
\

Despite these considerations TtJe now consider the optimum block

size into which a picture should be broken so as to give the minimum

number of multiplications per point for a two-dimensional cyclic

convolution.

If M
1

(N 2
) is the number of multiplications per output point

for a cyclic convolution of size NxN and M/N 2
9N.j) is the number of

multiplications per output point for the N1xN,-point aperiodic

convolution 9 M
2

(N 2
9N1) is g:i_ven by

M
2

(N 2
9N1) = M

1
(N 2)N 2 /(N-N

1
+1) 2

similarly for the number of additions

(5o 7a)

Table 5o3o7 gives the optimum block size correspondir:g to the minimurr.

number of multiplications per point for windows of sizes 3x3 to 15x15

points. This range of window sizes was chosen as being most suitable

for image processing applications. All possible 2-D DFT and

convolution algorithms were compared.

Window Optimum Algorithm Mul ts. Additions
Size Block Size Type per point per point

3x3 12x12 2-D Conv 2.86 12o00

4x4 18x18 2-D Conv 3o43 21o75

5x5 18x18 2-D Conv 3o94 19 o88

6x6 36x36 2-D Conv 4o42 44o75

7x7 48x48 2-D Conv 4o67 32o33

8x8 48x48 2-D Conv 4o90 72o75

9x9 168x168 2-D DFT 5013 13.50

10x10 168x168 2-D DFT 50 19 17o63

11 x11 168x168 2-D DFT 5.26 24.00

12x12 168x168 2-D DFT 5.33 34o56

13x13 168x168 2-D DFT 5.40 54o00

14x14 840x840 2-D DFT 5.46 96.00

-15x15 1 840x8l.IO J 2-D DFT ~ 5o47 216 ooo 1

Table 5.3.7
Optimum Block size for 2-D Aperiodic convolutions calculated using

either 2-D polynomial transform based convolutions or DFTs.

It is interesting to consider the number of additions

performed. Notice that the convolution algorithms use many more

additions per point. For example contrast the number of additions per

102

poi. nt for the fhc8 and 9x9 t·ri n dot-Js.

5.4 Summary of Chapter 5

This chapter has compared the number of operations for a

variety of functions using algorithms derived in the earlier chapters.

The conclusions reached about the relative computational merits of

these algorithms t,rere as :follotvs.

For the one-dimensional DF7 the l.Jinograd Fourier Transfol:"'m

algorithm (WFTA) was shovJn to use the smallest number of

multiplications per point when compal:"'ed with the Prime Factor Algorithm

(PFA) and the Fast Fourier Transform (FFTL The number of additions

may be decreased at the expense of more multiplications by the use of

the PFA. The WFTA has the form of (1.20) with A and C matrices

containing only + 1, -1 and 0.

Two methods were compared for the calculation of one-

dimensional cyclic convolutions. Firstly 1 short-N' convolution

algorithms were nested together 9 secondly the WFTA lrJas used 9 taking

advantage of the Cyclic Convolution Property (CCP). For up to about

90-point cyclic convolutions the nested 1 short-I'J 0 convolutio::l

algorithms use less multiplications than the WFTA technique. This

comparison assumes that one of the input sequences is fixed and that ,,

two real convolutions are computed per complex DFT. All the nested

one-dimensional convolution algorithms have the form of (1.20). For

the minimum number of multiplications convolution lengths containing

factors 7 9 9 and 16 will not have & and C matrices containing only +1 9

-1 and 0. Whilst it has proved possible to construct suitable

algorithms with i and C matrices containing only+ 1 9 -1 and 0 for the

9- and 16-point convolutions the number of multiplications used is not

the minimum. It has not proved possible to derive a suitable 7-point

convolution algorithm.

103

Turning to bro-dimer.siona.l f";I:.'lc·cions 9 tuo uays of com;r:.tting

two-dimensional DFTs "~:Jere comparede The tt-Jo-dimensional DFT

algorithms derived by Nussbaumer and Quandalle using polynomial

transforms Here sho'l'm to be superior to the nested one-dimensional

WFTAe These tHo-dimensional DFTs have the gan.eral form of (1o20) and

it appears that many of them will have A and C reatrices containing

only +1 9 -1 and Oo

Three methods were compared for the computation of tHo­

dimensional cyclic convolutionso They 't'Jere 9 computation using two­

dimensional DFTs 9 calculation based upon nested one-dimensional

convolution algorithms and finally the use of the two-dimensional

convolutions derived using polynomial transforms (see chapter 3)o The

nested one-dimensional convolutions may be quickly discarded as not

offering a good solutione For cyclic convolutions up to 60x60 points

in size the polynomial transform based convolution algorithms offer

the best choice in terms of numbers of multiplications used per pointe

For cyclic convolutions greater than this size the use of 2-D DFT

algorithms requires less multiplications per pointe As noted in

chapter 3 these 2-D convoluti?n algorithms are of the general form

(1e20) and many have A and C matrices containing only +1 9 -1 and 0.

Finally the optimum block size for the aperiodic convolution

of a small window 9 up to 15x15-points 9 with a large picture uas

considered. For windows up to and including 8x8-points two­

dimensional polynomial transform based convolution algorithms should

be ·used. Above this size use tuo-dimensional DFT algorithms.

Throughout this chapter many of the optimal algorithms have

had the form of (1.20) with A and C matrices containing only +1 9 -1

and 0. This chapter concludes the first 9. and more theoretical 9 part

of the thes iso The next chapter forms the start of the second part

104

and deals with the implernontation of' alsor:l.thm.J of the U"ncr·al form of

(1. 20) \-Jhich have A and C matrices conta:!.r1lng only + 1 9 ·~ 1 and Oo

105

In the field of digital signal processing there is a constant

demand for higher and higher perfor-mance implementations of functions

such as convolution and the Fourier Transform. New implementations

must not only have increased performance but also consume less power

and cost less! The advent of Very Large Scale Integration (VLSI)

allows some of these goals to be achieved.

In high speed digital signal processing performance is gauged

by the attainable throughput rather than the total time required for a

function. By the use of pipelining techniques processing may proceed

concurrently with input and output so that the throughput rate will be

limited by the delay of the stages of the pipeline. The delay

associated with the stages of the pipeline may be reduced by parallel

processing in each stage of the pipeline.

The systolic arrays proposed by Kung and Leiseron [6.9] are ~~

excellent example of such a pipelined9 parallel system. In general a

systolic array may be thought of as a one- or two-dimensional array of

identical processing elements arranged in a regular fashion. Each

module in the array is connected only to i t 9s nearest neighbours. In

1

the original arrays proposed by Kung and Leirseron each cell operated

at the word level and the relevant circuits tend to consist of

multiplier accumulator processors. However McCanny and McWhirter [6.1]

have proposed a systolic array pipelined at the bit level suitable for

matrix vector multiplication and a pipelined systolic multiplier.

These arrays have a throughput rate limited only by the time to perform

a one-bit full addition.

106

This chapter proposes a trJay of implementing algorithms, of the

+ general form of (1 o20) which have A and C matrices containing only -1

and 0 based upon these one-bit systolic arrays co The general form of

this calculation may be described as folloHs 9

1 D The input sequence y is oul tiplied by the Mxi\1 A matrix trJhich

+ contains only -1 and Oo

2o TheM values resulting from the product Ay are multiplied

point-by-point by the M coefficients of the precalculated Bho

This only involves general complex multiplications for complex

cyclic convolutionso

3o Finally the M values from the point-by-point multiplication

are multiplied by the NxM C matrix 9 which again only contains

+ -1 and 0 9 giving the N values of the output sequence Yo

6a1 Proposed Architecture

The architecture proposed ·to implement these algorithms is

based upon the three stages of the calculation outlined above. In this

calculation there are two separate problems 9 firstly the matrix

multiplication by the A and C matrices 9 secondly the multiplication by

the fixed coefficients in stage two aboveo The circuits that are

proposed here pipeline these calculations at the bit level to ensure

maximum throughput and parallelismo

6a1.1 A and C Matrix Implementation

McCanny and McWhirter [6o1] describe a pipelined bit-slice

transform array which will perform matrix vector products of the form

Tx=~ where T is a NxN matrix with one-bit coefficientso Ward and

Stanier [6.4] have proposed a way of extending the basic cell given by

McCanny and McWhirter to perform two9s complement arithmetic t-rith tvro-

107

bit coefficien tso The values ! 1 and 0 require b.;o bits to represent

them and are shown as the inputs U and V to the extended basic cell

which is illustrated in figure 6o1o1o The extended cell is a one-bit

full adder v-rith extra logic Hhich complements the input bit 9 x (j) 9 to

the adder if the coefficient is ~ 19 leaves the inpu!; bit unaltered if

the coefficient is +1 or makes the input bit 0 if the ccefficient is Oo

Figure 6o 1o 1 illustrates an array of these cells to perform

the matrix product WTI=Jl l-Jith t'J being a 5 (rot-Is) x 4 (columns) matrixo

This diagram is drawn using the convention adopted by McCanny and

McWhirter with heavy dots reprBsenting latches and open circles

representing the basic processing elementso The overall operation of

the array is as follows g Data words 9 xi 9 are input to the array from

the left on every alternate cycle with sucessive bits staggered by one

cycleo

cycleo

The input words move one cell to the right on every clock

~ The input words are b1e sign extended to the maximum range of
\
\

the answer 9 Leo the number of rows in the array 9 upon entry into the

arrayo

Bits representing the elements in the matrix W are organised

so that they move down the array in a vertical directiono Whenever a

coefficient of value -1 enters the array 9 1 is added to the least C)
I

significant bit of the input word via the 1 carry-in1 of the appropriate

cell in the top row of the array and that input word xi is complemented

bit by bit as it moves through the arrayo

The output words 9 y
19

are initialised to zero on entering the

array and move from right to lefto Their bits are staggered by one row

per bit 9 as are the input words x
1

o This means that the kth bit of a

word 9 yik) 9 meets all the terms required to form the sum

108

I

xs
2

x4
2

x3
2

xs
1

/w24 W33 W42

~ w23 w32

" w22

Fig 6.1.1 A & C ~1atrix Arrays

W51

y4
2

y5
2

w uv
-:-1 1 0
-1 0 1

1:

0 ~ 0 0

R<-XU?XV

y{~R(Y-s-RCY-:-RCYvR CY

r~~o C- :::v- cv ~ v r '\> - "'~"' ~--\) i .. _, .

uv:
I' l ("~­
(Y'•)

v~1-~.l 6\(J ~ ~--v.~ }(
Y 'A '.

~- ---- y(
' I

~vi? •

U\;'(

n (k)
'2:, Hijxj
j: 1

= (6 0 1)

th d t TT (k) b • f d b th ' t ' l i i th ll hi h e pro uc .~ .. x. e:1.ng orme y e ex ra og c n e ce w c
l.J J

complements 9 leaves unaltered or zeroes the input to the one-bit full

adder. Any carry bits which are generated in the course of this

su,mmation are latched vertically dot-Jmrards as shm-m. The 'carry save'-

principle is used - this is the reason for the stagger on the bits of

the words xi and y
1

. Having traversed the array the matrix vector

product is complete with the output words emerging every alternate

clock cycle 9 still in skewed form.

McCanny and McWhirter [6.3] have recently proposed several

improvements to. their original array. Firstly they note that as '!fJords

enter and leave the array on alternate clock cycles only half the

cells 9 on average 9 in the array are in use at any moment. This may

easily be seen by reference to figure 6.1o2 which illustrates the first

four cycles of interaction in these arrayso The layout of latches and

cells has been omitted for clarityo McCanny and McWhirter propose that

pairs of adjacent cells are coalesced into one with some extra data

paths to preserve the regular flot-J 1rJi thin the array. This halving of

the number of processors is considered in more detail in chapter 8o

Here we propose that two sets of data could be interleaved in the

unmodified array with two separate transforms being computed simul-

taneously.

109

()

'

(i)

x2
2

x4
1

(ii)

x,
3

x3
2

1· 1 i y~ I x,
,j c y

Jt:? I I_~ ! 2 ~

x2
y2

1
1

x3
y3

1
1

First cycle of interaction
in matrix multiplication array

1 l. 1 1y 1 x1~2
x2w12 1 21

y2 y2
x2 " x~~, 2

2
3-

x3
y1

1

x4
y4

1
1 '

Second cycle of interaction
in matrix multiplication array

11 0

y2
2

y4
1

y1 ~
I

3

y3
2

y1
3

y3
2

y2
3

y4
2

y3
3

(iii)

(i v)

x3
4

w 14

x2
3

x4
2

1 ,Y,
x4w14

x3
3

F F :J34 "43

w24 ~-?33 \-1142

1-1123 ~,y32
1 :;-~y1-f .. I y 1

1 y 1
l:x 1v2 Ll x 1vJ3

X3H13 '~ 2 • 22. ~ 1 31
2 2

~y < 2y2
x2w~2 X 1 \r.! 21

x3
y3 y3

x~~, 2
2

4

x4
y1

1

, Third cycle of interaction
in matrix multiplication array

V.T
'52

~,y 41

y2
3

y4
2

1
y 1 I.

x~w~3 . lxm 1
1

4
x1w4.1

y2 y2 2

x~~3 x~~2 2
1

3
x,w31

y3 y3
3 1 2

X2W12 xf.r21
4 y4

x4 4
1

1 2
2 x1w11

Fourth cycle of interaction
in matrix multiplication array

1 1 1

y3
3

w51

y1
4

y3
3

y2
4

y4
3

y3
4

One application requiring 'cuo simultaneous ma'Grix

multiplications occurs in tt.e calculatim1 of DFTs t-Iith complex c;';a'Ga

when using the algorithms of the form of (1 .20L This Mot::ld require

the input sequence to be entered into the array with the real word

followed by the imaginary 9 i.e. giving a sequence of real 9 imaginary 9

real 9 imaginary 9 ••••

The second improvement to the array is to notice that the

output words do not have to be initialised to zero as they enter the

array from the righthand side. These words may be initialised to any

value which is to be included in the final result of the matrix

multiplication. If the output of the array is truncated a form of

rounding may be introduced by initialising the output words to the

average value of the discarded bits.

It is of interest to note that an array of these cells is

capable of performing a Walsh transform with no other hardware.

To summarise this subsection 9 the A and C matrix

multiplications can be performed by an array of modified one-bit adder

cells connected together orthogonally. The interconnection pattern and

logic for these cells is illustrated in figure 6. 1.1. The exact size

and partitioning of these arrays is discussed in section 6.2 below.

6.1.2 Pipelined Systolic Multipliers

McCanny and McWhirter [6.; 1 9 6.2] describe a two's complement

pipelined systolic multiplier based upon an array of one-bit full add~r

cells and bit staggered inputs. This multiplier architecture is

illustrated in figure 6. 1.3. The hro input words to this multiplier

are staggered in different manners. One input word 9 described as bi(n)

in figure 6. 1.3 is staggered least significant bit first 9 whereas the

other input word9 ai(n) 9 is staggered most significant bit first.

112

b
3
(n) b

2
(n) b

1
(n)

bjn-1) b2(!l-1~

b3(n -2)

a2(n)

ain-'i}

c1{ :1-2)

Ql (Tl) ~·"<l~)
''-'

~ ~'9 1'1 ""'1''. -u

aoh~3)

a ("='1. c .. 'J

a,o(~~z)

s

b,\}1"c
c-/Cf

~ "~' oJ' <.....

a c' s' ~

r = a.(b8 d)

s= s~~ r G :'

1 0 I I c = r.s -{- r.r::: -=· s.::

Fig 6.1.3 Me Canny and M~Whir ter's

Pipelined Multiplier ArchitEcture

Furthermore thls architecturev uhich is completely regularv is cepable

of accepting words every clock cycle. In order to achieve the two 9 s

complement operation the cells along the lefthand upper boundary have

their 1 d 9 input set to 1 P. All other cells in the array have a 9 d 9

input of 9 0 1 o Note that the value of a
3

(n) is fed to the carry input

of the top cell 9 all other carry inputs are initialised to zero.

Figure 6.1.3 illustrates a 4x4 bit multiplier using an 8x4

array of cells. Notice that in this diagram the three most lefthand

columns of cells do not contribute to the final result 9 their function

is to delay the sign extended bits to the correct significance. This

triangle of cells could be replaced by latches. The total number of

cells in this truncated array for an NxN bit multiplication would be

~N(3N+ 1).

Another possible pipelined parallel two's complement

multiplier architecture is given by Myers [6.8]. This is illustrated

for a 4x4 bit example in figure 6.1.4 which is a corrected version of

fig 4.1.2.1 in [6.8]. The total number of cells for a NxN bit

multiplication using this architecture is N(N+ 1). Note that the cells

along the bottom row have a slightly different logic function to the

other cells with A and B being NANDed instead of ANDed together. The

'carry-in' of the bottom row of cells is set to 1 P rather than the 1 01

of the other rows of cells.

Both architectures have the same potential throughput rate

limited by the time taken for a one-bit full addition.

Many of these features may be used to advantage. Notice that

the stagger on the output words of the transform arrays is exactly the

same as the bi (n) input word stagger for McCanny and McWirter 9 s

multiplier. Thus their multiplier and the i m~trix array may be

113

Basic Cell

connected directly together. The stagger on the output from their

multiplier is the same stagger required by the input words for the

transform arrays. This implies that their multiplier and the C matrix

transform array may be connected without any need to alter the stagger

of the bits. These least significant bit first staggers may easily be

accomodated in Myers' multiplier by the omission of some of the latches

in figure 6.1 .4.

As the multipliers are capable of operating every clock cycle

it is able to multiply the interleaved real and imaginary words from

the A matrix array by a purely real or purely imaginary coefficient 9

such as found in the WFTA. In order that a system employing two matrix

multiplication arrays and one multiplier maybe connected directly

together a technique for reordering the real and imaginary words is

needed whenever the complex word has been multiplied by an imaginary

coe.fficient. This reordering should occur either between the

multiplier and the C array or between the A array and the mul tiplie:r.

A method of achieving this reordering is discussed in section 6.2.3

below. When dealing with 'real' only functions 9 for example

convolutions 9 there is no need to have this word swap procedure.

A very slight simplification to the multipliers is possible by

forcing the coefficients 9 ai(n) in figure 6.1.3 9 to be positive. This

may be achieved by ei the:r altering the signs of a row of the A matrix

or the signs of a column of the C matrix. The net effect of this is to

require a multiplier capable of multiplying positive by negative or

positive numbers :rather than a general two's complement multiplier.

11 4

~:.2 Pr:<:<:_tic:~l-~m~~eme~t:_~ti~n of the~-~A10_~r::~t:_~ms

The overriding limitation of any Implementation based upon

these one-bit full adders is the number of cells in the arrays. The

silicon area occupied by these arrays is large. Whilst it is possible

to split the arrays 9 problems are immediately encountered with pinout

limitations. These problems are discussd in more detail below 9 firstly

for the A and C arrays and then for the multiplier.

6. 2. 1 The A and C .Matrix Arrays

This section and it's associated subsections consider the

dimensions of the arrays for the A and C matrices in terms of numbers

of cells and in area. The problems of pinout and coefficient storage

are then discussed.

6.2.1.1 Matrix Multiplication Array Sizes

For a matrix 9 containing only +1 9 -1 and 0 9 of dimensions N (rows)

x M (columns) a total of N+M-1 columns of cells in the array are

required. Thus the A and C arrays require the same number of columns.

The number of rows in the arrays is governed by the maximum word length

of the accumulated sums. In the worst case the addition of N two's

complement numbers 9 each of which may have been multiplied by -1 9 gives

a word length growth of Log
2

N+ 1 bi tso The reason for the additional

bit is as follows. A b-bit two's complement number represents a number

in the range

when multiplied by -1 a number in the above range falls into the range

-2b- 1 + 1 to 2b- 1 o

Notice that the upper limit of this new range is outside the limit for

representation as a b-bit .tlrJ0 1 s complement number.

115

Starting Hith b~,bit inputs the size of the arrays for the A

and C arrays should beg

A matrix

B matrix

(b+Log
2
N+1) x (N+M-1) cells

(b+Log
2
M+1) x (N+M-1) cells

Table 6. 1.1 belo·t-J lists the number of multiplications and

the number of columns for various DFT lengthsv based upon the WFTA.

The number of rows is the maximum word length in the C array 9 based upr,,

16-bit input data. The longer transform lengths are constructed by the

nesting techniques of chapter 4.

Transform Number of Number of Number of
Length Multiplications. Columns Rows

2 2 3 18
3 3 5 19
4 4 7 20
5 6 10 20
8 8 15 20
9 11 19 21

11 21 31 22
13 21 33 22
15 18 32 22
16 18 33 22
30 36 65 23
60 72 131 24

120 144 26l 25
24b 324 563 26
504 792 1.295 27

1008 1792 2798 28

T·a bl e 6 o 1 o 1
Numbers of Rows and Columns of Cells for WFTAs with 16-bit data

Table 6. 1.1 show.s that the number of columns in the arrays

quickly grows. For transforms lengths in the region 100 to 1000 the

number of columns is approximately 2.5N.

The number of columns in the arrays may be reduced slightly.

Look at figure 6.1.1. If value of the coefficient w
14

is 0 then the

lefthand most column of the array never contributes anything to the

calculation. In a similar fashion if all the coefficients in a

particular column are zeroo then that column ma:y be omitted from the

116

arrayo

By rearranging the rows of the A matrix and the columns of

the C matrix the maximum number of zeroes may be forced into the

corners of the arrayo For the larger length transforms the possible

savings are smalL If it is acceptable to have the input and output

data sequences in a non-natural order then the possibilities for saving

columns from the arrays are much largero

Clearly 9 in any implementation the size of the basic cell

is of great importance. The following is a rough guide to the cell

size.

6.2.1.2 Basic Cell Area

A suitable cell for the A and C arrays was designed in 5~

NMOS. The dimensions of this cell were 300~m x 220~m (width x height).

Whilst this design was fairly well compacted the design was not as

small as it might have been. Furthermore 9 because of other design

considerations 9 it was not desirable to have a cell narrower in width

at the expense of increased height. Thus using 3~m design rules it

might not be linreasonable to expect a basic cell size of 150~m x 160~m.

Patel et al.[6.6] and McCabe et al.[6. 7] show a design in 3~5!-J.m CMOS­

on-Saphire for a correlator cell which measures 260!-J.m x 240!-J.m. This

correlator cell is similar to the cell needed for these arrays. How­

ever their design does not appear to be particularly compact with all

the latches peing of a standard design. Further decreases ln cell area

may be possible by the use of two layer poly-silico.n or metal

processes. In particular two layers of metal would reduce the area

occupied by the clock and power connections to each cell.

117

6o2o1o3 Matrix Array Chip Si.ze ar.d Pinout

Now consider the number of cells that it would desirable to

integrate onto a single chipo If a flexible component is desired one

chip should be able to cope with the i and C matrices for small

transforms 9 say ~p to 16~pointso The same component should also serve

as the basis for the much larger arrays of longer transform lengthso
/

The short transform length condition requires at least 33 columns of

processors and the long transform word length dictates about 27 rowso

The 27 rows would allow accumulations of up to 20L!8 values starting

from 16-bit datao An array of 33 x 27 cells would occupy 4o95mm x

4o32mm 9 using the cell size projected aboveo

Whilst such an array is possible just on the grounds of

silicon area 9 the pin-out of such a chip must be considered carefullyo

In order that the chip may be used to build up longer arrays each row

requires 4 pins 9 2 for input and 2 for outputo Each of the columns

needs 1 pin to input it's coefficientso This is achieved by noting

that as each two-bit coeffici.ent is used for two succesi ve cycles it

may be input via one pin during two cycleso This gives a pin count of

141 for the 33 x l1 array 9 excluding power supplies 9 clocks 9 etco Such

a pin count is high 9 but not impracticableo

In the case where the chips are being used to create long

arrays 9 the 27 rows might be connected directly chip-to-chip if the

whole :nul ti-chip ar-ray was mounted on a sub'str;ateo If ~he. chip were

being used only for small transforms the right hand edge of the array

would not need to be bonded onto external pins 9 with the inputs being

directly bonded to groundo This would reduce the need for large multi-

pin packages and chip carrierso

1 1 8

6.2.1.4 A and C Matrix Storage and Entry

As noted above each q"f ,~he of the array columns requires two

pins 9 or one pin used 'for two cycles 9 for the input of it's

coefficients. The use of off chip storage for the A and C matrices

gives the greatest flexibility at the expense of extr·~mely trride ROM.

Any ROM supplying the coefficients would need to be (N+M-1) bits wide.

Despite the great width of this ROM 9 design would be comparatively

simple as the addressing could be performed by a single input pin

driving a counter.

The alternative would be to provide the ROM storage on the

same chips as the array cells. Reference to figure 6. 1o 1 shows that

the maximum number of values that could be entered down a column of

cells is (N+M-1). For other than comparatively short transform lengths

the amount of on-chip ROM becomes large. As an example consider the

amount of on-chip ROM required for the 33 x 27 array proposed above to

be capable of being used t.o build up a 1008-point transform. The total

on chip storage would need to be 33 x 2 x (1008 + 1792 - 1) = 184 9 734

bits. It is certainly possible to store all these values on a single

chip. However it seems doubtfUl that a sufficiently large and fast ROM

together with the array of processor cells could be integrated on a

single chip using current technology. On-chip storage of coefficients

may be feasible for more moderate transform lengths.

It is important to notice that when no coefficient value is

being entered into the array the coefficient inputs should represent 0.

That means that the leftmost and rigthmost columns of cells in figure

6. 1.1 will only receive a non~ zero input on one cycle per transform.

This condition ensur.es that sucessi ve transforms do not interfere (see

section 6.3 for a note on delays between transforms).

119

6.2. 1.5 Summary of A and C MetdJr In:.pletientation

The way the matrix multiplication arrays are implemented

depends upon the type of solution that is i:leing aimed at. If the goal

is flexibility the best course would be integrate as ~any cells as

possible onto one chip 9 providing a long word length with no on~chip

coefficient storage. If 9 however 9 the goal is a minimum chip count 9

then the policy should be to provide only the minimum acceptable word

length and store all the fl. and C matrix coefficients on-chip. For some

image processing problems this may be the best course. The provision

of 33 columns of cells would provide an excellent basis for a system to

implement a 15-point Discrete Cosine Transform using the algor! thm

given by Ward and Stanier [6.5] 9 see chapter 8.

In terms of ease of development 9 the flexible approach has

much to recommend it. For example commercially available ROM 9 or PROM 9

could be used irii tially rather than custom des.igned wide ROMs. (This

does put the chip count up rather. spectacularly!)

6.2.2 A Pipelined Systolic Multiplier

The multiplier architecture proposed by Myers [6.8] requires

an array of b x (b+ 1) cells to implement the multiplication of two b-

bit words. For the relevant case of 16~bit data 9 this is 16 x 17

cells. The basic cell is a one-bit full adder with some extra latches.
:~

The cell is very similar' that used in the ma1;.rix multiplication, arrays.
~ J

It should be possible to integrate all of this mul tipier onto a single

chip. However both pipelined multiplier architectures may be cascaded

to build up wo~d length if needed. However the pinout requirement

quickly grows.

120

Storage is needed to hold the M coefficients fo~ the

multipliero The possibilities fall into two categorieso On- or off=

chip storage. Off-chip storage requires the multiplier to have 4N pins

(64) for data input and output - excluding clocks etc 9 assuming

untruncated output 9 for 16-bit datao bn-chip·coefficient storage

reduces the chip count but decreases flexi bili ty9 the amount of room

left on the chip after design of the multiplication array ~rYill limit

the size of the ROM and hence the maximum transform lengtho Any on­

chip ROM should be as large as possibleo Perhaps the most convenient

solution would be to have a separate custom designed ROM addressed by a

counter that was directly bonded to the multiplier within the same

package a

The amount of ROM required by the multiplier is Mx(b+1) bitso

The extra bit is to flag real/imaginary for each coefficiento. This

requires 5 9 508 bits for a 240-point WFTA with 16 bit coefficientso

6. 2 o 3 D.ata Skew and Word Order Swapping

Before entry into the A matrix multiplication array and after

leaving the C array the data needs to be skewed and deskewed

respecti velyo The same design may be used to achieve both functions"

It may be done by a triangular array of latcheso Such an array woul"d

need b pins input and b pins outputo To aid the development of the

system and to allow for futur·e word length growth it may be convenient

to have an array of latches whose width is at least the word length of

the matrix multiplication arrays.

As mentioned above 9 if the technique of interleaving real and

imaginary words is used in a DFT 9 some method of interchanging the real

and imaginary words is needed~ either immediately before or after the

multiplier. This interchange should occur each time the coefficient is

imaginaryo Figure 6o2.3 outlines a structure capable of doing thiso

~21

"SWAPPED"

!.

I

"UNSWAPPEO"

: >

Figure 6.2 .3

Word Swap Structure

Many other possibilities for doing this task exist and may be better.

In order to keep the number of separate chip designs down it might be

convenient to integrate this 1 w'ord-swapper1 on the same design as the

data skew array.

6.3 The Overall System

A possible layout of the complete system is sholl in figure

6.3. The data, in natural order, is input sequentially, with real and

imaginary words interleaved, into the 'data skew' module followed by a

gap of (M-N) zeroes. These (M-N) blank valu~s have two functions.

Firstly 9 as the A and C matrices are rectangular 9 time has to be

allowed for the last accumulated sum using the last coefficient 9 WMW to

move from the Mth column of the array past the Nth col uinn where the

first coefficient 9 w
11

i enters for the tirst sum of the succeeding

transform. This prevents the sums of two consecutive transforms from

cl as bing. Secondly, whilst the multi pl i'er has to perform 2M

multiplications and is working continuously 9 only 2N words are entered

into the system. Then, as the entire system will be clocked together,

M-N blank values 'sho'w.d be input to avoid swamping the multiplier.

After skewing, the data enters the !-matrix array. The output

from this array is fed directly into the multiplier, having been

truncated back to the word length. of the multiplier. Suppose the input

word length and the word length of the multiplier were both b-bits.

Now suppose A matrix array is D bits wide, D>b+Log
2

N+1, i.e. this array

has a word length greater than the minimum. Then the D-b-Log
2
N-1 .most

significant bits should be discarded - they should all be the same 9 and

the Log
2

N least significant bits should be discarded to truncate the

word length down to that of the multiplier. There are now M values in

the sequence.

122

: _/': ,.

- / ':~- ----. ~~~-=
c7 r -=

· .•. ~kew ;,~
,j
/I
I

A Array

Figure 6.3

Over alt System

(Array

Output

!Deskew

If an array is built up from standard parts and has a number

of columns greater than N-:-M-1 then the extra columns should be located

at the righthand er.:d of the array and the coefficient inputs tied to

represent a coefficient value of 0. This tdll ensure that these extra

columns have no effect on the operation of the array.

The truncated data words enter the multiplier where they meet

the fixed coefficients. After leaving the multiplier real and

imaginary words of a data value should be swapped if the coefficient is

imaginary. This is shown as a separate function in figure 6.3 but

could incorporated into another component. Then the M values enter the

C array. N values leave the C array followed by M-N blank values.

Finally 9 theN values are deskewed by a triangular array of latches.

The transform results will be in natural order.

This architecture allows easy implementation of window

functions. An extra multiplier and ROM could be inserted between the

initial data skeiN array and the A matrix array. No loss of performance

is entailed but the latency of the system will be increased.

6.3.1 Performance

As the basic cells of the transform arrays and the mul tiplfer are

very similar it will be possible to. clock the entire system at the same

rate. Since the basic cell is a derivative of a·one-bit fuli adder the

clocking rate may be quite high 9 perhaps 40MHz for 3~m tMOS [6.6].

·T-h~s gives a an effective data Pate fop these sys'tems of (N'/H).20HH~~

6.3.2 Chip Des~gns

The different designs needed for this architedture are as

follows:

1. Data Skew/Deskew. This is a triangular array of latches. The

'word swap' circuitry might be incorporated into this chip.

123

2. The matrix multiplication arrays. This might include on~chip

ROM. If there is no on-chip ROM design 3 will also be needed.

3. A very wide ROM. As many bits width as possible 9 addressing

performed by a counter driven by the system clock and reset at

the start of each transform.

4. A pipelined systolic multiplier of b x b bits 9 perhaps with

on-chip ROM if there is enough room.

As all these designs involve large arrays most of the design

effort should go towards the layout of the basic cells. Since the

arrays are clocked together and as the data flow.s regularly through the

arrays very little control will be needed. The control circuitry may

be summarised as follows 9

1. A flag to signify the start of a transform. This control bit

should propagate through the arrays with the data resetting

the counters which address the coefficient storage ROMs.

2. Circuitry .to ensure that M-N blank values (complex) are

appended after each data set.

6.4 AnA Matrix Systolic Array Design

A 51J.m NMOS integrated circuit was designed to perform the A

matrix mul'tiplication for a 6-point WFTA.

The size of the design was limited to 4mm x 4mm 9 including

frame 9 bonding pads and a test strip~ At most 40 interconnection pins

were available. In vi~w of these constraint-s it 1.-ms decided to design

a small i matrix multiplication array. So as to keep the external

circuitry as simple as possi ble 9 all coefficients were to be stored

'on-chip'.

124

As mentioned above the basic cell had dimensions of 300J,Lm x

200~-tm. This enabled an array of at most 10 processors in width to be

put onto the chip. These 10 processors are sufficient to perform the Fl.

matrix multiplication for a 6-point WFTA. A 6-point WFTA requires 6

multiplications. As there is a zero in one corner of the matrix only

1 0 columns are needed.

Having designed the coefficient storage there was room for 8

rows of cells. This allows 4-bit input data and 4 bits of

accumulation. However 9 by mistake 9 the chip was designed for 5 input

bits. The coefficients are stored in a ROM which is loaded in parallel

(i.e. all cells together) into a 20-bit wide shift register at the

start of each transfrom. This shift register is then clocked downwards
v

to enter the coefficients int.o the array.

There was not sufficient room to provide skewing or deskewing

latches. The total chip contains approximately tlf-500 transistors and

was estimated to dissipate about 0~4 Watts. There is a photograpgh of

the design inside the rear cover. Unfortuneately none of the bonded

devices did anything. This was due to a substrate biasing problem.

6.5 Summary of Cl:J.apter 6

This chapter has proposed an implementation of many of the

algorithms from the previous chapters using systolic arrays of one-bit

full adder cells. These systolic arrays offer several advantages.

Firstly a_s they are composed of arrays of ider1tical cells the design of

these arrays should be straightfoward in com:parison to other custom

VLSI components. Secondly since these cells are only connected to

their nearest neigbours there are no long word lines across the chip

with their associated high capacitances to slow down the operation.

Thirdly as the arrays are pipelined down to the bit level the maximum

throughput rate is only limited by the time taken to perform a one-bit

125

full addo

There are two basic components in this implementationo. The

arrays for performing the A and C m~trix multiplications and the pipe~

lined mutlipliero The A and C matrix arrays are capable of accomod­

ating complex data for WFTAs without alterationo The size of these

arrays limits the size of transform (or convolution) that may be

performed. Indeed the most useful application of this technique may be

to implement 9 small-N 9 WFTAs and then to use a !'rime Factor Type

Algorithm to build up longer transformso These 9 small-N 9 transforms

mi~ht be all implemented using the same chip set with different

coefficients.

126

Cbp~lalf' 'if

A Cos~ Function for the Compa~ison o? Algo~ithD Imple~entations

Is the implementation of DFTs and convolutions proposed in the

previous chapter any 'better' than conventional implementations of the

FFT? Do these one-bit systolic arrays offer any architectural

advantages besides the regularity and ease of design mentioned

previously?

This question is a particular example of the problem of

comparing different ways of achieving the same signal processing

function. Ward 9 Barton 9 Roberts and Stanier [7.1] have developed a

cost function to make quantitative comparisons between digital

algorithms implementations including control and overheads. This cost

function provides a tool allowing different implementations of the same

algorithm 9 and also different algorithms for the same function 9 to be

compared. As an· example of the use of this cost function five

implementations of the FFT and four of the WFTA9 including the one-bit

systolic arrays of chapter 6, are compared.

This work was originally begun as a contribution to a joint

industry-MOD working party on high performance logic. The work on the

underlying . assump.tions on the number of logic gates involved and on the

first four FFT i~plementations was provided by Dr P. Barton of STL

[7 0 2].

7.1 Introduction to Cost Function

The implications of developing complex integrated circuits for

real time digital signal processing include the need for a reappraisal

of the algorithms which a~e most efficient for convolution 9

correlation, spectral analysis, beamforming etc. This is because the

127

previously ~high~cost' operations of multiplication and data storage

can now be.realised with specialised 9 high speed 9 low cost 9 VLSI

components.

As new algorithms and processing architectures evolve 9 simple

arithmetic comparisons between them 9 such as those made in chapter 5 9

are no longer adequate. Hardware complexity 9 ease of control 9 physical

size and power consumption must all be considered when comparing

different realisations of a given processing function.

Consequently, it is importtant to measure algorithm

effectiveness in a standard manner well related to the available

hardware technologies. Similarly it is appropriate for each technology

to be given a figure of merit 9 which, in conjunction with an algorithm

efficiency, will indicate the 'cost' of realising a given processing

function. Some algorithm implementation factors of practical

importance are difficult to quantify 9 in particular the applicability

of standard components rather than custom ICs is vital to a short term

project. The ease of reprogramming major parameters in the process is

frequently important 7 for instance the ease of changing the length 'of a

discrete transform or convolution. The financial cost of the required

domponents does not feature strongly in the rating of most high

performance DSP designs and is expected to become increasingly less

impor:-tant as the component cost per functi,on continues to fall.

FurtherJ:!lQre .we have chosen t.o ignore development costs ir1 our proposed

model.

In section 7.2 a 'cost' function is derived which aims to

separate the technology dependence from the algorithm efficiency and

which is easily applicable to different types of implementation.

Sections 7.4 and 7.5 show the cost function applied to implementations

qf the radix-2 FFT and Winograd Fourier Transform algorithm. These two

128

sections illustrate why it is misleading to compare only the arithmetic

complexities of digital signal processing algorithms.

7.2 The Cost Function

In order to keep algorithm properties separate from technology

attainments we prefer to reduce each algorithm to an implied

architecture measured in terms of the highest common technology

independent factors. So that

System Cost = Network Cost x Technology Price (7 0 1)

with 9 for example 9 the system cost measured in Watts, the network cost

in GatesMHz and the technology price in Watts per gate per MHz. For

current technologies these technology independent factors may be chosen

as the number of logic gates, G, and the number of memory locations, B,

integrally involved in the algorithm.

Some previous measures of complexity [7.3, 7.4] only

considered logic elements and memory cells involved in the calculation.

Here we reduce all features of a fixed algorithm 9 including control

functions and address generation 9 to the cost· elements' of logic gate's

and memory locat~ons..

The benefit of an implementation reduces to the available word

throughput rate, R, measured at the input, for a specified word length.

To make this independent of technology it has to be normalised by the

gate speed and me~ory access time. Stating. th.e. 1 cost 1 of an

implementation as the number of logic gate operations and memory

accesses needed should be regarded as the cost of the algorithm without

regard for the architecture 9 whose inefficiency is measured by th~

proportion of time during which gates do not potentially change state

and memory is not accessed.

129

In practice an algorithm is encapsulated within the

architecture used to realise it. We therefore find it easier to

discuss the cost function of the combined entity which we term a

network.

Network = Algorithm + Architecture

Consider a logic-only network with no memory involved. The

algorithm requl~s N gate operations per input word and the architecture

is measured as G9 the number of gates in the network 9 each of potential

speed f
1

Hz. So

NR ~ Gf1

and the efficiency of the architecture is measured as

E h = arc

(7.2)

(7.3)

More usefully 9 the.cost of the network in GateHz per unit throughput is

N
= E:

arch
(7.4)

For an implementation combining logic and memory the cost function is

modified to

eN = GfL + KRAMBRAM + KRO~ROM

R

(7.5)

where BRAM 9BROM are ·the number of bits of memory us'ed and KRAM 9KROM are

the relative costs 9 for example in Watts 9 of one bit of memory. to one

logic gate.

Hence the overall system cost 9 e89 for a given throughput is

given by

(7.6)

where es is measured in Watts or Silicon Area if Ptech is the

technology price in units of Watts per GateHz or Silicon Area per

GateHz. In (7.6) eN is found from (7.5).

130

Whilst the cost function in (7 .5) does not properly take into

account some real vrorld costs 9 such as d'esign 9 construction 9 testing

time and 9 as noted above 9 programmability 9 it does seem a fair basis

for comparing implementations of specified processing functions. It

correctly takes into account 9 for instance 9 simple versus complex

control features 9 and the advantages of pipelined 9 parallel and

systolic structures designed to keep all logic gates continuously

active. eN is not affected by choices which achieve high throughput

rates by the use of more or faster hardware components.

As examples of the usefulness of costing in terms of eN 9 we

consider the cost of several different networks for computing complex

DFTs in the range of 8 to about 1000 points. We then translate eN in

Gat~Hz per unit throughput into power costs per unit throughput for a

curr~nt (bipolar) technology.

7. 3 Assumption~ about Arithm~tic and Memory F,unctions

'I'he following simple assumptions were ma.de about arithmetic

and memory functions.·

(i) An ALU 9 fo.r an input word length of b-bits 9 has a

complexity of 16b logi(J gates and an operation time9 utilising 'carry

look...;.ahead' 9 equivalent to 5 gate delays (t).

GALU = 16b TALU = 5t (7.7)

(ii) A typical multiplier architecture (TRW) is assumed with

b-bit inputs and a 2b-bit output which has a logic gate complexity of

GMult = 10b 2
+ 30b + 80

The multiplication time is taken as

TMult = 4bt

(7.8)

(7.9)

(iii) The random access memory time TRAM is assumed to be

adequately approximated by

TRAM = [5 + Log2 (Number of addresses)]tRAM (7.10)

1 3 1

where tRAM is the appropriate gate delay and is kept separate from that

for logic9 t 9 to allow for case where technology dependence affects the

relative speeds of logic and RAM.

(iv) It is assumed the ROM does not affect the throughput

rate; hence its access time is not considered in the assessment. It

does, however 9 contribute to chip area 9 pot.Jer .etc 9 and is consequently

included in the cost function.

(v) Parallel-access latches are assumed to be characterised

by

GLatch = 1 Ob TLatch = 5t

(vi) A 2 to 1 b-bit multiplexer is described by

GMux = 4b + 3 TM = 3t ux

(7 011)

(7 0 12)

Some futher assumptions are needed about the number of gates in

pipelined multipliers and for the one-bit systolic arrays of chapter 6.

These assumptions are given in the relevant sections below.

7.4 Implementing the FFT

Five d:i:fferent networks for implementing. the Cooley-Tukey Fast

Fourier Transform Algorithm [7.5 9 7 .6] are discussed in this section in

te,rms of radix-2 butterfly elements. The first four of these

structures represent increasing parallelism offering trade-offs between

processing speed and power dissipation and are sketched in figure

from four pipelined multipliers.

7.4.1 A Four-Cycle 'In-Place' Butterfly

This implementation is aimed at low power consumption at the

expense of computation speed. Two multipliers and two ALUs are used to

perform a butterfly in four clock cycles. Only one scratch pad memory

132

IIP

R
.A

·M·.

KIP . tJ 1~
!I
I

~A~ N
II v I r~ .

R J\ c A B
' v M -

b~ CASE 4·2

, :·R: ... '·
B ·.A·· B

M,

c) CASE

t . B

d) CASE 4·4

8

R
r--

A
M

'

0/P
i
m

...

R
...,___~

A~---­
M

0/P

L
L ·t---1'

L~·

l 0/P

FlG. 7.4,1 [J~fferenl fFT Hardwa-re t:onf~gurat~ons

is employed~ the output of the multiplier-accumulator combfnation being

returned to the input memory. Since there is only one memory 9 time

mu:1t hn :::tll0wod to :H'!t 11p the d:11ta array pr:l.or to each transform :md nn

equal Amount of time to output data after each transform. For a

transform of length N the number of complex multiplications is

(NLog/2). These are all done by the same butterfly element using in­

place computations. In each FFT implementation the RAM and ROM are

accessed whilst the multiplier-accumulator combinations are busy.

The time to complete one transform is

T4.1 = (2Nlog2N)(TMult + 2TALU +TRAM)+ 2NTRAM

= 2N(4b + 10)Log2Nt + 2N(1 + Log2N)(5 + Log
2

N)tRAM (7. 13)

The total number of logic gates in the circuit is given by

G 4. 1 = 2GMul t + 2GALU + GCoritrol

= 20b 2 + 92b + 560 (7.14)

A total of 400 logic gates has been assumed for the FFT control. This

figure has been gauged from recent hardware design projects.

Finally, considering the storage requirement? if all the

'twiddle factor' values are precalculated? the trignometrical table has

to be (NLog
2
N)/2 words deep? with real and ima,ginary values each of b­

bits. The node address table 9 which selects the words from the scratch

pad~ has as many words as complex multiplications? (NLog
2
N)/2, and a

word length of 2Log
2

N bits to select the desired. pair of words from the

scratch pad. Thus

(BRAM) 4• 1 = 2Nb bits

(BROM) 4 • 1 = NbLog~ + N(Log2N) 2 bits

133

(7.15)

(7.16)

7.4.2 A Single Cycle 0 ln Pla6e 9 Butterfly --------

Four multipliers and stx ALUs are used to form one complex

butterfly element 9 with the same element being used for 'in-place•

computations on all passes. This single cycle butterfly element is

used N/2 times for each of Log
2

N passes. Two scratch pad memories are

utilised 9 functioning alternately as input and output memories. The

output and input to the external system can take place simultaneously

involving only N sequential RAM accesses rather than 2N as above.

Then 9

T4.2 = (NLog2N)/2)(TMult + 2TALU +TRAM) + NTRAM

= ((4bt-10)((NLog2N)/2))t + (N(2+Log2NH5+Log.2N)/2)tRAM
(7 0 17)

G4.2 = 4GMult + 6G · · + G ALU Control

= 40b 2 + 216b + 720 (7.18)

(BRAM)4.2 = 4Nb (7.19)

(BROM) 4. 2 = NbLog2N + N(Log2N) 2 (7 .20)

7.4.3 Log
2
N.Butterflies

One butterfly element per pass is employed to give an

improvement of Log
2

N times in calculation speed over implementation

4~2. Double buffered memory is used and data is passed from one

butterfly to alternate input memories of the next stage; One memory

receives data from the preceeding stage whilst butterfly computations ' ' .

are performed

T4.3

G4.3

(BRAM)4.3

(BROM)4.3

on data supplied by the other memory.

= N(TMult + 2TA~U + TRAM)/2

= N(4b + 10)/2t + N(5 + Log2N)/2tRAM

= (4GMul t + 6GALU)Log2N + GControl

= (40b 2 + 216b + 320)Log~ + 400

= 4Nb(1 + Log2N)

= NbLog~ + N(Log2N) 2

134

Then 9

(7,.21)

(7.22)

(7.23)

(7.24)

7.4.4 A Totally rarallel FFT

This is the ultimate structure for a radix-2 algorithm with

one-butterfly element per butterfly compbtation performed. The

throughput is fast at the expense of a very high power consumpution.

As each butterfly has a dedicated function no trigonometrical or node

address tables are required.
/

As in section 7.4.3 a double-buffered memory scheme is needed

to make full use of the pipelined structure. Since memory access for

all the but(erflies takes place simultaneously 9 individual parallel-

access latches have replaced RAM. Similarly pairs of latches are

interchanged between stages of the pipeline.

T4.4 = TMult + 2TALU + TLatch

= (4b + 15)t

= NLog
2
N(20b 2 + 148b + 160) + 40Nb + 400

7.4 .. 5 A Pipelined. Bu.tterfly

(7 .25)

(7 .26)

This section propose~ using one pipelin~d butterfly built up

from four pipelined multipliers and six pipelined adders~ This single

pLpelined but'terfly is used in a similar manner to the single

conventional butterfly of section 7 .4.2. The multiplier archi te.cture

is that proposed by Myers 9 using b(b+1) adder cells. Suppose these

pipelined multipliers were arranged so as to give their output skewed

least significant bit first. The-n it woul_d __ be possible to add t:.he

products f~om two of these multipiiers together using b clocked adder

cells. On the first cycle the least significant bits could be added

together 9 on the second the two least significant bits together with

the carry from the previous summation would be summed and so on for

sucessive cycles. This pipelined adder would the consist of b full

adder cells and give an output skewed least significant bit first.

135

Ar

Fig. 7 .4.5. A Pipe lined FFT Butterfly

Further pipelined a~ders could be added immediately after the first

with no intervening delays. This feature is utilised in the pipelined

butterfly illustrated in figure 7.4.5.

The total number of gates used in this butterfly is assessed

using the following assumptions 9

p
(i) Myers 9 multiplier architecture for a bxb bit multiplcation

\
with least significant bit first staggered output is charC3:cterised by

G i = 18b 2 + 14b p pe T i = 5t p pe

This assumes that a clocked carry save adder cell requires 9 gates and

a delay of 2 gate delays.

(ii) Each of the pipelined adders uses b cells each cell

containing 9 gates

(iii) The final 4 deskewing arrays are assumed to have no

delay on the m~st significant bit and use !b(b-1) delays cells 9 each

delay cell containing 2 gates.

(i v) The latency of the pi pel ined multiplier is (3b-1)

cycles 9 giving an overa.ll latency to the butterfly of (3b+ 1) cycles.

This latency m.eans that the butterfly must be run for (3b+ 1) empty

cycles between each of the Log
2
N passes through the algorithm.

(v) Again 400 gates are allowed for control.

These assumptions give the total gate count for this pipelined

butterfly implementation as

(7.28)

There are 4 sets of complex RAM and allowance is made to the

transform time for transfering the results to the external system 9 as

in implementation 4.2 above. Since each butterfly cycle requires two

input words to be read from RAM this 1 imi ts the maximum throughput

rate. As mentioned above the butterfly pipeline must be emptied at the

end of each pass through the transform. This gives the total time

136

taken for the transform as

T4 • 5 = 2T RAM (N/ 2 + latency) Log2N +NT RAM

= [2(5 + Log
2
N)((N/2 + 3b + 1) Log2N + (N/2))]tRAM

(BRAM)4.5 = 4Nb

The pipelined butterfly could be clocked faster than this but a more

elaborate memory organisation would be needed to keep up the

throughput rate.

The number of bits of ROM required is similar to implement-

ation 4.3 but t.wo sets of addressing ROMs will be needed because of the

latency of the butterfly. These ROMs will also have . to cope with the

additional number of cycles due to the butterfly latency.

7.5 Implem~nting'the WFTA

This se.ction considers 4 i.mplementations of the WFTA which

have widely different hardware complexity and throughput rates. They

range from a simple s.cheme which uses two ALUs and a multiplier to the

one-bit systoHc arrays of chapter 6.

7.5.1 A Low Pow~r WFTA

Two ALUs and one multiplier are used with a scratchpad memory

in an implementation aimed at low power consumption. The two ALUs are

arranged in parallel to perfom the complex additions and subtractions.

All the arithmetic components have latched inputs and outputs giving 9
·'

b-bit lat6hes in total. Again~ allowing 400 g~tes for control 9 the

logic gate complexity is

= l0b 2 +152b + 480 (7.32) .~ .

The scratchpad memory must accomodate all intermediate values

137

in the calculation. The intermediate values arise because M>N and the

algorl.thms h .. 1 evnlate A and C matrices require some intermedtate

additions~ the greatest number being 17. The the RAM size is at most

(7.33)

Each operation involves two operands read from RAM 9 latched 9 the result

formed 9 latched and subsequently read back into RAM. Again time is

allowed to set up the input data array and to out put the transformed

data. With 2 ALUs working in parallel the transform time is

T5.1 = A(3TRAM + 3TLatch ~ TALU) + 2M(3TRAM + 3TLatch + TMult) + 2NTRAM

= (20A + 30M +32Mb)t + (5 + Log2(M~l7))(3A + 6M + 2N)tRAM (7.34)

ROM is assumed to hold all addressing and control functions. Each

arithmetic operation requires three addresses 9 two for the operands and

one for the result. T.he number of ROM words is 3(A+2M). As each word

of ROM should address all the RAM 9 both real and imaginary parts 9 a:s

well as providing 4 control bits 9 its width is Log
2

(M+ 17)+5 bits.. The

four control bits are to select READ/WRITE 9 1st/2nd operand 9

Add/Subtract and ALU/MUl tiplier.

F"inai:ty the transform coefficients need Mb bits of 'stor¢ige.

It is possi bl·e to arrange the coefficients and data so that the same

address can be used for both 9 thus a.vOiding a separate coeffici.ent

addressing procedure.

(7.35)

Here groups of ALUs are wired together to perform the

additions for the 9 small-N' A and C matrices. Figure 4.2 9 reproduced

from chapter 4 9 illustrates a 15-point WFTA and gives one possible

indexing scheme. In the 15-point tranform 9 which is a two factor

example 9 4 separate groups of ALUs are needed to handle complex data.

A five stage pipeline is used 9 ~he stages being input 9 pre-

138

Fig. 4 .2 A 15-point WFTA ,

0~'
o / .. ; r ~

5 _j ___ -,

1--t 5
2 ____,

L_----~--lL ______ , ~ ~

5 ~
3~ 7 4 =--=-i

10---

11---1

12-

n-
; 4____;

,___
7

3 pt
Pre -Mul r
Matr1x

Spt
Pre-Mul t.
Matrix

!-

. 1!~
I~....L....-~----1! X' i-==-

f'J (9, I
~ 0

~~ (.xJ I cl.

Mul h:p l i.e ati o ns

5 pt
Post-,Mul t

Matrix

3 pt
Post-Mutt

Matrix

multiplication additions 9 the multiplication stage 9 post-multiplication·

additions and output. Figure 7 .5.2 gives a schematic layout for this

implementation.

The pipeline has 8 sets of RAM each of which has to contain M

complex values. The total RAM is

(BRAM) 5•2 = 16MB bits (7.36)

As each RAM reads and writes onto separate buses in two stages of the

pipeline 4 tri-state latches per RAM are needed. These latches are

controlled by the ROMs containing the RAM addressing.

The 2M multiplies are pertormed by 2 multipliers 9 each

calculating M products. The real and imaginary parts of the product

are interchanged by a multiplexer if the coefficient is imaginary. The

coefficients are each stored· with a 1-bit real/imaginary flag and are

addressed in a similar manner to 5.1. The delay due the the

mul tiplicati"on stage of the pipeline would be

M(2TRAM + 2TLatch + TMult + TMux) Gate delays. (7 .37)

The pre- and post-mu]:tiplication stages can each be broken

down into k substages 9 each substage corresponding to a factor. Within

a substage groups of n
1

numbers (m
1

for t.he post-multiply stage) are

read from RAM and are latched at the inputs to an ALU grc>up. When all

ni (m
1

) values have been latched the results ripple through the AL~,s

and the results are latched~ These latches ar$ enabled s~quent:ially

and the sums are read back into the other RAM of that stage.
... <.,

By using

a two bus structure input and output to the ALU group can take place

simultaneously. With an even number of factors a further set of data

transfers between RAMs will be needed a the end of each substage.

139

N1 ~point·
~ ALUs__j

'-1 Nrpoint [:::
~ ALUs.

.. R l~~: R ·.

Pd,~H~LJ
I. '-1 R L-JA

Pre- Multiplicafion ~· M · .

d
R.

p A
M .

ALU groups

~ N1-point ·t
· ALUs .

~ N2-point t_
A~Us

Mult.
~··.~

. p
Mutt . .

N1-point 1

1

. ~.
~ ALus In 1

~ dl N2-po~nt It r
A ~ '1 r-1

;..us 11 1

R
I rr===i1 .r~-:-· :. ~ §p

· ·· · . R . J ~i · : · ··.· ~r ·.·
A I c.J . 4)

... · ! A ·; .• :A.· ... ~···· .. ·
.• · M~ Post-Multiplication M lJ] _1

ALU groups

I

1

•

1

Jl N1-=:point
1

· ·· AUJs

Lj N2 -po~nt
ALlJs

i

Rl 'IRl
rji A . F\ ~>·

r----1 M,ti r
M ! ~ I tQt.#P .. ~v~ 1L. ~I •J

~
I>==

·Fig. 7.5.2 Groups of AL Us· WFrA · -Implementat~on

All Winograd's 'small-N' algori'r.hm networks have a ripple

through time of at most three addition times. Thus if one 'cycle' is

taken as

(7.38)

and tRAM~ tv the :ripple through delay of any ALU block is less than one

cycle. Consequently the time taken for this stage of the pipeline is

the number of RAM access cycles with an additional cycle for each ALU

block delay. The total number of cycles is

N N m
1

N m m
n, +- (m 1+ 1) + n

2
+ --(m2+1) + n3 + 1 2(tn +1) + (7 0 39)

3
0 0 0

n1 n2n1 n3n1n2

A further M cycles are needed if the number of factors is even.

The throughput rate for this. type of implementation is limited

by the multiplication stage for transforms up to lengths of around 30'0

points. Larger transforms are limited by the ALU stage.

The 4 ROMs addressing the 4 RAMs in the Pre- and Post-multiply

stages M~ed as many words as the number of cycles. The 2 ROMs

addressing RAM within the multiplication stage each contain M wordsv

whereas the ROMs addressing the in'put and output buffers each corttain N

words. Each word is Log
2

M+2 bits in width. The 2 extra bits are to

indicate READ/WRITE and the pipeline stage. The total ROM is

(BROM\. 2 = (4x(No. of cyqle~)+2l"!+2N)(Log_i1+2)+M(b+ 1) bits

The logic gate complexity is found from

(7.40)

2 b bit multipliers

6Ll latches for RJ\.M I/0

k
No. of ALUs = 2[ai

1:1

k
No.. of latches for ALU blocks = 4 I, (ni+m.)

• 1 1 1:

2 b-bit 2: 1 multiplexers

140

640b

k
40b l: (n1+m1)

i:1

2(4b+3)

Total

E~timate nf control 1000

k
= 20b 2 + r, (32ai + 40(ni+m1))+ 708b + 1166

t: 1

7 o 5o 3 Completely Parallel 'V>JFTA

This i~plementation is similar in style to the final

unpipelined FFT implementation 9 separate multipliers and ALUs being

used for each operation 9 giving a total of 2A ALUs and 2M mul tiplierso

A three stage pipeline is used. No RAM is needed and completely

parallel inputs and outputs are assumed. Two sets of latches are us.ed

between stages of the pipeline with latches acting as input and oi.it·put

buffers. As all multipliers and ALUs are dedicated to a single

function no ROM is needed. The logic gate complexity is given by

G5.3 = 2AGALU + 2MGMult + 12(N+M)GLatch

= 20Mb 2 + (32A + 180M + 120N)b + 160M (7.42)

The throughput is limited either by the multiplication time or

the ripple through delay of the ALU network. .The ripple through .delay

of a composite transform is the sum of the rippl.e thr.ough delays of

each of the smaller factors. The ripple through delay of a 'small-N'

algorithm is 9 at most 9 3 addition times. Hence throughput is limi te.d

by the mul ~iplication delay if the number of factors 9 k 9 obeys

k < 4b (7.43)
1'5

For 16-bit data this is 4 or less factors. As the transform lengths

considered here have 4' or less factors 9 each of their throughputs is

governed by the multiplication time rather than the ALU network delay.

Hence

T5.3 = 2TLatch + TMult

= (4b+10)t (7.44)

1 41

7.5.4 A WFTA Imple1J,l¢ntation using One-bit Systolic Arrays

This uses the ideas presented in chapter 6 for a WFTA

implementation based upon one-bit systolic arrays with complex

int.erleaved data and Myers' multiplier architecture. The following

assumptions were made

(i) Myers' pipelined multiplier architecture is assumed using

b(b+1) full adder cells. With input words that are already skewed

least significant bit first and output words similarly skewed the gate

count for this pipelined multiplier is

(7.45)

This assumes 9 as before 9 9 gates for the CSA adder cell and 2 gates per

delay element.

(ii) The total number of cells in the A and C arrays is

(8.46)

The number of gates in the basic cell is assessed by assuming 9 gates

for the adder 9 6 gates for the delays associated with the two control

bits and input data bit with 4.gates for 'extra logic' which performs

the one-.bit product. Thus the basic cell contains a total of 19 gates.

In addition to the adder delay the extra logic is assumed to require a

further 3 gate delays giving a cell delay of 8 gate delays.

(iii) The initial data skew and final result skew will each

need a triangular array of delays. The number of delay cells is

ib(b+i). Each delay cell ne-eding 2 gates.

(iv) Both the A and C arrays need to have their coefficients

stored. Each element of the matrices requires 2 bits. Each column of

·the A and C arrays is assumed to have the full (N+M-1) possible values

stored for it. The coefficients for the multiplier will need a one bit

flag to indicate real/imaginary. The total ROM storage is

(7.47)

142

(v) RAM storage is assumed to be nil as the data enters the

system in natural order and is 'Clocked out in natural order.

(vi) The gap between the starts of successive transforms is

2M cycles. Thus with a cell delay of 8 gate delays ths throughput rate

of the system is

N/16M words per gate delay

7.6 Comparison of Algorithms

This se.ction seeks not only to test the validity of the use

of the 'cost function' in comparing implementations but also to compare

different irr.tplementations and algorithms. Only the broadest of

conclusions are drawn as changes to the assumptions made in the

previous sections can alter the relative merits of some implementations

which have· very similar values of the cost function.

7.6.1 Comparison of FfT Algorithms

As a w~y of asses·sing the value of the cost function the four

'conve.ntlonal' ways of the implementing the FFT are compared. Figure

7.6.1 illustrates a power cost function for these four FFT

implementations. This power cost functionp defined by (7.5) 9 is

plotted for 16-bit data. These cost functions assume that tRAM t 9

power consumption per bit of RAM = 0.,3 x power consumption of one logic

gate and the power consumption of one bit of ROM as 0.03 x that of one

logic gate.

In general the cost function of these four FFT implementations

gradually increases with transform length. For a given transform

length the cost function decreases as the hardware parallelism and

throughput increase. The most 'efficient' conventional FFT

implementation is that given in section 7.4.4. This implementation has

143

108

c 7 .olO
~
w
c
::J

u..
~
Vi
0

LJ

L
CIJ

~1oP
Q_ .

. 4·2
:. 4·3 =

. 4·4

0 FFT

b=16

105'----------1!...,.~~--~..,d_~====~
1 10 102 . 103

Tr©Jn~form L~ngth

Fig. 7.6.1 4 FfT (ost fun(tions

the least overheads to support requiring no RAM or ROMo These seem

reasonable conclusions to draw from the cost functiona

Figure 7a6a2 gives the cost functions for the most parallel

FFT and the pipelined butterfly implementationa It can be seen that on

these assumptions the pipelined butterfly produces a similar cost

function to the most parallel FFT for transform lengths above 100

points or soa For much longer transform lengths the pipelined

butterfly cost function becomes larger than the fully parallel FFT cost

functiona Note that the pipelined butterflies cost function has a

minimum 9 this is because of the effect of the latency of the butterfly.

Improvements to the way of utilising the pipelined butterfly are almost

certainly possible. The ·scheme given above does not use the butterfly

at it's maximum throughput rate and an implementation with a more

elaborate memory organisation may well have a lower cost function.

7 ~6"2 Comparison of .WFTA ~mplem~ntations

Figure 7a6a3 gives the same cost function plotted for the

three conventional WFTA implementations" Th.e cost function for the

most parallel FE'T is also included" It is immediately apparent that

first two ways of im~plementipg the WFTA offer fe~rr architectural

advantages - they have very similar cost fun·ctions to the low power FFT

implementation" The fully parallel WFTA implementation offers the

lowest cost function of the architectures considererl so faro

Comparison with the fully paral-l-el FFT shet,rn the f·uHy par-allel WFTA to

require less gates 9 because of the less operations performed 9 and to

have a higher throughput"

Figure 7a6a4 shotvs the cost functions plotted for the most

parallel FFT and WFTA implementations together with the cost functioon

for the systolic WFTA implementation" The systolic WFTA has the lowest

cost function for short transform lengths" The gradient of the

144

'-P·ARALLEL .. .

o -FFT

I
li

~~: . 45 II
4.4 'i

I
(I

i\

i
I
~

105 "--------~----L----------ll.--.:.__ __ __,j

1 1.0 102 103

Transform len§:Th

Fig. 7 .6.2 Pip-ehned and Paraaet ffl

(CQl.s;t Fun(t ~ons

c 7
~10
u
c
:::::1

LL

-e-.
(/)
G.

LJ
L
C!J

3 6
~lO.

o rFT

o WFTA

b = 16
F 1 0:1 '=-------==-=-.-..L..,.i. -~~---.,.,.,..,.·'""'·"' _k ... -~~-~~_J

1 10 102 1{)3

Transform Length

fig. 7.6.3 WFT A aAd ParaH.cei FFT Cost Funct~ons

o FFT

m WFTA

b::16
.§107 .·
~
(J

c
::J

LL
--!­

C/)

0
L..J

.L.
QJ

?;. 6 o:..iO

~STOLIC WFTA

10 S~ b.,-,._,..._' --,----~"-----.,--~--~~--~-d

1 10 102 103

Transfor~n Length

Fig. 7 .6. 4 Parallel FFTa WFT A and SystoUc WFTA

(os t F u n c t ~on s

systolic "t~JFTA cost function is very steep in comparison to the other

architectures. This is because of the huge numbers of gates in the A

and C arrays.

7.6.3 Conclusion to Algorithm Comparison

The cost function allows both individual implementations of an

algorithm to be compared as well as dissimilar algorithms for the same

function. The results derived indicate that a reliable judgement on

algorithm suitability demands a detailed analysis of specific designs.

The results presented above indicate that the less oveJ::?heads required

the lower the potential cost function. Thus applications requiring

relatively slow transform times should be implemented by the most

efficient architecture but should use a slower technology.

As ?tn example of t.he application of the cos·t function 9 the

power cons\lmption for a 12Q-.point complex DFT with a lOMHz data rate

using iniplerii.entat·ion 7 .5.3 9 the mo$t fully parallel 'HFTA is calcul_ated.

A cu.rrent bipolar technology is assu:.ned which has a power dissipation

-12
of 1SmW/Gate and t:2.5nsp giving PTech=3.8xlO vJatts/GateHz.

CS = CNRPTech (7.6)

From figure 7.6.3 CN:1.2x1o 6 Gate operations. This gives the power

consuriipti.on for t·his implementation as 46W. N·otice t·hat the time

available f-or the multiplication is 12 !J.Sec and tnat the implementation

uses 244 multipliers! It is as well to remerri:ber that the cost function

is a measure of architectural efficiency.

In terms of the cost function the systolic WFTA offers the

'best' way of implementing short transform lengths and the fully

parallel WFTA for longer transforms. This suggests that an

implementation of the DFT based upon the Prime Factor Algorithm which

uses the systolic WFTA to implement the factors may have some

145

advantages.

146

So far only convolutions a~d DFTs have been considered in this

thesiso This chapter shmrJS that smother function 9 the Disct"'ete Cosine

Transform 9 can be evaluated using an algorithm of the form of (1o20)o

The algorithm is derived from the Winograd Fourier Transform Algorithm

and may be implemented using the one-~it systolic arrays proposed in

chapter 6. However as the DCT only involves real ari thme.tic it is

shown that these ar~"ays of cells may be halved in area.

Bo 1 The Discrete' Cosine Trar;tsforril

Several authors [8.1 si8o2] have shmm that the Discrete Cosine

Transform is a: f!iOOd' technique to adopt for the data reduction of video

signals. Ear:lier met.hods of realising the DCT have 9 for the mos.t part 9

been based upon the Fast Fo.urier Transform (FFT) [8o3~B.5J. A:n

al terriative algorJthm 9 using Hadamard sparse matrices 9 .has been

proposed by HBin and A~med [8~}. Thi~ has been implSfu~nted by

Ghanbari and P~arson [8.7].'

The Discrete Cosine Transform may be defined as

· N-1
C(O) =~ 2: E(n)

n:O
(8 0 1)

r;:;-N-1
=/~ E x(n) cos k1T!'J2n+J2

n=O 2N
f8.2)

with inverse

E(n) =.Jlf(o) ~ Ni;'\:;(k) cos niT(~~+ 1)
k:O

n= 1 9 ••• 9 N-1

Notice that unlike the DFT the DCT cannot be used as it's own inverse.

147

The DFT of R points is defined as,

{1 R-l (21T lT
W(q) =JR :[x'(p) [cos

1 ~q) + jsin(2 '~q)]q=0,1, ••• ,R-1 (8.4)
p:O

with inverse

Then a DCT may be calculated by a DFT by noticing that

cos kTf(~+ 1) = Real [cos (2TI~q) + jsin(2rr~q) J

Provided that R = 4N

and x'(2n+1) = x(n) n:0,1, ••• ,N-1

x' (1) = 0 (8.6)

Then the calculation of the DCT may be described as placing the N terms

of the DCT input sequence in the first N odd points (1,3,5, ••• ,2N~1) of

a 4N-point sequence. All other terms are zero. Then a Fourier like

transform is performed by multiplying by the real part of exp(-2Tipq/R).

The DCT, except C(O), is found as the first N-1 terms of F(q). Some

normalisation coefficients are needed.

8.2 Application of the WFTA

A WFTA algorithm for 4N-points is easily modified to calculate

aN-point DCT. The procedure is described below.

1. Only the columns corresponding to the first N odd samples

of the A matrix are retained. All other columns are discarded as they

operate on zero inputs.

2. Since the DCT involves no complex arithmetic - it has no

imaginary or complex coefficients - all the imaginary WFTA coefficients

may be removed. The corresponding rows of the A matrix and

corresponding columns of the C matrix are removed.

148

3. Some rows of the A matrix m~y now be all zero. The

coefficients for each of these rmvs may be removed together lrJi th the

appropriate columns from the C array.

4. The second to Nth rows of the C are retained. These

represent the DCT 9 all other rows should be discarded.

5. By inspection it may be possible to simplify the C

rna trix. For example a column of zeroes represents an unused

coefficient. Such coefficients and the equivalent rows of the A matrix

should be removed from the algorithm.

6. Finally the C(O) term is added to the algorithm. The

exact arrangement of the normalisation coefficients in (8. 1) and (8.2)

determines the number of additional multiplications to be added to the

algorithm. With the normalisation coefficients as given above one

extra multiplication is needed.

The procedure results in an efficient algorithm for the

calculation of the DCT using a small number of multiplications.

The same princtples can be used to derive an inverse DCT frorr.

a foward WFTA. In this case the first N-1 columns of the WFTA A matrix

and the first N odd columns of the C matrix are used 9 Le. the oposi te

way round to the foward DCT. Equally well the above procedure coul<i

have been used to calculate the Discrete Sine Transform. The next

section illustrates.the derivation of a 4-point DCT algorithm.

149

8.3 Derivation of a 4-point DCT

As an example of the procedure suggested above a 4-point DCT

is derived from the 16-point WFTA given by Winograd [8.8].

The A matrix for the 16-point HFTA is

1 1 1 ~ 1 1 1 1 1 l 0 ~
J -1 -1 -1 ' -1 j -~ r .(

1 ~'
~ - I

0 - 0 0 - 0 (I
.(

A - -
(1 .1 1 .1

0 (0 - 0 (0 ~ ((I ~' I ((,

(\ (\ " " -
' 1 ' '
1 -1 (-1 (1 (- ~ -
0 0 (0 (0 - (((· (((
(\ f'l f'l f'l

1"1 (\ " _C\
v

0 0 (0 - 0 - (((
1 .1 1 1

_(\ (\ 1
I v

(" f'l 1 f'l
v v v

(1 -1 (1 (-1 (- (- (

(1 (0 (0 (-1 q - ((((

(0 -1 (1 (0 d (- ((

i

i
i

i
i

i
i
i

The vertical columns removed (0),2 9 4 9 oo.) correspond to zero' data. The

rows marked with an i correspond to imaginary coefficients in the 16-

point WFTA. These rows can also be removed.

Of the remaining rows 39 5 9 9 and 12 are all zeroes. These

coefficients may be removed. Row 2 is minus row 19 this allows one of

them to be removed. This means a slight change to the C matrix.

Thus coefficients 19 8 9 16 9 17 and 18 remain. This implies

that only columns 1 9 8 9 16 9 17 and 18 are of interest in the 16-point

WFTA C matrix. Examination of rows 2 9 3 9 and 4 of the C matrix 9 Le.

those rows corresponding to the DCT is

not used 9 it may be deleted. These last operations are illustrated on

the 16-point WFTA C matrix given below.

150

Thr lG-pnlnt WFTi\ C tn:t\.t·ix i.:-.

"' "' "' "' v

t
0 D (0 ~ 9 -1 1 0
0 D 1 ~ ~ ~ D 0 0 0
0 D (0 1 -i I· ~ ~ I 0 ~I
1"1 -0-. rh h - i ~~ ~ 1"1 ('\ .fl.
~

r--L---2---
~

!)_ (\ I ' -G---:;

ll 1 (\ _1:'1 .n ...a
~ ~ ~

1"1 1"1 ' J, ' _j_ ..()

r\ _;; -
ll 1"1 f'l .D.. ..1:1

~ ~ v

1"1 1"1 " o+---0 ~

fl. .1 _0 _D. .£\ -
" " '"' .,
v v v
r. " "Cl. -()

~ -
()_ I ((\ 1 L'l ~

v

(). 1 "' n. -o v v

()_ (n 11.1. ..Q

Hence a possible A matrix for the 4-point DCT algorithm is

The C matrix is

The coefficients are

1/2~
! cos7T/4
~ cos37T/4
!Ccos~/8+cosn/8)
!Ccos3IT/8-cos~/8).

8.4 Implementing the DCT

[~ -~ -~ ~j
1 0 0 -1
0 -1 1 0

[~
0 0
0 -1
1 0
0

As the algorithms derived by the above method have the same

form as the WFTA algorithms the methods proposed in chapter 6 can be

used to implement these algorithms. Since the DCT involves no complex

arithmetic and the data is real there is no need for the data

interleaving techniques used in the previous chapter to handle complex

data. This allows the arrays to be simplified.

1 51

8.4.1 A andC Matrix Reduced Arrays

Figure 6. 1.2 illustrated the first four cycles of interaction

between the data 9 coefficients and summation terms tn the A and C

matrix arrays. For clarity the layout of cells and latches was

omitted. This diagram made it clear that any one processor is empty on

alternate cycles. This suggests that one processor could be made to

perform the work of two.

Consider the contents of the two processors outlined in each

of the four cycles of figure 6.1.2. On the even cyles (0 9 2 9 4 9 ,,,) the

lefthand processor is busy and the righthand one on odd cycles. These

two processor may be implemented in one cell with some additional

feedback paths. b The data Xk enters the cell on even cycles and is

reused on the next odd cycle. b The summation terms Yk enter on odd

cycles and are reused on subsequ-ent even cycles. New coefficients are

required on each cycle. Inspection of figure 6.1 .2 shows that rows of

cells must be out of phase 9 i.e. if row one is 'even' row two is 'odd'.

With this arrangement the coefficients and carries propagate down

through the array with no delay.

The compacted array and new coefficient layout are shown in

figure 8.1. The feedback paths which enable the data to recirculate

are shown as being clocked on either 'odd' or 'even' cycles.

8.4.2 A Reduced Pipeline Multiplier

The two multiplier architectures considered in the last

chapter are both suitable for the DCT. As noted in the previous

chapter a slight simplification is possible to these multipliers by

forcing all the coefficients to be positive so that a general two's

complement multiplier is not needed.

For this particular application a second simplification comes

152

1
3

2
2

3
!

Fig 8.1 Reduced A and C Matrix Arrays

y2
3

y3
2

from noting that new words would be pressnted to tha pipelined multi­

plier on alternate cycles from the A matrix tranform array. As in the

case of the transform arrays alternate cells in the multiplier are

unused. This reduced interactiofi is illustrated in figure 8.2 for

McCanny and Mct-rhirter's multiplie!" architecture [8.9]. The mul tiplie:r

exhibits a similar pattern ::>f 1 odd 1 and Qeveni ce::.ls. Hith one

important difference a similar halving of the number of cells is

possible. This multiplier architecture requires separate paths for the

summation terms on 'odd' and 'even' cycles. This is because the

summation terms propagate diagonally through the array rather than

parallel to the sides.

This simplification yields a mxm cell array for a m-bit x

m-bit multiplication from McCanny and McWhirter's multiplier

architecture. The reduced array is illustrated in figure 8.3. The

diagram also reveals that by multiplexing 2M pins could be used for

this multiplier rather than the more normal 4M.

Similar simplifications are possible to the architecture

proposed by Myers [8.10] yielding a compacted array of [(M+1)/2}M

cells. The [.] denote rounding up to the nearest integer. Which

architecture is 'better' will depend upon wordlength and the relative

areas of the extra cells needed by McCanny and McWhirter's approach

compared with the extra latches needed in Myers' architecture.

153

(i)

'
(ii)

B3
1

B2
1

Bl
1

A2
1

A1
1

Ao
1

B3
0

B2
0

A.1
0

Ao
0

(iii)

B3
2

B2
2

B1
2

Bo
2

A3
2

A2
2

A1
2

Ao
2

B3
1

B2
1

A1
1

Ao
1

B3
0

Ao
0

(i v)

B3 B2 B1 0 3 A2 A1 Ao
2 2 2 n 2 2 2

B3
1

Ao
1

Figure 8o2
The First four cycles of the reduced multiplier interaction"

154

, r
<:7' r I ~(n) ~(~) ~~<~ :.J

~(n) b0(nhe J?Je'e a
3
(n) ~(n) b3(n)

~ ~
0 0

tuv¢f~~ /l
0 0

. u df< ..J ~ -?f. ~ r a,
l' o;o~ ~e e ' '\ _,...1

/ _ a
1
(n -2) Or{n-2}

v

,.. (""') p "":s;; i ~- : '·'"" \..:.2. I~,._., •• VC

Even : b 0 >01 Xt 5J:oY~~ $i)1 '0 b
J'P _ e_ 1 ,..,.,.., "a

0
, ~ I" .. -~- I-..._ .. Vi

Odd :1 n D I

c)2 ~I n D 11 0 l ~ r '- 0.(rv "'lbo
I., fn-R)

e
~

a Odd & Even cycles '~eJ /\ u s
s~s@ (Qb) €JC

Fig 8.3 Reduced Pipel~ned Multiplier Array
.. ~

c~abs ~ abc-vsc

8o5 Implementing a 15-point DCT

It appears that short length DCTs 9 around 16-points 9 are of

most value in image compression. For example [8o9] i~ coccerned with

an elaborate implementation of a 16~point DCTo Appendix III gives a

"i5-point DCT algorithm derived fr·om a 60~point lrWTA.

This 15-point DCT algorithm uses 19 multiplications. So

19+ 15-1 = 33 single processors would be required in the r .. and C arrays.
I

With the arrangement of the matrices as given a single column may be

saved from the A array 3.nd 9 single columns from the C array. These

savings come from considering the number of diagonals in the corners of

these arrays which only contain 0. These figures imply 16 double cells

for the A array and 12 double cells for the C array. An alternate

arrangement yields 15 double cells in each array.

In many image processing applications a restricted word length

is sufficient 9 say 8 bitso A 15-point DCT with 8-bit data requires

A array

C array

Multiplier

16x13

n
12x12

8x8

Double Cells

Double cells

Double Multiplier Cells (8.7)

Inspection of the 15-point DCT C matrix shows that no sum involves

more than 8 values 9 thus restricting the maximum wordlength to 12-bits.

These figures assume that the wordlength is truncated back to 8 bits at

the end of the A array and the multiplero

Even allowing for the increased cell sizes it seems feasible

to integrate this entire 8-bit 15-point DCT onto a single chip using 9

say, 31-l CMOSo With 3iJ. CMOS such a chip would be capable of accepting

domestic TV data rates.

155

8.6 Summary of Chapter 8

This chapter has shown the development of a fast algorithm for

the Discrete Cosine Transform based upon the Binograd Fourier Transform

Algorithm. This algorithm may be implemented using compacted versions

of the one-bit systolic arrays discussed in chapter 6.

156

9.1 Conclusions and Summary

The first five chapters of this thesis concentrated on the

development of algorithms for the computation of cyclic convolutions

and DFTs. An important general form derived in chapter one is

y = C (Ax ~ Bh)

Equation (1.20) describes the general form of Winograd's cyclic

convolution and DFT algorithms which are discussed in chapter 2.

Nussbaumer's two-dimensional cyclic convolution algorithms based upon

polynomial transforms are also of the general form of (1.20) 9 see

chapter 3. A feature of many of these algorithms is that the A and C

matrices contain only + 19 -1 and 0. The product Bh is precalculated

and given as series of coefficients. The Cyclic Convolution Property

(CCP) can also be described by (1.20).

Chapter 49 which discusses multi-dimensional mappings 9 shows

that algorithms of the form of (1.20) may be nested together to perform

longer convolutions and DFTs with the nested structures still retaining

the general form of (1.20).

Chapter 5 compared the number of arithmetic operations for a

variety of convolution and DFT algorithms. In terms of the number of

multiplications the follm·ling conclusions were drawn.

(i) One-dimensional DFTs should be calculated by the tVFTA.

(ii) One-dimensional cyclic convolutions for real data up to

90 points in length should be calculated by nested one-dimensional

'short-N' cyclic convolution algorithms.

157

(iii) One~dimensional cyclic convolutions of rsal date for

lengths greater than 90 points should be com~uted usi;c.g complex lo!FI'As

to calculate two real convolutions simultaneouslyo

(i v) Two-dimensional DFTs should be calculated usir;.g two-

dimensional DFT algorithms based upon polynomial transformso These

algorithms are not discussed in detail~ see belowo

(v) Two-dimensional cyclic convolutions of real data up to

60x60 points should be computed using two~dimensional cyclic

convolution algorithms based upon polynomial transformso

(vi) Two-dimensional cyclic convolutions of real data for

greater than 60x60 points should be calculated by two-dimensional

complex DFTs based upon polynomial transformso

(vii) Finally in chapter 5 the optimal algorithm and block

size for the convolution of a picture with a fixed window was foundo

For up to 8x8 windows convolution algorithms should be employed 9 for

greater size windows two-dimensional DFTs algorithms should be

employed.

Chapter 6 proposed an implementation of algorithms of the form

of (1.20) based upon the one-bit systolic arrays of McWhirter and

McCanny. This architecture has several attractive features for

implementation in VLSL These features include regularity and short

interconnection between cellso The throughput rate of this

implementation is limited by the time to perform a one-bit full

addition.
).,

Chapter 7 then considers w~ther or not this implementation

offers any advantages over more conventional techniques 9 such as the

FFTo A Cost Function is developed which allows comparisons between

different implementations of the same algorithm and between dissimilar

algorithms. The cost function is based upon the number of gates used

158

to realise the function and the thr>oughput rate. A:::.l features of an

implementation are considered 9 including address generation 9 control

and other overheads. When evaluated the cost function shows that the

less overheads 9 in the form of ROM 9 RAM 9 latches etc. 9 the better. The

systolic WFTA offers the lowest cost function of all the algorithus

considered for transform lengths up to about 30 points.

Finally 9 in chapter 8 an algorithm for the Discrete Cosine

Transform (DCT) is derived from the WFTA. This algorithm has the

general form of (1 .20). As the DCT involves no complex arithmetic it

may be implemented by modified versions of the systolic arrays of

chapter 6. These modifications allow the number of cells required in

the arrays to be halved.

9.2 Suggestions for further work

An area not investigated was the derivation two- and multi~ ,.

dimensional DFTS by techniques other than the nesting of one-

dimensional WFT As. Nussbaumer [3.2-3.6] has done much work in this

area and it appears that DFT algorithms derived using polynomial

transforms will have the general form of (1.20) 9 perhaps with A and C

matrices containing only + 19 -1 and 0. Recently Auslander 9 Feig and

Winograd [3.13] have published a different way of deriving multi-

dimensional DFT algorithms. It would be interesting to consider the

relationship between the two techniques.

Much further work needs t.o he done on systolic arrays?

particularly in ascertaining the relative merits of different

·systolic i mpl ementa tions of the same function. For example 9 is it

better to treat a DFT as a matrix vector product and use a more general

·purpose array rather than the WFTA implementation of Chapter 6? Or

\
would it be better ~ to use a systolic correlator and Rader9s theorem

\

to calculate DFTs? There are many possibilities.

159

Another interesting comp~rison to make would be between bit­

ser1.0,1 'lrchl tP.cture:> :md the hit par&llel ;.tructure:J ct l:3cu~:3ed hereo

160

1.1 Gold B. and Rader C.M. 9

Digital Processing of Signals 9

McGraw~Hill 9 New York 9 1969 9 pp 203-213.

1.2 Pollard J.M. 9
The Fast Fourier Transform in a finite field 9

Mathematics of Computation 9 VoL 25 9 No. 114 9 1971 9

pp 365-374.

1.3 Nussbaumer H.J. 9
Digital Filtering Using Polynomial Transforms 9

Electronics Letters 23rd June 1977 9 VoL 13 9 No. 13 9

PP 386-387

1.4 Nussb~umer H.J. and Quandalle P. 9

Computation of Convolutions and Discrete Fourier Transforms by
Polynomial Transforms 9

IBM Journal of Research and Development 9 VoL 22 9 No. 2 9 March
19789 pp 134-144.

1.5 Agawal R.C. and Cooley J.W. 9

Algorithms .for Digital Convolution 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-25 9 No. 5 9 1977 9 pp 392-410.

1.6 Agarwal R.C. and Burrus C.S. 9

Fast Convolution using Fermat Number Transforms with
Applications to Digital Signal Processing 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-22 9 April 1974 9 pp87-99.

1.7 Rader C.M. 9
Discrete Fourier Transforms when the number of samples is
prime 9

Proc. of the IEEE 9 Vol. 56 9 No. 6 9 1968 9 pp 1107-1108.

1.8 Nagell T. 9

Introduction to Number Theory 9

Chelsea 9 New York 9 1964.

1 6 1

1.9 Kolba D.Fo and Parks T.!•I. 9

A Prime Factor FFT Algorithm using High-Speed Convolution 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-25 9 No. 4 9 1977 9 pp 281-294.

1.10 Nussbaumer H.J. 9

Fast Fourier Transform and Convolution Algorithms 9

Springer Series in Information Sc1ences 9 Vol. 2 9

Springer-Verlag 9 Berlin 1981.

1.11 McClellan J.H. and Rader C.M. 9

Number Theory in Digital Signal Processing 9

Prentice-Hall 9 Englewood Cliffs 9 N.J. 9 USA. 1979.

162

2.1 Knuth 9 D.E. •
"Seminumer1~;:J.l l\.lgorithm3" 'l.n "The Art of Computer
Programm.tng•v
Vol. 2 9 Addison-Wesley 9 Reading, Mass., USA, 1971.

2.2 Agarwal, R.C. and Cooley, J.W.,
New Algorithms for Digital Convolution.
IEEE Trans. on Acoustics Speech and Signal Processing,
Vol. ASSP-25, No. 5, 1977, pp 392-410.

2.3 Nussbaumer, H.J.,
Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag, Berlin, 1981.

2.4 McClellan, J.H. and Rader, C.M.,
Number Theory in Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

2.5 Winograd, S.,
Some Bilinear ~arms whose multiplicative complexity depends
upon the field of coefficients.
Mathematical Systems Theory, Vol. 10, 1977, pp169-180.

2.6 Winogr~d, S.,
On Computing the Discrete Fourier Transform,
Proc. National Academy of Sciences of the USA, Vol. 73 9 1976,
pp1005-1006.

2.7 Winograd, S.,
On Computing the Discrete Fourier Transform
Mathematics of Computation, Vol. 32, No. 141, 1978, pp 175-

199.

Inl.r·oductlon to Nwnl>e:r- Theor-oy 9

Chelsea, New York, 1964.

163

'3. 1 Nussbaumer H •. J 09

Digital filtering using polynomial transforms,
Electronics Letters 23rd June 1977, Vol. 13, No. 13, pp386-387.

3.2 Nussbaumer H.J. and Quandalle P.,
Computation of Convolutions and Discrete Fourier Transforms by

Polynomial transforms,
IBM Journal of research and Development, VoL 22 9 No. 2 9 1978,
ppl34-144.

3.3 Nussbaumer H.J. and Quandalle P.,
Fast Computation of Discrete Fourier Transforms using Polynomial
Transforms,
IEEE Trans. on Acoustics, Speech and Signal Processing,
Vol. ASSP-27, No. 2, 1979, pp169-181.

3.4 Nussbaumer H.J.,
Fast Polynomial Transform Algorithms for Digital Convolution,
IEEE Tr-ans. on Acoustics, Speech and Signal Processing,
Vol. ASSP-28, No. 2 9 1980, pp205-215.

3.5 Nussbaumer H.J.,
New Polynomial Transform Algorithms for Multidimensional DFTs
and Convolutions,
IEEE Trans. on Acoustics, Speech and Signal Processing,
Vol. ASSP-29, No. 11, 1981, pp74-83.

3.6 Nussbaumer H.J.,
Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag, Berlin, Heidelberg, New York, 1981.

3.7 Arambepola, B. and Rayner P.J.W.,
Efficient Transforms for Multidimensional Convolutions,
Electronics Letters, March 15th 1979, Vol. 15, pp189-190.

3.8 Arambepola, B. and Rayner P.J.W.,
Discrete Transforms over Polynomial Rings with Applications in
Computing Multidimensional Convolutions.
IEEE Trans. on Acoustics, Speech and Signal Processing,
Vol. ASSP-28, No. 4, 1980, pp407-414.

164

3.9 Truong T.K. 9 Reed I.S. 9 Lipes R.G. and Wu C. 9

On the Application of a Fast Polynomial Transform and the
Chinese Remainder Theorem to Compute a Two-dimensional
Convolution.
IEEE Trans. on Acoustics 9 Speech and Signal Processing 9

Vol. ASSP-29 9 No. 19 1981 9 pp91~97.

3.10 Reed I.S. 9 Shao H.M. and Truong T.K.
Fast Polynomial transform and its implementation by computer
IEE Proc. 9 Vol. 128 9 Pt. E 9 No. 19 March 1981 9 pp50-60

3.11 Martens J.B. 9

Fast Polynomial Transforms for Two-dimensional Convolution 9

IEEE Trans. on Acoustics 9 Speech and Signal Processing 9

Vol. ASSP-30 9 No. 6 9 1982 9 pp1007-1010 9

3.12 Pei 9 Sao-Chang and Wu 9 Ja-Ling 9

Fast Biased Polynomial Transforms for Two-Dimensional
Convolutions 9

Electronics Letters 23rd July 1981 9 Vol. 17 9 No. 15 9 pp547-548.

3.13 Auslander L. 9 FeigE. and Winograd S. 9

New Algorithms for the Multidimensional Discrete Fourier
Transform 9

IEEE Trans. on Acoustics 9 Speech and Signal Processing 9

Vol. ASSP-31 9 No. 2 9 1983 9 pp388-403.

165

4.1 Winograd S. 9

Some Bilinear forms whose Multiplicative Complexity Depends on
the Field of Coefficients
Mathematical Systems Theory 9 Vol. 10 9 1977 9 pp 169-180.

4.2 Cooley J.W. and Tukey J.W. 9

An Algorithm for the Machine Calculation of Complex Fourier
Series 9

Mathematics of Computing 9 Vol. 19 9 1965 9 pp 297-301.

4.3 Brigham 9 E.0. 9

The Fast Fourier Transform 9

Prentice-Hall 9 1974.

4.4 Burrus C.S. 9

Index Mappings for Multidimensional Formulation of the DFT and
Convolution 9

IEEE'Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-25 9 No. 3 9 1977 9 pp 239-242.

4.5 Good I.J. 9

The Relationship between Two Fast Fourier Transforms 9

IEEE Trans. on COmputers 9

Vol. C-20 9 1971 9 pp 310-317.

4.6 Kolba D.P. and Parks T.W. 9

A Prime Factor FFT Algorithm using High-Speed Convolution 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol ASSP-25 9 No. 49 19779 pp 281-294.

4.7 Agarwal R.C. 9

Comments on 9 A Prime Factor FFT Algorithm using High-Speed
Convolution 9

IEEE Trans. on Acoustics Speech and Signal Processing,
Vol. ASSP-26 9 No. 3 9 1978 9 p 254.

4.8 Burrus c.s. and Eschenbacher P.W. 9

An In-Place 9 In-Order Prime Factor FFT Algorithm 9
IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-29 9 No. 4 9 1981 9 pp 806-816.

166

4.9 Rothweiler J.H. 9

Implementation of the In-Order Prime Factor Transform for
various sizes 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

VoL ASSP-30 9 No. 11 9 1982 9 pp 105~107.

4.10 Arambepola B. 9

Discrete Fourier Transform Processor Based on the Prime Factor
Algorithm 9

Accepted for publication in the Proceedings of the IEE.

4.11 Roa C.R. and Mitra S.K. 9

Generalised Inverse of Matrices and its Applications 9

Wiley 9 New York 9 1971.

4.12 Winograd S. 9

On Computing the Discrete Fourier Transform 9

Proceedings of the National Academy of Sciences of the USA 9

Vol. 73 9 1976 9 pp 1005-1006.

4.13 Winograd S.,
On Computing the Discrete Fourier Transform,
Mathematics of Computation 9 Vol. 32 9 No. 141 9 1978 9 pp 175-
199.

4.14 Silverman H.F.,
An Introduction to Programming the Winograd Fourier Transform
Algorithm (WFTA),
IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-25 9 No. 2 9 1977 9 pp 152-165.

4.15 Silverman H.F.,
Correction and Addendum to 4.14 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-26 9 1978 9 p 268.

4.16 Silverman H.F.,
A Method for programming the Complex Genera-N Winograd
Fourier Transform 9

IEEE International Conference on Acoustics Speech and Signal
Processing 9 Hartford, Conn., USA, May 9-11 9 1977 9 pp 369-72.

167

4.17 Agarwal R .C. and Cooley J .U. 9

New Algorithms for Digit~l Convolution,
IEEE Tran~. on Acoust~cs Speech and Signal Processing 9

Vol. ASSP-25 9 NO. 5 9 1977 9 pp 392-410.

4.18 Agarwal R.C. and Burrus C.S. 9

Fast One-dimensional Digital Convolution by Multidimensional
Techniques 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-22 9 No. 19 1974 9 pp 1-10.

4.19 Johnson H.W. and Burrus C.S. 9

The Design of Optimal DFT Algorithms Using DYnamic
Programming 9

IEEE Trans. on Acoustics Speech and Signal Processing 9

Vol. ASSP-31 9 No. 2 9 1983 9 pp 378-387.

168

5.1 Nu:-~::~hilumer H •. J. 9

Fast Fourier Transform and Convolution Algorithrns 9

Springer-Verlag 9 Berlin 9 Heidelberg 9 New York 9 1981.

5.2 Burrus C.S. and Eschenbacher P.W. 9

An In-place 9 In-order Prime Factor FFT Algorithm 9

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-29 9 No. 4 9 1981 9 pp806-817.

5.3 Rothweiler J.H. 9

Implementation of the In-order Prime Factor Transform for
variable sizes 9

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-30 9 No. 19 1982 9 pp105-107.

5.4 Johnson H.W. and Burrus C.S. 9

The Design of Optimal DFT Algorithms using Dynamic
Programming 9

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-31 9 No.2 9 1983 9 pp378-387.

5.5 Morris L.R. 9

A Comparative study of time efficient FFT and WFT A programs
for general purpose computers.
Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-26 9 1978 9 pp141-150.

5.6 Nawab H. and McClellan J.H. 9

Bounds on the minimum number of data tranfers in WFTA and FFT
programs 9

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-27 9 No. 4~ 1979 9 pp394-398.

5.7 Nawab H. and McClellan J.H.,
Corrections to [5.6] 9

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-28 9 No. 4 9 1980 9 pp480-481.

169

5.8 Blanken J.D. ar.d Rustan D.L. 9

Selection Criteria for Efficient Implemenation of FFT
1\.l~or!. thms 9

Trans. of the IEEE on Acoustics Speech and Signal Processing
VoL ASSP-30 9 No" 19 1982 9 pp107-109.

5.9 Nussbaumer H.J. and Quandalle P. 9

Computation of Convolutions and Fourier transforms by
Polynomial transforms 9

IBM Research and Development Journal 9 VoL 22 9 1978 9 pp134-
144.

5.10 Nussbaumer HoJo and Quandalle P. 9

Fast Computation of Discrete Fourier Transforms using
polynomial transforms 9

Trans. of the IEEE on Acoustics Speech and Signal Processing

VoL ASSP-27 9 1979 9 pp169-181.

170

6.1 McCanny J.V. and McWhirter J.G. 9

Implementation of Signal Processing Functions using 1-bit
Systolic Arrays 9

Electronics Letters 9 18th March 1982 9 Vol. 18 9 pp241-243.

6.2 McCanny J.V. and McWhirter J.G. 9

Completely iterative 9 pipelined multiplier suitable for VLSI 9

IEE Proc. 9 VoL 129 9 Pt.G 9 No. 2 9 April 1982 9 pp40-46.

6.3 McCanny J.V. and McWhirter J.G. 9

A bit level systolic array for matrix x vector multiplication 9

To be published.

6.4 Ward J.S. and Stanier B.J. 9

Implementaion of Convolution and Fourier Transform Algorithms
using 1-bit systolic arrays 9

Electronics Letters 2nd Sept. 1982 9 Vol. 18~ pp799-801.

6.5 Ward J.S. and Stanier B.J. 9

A Fast Discrete Cosine Transform for Systolic arrays 9

Electronics Letters 20th Jan. 1983 9 Vol. 19 9 No. ~ 9 pp58-60.

6.6 Patel K.K 9 Corry A.G. and McCabe A.P.H. 9

A high performance Correlator based upon bit level systolic
arrays 9

To be published

6.7 McCabe M.M. 9 McCabe A.P.H. 9 Arambeploa B09 Robinson I.N. and
Garry A .G. 9

New Algorithms and Architectures for VLSI 9

GEC Journal of Research and Development 9 Vol. 48 9 No. 2 9 1982 9

pp68-75.

6.8 Myers D.J. 9

Multipliers for LSI and VLSI Signal Processing Applications 9

Edinburgh University MSc Project Report MSP5.
30th Sepember 9 1981.

1 7 1

6. 9 Kung H. T. and Leiserson Co E. 9

"f\ lp;nrt thmG for VLSI Proc~ssor Arrays 11
9

00ctlnn 8.3 in [6.10] below.

6.10 Mead C. and Conway L. 9

Introduction to VLSI systems 9

Addison~Wesley 9 1980 9 ISBN 0-201-04358-o.

172

7.1 Ward J.S. 9 Barton P. 9 Roberts J.G.B. and Stanier B.J. 9

Figures of Merit for VLSI Implementations of Digital Signal
Processing Algorithms 9

Submitted to IEE 9 Part F.

1.2 Barton P. 9

Algorithms for VLSI DSP9 Section 2.1. v'FFT Discussion'0
9

Presented at 'High Performance Logic Consortium - Working
Group on Architectures and Algorithms 0

9 2nd December 1981.

7.3 Savage J.E. 9

Complexity of decodersg I-Classes of Decoding Rules
IEEE Transactions on Infomation Theory 9

Vol. IT-15 9 1969 9 pp 689-695.

7.4 Bajoga B.G. and Walbesser W.J. 9

Decoder Complexity for BCH Codes
Proc. IEE 9 VoL 120 9 1973 9 pp 429-431o

7.5 Cooley J.W. and Tukey J.W. 9

An Algorithm for the Machine Computation of Complex Fourier
Series 9

Mathematics of Computation 9 1965 9 pp 297-301.

7.6 Gold B. and Bailly T.B. 9

Parallelism in Fast Fourier Transform Hardware 9

IEEE Transactions on Audio and Electroacoustics 9

Vol. AU-21 9 No. 19 1973 9 pp 5-16.

173

8.1 Chen W. and Smith C.H.?
Adaptive coding of monchrome and colour images 9

Transactions of the IEEE on Communicatio~s 9
Vol. COM-25 9 1977 9 pp1285=1292.

8.2 Rose J.A., Pratt W.K. and Robinson A.S. 9

Interframe cosine transform image coding 9

Transactions of the IEEE on Communications 9

Vol. COM-25 9 1977 9 pp1329-1339.

8.3 Ahmed N., Natarajan T. and Rao K.R. 9

On image coding and the discrete cosine transform
Transactions of the IEEE on Computers 9

Vol. C-23 9 1974, pp90-93.

8.4 Haralick R.M. 9

A storage efficient way to implement the discrete cosine
transform 9

Transactions of the IEEE on Computers 9

Vol. C-25, 1976, pp764-765.

8.5 Narashim M.J. and Peterson A.M. 9

On the Computation of the Discrete Cosine Transform 9

Transactions of the IEEE on Communications,
Vol. COM-26 9 1977 9 pp934-936.

8.6 Hein D. and Ahmed N.,
On a real-time Walsh-Hadamard/Cosine transform image
processor 9

IEEE Tran., 1978, Vol. EMC-20 9 pp453-457.

8.7 Ghanbari M. and Pearson D,E,,
Fact Cosine Transform implementation for television signals 9

IEE Proc. Vol. 129, Part F, No. 19 1982 9 pp59-68.

8.8 Winograd S.,
On Computing the Discrete Fourier transform,
Mathematics of Computation, Vol. 32 9 1978, No. 141,
pp 175-199.

174

8o8 McCanny JoVo and McWhirter JoGo 9

Completely 1 terati ve pipelined mul. tiplier array suitable for
VLSI 9

IEE Proco Volo 129 9 Part G9 Noo 2 9 1982 9 pp 40-46o

175

This appendix contains short~N convolution and DFT algorithmso

All these algorithms have the general form of (1o20) with A and C

matrices containing only +1 9 -1 and Oo Cyclic convolution algorithms

for lengths 2 9 3 9 4 9 5 9 8 9 9 and 16-points are giveno The convolution

algorithms are given as three matriceso The general scheme of the

calculation is illustrated for the 2~point convolution algorithmo Note

that the convolution algorithms calculate

N-1
L lbln~-n
n=O

A 1 o 1 A 2-point Cyclic Convolution (M:2)

Ax = [~ - ~)[~~] Bh = i [~ _ ~J[:~J
lillll = (Ax) x (Bh)

r;~J = r; -;J r ~~J
A1o2 A 3-point Cyclic Convolution (M:4)

'1

1 '}
1 [-~ 1 1] [i

-1 -1

_;] A3 = 0 1 -1 B3 =3 2 -1 c3 = 0 1
1 -1 0 -2 1 1 0
1 0 -1 1 1 -2

A1.3A 4-point Cyclic Convolution (M=5)

1 -; 1
[1

\

1 1 1 1 1 -1
1 -1 1 -1 1 -1 -1 0 -1 -1

A4 1 1 B4 1 2 -2 -2 2 c4 1 -1 -1 1 = -1 -1J = ~ =
0 1 0 -1 -2 0 2 0 -1 0 1 1
1 0 -1 0 0 -2 0 2 ,.

'

176

A L4 A

A 1.5 A

A a =

5-point Cyclic Convolution (M:10)

-1 1 0 0 0 4 -1 -1 -1 -1
0 1 0 0 -1 -1 4 -1 -1 -1

-1 0 0 0 1 2 2 -3 2 -3
0 1 0 -1 0

1
-1 -1 4 -1 -1

A5 = 0 1 -1 0 0 B5 = 5 -1 -1 -1 4 -1
0 0 1 -1 0 2 -3 2 2 -3

-1 0 0 1 0 2 2 2 -3 -3
0 0 0 -1 -3 2 2 2 -3
1 0 -1 -1 1 1 1 1 -4
1 1 1 1 1 1 1 1

0 0 0 0 [-1 -1 0 -1 -1 1 0 -1 0 0 0 -1 0 -1

l1
cs = 0 1 1 0 0 0

0 0 0 1 0 -1
0 0 0 0 1 1

8-point Cyc],ic Convolution (M=14)

1 0 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 0 0 -1 0
0 0 0 1 0 0 0 -1
1 0 -1 0 1 0 -1 0
0 1
1 1

11 -1
0 1

11 0
! 1 -1

l~ -~
1 1

0 -1 0 1 0 -1
1 1 1 1 1 1
1 -1 1 -1 1 -1
0 1 0 -1 0 -1
1 0 -1 0 -1 0
1 -1 -1 1 -1 1
1 -1 0 0 -1 1
0 0 ..:.1 1 0 0

-1 -1 1 1 -· 1 -1

Bs 1
= 8

1 1
1 -1
1 1 r

0 0 0 -1 0 -1
0 (; -1 0 1 0
0 1 0 0 0 1

c8 = 1 o o o -1 o 1 -1

l ~ -~ ~ ~ ! -~ i -i
-1 0 0 0 -1 0 1 -1

177

0 -1 1
1 0 1
0 1 -1

/

r-4 -4 4 4 4 4 -4 -41
-4 4 4 4 4 -4 -4 -4

4 4 4 4 -4 -4 -4 -4
1 4 4 4 -4 -4 -4 -4 4
I
-2 2 2 -2 -2 2 2 -2

2 2 -2 -2 2 2 -2 -2
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
4 0 0 -4 -4 0 0 4
4 4 0 0 -4 -4 0 0
4 0 0 0 -4 0 0 0
4 0 4 0 -4 0 -4 0

-4 0 4 0 4 0 -4 0
2 0 -2 0 2 0 -2 0

1 0 1
0 1 -1
1 0 1
0 1 -1

-1 0 -1
0 -1 1

-1 0 -1
0 -1 1

-1 0 1
1 0
0 1 -1
0 -1 -1
1 0 1

-1 0 1
0 -1 -1
0 1 -1

A1o6 A 9-point Cyclic Convolution Algorithm (M:22)

0 0 0 1 1 0 -1 -1 0 0 0 -6 0 0 3 0 0 3
1 1 0 -1 -1 0 0 0 0 0 0 -3 0 0 -3 0 0 6
1 1 0 0 0 0 -1 -1 0 0 0 -3 0 0 6 0 0 -3
0 0 0 0 1 1 0 -1 -1 -6 0 0 3 0 0 3 0 0
0 1 1 0 -1 -1 0 0 0 -3 0 0 -3 0 0 6 0 0
0 1 0 0 0 0 -1 -1 -3 0 0 6 0 0 -3 0 0
0 0 0 1 0 1 ~ 1 0 -1 0 -6 0 0 3 0 0 3 0
1 0 1 -1 0 -1 0 0 0 0 -3 0 0 -3 0 0 6 0
1 0 1 0 0 0 ~1 0 -1 0 -3 0 0 6 0 0 -3 0
0 0 0 1 0 0 -1 0 0 1 3 6 6 -6 -3 -3 3 -3 -3

A9 = 1 0 0 -1 0 0 0 0 0 89 =1s 6 3 3 -3 3 3 -3 -6 -6
1 0 0 0 0 0 -1 0 0 -3 3 3 -3 -6 -6 6 3 3
0 0 0 0 1 0 0 -1 0 6 -6 6 -3 3 -3 -3 3 -3
0 1 0 0 -1 0 0 0 0 3 -3 3 3 -3 3 -6 6 -6
0 1 0 0 0 0 0 -1 0 3 -3 3 -6 6 -6 3 -3 3
0 0 0 0 0 1 0 0 -1 6 6 3 -3 -3 3 -3 -3 -6
0 0 1 0 0 -1 0 0 0 3 3 -3 3 3 6 -6 -6 -3
0 0 1 0 0 0 0 0 -1 3 3 6 -6 -6 -3 3 3 -3
0 1 -1 0 1 -1 0 1 -1 1 -2 1 1 -2 1 1 -2 1
1 -1 0 1 -1 0 1 -1 0 2 -1 -1 2 -1 -1 2 -1 -1
1 0 -1 1 0 -1 1 0 -1 -1 -1 2 -1 -1 2 -1 -1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1
0 0 0 0 -1 -1 0 -1 -1 0 0 0 0 0 0 0 -1 -1 0 -1 -1 1
0 -1 -1 0 -1 -1 0 0 0 0 0 0 0 -1 -1 0 0 0 -1 0 1 1
0 -1 -1 0 0 0 0 -1 -1 0 -1 -1 0 0 0 0 0 0 1 1 0 1

C- = 0 0 0 -1 0 1 -1 0 1 0 0 0 0 0 0 -1 0 1 0 -1 -1 1
9 1 0 1 -1 0 1 0 0 0 0 0 0 -1 0 1 0 0 0 -1 0 1 1

-1 0 1 0 0 0 -1 0 1 -1 0 1 0 0 0 0 0 0 1 1 0 1
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 -1 -1
1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 1

178

A 1o7 A 16-point Cyclic Convolution Algorithm (~=41)

1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
0 1 0 -1 0 1 0 -1 0 1 0 -1 0 0 -1
1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0
0 1 0 1 0 -1 0 -1 0 1 0 1 0 -1 0 -1
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0 1 0 -1 0 -1 0 1 0 1 0 -1 0 -1 0
0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 -1
0 0 1 -1 0 0 -1 1 0 0 1 -1 0 0 -1 1
0 0 1 0 0 0 -1 0 0 0 1 0 0 0 -1 0
0 1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0
1 -1 0 0 -1 1 0 0 1 -1 0 0 -1 1 0 0
1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0
0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0
1 0 -1 0 1 0 -1 0 -1 0 1 0 -1 0 1 0
1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1 0

A16 = 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
1 0 -1 0 0 0 0 0 -1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 -1 -1 0 0 -1 -1
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1
1 1 0 0 1 1 0 0 -1 -1 0 0 -1 -1 0 0
0 0 0 0 0 0 1 1 ·o 0 0 0 0 0 -1 -1
0 0 0 0 1 1 -1 -1 0 0 0 0 -1 -1 1 1
0 0 0 0 1 1 0 0 0 0 0 0 -1 -1 0 0
0 0 1 1 0 0 0 0 0 0 -1 -1 0 0 0 0
1 1 -1 -1 0 0 0 0 -1 -1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1
0 1 0 -1 0 1 0 -1 0 -1 0 1 0 -1 0 1
0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1
0 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0
0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0
0 1 0 -1 0 0 0 0 0 -1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

179

1 1 1 1 1
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
-2 0 2 0 -·2 0 2 0 -2 0 2 0 -2 0 2 0
-2 -2 2 2 -2 -2 2 2 -2 -2 2 2 -2 -2 2 2

2 -2 -2 2 2 -2 -2 2 2 -2 -2 2 2 -2 -2 2
-4 0 0 4 4 0 0 -4 -4 0 0 4 4 0 0 -4
-4 0 0 0 4 0 0 0 -4 0 0 0 4 0 0 0
-4 -4 0 0 4 4 0 0 -4 -4 0 0 4 4 0 0
-4 -4 -4 4 4 4 4 -4 -4 -4 -4 4 4 4 4 -4
-4 0 -4 0 4 0 4 0 -4 0 -4 0 4 0 4 0
-4 -4 -4 -4 4 4 4 4 -4 -4 -4 -4 4 4 4 4

4 -4 -4 -4 -4 4 4 4 4 -4 -4 -4 -4 4 4 4
4 0 -4 0 -4 0 4 0 4 0 -4 0 -4 0 4 0
4 4 -4 -4 -4 -4 4 4 4 4 -4 -4 -4 -4 4 4

-8 0 0 0 0 0 8 0 8 0 0 0 0 0 -8 0
-8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
-8 0 -8 0 0 0 0 0 8 0 8 0 0 0 0 0
-8 0 -8 0 -8 0 8 0 8 0 8 0 8 0 -8 0
-8 0 0 0 -8 0 0 0 8 0 0 0 8 0 0 0

1
-8 0 -8 0 -8 0 -8 0 8 0 8 0 8 0 8 0

B16 = lb 8 0 -8 0 -8 0 -8 0 -8 0 8 0 8 0 8 0
8 0 0 0 -8 0 0 0 -8 0 0 0 8 0 0 0
8 0 8 0 -8 0 -8 0 -8 0 -8 0 8 0 8 0

-8 -8 0 0 0 0 8 8 8 8 0 0 0 0 -8 -8
-8 -8 0 0 0 0 0 0 8 8 0 0 0 0 0 0
-8 -8 -8 -8 0 0 0 0 8 8 8 8 0 0 0 0
-8 -8 -8 -8 -8 -8 8 8 8 8 8 8 8 8 -8 -8
-8 -8 0 0 -8 -8 0 0 8 8 0 0 8 8 0 0
-8 -8 -8 -8 -8 -8 -8 -8 8 8 8 8 8 8 8 8

8 8 -8 -8 -8 -8 -8 -8 -8 -8 8 8 8 8 8 8
8 8 0 0 -8 -8 0 0 -8 -8 0 0 8 8 0 0
8 8 8 8 -8 -8 -~ -8 -8 -8 -8 -8 8 8 8 8
0 -8 0 0 0 0 0 8 0 8 0 0 0 0 0 -8
0 -8 0 0 0 0 0 0 0 8 0 0 0 0 0 0
0 -8 0 -8 0 0 0 0 0 8 0 8 0 0 0 0
0 -8 0 -8 0 -8 0 8 0 8 0 8 0 8 0 -8
0 -8 0 0 0 -8 0 0 0 8 0 0 0 8 0 0
0 -8 0 -8 0 -8 0 -8 0 8 0 8 0 8 0 8
0 8 0 -8 0 -8 0 -8 0 -8 0 8 0 8 0 8
0 8 0 0 0 -8 0 0 0 -8 0 0 0 8 0 0
0 8 0 8 0 -8 0 -8 0 -8 0 -8 0 8 0 8

180

c,6 first 20 columns

-1 -1 1 c -1 -1 0 1 0 0 0 0 -1 -1 0 ol
1 -1 0 -1 0 1 -1 0 -1 1 0 0 0 1 1 0 -1 -1 0

1 -1 1 -1 0 -1 -1 0 0 0 0 -1 -1 0 0 1 -1 0 -1 1
1 1 1 0 1 0 1 -1 0 0 0 0 1 -1 0 -1 1 0 1 -1
1 -1 -1 1 0 1 1 0 -1 -1 0 0 0 0 -1 -1 0 0 0 0

1 -1 0 -1 0 -1 1 0 1 -1 0 0 0 1 0 0 0 0
-1 -1 0 1 1 0 0 0 0 1 1 0 0 -1 0 0 0

1 1 0 1 0 -1 1 0 0 0 0 -1 1 0 -1 0 0 0
1 -1 -1 1 0 -1 -1 0 1 1 0 0 0 0 1 1 0 -1 -1 0
1 1 -1 0 -1 0 -1 0 -1 1 0 0 0 -1 -1 0 1 1 0
1 -1 1 -1 0 -1 -1 0 0 0 0 -1 -1 0 0 -1 1 0 1 -1
1 1 1 0 1 0 1 -1 0 0 0 0 1 -1 0 1 -1 0 -1 1
1 -1 -1 1 0 1 1 0 -1 -1 0 0 0 0 1 0 0 0 0
1 1 -1 0 -1 0 -1 1 0 1 -1 0 0 0 -1 -1 0 0 0 0
1 -1 1 -1 0 1 1 0 0 0 0 1 1 0 0 -1 1 0 0 0
1 1 1 0 1 0 -1 0 0 0 0 -1 1 0 1 -1 0 0 0

c16 columns 21 to 41

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 -1
0 0 0 -1 -1 0 1 1 0 0 0 0 1 1 0 -1 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 1 0 0 0 0
0 0 0 0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0

-1 -1 0 0 0 0· 0 0 0 0 0 0 0 1 -1 0 -1 1 0 0 0
1 1 0 -1 -1 0 0 0 0 -1 -1 0 1 1 0 0 0 0 1 1 0
0 1 -·1 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 -1 0
0 -1 1 0 1 -1 0 0 0 0 1 -1 0 -1 1 0 0 0 0 -1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1
0 0 0 1 1 0 -1 -1 0 0 0 0 -1 -1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 -1 0 0 0 0
0 0 0 0 -1 1 0 1 -1 0 0 0 0 1 -1 0 -1 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 -1 0 0 0

-1 -1 0 1 0 0 0 0 1 1 0 -1 -1 0 0 0 0 -1 -1 0
0 -1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0 0 1 -1

1 8 1

The ~e~ond h~lf of Appenaix I cont~tn; DrT alv,orithms for 2 9

3 9 4 9 5 9 7 9 8 9 1) 9 11 9 13 nnd Hi-pnint8. All thG.'lP. algnr!.thm:J are gtven

as two matrices and list of coefficients. The coefficients represents

the precalculated product (Bh). The number of multiplications is that

for real data.

A1.8 A 2-point DFT Algorithm (M:2)

AL9 A 3-point DFT Algorithm

=~
1

-~J A3 1 c3

A L 10 A 4-point OFT Algorithm

r ,] A4
- 1 -1 1 -1
- 1 0 -1 0

0 1 0 -1

A L 11 A 5-point DFT Algorithm

A5 = ~ j -i -Lil
1
1
1
1
1 0 1 -1 1 -1J

0 0 -1 1 0

(M:3)

=~
(M=4)

c4
= [~

(M:6)

0 0
1 1
1 -1
1 -1
1 1

A1.12 A 7-point DFT Algorithm (M=9)

(, 1 1 1~
0 1 1 1 1 1
0 0 -1 -1 0 1
0 0 -1 1 1 -1 0

A7 0 -1 1 0 0 1 -1 =
0 1 1 -1 1 -1 -1
0 1 0 1 -1 0 -1
0 0 -1 -1 1 1 0
0 -1 0 0 -1 1

0 OJ 1 1
1 -1

0 0

OJ 0 1 1
1 0 0
0 1 -1

0 0 0
1 -1 0
0 1 1
0 -1 -1

=1 1 0

(,
1
1

c7 = 1
1
1

182

0 0
1 1
1 -1
1 0
1 0
1 -1

1

u3 = 2~13
= 1 mo

m1 = (cosud-1)
m2 = i sin

3

mo = 1
m1 = 1
m2 = 1
m3 = i

u
5

= 2'IT/5

mo = 1
m1 = ~(cosu5+COS2u5)-1
mm2 == lCcosu -cos2u)

3 i(sinu~+sin2u~)
mm)J : i si n2n5 5 i(sinu

5
-sin2u

5
)

0 0 0 0 0 ol
1 0 1 1

1 o I
0 -1 1 -1 0 -1

-1 1 -1 0 1 -1 ;
-1 1 0 -1 1 i

I
0 -1 -1 1 0 1 '

0 -1 -1 -1 oj

u7 = 2Trf7 1
mli = 3ccosu

7
+cos2u

7
-2cos3u

7
)

1
mo = m5 = i 3(sinu

7
+sin2u

7
-sin3u

7
)

1 1
m1 = 3 (cosu

7
+COS2u

7
+COS3u

7
)-1 m6 = i 3(2sinu

7
-sin2u

7
+sin3u

7
)

1 i~(sinu7-2sin2u7-sin3u7) m2 = 3 C2cosu
7
-cos2u

7
-cos3u

7
) m7 =

1 i~(sinu7+sin2u7+2sin3u7) m3 = 3 ccosu
7
-2cos2u

7
+cos3u

7
) m8 =

AL 13 A 8~point DFT Algorithm (M:8)

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 -1 1 -1 1 -1 1 -1 0 0 0 0 1 1 1
1 0 -1 0 1 0 -1 0 0 0 1 1 0 0 0 0

As = 0 1 0 -1 0 1 0 -1 c8 = 0 0 0 0 1 -1 1 -1
1 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 -1 0 0 0 0 0 1 1 -1 -1
0 1 0 1 0 -1 0 -1 0 0 1 -1 0 0 0 0
0 1 0 -1 0 -1 0 1 0 0 0 0 1 -1 -1 1

u8 = 21\'18
mo = 1 m4 = 1
m1 = 1 m5 = i sin2u8
m2 = 1 m6 = i sinu8
m3 = i sin2u8 m7 = cosu8

A1.14 A 9-point DFT Algorithm (M=12)

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 -1 1 1 1 0 0 -1 -1 -1 0 0
0 1 1 0 1 1 0 1 1 1 -1 1 0 -1 1 0 1 0 -1 1 0
0 1 -1 0 0 0 0 -1 1 1 0 0 0 0 0 -1 0 0 0 0 1
0 0 1 0 -1 -1 0 1 0 1 -1 1 -1 0 -1 0 -1 1 0 1 0

A9 = 0 -1 0 0 1 1 0 0 -1 c9 = 1 -1 1 -1 0 -1 0 1 -1 0 -1 0
0 1 -1 0 1 -1 0 1 -1 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 -1 0 0 1 -1 1 0 -1 1 0 -1 0 1 -1 0 r _, _, 0 0 0 0 1 1 -1 1 1 0 0 '1 1 1 0 0
0 0 -1 0 -1 1 0 1 0
0 1 0 0 -1 1 0 0 -1
0 1 1 0 1 1 0 1 1

u9 = 211"19
mo = 1 m6 = -i sin3u

9

m1 = 312 m7 = -i sin3u
9

m2 = -1 m8 = i sinu
9

1 i sin4u
9 m3 = 3 c 2cosu

9
--cos2u

9
-cos4u

9
) m9 =

1
m4 = 3 (cosu9+COS2u

9
-2cos4u

9
) m10 = i sin2u

9
1 m11 =-3/2 m5 = 3 ccosu

9
-2cos2u

9
+cos4u

9
)

183

A1.15 A 11-point DFT Algo:ri tl."Jil (M:21)

1 1 1 1 1 1 1 1""11

0 -1 0 0 0 0 0 0 1 -1
0 0 0 0 -1 -1 0 0 1 0
0 -1 0 0 0 1 1 0 0 0 -1
0 0 1 -1 0 0 0 0 -1 1 0
0 0 1 0 -1 0 0 -1 0 1 0
0 0 0 -1 1 0 0 1 -1 0 0
0 -1 0 1 0 0 0 0 1 0 -1
0 0 0 0 1 -1 -1 1 0 0 0
0 1 0 -1 1 -1 -1 1 -1 0 1

A11 = 0 1 1 1 1 1 1 1 1 1 1
0 -1 -1 0 0 0 0 0 0 1 1
0 0 -1 0 0 -1 1 0 0 1 0
0 -1 0 0 0 1 -1 0 0 0 1
0 0 -1 -1 0 0 0 0 1 1 0
0 0 -1 0 -1 0 0 1 0 1 0
0 0 0 -1 1 0 0 -1 1 0 0
0 _, 0 1 0 0 0 0 -1 0 1
0 0 0 0 1 -1 1 -1 0 0 0
0 1 0 -1 1 -1 1 -1 1 0 -1
0 1 -1 1 1 1 -1 -1 -1 1 -1

1 0
1 -1 -1 0 -1 -1 0 0 0 0 1 -1 -1 0 -1 -1 0 0 0 0 1
1 0 0 .o 0 1 1 0 1 -1 1 0 0 0 0 -1 -1 0 -1 1 -1
1 0 1 1 0 0 0 0 -1 1 1 0 1 1 0 0 0 0 -1 1 1
1 0 0 0 1 0 -1 1 0 1 1 0 0 0 1 0 -1 1 0 1 1

B11 = 1 1 0 -1 0 0 0 -1 0 -1 1 1 0 -1 0 0 0 -1 0 -1 1
1 1 0 -1 0 0 0 -1 0 -1 1 -1 0 1 0 0 0 1 0 1 -1
1 0 0 0 1 0 -1 1 0 1 1 0 0 0 -1 0 1 -1 0 -1 -1
1 0 1 1 0 0 0 0 -1 1 1 0 -1 -1 0 0 0 0 1 -1 -1
1 0 0 0 0 1 1 0 1 -1 1 0 0 0 0 1 1 0 1 -1 1
1 -1 -1 0 -1 ~1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 -1

u11 = 2lf/ 11

mo =
1 m

1
= 5 (4cosu11-cos2u 11-cos3u 11 -cos4u 11-cos5u 11)

1 m
2

=- 5(cosu 11 +cos2u 11 +cos3u 11 +cos4u 11 -4cos5u 11)

1
m~ = F(2cosu,,-3cos2u 11-3Cos3u 11 +2cos4u 11 +2cos5u, 1)

.J :J I I I I I I I 1 1

1 m4 = - 5 (cosu 11 +cos2u 11 -4cos3u 11 +cos4u 11 +cos5u 11)

1 m
5

=- 5ccosu11 +cos2u 11 +cos3u 11 -4cos4u 11 +cos5u 11)

m
6

= ~(2cosu 11 -3cos2u 11 +2cos3u 11 +2cos4u 11 -3cos5u 11)

1 m7 = 5 (2cosu11-3cos2u 11 +2cos3u 11-3cos4u 11 +2cos5u 11)

m8 = - ~(3cosu 11 +2cos2u 11-2cos3u 11 ~2cos4u 11 -2cos5u 11)
1 m

9
= 5 (cosu11-4cos2u 11 +cos3u 11+cos4u 11 +cos5u 11)

184

1
m10 = 5(cosu 11 +COS2ull+COS3Ull+COS4u 11 +COS5u 11)-1

m11 = i~(4sinu 11 +sin2u 11 -sin3u 11 -sin4u 11 -sin5u 11)
1

m12 = -i5 (sinu 11 -sin2u 11 +sin3u 11 +sin4u 11 -4sin5u 11)

m13 = i~(2sinu 11 +3sin2u 11 -3sin3u 11 +2sin4u 11 +2sin5u 11)

m14 = -i~(sinu 11 -sin2u 11 -4sin3u 11 +sin4u 11 +sin5u 11)

m15 = -i~(sinu 11 -sin2u 11 +sin3u 11 -4sin4u 11 +sin5u 11)

m16 = i~(2sinu 11 +3sin2u 11 +2sin3u 11 +2sin4u 11 -3sin5u 11)

m17 = i~(2sinu 11 +3sin2u 11 +2sin3u 11 -3sin4u 11 +2sin5u 11)

m18 = -i~(3sinu 11 -3sin2u 11 -2sin3u 11 -2sin4u 11 -2sin5u 11)
1

m19 = 15 (sinu 11 +4sin2u 11+sin3u 11+sin4u
11

+sin5u 11)

1 ' .
m20 = 15 (sinu 11 -sin2u 11 +sin3u,-,+s~n4u 11 +sin5u 11)

A1o16 A 13-point DFT Algorithm (M=21)

1 1 1
0 1 1 1
0 -1 1 -1
0 0 1 1
0 -1 1 1
0 -1 0 0
0 0 1 0
0 -1 1 -1
0 -1 -1 -1
0 0 1 -1
0 1 1 -1
0 =1 0 0
0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 1
0 1 1 0
0 -1 0 1
0 0 0 1
0 1 0 0

l8 - i 0

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 .1

-1 1 1 1 1 -1 -1 1 -1
-1 0 -1 -1 0 -1 1 1 0

0 -1 0 0 -1 0 1 1 -1
1 -1 1 1 -1 1 0 0 -1
0 1 1 _, -1 0 0 -1 0
1 1 1 -1 -1 -1 1 -1 1
1 -1 -1 1 -1 1 1 1
1 0 -1 -1 0 1 -1 1 0
0 =1 0 0 -1 0 -1 1 1
1 1 -1 -1 1 1 0 0 =1
0 -1 0 0 1 0 0 -1 0
0 0 -1 1 0 0 0 -1 0
0 -1 1 -1 1 0 0 0 0
1 -1 0 0 1 -1 -1 -1 0
1 0 -1 1 0 -1 0 -1 -1
0 _, 1 -1 1 0 -1 0 1
1 0 0 0 0 -1 -1 0 0
1 0 0 0 0 -1 0 0 -1
0 0 0 0 ,... ,... .

V V -I

185

,...
v

c13 =

1 0 0 0 0 0 0 0 1\ 0 0 0 0 0 0 0 0 0 0 0 o:! \J

1 1 ~ 1 -1 0 -1 -1 -1 0 0 1 -1 0 0 0 0 1 -1 0 1 -1
1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0
1 1 -1 0 1 1 -1 -1 0 -1 -1 0 0 0 0 1 0 1 1 0 1
1 1 -1 1 -1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0
1 1 -1 0 -1 1 0 1 0 -1 1 -1 0 ~ 1 -1 0 -1 0 0 0
1 1 1 1 -1 0 0 1 -1 0 -1 0 -1 1 0 -1 1 0 0 0
1 1 1 1 -1 0 -1 0 -1 -1 0 -1 0 1 -1 0 1 - i 0 0 0
1 1 -1 0 -1 -1 0 -1 0 -1 1 1 0 1 0 1 0 0 0
1 1 -1 1 -1 0 -1 -1 0 1 0 1 0 0 0 -1 -1 0 -1 -1 0
1 1 -1 0 1 1 1 0 -1. -1 0 0 0 0 -1 0 -1 -1 0 -1
1 1 1 0 1 1 -1 0 -1 1 1 0 -1 -1 0 -1 -1 0 0 0
1 1 -1 -1 0 -1 1 0 0 -1 0 0 0 0 -1 1 0 -1

u13 = 2YT/13

mo =
m

1
= ~(cosu 13+cOs2u 13+COS3u 13+cOs4u 13+COS5u 13+COS6u 13)-1

1 m2 = 0 (cosu 13-cos2u
13

+cos3u13+cos4u 13-cos5u13-cos6u13)

1
m

3
= i(cosu13-2cos2u13-2cos3u13+cos4u 13+cos5u 13+cos6u 13)

1 m4 = - 0 (cosu 13+COs2u 13+COS3u 13-2cos4u13+COS5u 13-2cos6u 13)

1 m
5

= 0 (2cosu
13

-cos2u
13

-cos3u
13

-cos4u
13

+2cos5u
13

-cos6u13)

1 m6 = -~(sinu 13+sin2u 13+sin3u 13-sin4u 13+sin5u 13+sin6u 13)

1 m
7

= JiCsinu13+sin3u 13-sin4u13)

m8 = -~(sin2u 13+sin5u 13+sin6u 13)
1

m
9

= - b"(2cosu
13

+cos2u 13-cos3u13-cos4u 13-2cos5u 13+cos6u 13)

1 = 0 (cosu 13+2cos2u
13

-2cos3u
13

+cos4u
13

-cos5u
13

-cos6u 13)

1 = 0 (cosu13-cos2u13+cos3u
13

-2cos4u
13

-cos5u
13

+2cos6u 13)

= -~(sinu13-sin2u 13-2sin3u 13-sin4u 13-sin5u 13+2sin6u 13)
1

m13

m14

m15

m16

m17

m18

= ~(2sinu13-2sin2u 13-sin3u 13+sin4u 13+sin5u 13+sin6u 13)

1 = -Jj(sinu13-sin2u13+sin3u13+2sin4u 13+2sin5u 13-sin6u13)

1 = -~(sin2u 13+sin5u 13-2sin6u 13)

1
= ~(2sin2u 13-sin5u 13-sin6u 13)

1 = -jj(sin2u13-2sin5u13+sin6u 13)

1 = -~(2sinu 13-sin2u 13-sin3u 13+sin4u 13-sin5u 13+2sin6u 13)

m19 = ~(sinu13-2sin2u 13+sin3u 13+2sin4u 13+sin5u 13+sin6u 13)
1

m20 = ~(sinu 13+sin2u 13-2sin3u 13-sin4u 13-2sin5u 13+sin6u 13)

186

0
1

AL 17 A 16~point DFT ALgorithm (M:!8)

1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0
0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1
1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0
0 0 1 0 0 0 -1 0 0 0 1 0 0 0 -1 0
0 1 0 1 0 -1 0 -1 0 1 0 1 0 -1 0 -1
0 1 0 -1 0 -·1 0 1 0 1 0 -1 0 -1 0 1

A16 = 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 b 0 0 0 -1 0 0 0
0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0
0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 -1 0 -1 0 -1 0 -1
0 1 0 0 0 0 0 1 0 -1 0 0 0 0 0 -1
0 0 0 1 0 1 0 0 0 0 0 -1 0 -1 0 0
0 1 0 -1 0 1 0 -1 0 -1 0 1 0 -1 0 1
0 1 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1
0 0 0 -1 0 1 0 0 0 0 0 1 0 -1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 -1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 1 -1 1 0 -1 1 0 -1
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 -1 -1 1 0 -1 -1 0 1
0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0

c16 = 0 0 0 0 0 0 0 0 1 -1 -1 1 1 1 0 1 -1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 0 1 -1 0
0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 1 -1 -1 0 1 -1 0 1
0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 -1 -1 -1 0 1 0 -1
0 0 0 0 1 _, -1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 -1 1 -1 -1 0 -1 1 0

u16 = 21T/16
mo = 1 m6 = i sin2u16 m12 = i sin3u 16
m1 = 1 m7 = cos2u16 m13 = i(sinu16-sin3u16)

m2 = 1 m8 = 1 m14 = i(sinu16+sin3u 16)

m3 = i sin4u16 mg = i sin4u16 ml5 = cos3u16
m4 = 1 m10 = i sin2u 16 m16 = (cosu 16+cos3u 16)

m5 = i sin4u16 m11 = cos2u16 m17 = (cos3u16-cosu16)

187

This appendix gives a FORTRAN program for the derivation of the IT'.atrices fat' a

9X9 cyclic oonvoluticn algorithm evaluated using polynomial transformso The general

scheme of the prol?l'8ffi is illustrated in the fig}.Il'S OVBrleaf"o In this figure the lette:-s

between boxes give the name of the a.r-ray of the values at that p:>int in the calculation,

For example the input sigpal is initially contained in XII. but after reduction IOOdulo c
9

(z)

is contained in array XB o

The program generates matrices fat' an untransp:::sed system, ioeo the C matrix

contains values other than+ 19 -1 and Oo The result should be normalised by 1!81o In the

interests of size rome of the statements have been rompgcted9 J:erlicularly the DATA

statements and as written may not compile. The program should be read down the lef'tband

rolumn and then down the righthand column of each J:Bge o

c c
c TO GENERATE MATRICES FOR A 9X9 CYCLIC C1Ul.. REOC9 (XA 9XB)
c <XJNVOLUTJON JoSoWARD 6/6/83 CAIL REDC9 (HA 9HB)
c c

TI\l'I'EXlER XA(9 99) 9 HA(9 99) 9 HB(9 96), c FOR C9(Z) BRANCH POLYo TRANSFORM
&XC(9 96), HC(9 96) 9 ROW, <XL, POLY, c
&POWER 9 TEMPX6 (6) 9 'ID'iH6 (6) 9 'IMPX18 (18) 9 CAlL POLYT1(XB, XC, oTROEo)
&'lMPH18(18) 9 'I'EMPX9(9) 9 TEMP9(9) 9 CALL POLYT1(HB 9 HC 9 oTRUE D)

&TIMPX13(13) 9 TMPH13(13) 9 XE(9 93) 9 c
&HE(9 93), XG(396), HG(3,6), XK(3,3) 9 c Pm'iOLT~UCATION PART OF POLYNOMIAL
&HK(3,3) 9 M(229) ,OJEF(229) 9 MP(229) 9 c PRODUCT MOD C9(Z)
&XL(3 93), XI(3 96), XJ(3,6) 9 XM(3 99) 9 c
&XN(9 93) 9 XD(9 96) 9XP(9,6) 9 XF(3,9) 9 00 50 POLY= 19 9
&HF(3 99), TEMPX3(3) 9 TEMPH3(3), ro 30 POWER = 19 6
&rEMP13(13) 9 HH(396) 9 XH(396) 9 'ID'iPX6 (POWER) = XC (POLY ,POWER)
&AM(229 981) 9 BM(229 981) 9 CM(81 9229) 9 TEMPH6(POWER) = HC(POLY,POWER)
&DUTROW 9 00TaJL 9 ROW1 9 <XL 1 9 XB (9 9 6) 30 CONT.rnUE

c c
c SEI' OOLY ONE INPUT VALUE TO 1 CAlL PREC9(TEMPX6,TEMPH6,'IMPX189TEMPH18)
c c

ro 190 OUTROW = 19 9 IO 40 MOLT= 1, 18
ro 180 OUTCXJL = 19 9 M(l~(POLY-1)+i"KJLT)=

ro 20 ROW= 1, 9 TMPX18(MIJLT)
ro 10 en. = 19 9 OJEF(1~(POLY-1)+M!JLT)=

XACROW,OJL) = o 'IMPH18(MIJLT)
HA(ROW,OJL) = 0 40 OONTINUE

10 CDNTINUE 50 cxmmnJE
20 CONTINUE c
c c START THE C3(Z) C1 (Z) PART

XA (OUTROW ,OUTCOL) = 1 c C3(Z) REDT.JCTICmS FIRST
HA (OOTROW ,OUTCOL) = 1 c

c CAIL RECC3(XA 9 XE)
c REDUCE X AND H MOD C9 (Z) CAlL REDC3CHA 9 HE)

188

i

Ordering of
Polynomials

ua X (z)
r

.), ~~
Reduction Modulo l Reduction

C 2 (z) = (zp
2

-1)/(zp-1) Modulo zP-1 p

x1 C z)
xe

x2 (z) xb 9r 9r

'
p2 polys of p ter ms

Polynomial '" Transform Reordering
Modulo C 2 (z)
. p xf polys of p 2 ter s1.ze p2

9 root z
'

p ms
)((,~ ~ w

p2 polynomial Reduction Reduction

xd

Multiplications Modulo C 2 (z) Modulo zP-1
Modulo C 2 (z)

p
& xg p

"'
Polynomial xk

Inverse polynomial Transform
Transform Modulo C 2 (z) Modulo C 2 (z) Convolution

p2
p

size p 9 ~oot zP size of size pxp

.J, xh
xp p polynomial xl

multiplications
Modulo C 2 (z) p

J,. XI
Inverse

Polynomial
Transform

Modulo C 2 (z)
p -p

size p 9 root z

.L
lxj

J
Reordering and Chinese

Remainder Reconstruction

c
c TRA!.\TSPOSE THE ARRAYS
c

I:070ROW=1v9
ro 60COL = 1v 3

XF(COLvRCYfl) = XE(ROW9COL)
HF(COL 9RO'fl) = HE(ROW'9COL)

60 OOi\l'IDTOE
70 CONTINUE
c
c FURTHER REDUCITON OF XF & HF MOD C9(Z)
c AND C3(Z)
c

00 110 ROW = 19 3
r:o 80COL = 1, 9

TEMPX9(COL) = XF(ROW,OOL)
TEMPH9(COL) = HF(ROW9COL)

80 CONTINUE
c

CAlL C9 (TEMPX9 9 TEMPX6)
CAll. C9 (TEMPH9 9 TEMPH6)
CAlL C3 ('ffi\li?X9 9 TEMPX3)
CAll. C3 (TEMPH9, TEMPH3)

c
r:o 90 OJ!... = 19 6

ID(ROW,OOL) = TEMPX6(00L)
HG(ROW9COL) = TEMPH6(COL)

90 CONTINUE
c

to 100 OOL = 1, 3
XK(ROW 9COL) = TEM'X3 (COL)
HK(ROW,OJL) = TEMPH3(COL)

100 CONriNUE
110 CXlNTINUE
c
c POLY. TRANSFORM LENGHI' 3 ROOT Z003
c MOD C9(Z)
c

CAIL POLYT2CXG 9 XH 9 .TRUE.)
CALL POLYT1(HG, HH 9 .TRUE.)

c
c 3 POLY MJLTS MOD C9(3)
c

r:o 140 POLY = 1 9 3
DO 120 POWER = 1, 6

TEMPX6 (POWER) = XH (POLY ~POWER)
T.EM'H6(POWER) = HH(POLY ,POWER)

120 CONTnJUE
c

CALL PREC9(TEMPX6 9TEMPH6,TMPX18,TMPH18)
c

&

&
130
140

ro 130 POWER = 1, 18
M(162+(18P(POLY-1))+POWER)=
'1MPX18 (FOWER)
COEF(162+18P(POLY-1)+P0WER)=
'IMPH18(POWER)

<XlNTINUE
CONTINUE

c
C CAI..l. PRE-MJLT PART OF 3X3 CC1\liiDLUTION
c

c
DO 150 I = 19 13

M(216 + I) = TMPX13(I)
COEF(216 + I) = 'IMPH13(I)

150 CONrThruE
C:==
c
C TRANSFER V.ALUES TO MII.TRICES
c

to 170 ROW= 19 22
l!M(ROW

9
g:J (O!.lTROW-1)-+DUTCOL):M (RO'fl)

BM(ROW 9 <p (OUTROW-1)-+CUTCOL)::COEF (ROW)
170 CONI'lNUE
180 a:Ji\l'I1NUE
190 CONTINUE
C==
c
c
c
c

WRITE our MII.TRICES (BEWARE SYSI'EM
LJMI'IS ON NUMBER OF CHARACTERS PER
LTI\JE)
WRITE(6 9 200)

200 FORMJIT(1 19X9 CYCliC CXlNV. A MII.TRIX 1
9/)

WRITE(6,210) ((AM(I,J) ,J=1 981) ,I= 19 229)
210 ~T(1 1

981I3)
WRITE(6,220)

22.0 FORMAT(1 1 B MATRIX oo UNI'RJINSPQSED

& oo SYSTEM' ,I)
WRI'.IE(6,210) (Cli'1(I ,J) ,J= 1,81) ,I= 19229)

C==
c
C STARI' ON THE C MATRIX
c

ro li20 OUTROW = 1 , 229
r:o 230 ROW = 1 , 229

MP(ROW) = 0
230 CXlNI'lNUE

MPCourmw) = o
c
C POST MIJLT 3X3 CONI! ~
c

r:o 240 I = 19 13
TEMP13(I) = MP(216 + I)

240 OONTINUE
c

c
C POST MJLTIPLICATION POLYNOMIAL
C PRODUCTS MOD C9(Z)
c

r:o 270 POLY = 1 ,3
DO 250 POWER = 19 18

U'MPX1 (POWER)=
& MP(162+(POWER-1)018+POWER)

250 CXJN1'INUE

189

c

c
ro 26o rollllER = 19 6

XI (POLY 9PO'WER) = TEMPX6(POWER)
260 OJNTINUE
zro <n\lTINUE
c
C TIWERSE POLY o TRANS o LENGTH 3 KOD C9(Z)
c

c
C CRT RECOMBINATION OF zoo3--1 BRANCH
c

c
C TRANSPOSE ARRAY
c

00 290 POLY = 193
ro 280 POWER = 1?9

XN(PO'WER 9POLY) = :xM(POLY 9POWER)
280 CCJNT:mOE
290 OJNITIJOE
c
C FINISH C9(Z) MmJ BRANCH
c

ro 320 POLY= 19 9
ro 300 POWER = 19 18

'1MPX18 (POWER)::MP ((POLY-1)O 184-POWER
300 OJNTJNUE
c

c
ro 31o POWER = 19 6

XD(POLY 9POWER) = TEMPX6(POWER)
310 CONTINUE
320 OJNTINUE
c
C INVERSE roLYo TRANSo LENGRI' 9 MOD C9(Z)
c

our (POLY? PO'JIJF.R) =
1

360
OOT (POLY 9PO'~JER)- (:PI'EMPX9 (POWER))

CONTINUE
c

~0
c

c

ro ~o rotD = 19 3
TEMPX3 (POWER) = XN (POL¥ 9POWER)

OJNI'll\1UE

ro 380 POWER = 19 9
OUT(POLY 9POWER)::OUT(POLY 9PQlJllER)+

1 'IEMPX9(POWER)
380 COm'TI\1UE
390 CXJNI'ThTUE
C===
c

ro 410 ROW = 19 9
DJ400COL:1 9 9

QVI (9" (ROW-1)+COL 90UTROW):
& OUT(ROW9COL)

400 CONI'JNUE
410 CXJNTJNUE
420 CONTINUE
c

WRITE (6 9 430)
430 FORMAT(1 1 C MliTRIX oo UNI'RANSPOSED

&SYS'IEM' p/)
WRITE (6 9440)((CM(I 9J) 9J=1 9229) 9I=1 981)

4110 FORMli.T(' ' 9229I3)
SI'OP
END

c
C REDUCTIONS MOD C9(Z) - CALLS NEJcr'
c ROOI'Th1E
c

SUBROUTINE REOC9(IN 9 OUT)
lNTEGER IN(9 99) 90UT(9 96) 9 ROW90JL

&pi(9)y0(6)
CALL POLYT 1(XD 9 XP 9 .FAlSE o) C

c
C FINAL CRT Rro:M3INATION
c

ro 340 POLY= 19 9
T"'"'\ ~~l"t ON.ll::'O _ 1 1"1
,_., _J..JV L VV~l - I SJ ;f

OOT(POLY 9POWER) = 0
330 OJNTJNUE
340 mNTINUE
c

ro 390 POLY= 19 9
ro 350 POWER = 19 6

TEWX6 (POWER) = XP (POLY 9POWER)
350 CON'I1NUE
c

CAU.. R 1 (TEMPX6 9 TEMPX9)
c

ro 360 POWER = 19 9

ro 30 ROW:: 1 9 9
ro 10 cnL= 19 9

I(COL) = IN(ROW 9COL)
10 CONTINUE

c
ro 200JL = 19 6

OUT(ROW90JL)= O(OJL)
20 OJNTINUE
30 o:JNl'Th1UE

REI'URi'iJ
END

CilH IH·

c
C ACTUAL REDUCTIONS MOD C9(Z)
c

190

SUBROliTINE C9 (IN 9 w'T)
1NI'EJ1F:R lN (9) 9 01IT (6)
O!IT(l) -, TN(l) - Il\!(7)
O!Yf(?) -: TN(?) - Tl\JW)
OUT(3) = IN(1) - fN(9)

0Uf(4) = nW!) - IN(7)
OUT(5) = IN(5) - TI\!(8)

0Uf(6) = IN(6) - ll\J(9)

CH I I I I I I I I I I I I I I I I I I I 1-H I I I I I I I I I HH»+H+

c
C REDUCTIONS MOD C3(Z)

c

c

c

C CAllS NEXT ROUTINE C
c

SUBROUTINE REOC3(rn 9 OUT)
INI'EXlER Thl(999)9 OUT(993) 9 ROW9 0JL

&9I(9) 9 0(3) C
c

ro 30 ROW= 19 9
ro 10 OOL = 19 9

I(COL) = Thl(ROW900L)
10 OJNTmOE
c

c
ro 20 ax.= 19 3

OUT(ROW900L) = O(COL)
20 OONTINUE

c

c

30 CONITNUE C
RETURN
END

C;llllllllllllllllllllltltltttlltllllllttltt

c c
C ACI'UAL REDUC'I'IOMS MOD C3(Z)
c

SUBROUTINE C3 (ThY 9 OUT)
ThlTEXlER IN(9) 9 OUT(3) C

c
OUT(1) = IN(1) + IN(4) + IN(7)
OUT(2) = IN(2) + IN(5) + IN(8)
OUT(3) = IN(3) + TI1(6) + TI1(9)
RETURN

M(6) = X(2) + X(3)

M(7) = X(4) + X(6)
MUD -= ((X(1) + X(3)) - OWl) + X(6))
M(9) = X(l) + X(3)

M(10) = X(t;)
M(11) = X(1) - X(4)
M(12) = X(1)

M(13) = X(5)
M(14) = X(2) - X(5)
M(15) = X(2)

M(16) = X(6)
M(17) = X(3) - X(6)
M(18) = X(3)

OOEF(1) = (H(1) + H(2))- (H(4) + H(5))
COEF(2) = H(1) + H(2)
0DEF(3) = H(4) + H(5)

·COEF(4) = (H(2) + H(3))- (H(5) + H(6))
OOEF(5) = H(2) + H(3)
ODEF(6) = H(5) + H(6)

COEF(7) = (H(1) + H(3))- (H(4) + H(6))
COEF(8) = H(1) + H(3)
COEF(9) = H(4) + H(6)

OOEF(10) = H(1)- H(4)
COEF(11) = H(1)
COEF(12) = H(4)

COEF(13) = H(2) - H(5)
COEF(14) = H(2)
COEF(15) = H(5)

COEF(16) = H(3) - H(6)
COEF(17) = H(3)
COEF(18) = H(6)
REl'ORN
END

END C11111111111111tlllttlllllllllllllllllllllll

Ct I 11111111 !IIIII! 111111111111111111111! II II c ,.
"'
C PRE-MULTIPICATIDN POLYNDMI:AL
C MULTIPliCATION MOD C9(Z) (M:18)
c

c

c

SOBROOTINE PIID:9CX 9 H9 M9 COEF)
:r:Nl'ffiER X(6) 9 H(6) 9 M(18) 9 COEF(18)

M(1) = X(4) + X(5)
M(2) = (X(1) + X(2)) - (X(4) + X(5))
M(3) = X(1) + X(2)

M(4) = X(5) + X(6)
M(5) = ((X(2) + X(3)) - (X(5) + X(6))

c

c

POST MrYuT PART OF ~'DD C9(Z) POLY PROD

SUBROUI'INE Pffil'C9 (Til 9 OUT)
:nvi?LICIT TI'ITEXlER (P 9 Q 9 R 9 S 9 T)
mrroER TIJ(18) 9 OUT(6) 9 F(18)

ro 10 r = 19 6
F(2DI-1) =]]\J(Jli-2) + IN(YI-1)
F(2='I) = IN(Jli-2) + IN(Jli)

10 ClJNTTI'ruE
c

TO = F(7)
SO = F(1) - F(7) - F(9)

1 9 1

RO = F(5) - F(7~ + F(9) - F(11) c
QO = F(3)- F89) - F(;1) c TI\l'\IE:1SE TRANSFOR.IIJ SELECTED
PO = F(11) c

c 00 100 POLY = 2 9 9
T1 = F(8) ro 90 POWER = 19 6
S1 = F(2) - F(8) - F(10) 'TEMP (11-POLY 9POWER)::OUT (POLY 9POWER)
R1 = F(6) - F(8) - F(12) + F(10) 90 CONTINUE
Q1 = F(4) - F(10) - F(12) 100 001.\rTTh'lUE
P1 = F(12) DO 120 POLY = 29 9

c m 110 roc'!ER = 19 6
OUT(1) = -Q1 + TO OUT(POLY 9 PO'WEB)=ID!P (POLY 9POhlER)
ClliT(2) = -P1 + SO 110 OJ.\ITTI\JUE
OUT(3) = RO 120 CONTINUE
OUT(4) = QO - Q1 + T1 RETURN
OUT(5) = PO - P1 + S1 END
OUT(6) = R1 C'''''''''''''''''''''''''''i'''''''''''''''
RETURN c
END c PHE-MJLT 3X3 CYCLIC ClJNVOUITION ALG.

C''' c
c SOBROUl'TI\1E PRE3X3CX 9 H9 M9 COEF)
c POLYNOMIAL ~ LENGIH 9 ROO!' Z rnTEGER X(3,3), H(3a), M(13),
c IVDD C9(Z) &OOEF(13) 9 AM(13,9) 9 EM(13,9),ROW, COL,
c & ROW1 9 COL 1

SUBROUTINE POLYT1 (IN 9 OUT 9 00) c
rni'EXlER IN(9,6) 9 OUT(9,6) 9 TEMP(9,6) 9 c GIVEN ThT MATRIX FORM

& POLY 9 POLY1, PQ!JI!ER, INDEX c
LOGICAL FWD DATA ((.IIM(ROW,OOL),OOL:1,9) 9ROW:1 913) I

c X-1, 1, o9-19 19 o,-19 19 o9 .

ro 20 I = 19 9 X 09-1 9 19 09-1 9 19 09-1 9 19
ro 10 J =19 6 X-1 9 0 9 19-1 9 09 19-1 9 0 9 19

OUT(I,J) = 0 x-1, 19 o, o,-19 19 19 09-1,
10 OOL'ITINUE x o9-19 19 19 09-1,-19 1, o9

20 a:JNTINUE X-1 9 09 19 19-1 9 0 9 0 9 19-1 9

c X-1 9 1, 0 9 19 0 9-1 9 0 9-1 9 1,
I:O 80 POLY1 = 1, 9 x 09-1, 1,-19 19 o, 19 o9-19

ID 70 POLY = 19 9 X-1 9 09 19 09 19-1 9 19-1 9 0 9

ro 60 POWER= 19 6 X-1 9-1 9-1 9 19 19 19 09 0 9 0 9

TI.\IDEX:: (POLY1-1)': (POLY-1)+POWER-1 X 09 09 0,-1,-1,-1, 19 19 19
30 IF (INDEX .LT. 9) GO TO 40 X-1 9-1 9-1 9 0 9 09 0 9 19 19 19

INDEX = INDEX - 9 X 19 19 19 19 19 19 19 19 1/
GO TO 30 c

40 IF (INDEX .Gr. 5) 00 TO 50 DATA (I'M(ROW9COL) 900L=1 99) 9R0W=1 913) I
OUT (POLY1 9 TIIDEX+ 1)= x o,-1 9 19 0 9-1 9 1, o9-19 19

& OUT(POLY1 9INDEX+ 1)+IN(POLY ,POWER) X-1 9 09 19-1 9 09 19-1 9 0 9 19

001'0 60 x-1, 19 o,-1, 1, o,-1, 19 o,
50 INDEX = INDEX - 3 X 09-1 9 19 19 09-1,-1, 1, 0,

OUT (POLY 19 INDEX+ 1)= X-1 9 0 9 19 19-1 9 0 9 0 9 19-1 9

& OUT(POLY1,JNDEX+ 1)-IN(POLY ,POWER) X-1, 19 o, o,-1 9 1, 19 o,-1,
INDEX = INDEX - 3 X 0 9-1 9 19-1 9 19 09 19 09-1 9
OUT(POLY1 9INDEX+ 1)= X-1 9 0 9 19 09 19-1 9 19-1 9 0 9

& OUT(POLY1 9INDEX+ 1)-IN(POLY 9POWER) X-1 9 19 0 9 19 0 9-1 9 09-1 9 19

60 CONTINUE X 09 09 09-1 9-1 9-1 9 19 19 19
70 CONTINUE X-1 9-1 9-1 9 0 9 0, 0 9 19 19 19

80 CONI'INUE X-1 9-1 9-1 9 19 1, 1, 0 9 0 9 0 9

c X 19 19 19 19 19 19 19 19 11
c SELEcr FORWARD OR INVERSE 'I'RANSFORM c
c

IF (FWD) RETURN

192

ro 30 row = 19 13
,.,
v

M(ROW) = 0 r.o 20 POLY = 1 9 3
a:lEF CRObv) = o DO 10 POWER = 19 6
r.o 20 ROW1 = 19 3 OUT(POLY 9 POWER) = 0

ro 10 COL 1 = 19 3 10 (X)NI'JNUE

M(ROW) = M(ROW) -t- X(ROW1 94=COL 1)0 20 CDNTmUE
& .AM(ROW 9}'1 (ROW1-1)+<XJL 1) c

CDEF (ROW) = OOEF (ROW) + ro 40 POWER= 19 6
&BM(ROW 93(ROW1-1)+COL 1) o H(ROIIIT1 9 4-COL 1) 00 30 POLY = 19 3

10 OONTII\.lUE OUT(19P0WER)=
20 CXJNT'JNUE & OUT(19P0WER)+I(POLY 9PO"WER)
30 CONTINUE 30 OJNI'ThJUE

RE'l'l.J'FW 40 CONTmL'E
00 c

C''' OUT(291)=I(1 91)-I(294)+I(394)-I(3 9 1)
c OUT(292)=I(1 92)-I(295)+I(395)-I(392)
c POST MOLT. 3X3 CYCLIC aJNVOLU'ITON OUT(293)=I(1 93)-I(296)+I(3 96)-I(393)
c OUT(294)=I(1 94)-I(294)+I(291)-I(391)

SUBROU'rmE im'3X3(H9 Y) OUT(295)=I(1 95)-I(295)+I(292)-I(392)
IMPLICTI' INI'EX:lER (G9L) OOT(296)=I(1 96)-I(296)+I(293)-I(393)
JNl'&:lER M(13) 9 Y(3 93) 9 POLY 9 POWER c

c OUT(3 9 1)=I(1 9 1)+I(294)-I(291)-I(394)
GOO= M(1)+.M(2)+M(4)+M(5)+M(7)+M(8) OUT(392)=I(1 92)+I(295)-I(292)-I(3 95)
G01 = M(1)+M(3)+M(4)+M(6)+M(7)+M(9) OUT(393)=I(1 93)+I(296)-I(293)-I(396)

c OUT(3 94)=I(1 94)-I(291)-I(394)+I(3 9 1)
G10 = M(1)+M(2)+M(6)~(5)-M(7)~(9) OUT(395)=I(1 95)-I(292)-I(395)+I(3 92)
G11 = M(1)+M(3)-M(4)-M(5)-M(9)+M(8) OUT(396)=I(1 96)-I(293)-I(396)+I(3 93)

c c
G21 = M(1)+M(3)-M(6)+M(5)-M(7)-M(8) JF (FWD) RETURN
G20 = M(1)+M(2)-M(li)-M(6)-4M(9)~(8) c

c 00 50 POWER= 19 6
LO = ~(10) + M(11) + M(12) - M(13) TEMP(29POWER) = OUT(29POWER)
L 1 = -M{10) + M(11) - 2=M(12) - M(13) TEMP (39POWER) = OUT (3 9POWER)
L2 = -M(10) - ~(11) + M(12) - M(13) 50 OONI'INUE

c ro 60 POWER = 19 6
Y(1 93) = -(GOO+ G01 +L 1) OUT(39POWER) = TEMP(29POWER)
Y(1 92) = -(-20001 +GOO+ L1) OUT(29POWER) = T.EMP(39POWER)
Y(1 91) = -(-~ + G01 + L1) 60 O:JNI'INUE

c RETURN
Y(293) = -(G10 + G11 + L2) END
Y(292) = -(-2CG11 + G10 + L2)
Y(2 91) = -(-2CG10 + G11 + L2) c

c c CHINESE REMmiDER 'I'HEDREM
Y(3 93) = -(G20 + G21 + LO) c RE<XlMBm.ATION'3 THIS ROUTINE USES THE
Y(392) = -(-2=JG21 + G20 + LO) c NFXr '00
Y(3 91) = -(-2DG20 + G21 + LO) c

c SUBROU'I'TI'JE CRT1 (ThT1 9 ThT29 OUT)
RETURN :mrEX:iER IN1(396) 9 ThT2(3a) 9 OUT(399) 9
END & TEMP6(9)9 TEMP9(9)9 TIMP3(3)9

C''' & POLY 9 POWER
c c
c POLY TRANSFORM LENGrH 3 ROOT zoo3 ro 20 POLY = 19 3
c M)D C9(Z) ro 10 POWER= 19 9
c OUT(POLY,POWER) = 0

SUBROUTINE POLYT2 (I 9 OUT 9 FWD) 10 CONTINUE
IN'lEJER I(396) 9 OUT(3 96) 9 TEMP(3 96) 9 20 OONTJNUE

& POLY 9 POWER 9 POLY1 9 POWER c
LOGICAL FWD

193

ro 10 ro.. Y -= 19 3
m 30 rov..l£R = 1 9 n

TIMP6(POWER) = TIJ1(POLY 9 PCJ!F,l£R)
30 CONTINUE
c

c
ID 40 POWER = 19 9

CUT (POLY 9POHER) = OUT (PO" Y 9P0~11ER) =

& ~(P01rJER)

40 CONI'ThlUE
c

ro so POWER = 19 3
TEMP3(PO'~) = TI\i2(POLY 9ro.lER)

50 CONITNUE
c

c
ro 60 POWER= 19 9

OUT(POLY 9POWER) = OUT(POLY9POWER) +
& TEMP9(POWER)

60 OONTINUE
70 OONTINUE

RETURN
END

C11; 11

c
C POLYNOMIAL MULTIPLICATION BY
C REroMBTI\iATION POLYNDMIAL FOR C9 (Z)
c

c

SUBROU'I'TI\iE R 1 (A 9 OUT)
mrEilER A(6) 9 OUT(9)

OUT(1) = A(4) - 20A(1)
OUT(2) = A(5) - 20A(2)
OUT(3) = A(6) - 20A(3)
OUT(4) = A(1) - 20A(4)
CUT(5) = A(2) - 20A(5)
OUT(6) = A(3) - 20A(6)
OUT(7) = A(1) + A(4)
OUT(8) = A(2) + A(5)
OUT(9) = A(3) + A(6)
RETUI1N
END

Cll I 11111111111111111111 I 1111111111111111111

r.
C POT ... Y MJLT FOR zoo3-1 REOJMBINATION
C POLYNOMrAL
c

c

SUBROUTINE R2(B 9 OUT)
D\lTE)3ER B (3) 9 OUT (9) 9 POLY

00 10 POLY = 19 3
OUT(POLY) = B(POLY)
OOT(POLY+3) = B(POLY)
OUT(POLY+6) = B(POLY)

10 OON'I'1NUE
RETURN

E!\1D
GT++H-++++++++-H++H+-!+1-++++H+H-·H-++H·-H-+++

194

This appendix contains a 15-point Discrete Cosine Transform (DCT)

algorithmo The algorithm is for data in natural order 9 there are 19

coefficients all of which are positiveo The coefficients are arranged

so as to give the minimum total number of columns in the one-bit

systolic arrays discussed in chapter 8a

The A matrix is

1 1 1
-1 0 0 0

0 0 0 1
0 -1 0 1

~1 -1 0 1
1 1 0 1

-1 1 0 1
1 0 1 1

-1 0 0 1
-1 0 0 -1

1 0 -1 -1
1 0 0 -1

-1 0 0 -1
1 1 1 1
1 0 0 1

-1 0 0 1
-1 0 0 0
-1 0 0 0

0 0 0 -1

The C matrix is:

1 1
0 1
0 0
0 0
1 1
1 1

-1 1
0 1
0 1
0 1
0 1
0 1
0 -1

1
0 1
0 -1
1 1
0 1
0 0

1 1 1 1
0 0 0 1 0 0 0
1 0 -1 0 0 -1 0
1 0 -1 0 0 -1 0
1 0 -1 -1 -1 -1 0
1011110
1 0 1 -1 -1 1 0
1011011
1 0 -1 -1 0 -1 0
1 0 1 1 0 -1 0
1 0 -1 -1 0 1 1
1 0 -1 -1 0 1 0
1 0 -1 1 0 1 0
1 1 1 1 1 1 1
1 0 1 1 0 1 0
1 0 1 -1 0 1 0
0 0 0 -1 -1 0 0
0 0 0 -1 0 0 0
1 0 1 0 0 -1 0

1 1
0 -1
0 0
1 0
1
1
1 -1
0 1
0 1
0 -1
0 ~1
0 -1
0 1
1 1
0 1
0 -1
0
0 1
0 0

r~ g ~ -~ ~ g g g -~ g -~ ~ -~ g g g g g
0 -1 0 0 0 1 1 1 0 -1 0 0 0 -1 -1 -1 0 0

0
0
0
0
1

1

'6 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 1 -1 0 -1 0 0 0 1 1 -1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 1 0 0 0 -1 0 1 -1 -1 0 0 0 1 -1 0
0 -J 0 0 0 -1 -1 -1 0 -1 0 0 0 1 1 1 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0
0 0 -1 1 -1 0 0 0 1 0 -1 1 -1 0 0 0 0 0 0

0
0
1

0 0 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 -1 0 -1 1 1 0 0 0 1 -1
0 0 0 0 0 1 -1 1 0 -1 0 0 0 -1 -1 1 0 0

195

The coefficients for the above algorithm are found as follows (all

values are positive and are to b:~ multiplied by~ (2/15).

DO = sinu
3

D1 = sin2u
5

02 = sinu
5

+ sin2u
5

D3 = sinu
5

- sin2u
5

04 = cosu
3

- D5 = ~(cosu5 + cos2u
5

) -1

06 = Hcosu
5

- cos2u
5

)

where u
3

= 21f/3 and u5 = 27T/5 0 The coefficients are

mo = 1!{2 m7 = -D4 m13 = 1

m, = 00.03 m8 = -04.D1 m14 = 04.05

m2 = -04.02 m9 = 00.01 m15 = -04.06

m3 = 02 m10 = DO m16 = 03

m4 = 01 m11 = -D0.05 m17 = -04.03

m5 .= -05 m12 = OO.D6 m18 = 00.02

m6 = D6

196

: 11i: [Ill :.ERn IE CHI! 14 Y::Dl L\: «Jl ~ IC(Q) ~\?(C) ~~u:1Jl ~
A);J;:::J ?:DJ~~~~:g] u~t~;,:\J$:e~~~~ ~~J[\]CGJ
1-IElj"T SV$'.:'0i[((; A~J!2.6W:!;,)

Indexing terms: Signal processing, Sysrolic arrays

The use of systolic arrays of :-bit cel:s to impiement circular
convolution and DFTs is described. The architecture is very
well suited to VLSl implementation. lt is shown that con­
siderable simplification of the architecture is possible for
real-valued DFTs.

Introduction: Recent:y McCa:my and McWh.irter1
•
2 have

demonstrated how arrays of identical I-bit processing ele­
ments can be used to perform pipelined mubplicatior. and a

bit-sliced transform. !3oth of these are regu:ar structures parti­
cularly suited to implementation in VLSI. This letter shows
how these two structures may be combined to perform circu­
lar convolution and Fourier transforms by using algorithms
presented by Winograd.4

Convolutions and the Winograd transform algorithm (WFT A):
Agarwal and Cooley3 and Winograd4 showed how fast con­
volution algorithms could be derived using a small, often the
minimum, number of multiplications. Winograd applied a
theorem due to Rader 5 to use these convolutions to perform
DFTs. For the convolutions and the WFTA the general form
of the algorithm is

lY = C(Aiy x l!Jz) (1)

where Y is the transform of the input date y. AI and llJ are
N x M rectangular matrices, N being the transform length
and M the number of multiplications. C is an M x N matrix.
x denotes pointwise multiplication and the product J!lz is
precalculated as a series of M coefficients. For the WFT A
these coefficients are either purely real or purely imaginary.

In all the convolution and DFT algorithms given by Win­
ograd,4 except the 9-point DFT, the AI and C matrices contain
only the elements -I, 0 and'+ I. A 9-point DFT of this form
can be constructed at the expense of an extra multiplication. It
is also possible, using polynomial transforms due to Nussbau­
mer,6·7 to construct two-dimensional convolution algorithms
of the same form as eqn. l in which the A and C matrices
contain only -1, 0 and + 1. Thus the method of computation
is the same in each of these cases-a multiplication by a
matrix containing 0, - 1 and + 1 and a multiplication, fol­
lowed by a further multiplication by a matrix containing 0,
-1 and + 1.

Proposed architecture: McCanny and McWhirter 1 described a
pipelined bit-slice transform array which performs a matrix
times vectors transform in the form Wx = y, where W is an
n x n matrix of 1-bit coefficients. Utilising two control bits
and two's complement arithmetic, their basic cell can be ex­
tended to operate with coefficients of -1, 0 and + l. When­
ever W;j is -1 the input word is complemented bit by bit and
unity is added to the LSB via the carry-in and the top row of
cells.

AnN x M, or M x N, matrix requires N + M- l columns
and b + log2(M), or b + log2(N), rows of processor cells,
where b is the number of bits of input data. As the array is no
longer square, a gap of M - N, (M > N), cycles is needed
between successive sets of data. This extended array can now
perform the AI and C matrix multiplications.

The input and output words for this transform array are
staggered bit by bit. The stagger on the output from the bit-

:n the ~rar:sfo:n &rray only every a:ternate processor is
active z::~d da::z er:ters and lezves tl~e array 0::1 al~er::~ate cycles.
However, wi£~1 tC.e s&"Y:.e clocking rate, the :.nu:tiplier architec­
ture czn har.die da~a on eve-ry cyc~e. So £he mu:ti?Eer can
p;-ocess two sets cf cata to tl:e tra:::tsforr.J arrays' o::te. U tb:
'syare' processors i:::t tl:.e tra::tsfor::n ar::-ay we;e ut:l:sed, thesl!
two sets cot:ld oe tbe real a::~d imaginary parts of a com.plex
DIFT.

Simplifications to the C matrix for real DFTs: Parsons8

showed that each of the C matrices in the small-n WlFT As can
be simplified by noting that for a DlFT of real data 'lfN-k = JY;;',
where 0 denotes complex conjugation. Thus there is so::ne
reduncar.cy ir. the C matrices. T'his is most dear:y seen if the
real a:td imaginary coetT:cients &re separated into two distinct
groups: e.g. for N = 5,

~]
for a real input the vertical partition separates those elements
contributing to the real and imaginary parts of the transform.
The horizontal partitions mark off the n = 0 term and the first
and second halves of the transform. (For even N the n = N/2
term is also partitioned.)

y and /J generate the complex conjugates of the terms re­
sulting from ex and {J. Therefore we define a new matrix C' in
which y and /J are discarded and the remaining coefficients
rearranged:

0
I
I
0
0

0
l

-1
0
0

0
0
0
I
0

0
0
0

-1
I

This places the real part of the first half of the transform into
the first half of the output vector, and the imaginary part of
the first half into the remainder of the output vector. The
coefficients are entered into the transform arrays in the shape
of a parallelogram. For N = 5, with data words moving left to
right and sums right to left, the arrangement is

0
0 -1

0 0
0 0 0

0 0
0

0
0

-1

0 1 coefficients

o: l
0 10

0!
10
I
I
I
I

0

------r-------,---
1 I

data words--> .--sums

Note that, because of the redundancy and the coefficient re­
arrangement, the three left-hand and the two right-hand col­
umns contain only zeros. So the corresponding columns of
processors never contribute to the matrix product and may be
omitted. This halves the array size needed. Additionally, in
this example, a further column can be deleted. Also, at least
one column can be saved in each of the OFT A matrices.

slice transform array is the same as that needed for one of the Conclusion: We have proposed a general architecture which
input words for the two's complement pipelined multipler de- can perform convolutions and DFTs. This architecture is very
scribed in Reference 2. Furthermore, the stagger on the output easy to implement in VlLSI with only three cell types needed:
from the multiplier is the same as the input into the bit-slice a transform array, a multiplier and a shift register for the
transform array. Thus, if a system of transform array, multi- initial and final data skewing. furthermore, the architecture
plier and transform array is used in calculations of the form of has all the inherent features of systolic arrays. There is a high
eqn. l, the arrays of cells can be laid end to end with no need throughput, and transform size is limited only by the level of
for immediate data skew. The throughput of such a cell system integration possible. Partitioning the C matrix avoids the need
is limited by the propagation delay through one cell. The for complex arithmetic, and the C matrix transform array can
transform array and multiplier cells are very similar. be significantly reduced in size for real valued DfTs.

Reprinted from ELECTRONICS LETTERS 2nd September 1982 Vo/.18 No./8 pp.799-807

1. S. WARD 13th July 1982
B. J. STAN1ER
Department of Applied Physics & Electronics
University of Durham
South Road, Durham DH 1 3LE, England

!Rdeli'em::c<es
I MCCANNY, 1. V., and MCWHIRTER, J. G.: 'Implementation of signal

processing functions using 1-bit systolic arrays', Electron. Lett.,
1982, ll3,pp. 241-243

2 MCCANNY, J. V., and MCWHIRTER, J. G.: 'Completely iterative pipe­
lined multiplier array suitable for VLSI', IEEE Proc. G, Elecrron.
Circ. & Syst., 1982, U~, pp. 40-46

3 AGARWAL, R. c., and COOLEY, J. w.: 'New algorithms for digital
convolution', IEEE Trans., 1977, ASSJP-25, pp. 106-124

4 WINOGRAD, s.: 'On computing the discrete Fourier transform',
Mat h. Com put., 1978, 32, pp. 175-199

5 RADER, c. M.: 'Discrete Fourier transforms when the number of
data samples is prime', IEEE 'Proc., 1968, 54l, pp. !107-1108

6 NUSSBAUMER, H. J.: 'Digital filtering using polynomial transforms',
Electron. Lett., 1977, B, pp. 386-387

7 NUSSBAUMER, H. J., and QUANDALLE, P.: 'Computation of convolu­
tions and discrete Fourier transforms by polynomial transforms',
IBM J. Res. Dev:, 1978,22, pp. 134-144

8 PARSONS, T. w.: 'A Winograd-Fourier transform algorithm for
real-valued data', IEEE Trans., 1979, ASSJP-22, pp. 398-402

0013-5_194/82/180799-03$1.50/0

Y:&:.~u IQ;~$C~:E!r[E CID§:~:E T~&;.[\!J$ir=(Q):xl~
1'0,:'..1G!Dll::;C.f~~~: ~((J)'XJ §'V~I!((J;l:~ A~Fltl\.'\153

Indexing teri?ls: Signal processing, Systolic arrays

A f<:st algoritlun for an N -point discrete cosine transform
(DCT) is derived from a 4N-point Winograd !"o;~rier tnrns­
form algorithm (WFT A). This algorithm, which has the same
form as Winograd's Fourier transform and convolution algo­
rithms, is suitable for a high-speed implementation using
one-bit systolic arrays.

Introduction: Several authors 1
•
2 have shown that t~e discrete

cosine transform is a good techniql!e to adopt for the data
reduction of video signals. Earlier methods cf realising the
ncr have, for the most part, been based on the fast fourier
transform (IFIFT). J-s An alternative technique, using ll1Iada­
mard sparse matrices, has been proposed and implemented. 6 •

7

Here, a method of deriving efficient DC":' algorithms is pro­
posed based on :ength ~N Winograd Fourier transform algo­
rithms (WlFT A}. This technique yields algorithms using less
multiplications than the method, also based on the WfT A,
outlined in Reference 5.

Furthermore, an efficient implementation is proposed based
on the systolic arrays given by McCanny and McWhirter. 8

Theory: The discrete cosine transform may be defined as

1 N-1

C(O} = .J N .~o x(n)

J(2) N-
1

(kn(2n + 1))
C(k) = N .~o x(n) cos ZN ,

k = 1, ... , N- 1 (l)

with inverse

1 J(2) N-
1

(kn(2n + 1))
x(n) = .JN C(O) + N k~! c(k) cos ZN ,

n = 0, 1, ... , N- 1 (2)

Notice that, unlike the.discrete Fourier transform, the DCT
cannot be used as its own inverse. The DFT of R points is
defined as

q = 0, 1, ... , R - 1 (3)

with inverse

1 R-! rl (2rcpq') (2rcpq'),J
x'(p) = .JR q~o F(q) cos\ R - j sin\ R ,

p = 0, 1, ... , R - 1 (4)

So a DCT may be calculated by a DIT by noticing that

N- I (kn:(2n + 1)) R- I

.~o x(n) cos ZN = Re p~o x'(p)

X [COS e~q) + j sin (Z~q) J

if

.~ =4N

and

x'(2n + 1) = x(n), n = 0, i, ... , N- 1

otherwise

x'(l) = 0, I if' 2n + 1, I= C, 1, ... , 4N- 1

';hus the ca!culation of the ::JCT may be <iescribed as placir.g
the N terrr.s of the ::JC"::' input sequence in the f.rst N odd
points (1, 3, 5, ... , 2N- 1) of a .:!.N-length sequence. All the
other terms are zero. Then a _::;'ourier-like ~ransform is per­
formed by multiplying by the real part of exp (- 2rcpqj R}. The
OCT, except C(O), is found as the first N - 1 terms of F(q).
from the definitions given above, some normalisation coeffi­
cients are needed.

Application of Winograd Fourier transform algorithm: Win­
ograd's Fourier transform algorithms4 each have the general
form

lY = C(Aly ® Bz) (5)

where ® denotes pointwise multiplication, y is the data and lY
its transform. AI is an M x N (row x column) matrix and Can
N x M matrix; both contain only + 1, -1 and 0. The prod­
uct Bz is precalculated and given as a sequence of M coeffi­
cients. These coefficients are either real or imaginary, never
complex. A WFT A of 4N points is easily modified to calculate
anN-point DCT. The procedure is described below.

(i) Only the columns corresponding to the first N odd samples
of the Al matrix are retained. All other columns are discarded
as they operate on zero inputs.

(ii) Since the DCT involves no complex arithmetic-it has no
imaginary values-all the imaginary WFT A coefficients may
be removed. The corresponding rows of the Al matrix and the
corresponding columns of the C matrix are now deleted.

(iii) Some rows of the Al matrix may now be all zero. The
coefficients for each of these rows may be removed along with
the appropriate column of the C matrix.

(iv) The second to Nth rows of the C matrix are retained.
These represent the DCT -all the others should be discarded.

(v) By inspection it may be possible to simplify the C matrix.
for example, a column of zeros represents an unused coeffi­
cient. Such coefficients and the equivalent rows of the AI
matrix should be removed from the algorithm.

(vi) Finally the C(O) term is added to the algorithm. The exact
arrangement of the normalisation coefficients in eqns. 1 and 2
determines the number of additional multiplications to be
added to the algorithm. With the definitions given above one
extra multiplication is needed.

The above procedure results in an efficient algorithm for the
calculation of the DCT using a small number of multipli­
cations.

The same idea can be applied to derive an inverse OCT
from the forward WFT A. In this case the first N - 1 columns
of the Al matrix and the first N odd columns of the C matrix
are used, i.e. the opposite way round to the forward DCT.

Implementing the DCT: We have previously shown how DFT
and convolution algorithms of the general form of eqn. 5 can
be implemented using 1-bit systolic arrays. 11 DCT algorithms
derived by the above method still have the general form of
eqn. 5. A 15-point DCT algorithm is given below. This algo­
rithm has been arranged so that all the multiplication coeffi­
cients are positive, and the coefficients are ordered so as to
reduce the number of columns of 'transform array' cells re­
quired for this algorithm.

Reprinted from ELECTRONICS LETTERS 20th January 1983 Vol. 19. No.2 pp. 58-60

15-point DCT matrices: The A matrix, for data in natural
order, is

1-i 1 1 1 1 1 1 I 1 I 1 1 I
0 0 0 0 I 0 0 0 I 0 0 0 0 -1
0 0 I 0 0 1 0 -1 0 0 -1 0 ·o 0

0 -I 0 1 0 0 I 0 -1 0 0 -1 0 1 0
-I -1 0 I I I 1 0 -1 -1 -1 -1 0 I I

I I 0 I I 1 1 0 I 1 I I 0 1 I I

-I I 0 I -1 I I 0 I -1 -1 1 0 I -1
I 0 I I 0 I I 0 I I 0 I I 0 1

-I 0 0 I 0 I I 0 -1 -1 0 -1 0 0 I
-1 0 0 -1 0 I I 0 I I 0 -1 0 0 -1

I 0 -1 -1 0 I I 0 -1 -1 0 I I 0 -1
1 0 0 -1 0 I I 0 -1 -1 0 1 0 0 -1

-I 0 0 -1 0 -I I 0 -1 I 0 I 0 0 I
I I I I I I I I I I I I I I I
I 0 0 I 0 1 1 0 I I 0 I 0 0 I

-I 0 0 I 0 -1 I 0 I -1 0 I 0 0 -1
-I 0 0 0 I I 0 0 0 -1 -1 0 0 0 I
-I 0 0 0 0 I 0 0 0 -1 0 0 0 0 I

0 0 0 -1 0 0 I 0 I 0 0 -1 0 0 0

The C matrix, with the output in natural order, is

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I -1 I 0 0 0 -1 0 -1 I -1 0 0 0 0 0 0
0 -1 0 0 0 I I I 0 -1 0 0 0 -1 -1 -1 0 0 0
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 -1 I -1 0 -1 0 0 0 I I -1 0 0 I
0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 I -1 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 I 0 0 0 -1 0 I -1 -1 0 0 0 I -1 0
0 -1 0 0 0 -1 -1 -1 0 -1 0 0 0 I I I 0 0 0
0 0 0 I -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0 0 -1 0 0 0 0 0
0 0 -1 I -1 0 0 0 0 -1 I -1 0 0 0 0 0 0
0 0 0 0 0 -1 -1 0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 -1 0 -1 I I 0 0 0 I -1 0
0 0 0 0 0 I -1 I 0 -1 0 0 0 -1 -1 I 0 0 I

The coefficients for the above algorithm are found as follows
(all values are positive and are to be multiplied by J(2/15)):

MO =sin U3

M2 =sin Us+ sin 2Us

M4 =cos u3 - 1

M6 = 1/2(ccs Us- cos 2U5)

Ml =sin 2U5

M3 =sin U 5 - sin 2U5

M5 = ~/2(cos U 5 +cos 2U5)- 1

where U 3 = 2rr:j3 and U 5 = 2rr:j5. The coefficients are:

1 1/J2
2 MO. M3
3 -M4.M2
4 M2
5 Ml
6 -M5
7 M6
8 -M4
9 -M4. Ml

10 MO. M1

11 MO
12 -MO. M5
13 MO. M6
14 1·0
15 M4. M5
16 -M4. M6
17 M3
18 -M4. M3
19 MO. M2

An implementation of a DCT algorithm using these systolic
arrays would have a throughput high enough to cope with
real-time television pictures.

Conclusion: An efficient algorithm for performing the discrete
cosine transform has been derived. The algorithm is well
suited to implementation t:;sing 1-bit systolic arrays. [fad van-
tage is taken of alternate cells being unused in the design for
the transform arrays in Reference 8, conside~able compaction
in the size of the arrays is possible. Such compactions would
allow small length DCTs to be implemented in systems re-
quiring only a few VLSI chips.

J. S. WARD 19th November 1982
B. j. STAN!ER

Department of Applied Physics & Electronics
University of Durham
South Road, Durham City DHJ 3LE, England

~d<e:r<en;JII:!W

1 CHEN, w., and SMITH, c. H.: 'Adaptive coding of monochrome and
colour images', IEEE Trans., 1977, OO>MJ-25, pp. 1285-1292

2 ROSE, 1. A., PRATT, W. K., and ROlliNSON, A. S.: 'Jnterframe cosine
transform image coding', ibid., 1977, COM-25, pp. 1329-1339

3 AHMED, N., NATARAJAN, T., and RAO, K. R.: 'On image coding and a
discrete cosine transform', ibid., 1974, C-23, pp. go..:.93

4 HARALJCK, R. M.: 'A storage efficient way to implement the discrete
cosine transform', ibid., 1976, C-25, pp. 764-765

5 NARASHIM, M. J., and PETERSON, A. M.: 'On the computation of the
discrete cosine transform', ibid., 1978, COMJ-2G'i, pp. 934-936

6 HEIN, o., and AHMED, N.: 'On a real"time Walsh-Hadamard/cosine
transform image processor', ibid., 1978, lEMC-2®, pp. 453-457

7 GHANBARI, M., and PEARSON, o. E.: 'Fast cosine transform im­
plementation for television signals', lEE Proc. F, Commun., Radar
& Signal Process., 1982, ll2!JI, pp. 59-68

8 MCCANNY, J. v., and MCWHIRTER, J. G.: 'Implementation of signal
processing functions using 1-bit systolic arrays', Electron. Leit~
1982, I3,pp.241-243

9 MCCANNY, J. V., and MCWHIRTER, J. G.: 'Completely iterative pipe­
lined multiplier array suitable for VLS!', lEE Proc. G, Electron.
Circ. & Syst., 1982, 129, (2), pp. 4{}-46

10 WINOGRAD, s.: 'On computing the discrete Fourier transform',
Math. Comput., 1978,32, pp. 175-199 .

11 WARD, J. s., and STANIER, B. J.: 'lmplementation of convolution and
Fourier transforms using 1-bit systolic arrays', Electro71. Lett.,
1982, TI3,pp. 799-801

0013-5194/83/020058-03$1.50/0

, ,.. • • .. - • j

A MATRIX 1- BIT SYSTOLIC ARRAY

KEY:

s Su~sTRATE BIAS

¢ CLOCK INPUTS

p CoEFFICIENT PROPAGATE SIGNAL

I INPUT DATA Cl = ~ ss)

0 OuTPUT DATA

DESIGNED BY J.S.WARD

