W Durham
University

AR

Durham E-Theses

Number theoretic techniques applied to algorithms and
architectures for digital signal processing

Ward, Jeremy S.

How to cite:

Ward, Jeremy S. (1983) Number theoretic techniques applied to algorithms and architectures for digital
signal processing, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/7191/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7191/
 http://etheses.dur.ac.uk/7191/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Number Theoretic Techniques Applied to Algorithms and Architectures

for Digltal Signal Processing

Jeremy S. Ward B.Sc¢ (Dunelm)

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Department of Applled Physics and Electronices

University of Durham
August 1983

A Thesis submitted for the degree of

Doctor of Phillosophy of the Unlversity of Durham

25. I 1984

Apstrach
Number Theoretic Technigues Applied to Llgorithms ancd Lrchitectures
for Digital Signal Processing
< .S . Ward

Many of the techniques for the computation of a two-
dimensional convolution of a small fixed window with a picture are
reviewed. It is demonstrated that Winograd's cyeclic convolution and
Fourier Transform Algorithms, together with Hussbaumer's two-
dimensional cyclic convolution algorithms, have a common general fornm,
Many of these algorithms use the theoretical minimum number of general
multiplications.

A novel implementation of these algorithms is proposed which
is based upon one-bit systolic arrays. These systolic arrays are
networks of Identical cells with each cell sharing a common control and
timing function. Each cell is only connected to 1it's nearest
neighbours. These are all attractive features for implementation using
Very Large Scale Integration (VLSI). The throughput rate is only
limited by the time to perform a one-bit full addition.

In order to assess the usefulness to these systolie arrays a
‘cost function' is developed to compare them with more conventional
techniques; such as the Cooley-Tukey radix-2 Fast Fourier Transform
(FFT). The cost function shows that these systolic arrays offer a good
way of implementing the Discrete Fourier Transform for transforms up to
about 30 points in length. The cost function is a general tool and
allows comparisons to be made between different implementations of the
same algorithm and between dissimilar algorithms.

Finally a technique is developed for the derivation of
Discrete Cosine Transform (DCT) algorithms from the Winograd Fourier
Transform Algorithm. These DCT algorithms may be implemented by
modified versions of the systolic arrays proposed earlier, but
requiring half the number of cells,

- Acxnoriedgenents

I would like to thank my supervisor at Duraam, Dr B.J.Stanier,
and my supervisor at the Royal Signais arnd Rader Establishment (3SRE),
Dr J.G.McWhirter for their help and encouragemenrit throughout the course
of this project.

I should also like to thank Dr J.G.B.Roberts and
Dr J.V.McCanny, both of RSRE, for many helpful discussions and
constructive comments.

This work was supported by a Science and Engineering Reseach
Council Co-operative Award in Scilence and Engineering. The sponsoring

body was the Royal Signals and Radar Estabishment.

Table of Ccatents

Abstract

Ackrovledgerents

Table of Coatents

Chapter 1 Apericdic and Cyclic Comnvolutioms

1.1
1.2

P Y
° o
(62 BN US|

o

1.6

Intrcduction to Chapter 1

Aperiodic and Cyclic Convolution
1.2.1 Overlap-Save

1.2.2 Overlap-Add

The Cyclic Convolution Property
Rectangular Transforms having the CCP
Rader's Theorem N=p

1.5.1 Rader's Theorem N:pr
Summary of Chapter 1

Chapter 2 °Short-N° DFT and Comvolubiom Algowrithas

2.1

2.2

2.3

2.4

2.5

Convolution and Polynomial Algebra

2.1.1 The Toom-Cook Algorithm

The Chinese Remainder Theorem

2.2 1 The Chinese Remainder Theorem for Integers
2.2.2 Residue Polynomials

2.2.3 The Chinese Remainder Theorem for Polynomials

Computation of Convolutions wusing the Chinese
Remainder Theorem

2.3.1 The Cannonical form of Winograd's Algorithms
2.3.2 Cyclotomic Polynomials

Construction of Short Convolution and DFT Algorithms of
the Winograd Type

2.4.1 A U-point Cyclic Convolution Algorithm

2.4.2 The Transpose System

2.4.3 The Application of Short Convolution Algorithms
to DFTs

Summary of Chapter 2

Chapter 3 Polynomial Transfor—s

3.1

392

Two-Dimensional Convolutions Expressed using Polynomilals

3.1.1 Convolutions of Polynomials
Two-Dimensional Convolution Algorithms using the CRT
3.2.1 A pxp Cyclic Convolution, p an odd prime
3.2.2 Generalised Polynomial Transforms

3.2.3 A Polynomial Transform, length p, root z,

modulo Cp(z)

P S Gy
T w N = O O

N —~2
w WO

25
25
26
29
29
31
32

3
36
37

39
39
42

45

50
50
51
52
53
54

55

3.3

3.6

Other Applications of Polynomial Transiorms

3.3.1 Polynomial Transforms with Roots in a Field
of Polynomials

3.3.2 4 Cyeclic Convolution of p?xp? points,
p an odd prime

3.3.3 Polynomial Transforms with Composite Roots

Operation Counts
Other Approaches

3.5.1 Fast Bilased Polynomial Transforms

3.5.2 Polynoxial Transforms in Modified Rings

3.5.3 Other Two-Dimensional Cyelic Convolution
Algorithms

Summary of Chapter 3

Chapter & Hulti-Dizensional Mappings

4.1
4,2
4.3

The DFT

The FFT

Prime Factor Mappings

4.3.1 Good's Algorithm

4.3.2 An Unscrambling Constant

4.3.3 An In-Place, In-Order PFA ALgorithm

The Kronecker Product Structure of DFT Matrices

The Nested Winograd Fourier Transform Algorithm
h.5.1 Operations Counts for the Nested WFTA
Block Stucture and Nesting of Convolution Algorithms
Summary of Chapter U4

Chapter 5 Comparison of DFT and Comnvolutica Algorlitiazs

5.1

5.2

5.3

Operation Counts for the One-dimensional DFT
5.1.1 The FFT

5.1.2 The PFA

5.1.3 The WFTA

5.1.4 Comparison of DFT Algorithms

One-Dimensional Convolutions

5.2.1 Nesting 'Short-N' Convolution Algorithms

5.2.2 Cyeclic Convolutions Calculated by Transforms
having the CCP

5.2.3 Comparison of ways of computing 1-D Cyclic
Conveolutions

5.2.4 Optimum Bloeck length for 1-D filters

Two-Dimensional Convolutions

5.3.1 Nested 1-D WFTAs

5.3.2 Nested 2-D DFTs

5.3.3 2-D Cyeclic Convolutions calculated using
2-D DFTs

65
65

67
67
68
69
70
72
73
76
76
T7
79
82

5.4

5.3.1
5.3.5
5.3.6

5.3.7

2-D Cyeclic Convclutions calculated using

Nested 1-D Cornvolution Aigorithms

2-D Cyclic Convolutions Based upon Polynomial
Transforms

Comparison of 2-D Cyclic Conwvolution Ccmputation
Methods

Optimum Block Size for 2-D Convolutions

Summary of Chapter 5

Chapter 6 Inplezentimg the USrd using i-bIt Systoslie Lrrays

6.1

6.2

6.3

o
v =

Proposed Architecture

6.1.1
6.7.2
Practical
6.2.1

6.2.2
6.2.3

A and C Matrix Implementation

Pipelined Systolic Multiplier
Implementation of these Algorithms

The A and C Matrix Arrays

6.2.1.1 Matrix Multiplication Array Sizes
Basic Cell Area

Matrix Array Chip Size and Pinout
A4 and C Matrix Storage and Entry
Summary of A and C matrix
Implementation

A Pipelined Systolic Multipler

Data Skew and Word Order Swapping

6.2.1.
6.2.1
6.2.1,
6.2.1

°

°

vl = w N

o leo

The Overall Systen

6.3.1
6n302

Performance
Chip Designs

An A Matrix Systolic Array design
Summary of Chapter 6

c8

99

10*
107

in
[}

106
10T
107
112
115
115
115
117
118
119

120
120
121
122
123
123
124
125

Chapter 7 A Cost Functica for Coopariscn of Algoritlm Inplementations

- ===
o o
Ew o -

7.5

Introduction to the Cost Funection

The Cost Function

Assumptions about Arithmetic and Memory Functions
Implementing the FFT

7.4.1
7.4,
7.k,
T7.4.5

—~3

= wn

A Four-Cycle 'In-Place’ Butterfly

A QT o Maral
A Singie-Cycle 'In-P

LogZN Butterflies
A Totally Parallel FFT
A Pipelined Butterfly

Implementing the WFTA

Te5.1
T7.5.2
7.5.3
7.5.4

A Low Power WFTA

WFTA: Groups of ALUs

Completely Parallel WFTA

A WFTA Implementation Using One-bit Systolic
Arrays

127
127
129
131
132
132
134
134
135
135
137
137
138
141

a2

7.6 Comparison of Algorithms

T.6.1 Comparison of FFT Algorithms
7.6.2 Comparison of WFTA Implementations
7.6.3 Conclusion to Algorithm Comparison

Chapter 8 A Discrete Cosinme Traasform Ligoriti=z

8.1 The Discrate Cosine Transfora

8.2 Application of the WFTA

8.3 Derivation of a H4-point DCT

8.4 Implementing the DCT
8.4.1 A and C Matrix Reduced Arrays
8.4.2 A Reduced Pipelined Multiplier

8.5 Implementing a 15-point DCT

8.6 Summary of Chapter 8§

Chapter 9 Conclusiong and Suggesticns for Further Work
9.1 Summary and Conclusions
9.2 Suggestions for Further Work

Chapter 1 References
Chapter 2 References
Chapter 3 References
Chapter B References
Chapter 5 References
Chapter 6 References
Chapter 7 Referemces
Chapter 8 References

Appendix I ‘Short-N' Convolution and DFT Algorithms

Appendir IT A FORTRAN program to generate the matrices
for a 9x9 cyelic convolution algorithm

Appendix IITI A 15-point DCT Algorithm

743
153
144
15

iy
=y
748
150
151
152
152
155
156

157
157
159

161
163
164
166
169
171
173
174

188

195

Cazpter 1

Aperiodic and Cyclic Comvolutilcns

An increasingly important digital signal processing function
is the calculation of two dimensional convolutions. Such convolutions
are widely used, for example, in image processing and synthetic
aperture radar., This thesis addresses the question, what 1s the 'best’
method of calculating a two-dimensional convolution? In order to place
some bounds upon the problem the case where one of the arrays is fixed
and is small compared to the other is considered. A typical problem
might be the convolution of a fixed 15x15 window with a varying plecture
of, say, 500x500 points.

The thesis falls into two parts. The first part, which
consists of the chapters one to five, is a detailed review of many of
the techniques and algorithms for calculating convolutions. The close
relationship between Fourier transforms and convolutions is discussed.
In particular a general form 1s derived which describes the most
computationally efflicient algorithms for both one- and two-dimensional
convolutions and Discrete Fourier Transforms (DFTs). The final chapter
of this first part compares all these algorithms in terms of the number
of multiplications and additions performed for a given convolution,

The second part of the thesis proposes a novel implementation
of algorithms having the general form developed in part one. This
implementation is based upon one-bit systolic arrays and is extremely
well suited for realisation using Very Large Scale Integration (VLSI)
techniques. Finally a much more searching comparison is made between
algorithms and different implementations of these algorithms. The
comparison Is made by developing a Cost Function. This Cost Functlion

accounts for potential throughput, number of gates wused, power

consumption and control overheads,

The conclusion, reached at the end of the thesis, is that
minimal complexity algorithms of the general cannonical form
implemented using one-bit systolic arrays offer a very go>d solutioa to
the problem of calculating one- and two-dimensional convolutions and

DFTs.

1.1 Introduction to Chapter 1

Chapter 1 deals firstly with partitioning techniques which
split long convolutions into a series of shorter ones and secondly with
the relationship between DFTs and convolutions, It is shown that the
convolution of two sequences is the inverse transform of the product of
the foward transforms of the two sequences., Rader's theorem 1s then
introduced. It shows that Fourier-like transforms can be re-expressed
as convolutions. So thelre is an apparent paradox of a convolution
being calculated using transforms and these transforms themselves being
calculated by convolutions. The computational advantage of this nested

structure will become apparent in Chapter 2.

1.2 Aperiodic and Cyclic Convolution

Many applications calling for the use of convolution demand
the aperiodic convolution of two sequences. However most 'fast?
algorithms apply only to periodiec functions and yield cyclie or
clrcular convolutions. The term ‘fast’ means using a smaller number of
arithmetic operations. This sectlon defines aperiodic and cyeclic
convolutions and shows how to calculate aperiodic convolutions from
cyeclic ones,

In the one dimensional case the aperiodic convolution ¥y of a

sequence x of N terms and the sequence b of L terms is defined as

L1
v, = .E?% bz n = 0,1;00.,N4L=2

X s 0 if n-k<0 (1. 1)

This is generalised to the two-dimensional case with the arrays being

N1xN2 and ijsz giving
L.-1 L_-1
v N = (1.2)
" KRo Ko By ky -, %2
where n, = O,T,ooa,N1+L1—2 and n, = 091,°°°,N2+L2-2 with
X =0 if k.>n, or k. >n_.
n1-k1,n2-k2 17 2" 2

In many instances only one-dimensional functions are
discussed in this chapter but the results, for the most part, are
easily generalisable to two-dimensions.

The aperiodic convolution of two sequences of lengths N and L
(1.1) results in a sequence of N+L-1 values,

In contrast cyclic convolution convolves two length N
sequences gving a length N sequence as the result. Cyclic convolution

is defined by

N-1
v, = Eg% N SN n=0,1,00.,8-1 (1.3)

In (1.3) the notation <.> denotes reduction modulo N. Thus to
calculate the aperiodic convolution of two sequences of lengths L and N
using a cyelic convolution algorithm a N+L-1 point cyelic convolution

is n

eeded. The two input sequences are extended to length N+L-1 by
appending N-1 zeroes to the h sequence and L-1 zeroes to the =x
sequence,

To take advantage of the various fast cyelic convolution
algorithms to speed-up the calculation of extremely long convolutions
we need a technique to split a long convolution Into a series of cyelic

convolutions. There are two methods, Overlap-Add and Overlap-Save

10

[1.71. The methods are similar and yield results of comparable

complexity.

1.2.1 Overlap-Save

Suppose we have a very long sequence 2 s M vaiues long with
which we wish to convolve a sequence hn, N values in length. In the
Overlap-Save method the resultant convolution 91 is sectioned into

blocks, each block containing K values., That is

yl-_-yl +1K 11 :Oy19°°°9K"1 and 12:Oy1yoooo (10""’)
1772
NiT
N = h _ (1.5)
1,+1,K = nxl1+12K n

Consider the first ¥4 in any given block, i.e, 11=O and 1, fixed, then

2

the x and hn terms which contribute to this y, are

N-1
Vi g = > hx o 1,20 1, fixed (1.6)
2 n=0 2
so the first x term which contributes to the result is X o Now
m 2K-N+T
turn to the last value of 9, in the block,
N-1
71 keK-1 T nZO hn”‘12K+K-1-n 1, fixed 4T

=]

the 1last x_ term contributing to (1.7) is 212K+K-1’ So the total
terms contained in Lhe block Is -N+7-» K-1 i.e.
N+K-1 terms 1in total. Thus to calculate each of the aperiodic
convolutions in (1.5) N+K-1 point cyclic convolutions are needed. K-1
zeroes are appended to the h sequence. The output of each of taese

cyelic convolutions is given by

11

e N =
s K =]
Xm = == SIS t -
< Y, 3
— NeK-1 —
LHZK_H J save
o Save
L+LK - = —
2 AN-k= y save
Y —)
K= M<>K—'1 g;{
Fig 1.1 Overlap-Save
hn —_—
=l N =
fk— K —
X L . .)
m
Ry M AA
k— NeK-1 —3f
xm m.K- 7
109
d +L K . L T
l1 nzr Q/ add
] add
J add
yl =S A i
MoK -1 sl

Fig 1.2 Overlap- Add

RSN
v = | ox 1, = 0,1,0000&=1 (1.8)
l K - [2R 9
1+12 540 n <11 n>+12K 1
1, = 0,150000

2

kY

where <11-n> is evaluated modulo N+K-=1., Only the last K ocutput samples
from each of the cyclic convolutions are used. Tne other values are

discarded, As the last value of %= used in a block is x and
n 12K+K«1

the first value of 2 used in the next block is 2%12+1)KGN+?
the blocks into which the z series is divided into overlap by (N-1)
terms. The Overlap-Save algorithm derives it's name from these N-1i

terms of X 'saved' between successive cyclic convolutions. Figure 1.1

illustrates the Overlap-Save principle,

1.2.2 Overlap-Add

In the Overlap-Add technique the 1input sequence x is
sectioned in contiguous blocks of length K such that

X = Xh1+m2K m, = O0,1,000,K-1

m, = 0,1,... for successive blocks (1.9)

The aperiodic convolution of each of these blocks =x +m.K with the
12
sequence hn is then computed and yields an output sequence o 1 of
29

K+N-1 samples, The successive aperiodic convolutions yﬁzgl are
computed using K+N-1 cycliec convolutions, The input sequences are
extended by appending K-1 zeroes to them.

The Overlap-Add method derives it's name from the fact that
the output of each section overlaps it's neighbours by K-1 samples,
These samples must be added to find the desired Yy Thus the Overlap-
Add method requires an additional K-1 additions when compared with the

Overlap-Save method. Consequently the Overlap-Save method is often

perfered. The Overlap-Add method is illustrated in figure 1.2.

12

1.3 The Cyclic Convolution Property

The Discrete Fourier Transform is one of the most important
mathematical aids to signal processing. One of the more important
propertieg of the DFT 1is that the inverse DFT of the product of the
DFTs of two sequences is the cyclié convolution of those two sequences.
This property is known as the Cycliec Convolutlon Property. The
existence of fast DFT algorithms enables convolutions to be calculated
more efficiently than by direct computation.

The Discrete Fourier Transform X, of a sequence Z s of N terms

k
is defined by

N-1
X = PN me§k k=0,15000,N=1 (1.10)
m=0
-jam/N
WN = e J 9 j:\/——-1
X and Xk are uniquely related by a transform pair with the foward

transform given by (1.10) and the inverse transform given by

1] -1k
Y, =g E;é X W 120,15 000 ,N=1 (1.11)

It can be verified that (1.11) is the inverse of (1.10) by substituting

for Xk in (1.11). This gives

=|

N-1
1 (m-1)k
¥ = % kgo W, (1.12)

However Wg =1 so m-1 is defined modulo N. For m-1=0 modulo N
N

.
~
B

|
.
~
~
4
~~

-

-

~

™
=
=
1
w

If m-140 mod N, then

T ek wém-l)N'T
Z wNm- = 1 (1.14)
k=0 Wy o-

Then, since Wﬁ_l £1 the sum (1.14) is zero. So the only non-zero case

corresponds to l=m, which gives y; = Xy

13

The DFT can be used to compute a cyclic convoliution y, of N

1
terms with
N-1
v, = Eo bz, 1=oy1y°°°9;\1=1 (1.3)

\S

This'‘done by computing the DFTs Ek and Xk of hn and Zos by multiplying

Hk by Xk and by computing the inverse transform Cl of Hkﬂko

DY {Z wmk}{z nN}wlk (1.15)

k=0 "m=0

@1 =

rearranging gives

N-1 N-1 1 N=1 (men-1)k
C, = Y 2 hx - oW (1.16)
1 nm N N

n=0 m=0 =0

By using a similar argument to the Inverse DFT case

) Ni? w(m+n—1 Yk
- = N

becomes S=0 for m+n-1£0 Mod N

and S=N for m+n-1-=0 Mod N

so m=l-n Mod N and substituting into (1.16) gives Cl=y1° The
calculation of convolutions using DFTs is of little value if the DFTs
are evaluated using N2 complex multiplications. However the existence
of many fast DFT algorithms makes the approach given in (1.15) an
extremely useful technique.

Transforms having the property that Clzyl in (1.15) are said
to have the Cyclic Convolution Property (CCP). The DFT is not the only
transform having the CCP., The above proof of the CCP relied on the
existéhce of the value N_1 and the exist%nce of the Nth root of unity
in the field under consideration. This is the complex field in the
case of the DFT. Provided that N~' and the Nth root of unity exist
other fields may be used to calculate cyclic convolutions. Pollard

[1.2] was the firét to suggest the use of finite fields, in particular

14

the Galois field of pn elements, where p is prime and n a positive
integer. Such transforms are known as Number Theoretic transforms
(NTTS), No further discussion of NTTs is given in this thesis. More
recently Nussbaumer [1.3], and Nussbaumer and Quandalle [1.4] have
introduced a transform based upon a ring of polynorials., Thes?
polynomial transforms are an important adjunct to the development ;5
two-dimensional convolution algorithms and are considered in more
detail in chapter 3.

An alternate way [1.11] to express the cyeclic convolution of
two sequences x and h is as follows. The transforms of x and h are
defined by

X = Ax

H = Bh (1.17)
where A and B are matrices representing the foward DFT, Then the
point by point product of the two sequences is obtained

Y-=-HxZX (1.18)
Finally the inverse DFT of Y is obtained

y=CY (1.19)
C is the matrix representing the inverse DFT. The processes glven by
the equations (1.17)=(1.19) can be described by the single equation

y=C (A&x x Bh) (1.20)

1.4 Rectangular Transforms having the CCP

Agarwal and Cooley [1.5] have shown that other transforms,
besides the DFT-like transforms discussed above, have the CCP. This ié
provided that the A, B and C matrices are non-square. Agarwal and
Cooley called these transforms ‘Rectangular Transforms'.

Suppose that the & and C matrices are of dimensions MxN and

the C matrix MxM. Here N is the length of the cyclic convolution and M

15

is the number of points in the ‘transform® domairn, M>N. So {(1.17) can

be rewritten as

N-1 N-1
I = q;o By % 2nd B = EO By Py K=0sTyeosliel (1.21)
Equation (1.18) becomes
Pi-1
v, = IZ:O €, 15 020,15 000,N-1 (1.22)

Substituting for Xk and Hk from (1.21) into (1.22)
-1 {N-1 (-1
= C A B h (1.23)
7n EO n,k qZ:O k,q°q p§0 k;p P 3

Reordering the summations gives

%iﬂ %i? M-1

vy = xh{z CAB} (1.24)
n p-0 q-0 qp o) n,k'k,q K,p

A necessary and sufficient condition for (1.24) to represent cyeclic

convolution is

M-1 =1 if p=n-q Mod N

C A B
n,k'k,q7k,p =0 otherwise (1.25)

k=0
In the case where M=N Agarwal and Burrus [1.6] have shown that the
matrices must have the DFT structure. However if M>N then many
different choices are possible., As M is increased the entries in the
A, B and C matrices become simpler. In the extreme case where Mz=N?
each row of the A and B matrices will have only one non-zero element
and the algorithm is equivalent to the direct computation of cyeclic
convolution. The remainder of this thesls 1s concerned with algorithms
in which N<M<N?, In particular, convolution algorithms of this form in
which the entries in the A and C matrices are restricted to the values
+1, =1 and 0 are considered in detail., Chapter 6 gives a novel

implementation of algorithms of this form which is based upon the use

of one-bit systolic arrays.

16

1.5 Rader's Theorem N=p

This section and the subsequent sub-section show how certain
DFTs can be converted into circular convolutions (or correlations) by a
method proposed by Rader in 1968 [1.7]. The first and least complex

case is of a DFT for N=p, where p is an odd prime. Then the DFT is

given by
X - pi‘ x K= 0,1,.c.,p-1
o0 Wy = e~ 2P 5T (1.10)
For k=0 Xk is simply the summation
p=1
X, = ngo x (1.26)
For k£0
T o= p—1xnw§k
n=1
Xk=z<0+>:<1'< K= 1,25000yD~1 (1.27)

The indices n and k are defined modulo p. As N is prime there is some
number, not necessarily unique, such that there is a one-to-one mapping
of the integers i=1,2,...,N-1 to the integers j=1,2,°°°,N—i given by

J = gi Mod N
The integer g is known as a primitive root of N [1.8]. So for n,;k#0 we
can replace n and k by the transformations

n = gu mod p

kK = g mod p Cu,v=0,15000,pP=2 (1.28)

so (1.27) becomes

p-2 u+v
I, =) = w8 v=0,15000,p=2 (1.29)
g =0 g '

In (1.29) the exponents of g are taken modulo p-1. This may be

rewritten as

17

X' = =z h V=0,75000,P=2 (1.30)

where

t

{;Zu} {EZgUL {izi} - {X;V} and {hm-vsz {wgu+v} °

Equation (1.30) represents a circular correlation. To obtain a
circular convolution we change the sign of u in (1.29). This

corresponds to fixing x 0 and reversing the remainder of the permuted

g
input sequence. The convolution is

X =7 x WS v=0,1,000,pP=2 (1.31)
g u=0 g

By combining (1.31) and (1.26) a DFT of prime length p can always be
calculated as a p-1 point convolution with some additions.
As an example consider the calculatlion of a seven point DFT.

This may be written in matrix vector notation as

Y 1-

X, (11 1 1 1 1 1 z,
X, 1w wlwdwt Wl x,
X, 1 wewt Wb Wt w3 ‘xz"

) 3.6 .25 1 1 7
L= (1w we v s w21
X, 1wt W wl Wb w3 z,
X 1w wdwlowbowt Wl
X 1 Wt w3 e |x (1.32)

For N=7 a suitable primitive root is 3. Thus, excluding XO’ and by
using the mapping given in (1.28) with g=3, the input vector is
rearranged in the sequence 1,5,4,6,2,3 and the output vector in the

sequence 1,3,2,6,4,5. This gilves

18

£

(p ’
I Wl s Wb w2 3 E3
I Wl WPt b Wl %
v 2.3.1.5 4 6|1
ml (wEwieiw B T
T W w wd vl Wl wt|
6 156
¢ Wt wl w2 3wl Wb '22
I wwt W W wd ' s 1,33)
(5 L S 3
P

Equation (1.33) has the form of a cyclic convolution.

With a fast algorithm for calculating p-1 point convolutions
it 1s possible to use Rader's theorem to calculate p point DFTs - this
is one of the key points In the derivation of the Winograd Fourier
Transform Algorithm. The case where szr is more complex and is

described below,

1.5.1 Rader's Theorem N:pP

The case when N:pr, p prime, has been discussed by several
authors; Kolba and Parks [1.9], Nussbaumer [1.10] and by MecClellan and
Rader in the introduction to [1.11]. It is possible to convert a DFT
of szr points into a series of convolutions., The first step is to
change the index k so that

r-1
O0y15e00sP -1

k= pky o+ k, k,

k2 = 0,1,..0,p-1 (1.34)

Subsequently, for k2=0 we have Kio modulo p and Xk becomes
p_
1
X, =). =MW (1.35)

By way of an illustration of the decomposition of the N:pr point case a

9-point 1is used as an example. The 9-point DFT matrix is

19

- Yoro)
X, T 1 1 1 1.1 1 1 1 ‘15103
' i
x, 1wt wl wdut wd wb T Wl x|
i
Z, 1ol u® el el e
! .
x, 1w w1 Wby w3l EN
5| = |1 wh wl wd w’ wl wb ' W ‘xu{ W -
5 01 6 2 T 3 o8 bl 1o
X w wt Wl wlowl w3 Wl Wt x|
5 ! LBg
X, 1wl w1 wowd g whwl % |
T 05 03 171 w8 46 U 2 |
X wwlw wo ot wtw
7 v %71
8 ;7 6 ;5 8 23 ;2 (1
\XBJ pwwwwwwwwjhxgj
Equation (1.35) describes the rows corresponding to Xop XS
¢
X, UNE TR TR R T NS B I I
x| - 1w Wl wwb o W z
X 1w wd g whwdg Wb w3 g
6 172
!
| =5
%y
5
g
\ 7
pnk1 r-1
Then in (1.35) since W defines n modulo p ', i.e.

(1.37), we change the index n to

Then for k2=

.,D=1

0, X, becomes a DFT of pr_1 points,

20

and X

(1.36)

60

(1.37)

Modulo 3 in

(1.38)

(1.39)

So in the 9-point DFT example (i.37) can be rewritten as a 3-point IFT,

4
XO T 1 1 (XO + 23 % 26
3.,6
- 12 W 5 . .
X3 = L‘l W W .‘z,i + LU + “7i
X |1 oud ol | (1.10}
L6 L'] f i ? X2+L~_5-4‘-X8: Vo J
J L 4

We now return to the k index given by (1.34). For kZ£0 modulo p, we
compute separately the terms corresponding to n=0 mod p (&k) and to n#0
mod p (Bk)’

X = A + B C(1.41)

Firstly, for n=Cmod p

n = pn, n, = 091,n”pr‘°1-‘i (1.42)
So by reordering k, we have
K = pr_1k1 sk, Ky = 0,1,000,0-1
k, £ 0 mod p k, = Tyeee,pt 1o (1.43)
so
r-1
P -1 pn.k
A - X m W '? (1.48)
p'k,+k n,=0 P

172 1

The righthand side of (1.44) is independant of k1 so Ak is a DFT of

) o

p ! points in which the terms corresponding to k,=z0 are not

2
calculated, 1In the 9-point DFT example we have (equation (1.42)),

21

w1 1) xg
0 0
i 1 w3 wb =g
5, 1 wb 3 %
by S
= |1 ¥ wd
a 1 w3
A R
B, 1 w3 Wl
CIe Wb W3J (1.45)
Using this example (1.44; describes
B, '[3\3 (8 11 1=,
T w3 Wb x,
A, LAS Bg 1 wh Wl xg (1.146)

The condition that kafo mod p in (9.43) 1s because the values of Xpl

l=0,1,,..,pp_1-1, have already been calculated in (1.39).

Finally we consider Bk of (1.41). This consists of terms for

which n,;k£0 mod p. Bk is of length pr—1(p=1) points. Then, in a

similar manner to the N=p case above, the indices n and k can be
generated by a primitive root g defined modulo pp with

n = gu mod pr

v

k-g' modp" UV = 0,1, 000,p" (p=1)-1 (1.47)

Thus a correlation of length pr_1(p=1) is obtained

-1. .
pr (p-1)-1 gu+v
B = % z W (1.48)
g u=0 g

For the g-point DFT the 6-point convolution is obtalned using a

primitive root equal to 2. This gives (1.48) as

22

3D D 2 B o3 @ e om e e o 63 <3 S3 3 £ 63 & on

x(@%x@%x(@)%?f X {0
2 (1) x 1]+ % [T) —nicls Sy D]

X {2+ % (5]« %8

\
2.
J\
=

@

- ' b
77 = (OVolve O
: g . P | n
; I W b ﬁ ‘ ‘
> ¢ K
")

V ; i

N S ::;;;,\< s

ﬂ\ (/!/' % R SN - / \.Z/) ‘/,
f N

AP 3
B 6

R 1
M5
U
T8
E &
2)

Fig 1.3 9-point DFT Uecomaesition

using Rader’s Theorem

d ~ 7

lB,: wl wd wl Wb wt wd 3

2 1.5 .7 ,8 ;4
B, whwl w el Y e
B wh vl wt v T Wl |k

o 7 w - 1

By wd W w2 ! wd g
3, wl W Wt Wl wt WP i,

5. 7.8 4 2 1

BA A J

LBS‘ G el A (1.19)

Each of the subsiduary DFTs (1.39) and (1.44) in the calculation of a
pr point DFT can themselves be decomposed into convolutions. So as
noted by Kolba and Parks [1.9], this 9-point DFT requires a 6-point
éyclic convolution (1.49) and two 3-point DFTs (1.40) and (1.46).
Figure 1.3 illustrates this decomposition of the 9-point DFT,

When N is a power of two, the N-point DFT is partitioned into
DFTs of size N/2 by the same method, and the DFTs corresponding to n

and k odd are computed as correlations., However, there are no

n,n
primitive roots for N>4, For N>U4 the composite root (-1) 13 29 with

n1=O,1 and n_=0;...,(N/U=1) should be used. These roots generate a

2
two-dimensional correlation of size 2x(N/4).

So Rader's decomposition yields a method of computation, based
upon convolutions, for p and pr point DFTs. The major significance of

Rader's algorithm is that 1t allows one to compute large DFTs very

efficiently when it is combined with other techniques.

1.6 Summary Chapter 1

This chapter has provided a review of some of the fundamental
techniques for calculating convolutions and DFTs., Firstly the
techniques of Overlap-Add and Overlap-Save were introduced to show how
long aperiodic convolutions can be calculated from a series of shorter
cyclic convolutions., Then the Cyeclic Convolution Property (CCP) was

derived to show how cyclic convolutions may be calculated using

23

transform techniques. However Rader’s theorem shows how taese
tranforms themselves may be expressed as convolutions, The use of this
structure of convolutions within convolutions 1s used in latter
chapters concerned with the development of two-dimensional convolution

and Fourier Transform algorithms.,

24

Chapter 2

'Short-N' DFT and Convolubion Algorithms

This chapter deals with the derlvation of fact convelutiocn
algorithms by the means of polynomial algebra and the Chinese Remainder
Theorem (CRT). These short convolution algorithms.are then applied to

the DFT using Rader's Theorem as outlined at the end of chapter one,

2.1 Convolution and Polynomial Algebra

Consider the aperiodic convolution Y, of two sequences hk and
X , each of N terms,
m

N-1
v, = EO Bx 20,1, ... ,2N-2 (2.1)

Now suppose that the N elements of the hk and x are assigned

to be coefficients of the polynomials H(z) and X(z) of degree N-1 in =z.

i.e.
%i? X
H(Z) = 4
k=0 hk
N-1 X
X(z) = x z (2.2)
k=0

Taking the product E(x)X(z) the resulting polynomial ¥(z) will be of

order 2N-2. Thus
2N-2 n
¥(z) = BE(z)X(z) =) az (2.3)
n
n=0
In this polynomlal multiplication each coefficient, a, of zn, is found

by summing all the products hkxm so that nzk+m , 1.e. m=n-k. It

follows that

25

N-1
a = Z pIq = ¥
n k=0 hk -k n

2N-2
and so ¥(z) =), yhzn (2.4)
n=0
The implication of this is that the multiplication of two polynomials
is equivalent to the convolution of two sequences. Moreover, if the
convolution defined by (2.1) is cyelic the indices are all defined
modulo N, Thus in a length N eyeclic convolution we have N=0, implying
that zwi1, So a cyelic convolution is the product of two polynomials
modulo the polynomial zN-‘l°

T(z) = H(z)Z(z) mod (z°=1) (2.5)

2.1.1 The Toom-Cook Algorithm

The Toom-Cook algorithm provides a method of constructing the
polynomial product (2.3) by using the Lagrange interpolation formula.
The Toom-Cook algorithm is a speclal case of a method for constructing
polynomial products using the Chinese Remainder Theorem. The more
general case 1s considered later.

Knuth [2.1] discusses the use of the Toom-Cook algorithm for
multiplications, Agarwal and Cooley [2.2] discuss the use of the Toom-
Cook algorithm for the calculation of aperiodic convolutions, i.e.
polynomial products.

Theorem (The Toom-Cook Algorithm)
| The polynomial product (2.3) can be computed in 2N-1 general
multiplications,

A general multiplication is one where both multiplicands
depend upon the data. The theorem is proved by constructing the
algorithm,

Suppose the polynomials given by (2.2) are formed and the

26

product ¥(z) (2.3) found. Y(z) is a polynomial of degree 2N-2. To
determine the 2N-=1 & s of (2.3) one can select 2N-1 distinet numbers 0%
3=0y1,000,2N-2, and substitute them for z in (2.3) and obtain the 2N-1

products

Y(OS) = EKW&)X(QS) J=0s75000,2N=-2 (2.5)

Then the Lagrange interpolation formula may be used to uniquely
determine the 2N-2 degree polynomial

2N-2
T(z) = Y(Wj)Lj(z) (2.7)

J=0

where the interpolating polynomials are

2N-2 (z-e¢)

Lj(Z) = _ﬂ N — c(k (208)
k=0 (e¢,~0¢)
k£ j 7%

So the polynomial product (2.3) is found using the 2N-1 multiplications
in (2.6). As an example of the use s%; the Toom-Cook algorithm

consider the product of two polynomials

2
o and X(z) = X527+ X427+ X,

giving Y(z) = yu'z]4 +y3z3 + y222 + Y42+ Yo (2.9)

H(z) = h222 + h1z + h

As both these polynomlals are of degree two the Toom-Cook algorithm
states that their product may be found with five general multiplic-

ations. Suppose the &, are chosen as

J
O(O=O9 0(1=19 0(2=2, Q(3:3 and"(uzuo
This is a purely arbitrary choice, negative values of %, could have

J
been employed. Then the Y(&%) of (2.6) are found by substituting the

values of Wj above into (2.9).

Y(0) = H(0)X(0) = h.x

070

Y(1) = (h2 + h1 + ho)(x2 + Xq o xo)

Y(2) = (“hz + 2h,y + ho)(uxz + 2%, + xo)

27

Y(3) = (9h2 + 3h1 + ho)(9X2 + 3X1 + xo)

) (16h2 + uh1 + ho)(?6x2 + ux1 + XO) (2,10)

The interpolating polynomials (2.8) are functions of thecxks (2.10),
not the coefficiernts of the polynomials E(z) and X{z) (2.9). These
interpolation polynomials are,

(z=1)(2-2)(2-3) (z=4)

Lo(2) = - 1720 (27-1023+3525-50z+211)
(0-1)(0-2) (0-3) (0-1)
(2=0)(2=2)(2-3)(z=1) ¥ 3 5

L.](Z) = = -1/6 (Z —9Z +262 —ZLLZ)
(1=0) (1=2)(1-3) (1-1)

LZ(Z) = 1/4 (zu-823+1922—122)

L. (z) = -1/6 (24-723+1u22=82)

3
L,(2) = 1724 (2"-623+112%-62) (2.11)

Collecting terms in like powers of z in (2.11) gives

¥, = T(0)

y, = - 2100 - HT(1) - 3T(2) + 21(3) - gz

v, = 2%(0) - BEn » Jr@ - Lee) -

74 = - 2T + 3T(1) - 20(2) + T(3) - T

¥y = zgT(0) = gT(1) + 7T(2) = ZX(3) + T (k) (2.12)

Although this polynomial product algorithm, - described by (2.9),(2.10)
and (2.12), may appear to contain more than 5 multiplications, the only
*general' multiplications are those in (2.10). All the multiplications
by constants in (2.12) do not count as general multiplications.

As mentiocned ahove the cheice of the

Trrwd Ulioia

o, 1s arbitary. The example shows how the use of integers other than

J

+1,-1 and 0, in the cholce of the e.,s, quickly involves multiplications

J
by 1nconvenient constants which are not counted as general multiplic-
ations. These constants 1limit the wusefulness of the Toom-Cook

algorithm to very short polynomial products.

Nussbaumer [2.3 pp 27-29] explains how the Overlap-Add method

28

can be derived from the Toom-Cook algorithm by choosing theCKj = ng_1
J=0515.0.,2N=-1. Agarwal and Burrus f202] show that the Toom-Cook
algorithm is of the general canonical form

Y =C (Ax x Bk) (1.20)
The polynomial representation of convolution is an extremely useful

tool for developing convolution algorithms. An essential part of this

development is the use of the Chinese Remainder Theorem.

2.2 The Chinese Remainder Theorem
This theorem, which was first known in ancient China [2.1]

allows you to construct the solution to the following type of problem.

Given
x = 4 mod 5
x = 1 mod 4
x = 2 mod 3

find the smallest integer x that satisfies these conditions.
Expressing the same problem more formally the Chinese Remainder Theorem
(CRT) allows you to construct a unique solution from a sét of
congruences in mutually prime moduli. Whilst the integer version of
the CRT is used in chapter U4 here, we are more concerned with a
polynomial version of it. Before the polynomial form is introduced thé

concepts of residue polynomials and irreducibility are discussed.

2.2.1 The Chinese Remainder Theorem for Integers

Let Mgy Wy ceoyl be poslitive integers which are relativgly
prime in pairs, 1.e.,

(mj,mk) = 1 when j#k (2.13)

where (.) denotes greaéest common divisor. Let a, Uys eooy U be

integers. Then there 1s exactly one integer u which satisfies the

29

conditions

a < u < a+M and u = u, mod my for 1¢j&r (2.14)

=
Proof: If u = v mod m.j for 1€jg{r, then u-v is a multiple of mj for all

jo So (2.13) implies that u-v Is a multiple of M=m,m_...m This

172 r’

argument shows that there is at most one solution to (2.14). The proof
is completed by showing the existence of at least one solution.
As u runs through the M distinet values a < u < a+M,

the r-tuples (u mod m sesy W Mod mr) must also run through M

19

distinet values since (2.14) has at least one solution. There are

however m1m2,nmr possible r-tuples. Therefore each r-tuple must occur

exactly once, and there must be some value of u for which (u mod m1,

eeey 1 mod = coog 1 o
9 mr.) (u19 b4 *Ir.)

Given the residues the integer u may be determined by means of

the formula

-1 -1 -1
M /M M /M M /M
u = <—<—> u, + —<—>mu F oeoe + — —> u> (2.15)
m \m, /m, 1 m2 m2 N 2 mg\Pr m T M

where <°>k denotes reduction modulo k. The use of this formula is now

illustrated.

First the quantities Mi are found, where

M M M
E MZZE, 0009 Mr’zﬁ (2516)

M, = —
1 2 r

1

Each Mi is relatively prime to its corresponding m,. It is possible to

find (see [2.4]) number Ni solving
NM, o= 1 modulo m, (2.17)
Now consider the quantity
U= u,NM, v u M+ e+ w WM (2.15)

Then taking the residue of U modulo m,, each of the factors containing
Mj J#1 has m, as a common factor, so

U = U1N1M1 modulo m (2.18)

1

30

But since N .M, = 1 modulo m

1 1

u, modulo m, (2.19)

‘modulo my (2.20)

U

similarly U u

i

Thus U is a solution to a given set of congruences. The problem stated
at the beginning of this section is now solved,

x = 4 mod 5

x = 1 mod 4

X = 2 mod 3 Find x.

The three moduli are 3,4 and 5 so M=60. The Mi are

60 60 60
M‘}:_5:129 MZ:——E:159 and M3z—3:20o

Then N1 is the solution to 12N1=1 mod 5, which is equivalent to 2N1=1

mod 5, i.e. N,=3. Similarly 15N,=1 mod 4 gives N,=3 and 20N3=1 mod 3

gives N =2. So

3

<
1l

12.3.4 + 15.3.,1 + 20.2,2 mod 60

X:29.

2.2.2 Residue Polynomials

We now turn to polynomial arithmetic and define polynomial
equivalents of ‘congruent' and 'remainder’. The idea of irreducibility
of polynomials is introduped; the factorization of (zN-1) into
irreduclible factors is of great importance in the derivation of the
Winograd minimal cbmpleﬁity convolutlion algorithms,

A polynomial d(z) divides a second polynomial H(z) if a
polynomial p(z) exists such that

B(z) = d(z)p(z) (2.21)
A polynomial H(z) whose only divisors are of degree equal to zero or
deg(p(z)) is said to be irreducible in the field, F, of the
coefficients of H(z). Notice that the irreducibility of H(z) depends

upon the field of coefficients. This 1s illustrated by the following

31

example,

a) 25-1 factors as

N
) =
Oj

(z - wg) over the field of complex

numbers.

- M
b) As (z - 1)(22 - Zcoség z + ?)(22 - 20035? z + 1) over the

real numbers
Yy 3 2 .

e) Bs (z -1)(z +2” + 2" + 2 +1) over the rationals.
In a similar manner to the case for integers every polynomial can be
written uniquely in the form

d ry
p(z) = k I | [pi(z)] (2.22)
i=1
where k is a constant, pi(z) are irreducible monlc polynomials and d is
the number of factors of p(z). A monic polynomial is one whose leading
coefficient is unity. Equation (2.22) implies that
d
2: r. [deg p,(2)] = deglp(z)].
i b

i=1

For two polynomials H(z) and D(z) i1t 1s always possible to
write

H(z) = P(z)D(z) + R(z) (2.23)
where deg[R(z)]<deg[D(z)], R(z) is known as the remainder or residue
polynomial. The representation in (2,23) is unique [see 2.4 p55].

Two polynomials p1(z) and p2(z) are said to be congruent

modulo d{z) if they have the same residue modulc d(z).

2.2.3 The Chinese Remainder Theorem for Polynomials

There exists a unique polynomial Y(z) satisfying

a) ¥(z) = ¥,(z) mod By (z), 1=1,2,...,d

b) 0<degl¥(z)K Y. deg (M, (2)] (2.21)
i=1

Provided that the monic polynomials Mi(z) are relatively prime in

32

pairs,

A proof of this theorem 1s given in [2.4]. ¥(z) may be

constructed from the congrusnces by means of the formula,
: d
(z) = 2, S,(2)Y,(z) mod X(z) (2.25)
1-1 1 1 '

where the auxilary polynomials Si(Z) are defined by

S.(z) —{{Té]— M, (z) }//{']d_l‘m (z) mod H (z)]} mod [(z)
A 121 * 3

i£j 143 (2.26)
where M(z) = M‘i(Z)MZ(Z)"“Md(Z)
The d auxilary polynomials are such that

Sj(z) = 0 mod Mi(Z) 1£3

=1 mod‘mj(z) : (2.27)
Reducing Sj(z) defined by (2.26) modulo Mj(z) gives (2.27) provided

that

d
TT H,(z) £ 0 mod H,(2)
i=1

J
143

This last condition 1s ensured by the polynomials H,(z) being

J

relatively prime.
As an example, which is applied to a U-point convolution
algorithm in the latter parts of this chapter, the S,(z)s are

J
constructed for the three polynomials (z-1), (z+1) and (22-:-‘1)°

2)
M1 = (z-1) MZ = (z+1) M3 = (2+1) M=M1M2M3 =z =1

then S1(z) :{[(z+‘1)(22+1)]/{[(z+1)(22+1)] mod z—‘l}} modv (24_1)
but (Z+1)(zz+1) = z3+z2+z+1
3.2

and z-+z%+2+1= 4 mod (2-1)

giving S1(Z) = %(z3+22+z+1) (2.28a)

33

~ "

Sz(z) =8}za1)(22+1)]//?t(zaT)(22+ﬁ)] mod z+13} nod (24m1)

but (z—1)(ze+1) = 23c22+z-1

3

and z —zz+z~1= -4 mod (z+1)

glving Sz(z) = =-%(z3=z?+z~1) (2.28Y)

s, (2) ={[<z=1><z+a>]/{[<z=1)<z+1)j moa 221/} mod (z"-1)
but (z-1)(z+1) = z°-1

and 22-1= -2 mod (zz+1)

giving S3(z) = - %(22—1) (2.28¢)

This is a particularly simple set of recombination polynomials. Often

the calculation of

d -1
{[' [Mi(z)] mod M (z% mod M, (z)
1=1 J J
143
is more difficult and Involves the long division of polynomials to
determine the remalnder.

In the Toom-Cook algorithm, Hi(z) = z-z, and the Lagrangian

i

interpolation formula provides a method of constructing ¥(z).

2.3 Computation of Convolutions using the Chinese Remainder Theorem

We now consider the problem of calculating

¥(z) = B(z2)X(z) mod P(z) (2.29)
In section 2.1 above, (2.29) was shown to be a circular convolution
when P(z) 1s chosen as zN-‘I° The problem in (2.29) can be re-expressed

if the polynomial P(z) can be factored as
d
P(z) = I I Pi(z) (2030)
1=1

The major simplification comes from noting that if
Y, (z) = H(z)X(z) mod Py (z) 1=1,...,d (2.31)

Then the Chinese Remainder Theorem can be used to construct Y(z) from

34

the Yi(z) provided that the ?i(z) are mutually prime in pairs,

As shown in section 2.2.2 the factorization of P(z) depends
upon the field of coefficients., For the moment this field is left
unspecified.

The convolﬁtion (2.29) can now be represented as d
subproblems. Each subproblem being to reduce X(z) and E(z) to find
Xi(Z) and IEIi(z)° The product Hi(z)Xi(z) is then found modulo Pi(z)o
This product can be calculated using the Toom-Cook algorithm derived
earlier, Since Xi(z) and Hi(z) will be of degree (deg[Pi(z)]—1)9 the
Toom-Cock algorithm will need 2deg[Pi(z)]=1 general multiplications,
As stated earlier some multiplications by fixed constants in the field
of coefficients of Xi(z) and Hi(z) may be needed - these are not
counted. The residue reduction modulo Pi(z) will require additions,
subtractions and multiplications by fixed constants in the field of
coefficients. So each of the d subproblems can be computed with
2deg[Pi(z)]-1 multiplications. The final step of the computation of
(2.29) is the reconstruction of ¥(z) from the Yi(z) using the Chinese

Remainder Theorem. The general form of this being

d
Y(z) = Si(z)Yi(z) mod P(z) (2.25)
i

i
The coefficients of each polynomial Si(z) lie in the same field as the
coefficients of the Pi(z)° So (2.25) requires only additions,
subtractions and multiplications from the field of coefficients of the
Pi(Z)°

Then the total number of general multiplications used in the d

subproblems for the calculation of (2.29) is

d
2, 2deglP.(2)]-1 = 2deg[P(z)]-d (2.32)
iz

This does not include multiplications by constants., For the case of

35

cyelic convolution deg P(z) = W so the wnunbter of general
multipllicatlions needed 1s
2N--d : (2.33)

This result is a case of a theorem due to Winograd [2.5].

Winograd®s Minimum Complexity Theorem

The polynomial product ¥(z)=H(z)X(z) modulo P(z) may be
computed with a minimum of 2N-d general multiplications., Where N =
deg P(z) and d is the number of irreducible factors of P(z) over the
field F,

The preceeding section showed how an algorithm using 2N-d
general multiplications can be found. 1In [2.5] Winograd shows that at
least 2N-d multipllications are needed and that any algorithm using the
minimum number of multiplications must use the Chinese Remainder

Theoremn,

2.3.1 The Canonical Form of Winograd's Algorithms

Winograd [2.6,2.7] derived a series of *short N' convolution
algorithms using the Chinese Remainder Theorem recombination method
outlined in the previous section, These algorithms were derived with
the field of coefficients as the rational numbers., It i1s interesting
to consider the more general form of the minimal algorithms in other
fields,

Winograd's algorithms all have the same form

Y=C (Ax x Bh) (1.20)
The A, B and C matrices are rectangular and their entries are
constrained to lie in the field, F, For 'minimal’ algorithms the A and
B matrices are of dimension (2N-d)xN and the C matrix Nx(2N-d). The
general multiplications are contained in the step (Ax x Bh).

McClellan and Rader [2.4] show that it is possible to derive

36

the Cyelic Coavolution Property (CCP) from Winograd's theorem.
Furthermore, by choosing the field of coefficients as the complex
numbers, they show that the £ and B matrices must be foward DFTs and
that the C matrix is constrained to be the inverse LFT. Wotice that in
this case all the multiplications associated with the DFTs are not
counted as ‘gereral’ multiplications as they are constants in the
field!

Winogrdd's minimal algorithms are only of interest if the
fixed constants in the field are simple. Choosing the field of
constants as the rational numbers, whilst eliminating complex values,
could still leave awkward values to implement. There is no way to
force the multipliers to be simple, but the use of the Rational
numbers, at least for small algorithms, does give simple valued
multipliers.

When the field of the coefficients is the field of rational
numbers, zN-1 factors into polynomials whose coefficients are rational
numbers. These polynomials are called cyclotomic polynomials [2.8].
In view of their importance the next section is devoted to cyclotomic

polynomials,

2.3.2 Cyclotomic Polynomials

This sectlon deals with a few of the properties of cyclotomic
polynomials. There 1s an excellent section on these polynomials in
[2.4]., Some of the properties of these polynomials are listed here.
Many of the results are proved in [2.1],

The kth cyclotomic polynomial Ck(z) is defined to be

e - 11 (- W™ - (2.34)

k k
(m,,k):1
0<m<k

Some important properties of these polynomials are:

37

(i) Cyclotomi> polynomials are irreducible over the field of
rational numbers. This is proved in [2.8].
(i1) For a given N the number, d, of distinet polynomial
factors of zNa1 is equal to the number of divisors of U
including 1 and N.
(iii1) The degree of @k(z) is @(k) where @(k) is Euler’s
totient function, The value of this function is the number of
integers that are smaller than k and that are relatively prime
to k.
(iv) For p prime

Cp(z) 2P 2P sz (2.35)
(v) TFor any cholce of integers m and p

cmpk(z> = C’mp(zp) (2.36)

(vi) For p prime and if p does not divide m (i.e. (pym)=1)

then
Cm(zp)
C m(z) = (2037)
P Cm(z)
(vii) For n odd and n> 3,
CZn(z) = Cn(-z) , (2.38)

(vi;i) The coefficients of the Ck(z) are integers.

(ix) Ck(z) has coeffilcients from the set 0, 1, -1 when k
has at most two different odd prime factors. Since 105 =
3.5.7 it 1is the smallest integer to be divisible by three odd
primes and so all cyclotomic polynomials will have this
property for k<105,

Examples of some cyclotomic polynomials are given in table 2.1.

38

‘ b
- ! o =

C1(z) = z-1 i 8(z) z o+ 1

! _ 3
CZ(Z) = 241 } Cg(z) =2 + zZ° + 1
C3(z)=z + 2z + 1 Cm(z)zzu—z3rz~z+‘l,

2 q 2
CM(Z) =2z2" + 1 CSZ(Z) =z -3 +1
C(Z):zu+z3+z + 2z + 1 C,(Z)_Zs-c-‘i
5 16

C6(z) =z -z 4+ 1 441

Table 2.1
Some Cyclotomic Polynomials

2.4 Construction of Short Convolution and DFT Algorithms

of the Winograd Type

This section deals with the derivation of short convolution
and DFT algorithms by the method discussed in the preceeding section.
An important result 1s derived in section 2.4.2. This result is the

Matrix exchange or Transpose system.

2.4.1 A 4-point Cyclic Convolutilon Algorithm

As an example of the method of deriving cyelic convolution
algorithms a 4-point convolution algorithm is found.
A U-point cyelic convolution 1s equivalent to polynomial
produét modulo zu'-1° The cyclotomic factors of zu-1 are z-1, z+1 and
2

z +1. The first step in the construction is to reduce the input

polynomials X(z) and H(z) by each of these moduli in turn.

_ 3 2 _ 3 2
X(z) = XQ27+X 524X, 24X H(z) = h3z +h22 +h1z+h0
Xj(z) = X(z) Mod (z-1) H1(z) = H(z) Mod (z-1)
= xo+x1+x2+x3 = ho+h1+h2+h3
= %10 = Byg

39

Xz(z) = X(z) Mod (z+1) EZ(Z) = #H{z) Mod (z+7)
= xo—x1+x2-x3 = ho-h1+h2—h3
= %50 = By
2 . — 5 2
X3(z) = £(z) Mod (2°+1) EB(Z) = F(z) Mod (z“+1)
= (x1cx3)z + (XO=X2) = (h1»h3)z + (howhz)
= x31z + X3O = h31z + h30

The second stage of the algorithm is to perform the three polynomial

products
(i) Y1(z) = X1(z)m1(z) mod (z-1) = (x10h10) = Y10
(ii) YZ(Z) = XE(Z)HZ(Z) mod (z-1) = (XZOhZO) = Yoy

(111) Y3(z) = XE(Z)H3(Z) mod (ZZ+1) = (X312+x30)(h3%+h30) = ¥342+Y3q
The first two polynomial products are accomplished using one
multiplicatlion each as the reductions modulo (z-1) and (z+1) yield
scalars., An algorithm for the product of the two polynomials X3(z) and
HB(z) using 3 multiplications is given below. This is a general

algorithm but is expressed using the notation of this example.

a, = x3o + x31 bO = h30
a, = x31 b1 = h30 + h31
a2 = x30 b2 = h31 - h30
mk = akbk k=0,1,2
Y30 = o T Ty Y31 = Mo * 3
?he quantities a5, bi and m, 1=0,1,2 are intermediate values.
The penultimate step in the construction of the algorithm 1Is tue

Chinese Remalnder Theorem resconstruction, The recombination

polynomlials for this example were derived in section 2.,2.3. They were

S1(z) :-%(23 + 22 + 2+ 1) (z-1) | (2.28a)
5,(2) = --%(23 - sz (zs1) (2.28b)
8,(2) = - %(22 -1 (z2+1) (2.28¢)

The final algorithm 1s given by

ho

3
Y(z) = E: Si(z)Yi(z) mod (zu~1) (2.39)
i=1

These polynomial products are

S.I(Z)Y](z) = ‘gf Y10 (23 + 28 vz 4 1) mod (zu-—’l)
82(z)Y2(z) = - -gl- Y50 (z3 - 22 + 2 - 1) mod (z%-1)
33(2)Y3(z) = =-;— (22 - 1)(37312 + y30) mod (24-1)

i 2
STz (y31z3 + Y307 - Y312 = ¥30)
The final step is to collect terms of equal powers of z together,
giving

Y(z)

T((-2731 = ¥p0 + Y1902 + (2930 + ¥p0 + ¥z
(2Y31 - Yo + Y10)% + (2y30 + Yoo + YTO))

= y323 + y2z2 + ;Y1z + yo

This completes the derivation of the U-point cyecliec convolution
algorithm., This derivation can be represented in terms of matrices so
that 1t has the general form of (1.20). The algorithm is split into
two stages, pre- and post-multiplication operations., In the matrices
below which represent this Ud-point cyclic convolution algorithm the
first row of the A and B matrices corresponds to }11(2)1811(2), the second

to XZ(Z)HE(Z) and the last three rows to the multipllcations needed to

find X3(Z)H3(Z)o

11 1 1] ([x 11 1 1 |n
1-1 1 -1 x? 1-1 1 -1 h?
Az = 1 111 |x, Be= |1 0-1 0f [h
0 1 0-1 lIx To1-1-1) ing
L1 0 -1 oJ 3 \-1 11 -1)
T

L‘éI:(Axth)andM:(mO,m)

1 Mos B3s By

and the C matrix is

\ I 3
Yo T 1 2-2 0] m,
y -1 2 0 2 m
1 11, 1
y = y2 = 'E I 1 “2 2 0 m3
&y3 1-1-2 0-2 mu

This algorithm gives a cyclic convolution exaetly as defined by (1.3)
with N=4,

As U has 3 factors, including 1 and itself, Winograd's theorem
gives the minimum number of multiplication for a 4-point convolution as
5 Thus, in this case we have designed an algorithm with the minimum
number of multiplications., In general 1t is not possible to attain the
minimum number of multiplications due to difficulties in writing

minimal polynomial product algorithms.

2.4,2 The Transpose System

Consider the genéral canonical form of these minimal
algorithms,
Y - C (Ax x Bh) (1.20)
When a minimal algorithm is constructed using the Chinese Remainder
Theorem the A and B matrices correspond to the reductions into each of
the modulil Ci(z) and the first part of the polynomial product
algorithms. The C matrix corresponds to the latter part of the
polynomial products and to the CRT reconstruction., Whilst the CRT
reconstruction can be regarded as the inverse of the reduction process
it 1s, in general, more complex. Consequently the entries in the C
matrix are not as simple as those in the A and B matrices. This can be
seen in the matrices for the 4-point convolution. Here the C matrix
contains twos but the A and B matrices do not.
In many digital filtering applications one of the sequences, h
is fixed and the matrix product Bh may be precalculated. It would be

most desirable if the C and B matrices could be interchanged. Winograd

[2.7] introduced the ‘Transpose System' to accomplish this. The same

42

idea 1s described by Nussbaumer as the ‘Matrix Exchange Algorithm’, ses
[2.3].
The form (1.20) can be described by

rM-1 1
C A {(1.24
k‘go n,k k9qu9p} ')

e

N-7 N-1
yn = Z Z Imeq
p=0 gq=0
We have alréady noted that a necessary and sufficient condition for

(1.24) to represent cyelle convolution is

M-1
T = C A B = 1 1if = N~ Mod N
kg) n,kk,qk,p P d
= 0 otherwise (1.25)
The Bk p matrix is now replaced by a matrix qu)which has the elements
9 9
CN—p,k’ and the Cn9k matrix is replaced by Cé,k with elements Bk9N=n°

The summation 1s now,

M-1

T = (2.41)

c A B
k-0 N-p,k k,q k,N-n

Comparison between T' and T (1.25) shows that the subscripts of (1.25)
are replaced by
n - (N-p) and p = (N-n) (2.42)

substitution of these new variables in the equality

p = n-q mod N
glves (N-n) = (N-p)-q mod N
1i.e. p =

n-q mod N
\
Thus the transposed summation T' still reprcscents a cyclic conw

provided that

=3
t
o
Lo}
ke
1
o]
I
£
8
o]
Q.
=

and 0 otherwlse,

So we have developed a method of exchanging the elements of
the B and C matrices, The procedure for this exchange may be

summarised as follows,

L3

(1) Exchange and ‘transpose the B and C matrices,
(11) Leaving the first column of the new B matrix (i.e. Ct)
in place the remaining columns should be reversed,
(ii1) Leaving the first row of the new C matrix (i.e, Bt) in
place the remaining rows should be reversed.

In the case of the U-point convolution algorithm the transpose system

is,

==
O NN =
vDond o
Oi\)rl\J—A—s
nNON - =

111 -1

1-1 0 -1 -1

T 1T-1-1 1

t-1 0 1 1 (2.43)
The transpose system can be extended to two or more dimensions for
cyelie convolutions by the use of suitable indexing., The idea is also
applicable to cyclic correlations., For the cyclic correlation case the
condition (1.25) becomes

T 1 if n=psq

0 otherwise (2. 44)

Table 2.2 gives the number of multiplications needed for various short
convolution algorithms, and the minimum number of additions., The

figures are for real data.

Convolution No. of No. of
Length Multiplications! Additions
2 2 L
3 4 11
4 5 15
5 10 31
6 8 34 Table 2.2
7 16 70
8 14 46
9 22 98
16 41 141
16 35 155

There are three sources of 'small N' convolution algorithms in the

by

literature. Winograd [2.7] gives cyelic correlation algorithms for
2,3,4,5 and 6 points. All Winograds algorithms are of the form of
(1.20) and have A and C matrices containing only +1, -1 and 0. Agarwal
and Cooley [2.2] give algorithms for 2,3,4,5,6,7,8 and 9 points., Again
allig; the form of (1.20) but with matrices containing other values
besides +1,-1 and 0. Nussbaumer [2.3] gives algorithms for 2,3,4,5,7,8

and 9 point convolutions, All his algorithms are of the general form
of (1.20). His 8-point algorithm has the +1, -1 and 0 form and his 9-
point algorithm may be altered, at the expense of 3 additional
multiplications so that 1t also has A and C matrices contaliningonly
+1, -1 and 0. Nussbaumer states that It is possible to derive a
variety of 16-point algorithms with different numbers of
multiplications. The 16-point ecyclic convolution algorithm given in
Appendix I uses U1 multiplications. So in Table 2.2 above all the

algorithms have A and C with entries restricted to +1, -1 and 0 except

for the 7-point and 35 multiplication 16-point algorithms.

2.84.3 The Application of Short Convolution Algorithms to DFTs

Chapter 1 showed how Rader's theorem could be applied to
express DFTs of p or pr points, p prime, as convolutions. Consequently
it is possible to apply Winograd's short convolution algorithms to the
calculation of short length DFTs. As an example a 5-point DFT

algorithm is found from the 4-point convolution algorithm which has

just been derived.

45

The 5-point DFT can be written as

1 11

1T W W

IR

r

%0

-

(2.46)

Then the non-unity multiplications are arranged, using the mappings

given in (1.28), to form the convolution

F
1

4l

=l

2

Bl

u

<l

3

where Xi =

i=1,2,3,4 and having found X

Xi - XO = Xi

r

\

Notice this

ecyelic convolution algorithm may now be applied to (2.48),

DFT algorithm may now be calculated with 6 multiplications.

(2.47)

better to calculate X,-X

i 70

add it to each term to find the Xis°

(1 y 2\ (
wl w3t w2 2{11
wlwl w3t x,
whwlwl Wl z,
wwtwiw'l
| ROy
Xi - xo° It is, however,
0
- XO and
- X, (wlo1 wi-1 wha1 wlor
- X, wlor wlo1 w31 whon
-1, whot wla1 w'a1 w31
- X, Lw3-1 Who1 wla1 wlaq

does not disrupt the form of the convolution,

5-point DFT A matrix is

A matrix

ooocoo ="

T 1 1
L
-1 -1 1
-1 1 -1
-7 1 0
0 0 -1

W

P

3

(2.48)

The U-point

The 5-point

The

(2.49a)

The top row of this matrix calculates X, The bottom right-hand block

of 5 rows and 4 columns is the Y-point eyelic convolution, transpose

b6

system, 8 matrix with it’s columns reordered 1,3,4,2, i.e. the order of
the input sequence in (2.49).

The B matrix 1s replaced by a list of 6 precalculated
coefficients, they represent the product of the transpose system B
matrix and the series W -1, Wo-1, W'=1, Wo=1 . The first coefficient

in this list preserves the value X These coefficients are,

OO
My =
M1 = %(w1+w2+w3+w”) = %(cos(u) + cos(2u))-1
M, = -}(w’-w2+w”-w3) - %(cos(u) - cos(2u))
M, = %(w1-w2-w”+w3) - j (sin(u) - sin(2u))
MU = %(-whw”) = ~jsin(u)
M - %(_w2+w3> = —jsin(2u) u = 25 (2.49b)

Finally the C matrix for this 5-point DFT algorithm is

C matrix

R Y N P G |

(2.49¢c)
In this matrix the top row preserves XO and the first column represents
the addition of XO to each of the Xi-XO i='192,39ll,, The other terms are
the UY-point cyclic convolution transpose system C matrix (2.43) with
it's rows rearranged in the order 1,2,4,3, 1.e. the order of the output

sequence in (2.48).

This completes the derivation of a 5-point DFT algorithm.

- |

Note that this algorithm is of the general form o
A and C matrices contain only +1, -1 and 0. Furthermore note that the
coefficients are either real or imaginary numbers, never general
complex numbers, This is a general property of DFT algorithms derived
in this manner. & proof is given by Winograd in [2.7]. The essence of
the proof 1is to show that the coefficients are always either of the

form WX + WKy or WX - WK

°

47

Table 2.3 gives the number of general multiplications for
various 'short N' DFT algorithms. Except for the 9, 11 and 13-point
DFTS all the algorithms are due to Winograd [2.7]. All of these
algorithms are listed in Appendix I. A1l the algorithms are of the
general form of (1.20) and have 4 and C matrices which contain only +1,
-1 and 0. The 9-point DFT algorithm, taken from Nussbaumer [2.3], has
been modified at the expense of one additional multiplication so that
1t's matrices have the required form. Table 2.3 gives the number of

multiplications and additions for the algorithms for real only input

data.
Transforn No, of No. of
Length | Multiplications | Additions
2 2 2
3 3 6
L 4 8
5 6 17
7 9 36 Table 2.3
8 8 26
9 1 45
" 21 84
13 21 106
16 18 T4

2.5 Summary

This chapter has been devoted to the derivation of short
convolution and DFT algorithms. Firstly a cyelic convolution was shown
to be equivalent to the product of two polynomials modulo zN~=1° As
2N-1 can be factored by Cyeclotomic polynomials, Ck(Z)’ over the
rationals, the Chinese remainder theorem for polynomials can be used to
reconstruct the product modulo zN-1 from a series of products modulo
Ck(z)° Winograd has shown that convolutions constructed in this manner
use the minimum number of multiplications possible. The minimum number
of 'general' multiplications for a N-point cyclic convolution is 2N-d,

where d i1s the number of factors of N Including 1 and itself.

48

These cyclic convolution algorithms are then applied to the
.DFT using Rader's theorem which was developed 1n chapter 1.
A key point to note is that all these algorithms, bota for
convolutions and DFTs, have the general form of
Y =C (Ax x Bk). (1.20)
Furthermore these algorithms can be derived so that their A4 and C

matrices only contain +1, -1 and 0.

4o

Chapter 3

Polynozial Transforms

The techniques discussed in chapters One and Two dealt mainly
with one-dimensional convolution and DFT algorithms, particularly those
algorithms based upon the work of Wincgrad and Rader., This chapter is
devoted to the derivation of two-dimensional convolution algorithms.
These two-dimensional convolution algorithms fall into two categories.
The first and more important group are those algorithms derived by
Nussbaumer [3.1] using 'Polynomial Transforms'. Nussbaumer's
derivation may be viewed as an extension of Winograd's method for
deriving one-dimensional convolution algorithms. Nussbaumer's
algorithms have the general form of equation (1.20). The second set of
two-dimensional convolution algorithms, whilst still based upon
polynomial transforms, do not have the general form of (1.20).

This chapter starts by showing that two-dimensional

convolutions may be represented 1n terms of polynomials.

3.1 Two~Dimensional Convolutions Expressed using polynomials

The non-cyclic convolution yh19n2 of the arrays xk19k2 (N1xN2
points) and the array hk (L,xL_, points) is defined by
goky 12
L.-1 L.-1
i = t %: X (1w2)
1% xZo kz hkﬂkz ny=kysn,mk,
where n, = 0,1,.,,,N1+L1-2 and n, = 0919,,.,N2+L2—2 with xh1-k1,n2—k2=0

if k,.>n, or k2>n Then in a similar manner to the previous chapter,

171 2°
the two arrays x and h are assigned to be the coefficients of the two-

dimensional polynomials X(u,v) and E(u,v).

50

N -1 N_-1 1.1
X(u,v) = i L oqu 1v 2
1.=0 1_.=0 1772
1 2
L,-1T L_=1 k. k
B(u,v) = 't‘ 5™ B, U v 2 (3.1)
k1=0 k2=0 k39 2

So H(u,v) and X(u,v) are polynomials of degree (N1n1) and (L1=1) in u
and of degree (N2-1) and (L2_1) in v. If the polynomials X(u,v) and

H(u,v) are multiplied together the resulting polynomial will have the

form

N.+L.-2 N_s+L.-2 n n
Y(u,v) = K:' 222 v, 1,72 (3.2)
n_=0 n_=0 1772 ,
1 2

Each coefficient y of (u,v) is found by summing all the products
1772

of hk19k2 and 211912 such that n1=11+k‘l and n2=12+k2° Substituting

11=n1-k1 and 12:n2-k2 gives (1.2), Thus a two dimensional convolution
may be written as a polynomial product,

As the degree of ¥Y(u,v) 1s of (N1+L1-2) in u and (N2+L,2—2) in
v, (3.2) may be replaced by

Y(u,v) = EH(u,v)X(u,v) mod f(u) mod g(v) (3.3)
Provided that degree [f‘(u)]:d1>N1+L1—2 and degree [g(u)]=d2>N2+L.2-2°

For cyclic convolutions of two NxM point sequences it is necessary that

flu)- UN—‘] and g(v):uM-‘lo

3.1.1 Convolutions of Polynomials

Equation (3.2) shows that a two-dimensional convolution is
equivalent to a two dimensional polynomial product. Nussbaumer and
Quandalle [3.2] show that a two-dimensional convolution is equivalent
to a one-dimensional convolution of polynomials. Considei;' a two-

dimensional cyelic convolution of NxN points,

N-1 N-1
Y= 2 L By a%en1a U,120,1,...,N-1 (3.1)
m=0 n=0

The subseripts in (3.4) are evaluated modulo N. Then expressing this

51

as as polynomial product,

N-1

T,(z) = L B (2)X_ (2) mod (z'-1) (3.5)

m=0
where

N-1 n

H (z) = b3 By p? M= 0,050, N-
n=0
N-1 s

Xr(z) = ;z% ngrz Pz 0;75000,Na1 (3.6)

and yu 1 is obtained from the N polynomials by taking the coefficients
9
of z% in Yl(z)°
N-1 u
T (2) =) I, 1% T = 0515, N-1 (3.7)
u=0 y
For convenience this example is a two-dimenslonal cyeclic convolution,

the method could be extended to non-cyclic convolutions by changing the

modulus In which (3.5) is evaluated,

3.2 Two-Dimensional Convolution Algorithms using the CRT

Since the two-dimehsional eyelie convolution (3.4) is
expressed by'Yl(z) modulo (zN—1) in (3.5), Yl(z) may be computed by
reducing Hm(z) and Xr(Z) modulo each of the cyclotomic factors of
(zN-1), computing the polynomial convolutions in each of the modull and

finally reconstructing Yl(z) using the Chinese Remainder Theorem. This

At F
is analocgous b

s method of the previous chapter.

Q

The difficulty with this method is the calculation of the
polynomial convolutions modulo cyclotomic polynomials, The calculation
of two-dimensional convolutions by this method is first considered for

N=p, p an odd prime,

52

. 3.2.1 A pxp Cyclic Convolution, p an odd prime

When p is an odd prime zP-1 has two cyclotomic factors,

(2P-1) = (z-1)¢ (2) (3.8
where Cp(z) e T (2.35)
Then the polynomial convolutions, which correspond to the reductions
modulo (z-1) and Cp(z) are Y191(z) = Yl(z) Mod Cp(z) and Y291(z)=
Yl(z) mod (z-1) respect&velyo The final reconstruction using the
Chinese Remainder Theorem is

Y, (2) = S1(z)Y191(z) + 8,(2)Y, 1(2) mod (zP-1) (2.25)

2,1
The auxillary polyﬂomials S1(z) and Sz(z) are found from (2.26), they

are

51(2) [p—Cp(z)]/p (3.9)

Sz(z) = Cp(z)/p (3.10)

Y2 1(z) is found relatively easily because it is defined modulo (z-1).
9

So it's calculation reduces to that of a single one-dimensional scalar

convolution with

p=1
T, (2) = 3 H, T, o 1=0,1,..,p-] (3.11)
? m=0 9 9

p-1 p-1
where HZ,m = gz% hnpm and X2,r = éZ; X p (3.12)

The p-point one-dimensional cyelic convolution of (3.11) may be
calculated by the techniques of the previous chapter.

To complete the calculation of Yl(z) we st1ll need to find
Y191(z), i.e, a polynomial convolution modulo Cp(z)° The technique
used to calculate Y1 1(z) involves the use of Polynomial transforms.

9

These are discussed in the next section.

53

3.2.2 Generalised Polynomial Transforms

Consider a one-diménsional cyclic convolution of order N, in a
residue class polynomial ring R/f(z), where R is a ring or field. The
polynomial algebra is performed mod £(z), i.e. mod Cp(z)i11the above
case, whilst the coefficients of the polynomials are taken to lie in R
- the real numbers for most cases. Suppose Ai(z) and Bi(z) are one-
dimensional sequences of length N whose elements are polynomials in
R/f(z), then their cyclic convolution Dl(z) is given by

N-1

D, (z) = Eo B _y5(2)By(2) mod £(z) 1=0,1,...,8-1 (3.13)
The notation <.> denotes modulo N. f{z) is assumed to be a monic
polynomial. Then as proposed by Nussbaumer [3.1], Nussbaumer and
Quandalle [3.2,3.3] and by Arambepola and Rayner [3.8] this convolution
may be calculated by DFT-like discrete transforms. Provided that p(z)
is an Nth primitive root of unity in the polynomial ring, then these

transforms are defined by

Kk(z)

N-1 1K
P A;(z) p(2z) mod £(z) (3. 14a)
i=0

N-1 .
ﬁk(z) z: B.(2) ka(z) mod f(z) k=0,1,...,N=1 (3.1l4b)
j=o Y

N

Then multiplying term by term

mod £(z) ¥=0,1,...,8-1 (3.15)

The sequence Dl(z) is recovered from'ﬁk(z) using the inverse transform

given by

-1k

Bi(z) = N T B 2) () mod £(2) (3.16)

Provided that .

54

N-1 = N if i-{-j:l mod N

(1) s= 5 ()R neq p(m) T
k=0 = 0 1f 14341 mod N (3.17a)
(ii) N has an inverse in R, (3.17b)

The condition (3.17a) may be refined by noting that

tN
N-1 p(z) -1
T ezt - —_— (3.18)
k=0 p(z) -1

Hence (3.17a) will be true provided that
(p(z)t - 140) forall t#0 modN (3.19)
Having defined the general case the next section returns to the problem

of calculating ¥ (z), a eyelic polynomial convolution of length p,

1,1
modulo Cp(z), p an odd prime.

3.2.3 & Polynomial Transform, length p, root z, modulo C (z)

Using the results of the previous section we now calculate

Y1 l(z) using polynomial transforms. The simplest root for the foward
9

polynomial transform length p mod Cp(z) is z. This may be seen by

noting
a) 2 = 1 mod Cp(z) and z° £ 1 mod Cp(z) for t£ 0 mod p
Rl ek
b) z - =p mod C (z) for t = 0 mod p.
k=0 p

e¢) For t £ 0 mod p, the set of exponents tk, defined mod p, is a

permutation of the integers 0,1,...,p~1. Thus

-—

P= 1 tk BR=

t ’ £ N\ -~ P I 4 N . ;- a
S_i E:, z = 5T z = C (z) = 0 mod © (z) t £ 0 moa p
k=0 k=0 P p

d) p—1 exists as the field of coefficients is the real numbers.
Thus all the conditlons of the previous section are met and =z

is a suitable root for a polynomial transform of length p mod Cp(zh
Using this method Y1 l(z) is computed with three polynomial

9

transforms and p polynomial multiplications -ET k(sz1 k(z) defined
9 9

55

L

%, -
Sy
}
Ordering of
Polynomials

p Polynomials of p terms

L

p Reductions
modulo

Cp(z) = (ZP=1)/(2-1)

l

}

i p Reductions
{ modulo (z-1)

1 polynomial of p terms

L

Polynomial .

Transform Reduction | Reduction
Modulo € (z) Modulo C_(z) Modulo (z-1)
Root z, size p P

¥
p Polynomial 1 Polynomial v
Multiplications Multiplication 1 Multiplication

Modulo Cp(z) Modulo Cp(z)

-

Inverse
Polynomial
Transform

Modulo Cp(z)

L

1 Chinese Remainder

Reconstruection

g

—

J[\L

p Chinese Remainder
Reconstructions

yﬁ,l
¥
Figure 3.1

A pxp point Cyclic Comvolution

Computed Using Polynomial Transforms

modulo Cp(z)° In many digital filtering applications one of the input

(z) can be

sequences, hn o’ is fixed and its polynomial tr'ansfor'm'ﬁ1 K
s) 9

brecomputed° In this case only two polynomial transforms are required.

Figure 3.1 illustrates the computation of a two-dimensional
eyelic convolution of size pxp, p an odd prime, by the use of
polynomial transforms.

Using the polynomial product algorithms given by Nussbaumer
[3.6] 3x3 and 5x%5 cyelic convolution algorithms were derived. These
algorithms have the general form of (1.20). Having applied the
transpose system derived in chapter 2 to these 3x3 and 5x5 algorithms
their 4 and‘C matrices contained only +1, -1 and 0. The use of the
transpose system obviates the use of a technique suggested by
Nussbaumer [3.6] to simplify the Chinese Remainder Theoren
reconstruction.

Provided that the root of a polynomial transform is simple it
may be calculated without multiplications. 1In particular when the root
is z, or a power of z, the polynomial transform may be calculated using
additions, subtractions and word-shifts between the words of the poly-

nomial corresponding to different powers of =z.

3.3 Other Applications of Polynomial Transforms

So far only one class of two-dimensional convolutién
algorithms has been discussed, pxp points, p an odd prime. However the
derivatian of polynomial transforms in section 3.2.2 was of a far more
general nature. This section considers the application of polynomial

transforms to other convolution sizes,

56

3.3.17 Polynomial Transforms with Roots in a field of Polynomidls

As we have seen a two-dimensional cyelic convolution of NxN
points can be represented as a polynomial convolution where all thé
polynomials are defined modulo (zN=1)o For the pxp point case ZN-1 has
only two cyclotomic factors. In general zN—T has d factors, where d is
the number of factors of N, including 1 and itself. When N is not
prime how should the calculation proceed?
| Both Nussbaumer [3.6] and Arambepola and Rayner[3.8] show that
a polynomial tranéform of length N and root z always exists modulo
CN(z), the largest eylotomic factor of zN—1g

Thus the convolution yu91 of dimension NxN might be computed
by ordering the input array as ¥ polynomials of N terms which are

d-1

reduced modulo CN(Z) and modulo C(z) = gjrgci(2)° CN(z) is the largest
cyclotomic factor of zN--‘I° The result yu91 is found using a Chinese
Remainder Theorem reconstruction from the polynomial convolutions
Y191(z) mod CN(Z) and Y291(z) mod C(z). The polynomial convolution
1191(2) mod CN(Z) is found using polynomial transforms of length N,
root z and N polynomial products modulo CN(zL whilch, as noted above,
always exist. There are two possible ways of calculating Yz,l(Z)“

The first method is to reduce YZ,I(Z) modulo the various
cyclotomic factors of C(z), d-1 of them, and define the corresponding

polynomial transforms, when they exist, to calculate each of these

]

further polynomial éqnvolutions° Unfortunately polynomial transforms
of length N and root z will not exlist in these other moduli. Some
transforms with simple roots exist, this approach is discussed further
in section 3.3.3.

| The second possibility for the calculation of YZ,I(Z) is to

consider YZ l(z) as a two-dimensional polynomial product modulo
?

57

C(z),zN—1o This approach is illustrated for the case of a convolution

of p?xp? points, p an odd prime.

3.3.2 A Cyclic Convolution of p%xp? points, p an odd prime

2

The cyclotomic factorization of zZF’ -1 is given by
2
zP -1 = CPZ(Z)QCP(Z)QC1(Z) (3.20)
where sz(z) = Zp(p-—” + zp(p—Z) Foeee + 2P 41 (3.21)

and Cp(z)°C1(z) = zPq (3.22)
Equations (3.21) and (3.22) may be deduced from equations (2.35) and
(2.36) in the list of properties of cyclotomic polynomials.

Then proceeding as outlined 1n the previous section, Y191(z)

is computed by polynomial transforms of length p? and root z defined

modulo sz(z), while Y (z) is a convolution of size p?xp. This

2,1
second convolution can be viewed as a polynomial convolution of length
p on polynomials of p? terms. It, in turn, may be evaluated as a
polynomial convolution of length p defined modulo sz(z) and a convol-
ution of pxp points. The length p convolution defined modulo Cp;(z)
can be calculated by polyhomial transforms of length p with root zp°
The pxp point convolution evaluation using polynomial transforms has
been discussed above. This whole procedure is 1llustrated in figure
3.2
A 9x9 cyeclic convolution algorithm was derived using this
éethod. A FORTRAN listing of this derivation is given in Appendix II,
This algorithm, which uses 229 multiplications, yields A and C matrices
which contain only +1, -1 and 0 after the application of the transpose
system.
| Thé pzxpz.example i3 the simplest case of a more general

algorithm for pcxpc peints, p an odd prime. The pcxpc case was

originally mentioned by Nussbaumer and Quandalle [3.2] but explained in

58

s,r
l "
Ordering of

| Polynomials-
1] Xr(Z)
¥ | _ Yr
ReductionzModulo Reduction J
C e (2) = (zP -1)7(zP-1) Modulo zP-1 |
1
l#19p(z) | X29P(Z)
. i p? polys of p terms
Polynomial v
Transform- ' Reordering
Modulo C ,(z)
size p?, root z L P polys of p? terms
7 5 L
p? polynomial Reduction Reduction
Multiplications Modulo € ,(2) Modulo zp-11
Modulo Cp,(z) i —
I Polynomial
Inverse polynomial Transform
Transform Modulo C_,(z) Modulo C_,(z) Convolution
size p? size p, root zP of size pxp
¥
p polynomial
multiplications
Modulo sz(z)
¥
Inverse
Polynomial
Transform
Modulo C_,(z)
P P
size p, root z

]v s \Ft—

brd byd

Reordering and Chinese

Remainder Reconstruction

i
yﬁgl

¥

Figure 3.2
Computation of Comvolution of p®xp? points

mopre detall by Nusabaumer in [3.6].

The case of convolutions of size th2t is very similar to the
' £
pcxpO case. The cyclotomic factorization of 22 -1 1s simpler because

2t—1
C t(z) = 2 +1 (3.23)
2
t

This gives z2 -1, t=1 ecyclotomic factors of the general form of (3.23).

3.3.3 Polynomial Transforms with Composite Roots

The derivation of polynomial transforms in section 3.2.2
relied on the existance of a primitive Nth root p(z) defined in the
ring .of polynomials. Nussbaumer and Quandalle [3.2] suggested a way of
extending the size of polynomial transforms by taking advantage of the

field of coefficients. If a N1-point polynomial ‘transform supports

eyelic convolution mod f(z) with root p(z), it is possible to use roots

of unity of order N2 in the field of coefficients for the definition of

transforms of length N1N2 which also have the cyeclic convolution

property.
Suppose the field of coefficients is the complex numbers, so

DFTs of 1length N root W= exp(—ZWj/NZ) are defined which support

29
cyelic convolution, Then, 1f (N19N2)=1 the polynomlal transform of

root Wp(z) defined modulo f(z) supports a cyclic convolution of length

N:N1N2°
This 1s verified by considering the conditions given in
N, N,
section 3.2.2. Firstly, since W € -1 and p(z) ! = 1 mod £(z),
N, N N, N
wp()1" = 0 %) 'p(z) '1% =1 mod £(z) (3.24)

Condition (3.17b) that N has an inverse, is met because N1 and N2 both

have inverses, We now consider condition (3.17a),

S = :E: [Wp(z)]tk mod f(z) (3.25)

59

As the exponents tk are defined modulo N, S=N for t=0 modulo N. For
t£0 mod N, S may be mapped into a two-dimensional summation because 1\71

and N_ are mutually prime.

2
k= Nk, + Nk, ModWN
ky = 0,500 esNiml kg o= 0,500, -1 (3.26)
giving
N -1 EN .k N_-1 EN .k
S - ?E w 12 g: p(z) 21 mod £(z) (3.27)
k2=0 k,l:O

The existence of the two transforms of length N1 and N2 with roots p(z)
and W implies that 5=0 for kméo mod N_I and k, £ 0 mod N2° Therefore S=0
for k40 mod N. Thus (3.17a) is satisfied. So polynomial transforms
with composite roots may be defined.

The condition that (N1,N2)=1 means that this method is of most
value when N, is odd and N.=2 or 4. In these cases W=-1 or j, j:J:?o

1 2
So if the N_-point polynomial transform has a simple root then the 2N1~

1
point and 4N1-point polynomial transforms will also have simple roots.
A 6x%x6 cyclic convolution algorithm was derived using a
composite polynomial transform of length 6, root -z, mod C3(z)=z’+z+1n
Utilising the transpose system the algorithm was.of the general form of
(1.20) with the A and C matrices containing only +1, -1 and 0.
Table 3.1, taken from Nussbaumer [3.6] lists all the

polynomial transforms that can be calculated without multiplications

together with their associated rings.

60

i Transform ring Transform Size of convolution
‘ Length{ Root
(zP-1)/(z-1) p z pPXp
(zP-1)/(2z=1) 2p -3% 2pxp
(zzp—T)/(zzei) 2p —zP*] 2px2p
2 2
(2P ~1)/(zP-1) P 2P pxp
2 '
(2P -1)7(zP-1) p° | =z p2xp?
2 2
(ZZP =1)/(z2p=1) 2p2 —gP *1 2p2x2p2
p,4P P p
(z | 2-1)/(z 2-1) p z 2 P.Xp.p
b1 1 1*P1P2
2 4 ’ 2t z 2bxo®

Table 3.1 p,p1 and p2 odd primes.
Multiplication free polynomial transforms

3.4 Operation Counts

Table 3.2, extracted from Nusshaumer’s work [3.2,3.61, gives
the number of multiplicaztions and additions for a variety of
convolution sizes. The number of additions is the minimum required to
evaluate the algorithm., It 1is not equivalent to the number used when

performing the matrix operationé for the canonical form (1.20).

Convolution Number of Number of Mults, Adds.

Size multiplications Additions per point per point
3x3 13 70 1.44 7.78
bxly 22 i22 1.38 7.62
5x5 55 369 2.20 .76
6x6 52 uaon 1.44 11.78
77 121 1163 2,47 23.73
8x8 130 750 2,03 11.72
9x9 153 1382 2.38 17.006
10x10 220 1876 2.20 18.76
TUx14 ugy 5436 2.47 27.73
16x16 634 ur7h 2.48 18.65
18x18 772 6576 2.38 20.30
30x30 2860 31088 3,18 34,54
32x32 3658 24854 3.57 2u.27
bUxbly 17770 142902 4,34 34.89
128x128 78250 720502 4,78 43,98

Table 3.2

Operation count for two dimensional convolutions evaluated using
polynomial transforms

61

3.5 Other Approaches

As mentioned at the beginning of the chapter the approach
adopted by Nussbaumer and Quandalle is not the only possible technique
for applying applying polynomial transforms to the calculation of

cyclic convolutions. Here thres other schemes are considered.

3.5.1 Fast Biased Polynomial Transforms

Pei and Wu [3.12] proposed a method of performing two-
dimensional cyclic convolutions wusing biased polynomial transforms in
the ring zN-1 itself., This technique eliminates.the reductions into
the varlous modull and the Chinese Remainder Theorem recombinations.,

The derivation of these biased polynomial transforms is the
same as that for the general polynomial transform gliven in section
3.2.2, 1.e, equations (3.13=3.16) inclusive with f(z):zN-1 and root
p(z)=z.

The bilased polynomial transforms of the two polynomial

sequences Ai(z) and Bi(z) are

Eﬁ(z)

N-1
z: A (z)zik mod (zN-1)
i

—

N-
Z: Bj(z)zjk mod (zN=1) k=0,15000,N=1 (3.28)

30

E&(z)

Multiplying term by term and performing the inverse biased polynomial

transform yields the sequence Ci(z)

1 & “1k N
Ci(z) = 5 5@% g, (2)B, (2)z mod (2=1) k=0,15.00,8-1 (3.29)
giving
N-1 N-1 N-1
iz = zj & (z)B4(z) % Ej 143Dk g (Noq) (3.30)
1=0 j=0 k=0 '

62

There are now several possible cases depending uvpon N, Just one case,
N an odd prime, is considered.

For ¢ = (i+j=1) = 0 mod N

-1
MR | (3.31)
ic=0

For t = (1+J-1) £ 0 mod N, the set of exponents tk mod N is a

permutation of the integers 0,1,...,N-1 and

N-1 N=1 :
23 ztk = }i: ék =1+ ZF o0oo + 21 med (zN-1) (3.32)
k=0 k=0
Then
N-1 N-1 N=1 _
Ci(z) = 3. Bn(z)&ﬂ_n)(z) + Z Bn(z)Am(z)(1+z+_M.,+z)
n=0 m=0 n=0
n+m-;i0 mod N n+m—1é0 mod N
convolution term biased term (3.33)

The righthand term of (3.33) forms a constant bias to each term of the
final results. For N an odd prime the biases for each row of the
result are always equal to a constant, the value depending upon the
input data. These biases must be subtracted from (3.33) to obtain the
correct convolution. Pei and Wu suggest that the biases may be
calculated by extending the input sequences with zeroes so that
otherwise zero terms in the convolution will be biased and easily

identified,

3.5.2 Polynomial Transforms in Modified Rings

A polynomial transform of length N and root z? can always be
defined modulo (zN+1) but the modulus (zN+1) does not support eyelic
convolution. However Arambepola and Rayner [3.7,3.8] developed a
mapping to change a convolution modulo (ZN—a) into one modulo (zmabL
A speclial case of this mapping 1s the mapping of cyelic convolutions

modulo (zN-1) into 'skew-circular® convolutions modulo (ZN+1)° The

63

skew circular convolutiorn can then be evaluated using polynomial
transforms of -length N and root z? modulo (zN+1) and ¥ polynomial
products modulo (ZNH)° This way of performing two-dimensional cyclie

convolutions may be described ag follows

N-1 N-1
Ty * m;) n};; By mByen,iom Wl = OsTsees,N-1 (3.18)
N n_n - 3T/N
Hm(z) = 2: mﬁpmw z W=e J:J:7 (3.34)
n=0
N-1 s s
XP(Z) = XS pW z m91‘ = 09190009N-1 (3035)
s=0 ’
N-1 ’ ' N
Then 4,(z) = 30 H (2)X_ (z) mod (z +1) (3.36)
m=0) ' .
N-1 u
with L(z) = 3 & 4z 1=0,1;.00.0,8-1 (3.37)
u=0 ?
and =a WY (3.38)
_ Yu, 1 7 F,1 °

This calculation 1s illustrated in figure 3.3. When compared with some
of the previous methods this algorithm trades computational efficiency
for structural simplicity. Furthermore the multiplications in (3.34),
(3.35) and (3.38) by W™ involve complex arithmetic.

Whilst offering some advantages this algorithm is not the most
computationally efficient method of calculating two-dimensional

convolutions and does not have the general form of (1.20).

6u

¥ G W

l

Ordering of
Polynomials

Xr(Z)

Polynomial

Transform

Modulo zN+1
size n, root z?

L

X "

J

Ordering of
Polynomials

Hm(z)

size n; root z*

Polynomial .
Transforn
Modulo zN+1

1

R W
N Polynoﬁial
Multiplications
Modulo zN+1
v
Inverse Polynomial
Transform Modulo
zN+1
size n, root z?

ﬂl(z)

Xe—y ¥

Flgure 3.3

Convolution of NxN points
Calculated by polynomial transforms
in modified rings

3.5,3 Cther Two-Dimensional Cyclic Convolution Algoritkms

Truong, Reed, Lipes and Wu [3.9], Reed, Shoa and Truong [3.10]

suggest a procedure for calculating a cyclic convolution of d. xd

T2
points with d2=2m 'and dﬂ=2m°p+1 for Krim. The essence of their
d

technique is to factorize z 2=19 the longer dimension, into r+1 factors
so that
r r

d d,/2 d, /22 d,/2 d,/2

| z =1 = (=2 2 +1)(z 2 +1) .oz 2 +1)(z 2 -1) (3.39)

The pgint of this factorization is that each of the factors, except
d, /2 '

(242 -1) supports 1length d1-point polynomial transforms with root
r-i

z2 for the ith factor., So the first r factors maybe evaluated using

polynomial transforms and N polynomial products each. The polynomial

d r
2/2

z -

convolution corresponding to the 1last factor (1) 1is more

difficult to calculate, It may be evaluated by using ‘Arambeopla“s
mapping to convert it into a convolution modulo (zd2/2P+1) for which a
suitable polynomial transform exists.

In the original paper by Truong et al. [3.9] the way of
calculating the polynomial products using the FFT 1is inefficient.
Although an improvement is suggested by Martens [3.11], eyelie
convolutions calculated by this method are very inefficient when

compared to Nussbaumer and Quandalle‘’s method for the convolutibn of

thzt points discussed at the end of section 3.3.2.

3.5 Summary o

)

Al mim e A
vilapuver 3

Q

This chapter has dealt with two-dimensional convolutions
calculated using polynomial transforms, The method involves treating
the two-dimensional convolutions as one-dimensional convolutions of
polynomials, These polynomials are then reduced in each of the

N

cyclotomic factors’ of z"-7, Polynomial transforms can be used to

calculate these polyﬁomiél convolutions in certain of these moduli.

65

The Chinese Remainder Theorem 1s used to reconstruct the result from
each . of the polynomial convolutions in the compontent quuli° It 1s
possible to derive some of these algorithms in the general form of
(1.20) with their A and C mabtrices containing only +1, -1 and 0. 1In
particular algorithms for 2x2, 3x3, Uxk, 5x5, 6x6 and 9x$ point cyelic

convolutions exist and have this form.

66

Chapter §

Multi-dimensional Mapplings

The preceeding chaptefs considered algorithms for specific
transform and convolution lengths. This chapter deals with
multi-dimensional mapping techniques which allow longer transforms and
convolutions to be built up from a set of smaller ones. From these
mapbings the fully nested form of the Winograd Fourier Transform
Algorithm (WFTA) is built up, together with the equivalent nested
convolution algorithms.

Throughout the chapter the number of operationsvrequired to
compute the various élgorithms is given, allowing a preliminary

comparison to be made between algorithms.

4,1 The DFT

Consider the calculation of a one=dimensiona1 DFT

A=y nk
Kk = Z anN k=0;1500.,N-1 (1.10)
n=0

where WN is'the Nth root of unity and the index nk 1s evaluated modulo
N. A direct implementation of (1.10) for complex data would require

yye Real multiplications

2N(N-1) + 2N°? Real additions (4.1)
assuming U4 real multiplications and 2 real additions per complex
multiplication, It is possible to perform a complex multiplication in
3 real multiplicatipns and 5 real additions [4.1); however this 1s not
usually done., This is because the 3 multiplication algorithm 1is less

well suited to parallel hardware implementations.

67

4,2 The Fast Fourier Transform (FFT)

If N is composite, then it is possible to map a one-
dimensional sequence into a multi-dimensional one, These are many such
mappings but only a few have suitable properties. Perhaps the simplest
set of mappings applicable to the DFT occurs when N:N.]N2 and the

indices m and k in (1.10) are redefined as

m=n,+ Nn, nok, = 057, 000,N -1 (4.2)
k = Nzk1 + k, Bk, = 051,000,N -1 (4.3)
There are no restrictions on the values of N1 and N2° Substituting

(4.2) and (4.3) into (1.10) gives

N,-1 Nonk, ngky N1 N.nok,
o xsk = Wy Wy 3 Ty N.n N (4.4)
21 2 n1=1 n2=0 1 12
A, N
?eflne two N1xN2 arrays x, 0 and Xk K as
1°%2 1752
2 d ﬁk I, (4,5)
T = an = °
nyon, T Wnen, 17%2 Kk,
. Nn. k n_ k N.n_ k n_k
Further note that wN2 L wN1 L wN1 2e WNZ 2 then (4.1) may
1 2

be written as

~ N, -1 n1k1 n1k2 N2—1 a n2k2

Xk K = WN Wﬁ 2: X n WN (4.6)
.1’ 2 n1=0 i n2=0 19 2 2

The computation of (4.6) is carried out in three stages,

1) Calculate N N_-polnt DFTs along the second index of

17 72

X o
n..n_
[

1i) Multiply the result of step (i) by

n_k
WN1 2 nez 0,1,...,0

iii) Calculate No,» N1apoint DFTs along the first index of

-1; k2=091yoooyN?—1

"
X e
n

The multiplications in step (i1) are known as °'twiddle factors’.

68

The method can be extended to more than two factors of N. If
there are L factors of N then there will be L-1 sets of twiddle
f‘\actor'so The number of operations for this two factor example is given
by

L@1\1(1\'[14-1\724»1) Real multiplications

2N(2N1+2N2-1) Real additions (4.7)
This is clearly an advance over (4.,1). The computational advantage is
increased with a greater number of factors.

When N1=N2=2 the mappings (4.2) and (4.3) become the basis for
the decimation-in-time radix-2 FFT. The Fast Fourier Transform (FFT)
was first proposed by Cooley and Tukey in 1965 [4.2]. When N1=N2=2 or
I the DFTs in stages (i) and (iii) above may be calculated without
multiplications using only additions and subtractions. The operation
count for complex data for the radix-2 FFT is

Z\ILogZN Real multiplications

3NLog N Real additions (4.8)
Equation (4.8) includes one extra set of twiddle factors (all ones) to
increase the regularity of the angr"i't‘,hm° Equation (4.8) also includes

some other multiplications by unity. There are many variants of the

FFT, see, for example, Brigham [4.3].

I.3 Prime Factor Mapplngs

The mappings (4.2) and (4.3) for n and k placed no
restrictions on the values of N1 and N2° By constraining N1 and I\I2 to
be relatively prime many other mappings are possible. Some of these

possibilities are now discussed., Burrus [4.4] considers the general

case of mapping a one-dimensional sequence of length N=N1N2 into a two-

dimensional array that is N1 by N, in size. He considers in detail

the conditions for the mapping

69

n=Kn, + Kn, modN n

J -
Ly o0y 0, 75000,. =1

1 1

n2 = 09190009N2°1 (uog)

which is cyeclic in N, to be cyclic in N, and N2 as well as being one-

1

to-one (unique). The conditions for this to be true when (N19N2):1 are
that

K‘I = O{NZ and K2 = FN,I and (&ng,') = (@9N2) =1 (4.10)

.These conditions are now applied to a N=N point DFT. Suppose the

1 2

indices n and k are mapped as
n=&Nn, +@8Nn, modN , (4.11)

k= ¥N k, + §N1k2 mod N (4,12)

Then substituting these mappings into (1.10) and defining

and X (4.13)

* Ty n 468 n, kK, XB’NZk1+§N K

12

gives

N,-1 - Q/XN nk, | g¥Nn k

- f: wg 2! (4.11)
n1=0 : 1

Thus the mappings (4.11) and (4.12) completely separate the one-

19k

dimensional DFT (1.10) into a two-dimensional funetion. Note that the
inner summation, in brackets, only involves n, as an index, Some

possible choices of &, @ ,0 and d are now considered.

4.,3,1 Good's Algorithm

Good [4.5] considered using

X-8=1 &= N;’ mod N, and ¥= N‘Z" mod N, (.15)

Then the mapping (4.12) becomes the Chinese Remainder Theorem,
Substituting (4.15) into (4. 1U) gives

N.~-1 n k n k

% . w22y 1
X ok \Z %; gn N Wy (4.16)
1 2 : : 1
1
Equation (#4.16) represents a true two-dimensional DFT which eliminates

all the twiddle factors associated with (4.6). Explicitly the mappings

70

= \I
n Nzn.‘ + I_In2 B 97

-1 -1
= 1
, k = N2<NZ>N1 k,i + N1<N1>N k2 (5018)

Good calls the n mappirng the Ruritanian mapping and the k mapping the
Sino correspondance. Equationm (4.16) could also have been derived by
choosing 3:8 =1 and using the CRT form on& and@ . This would have
reversed the forms of (4.17) and (4.18). The mappings as given by
(4,17) and (4.18) are the same as those used Kolba and Parks
[4.6,4.7]. Direct computation of (4,16) requires

M(N‘_'z + NZZ) Real multiplications

2[N1(2N1-1) + N2(2N2-1)] Real additions (4.19)
Kolba and Parks [4.6] consider the use of Winograd's ‘short N°

algorithms for the N, and Nz—point transforms. Their paper contains

1
some ‘short N' algorithms derived in a manner analogous to Winograd's.
If Mi and Ai are the number of multiplications and additions for a Ni—

point short-N WFTA for real data, then the number of operations for an

algorithm with L factors for complex data is

L
2y Iy Real Multiplications
S W
1i=1 i
Loy ,
2 2 <A Real Additions (4.20)
1-1 Nyt :

For the worst small N algorithm Mi’: 1°3Ni (7-pt. WFTA). Then at most a
two factor algorithm would require 5.2N multiplications.

Figure 4.1 illustrates a 15-point DFT calculated by this
method, The use of the mappings (4.17) and (4.18) coupled with the use
of Winograd's small N DFT algorithms is often refered to as the ‘Prime

Factor Algorithm' (PFA4).

71

5 % 3pf WFTAs

1 \ N C n
T \ | U
NP
| o
_J " mm S
=2
+ X |+
—3
| ﬁ -
| .
| | Y
/ #ﬁﬂﬁﬁ
AN i

3 % 5ph WETAS

Fig &1 A 15-point PFA

Perhaps the most inconvenilent feature of the PFA 13 the
implementation of the data reorderings associated with (4.18). Two

schemes are now introduced to ease this problem.

4.3,2 An Unscrambling Constant

Burrus and Eschenbacher [4.8] give a simple way of calculating
the reordering corresponding to the Chinese Remainder Theorem mapping.

The scheme 1s illustrated here for a two factor example. Using Good's

mapping
n = <Ny, + N1n2>N (4,17)
k = <K3k1.+ Kuk2>N
where K3 = <N2<N2>§1>N and X, = <N1<N1>§;>N (4.18)
At the end of the calculation the location of the calculated DFT values
Iis given by
n= <N k., + N.k> (4.21)

21 1T72°N

/

corresponding to the frequency index

k = <K3k1 + Kuk2>N

But k =k mod N, so (4.21) becomes

<N2<k>N1 " N1<k>N2>N (4,22)

n

or

n

<(N1 + NZ)k>N (4.23)

for L factors

L .
Y — N
n = <(> _1\—1) k)N (4.24)
i=1 71
This gives a simple method of calculating the unscrambling of the

result., This result could ease address generation problems, both in

software and hardware implementations of the DFT.

72

4.3.3 An In-Place, In-Order PFA Qlgorithm

Burrus and Eschenbacher [4.8] also consider an in-order, in-
place algorithm in which the n and kX mappings are the same. This is

done by choosing the Ruritanlan correspondance for both naps, 1.e.,

n = <N n, o+ N.n.> (4.17)

2 172"N

k = <N2k_! + N1k2>1\1 (4.25)

This is equivalent to setting a=@=3=5=1 into (4.11) and (4.12) giving

-1 N.nk. N.on.k
S ‘%: % an" a2 wN2 T (1.26)
1°¥2 = 178 Ny 1

The exponents in (4.26) are evaluated mod N, and N1 respectively.

2

Burrus and Eschenbacher point out that since N1 and N_, are relatively

2

1n2>N2 or <N1k2>N2 and <N2n1>N1 or <N2k1>N1 are

merely permutations. So the modified DFTs required (#.26) may be

prime the operations <N

~obtained by reordering the inputs or outputs to each of the small N DFT
modules., Burrus and Eschenbacher explicitly reorder the small N DFTs
so that modules in their FORTRAN program depend upon the transform
length., Rothweiler [L.9] uses the same principle but utilises a
pointer to Eeorder the output of standard WFTA modules. Arambepola
[4.10] derives a similar method to Rothweller's for the reordering of

the outputs from 'short-N' blt serial WFTA ICs.

73

4,15 The Xronszcker Product Strucure of I Matrices

Consider a 1C-point DFT written as matrix vector product

4 oLy
XO? 1111111111.::02
Z,| 1wt wl w3t wd b T o z,i?
x, 1wl wbwl wl ot wbul i
[7
XBl 1 w3l W W wlwl wt =,
e 1wt w wlwt o Wt w8 Wl
Mo 4 w10
X, 1w W W w1 W kg
|
X, 1 W wl Wl W Wl)
278 1 ..8.5..2. 9.6 .3
X, I B AR I S
X 1w Wl Wt w2 1wt Wb wtwl xg
X, 1ow? W w” wb Wt wt Wl w? g (4.27)
\ p N J

Now consider the mappings given by (4.17) and (4,18) with N1=2 and

N.=5. Then the mappings are

2
n = Sn1 + 2n2 n1 = 0,1
k = 50, + 6n2 n, = 0,1,2,3,4 (4.28)
with n2, the innermost factor, varying most rapidly, the columns of the

above matrix and the input vector, are both rearranged according to the
n sequence, i.e.,

0, 2, 4, 6, 8,5, 7, 9, 1, 3
the rows of the matrix and the output vector are rearranged by the
k sequence

0, 6, 2, 8, 4, 5, 1, 7, 3, 9

this yields the following rearrangement of the 10-point DFT matrix

7h

‘ / Mz !
Xo‘ (NI T I I I TR TR I A €
X, 1 et b wd 1wl ot b w8 3
X, 1wt el 1 Wt Wl b %,
x, 1 we Wl Wb w? Wl Wt =g
X, R AR ST Sl o P

] 5. 5.5 5 5| |.

o= 11 W W s
X, 1 wl ot b ul Wt W W w3 %,
X, 1wt W Wl W W WS T ! 7
X, 1 Wl Wt et Wl wd W x,
X T Wb WS W W |z (1.29)
L 9) s 2 3

This matrix exhibits a block structure, each block having the form

W2 DS’ where D_ is the 5x5 DFT matrix. Suppose we define

5
5 £) () ()
xo xs .XO XS
x2 x7 X6 X1
yo = XM y1 = Xg YO = Xa Y1 = X7
26 21 XS X3
X x X X. (4.30)
t84 L 34 ku/ 9J
Then (4.29) may be rewritten as
) 0 o.) []
Y W.D. W.D y
0 = g 5 ? 5 » 0 since W?O = W;
Y?; W2D5 W2D5 y1J (4.31)
3
| wg wg
However since the values 0 1 are the 2x2 DFT matrix Doa Then
L’bz Wz)
(4,31) can be written in terms of the Kronecker product [4,11] of D2
dD
and Yg
X = (DZ o D5) % (4,32)

Lol

X and ¥ are the reordered vectors ¥ and x respectively. If 2 had been
chosen as the inner factor, rather than 5, the matrix (4.29) would have

exhlibited 5x5 blocks of 2x2 matrices rather than 2x2 blocks of 5x5

75

matrices. The Kronecker product can be applied to any number of

mutually prime factors, i.e.. in general

X = (DN @DN, @oocﬂDN) = ()4033)

1 2 L

4.5 The Nested Winograd Fourier Transform Algorithm

The way the ‘small-N' DFT modules can be nested together into
longer transforms has been discussed by Winograd [4.12,4.13], Silverman
[4.14-4.16], Kolba and Parks [4.6] and by Agarwal and Cooley [4.17].
Perhaps the simplest approach to this nesting is that adopted by
Silverman [4.14], the following discussion is based upon his approach.

ks discussed in chapter 2 each of Winograd's 'small-N°' DFT
algorithms has the form

- C (Ay xBz) (1.20)
This ean be rewritten as
Y = CR'Ay (4.34)
where the A and C matrices are as before and B' is a diagonal MxM
matrix, the values along the diagonal being the M values Bz of (1.20).
Substitutiné (4.34) into (4.33) gives

X = ((C, B} Ya(C. B!)mooom(c BY A)= (4.35)

N, N, N1 N, Nz N, NN N

Matrix multiplication 1s associative and a property of the Kronecker

product [4.11 p11] is that

AB @ CD = {(As=B){Cad) (4.36)
Then repeated application of (4.36) to (H4.35) gives
= ((C. &C &.,..aC,)(B' @B} .. .cBy)(A wAy @...@hy M=
N1 NZ NL N1 NZ L 1 2 L
(4,37)

The form (U4.,37) has several interesting consequences, As all the Bj
i

matrices are diagonal, their Kronecker product will also be diagonal.

As the diagonal matrices only contain real and imaginary terms, so will

76

their Kronecker product. Similarly if the AN and BL matrices only

N
contain +1, -1 and 0, their Kronecker products will also only contain
+1, -1 and 0, Thus the nested form for the QFTA (4.37) is of the same
general form as (1.20).

| ‘When the nested A and C matrices are generated in this manner
the input and output of the algorithm are ordered by (4.17) and (4.18),
éxactly the same as the matrix vector product (4.29). To give a
transform using data in natural order and giving an output in natural
order, the columns of the nested A& matrix should be reordered by (4.17)
and the rows of the nested ¢ matrix reordered by (4.18). There i3 no
need to reorder the coefficients.,

Figure 4.2, taken from Kolba and Parks [Y4.6], gives another

way of viewing the nested form of (4.41).

4.5.1 Operations Count for the Nested WFTA

If each of the short-N WFTAs of Ni points requlres Mi
multiplications and Ai additions for real data, then the operatlion
counts for the fully nested form (4.37) with L factors, for complex

data, are

i=1
L ‘
M 11t i o
2 J:E N Real Multiplications (4.38)
N N M, N(L'1 Mi)
Ny - ceo o - 1 Additi .
2 N1A1 + N2N1A2 + +NL 1-1 Ni AL Real Additions (4.,39)

NL is the innermost and most rapidly varying factor, Whilst the number
of multiplications needed is independent of the order of the factors
the number of additions is not. Agarwal and Cooley [4.17] discuss this

problem and show that in order to achieve the minimum number of

T7

Fig. 4.2 A 15-point WFTA

5

PERMUTAT 10N

3pr
Pre-Mulfr
Matrix

Spt
- Pre-Mult.
Matrix

Multiplications

~J

5 pt
Post-Mult
Matrix

Post-Mult
Matrix

additions the factors should be ordered so that the quantity

Mi-Ni

A,
i

T(Ni) = (4.40)

increases towards the innermost factor. For example, in the 63-point
1 2
DFT, N.‘:?, N2:99 MD=99 1:‘3:369 M;,,L:‘i‘i and Alzlast, Then TJ'TS and Te_ﬁy

Hence 7 should be the innermost factor. The number of additions needed

is
7 as the innermost factor 2[—6-;-’ b5 4 46—,3%1—% 36] = fu422
9 as the innermost factor 2[§% 36 +-§%¢$ 45 1 = 1458

As predicted, less additions are required if 7 is the innermost factor,
These conéiderations do not apply if (4.37) is taken as a set of matrix
products.

It 1s interesting to consider the computational savings, if
any, of the nested form over the Prime Factor Algorithm. For the
ngsted form to require less multiplications than the PFA, then

NZM1 + N1M2 > M1M2 or N1/M1 +N2/M2'> 1 (4. 41)

In general I"I1>N1 and M2>N2° For the smaller'N algorithms IVI1 and M2 are

only slightly larger than N1 and N As Ni/M decreases only slgwly

2° i

with increasing N condition (4.41) is almost always met. Condition

i9
(4.41) 1s not met for extremely large DFTs or when sub-optimal ‘*small-

N' algorithms are used. An example of the latter case 1s described by

Johnson and Burrus [4.19].

point DFT with ‘M A

As the nested form computes the N1N with 1\.721\.1,“1“2

2

additions and the PFA with N2A1+N_‘A2 additions, the PFA will always

require less additions than the nested form except when IVI1=N1° Thus
there will always be a tradeoff between the nested WFTA and the PFA in

terms of number of multiplications and additionms.

78

4.6 Block Structure And Nesting of Convolution Algorithms

So far in this chapter only DFTs have been discussed, Do
mappings and block structures similar to the DFT exlst for
convolutions?

Burrus [4,2], Agarwal and Burrus [4.18] both discuss the
mapping of a one-dimensional convolution into a multi-dimensional forn.

Consider a length N cyclic convolution

Z: hkxkn=k> (1.3)

where the subscripts are evaluated modulo N. Then substituting the
mapping

n=Kn, +Kn

k = Kk, + Kk (4.42)

1 22
1.e. the same mapping for both indices, into (1.3) gives

| i
v - E: (4.43)
K 0 +Kn, %0 0 By eI n e Kon ~K ke Kk

Then by defining sultable two-dimensional arrays

Ny=1 M-
A
g o) Z (. 4)
"% kD0 k0 ﬁk k "=k 0k,

Equation (4.,44) represents a true two-dimensional convolution., This
convolution is cyclle along n, if and only if K1:«N2, and cyclic along
n, if and only if K2=3N1g It N1 and N2 are relatively prime, it is
possible for the mapping to be cyelic in both N1 and NZ’ if they have a
common factor this 1s not so.

in the simplest case w=p=1 and, for a two factor example, the

map reduces to

n=N

2" + Nyn, and k = Nk, + Nok, (4.45)

79

As an example consider a 10-point cyeclic convolution, which when

written in matrix vector notation becomes

£) f ()
Yo Xy Xg Xg X, Xg Xg Xy Xy X, X, ho
y1 E, Xy Kg g x7 X6 XS =y x3 2, h1
y2 xz x1 XO x9 x8 x7 xé XS xu x3 h2
y3 23 Xy, By Ty Kg 28 x7 Zg ZS %)y h3
vy 2y, x3 %y Xq Xy Xg 2g x7 Xe xs hu
ys XS ;) Ty Xy Xy Xy Xg X8 x7 Xg hs
y6 X6 x5 xu x3 x2 x1 XO Xg x8 x7 h6
y7 27 26 25 %) x3 Ry Xy Xy xg XS h7
¥g Xg x7 Ry Xg X, x3 X, Xy X, xg h8
lygj (Zg Zg Ty Xy T Xy X3 X, X, XOJ 3m2

Both the rows and the columns are reordered by the mapping

n = 51’11'+ 2!12 n.]:O,‘l n2=091,2,3,u
with n2 varylng most rapidly the mapping is
0, 2, 4, 6, 8, 5, 7, 9, 1, 3

This gives
(1] \
Y, Xy Xg Tg Xy X, Xg X Xy Xy X, (ho
Y5 X, Xy Xg Xg Xy x7 XS x3 x, x9 h2
yn) x2 XO 28 X6 29 x7 XS x3 31 hu
y6 x6 xu x2 xo XB x1 x9 x7 xS x3 h6
y8 i XS Xe Xy X, X x3 z, Xg x7 XS h8
ys XS 23 X, 39 x7 xo xg X6), X, hS
Yq %, x5 x3 X, x9 X, Xy Xg Xg X) h7
yg 29 x7 XS 33 Ry Ty X, Xy g Xg hg
2 z, x9 x7 xs x3 X Xy X, Xy Xg h1
‘yy \XB Ty g Ry X Ag g Xy X, Xq {h% (4,46)

Again thnis reordered matrix exhibits a block structure. Proceeding in

a similar manner to the 10-point DFT case, we define

80

o Vg By £5
Yo 7 By a7
s I be B,
Yg Y3 hg "3
N/ > 4 /
and
Xy Xg X X, I, T Ty Xy Ty szﬂ
X, Xy Xg Xg Xy X, Xy %3 Xy Xy
X1 = %), X, Xy Rg X)Zz = 29 >z7 XS 23 z,
Xe Xy X, X, Xg X, Ry Xy X Xg
X X X X,)IOJ 513 Xy Xy Xy 115’
So (4.46) may be rewrlitten as
YO i X1 X2 IBIO
Y,‘ }KZ X1 H'i u.47)

This clearly shows that (4.46) is a convolution of convolutions. Thus
Winograd's small-N convolution algorithms, which have the three matrix
structure of (4.34), may be nested together, No intermediate form
equivalent to the Prime Factor Algorithm exists for convolutions.
The nested form applicable to the 10-point convolution example above is

Y = (CZQCS)(BémBé)(AzmAB) _ (4,18)
As before this nesting can be extended to any number of mutually prime
factors., Using the same notation as before the number of operatioﬁs

for a real cyclic convolution evaluated using the nested form 1is given

by
L
N = i I Ni
i=1
L
I I M, Real multiplications (4.49a)
1=1

81

I
=3
Y
+
=
M
= I b2
=

Additions (4,49b)

o
S,

ety
Py =
1]]
-— ——t
————
=
—

.7 Summary of Chapter U4

This chapter has dealt with the use of multi-dimensional
mappings to construct longer algorithms for convolution and the DFT
from sets of short length algorithms. For the DFT the main algorithms
considered were the FFT, the Prime Factor Algorithm (PFA) and the
nested Winograd Fourier Transform Algorithm (WFTA)., The nested WFTA
has the same form as the ‘small-N' algorithms, i.e. equation (1.20),
and the & and C matrices of the nested form will only contain +1, -1
and 0 provided that the 'small-N' 4 and C did so.

The number of.multiplications required by the WFTA will
normally be less than the PFA, but the PFA will require less additions.
A more detailed comparison is made between the algorithms in the next
chapter.

Finally this chapter showed that ‘small N' convolution
algorithms can be nested to form longer convolutions., Again the nested
algorithm preserves the form of (1.20) with A and C matrices containing

only +1, -1 and 0.

82

Chapler §

Comparison of DFT and Convolution Algorithms

We now return to the problem stated at the beginning of the
thesis. "What is the 'best’ way of calculating the convolution of a
large picture with a small (fixed) window?” This chapter considers,
in purely arithmetic terms, the best algbrithm to choose so that the
minimgm number of multiplications are calculated.

The latter parts of the thesls are concerned with the
implementation of algorithms having the general form of (1.20) with A
and C matrices containing only +1, -1 and 0. An important feature of
this implementation 1s that the dimensions of the arrays of one-bit
full adder cells depends upon the word length and the number of
multiplications used 1n the algorithm. The dimensions of the arrays
are unaffected by the number of additions required to find the matrix
products involving the A and C matrices. Consequently algorithms are
compared withba view t¢ minimising the number of multiplications needed
for the function.

Before considering two-dimensional convolutions the number of
operations for one-dimensional DFTs and convolutions, calculated using

the methods outlined in Chapters 2 and 4, are compared.

5.1 Operation Counts for the One-Dimensional DFT

E

This section compares threc algorithms for the one-dimensional
DFT for complex data, the FFT, the Prime Factor Algorithm (PFA) and the

nested Winograd Fourier Transform Algorithm (WFTA).

83

5.1.1 The FFT

The operations counts for a N=2n-point radix-2 FFT, for
complex data, are given by

2N LogzN Real Multiplications

3N Log,N Real Additions N=2" only (4.8)
Whilst this is not the best FFT algorithm 1t is taken as being
representative of these types of algorithm. Table 5.1.1 gives the

operations counts for some transform lengths.

Transform Real Real Mults. Additions
Length Mults, Additions per point per point
8 L8 72 6 9
16 128 192 8 12
32 320 480 10 15
64 768 1152 12 18

128 1792 2688 14 21
256 4096 6144 16 24
512 9216 13824 18 27
1024 20480 30720 20 30 |

Table 5.1.1 The Radix-2 FFT

5.1.2 The Prime Factor Algorithm

The PFA uses Good's mapping and Winograd's 'small-N°
algorlithms to calculate the DFTs along each of the dimensions resulting
from the multi-dimensional mapping, If Mi and Ai are the number of
muliplications and additions for a Ni-point ‘short-N' WFTA for real
data, then the number of operations for an algorithm with L factors

with complex data is

84

L
2 ¥ (=) My l Real Multiplications

L
2 5w (<)a Real Additions (4.20)

The number of operations for the ‘small-N' WFTA algorithms 1s given by
table 2.3 in chapter 2. Table 5.1.2 glves the factorizations and
operation counts for complex data. The 11 and 13-point DFT algorithms
gliven in table 2.3 are not used as they do not offer a low number of

multiplications per point.

Transform Factors Real Real Mults. Additions
Length Mults. Additions | per point| per point
12 3,4 48 96 4.00 8.00
20 4,5 88 216 4,40 10.80
30 23,5 192 384 6.40 12.80
60 3,4,5 384 888 6.40 14.80
120 | 3,5,8 768 2076 6.50 | 17.30
240 3,5,16 1596 4812 6.65 20.05
504 758,59 3536 13500 7.02 26.79
1008 7,8,16 7324 29772 T.27 29.54

Table 5.1.2 The Prime Factor Algorithm
The number of multlplications given in table 5.1.2 includes those

involving i1 and fjo

5.1.3 The WFTA

Using the notation of the previous section the number of

operatlions for the WFTA is given by

L
2 j—t M, Real Multiplications (4.38)
1=

85

N oM, N L=t M)
, 9
2 = hpr = =Ry e v = Y (~—~/jAL Real
N, N, N, mo L1 w Additions

(4.39)
Table 5.1.3 gives the operation counts, for complex data, the same

transform lengths as the PFA. The factorisation is given in optimal

order, with the innermost factor last.

Transform | Optimal Real Real Mults. Addition

Length Factor Order | Mults, | Additions | per point| per point
12 3,4 24 96 2,00 8.00
20 4,5 48 216 2,40 10.80
30 25,3,5 72 384 2.40 12.80
60 4,3,5 - 144 888 2.40 14.80
120 8,3,5 | 288 2076 2,40 17.30
210 3,16,5 648 5016 2.70 20.90
504 8,9,7 1584 14652 3.14 29.07
1008 16,9,7 356U 34920 3.54 34.64

Table 5.1.3 The WFTA

Nussbaumer [5.1] introduces a technique called ‘split-nesting' to
reduce the number. of additions with no change In the number of
multiplications. This, however, increases the algorithm complexity and
1s not considered here,

Note that all these nested algorithms will have A and C
matrices containing only +1, -1 and 0. As with the PFA the number of
multiplications includes some apparently trivial ones by t9 and tjc

They are included so as to preserve the general form of (1.20).

86

5.71.4 Comparison of DFT Algorithms

Comparison of tables 5.1.1=5.1.3 shows that the WFTA always
offers the minimum number of multiplications for roughly comparable
transform lengths. The PFA requires less additions than the WFTA for
longer transform lengths., All three algorithms use roughly the same
number of additions for comparable transform lengths.

Much has been written [5.2-5.8] in the recent literature on
the comparison between programs and algorithms to implement DFTs on
general purpose computef-s° There appears to be no firm conclusion to
be drawn from these studies., However it seems that on general purpose
machines the 'in-order in-place' PFA may be the fastest algorithm
[5.2].

One point in common in these studies is that the arithmetic
savings of the WFTA are largely outwelghed by it's relative

complexity.

5.2 One-Dimensional Convolutions

There are two main alternatives for evaluating one-dimensional
cycelie convolutions, These are the nesting of 'short-N' convolution
algorithms, such as those derived in Chapter 2, or the the calculation
of convolutions by transforms having the cyclic convolution property.
In the comparison that follows it is assumed that one of the sequences
to be convolved is fixed - the filter coefficients - and that two real
clutions are computed by each complex DFT. Finally tue optimum
block length for one-dimensional filters involving a flxed filter tap

length and a semi-infinite sequence 1s discussed.

87

5.2.1 Nesting 'Short-N' Convolutlor. Algorithms

Using the same nctation as the PFA for the number of

operations for each of the factors, the operation count for the nested

algorithm is given by

L
TT My Multiplications

1=1

N L Ay [1=1 /My

— &, + W2, (-) T (-) Additions
N, 1=2 N/ lk=1"N/

{4.49a)

(4.49b)

Table 5.2.1 gives the number of operations for a variety of convolution

lengths. The number of operations for the ‘small-N' convolutions are

taken from table 2.2, The factorisation is given in optimal order to

produce the minimum number of additions, with the innermost factor

being given last.

Convolution Optimal Real Real Mults. Additions
Length Factorisation | Mults. Additions per point | per point

12 4,3 20 100 1.67 8.33

20 4,5 50 230 2.50 11.50

30 6,5 80 418 2.67 13.93

60 4,3,5 200 1120 3.33 18.67

120 3,8,5 560 3096 4.67 25.80

240 3,5,16 1640 8504 6.83 | 35.43

504 8,9,7 5852 34678 11.61 68.81

1008 9,7,16 17138 95258 17.00 94,50

Table 5.2,1

Real Cyclic convolutions calculated using nested ‘'short-N' convolution

Algorithms.

Again all these nested algorlthms, except those containing the factor

7, will have A and C matrices containing only +1, -1 and 0.

88

5.2.2 Cyelie Convolutions Calculated by Transforms having the CCP

By definition transforms possessing the Cyclic Convolution
Property may be used to compute cyclic convolutions! One useful
property when dealing with real convolutions is to ealculate two real
only convolutions using one complex DFT. Assume that hn is fixed, the
convolution of hn with the two N-point sequences . aad xg is found by
first constructing the complex sequence X+ jx&, The complex convol-
ution of hn with X o+ jxé is the computed by DFTs tc yleld the complex
convolution Yy + jy& Thus the convolution of hn with X is defined by
the real part of the complex convolution and the corresponding
convolution of hn and xé by the imaginary. Using thls method the
number of operations to compute a real convolution is half that of a
complex convolution.

Suppose a DFT algorithm computes a N-point complex DFT with 2M
real multipllications and 2A real additions. Then, assuming U4 real
multiplications and 2 real additions per complex multiplication, a N-
point real cyclic convolution is computed with

2[N + M] " Real Multiplications (5.1a)
and (24 + N] Real Additions (5.1b)
Table 5.2.2 below gives the number of operations for real convolutions
evaluated using the WFTA and PFA (using figures from tables 5.1.1 and

5.1.2)

89

Convolution WETA WFTA P;A T> PFA |
Length Real Mults Rezl Adds Real Mults Real Adds
12 ug 108 72 108
20 88 236 128 236
30 132 B4 252 USE
60 264 o48 504 cL8
120 528 2195 1008 2196
240 1128 5256 2076 5052
504 2592 15156 454y 14004
1008 5580 35928 9340 30780

Table 5,2.2
Number of real operations for real cyclic convolutions computed using
the WFTA and PFA.
(2 real convolutions per DFT; one input sequence fixed)

5.2.3 Comparison of Ways of Computing 1-D Cyclic Convolutions

Comparison of tables 5.2.1 and 5.2.2 shows that in terms of
numbers of multiplications the 'best® method of calculating one-
dimensional cyclic convolutions depends upon the convolution length,
For smaller convolutions the nested ‘short-N' convolution algorithms
use less multiplications than either the WFTA or PFA solutions. For
long convolutions the WFTA uses less multiplications and additions than
the nested "short-N' convolution algorithms., Where is the cross-over
between the two methods? TInspection of the previous two tables
suggests somewhere between 60 and 120-point convolutions. Table 5.2.3

below considers a few more convolution lengths in this region.

90

Convolution |Nested ‘short-N°|Nested °*short-N’ WETA WETh
Length Real Mults. Real Adds. Real Mults.|Real Adds.

60 200 1120 | 264 948

80 110 1506 376 1432

9¢C 450 2525 444 1618

112 779 3831 548 2udy

120 560 3056 528 2196

Table 5.2.3
Comparison of Operations for i-D convolutions of 60 to 120 points
Examination of table 5.2.3 immediately shows that there 1s no clear
crossover between the algorithms, It also illustrates that longer
algorithms may use less operations than some shorter ones - compare
the 112 and 120-poiht cases above. In terms of multiplicatioms the
cross-over point between the two methods is around 90 points.

For convolutions up to 90-points use nested ‘short-N'
convolution algorithms, such as those derived in chapter 2.
Convolutions of greater length should be evaluated using the WFTA. The
exact crossover point depends upon the assumptions made abeut the way

the DFT method calculates real convolutions.

5.Z2.4 Optimum Block Length for 1-D Filters

In many digital filtering applications one sequence, hn of ten

comprises SQ a limited number of points, N and represents the
AY

1°
The other sequaence, Z s is often very
large, The aperiodic convolution of these two sequences may be
obtained by sectioning EI performing a series of N-point cyclic

convolutions and using the Overlap-Save or Overlap-Add techniques,

deseribed in chapter 1, to reconstruet the filter output.

When using the Overlap-Save method the innut data is gsctioned
Into blocks of length N?9 each block overlapping the previous one by

N.-1 samples. The window is extended to N=N3+N -1 polnts by appending

1

N2=1 zeroes and a cyclic convolution of N points is performed. Only N2

samples of each block are retained, the other values are discarded.

2

If M1(N) @ﬂd is the number of multiplications per output
point for cyelic convolution of length N and MZ(N9N1) the number of
multiplications per output point for a NT—tap digitai filter, then
M2(N9N1) is given by

M2(N,N1) = M1(N}N/(N—N1+1) (5.2a)
Similarly, AZ(N’NB)’ the number of additions per output point of the
filter, when using Overlap-Save, is given as

AZ(N,N1) = A1(N)N/(N—N1+1) (5.2b)
where A1(N) is the number of additions per polint for a cyelic
convolution of length N, If M1(N) was an increasing function of Ny

then, as N/(N-N_,+1) is a decreasing one, there would be an optimum

1
block size N which minimised the number of multiplications in the
filter. Despite M1(N) not being a monoto%ically increasing function of
N for the WFTA and the nested 'short=N' algorithms it is still
possible to find a minimum for a given tap length., Table 5.2.8 gives
the optimal block length for the minimum number of multiplications for
a varlety of filter tap lengths evaluated using ‘short-N' convolution
algorithms. The cholce of possible convolution lengths was restricted
to algorithms containiang only +1, =1 and 0 in their A and C matrices,

i.e. algorithms containing a factor of 7 were excluded.

92

Filter Tap Optimen Mu £iplications | Adcitions |
Length Block size per point per point
2 6 1.60 6.80
4 12 2.22 1,17
8 24 3.29 16.00
16 60 i, ik 32.00
32 120 6.29 34,79
64 250 9.27 43,05
128 360 13.22 79.30
256 720 19,10 175.98
512 720 43.16 238. 14

: Table 5.2.4
Optimum block sixes and number of operations per point for 1-D filters
computed using nested °*short-N' algorithms

5.3 Two~Dimensional Convolutions

In a similar manner to the previous section the number of
operations to calculate two-dimensional cyellie convolutions 1is
discussed in this section., There are several additional techniques for
computing 2-D convolutions apart fgfm those applied to the 1-D
convolutions above, These include the use of 2-D cyclic convolution
algorithms derived using polynomial transforms and 2-D DFT algorithms
also derived from polynomial transforms.

The methods are discussed in the following order: nested 1-D
WFTAS, 2;D DFTs based on polynomial transforms, nested 1-D ‘short-N'
convolution algorithms and 2-D convolution algorithms based upon
polynomial transforms.

Finally the optimum block size for the window-picture

convolution problem is considered.

Throughout this chapter only NxN-point convolutions are

93

considered, It should b2 noted that 1t is often pecssible to cerive

N1xN2~p01nt convoliutions N1 Z Ngo

5.3.1 Nested {-D WFTAs

It follows from the derivation in chapter I that a nested WFTA
can be built up not only from one-dimensioral data which has been
mapped into a multi-dimensional array, bubt also from data that is
inherently multi-dimensional., Furthermore because the data is multi-
diménsional no mappings are required and the constraint that the
lengths of the dimensions be mutually prime is lifted. However there
1s still the restriction that the length of any one dimension may
itself not contain any factors having a greater common divisor greater
than one.

The above comments apply equally to other algorithms utilising
multi-dimensional mappings. It should be apparent that a whole host of
algorithms are possible, all with varying degrees of nesting. For
example, it is possible to calculate a two-dimensional DFT using a 1-D
WFTA along one dimension and a PFA along another,

The minimum number of multiplications will occuwr when a fully
nested WFTA is used. Suppose a Ni—point WFTA requires ZMi real
multiplications and ZAi additions (4.38,4.39) for complex data, then

the number of operations for a N_xN_-point two-dimensional DFT for

T2
complex data will be
2M1M2 Real Multiplicatioms (5.3a)
2[N1A2 + M2A1] Real Additions (5.3b)

Table 5.3.1 below lists the number of operations for some NxN-point

DFTs calculated by nesting 1-D WFTAs.

94

DFT Real . Real Mults., i Additions :
Size Multiplications; Additions per point per point
12%12 288 2304 | 2,00 16.00 |
20x20 1152 9504 2.88 23,76
30%30 2592 25341 2.88 28." %
60x60 10368 117216 2.88 32.56 |
120x120 41472 548064 2.88 38,06 ;
2140x2140 209952 2829024 3.65 49,12 g
50Lx504 1254528 18988992 4,94 74.76 |
1008x1008 6351048 97426800 6.25 95,88

Table 5.3.1
Operation counts for complex DFTs evaluated by Nested WFTAs

Again it should be noted that if the 1-D WFTAs have & and C matrices

contalining only +1, -1 and 0 then so will these 2-D DFTs.

5.3.2 Nested 2-D DFTs

Nussbaumer and Quandalle [5.9,5.10] introduced a way of
computing multi-dimensional DFTs using polynomlal transforms. These
algorithms have the form of (1.20). Judging from their structure many
of these algorithms will have 4 and C matrices containing only +1, -1
and 0. Table 5.3.2a, taken from Nussbaumer [5.1,p192], lists the
operation counts for real data for some of these polynomial transform

based algorithms and the corresponding nested 2-D WFTAs,

95

| DFT Poly.Trans., Poly.Trans. 7 Nested WFTA ; Nested WFTAi
Size Mults, Additions Mults, Additions !
2x2 y 8 4 s |
3x3 ? 9 36 9 35 %
sl 16 64 16 6U
5%5 31 221 36 187
7x7 65 635 81 576
8x8 64 408 64 b16
9x9 105 785 121 900
16x16 304 2264 324 2516

Table 5.3.2a
Operations for 2-D DFTs evaluated using polynomial transforms

As these polynomial transform based algorithms are of the general form

of (1.20) they may be nested together in a similar manner ot the WFTA.

If a NixNi-point DFT requires Mi multiplications and Ai addition for

real data then the number operation required for a nested algorithm for

complex data is

L
N= l] Ni NxN-point DFT
1=1
L
21T M, Real Multiplieations (5.4a)
1=1
N® L N? i-1 M)
2“_ \)A,] e 2 (=)AJT_I (_k),l] Real Additions (5.4b)
Lw i=2 N} T {kei NI Jl"J

Table 5.3.2b gives the number of operations used for the same DFTs as

table 5.3.1

algorithms.

96

but using the polynomial transform based 2-D DFT

DFT Real Real % Mults, | pdditions |

Size ({Multiplications| Additions | per pointi ner pointg
12x12 288] _H_H;;OQ- 2.00 16,00
20x20 992 10272 2.48 25.68
30%30 2232 26712 2,48 29.68
60x60 8928 121248 2,48 33.68
1202120 35712 553392 2.48 38,43
240x240 169632 2688912 2,95 46.68
504x504 873600 16353584 3.44 64.38
1008x1008 4149600 80267312 4.08 79.00

Table 5.3.2b
Operation counts for complex 2-D DFTs computed by polynomial
transforms and Nesting

Comparison of tables 5.3.1 and 5.3.2b shows that the polynomial
transform based 2-D DFT algorithms use an equal number or less
multiplications than the nested WFTA and less additions for DFTs
greater than 120x120-points.

Nussbaumer [5.1] discusses some techniques for reducing the
number of additions.

Having found, from the minimum number of multiplications point
of view, the optimal way of caﬁhlating a 2-D DFT, we now consider the

number of operations for 2-D cyclic convolutions evaluated using

polynomial transform based 2-D DFT algorithms.

5.3.3 2-D Cyelic Convolutions Calculated using 2-D DFTs

Proceeding in a manner analogogs to the one-dimensional case,
the DFTs of the previous sub-section are applied to the calculation of
2-D cyclic convolutions. Againm it 1is assumed that a complex
multiplication requires U real multiplications together with 2 real

additions and each complex DFT performs two real convolutions. The DFT

97

operation counts are for the 2-0 CiTs derived using polyncmial

transforms.

Convolutlion Real Real Mults. Additions

Size Multipllcations Additlona paer polnt per poilnt
12x12 576 2443 MOdgr 17,00
20x20 1792 10672 4,48 25,68
30x30 4032 27612 4. u8 30.68
60x60 16128 124848 4.u8 34,68
120x120 64512 567792 4, u8 39.43
240x240 284832 2746512 4.95 47.68
504x504 1381632 16607600 5.4 65.38
1008x1008 6181728 81283376 6c08. 80.00

Table 5.3.3
Number of operations for real cyclic 2-D convolutions computed using
2-D DFT algorithms based upon polynomial transforms
(2 real convolutions per DFT, one input sequence fixed)

5.3.4 2=D Cyclic Convoldtions'Calculated'using
Nested 1-D Convolution Algorithms

Another method for the calculation of 2-D ecyeclie convolution
algorithms is the use of nested 1=D ‘short-N' convolution algorithms.
As noted at the beginning of the section on 2-D DFTs a NxN-point
convolution may be calculated provided that the factors of N are
mutually prime, Remember that for convolutions no intermediate form
similar to the PFA exists, the algorithm must be the fully nested form.

If a N,-point 1-D cyelic convolution algorithm requires Mi

i
mul tipliecations and Ai additions then 2a N1xN2—poin£ eyelie convolution
algorithm for real data will require
MM, Multiplications (5.5a)

Nihy + Mohy Additions., (5.5b)
A lower number of additions may be obtained by treating a N1N2XN1N2—

polint convolution as a (N1xN1)x(N2xN2)=pOints rather than

98

(NTXNZ)X(NTXNz)apointSlwhenever
N1A2 + MZA1 > A2M1 + A1N2
Table 5.3.4 glves the number of operations for a variety of
convolution sizes using (5.5a,b). Tt uses the figures taken from table
5.2.1, no attempt was made to minimise the nuhber of additions.
Consideration of the 1-D case for nested *'short=N°
convolutions shows that in the 2-D case this method will only be

better than the 2-D DFT solutions for N?290. This borne out by the

values in table 5.3.4.

Convolution Real ‘Real Mults. Additions
Size Multiplications | Additions per point per point
12x12 400 3200 2,78 22,22
20x20 2500 ' 16100 6.25 40.25
30x30 6400 15980 T.11 51.09
60x60 40000 291200 11,11 80.89
120x120 313600 2105280 21,78 146.20
240x240 2689600 15987520 46.69 277.56
50U4x504 34245904 220413368 134.82 867.71

Table 5.3.U4
Operation Count for real 2-D cyclic convolutions computed using Nested
1-D 'short-N' convolution algorithms

5.3.5 2-D Cyclic Convolutions Based Upon Poélynomial Transforms

We now turn to the application of the 2-D cyelic convolution
algorithms derived 1In chapter 3 to various 2-D convolutions. Although,
as shown in chapter 3, it is possible to derive qulte long algorithms,
in particular 2" x2" points, 1t can be quite difficult and involved.
The range of possible convolution lengths may be increased by the use
of nesting. In this method a convolution of sigze N1N2xN1N2

gcd(N1,N2)=19 is converted into the four-dimensional convolution

99

(N1XN1):((N?XN?)° IT M, and Al are the numbars of multiplications and

1

additions for a 2—D convolution of sigze NixNﬂy then the number of

operations to evaluate the 2-D convolution of size N1N2xN1N2 is

M1M2 (5.6a)
2
N2A1 + M1A2

Table 5.3.5 1ists the number of operations for the same convolution

Multiplications

Additions (5.6b)
lengths as before. The number of operations for the various small 2-D

convolution algorithms are taken from table 3.2 (chapter 3). Note that

with the number of multiplications used here the 4 and C matrices

contain only +1,-1 and 0.

The optimal factor order, for the minimum

number of additions, is glven with the imnermost factor last.

Convolution Optimal Real Real Mults, Additions

Size Factor Order Mults, Additions | per point | per point
12x12 4,3 286 2638 1.99 18.32
20x20 4,5 1210 11168 3.03 27.92
30x30 2,3,5 2860 29788 3.18 33.10
60x60 4,3,5 15730 171484 4,37 47.63
120x120 3,5,8 92950 955258 6.45 66,34
240x240 3,16,5 453310 5040848 7.87 87.51
504x504 7,9,8 3035890 | 34245950 11,95 134,82
1008x1008 7,16,9 14805802 |176924690 18.57 174.13

Table 5.3.5
2-D Cyclic convolutions computed by nested polynomial transform

algorithms

100

5.3.6 Comparison of 2-D Cyclic Couvoluilon Computcilion Mz“heds

In terms of numbers of multiplications comparison of tables
5.3.3, 5.3.4 and 5.3.5 shows that nested %-D convolution algorithms do
not form a good way of computing 2-D eyclic convolutions. The choice
lies between the other two methods, For 2-D cyelic convolutions up to
about 60x60 points the nested polynomial transform algorithms offer the
least number of multiplications, For 2-D cyclic convolutions of larger
sizes the best approach is to use the 2-D DFT algoritims based upon
bolynomial transforms. The DFT approach usually offers the leaét number

of' additions per point,

5.3.7 Optimum Block Size for 2-D Convolutions

What 1s the "best’ way of calculating the convolution of a
small window with a large picture? Again we take the word best to
mean the minimum number of multiplications. However this may not be
the overriding criterion for algorithm selection. For example, some
solutions, particularly those involving large DFTs, demand knowledge of
the entire plcture before the computation can begin. The amount of
storage fequired may be prohibitive. In other situations it may be
appropiate to store as few lines of the pilcture as possible and start
the convolution immediately. Clearly the ‘best’ solution 1is
application depend%’lt°

Despite these considerations we now consider the optimum block
size into which a picture should be broken so as to give the minimum
number of multiplications per point for a two-dimensional eyelie
convolution.

If M1(N3) is the number of multiplications per output point
for a eyclic convolution of size NxN and Mz(NagNi) is the number of

multiplications per output point for the N1xN1upoint aperiodic

convolution, ME(N29N%) is given Dby

MZ(NE,Ni) = M1(N2)N2/(N—N1+1)2 (5.7a)
similarly for the number of additions

A2(N2,N§) = A,‘(Nz)NZ/(N—Nﬂ[H)2 (5.7b)
Table 5n&7_gives the optimum block size corresponding to the minimum
number of multiplications per point for windows of sizes 3x3 to 15x15
points. This range of window sizes was chosen as being most suitable
for image processing applications. All possible 2-D DFT and

convolution algorithms were compared.

Window Optimum Algorithm Mults, | Additions
Size Block Size Type per point per point
3%3 12x12 2-D Conv 2.86 12,00
Lxl 18x18 2-D Conv 3.43 21,75
5x5 18x18 2-D Conv 3.94 19.88
6x6 36x%36 2-D Conv b, u2 44 .75
7x7 48xu8 2-D Conv 4.67 32.33
8x8 | u8x48 | 2-D Conv 4,90 72.75
9x9 168x168 2-D DFT 5.13 13.50
10x10 168x168 2-D DFT 5.19 17.63
11x11 168x168 2<D DFT 5.26 24.00
12x12 168x168 2-D DFT 5.33 34,56
13x13 168x168 2-D DFT 5.40 54.00
MWx1y 840x8L0 2-D DFT 5.46 96.00
15x15 840x840 2-D DFT 5.47 | 216,00

Table 5.3.7
Optimum Block sige for 2-D Aperiodic convolutions calculated using
either 2-D polynomial transform based convolutions or DFTs,
It 1s dinteresting to consider the number of additions

performed. Notice that the convolution algorithms use many more

additions per point. For example contrast the number of additions per

102

point for the Bx8 and 9x9 windows.

5.4 Summary of Chapter 5

This chapter has compared the number of operations for a
va}iety of functions using algorithms derived in the earlier chapters.
The conclusions reached about the relative computational merits of
these algorithms were as follows.

For the one-dimensional DFT the Winograd Fourier Transform
algorithm (WFTA) was shown to use the smallest number of
multiplications per point when compared with the Prime Factor Algorithm
(PFA) and the Fast Fourier Transform (FFT). The number of additions
may be decreased at the expense of more multiplications by the use of
the PFA., The WFTA has the form of (1.20) with A and C matrices
containing only +1, -1 and 0.

Two methods were compared for the calculation of one-
dimensional cyclic convolutions, Firstly °‘short-N' convolution
algorithms were nested together, secondly the WFTA wés used, taking
advantage of the Cyelic Convolution Property (CCP). For up to about
90-point cyelic convolutions the nested "short-i' convolution
algorithms use less multiplications than the WFTA technique, This
comparison assumes that one Qf the input sequences is fixed and that
two real convolutions are computed per complex DFT. All the nested
one-dimensional convolution algorithms have the form of (1.20). For
éhe minimum number of multiplications convolution lengths containing
factors 7, 9 and 16 will not have A and C matrices containing only +1,
-1 and 0. Whilst it has proved possible to construct suitable
algorithms with A and C matrices containingonly +1, -1 and 0 for the
9- and 16-point convolutions the number of multiplications used is not
the minimum. It has not proved possible to derive a sultable 7-point

convolution algorithm,

103

Turning to two-dimensional functlons, two ways of compubting
two-dimensional DFTs were compared., The two-dimensional DFT
algorithms derived by Nussbaumer and Quandalle using polynomial
transforms were shown to be superior to the nested one-dimensional
WFTA. These two-dimensional DFTs have the gemeral form of (1.20) and
it appears that many of them will have A and C maktrices cortaining
only +1, -1 and 0,

Three methods were compared for the computation of two-
dimensional c¢yclic convolutions. They were, computation using two-
dimensional DFTs, calculation based upon nested one-dimensional
convolution algorithms and finally the use of the two-dimensional
convolutions derived using polynomial transforms (see chapter 3). The
nested one-dimensional convolutions may be quickly discarded as not
offering a good solution. For cyclic convolutions up to 60x60 points
in size the polynomial transform based convolution algorithms offer
the best choice in terms of numbers of multiplications used per point.
For cyelic convolutions greater than this size the use of 2-D DFT
algorithms requires less nmultiplications per point., As noted in
chapter 3 these 2-D convolutipn algorithms are of the general form
(1.20) and many have A and C matrices containing only +1, -1 and 0.

_Finally the optimum block size for the aperiodic convolution
of a small window, up to 15x15-points, with a large pilicture was
considered. For windows up to and including 8x8-points two-
dimensional polynomial transform based convolution algorithms should
be used. Above this size use two-dimensional DFT algorithms.

Throughout this chapter many of the optimal algorithms have
had the form of (1.20) with A and C matrices containing only +1, -1
and 0. This chapter concludes the first, and more theoretiecal, part

of the thesis, The next chapter forms the start of the second part

104

and deals with the implementation of algorithms of the gencral form of

(1.20) which have A and C matrices contalning only 1, -1 and 0.

105

Inmpiementing the WFTA using cne-bit Systollic Arrays

In the field of digital signal processing there i1s a constant
demand for higher and higher performance Implementations of functions
such as convolution and the Fourier Transform, New implementations
must not only have increased performance but also consume less power
and cost less! The advent of Very Large Scale Integration (VLSI)
allows some of these goals to be achieved.

In high speed digital signal processing performance is gauged
by the attainable throughput rather than the total time required for a
funetion. By the use of pipelining techniques processing may proceed
concurrently with input and output so that the throughput rate will be
limited by the delay of the stages of the pipeline; The delay
associated with the stages of the pipeline may be reduced by parallel
pﬁocessing in each stage of the pipeline,

The systolie arrays proposed by Kung and Leiseron {6.9] are an
excellent example of such a pipelined; parallel system. In general a
systolic array may be thought of as a one- or two-dimensional array of
identical processing elements arranged in a regular fashion. Each
module in the array is connected only to 1t's nearest neighbours, In
the original arrays propesed by Kung and Lei%seron each cell operated
at the Qord level and the relevant circuits tend to consist of
multiplier accumulateor processors. However McCanny and McWhirter [6.1]
have proposed a systolic array.pipelined at the bit level suitable for
matrix vector multiplication and a pipelined systolic multiplier,
These arrays have a throughput rate limited only by the time to perform

a one-bit full addition,

106

This chapter proposes a way of implementing algorithms, of the
general form of (1,26) which have 4 and C matrices containing only I
and 0 based upon these one-bit systolic arrays.. The general form of
this calculation may be described as follows,
1. The 1lnput sequence v is multiplied by the MxN A matrix which

contains only 1 and 0.

2. The M values resulting from the product Ay are multiplied
point-by-point by the M coefficients of the przcalculated Bh.
This only involves general complex multiplications for complex

cyelie convolutions,

3. Finally the M values from the point-by-point multiplication
are multiplied by the NxM C matrix, which again only contains

I1 and 0, giving the N values of the output sequence y.

6.1 Proposed Architecture

The architecture proposed to implement these algorithms is
based upon the three stages of the calculation outlined abtove., In this
calculation there are two separate problems, firstly the matrix
multiplication by the A and C matrices, secondly the multiplication by
the fixed coefficients in stage two above. The circuits that are
proposed here pipeline these calculations at the bit level to ensure

maximum throughput and parallelism.

6.1.1 A and C Matrix Implementation

MeCanny and MeWhirter [6.1] describe a pipelined bit-slice
transform array which will perform matrix vector products of the form
Tx=y where T 18 a NxN matrix with one-bit coefficients. Ward and
Stanier [6.4] have proposed a way of extending the basic cell given by

MeCanny and McWhirter to perform two's complement arithmetic with two-

107

bit coefficients., The values %1 and 0 require two bits to represent
them and are shown as the inputs U and V to the extended basic cell
which is illustrated in figure 6.1.7. The extended cell is a one-bit
full adder with extra logic which complements the input bit, x(j)y to
the adder if the coefficient is =1, leaves the input bit unaltered if
the coefficient is +1 or makes the input bit 0 if the ccefficient is 0.

Figure 6.1.1 11lustrates an array of these cells to perform
the matrix product Wx=y with ¥ being a 5 (rows) x 4 (columns) matrix.
This diagram is drawn using the convention adopted by McCanny and
MceWhirter with heavy dots representing latches and open cireles
representing the basie processing elements., The overall operation of

the array is as follows: Data words, x,, are input to the array from

i
the left on every alternate cycle with sucessive bits staggered by one
cycle., The input words move one cell to the right on every clock
eycle, The input words are %@ sign extended to the maximum range of
the answer, i.,e. the number o; rows in the array, upon entry into the
array.

Bits representing the elements in the matrix W are organised
so that they move down the array in a vertical direction., Whenever a
coefficient of value -1 enters the array, 1 is added to the least
significant bit of the input word via the ‘carry-in' of the appropriate
cell in the top row of the array and that input word X is complemented
bit by bit as it moves through the array.

The output words, ¥yo are initialised to zero on. entering the
array and move from right to left. Their bits are staggered by one row

per bit, as are the input words x This means that the kth bit of a

(k)

word, Yy meets all the terms required to form the sum

io

108

-~

/¥, W33 W12 Ws; W UV

+1 110
-1 101

Wiy, Wo3 W3, Wi 0100

Wi3 Wy W34 Re=XU JLV_ .
Yi—RCY~RCYRCY-RCY
¥iq Woq Ce—RC-RY. Y

bt U L b ¥ 1) h

OOV) . " 'Y 1 »i ‘ o'.

I R AR CR A R

\ L2 L L) IL)
AR RRERE
S) wcen () menen () o gy wn) W () S () wenizow ()
e = g=ce=—e="q

:
S = =)
RN

7 | v,‘

()
!

e
!
(o
I

Fig 611 A &C Matrix Arrays

n
yilf) - j; Wij"ék) (6.1)

the product W..qu)
iJJ

being formed by the ‘extra’ logic in the cell which
complements, leaves unaltered or gzeroes the input to the one-bit full

adder. Any carry bits which are generated in the course of this

summation are latched vertically dowanwards as shown. The ‘carry save'.
o

principle is used - this is the reason for the stagger on the bits of
the words Xy and Vye Having traversed the array the matrix vector
product is complete with the output words emerging every alternate
clock cycle, still in skewed form.

McCanny and McWhirter [6.3] have recently proposed several
improvements to their original array. Firstly they note fhat as words
enter and leave the array on alternate clock cyeles only half the
cells, on average, in the array are in use at any moment. This may
easily be seen by reference to fiéure 6.1.2 which illustrates the first
four cycies of interaction in these arrays. The layout of latches and
cells has been omitted for clarity. McCanny and McWhirter propose that
pairs of adjacent cells are coalesced into one‘with some extra data
paths to preserve the regular flow within the array. This halving of

the number of processors 1s considered in more detail in chapter 8.

Here we propose that two sets of data could be interleaved in the

unmodified array with two separate transforms being computed simul-

taneously.,

109

S

/

(1)

X3
2
X3
3
X3
M
X2
(i1)
1
X
2
X3
3
X3
y
X2

14 23 32 b
M3 EPY M3
mbé%ﬁ— w21
iy Y] y!
X‘i ‘X:ﬁ' v 2 3
2 §|1‘1La
2 2
X2 X2 Y‘I YZ
2 1
3 3
3 3 2
1
b Y
1
First cycle of interaction
in matrix multiplication array
24 W33 Pyo W1
w14 WZB w32 WMT
13 W22 w31
T T 1 b
. L1) 1X1§2 I3
3 27 12) 121
T gl 2 2
Y Y Y
2 ? 2 3
X2_ X?w11
' 3 3
2 1
y 4
4 Y 2
X1

Second cycle of interaction
in matrix multiplication array

Flmwre 6.1.2

w N

<
i g §

w w

w =

(111)

w &=

(iv)

-

4=

34 u3 52
J J
Wy Moy Wy s,
Yy ¥og Vs Yy
v Tyl I Py v
x ! Fx w2 13 :
313 Ao o0 IREREY
> 2 >
y v ¥
2 21 2io 3
X3 XN ¥y
3 3 3
3 A 3 3
2 1711
m I
o o t s
2 1
; Third cyecle of interaction
in matrix multiplication array
Wy W53
W3y Wyg oo
Moy LEE o o
1Y-1: he 153 1Y11;
Xy XMog XM XMy
E) 2 2 2
G Y y ¥
2.1 12,2 2.-3 Y
x§w13 X305, X¥31]
, Y? : .Yg Yg
3 X
X3 X2 X%wm
" n y y
¥
2 e i, s
> 111

Fourth cycle of interaction
in matrix multiplication array

Flgwre 6.7.2 Coatinuad

w =

-—

—

Jt o

dne application requiring two simultaneous matrizx
multiplications occurs in the calculation of DFTs with complex data
when using the algorithms of the form of (1.20). This would require
the input sequence to be entered into the array with the real word
followed by the imaginary;ioeogivingzasequence of real, imaginary,
real, imaginary,... »

The second improvement to the array is to notice that the
output words do not have to be initialised to zero as they enter the
array from the righthand side, These words may be initialised to any
value which is to be included in the final result of the matrix
multiplication. If the output of the array is truncated a form of
rounding may be introduced by initialising the output words to the
average value of the discarded bits.

It is of interest to note that an array of these cells is
capable of performing a Walsh transform with no other hardware,

To summarise this subsection, the A and C matrix
multiplications can be performed by an array of modified one-bit adder
cells connected together orthogonally. The interconnection pattern and
logic for these cells is illustrated in figure 6.1.1. The exact size

and partitioning of these arrays is discussed in section 6.2 below.

6.1.2 Pipelined Systolic Multipliers

McCanny and MceWhirter [6:1,6.2] describe a two's éomplement
pipelined systolic multiplier based upon an array of one-bit full adder
cells and hit staggered inputs, This multi
illustrated in figure 6.1.3. The two input words to this multiplier
are staggered in different manners. One input word, aescribed as bi(n)

in figure 6.1.3 is staggered least significant bit first, whereas the

other Input word, ai(n)g is staggered most significant bit first.

112

s=serec

C= rs’+rcesf

Fig 6.1.3 McCanny and McWhirter's

Pipelined Multiplier Architfecture

Furthermore thils architecture, which is completely regular, 1s capable
of accepting words every clock cycle. In order to achieve the two's
complement operation theicells along the lefthand upper boundary have
their °d’ input set to *1'. All other cells in the array have a 'd’
input of *0'. Note that the value of a3(n) is fed to the carry input
of the top cell, all other carry inputs are initialised to zero.

Figure 6.1.3 illustrates a U4xY bit multiplier using an 8xli
array of cells., Notice that in this diagram the three most lefthand
columns of cells do not contribute to the final result, their function
is.to delay the sign‘extended bits to the correct significance., This
triangle of cells could be replaced by latches. The total number of
cells in this truncated array for an NxN bit multiplication would be
IN(3N+1).

Another possible pipelined parallel two's complement
multiplier architecture is given by Myers [6.8]. This is illustrated
for a 4xl bit example in figure 6.7.4 which is a corrected version of
fig 4.1.2.1 in [6.8]. The total number of cells for a NxN bit
multiplication using this architecture is N(N+1). Note that the cells
along the bottom row have a slightly different logic function to the
other cells with A and B being NANDed instead of ANDed together. The
‘carry-in' of the bottom row 6f cells is set to '"1' rather than the *C°
of the other rows of cells.

Both architectures have the same‘potential throughput rate
limited by the time taken for a one-bit full addition,

Many of these features may be used to advantage. Notice that
the stagger on the output words of the transform arrays is exactly the
same as the b,(n) input word stagger for MecCanny and MeWirter's

multiplier. Thus their multiplier and the A matrix array may be

113

Basic Cetl

Logic
3out~ 3in
bout=bin

(ab)c #(ab) +C._S

Sout” in -in~in

Sout (ab)@Js neCin

Boffom Row Only

Cut =(at)c. +(ab)s'+cmsm

St =(eblxs;xc,

Fig 6.1.4 Myers’ Pipelined

Multiplier Architecture

104

D <

LA

64

H___

J

84

104

connected directly together., The stagger on the outpqt from thelr
multiplier is the same stagger required by the input words for the
transform arrays. This implies that their multiplier and the C matrix
transform array may be comnected without any need to alter the stagger
of the bits. These least significant bit first staggers may easily be
accomodated in Myers' multiplier by the omission of some of the latches
in figure 6.1.4,

As the multipliers are capable of operating every clock cycle
it is able to multliply the interleaved real and imaginary words from
the A matrix array by a purely real or purely imaginary coefficient,
such as found in the WFTA. In order that a system employing two matrix
multiplication arrays and one multiplier maybe connected directly
together a technique for reordering the real and imaginary words is
néeded whenever the complex word has been multiplied by an imaginary
coefficient, This reordering should occur either between the
multiplier and the C array or between the A array and the multiplier.
A method of achieving this reordering is discussed in section 6.2.3
below, When dealing with 'real’ only functions, for example
convolutions, there is no need to have this word swap procedure,

A very slight simplification to the multipliers is possible by
forcing the coefficlients, ai(n) in figure 6.1.3, to be positive. This
may be achleved by either altering the signs of a row of the A matrix
or the signs of a column of the C matrix., The net effeet of this is to
require a multiplier capable of multiplying positive by negative or

positive numbers rather than a general two's complement multiplier,

114

The overriding limitation of any implementation based upon
these one-bit full adders is the number of cells in the arrays. The
silicon area occupled by these arrays is large. Whilst it is possible
to split the arrays, problems are immediately encountered with pinout
limitations. These problems are discussd in more detail below, firstly

for the & and C arrays and then for the multiplier,

6.2.1 The A and C Matrix Arrays

This section and it's associated subsections consider the
dimensions of the arrays for the A and C matrices in terms of numbers
of cells and in area. The problems of pinout and coefficient storage

are then discussed,

6.2.1.1 Matrix Multiplication Array Sizes

For a matrix, containing only +1, -1 and 0, of dimensions N (rows)
x M (columns) a total of N+M-1 columns of cells in the array are
required. Thus the A and C arrays require the same number of columns,
The number of rows in the arrays is governed by the maximum word length
of the accumulated sums. In the worst case the addition of N two's
complement numbers, each of which may have been multiplied by -1, gives
a word length growth of Log2N+1 bits., The reason for the additional
bit is as follows. A b-bit two's complement number represents a number

in the range

when multiplied by -1 a number in the above range falls into the range
22271 to 227,
Notice that the upper limit of this new range is outside the limit for

representation as a b-bit two's complement number.

115

Starting with b-bit inpuls the size of the arrays for the A

and C arrays should be:

| A matrix (b+Log2N+1) x (N+M=1) cells (6.2)
B matrix (b+Log2M+1) x (N+M-1) cells (6.3)
Tablé 6.1.1 below lists the number of multiplications and

the number of columns for various DFT lengths, based upon the WFTA.

The number of rows 1s the maximum word length in the C array, based upm

16-bit input data. The longer transform lengths are constructed by the

nesting techniques of chapter U,

Transform Number of Number of Number of
Length Multiplications. Columns Rows
2 2 '3 - 18
3 3 5 19
y y 7 20
5 6 10 ' 20
8 8 15 20
9 11 19 21
11 21 31 22
13 21 : 33 22
15 18 32 22
16 18 33 22
30 36 65 23
60 72 131 2u
120 14 : 263, 25
240 324 ’ 563 26
504 792 ' 1295 27
1008 1792 2798 28

Table 6.1.1
Numbers of Rows and Columns of Cells for WFTAs with 16-bit data
Table 6.1.1 shows that the number of columns in the arrays
quickly grows., For transforms lengths in the region 100 to 1000 the
number of columns is approximately 2.5N,
The number of columns in the arrays may be reduced slightly,
Look at figure 6.1.1. If value of the coefficient W1u is 0 then the
lefthand most column of the array never contributes anything to the
calculation. In a similar fashion if all the coefficients in a

particular column are gzero then that column may be omitted from the

116

array.

By rearranging the rows of the A matrix and the columns of
the C matrix the maximum number of zeroes may be forced into the
corners of the array. For the larger length transforms the possible
savings are small. If it is acceptable to have the input and output
data sequences in a non-natural order then the possibilities for saving
columns from the arrays are much larger.

Clearly, in any implementation the size of the basic cell
is of great importance. The following is a rough guide to the cell

size.

6.2.1.2 Basic Cell Area

A suitable cell for the & and C arrays was designed in 5p
NMOS. The dimensions of this cell were 300um x 220um (width x height).
Whilst this deéign was fairly well compacted the design was not as
small as it might have been. Furthermore, because of other design
considerations, it was not desirable to have a cell narrower 1n width
at the expense of increased height. Thus using 3um design rules it
might not be unreasonable to expect a basic cell size of 150pm x ‘i60um°
Patel et al.[6.6] and McCabe et al.[6.7] show a design in 3.5um CMOS-
on-Saphire for a correlator cell‘which measures 260pm X 240pm. This
correlator cell is similar to the cell needed for these arrays., How-
ever their design does not appear ‘to be particularly compact with ail
the latches being of a standard design, Further decreases Iin cell area
may be possible by the use of two layer poly-silicon or metal
processes, In particular two layers of metal would reduce the area

occupied by the clock and power connections to each cell.

117

6.2.1.3 Matrix Arrday Chip Size and Pinout

Now consider the number of cells that it would desirable to
integrate onto a single chip. If a flexible component iIs desired one
chip should be able to cope with the A and C matrices for small
transforms, say up to i16-points. The same component should zlso serve
as the basis for the/much larger arrays of longer transform lengths.
The short transform length condition requires at least 33 columns of
processors and the long transform word length dictates about 27 rows.
The 27 rows would allow accumulations of up to 2048 values starting
from 16-bit data. An array of 33 x 27 cells would occupy 4.95mm x
4.32mm, using the cell size projected above.

Whilst such an array is possible just on the grounds of
silicon area, the pin-out of such a chip must be considéred carefully.
In ordeér that the chip may be used to bulld up longer arrays each row
requires 4 pins, 2 for input and 2 for output. Each of the columns
needs 1 pin to input it‘’s coefficients. Thils is achieved by noting
that as each two-bilt coefficient is used for two succesive cyecles it
may be input via one pin during two cycles. This gives a pin count of
141 for the 33 x U array, excluding power supplies, clocks, ete. Such
a pin count is high, but not impracticable.

In the case where the chips are being used to create loﬁg
arrays, the 27 rows might be connected directly chip-to-chip if the
:lti-chip array Was'mountéd on a substrate., If the chip were
being used only for small transforms the right hand edge of the array
would not need to be bonded onto external pins, with the inputs being
directly -bonded to ground. This would reduce the need for large multi-

pin packages and chip carriers.

118

6.2.1.4 A ancé C Matrix Storage and Entry

As noted above each obf? ‘the of the array columns requires two
pins, or one pin used for two cycles, for the input of it's
coefficients, The use of off chip storage for the A and C matrices
gives the greatest flexibility at the expense of‘ extramely wide ROM,
Any ROM supplying the coefficients would need to be (N+M-1) bits wide.
Despite the great width of this ROM, design would be comparatively
simple as the addressing could be performed by a single input pin
driving a counter,

The alternative would be to provide the ROM storage on the
same chips as the array cells, Reference to figure 60101 shows that
the mvaximum number of values that could be entered down a column of
cells is (N+M-1). For other than comparatively shoft transform lengths
the amount of on-chip ROM becomes large. As an example consider the
amount of on-chip ROM required for the 33 x 27 array proposed above to
be ca‘pabl’e of being used to build up a 1008-point transform. The total
on chip storage would need to be 33 x 2 x (1008 + 1792 - 1) = 184,734
bits. It is certainly possibie to store all these values on a single
chip, However it s.eems doubtful that a sufficiently large and fast ROM
together with the array of processor cells could be integ'rv_a\ted on a
single chip using current technology. On-chip storage of coefficients

may be feasible for more moderate transform lengths,

It is important to notice that when no coefficient value is
belng entered into the array the coefficient inputs should represent 0.
That means that the leftmost and rigthmost columns of cells in figure
6.1.1 will only receive a non-zero input-on one cycle per transform.
This condition ensures that sucessive transforms do not interfere (see

section 6.3 for a note on delays between transforms).

119

6.2.1.5 Summary of A and € Metrix Tmplenentation

) The way the matrix multiplication arrays are implemented
depends upon the type of solution that iIs being aimed at. If the goal
is flexibility the best course would bs integrate as many cells as
possible onto one chip, providing a long word length with no on=chip
coefficient storage. If, however, the goal is a minimum chip count,
then the policy should be to provide only the minimum acceptable word
length and store all the A and C matrix coefficients on-chip. For some
image processing problems this may be the best course., The provision
of 33 columns of cells would provide an excellent basis for a system to
implement a 15-point Discrete Cosine Transform using the algorithm
given by Ward and Stanier [6.5), see chapter 8.

Iﬁ'terms of ease of dévelopmént, the flexible approach has
much to recommend 1t. For example cammercially available ROM, or PROM,

could be used initially rather than custom .designed wide ROMs. (This

does put the chip count up rather spectacularly!)

6.2.2 A Pipelined Systolic Multiplier

The mnltiplier architecture proposed by Myers [6.8] requires
an array of b x (b+1) cells to implement the multiplication of two b-
bit words. Fof the relevant case of 16-bit data, this 1is 16 x 17

¥

cells° The basic cell is a one-bit full adder with some extra latcheso

oy
The cell 1s very similar that used in the matrix multiplication arrays.

7 4
It should be possible to integrate all of this multipier onto a single
chip. However both pipelined multiplier architectures may be cascaded
to build up word length if needed. However the pinout requirement

quickly grows,

120

Storage 1s needed to hold the M coefficients fgw the
| multiplier, The possibilities fall into two categories, On- or off-
chip storage. Off-chip storage requires the multiplier to have LN pins
(64) for data input and output - excluding clocks ete, assuhing
untruncated output, for 16-bit data. On-chip coefficient storage
reduces the chip count but decreaées flexibility; the amount of room
left on the chip after design of the multiplication array will limit
the size of the ROM and hence the maximum transform length, Any on-
chip ROM should-bé as large as possiblc::° Perhaps the most convenient
solution would be to have a separate custom designed ROM addressed by a
counter that was directly bonded to the multiplier within the same
package.

The amount of ROM required by the multiplier is Mx(b+17) bits,
The extra bit is to flag real/imaginary for each coeffiecient.. This

requirés 5,508 bits for a 2U40-point WFTA with 16 bit coefficients,

6.2.3 Data Skew and Word Order Swapping

Before entry into the A matrix multiplication array and after
leaving the C arbay the data needs to be skewed and deskewed
respectively, The same design may be used to achieve both functions.,
It may be done by a triangular array of latches. Such an array would
need b pins input and b pins output. To aid the development of the
system and to allow for future word length growth it may be convenient
to have an array of latches whose width is at least the word length of
the matrik multiplication arrays.

As mentioned above, if the technique of interleaving real and
imaginary words is used in a DFT, some method of interchanging the real
and imaginary words 1s needed, either immediately before or after the
multiplier. This interchange should cccur each time the coefficient is

imaginary. Figure 6.2.3 outlines a structure capable of doing this,

121

“SWAPPED”

“"UNSWAPPED"

Figure 6.2.3

Word Swap Structure

Many other possibilities for doing this task exist and may be better.
In order to keep the number of separate chip designs down it might be
convenient to integrate this ‘word-swapper’ on the same design as the

data skew array.

6.3 The Overall System

A possible layout of the complete system is showfin figure
6.3. The data, in natural order, 1s input sequentially, with real and
imaginary words 1interleaved, into the ‘data skew' module followed by a
gap of (M-N) zeroes, These (M-N) blank values have two functions.,
Firstly, as the A and C matrices are rectangular, time has to be
allowed for the last accumulated sum using the last ooefficient,WMN, to
move from the Mth column of the array past the Nth column wheré the
first coefficient, W115 enters for the first sum of the succeeding
transform. This prevents the sums of two consecutive transforms from
clashing. Secondly, whilst the multiplier has to pefform 2M
multiplications and is working cdntinuously, only 2N words are entered
into the system. Then, as the3entire system will be clooked together,
M-N blank values should be inbut t§ avoid swamping the:multiplier.

After skewing, the data enters the & matrix array. The output
from this array is fed direcfly into the multiplier, having been
truncated back to the word lengthﬂdf the‘m,ultiplier° Suppose the input
word length and the word length of the multiplier were both b-bits.
Now suppose A matrix array 1s D bits wide, D>b+Log2N+1, i.e, ﬁhis array
has a word length greater than the minimum. Then the D—b—LogzN-1_most
significant bits should be discarded - they should all be the same, and
the LogZN least significant bits shouldvbe discarded to truncate the

word length down to that of the multiplier. There are now M values in

the sequence.

122

Figure 6.3
Overall System

Deskew

NxM

C Matrix

If an array 1s buillt up from standard parts and has a number
of columnsvgreater than N+M-1 ther the extra columns should be located
at the righthand erd of the array and the coefficient inputs tied to
represent a coefficient value of 0. This will ensure that these extra
columns have no effect on the operation of the array.

The truncated data words enter the multiplier where they meet
the fixed coefficients., After leaving the multiplier real and
imaginary words of a data value should be swapped if the coefficient is
imaginary. This is shown as a separate function in figure 6.3 but
could incorporated into another component. Then the M values enter the
C array. N values leave the C array followed by M-N blank values.
Finally, the N values are deskewed by a triangular array of latches.
The transform results will be in natural order.

This architecture alloWs easy implementation of window
functions, An extra multiplier and ROM could be inserted between the
initial data skew array and the A matrlx array. No loss of performance

is entalled but the latency of the system will be increased.

6.3.1 Performance

As the basic cells of the transform arrays and the multiplier are
very similar i1t will be possible to clock the entire system ét theraée
rate. Since the basic cell 1s a derivative of a one-bit full adder the
clocking rate may be quite high, perhaps UOMHz fﬁr 3um CMOS [6.6].

£3e rog . S

P e e e e \ y
“Thi or these systems of (W/M).20MHZ.

- w o o e LVLY b D o e PR .
IrS gives 4 1 €11eCiive dava rave

6.3.2 Chip Designs

The different designs needed for this architecture are as
followss
1. Data Skew/Deskew., This is a triangular array of latches. The

'word swap' clrcultry might be incorporated into this chip.

123

2. The matrix multiplication arrays. This might include on-chip

ROM. If there is no on-chip ROM design 3 will also be needed.

3. A very wlde ROM. As many bits width as possible, addressing
performed by a counter driven by the system clock and reset at
the start of each transform,

4. A pipelined systolic multiplier of b x b bits, perhaps with
on-chip ROM if there is enough room.

As all these designs involve large arrays most of the design
effort should go towards the layout of the baslic cells. Since the
arrays are clocked together and as the data flows regularly through the
arrays very little control will be needed., The control circuitry may
be summarised as follows,
< 1. A flag to signify the start of a transform. This control bit

should propagate through the arrays with the data resetting

the counters which address the coefficient stofage ROMs,

2. Circultry to ensure that M-N blank values (complex) are

appended after each data set.

6.4 AnA Matrix Systolic Array Design

A Sum NMOS integrated circuit was designed to perform the A
matrix multiplication for a 6-point WFTA.

The size of the deslign was limited to Ymm x 4Ymm, including
frame, bonding padé and a test strip. At most 40 interconnection pins
were ava_iléble° In view of these constraints 1t was decided tb‘design
a smali A matrix multiplication array. So as to keep the external
circultry as simple as possible, all coefflcients were to be stored

'on-chip’.

124

As mentioned above the basic cell had dimensions of 300um x
200pum. This enabled an array of at most 10 processors in width to be
put onto the chip. These 10 processors are sufficient to perform the A
matrix multiplication for a 6-point WFTA. A 6-point WFTA requires 6
multiplications. As there is a zero in one corner of the matrixonly
10 columns are needed,

Having designed the coéfficient storage there was room for 8
rows of cells., This allows U4-bit input data and 4 bits of
;céumulation. However, by mistake, the chip was designed for 5 input
bits., The coefficients are stored in a ROM which is loaded in parallel
(i.e. all cells together) into a 20-bit wide shift register at the
start of each tranéf{9m° This shift register is then clocked downwards
to enter the coefficlients into the array.

There was not sufficlent room to provide skewing or deskewing
latéhes° The total chip contains approximately 500 transistors and
was estimated‘to dissipate about 0.4 Watts. There 1s a photograpgh 6f
the design inside the rear cover. Unfortuneately none of the bonded

devices did anything, This was due to a substrate biasing problem.

6.5 Summary of Chapter 6

| This chapter has proposed an implementation of ﬁany of the
algorithms from the previous chapters using systblic arrays of oné;bit
full adder cells., These systoliec arrays offer several advanﬁages°
Firstly as they are composed of arrays of identical cé&lls the design of
.these arrays should be straightfeward in comparison to other qustdm
VLSI components., Secondly since these cells are only connected to
their nearest nelgbours there are no long word lines across the chip
with their assoclated high capacitances to slow down the operation.
Thirdly as the arrays are pipelined down to the bit level the maximum

throughput rate is only limited by the time taken to perform a one-bit

125

full add.

There are two basic components in this implementgtiono:The
arrays for performing the A and C matrix multiplications and the bipe=
lined mutliplier. The A and C matrix arrays are capablé of accoﬁod—
ating complex data for WFTAs without alteration. The size of these
arrays limits the size of transfornm (of convolution) that may be
‘performed, Indeed the most useful application of this technique may be
to implement ‘small-N' WFTAs and then to use a Prime Factor Type
Algorithm to build up longer transforms. These 'small-N' transforms
might be all implemented using the same chip set with different

coefficients,

126

Chapter 7

A Cost Function for the Comparison of Algorithm Implementations

Is the implementation of DFTs and convolutions proposed in the
previous chapter any 'beﬁter“ than conventional implementations of the
FFT? Do these one-bit systolic arrays offer any architectural
advantages besides the regularity and ease of design mentioned

previously?

This question is a particular example of the problem of
comparing different ways of achleving the same signal processing
functlon. Ward, Barton, Roberts and Stanier [7.1] have developed a
cost funetion to make quantitative comparisons between digital
algorithﬁg implementations including control and overheads, This cost
function provides a tool allowing different implementations of the same
algdrithm, and also different aigorithms for the same function; to be
compared. As an example of the use of thils cost function five
implementations of the FFT and four of the WFTA, including the one-bit
systolic arrays of chapter 6, are compared.

This work was originally begun as a contribution to a joint
industry-MOD working party on high performance logie. The work on the
underlying assumptions on the number of logic gates involved and on the

5

first four FFT lmplementations was provided by Dr P. Barton of STL

[7.21.

7.1 Introduction to Cost Function

The impiications of developing complex integrated circuits for
real time digital signal processing include the need for a reappraisal
of the algorithms which are most efficient for convolution,

correlation, spectral analysis, beamforming ete. This is because the

127

previously ‘high-cost® operations of multiplieation and data storage
can now be.realised with specialised, high speed, low cost, VLST
components.,

As new algorithms and processing archnitectures evolve, simple
arithmetic comparisons between them, such as those made in chapter 5,
are no longer adequate, Hardware complexity, ease of control, physical
size and power consumption must all be considered when comparing
different realisations of a given processing function.

Consequently, it is import%ant to measure algorithm
effectiveness in a standard manner well related to the available
hardware technologies. Similarly 1t 1s appropriate for each technology
to be given a figure of merit, which, in conjunction with an algorithm
efficiency, will indicate the *cost’ of realising a gi&en processing
function. Some algorithm implementation factors of practiecal
importance are difficult to quantify, in particular the appliecability
of standard components rather thanvéUStom ICs is vital to a short term
project. The ease of reprogramming major parameters in the process is
freqﬁently important, for instance the ease of changing the length of a
discrete transform or convolution, The financial cost of the required
components does not feature strongly in the rating of most high
performance DSP designs and is expected to become in;reésingiy lesg
important as the component cost per function continues td fall,
Furthermore we have chosen to ignore devclopment costs in our proposed
model.

In section 7.2 a ‘cost’' function is derived which aims to
separate the technology dependence from the algorithm efficlency and
which is easily applicable to different types of implementation.
Sections 7.4 and 7.5 show the cost function applied to implementations

of the radix-2 FFT and Winograd Fourier Transform algorithm. These two

128

sections 1llustrate why it 1s misleading to compare only the arithmetic

complexities of digital signal processing algorithms.

7.2 The Cost Function

In order to keep algorithm propertles separate from technology
attainments we prefer to reduce each algorithm to an implied
architécture measured in terms of the highest common technology
independent factors. So that

System Cost = Network Cost x Technology Price (7.1)
with, for example, ﬂhe system cost measured in Watts, the netwofk cost
in GatesMHz and the technology price in Watts per gate per MHz. For
eurrent technologies these technology independent faectors may be chosen
as the number of logic gates, G, and the number of memory locations, B,
integrally involved in the algorithm,

Some previous measures of complexity [7.3, T7.4] only
consldered logic elements and memory cells involved in the calculation.
Here we reduce all features of a fixed algorithm, including control.
functions and address generation, to the cost‘elément§ of logic gates
énd‘memory locations.

The benefit of an implementation reduces to the available word
throughput rate, R, measured at’the iﬁput, for a specified word length.
To make this independent of téchnology it has to be normalised by the
gate speed and memory access time. Stating the ‘cost' of an
implementation as the number of logic gate operations and memory
accesses needed should be regarded as the cost of the algorithm without
regard for the architecture, whose inefficiency is measured by the
proportion of time during which gates do not potentially change state

and memory is not accessed.

129

In practice an algorithm is encapsulated within the
architecture used to‘realise it, We therefore find 1t easier to
discuss the cost function of the combined entity which we term a
network.

Network = Algorithm + Architecture

Consider a logic-only network with no memory involved. The
algorithm requfgs N gate operations per input W6rd and the architecture
is measured as G, the number of gates in the network, each of potential
speed fL Hz. So

NR « Gf‘L (7.2)

and the efficiency of the architecture is measured as

NR »
Eoroh ° E; <1 (7.3
L
More usefully, the cost of the network in GateHz per unit throughput is
Gf, _ N .
Cy = %L =% (7.4)

arch
For an implementation combining lbgic and memory the cost function is

modified to

Cy = Gfy + XpamPram * KromProm (7.5)
R
where Bg,\ ;Bpoy are the number of bits of memory used and Ko,y .Kpo., are

the relative costs, for example in Watts, of one bit of memory to one
logic gate.

Hence the overall system cost, C_, for a given throughput is

S9
given by

= CN R P (706)

CS tech,
where CS is measured in Watts or Silicon Area if Ptech is the

technology price in units of Watts per GateHz or Silicon Area per

GateHz. In (7.6) Cy is found from (7.5).

130

Whilst the cost function ia (7.5) does not propeﬁiy take into
account some real world costs, such as design, construction, testing
time and, as noted above, programmability, it does seem a fair basis
for‘eomparing implementations of specified processing funections. It
'éorrectly'takes into account, for instance, simple versus complex
control features, and the advantages of pipelined, parallel and
systolic structures designed to keep all logic gates continuqusly
actiVeo CN is not affected by cholices which achieve high throughput
rates by the use of more or faster hardware components,

As examples of the usefulness of costing in terms of CN’ we
consider the cost of several different networks for computing complex
DFTS in the rahge of 8 to about 1000 pgints° We then translate CN in
GateHz per unit throughput into power costs per unit throughput for a

current (bipolar) technology.

7.3 Assumptions about Arithmetic and Memory Functions
- The following simble assumptions were made about arithmetic
and memory functions. -

(1) An ALU, for an input word length of b-bits, has a
complexity of 16b logic gates and an dﬁeration time, utilising ‘ecarry
look—éhead', equivalent to 5 gate delays (t).

GALU = 16b ?ALU = 5t o (7.7)

(11) A typical multiplier architecture (TRW) is assumed with
b-bit inputs and a 2b-bit output which has a logic‘gaté complexity of

— 2 !

GMult = 10b%® + 30b + 80 (7.8)
The multiplication time 1s taken as

Thure = 4bt (7.9)

(1ii) The random aceess memory time TRAM is assumed to be

adequately approximated by

TRAM = [5 + Logz(Number of addresses)]tRAM (7.10)

131

where tR is the appropriate gate delay and is kept separate from that

AM
for logic, t, to ;llow for case where technology dependence affects the
relative speeds of loglc and RAM.

(iv) It 1is assumed the ROM does not affect the throughput
rate; hence its access time is not considered in the assessment. It
does, however, contribute to chip area, power ete, and is consequently
included in the cost function.

(v) Parallel-access latches are assumed té be characterised
by

G = 10b 5t (7.11)

Latch TLatch =

(vi) A 2 to 1 b-bit multiplexer 1s described by

GMux = Ub + 3 TMux = 3t (7.12)
Some futher assumptions are needed about the number of gates in
plpelined multipliers and for the one-bif systolile arrays of chapter 6.

These assumptions are given in the relevant sections below.

7.4 Implementing the FFT

Five different networks for implementing the Cooley-Tukey Fast
Fourier Transform Algorithm [7.5, T7.6] are discussed in this section in
te%ms of radix-2 butterfly elements. The first four of these
structures represent inereasing parallelism offering trade-offs between
processing speed and power dissipation and are sketched in figure
T.%. 7. Thefifth implementation uses a plpelincd butterfly bullt up

from four pipelined multipliers.

7.4.1 A Four-Cycle 'In-Place' Butterfly

This 1mplementation is aimed at low power consumption at the
expense of computation speed. Two multipliers and two ALUs are used to

perform a butterfly in four clock cycles. Only one scratch pad memory

132

a) CASE &1

NPE | V B [én D

0/P

l=>2

b) CASE &2

I >0

3 Q ,

[E=$=F

JL
< 7
Sz
<
R

c} CASE

g

d} CASE &b

B)
4
g b

e

N
12

—N
L

— [~~~

Bl il Il Fal

FIG.7.4.1 Different FFT Hardware Configurations

is employed, the output of the multiplier-accumulator comb%nation being
returned to the input memory. Since there 13 only one éemoryv time
muat be allowed to ot up the data array prior to each transform and an
equal amount of time to output data after each transform. For a
transform of lengtb N the number of complex multiplications is
(NLogz/Z)g These are all done by the same butterfly element using in-
place computations. In each FFT implementation the RAM and ROM are
accessed whilst the multiplier-accumulator combinations are busy.
The time to complete one transform is

T TRAM) + 2NT

(2Nlog2N)(TMult + ZTALU + RAM

2N(4b + 10)Log Nt + 2N(1 + Log.N)(5 + Log.N)t (7.13)
2 2 2" “RAM

4.1

The total number of loglc gates in the ecircuit is given by

= 2G + ZG + G

Mult ALU Control
20b% + 92b + 560 (7.14)

4.1

A total of L00 loglc gates has been assumed for the FFT céntrol° This
figure has been gauged from recent hardware design projects.

Finally, considering the storage requirement, 1if all the
ttwiddle facfor' values are precalculated, the trignometrical table has
to be (NLogéN)/Z words deep, with real and iméginary values each of b-
bits., The node address table, which selects the words from the sératch
pad, has as many words as complex multiplications, (NLogéN)/Z,,énd a
word length of 2Log2N bits to select the desired pair of words from the
sceratch pad. Thus

(2Nb bits (7.15)

)

Bpam’y.1 *

(Bppane) NbLog N + N(LogZN)2 bits (7.16)

ROM’Y4,1 =

133

7.4.2 A Single Cycle 'In Place’ Butterfly

Four multipliers and six ALUs are used to form one complex
butterfly element, with the same element being used for 'in-place’
computations on all passes. This single cycle butterfly element is
N passes, Two scratch pad memories are

2

utilised, fﬁnctioning alternately as input and output memories. The

used N/2 times for each of Log

output and input to the external syétem can take place simultaneously

involving only N sequential RAM accesses rather than 2N as above.

Then,
T4,2 = (NLogZN)/Z)(TMult + ZTALU + TRAM) +'NTRAM
= ((uh403((NLog2N)/2))t-+(N(&LogZN)(5+L052N)/2)tRAM
(7.17)
Cy.o = Mot * 6QALU * Coontrol
= LOb* + 216b + 720 (7.18)
'(BRAM)U,;_* = LNb (7.19)
(BROM)M,Z = NbLog,N + N(LogéN)2 (7.20)

7,4@3'Log2N¢Butterflies

One pﬁtterfly element per pass 13 employed to gilive an
improvement of LogZN tfﬁes in calculation speed over implemeﬁtation
4.2, Double buffered memcry i1s used and data 1s passed from one
butterfly to alternate input memories of the next stage. 'One memory
recelves datg from the preceeding stage whilst butterfly computations

are performed on data supplied by the other memory. Then,

Ty,3 = MTyupp + 2Ty + Tpaw)/2
= N(4b + 10)/2t + N(5 + Log,N)/2tp (7.21)
Gll.3 = (H'GMult + 66y plog N + Gogpbrot
= (40b* + 216b + 320)Log,N + 400 (7.22)
(BRAM)N,3 = UND(T + LogZN) | (7.23)
(Bpomdy,3 = NbLog,ll + N(LogoN)? (7.24)

134

7.4.4 A Totally Parallel FFT

This 1s the ultimate structure for a radix-2 algorithm with
one~butterf1y element per butterfly computation performed. The
throughput is fast at the expense of a very high power consumpution.
As each butterfly has a dedicated function no trigonometriecal or node
address tables are required.

As in section/7Jh3 a double-buffered memory scheme is needed
to make full use of the pipelined structure. Since memory access for
all the buferflies takes place simultaneously, individual parallel-
access latches have replaced RAM. Simillarly pairs of latches are

interchanged between stages of the pipeline,

Ty ou = Ture * oy * Traten
- (b 4+ 15)t (7.25)
G&,u = (HGMult'+ GGALU)‘NLOEZN)/Z + GControl + UNCT + LOg2N)GLatch
= NLog,N(20b? + 148b + 160) + 4ONb + 400 (7.26)

7.4.5 A Plpelinéd Butterfly

This section proposes using one pipelined butterfly built up
from.foqr pipeliﬁed mulﬁipliefs and six pipélined adders., This single
pipelined butterfly 1is used in a similar manﬁer to the single
conventional butterfly of section 7.4,2, The multiplier architecture
is that proposed by Myers, using b(b+1) adder cells, Suppose these
pipelined multipliers were arranééd so as to give their output skewed
least significant bit first. Then 1t would be possible to add the
products from two of these multipliers together using b clocked adder
cells, On the first cycle the least significant bits could be added
together, oﬂ the second the two least significant bits together with
the carry from the previous summation would be summed and so on for
sucessive cycles, This pipelined adder would the consist of b full

adder cells and give an output skewed least significant bit first.

135

Fig.745. A Pipelined FFT Butterfly

Further pipelined adders ecould be added immediateiy after the first
with no intervening delays. This feature is utilised in the pipelined
butterfiy illustrated - in figure 7.4.5.

The total number of gates used in this butterfly is assessed

using the following assumptions,

:

(1) Myers’ multiplier architecture for a bxb bit multif:\ication
with ieast significant bit first staggered output is characterised by

Gpipe= 18b?% + 1Ub Tpipe = 5t (7.27)
This assumes that a clocked carry save:adder cell requires 9 gates and
a delay of 2 gate delays.

(i1) Each of the pipelined adders uses b éells each cell
containing 9 gates

(ii1) The final Y4 deskewing arrays are assumed to have no
delay on the most significant bit and use ib(b-1) delays cells, each
delay cell contalining 2 gates.

(iv) The latency of the pipelined multiplier is (3b-1)
cycles, giving an overzll latency to the butterfly of (3b+1) ecyeles.
This latency means that the butterfly must be run for (3b+1) enpty
2N passes through the algorithm.

(v) Again 500 gates are allowed for control.

cycles between each of the Log

These assumpfidns give the total gate count for this pipelined
butterfiy implementation as
Gy g = TEb® +106b + 400 (7.28)
There are ﬁ sets of complex RAM and allowance 1s made to the
transform time for transfering the results to the external system, és
in implementation 4.2 above. Since each butterfly cycle requires two
input words to be read from RAM this 1limits the maximum throughput
rate. As mentioned above the bﬁtterfly plpeline must be emptied at the

end of each pass through the transform. This gives the total time

136

taken for the transform as

Tu°5 = 2o (N/2 + latency) Log,N +NTpqy
'= [2(5 + LogZN}((N/Z + 3b + 1) LogZN + (N/Z))]tRAM (7.29)
(BRAM)u°5 = 4Nb (7.30)

The pipelined butterfly could be clocked faster than this but a more
elaborate memory organisation would be needed to keep up the
\throughput rate,

The number of bits of ROM required is similar to implement-
ation 4.3 but two sets of addressing ROMs willl be needed because of the
latency of Ehe butteff‘ly° These ROMs will also have to cope with the
additional number of cycles due to the butterfly latency.

Brom) = 2L°32N(N/21+ 3b +1)(2Log,N + b) bits S (7.31)

7.5 Implementing ‘the WFTA

This section considers 4 implementations of the WFTA which
have widely'different hardware complexity and throughput rates. They
range from a simple scheme which uses two ALUs and a multiplier to the

one-bit systolic arrays of chapter 6.,

7.5.1 A Low Power WFTA

Two ALUs énd one multiplier are used with a scratchpad memory
in an implementation aimed at loQ power consumption. The two ALUs are
arranged in'paréllel to perfoh the complex additions and subtractions.
All>bhe abithmetic componenté have latched inputs and odtﬁuﬁs giving 9
b-bit latches in total., Again, allowing 400 gates for control, the
logic gate complexity 1s

G G, + 2G + G

5.1 % OMuit A * 9% aten * Scontrol
10b2 +152b + 1480 (7.32)

The scratchpad memory must accomodate all intermediate values

137

in the calculation. The intermediate values arise because M>N and the
algorithms to evalate A and C matrices require some intermedlate
additions, the greatest number being 17. The the RAM size is at most

-«) = 2(M + 17)b bits (7.33)

Bram’s. 1

Each operation involves two operands read from RAM, latched, the result
formed, latched and subsequently read back into RAM. Again time is
allowed to set up the input data array and to output the transformed
data. With 2 ALﬁé working in parallel the transform time is

T = A(3T + 3T

5.1 + 3T

RAM Lateh ¥ Tary) * BTy Lateh ¥ TMurt) * NTgpu

CZQA + 30M +324b)t + (5 + Logg(M+T79)(3A + 6M + 2N)tRAM (7.34)

ROM 1s assumed to hold all addressing and éontrol functions. Each
arithmetic operation requires three addresses, two for the operands and
one for the result. The number of ROM words is 3(A+2M). As each word
of ROM should addnéss all the RAM, both real and imaginary parts, as
well as providing U4 control bits, its width is LogZ(M+17)+5 bitso. The
four control bits are to select READ/WRITE, 1st/2nd operand,
Add/Subtract and AuU/MQ1tiplier,

'Fihgily tﬁeﬁ£§énsform cbefficié;ts needTMb bits of“stdfage,
It-is:boésiblefto‘aﬁfénée the coéffinéQts and data 50 ﬁhat the same
.address‘can be used for both, thus aveiding a separate coefficient
addressing procedure.

(

de 4 = 3(A+2M)(Log2(M+17)+5)+Mb bits (7.35)

B'ROM 5 °

Here groups of ALUs are wired together to perform the
additions for the 'small-N' & and C matrices, Figureu,é9 teproduced
from chapter 4, illustrates a 15-poin€ WFTA and gives one possible
indexing scheme. In the 15-point tranform, which is a two factor
example, U separate groups of ALUs are needed to handle complex data.

A five stage pipeline iIs used, the stages being input, pre-

138

- O

o ® ~N o oS wWwN

10
1
12
13
L

Fig. 4.2 A 15-point WFTA

5

/9(/

a//L

PERMUTATION

‘l

116 / 3 |
e
9

. S

PERMUTATION

e

;

3pt
Pre-Mulf
Matrix

Spf

Pre-Mult.

Matrix

Multiplications

5 pt
Post-Mult
Matrix

multiplication additions, the multiplication stage, post-multiplication
additions and output. Figure 7.5.2 gives a schematic layout for this
implementation,

The pipeline has 8 sets of RAM each of which has to contain M
complex values, The total RAM is

(BRAM)Buz = 16MB bits (7.36)
As each RAM reads and writes onto separate buses in two stages of the
pipeline U4 tri-state latches per RAM are needed. These latches are
controlled by the RQMS'containing the RAM addressing,

The 2M multiplies are performed by 2 multipliers, each
calculating M products. The real and imaginary parts of the product
are interchangédrby a multibleXer if the coefficient is imaginary. The
coéfficients are each stored with a 1-bit real/imaginary flag and are
addressed in a similar manner to 5.1, The delay due the the
multiplication stage of the pipeline would be

M(ZTRAM + 2 TMux) Gate delays. (7.37)

Traten * Tmuie *

The pre- and post-mu;tipiication stages can each be broken .
down into k substages, each substdge corresponding to a factor., Within
a substage groups of n, numbers (mi for the post-multiply stage) are
read from RAM and are latched at the lnputs to am ALU group. When all
n, (mi) values have been latched the results ripple through thé'ALQs
and the results are latched, These latches aﬁé eﬁabled sequentially
and the sums are read back into the other RAM of “that stage. By using
a two bus structure input ahd‘output to the ALU group can take place

simultaneously. With an even number of factors a further set of data

transfers between RAMs will be needed a the end of each substage.

139

' :§;;;33

|1X>

-

‘N{—pfc’i int

AlLUs

) Mut |

| No-point "J

ALUs

2> o

S 7

- Pre-Multiplication

<T X
1B

ALU groups

I N

z> o]

fjfifl.ﬂ

X > o

|
D
L
7

‘1§§§,‘_

X > 1|

|

Ny-point |
AlUs M7

1x > w©|

J L

Nz - pOl N f
ALUs

Xrw

| N pomi’

I ALbs

|~ N,-point

ALUs

- Fig. 7.5.2 Groups of ALUs WFTA Implementation

f’f
l’L

»
(Q/P’

All Winograd's ‘'small-N' algorithm networks have a ripple
through time of at most three addition times., Thus if one ‘cycle’ is

taken as

Toam * ZTLatch = (5 + LogeM)tRAM + 10t (7.38)

-and t the ripple through delay of any ALU block is less than one

RAM 7
cycle. Consequently the time taken for this stage of the pipeline is
the number of RAM access cyeles with an additional cyele for each ALU

block delay. The total number of cycles is

N N m1 N m.]m2
n, + —-(m1+1) + 0, + (m2+1) + fg +-—-————(m3+1) + oo (7.39)
n, - :n2n1 ngnn,

A further M cycles are needed if the number of factors is even.,

The throughput rate for this type of implementation is limited
by the multiplieation stage for transforms up to lengths of around 300
peints., Larger transforms are limited by the ALU stage.

The 4 ROMs addressing the 4 RAMs in the Pre- and Post-multiply
stages nsed as many words as the number of cycles., The 2 ROMs
addressing RAM within the multiplication stage each contain M wbrds,
whereas the ROMs addressing the input and output buffers each contain N
words. Eaeh word is Log2M+2 bits in‘width. The 2 extra bits are to
indicate READ/WRITE and the pipeline stage. The total ROM is

(B e o = (Ux(No. of cycles)+2M+2N) (Log2M+2)+M(’b+‘l) bits (7.40)

ROM 5.2
The logic gate complexity is found from

2 b bit multipliers 20{b2%+3b+8)
64 latches for RAM I/0 640b
k k ‘
No. of ALUs = 2), a, 32b § a,
i=1 i=1
| K K
No. of latches for ALU blocks = 4 2, (ng+m;) 40bJ, (ng+m,)
i1 i=1
2 b-bit 2:1 multiplexers ‘ 2(4b+3)

140

Eatimate of control 1000

Total

. X :
Gy 5 = 20b2 + ;g%(3231 + 40(n +m;)Y+ 708b + 1166 (7.41)

T.5.3 Completely Parallel WFTA

This implementation is similar in style to the final
unpipelined FFT implementation, separate multipliers and ALUs being
used for each operation, giving a total of 24 ALUs and 2M multipliers.
A three stage pipeline is used. No RAM 1is needed and completely
parallel inputs and outputs are assumed. Two sets of latches are used
between stages of the pipeline with latches actiné as input and output
buffers., As all multibliers and ALUs are dedicated to a single
function no ROM is needed., The loéic gate cdmplexity is given by

’G

5.3 = 2AGy ult Latch

20Mb? + (328 + 180M + 120N)b + 160M (7.42)

it

Ut MGy, + 12(N+M)G

Thebthfoughput is limited either by the multiplication time or
the ripple through delay of the ALU network. .The ripple throqgh,delay
of a composite transform 1s the sumlof the ripple through delays of
each of the smaller factors. The ripple through delay of a ‘small-N’
algorithm 1s, at most, 3 addition times. Hence tthuéhput is limited

by the multiplication delay if the number of factoré, k, obeys
b
15
For 16-bit data this 1s 4 or less faetors. As thg_transform lengths

k < (7.43)
considered here have U4 or less factors, each of their throughputs is
governed by the multiplication time rather than the ALU network delay.
Hence

T = 2T

5.3 Latch * TMult

(4b+10)t (7.44)

141

7.5.4 A WFTA Implementation using One-bit Systolic Arrays

This uses the 1deas presented in chapter 6 for a WFTA
implementation based upon one-bit systoliec arrays with complex
interleaved data and Myers®' multiplier architecture, The following
assumptions were made

(1) Myers® pipelined multiplier architecture is assumed using
b{b+1) full adder cells., With input words that are already skewed
least significant bit first and output words similarly skewed the gate
count for this pipelined multiplier is

17b* 4 13b (7.45)
This assumes, as before, 9 gates for the CSA adder cell and 2 gates per
delay elemerit.

(ii) The total number of cells in the 4 and C arrays is

(N + M - 1)(Log,N + Log M + 2b + 2) (8.46)
The number of gates in the basic éell is assessed by assuming 9 gates
for the adder, 6 gates for the delays asscciéted with the two control
bits and input data bit with 4 gates for 'extra logic' which performs
the one-bit product. Thus the basic cell contalns a total of 19 gates.
In addition to the adder delay the extra logie is assumed to require a
further 3 gate delays giving a cell delay ¢of 8 gate delays.

(1i1i) The initial data skéw and final result skew will each
need a triangular arra& of delays. The number of delay cells 1s
}b(b+71). Each delay cell needing 2 gates.

(iv) Both the A and C arrays need to have their coefficients
stored. Each element of the matrices requires 2 bits. Each column of
‘the & and C arrays 1s assumed to have the full (N+M-1) possible values
stored for it. The coefficients for the multiplier will need a one bhit
flag to indicate real/imaginary. The total ROM storage is

()5 y = B(N+M-1)2 + M(b+1) bits (7.47)

BROM

142

(v) RAM storage is assumed to be nil a3 the data enters the
system in natural order and is wclocked out in natural order.

(vi) The gap between the.starts of successive transforms is
2M cycles. Thus with a cell delay of 8 gate delays thz throughput rate
of the system is

N/16M words per gate delay (7.48)

7.6 Comparison of Algorithms

'This section seeks not only to test the validity of the use
of the 'ecost funection' in comparing implementations but also to compare
different impleméntations and algorithms, Only the broadest of
conclusions are drawn as changes to the assumptions made in the
previous sections c'a_fi alter the relative merits of some implementations

which have very similar values of the cost function.

Tebo1 Compgriéon’of FFT’Angrithms

As a way of‘aéééséing the value of the cost function the fiour
'econventlonal® ways of ghe implementing the.FFT are compared, Figure
7.6.1 illﬁstrétes a power c&st function for these four FFT
implementations. This power cost function, defined by (7.5), is
pldttedlfor 16=-bit daté@ These cost functions assume that tﬂiﬁ t,
power consumpfion per bit of RAM = 0.3 x power consumption'éf oné‘lqgic
gaﬁe and the power eonéumption of one bit of-RQM as 0.03 x that Qf one
logic gate.

In general the cost function ofAthese four FFT implementations
gradually increases with transform length. For a given transform
length the cost function decreases as the hardware parallelism and

throughput increase. The most ‘efficient’ conventional FFT

implementation 1s that given in section"hlslou° This implementation has

143

Power Cost Function

—

100

10?6’,“ |
o FFT
b=16
1024 S SR - e
T 10 102 10°

F1g.7.6.1

Transform Length

L FFT Cost Funcrions

the least overheads to support requiring no RAM or ROM., These seen
reasonable conclusions to draw from the cost function.

Flgure 7.6.2 glves the cost functions for the most parallel
FFT and the pipelined butterfly implementation. It can bs seen that on
these assumptions the pipelined butterfly produces a similar cost
function to the most parallel FFT for ftransform lengths above 100
points or so, For much longer transform lengths the pipelined
bﬁtterfly cost function becomes larger than the fully parallel FFT cost
function. Note that the pipelined butterflies cost function has a
minimum, this is because of the effect of the lateney of the butterfly.
Improvements to the way of utilising the pipelined butterfly are almost
certainly possible, The ‘scheme given abtove does not use the butterfly
~at it's maximum throughput rate and an implementation with a more

elaborate memdry organisation may well have a lower cost function,

7.6.2 Comparison of WETA Impleémentations

Figure 7.6.3 gives the same cost fgnction plotted for the
three conventional WFTA implementations. The cost function for the
most parallel FﬁT is also ineluded. It is,iﬁmediétely'apparent that
first two ways of implementing the WFTA offer few architectural
advantages - they have very similar cost functions to the low power FFT
impléementation, The fully parallel WFTA implementation offers the
lowest eost function of the architectures considered so far,
Comparison with the fully parallel FFT shows the fully parallel WFTA to
require less gates, because of the less operations performed, and to
have a higher throughput.

Figure 7.6.4 shows the cost functions plotted for the most
parallel FFT and WFTA implementations together with the cost functioon
for the systolic WFTA implemen’cation° The systolic WFTA has the lowest

cost function for short transform lengths. The gradient of the

144

+ion
C%Oﬂ

_Power Cost Fun

~J

o «PIPELINED

1 i

-~

10 104

Transform [Len'@i?}’h

Fig. 7.6.2 Pipelined and Parailel FFT

Cost Functions

S

wer Cost Function

B

Po

-
o

Ui

o FFT
o WFTA
b= 16
10 10 0

Transform Length
Fig. 7.63 WFTA and Parallel FFT Cost Functions

—_—
<

t Function

Power Cos

10

o FFT
B WFTA
b=16

ASTOLIC WFTA
.

I - 3

10 10

Transforin Length

2 10-

Fig.7.6.L Parallel FFT, WFTA and Systolic WFTA

Cost Functions

systolic WFTA cost function is very steep in comparison to the other
architectures, This is because of the huge numbers of gates in the A

and C arrays.

7.6.3 Coneclusion to Algorithm Comparison

The cost function allows both individual Implementations of an
algorithm to be compared as well as dissimilar algorithms for the samé
function. The results derived indicate that a reliable judgement on
algorithm suitability demands a detailed analysis of specific designs.
THe results presented above 1lndicate that the less overheads reqﬁiﬁed
the lower thg potential cost function. Thus applications requiring
relatively slow transform times should be implemented by the most
efficient architecture but should use a slower teéhn6lpgy°

As an example of the application of the cost funection, the
power consumptipn for a 120-point complex DFT with a 10MHz data rate
uéipg implementation 7.5.3, the most fully parallel WFTA is calculatedo
A current bipolar technology is assumed which has a power dissipation

~12

of 1;5mW/Gate and t=2.5ns, giving P eeh:&ﬁxTO Watts/GateHz,

7
C, = C,RP | | (7.6)

A S N Tech

From figure 7.6.3 CN=1;2x106'Gate operations. This gives thé power
coﬁsumptibn for this implementation as L6W. Notice that the time
avallable fiér the multiplication is 12 usec and that the implementation
uses 244 multipliers! It is as welluto remember that the cost funétiOn
is a measure of architectural efficiency.

In terms of the cost function the systolie WFTA offers the
'best' way of 1mplementing short transform lengths and the fully
parallel WFTA for longer transforms. This suggests that an

implementation of the DFT based upon the Prime Factor Algorithm which

uses the systollie WFTA to implement the factors may have some

145

advantages,

146

Crzzler 8

A Discrete Cosine Transform Algosrithn

So far only convolutions and DFTs have been considered in this
thesis. This chapter shows that another function, the Discrete Cosine
Transform, can be evaluated using an algorithm of the form of (1.20).
The algorithm is derived from the Winograd Fourier Transform Algordithm
and may be implemented using the one=bit systolie arrays_proposed in
chapter 6. Howewver as the DCT only involves real arithmetic it is

shown that these arriys of cells may be halved in area.

8.1 The,Discréfe?Cosine Transforn

.Sevefal~authoré [8.148.2] have shown that the Discrete Cosine
Transform is afgpodftechnique to adopt for the data reduction of video
signals, 'ﬁarlier methods -of realising the DCT have, for the most part,
‘been based upon the Fast Fourier Transform (FFT) [8 3 8.57. An
alternative algorithm, using Hadamard sparse matr'ices9 has been
-proposed by Hein and Ahmed [8.61. This has been impléﬁ@hﬁed by
’Ghanbarl and Pearson [8. 7] - |

The Diserete Cosine Transform may be defined as

| = N-] -
c(0) :jfﬁ-— Y. =(n) (8.1)
 n=0
=
A
€k _‘/N LJ z(n) cos KEEREL poq, .. nes ¢8.2)

with inverse

x(n) \/:Jcm)f }j«:(k) cos BT pg, o1 (8.3)

Notice that unlike the DFT the DCT cannot be used as it's own inverse,

147

The DFT of R points is defined as,
T R 2Tipg 21Tpq
F(q) =7 z: %' (p) [cos(——ﬁ—) + jsin(_—ﬁ—ﬂ q=0,1,...,R=1 (8.4)
p=0

with inverse

R-1
=’ (q) =d§; Z: F(q) [cos(gjgg) - jsin(gﬂgiﬂ p=0,1,...,R=T (8.5)
q=0

Then a DCT may be calculated by a DFT by noticing that

k(2on+1) , Zipgq . [2Tibq
COS —pp—" = Real[cosQ—TrJ + j51n(R)]
Provided that R = 4N)
and %' (2n+1) = x(n) N=0,7T;.00,N=1
(1) =0 142n4+1 (8.6)

Then the calculation of the DCT may be described as placing the N terms
of the DCT input sequence in the first N odd points (1,3,5,c0.,2N=1) of
a YN-point sequence. A1l other terms are zero. Then a Fourier like
transform is performed by multiplying by the real part of exp(-~2Wpq/R).
The DCT, except C(0), is found as the first N-1 terms of F(q). Some

normalisation coefficizants are needed.

8.2 Application of the WFTA

A WFTA algorithm for U4N-points is easily modified to calculate
a N-point DCT. The procedure 1s described below.

1. Only the columns corresponding to the first N odd samples
of the A matrix are retalned., All other columns are discarded as they
operate on zero inputs.

2. Since the DCT involves no complex arithmetic - it has no
imaginary or complex coefficlents - all the imaglnary WFTA coefficients
may be removed. The corresponding rows of the A matrix and

corresponding columns of the C matrix are removed.

148

3. Some rows of the 4 matrix may now be &ll zero. The
coefficients for each of these rows may be removed together with the
appropriate columns from the C array,

4, The second to Nth rows of the C are retained. These
represent the DCT, all other rows should be discarded.

5. By inspection 1t may be possible to simplify the C
matrix. For example a column of zeroes represents an unused
coefficient, Such coefficients and the equivalent rows of the & matrix
should be removed from the algorithm,

6. Finally the C(0) term is added to the algorithm. The
exact arrangement of the normallisation coefficients in (8.1) and (8.2)
determines the number of additional multiplications to be added to the
algorithm., With the normalisation coefficients as given above one

extra multiplication 1s needed.

The procedure results in an efficient algorithm for the
calculation of the DCT using a small number of multiplications.

The same principles can be used to derive an inverse DCT {rom
a foward WFTA. In this case the first N-1 columns of the WFTA A matrix
and the first N odd columns of the C matrix are used, i.e. the oposite
way round to the foward DCT. Equally well the above procedure could
have been used to calculate the Discrete Sine Transform. The next

section 1llustrates the derivation of a 4-point DCT algorithm.

49

8.3 Derivation of a L-point DCT

As an example of the procedure suggested above a U-point DCT
is derived from the 16-point WFTA given by Winograd [8.8].

The & matrix for the 16-point WFTA is

1 1 1 1 T F 1 N R
-1 -1 11 W -1 J RN I SR
1 0-1 0 1 0-1 0 4 0 -1 ¢« i) - §>
1 41 4 1 g 1 r\f g ¢ 1
1706 0-1 06 0 7 & & 0= ¢ ¢ 6
—o0 1 0 0 0 —_@_é 4 g ﬁ g g i
—1—¢ 1 0 1 ¢ 1 S WD (Y YD SV R
0 1 ¢-1 0 -1 1 1 0-1 0 -1 g» 1
0 0 0 O O 0-1 0 ¢ ¢ 0 ¢ i
—o 0 ¢ 0 ¢ 0 ¢ 0 o ¢ OO i
—o ¢ o 16 o ¢ G0 0 — i
® 0 1 0 @ 0-1 0 0 -1 G 0 0 1
¢t—+——+—a—3+ g 14 10 g i
¢—+——0-0 0 ¢ 1+ ¢ 00 0 ¢ 0 1 i
—o—1 0843+ 6004 9 a4 i
¢ 1 0-1 0 1 Q-% ¢-1 0 F 0-1 Q 1
9 1 0 0 ¢ 0 g-1 ¢ -1 ¢ i 0 G g 1
® 0 0-1 0 1 0 0 ¢ d 0 -1 ¢

The vertical columns removed (0,2,4,...) correspond to zero data, The
rows marked with an i correspond to imaginary coefficients in the 16-
point WFTA., These rows can also be removed,

Of the remaining rows 3, 5, 9 and 12 are all zeroes. These
coefficients may be removed. Row 2 1is minus row 1, this allows one of
them to be removed. This means a slight change to the C matrix.

Thus coefficients 1, 8, 16, 17 and 18 remain. This implies
that only columns 1, 8, 16, 17 and 18 are of interest in the 16-point
WFTA C matrix. Examination of rows 2, 3, and 4 of the C matrix, i.e.
those rows corresponding to the DCT output, shows that coe
not used, it may be deleted. These last operations are illustrated on

the 16-point WFTA C matrix given below.

The 16-polnt. WETA € wmatrix is

LI 7. T P—O0—6 1 A ?
o 0 ¢ 0) 2 0 3? E) -1 1 ©
o 0 ¢ 0 10 0 (% > 0 0 O
b k
0 0 ¢ (4 o 1- - 1T 0 -1
o b o 0 o0 6 o0 & b ¢ b 6—0—0
O) 0 { H 0 [t Q. j, ‘r)) - 0 2
N N . 1 - o Y
Q g g .)‘4 WA- £ (< 2 D 0 ‘0 C
o} 40 0 ¢ 0 0 C T S S N
ol 0-0 0 6 9 o o o o & d o
-4 ¢ ¢ 9 00 o0 e 1 % ii e t—9
—b 0 ¢ 46004490020
—D—4—6—0—4——0—b 4 g1
G Y Ve Fi a fa¥ ¥ fa, fa Fa 0 I m 0o o O
"4 N A4 Ay A A Y N v \v4
O—0 0 a ¢). 0 3 40—
o—p—0 4 i +—4—d b4 4 4 o o0
o0 a0 I Q 1 ht e y }+—3—3

Hence a possible A& matrix for the #-point DCT algorithm is

1 i1
1 =1 =1
1T 0 0 -1
0-1 1 0
The C matrix is
10 0 0 ¢
0 0-1 1 0
0 1 0 0 O
0 0 1 0 -1
The coefficients are
17242
1 cosm/i
1 cos3T/Y
3(cos3T/8+cosT/8)

1(cos3M/8-cosT/8),

8.4 Implementing the DCT

As the algorithms derived by the above method have the same
form as the WFTA algorithms the methods proposed In chapter 6 can be
used to implement these algorithms. Since the DCT involves no complex
arithmetic and the data 1s real there Is no need for the data
interleaving techniques used in the previous chapter to handle complex

data. This allows the arrays to be simplified.

151

8.4,1 A andC Matrix Reduced Arrays

Figure 6.1.2 illustrated the first four cycles of interaction
between the data, coefficients and summation terms in the & and C
matrix arrays. For clarity the layout of cel%s and latches was
omitted. This diagram made it clear that any one processor is empty on
alternate cycles, This suggests that one processor could be made to
perform the work of two.

Consider the contents of the two processors outlined in each
of the four cycles of figure 6.1.2. On the even cyles (0,2,4,...) the
lefthand processor is busy and the righthand one on odd cycles., These
two processor may be implemented in one cell with some additional

feedback paths. The data Xb enters the cell on even cycles and is

k
reused on the next od@ cycle, The summation terms YE enter on odd
cycles and are reused on subsequant even cycles. New coefficients are
required on each cycle., Inspection of figure 6.1.2 shows that rows of
cells must be out of phase, i.e. if row one is 'even' row two 1s ‘odd’.
With this arrangement the coefficients and carries propagate down
through the array with no delay.

The compacted array and new coefficient layout are shown in

figure 8.1. The feedback paths which enable the data to recirculate

are shown as being clocked on either ‘odd' or ‘even’ cycles.,

8.4.2 A Reduced Pipeline Multiplier

The two multiplier architectures considered in the last
chapter are both suitable for the DCT. As noted in the previous
chapter a slight simplification 1s possible to these multipliers by
foreing all the coefficients to be positive so that a general twe's
complement multiplier is not needed.

For this particular application a second simplification comes

152

Pﬂ mm, =
= = g2
m o o~ —
-~ 3 m m o~ o~
g (Aa) m o~ o~ «—
= = = = = =
oy
~ = m
= = =

Fig 8.1 Reduced A and C Matrix Arrays

from noting that new words would be pressnted to the pipelined multi-
plier on alternate cycles from the A matrix tranform array. As in the
case of the transform arrays alternate cells in the muitiplier are
unused., This reduced interaction is illustrated in figure 8.2 for
MeCanny and MeWhirter's multiplier architecture [8.9]. The nmultiplier
exhibits a similar pattern of ‘'odd’ and ‘even’ cells, With one
important difference a similar halving of the number of cells is
vossible., This multipller architecture requires separate paths for the
summation terms on '‘odd' and ‘even' cycles. This 1s because the
summation terms propagate diagonally through the array rather than
parallel to the sides.

This simplification yields a mxm cell array for a m-bit x
m-bit multiplication from McCanny and MeWhirter's multiplier
architecture. The reduced array is illustrated in figure 8.3. The
diagram also reveals that by multiplexing 2M pins could be used for
this multiplier rather than the more normal iM,

Similar simplifications are possible to the architecture
proposed by Myers [8.10] yielding a compacted array of [(M+1)/27M
cells. The [.] denote rounding up to the nearest integer. Which
architecture 1s 'better' will depend upon wordlength and the relative
areas of the extra cells needed by McCanny and McWhirter's approach

compared with the extra latches needed in Myers® architecture.

153

(1)

3 1 0 3 2 1
B, B B, B A, A’ A,
3 2 0
B, B, By A,
(i1)
3 2 1 0
B 3 A, A,
3 0
By Ay
(111)
3 2 1 2 1
B, B, B, Aj A
3 2 1 0
B B’ A A,
3 0
By A
(iv)
3 1 0
B3 As By
K

Figure 8.2
The First four cycles of the reduced multiplier interaction.

154

- O

Even []

0dd |]

o, Lo o n o
3 0dd & Even cycles

n
V)

s—seo(ab)ec

. o o t—~abs+ abcesc
Fig 8.3 Reduced Pipelined Multiplier Array

8.5 Implementing a 15-point DCT

It appears that short length DCTs, around 16-points, are of
most value in image compression. For example [8.9] 1s concerned with
an elaborate implementation of a 16-point DCT. Appendix III gives a
i15-point DCT algorithm derived from a 60-point WFTA.

This 15-point DCT algorithm uses 19 multiplications. So
19+15-1=33 single processors would be required in the 4 and C ar:r*ayso
With the arrangement of the matrices as given a single column may be
saved from the A array and 9 single columns from the C array. These
savings come from considering the number of diagonals in the corners of
these arrays which only contain 0. These figures imply 16 double cells
for the A array and 12 double cells for the C array. An alternate
arrangement yields 15 double cells in each array.

In many image processing applications a restricted word length

is sufficient, say 8 bits. A 15-point DCT with 8-bit data requires

A array 16x13 Double Cells
o
C array 12x12 Double cells
Multiplier 8x8 Double Multiplier Cells (8.7)

Inspection of the 15-point DCT C matrix shows that no sum involves
more than 8 values, thus restricting the maximum wordlength te 12-bits.
These figures assume that the wordlength is truncated back to 8 bits zat
the end of the A array and the multipler,

Even allowing for the increased cell sizes it seems feasible
to integrate this entire 8-bit 15-point DCT onto a single chip using,
say, 3u CMOS., With 3p CMOS such a chip would be capable of accepting

domestic TV data rates.

155

8.6 Summary of Chapter 8

This chapter has shown the development of a fast algorithm for
the Discrete Cosine Transform based upon the Winograd Fourier Transform
Algorithm, This algorithm may be implemented using compacted versions

of the one-bit gsystolie arrays discussed in chapter 6.

156

Crantor 9

Concluslions and Suggesticas for further vorlk

9.1 Conclusions and Summary

The flrst five chapters of this thesis concentrated on the
development of algorlithms for the.computation of cyclie convolutions
and DFTs. An important general form derived in chapter one is

y = C (Ax » Bh) (1.20)
Equation (1.20) describes the general form of Winograd's cyeclic
convolution and DFT algorithms which are discussed in chapter 2.
Nussbaumer's two-dimensional cyclic convolution algorithms based upon
polynomial transforms are also of the general form of (LZC)9 see
chapter 3. A feature of many of these algorithms is that the A and C
matrices contain only +1, -1 and 0. The product Bh is precalculated
and given as serles of coefficients. The Cyelic Convolution Property
(CCP) can also be described by (1.20).

Chapter 4, which discusses multi-dimensional mappings, shows
that algorithms of the form of (1.20) may be nested together to perform
longer convolutions and DFTs with the nested structureg still rgtaining
the general form of (1.20).

Chapter 5 compared the number of arithmetic operations for a
variety of convolution and DFT élgorithms, In terms of the number of
multiplications the following conclusions were drawn.

(i) One-dimensional DFTs should be calculated by the WFTA.

(ii) One-dimensional cyclic convolutions for real data up to
90 points in length should be caleculated by nested one-dimensional

'short-N' ecyeclic convolution algorithms.

157

(iii) One-dimensional cyclic convolutions of r=al datz for
lengths greater than 90 points should be computed using complex WFTAs
to calculate two real convolutions simultaneously.

(1v) Two-dimensional DFTs should be calculated using two-
dimensional DFT algorithms based upon polynomial transforms. These
algorithms are not discussed in detail, see bélowa

(v) Two-dimensional cyclic convolutions of real data up to
60x60 points should be computed using two-dimensional cyclic
convolution algorithms based upon polynomial transforms.

(vi) Two-dimensional cyeclic convolutions of real data for
greater than 60x60 points should be calculated by two-dimensional
complex DFTs based upon polynomial transfor*ms°

(vii) Finally in chapter 5 the optimal algorithm and block
size for the convolution of a picture with a fixed window was found.
For up to 8x8 windows convolution algorithms should be employed, for
greater size windows two-dimensional DFTs algorithms should be
employed.

Chapter 6 proposed an implementation of algorithms of the form
of (1.20) based upon the one-bit systolic arrays of McWhirter and
McCanny. This architecture has several attractive features for
implementation in VLSI. These features include regularity and short
interconnection between cells, The throughput rate of this
implementation is limited by the time to perform a one-bit full
addition.

Chapter 7 then considers w%ther or not this implementation
offers any advantages over more conventional techniques, such as the
FFT. A Cost Function is developed which allows comparisons between
different implementations of the same algorithm and between dissimilar

algofithms° The cost function 1s based upon the number of gates used

158

to realise the function and the throughput rate. ALl features cf an
implementation are considered, including address generation, control
and other overheads., When evaluated the cost function shows that the
less overheads, in the form of ROM, RAM, latches etc., the betier. The
systolic WFTA offers the lowest cost function of all the algerithus
considered for transform lengths up to about 30 poirnts,

Finally, in chapter 8 an algorithm for the Discrete Cosine
Transform (DCT) is derived from the WFTA. This algorithm has the
general form of (1.20). As the DCT involves no complex arithmetic it
may be implemented by modified versions of the systolie arrays of
chapter 6. These modifications allow the number of cells required in

the arrays to be halved.

9.2 Suggestions for further work

-

An area not investigated was the derivationitwo— and multi-
dimensional DFTS by techniques other than the nesting of one-
dimensional WFTAs. WNussbaumer [3.2-3.6] has done much work in this
area and it appears that DFT algorithms derived using polynomial
transforms will have the general form of (1.20), perhaps with 4 and C
matrices containing only +1, -1 and 0. Recently Auslander, Feilg and
Winograd [3.13] have published a different way of deriving multi-
dimensional DFT algorithms, It would be interesting to consider the
relationship between the two techniques.
needs to he done on systolie arrays,
particularly in ascertaining the relative merits of different
‘systolic implementations of the same function. For example, is it
better to treat a DFT as a matrix vector product and use a more general
purpose array rather than the WFTA implementation of Chapter 6? Or
would 1t be better Bp to use a systolie correlator and Rader's theorem

AN
to calculate DFTs? There are many pessibilities,

159

Another interesting comparison to make would be between bit-

seriel archltectures and the hit parallel structures dlseussed here,

160

1.1

1.2

103

1.4

105

1.6

1.7

1.8

Coapter 1 Releorences

Gold B. and Rader C.M.,
Digital Processing of Signals,
McGraw-Hill, New York, 196G, pp 203-213.

Pollard J.M.,

The Fast Fourier Transform in a finite field,
Mathematics of Computation, Vol., 25, No. 114, 1971,
pp 365-374.

Nussbaumer H.J.,
Digital Filtering Using Polynomial Transforms,
Electronics Letters 23rd June 1977, Vol. 13, No. 13,

pp 386-387

Nussbaumer H.J. and Quandalle P.,

Computation of Convolutions and Discrete Fourier Transforms by
Polynomial Transforms,

IBM Journal of Research and Development, Vol. 22, No. 2, March
1978, pp 13U4-144, '

Agawal R.C. and Cooley J.W.,

Algorithms .for Digital Convolution,

IEEE Trans. on Acoustics Speech and Signal Processing,
Vol. ASSP-25, No. 5, 1977, pp 392-410.

Agarwal R.C. and Burrus C.S.,

Fast Convolution using Fermat Number Transforms with
Applications to Digital Signal Processing,

IEEE Trans. on Acoustics Speech and Signal Processing,

Vol., ASSP-22, April 1974, pp87-99.

Rader C.M.,

Discrete Fourier Transforms when the number of samples is
prime,

Proc. of the IEEE, Vol. 56, No. 6, 1968, pp 1107-1108,

Nagell T.,

Introduction to Number Theory,
Chelsea, New York, 1964,

161

1.9

1.1

Kolba D.F. and Parks T.W.,

A Prime Factor FFT Algorithm using High-Speed Convolution,
TEEE Trans. on Acoustics Speech and Signal Processing,
Vol. ASSP-25, No. 4, 1977, pp 281-2%4,

Nussbaumer H.J.,

Fast Fourier Transform and Convolution Algorithms,
Springer Series in Information Sciences, Vol. 2,
Springer-Verlag, Berlin 1981.

McClellan J.H. and Rader C.M,,

Number Theory in Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, N.J., USA. 1979.

162

N
n

2.3

2.U

205

2.6

207

2.8

Chapler 2 References

Knuth, D.E.,

"Seminumerical Algorithma”™ 1in "The Art of Computer
Programmling”

Vol., 2, Addison-Wesley, Reading, Mass., USA, 1971.

Agarwal, R.C. and Cooley, J.W.,

New Algorithms for Digital Convolution,

IEEE Trans. on Acoustics Speech and Signal Processing,
Vol., ASSP-25, No. 5, 1977, pp 392-410.

Nussbaumer, H.J.,
Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag, Berlin, 1981,

McClellan, J.H. and Rader, C.M.,
Number Thecry in Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

Winograd, S.,

Some Bilinear forms whose multiplicative complexity depends
upon the fileld of coefficients.

Mathematical Systems Theory, Vol. 10, 1977, pp169-180.

Winograd, S.,

On Computing the Discrete Fourier Transforn,

Proc. National Academy of Sciences of the USA, Vol. 73, 1976,
pp1005-1006.

Winograd, S.,

On Computing the Discrete Fourier Transform

Mathematics of Computation, Vol. 32, No. 141, 1978, pp 175-
199. '

Nagel, T.,

Introduction to Number Theory,

Chelsea, New York, 1964.

163

3.2

3.3

3.4

3.5

3.6

3.7

3a8

Chazpter 3 References

Nussbaumer H.J.,
Digital filtering using polynomial transforms,
Electronies Letters 23rd June 1977, Vol. 13, No. 13, pp386-387.

Nussbaumer H.J. and Quandalle P.,

Computation of Convolutions and Discrete Fourier Transforms by
Polynomial transforms,

IBM Journal of research and Development, Vol. 22, No. 2, 1978,
pp134-144,

Nussbaumer H.J. and Quandalle P.,

Fast Computation of Discrete Fourier Transforms using Polynomial
Transforms,

IEEE Trans. on Acoustics, Speech and Signal Processing,

Vol., ASSP-27, No. 2, 1979, pp169-1i81.

Nussbaumer H.J.,

Fast Polynomial Transform Algorithms for Digital Convolution,
IEEE Trans. on Acoustlcs, Speech and Signal Processing,

Vol. ASSP-28, No. 2, 1980, pp205-215.

Nussbaumer H.J.,

New Polynomial Transform Algorithms for Multidimensional DFTs
and Convolutions,

IEEE Trans. on Acoustles, Speech and Signal Processing,

Vol, ASSP-29, No. 11, 1981, ppTi-83.

Nussbaumer H.J.,
Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag, Berlin, Heidelberg, New York, 1981,

Arambepola, B. and Rayner P.J.W.,
Efficient Transforms for Multidimensional Convolutions,
Electronics Letters, March i5th 1979, Vol. 15, pp189-190.

Arambepola, B. and Rayner P.J.W.,

Discrete Transforms over Polynomial Rings with Applications in
Computing Multidimensional Convolutions.

TEEE Trans. on Acoustics, Speech and Signal Processing,

Vol, ASSP-28, No. U4, 1980, pplo7-i414.

164

309

3.10

3. 11

3.12

Truong T.K., Reed T.S., Lipes R.G. and Wu C.,

On the Application of a Fast Polynomial Transform and the
Chinese Remainder Theorem to Compute a Two-dimensional
Convolution,

IEEE Trans. on Acoustics, Speech and Signal Processing,

Vol, ASSP-29, No. 1, 1981, pp91-97.

Reed I.S., Shao H.M. and Truong T.K.
Fast Polynomial transform and its implementation by computer
IEE Proc., Vol., 128, Pt. E, No. 1, March 1981, pp50-60

Martens J.B.,

Fast Polynomlal Transforms for Two-dimensional Convolution,
IEEE Trans, on Acousties, Speech and Signal Processing,
Vol, ASSP-30, No. 6, 1982, pp1007-1010,

Pei, Soo-Chang and Wu, Ja-Ling,

Fast Biased Polynomial Transforms for Two-Dimensional
Convolutions,

Electronies Letters 23rd July 1981, Vol. 17, No. 15, pp547-548.

Auslander L., Felg E. and Winograd S.,

New Algorithms for the Multidimensional Discrete Fourier
Transform, .

IEEE Trans. on Acousties, Speech and Signal Processing,

Vol. ASSP-31, No. 2, 1983, pp388-403.

165

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Chapter & References

Winograd S.,

Some Bilinear forms whose Multipiicative Complexity Depends on
the Field of Coefficients

Mathematical Systems Theory, Vol. 10, 1977, pp 169-180.

Cooley J.W. and Tukey J.W.,

An Algorithm for the Machine Calculation of Complex Fourier
Series,

Mathematics of Computing, Vol. 19, 1965, pp 297-301%.

Brigham, E.O.,
The Fast Fourier Transform,
Prentice-Hall, 1974,

Burrus C.S.,

Index Mappings for Multlidimensional Formulation of the DFT and
Convolution,

IEEE Trans. on Acoustles Speech and Signal Processing,

Vol. ASSP-25, No. 3, 1977, pp 239-242.

Good I.J.,

The Relationshlp between Two Fast Fourier Transforms,
IEEE Trans. on COmputers,

Vol. C-20, 1971, pp 310-317.

Kolba D.P. and Parks T.W.,

& Prime Factor FFT Algorithm using High-Speed Convolution,
IEEE Trans. on Acoustics Speech and Signal Processing,

Vol ASSP-25, No. 4, 1977, pp 281-294,

Agarwal R.C.,

Comments on 'A Prime Factor FFT Algorithm using High-Speed
Convolution,

IEEE Trans. on Acoustics Speech and Signal Processing,

Vol. ASSP-26, No., 3, 1978, p 254.

Burrus C.S. and Eschenbacher P.W.,

An In-Place, In-Order Prime Factor FFT Algorithm,

IEEE Trans, on Acoustics Speech and Signal Processing,
Vol., ASSP-29, No. 4, 1981, pp 806-816.

166

b.9

4,10

4,14

4,15

Rothweiler J.H.,

Implementation of the In-Order Prime Factor Transform for
various sizes,

IEEE Trans, on Acoustics Speech and Signal Processing,

Vol., ASSP-30, No. 11, 1982, pp 105-107.

Arambepola B.,

Discrete Fourier Transform Processor Based on the Prime Factor
Algorithm,

Accepted for publication in the Proceedings of the IEE.

Roa C.R. and Mitra S.K.,
Generalised Inverse of Matrices and its Applications,
Wiley, New York, 1971.

Winograd S.,

On Computing the Discrete Fourier Transform,

Proceedings of the National Academy of Scilences of the USA,
vol. 73, 1976, pp 1005-1006.

Winograd S.,

On Computing the Discrete Fourier Transform,
Mathematies of Computation, Vol. 32, No. 141, 1978, pp 175-
199,

Silverman H.F.,

An Introduction to Programming the Winograd Fourier Transform
Algorithm (WFTA),

IEEE Trans. on Acousties Speech and Signal Processing,

Vol. ASSP-25, No. 2, 1977, pp 152-165.

Silverman H.F.,

Correction and Addendum to 4,14,

IEEE Trans. on Acousties Speech and Signal Processing,
Vol. ASSP-26, 1978, p 268.

Silverman H.F.,

A Method for programming the Complex Genera~N Wincgrad
Fourier Transform,

IEEE International Conference on Acoustics Speech and Signal
Processing, Hartford, Conn., USA, May 9-11, 1977, pp 369-72.

167

4,17

Agarwal R.C. and Cooley J.W.,

New Algorithms for Digital Convolution,

TEEE Trans. on Acoustlics Speech and Signal Processing,
Vol. ASSP-25, NO. 5, 1977, pp 392-410.

Agarwal R.C. and Burrus C.S3.,

Fast One-dimensional Digital Convolution by Multidimensional
Techniques,

IEEE Trans. on Acousties Speech and Signal Processing,

Vol. ASSP-22, No. 1, 1974, pp 1-10.

Johnson H.W. and Burrus C.S.,

The Design of Optimal DFT Algorithms Using DYnamic
Programming,

IEEE Trans. on Acoustics Speech and Signal Processing,

Vol., ASSP-31, No. 2, 1983, pp 378-387.

168

U
o
-

5.2

5.3

5.4

5.5

5.6

Chapter 5 References

Nuaabaumer H..J.,
Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag, Berlin, Heldelberg, New York, 1981,

Burrus C.S. and Eschenbacher P.W.,

An In-place, In-order Prime Factor FFT Algorithm,

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-29, No. 4, 1981, pp806-817.

Rothweiler J.H.,

Implementation of the In-order Prime Factor Transform for
variable sizes,

Trans. of the TEEE on Acoustices Speech and Signal Processing
Vol. ASSP-30, No. 1, 1982, pp105-107.

Johnson H.W. and Burrus C.S.,

The Design of Optimal DFT Algorithms using Dynamic
Programming,

Trans. of the IEEE on Acousties Speech and Signal Processing
Vol. ASSP-31, No.2, 1983, pp378-387.

Morris L.R.,

A Comparative study of time efficient FFT and WFTA programs
for general purpose computers.

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-26, 1978, ppi#i-150.

Nawab H. and McClellan J.H., :

Bounds on the minimum number of data tranfers in WFTA and FFT
programs,

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol. ASSP-27, No. 4, 1979, pp394-398.

Nawab H. and McClellan J.H.,

Corrections to [5.6];

Trans. of the IEEE on Acoustics Speech and Signal Processing
Vol, ASSP-28, No. 4, 1980, ppl80-481.

169

U
0

5.9

Blanken J.D. and Rustan D.L.,

Selection Criteria for Efficient Tmplemenation of FFT
Alporithms,

Trans. of the IEEE on Acoustlcs Speech and Signal Processing
Vol. ASSP-30, No. 1, 1982, pp107-109.

Nussbaumer H.J. and Quandalle P.,

Computation of Convclutions and Fourier transforms by
Polynomial transforms,

IBM Research and Development Journal, Vol. 22, 1978, ppi34-
14,

Nussbaumer H.J. and Quandalle P,,

Fast Computation of Discrete Fourier Transforms using
polynomial transforms,

Trans, of the TEEE on Acousties Speech and Signal Processing
Vol. ASSP-27, 1979, pp169-181.

170

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Chapter 6 References

McCanny J.V. and McWhirter J.G.,

Implementation of Signal Processing Functions using 1-bit
Systolic Arrays,

Electronics Letters, 18th March 1982, Vol. 18, pp2i1-243.

MeCanny J,V. and McWhirter J.G.,
Completely iterative, pipelined multiplier suitable for VLSI,
IEE Proc., Vol. 129, Pt.G, No. 2, April 1982, ppho-46.

McCanny J.V. and MeWhirter J.G.,
A bit level systolle array for matrix x vector multiplication,
To be published.

Ward J.3. and Stanier B.J.,

Implementaion of Convolution and Fourier Transform Algorithms
using 1-bit systolic arrays,

Electronics Letters 2nd Sept. 1982, Vol. 18, pp799-801.

Ward J.S. and Stanier B.J.,
A Fast Discrete Cosine Transform for Systolic arrays,
Electronics Letters 20th Jan. 1983, Vol. 19, No. 2, pp58-60.

Patel K.K, Corry A.G. and McCabe A.P.H.,

A high performance Correlator based upon bit level systoliec
arrays,

To be published

McCabe M.M., McCabe A.P.H., Arambeploa B., Robinson I.N. and
Gorry A.G.,

New Algorithms and Architectures for VLSI,

GEC Journal of Research and Development, Vol. 48, No. 2, 1982,
pp68-75.

Myers D.J.,

Multipliers for LSI and VLSI Signal Processing Applications,
Edinburgh University MSc Project Report MSP5.

30th Sepember, 1981.

171

6:9

Kung H.T. and Lelserson C.E.,
"Algorithms for VLST Processor Arrays®,
Section 8.3 in [6.10] below.

Mead C. and Conway L.,

Introduction to VLSI systems,
Addison=-Wesley, 1980, ISBN 0-201-04358-0.

172

7.2

7.3

7.4

7.5

7.6

Chapter 7 Refereaces

Ward J.S., Barton P., Roberts J.G.B. and Stanier B.J.,

Figures of Merit for VLSI Implementations of Digital Signal
Processing Algorithms,

Submitted to IEE, Part F,

Barton P.,

Algorithms for VLSI DSP; Section 2.1. "FFT Discussion”,
Presented at ‘High Performance Logic Consortium - Working
Group on Architectures and Algorithms®, 2nd December 1981.

Savage J.E.,

Complexity of decoders:; I-Classes of Decoding Rules
IEEE Transactions on Information Theory,

Vol. IT-15, 1969, pp 689-695.

Bajoga B.G. and Walbesser W.J.,
Decoder Complexity for BCH Codes
Proc. IEE, Vol. 120, 1973, pp 429-431.

Cooley J.W. and Tukey J.W.,

An Algorithm for the Machine Computation of Complex Fourier
Series,

Mathematics of Computation, 1965, pp 297-301.

Gold B. and Bailly T.B.,

Parallelism in Fast Fourier Transform Hardware,
IEEE Transactions on Audio and Electroacoustics,
Vol. AU-21, No. 1, 1973, pp 5-16.

173

8.2

803

8.4

8:5

8.6

0
-

8.8

Chapter 8 References

Chen W. and Smith C.H.,

Adaptive coding of monchrome and colour images,
Transactions of the IEEE on Communications,
Vol. COM-25, 1977, ppi1285-1292.

Rose J.A., Pratt W.K. and Robinson A.S.,
Interframe cosine transform image coding,
Transactions of the IEEE on Communications,
Vol. COM-25, 1977, pp1329-1339.

Ahmed N., Natarajan T. and Rao K.R.,

On image coding and the discrete cosine transform
Transactions of the IEEE on Computers,

Vol. C-23, 1974, pp90-93.

Haralick R.M.,

A storage efficient way to implement the discrete cosine

transform,
Transactions of the IEEE on Computers,
Vol. C-25, 1976, ppT76U-T65.,

Narashim M.J. and Peterson A.M.,

On the Computatlon of the Discrete Cosine Transform,
Transactions of the IEEE on Communications,

Vol. COM-26, 1977, pp934-936.

Hein D. and Ahmed N.,

On a real-time Walsh-Hadamard/Cosine transform image

processor,
IEEE Tran., 1978, Vol. EMC-20, ppd453-U57,

Ghanbari M. and Pearson D.E.,

Fact Cosine Transform implementation for television signals,

IEE Proc. Vol. 129, Part F, No. 1, 1982, pp59-68.

Winograd S.,
On Computing the Discrete Fourier transform,

Mathematics of Computation, Vol. 32, 1978, No. 141,

pp 175_1990

174

McCanny J.V. and McWhirter J.G.,

Completely I1terative pipelined multiplier array suitable for
VLSI, '

IEE Proc, Vol. 129, Part G, No. 2, 1982, pp 40-46.

175

Appendix I

This appendix contains short-N convolution and DFT algorithms,
A1l these algorithms have the general form of (1.20) with A and C
matrices containing only +1, -1 and 0. Cyeclic convolution algorithms
for lengths 2, 3, 4, 5, 8, 9 and 16-points are given. The convolution
algorithms are given as three matrices. The general scheme of the
calculation is 1llustrated for the 2-point convolution algorithm., Note
that the convolution algorithms calculate

N-1

v, = n;O b 120,31, 00.,N-1

A1.1 A 2-point Cyclic Convolution (M=2)

: o1 x 1 1 h
fx = [1 -1}[:@] Bh = 3 [1 -1

m = (Ax) x (Bh)

o) [0

A1.2 A 3-point Cyeclic Convolution (M=Y)

11 1) ; 1 1 1-1-1 0

A, =10 1 -1} B, == |-1 2 -1 C.= 11 0 1 1

3 1-1 O 3 3 - i 1 3 1 1 0 -1

1 0 -1 i 1 =2
A1.3 A Y4-point Cyelie Convolution (M=5) -

R . y \

T 1 1 1 T 1 1 1 T 1T 1 1 -1

1 -1 1 -1 1 -1 1-1 1 -1 0-1-1

AU = {1 1 =1 -1 Bu =il 2-2-2 2 Cu =11 1 =-1-1 1

0 1 0 =1 -2 0 2 0 1-1 0 1 1
1 0-1 0O 0-2 0 2 s

176

10)

Af.0 A S5-point Cyeclic Convolution (M

~ —\
= Me= = NN
tr ot 8t
Lanlid AV S AV I o o T QUi o
[| 4)
Ao ot 0.0 B~ ML ol AVER A VRN AV il o
[| |
TN NN e ey
1 1 [20| — — e
= g B AV ol AVARANAN s 0 Bl
\ | t [, O =
] !
OO« O «—
— N 1
" Or— QO+~ O
[}
n
m OO0 ¢ «—
[}
40001
— O O« O
1
O - OO0
i
’~ N — O~ OO
0410000111 I
[}
—— OO0 O
OO0« O O +— = |
N~——— e
] 1 I
COO0OO——0O — «— «— BT
1
n
e Qe OO0 0 0O [&)
O T OO0 Q0QC v« O ™~ ™
0 | 1 ,
"
wn
==

)

A1.5 4 8-point Cyeclic Convolution (M

\|| b ¥
11 1
T NN O OO
| I R R | 1 [I |
u.unu-.ﬂu.221alou.oooo
[| 1 |
[
U.H“.HWH_».221.|H~.OOOOO
[| [
X TFT NN O OO TN
| i
““.u.u.ux22.|1vou.0000
[}
TN — T N
/__ I o,
1_8
I
[oo]
m
OO O™ r— = QO ™e— 0O r—
' ! 11 I
OO~ OO 0O v O
I ! [| i
OmrO0O 00 ™ QOO
| [|
TOOO 0O 0O e O «—
] [I)]
O OO QO rmrrmr e O r— O —
[] [| 1
C O~ O r O™ = Q=™ v—0O —
| |
O OO0 0O~ OO v v
1 1 !
T OO OO+ OO v

\1

1 0 1-1 0 1)
-1 1 =1

1
1

0 -1
1

0 0 O

(0 0 0 -1

0

0

1

0
0 =1

0

0 G -1

0

1

1 -1

1 0
-1
0 -1

0
0 -1

1

1

0 -1 -1

1-1 0
-1

1
1

0 0 0 -1

1
1

0
0

;
1 -1

1

-1

1

0 0 O

0

1

0

0 -1 -1

0

1 -1 0 -1
-1

1
1

0O 0 O
0 0 0 -1

1 -1/

1

0 -1

1

177

A1.6 A 9-point Cyclic Convolution Algorithm (M=22)

MO MOOOOOOMWMMWMWOUMMT— v (\J «—
1 T [[I S |]
COO0OO0OOCOMUOMMWMMIWMMWOW NN — —

[LI I | | 2 I |
COOMWMOOOMMPYWMWMMWY M N — —
| 1 [| 1 0 |
] LI | 1 1
COOOOCOMMOLMMWOMMWOMMNIWY N — v —
! i ! 1 ! | I T B}
0003460006333363361211
[I . | [1 i
6340000006336333361121
[i]
| I I |
COO0OOWMMOOOMOUMWOUWMMWOWMM™=™ Q] r— «—
[B | 1 i,
.
— |0
—
"
(=2}
m
lcoo-ro-~—~o0o—-00c00CO0CO~O——0Or
1 0 0] | I]
4014010000001010001101
i | 0 |)
4010001011010000000111
? [} [| !
0001401100000001101011
t |) i
T O~ O 000000 OO0 0O ™ v O «—
1 ¢ | 1
T O O 0O 0O+ OO0 00 OO0 0O v« v v
| i]
OO OO O+ — OO0 O0DO0O0O0OQO ™ — = O v v
[} i
O~ O OO0 0 QOO0+~ 0O0O0Q ™+ O v
]
OO0 00— 0O =000 O0O0COO0 v «—,

0 0 0 00 0 0 1

1

0 0 0 0 0 0 O0=-1-1

0

0 0 0 0 1

1.

(1

1
1

0 -1 -1

0 -1 -1

0 0 0 0 -1 -1

0 -1 -1
0 -1 -1

1

0

0

1

0 0 00 0 0 0=-1-1 0 0 O0=1

0 -1 -1

1

06-1-1 0 0 0 0 0 O

0 0 0 0 =1 =1

1
1
1

0 -1 -1
0 1
0

0
c 0 0 -1

1

0 0 0.0 O O0-1

-1 0 1

1
1

0
0

0 0 0 -1

1

0 0 0 0 0 O

0

0 0 0 0 0 O0-1

-1

1
1

0

=1
-1

1

1

1

T-1 0

0 0 0-1 0

0

11)

0

0 0 -1-1

1
0 0 0 0 -1

0
1

o o
o O
[N o)
— O
— O

o o

[N e
O

O

C9=

178

41)

A41.7 A 16-point Cyclic Convolution Algorithm (M

™ 1.1.041J.OAUnVO4|J.OhunvOnunVOAunuOAU1.1gunVOAU1.1AU1.1nunvOAU1.1
A nloqlo.l.loooo.l1011-00001101'1'000011..000000000\
"
O
—
<

179

\‘
! !] |

1..1_.229__00O.H.U.U..U.H_'U.Q_u00808808800808808000000000
1 I 1

N

| }

1 [| |

i t 1 [JN R R B A | [D A

I [| [11

| 1 [[} [| [} :

I Y B R R | LI I | ’

1 i

vl

/‘

—ho

—

w0
—
m

180

C16 first 20 columns

(.)
CO - OO0 O0OOCO— 0000
[0
™m0 OO0 0O +—— — OO0
P I |
T O 0000 QT —O 00000
| !
OO~ 0O ™= OO0 v OO — «—
] i | 1
Lanll e o e o e e 2 i 2 i ol el oo
i [| I [| 1
T OO0 OO0 OO0~ OO
1 1 1 I
OO~ OO0~ 0O 00— OO0 «—
I 1
OO+~ OO0 — OO0 OO «—
1 [| I
0100010001000400
0
T QO T OO0 T OO0« OO0
i ' [} !
T OO O T OO0 O™~ 00O — OO0
i b
OO O OO Ovw—O«— 0O «—
t] 1 !
T T T e e g = e e T T
i 1 t t o1 | i I
— O O OO O+~ Q0O ™ O—QO
| | 1 I
O O O O O O v O v O «—
1 0 ' |
T O T O " QO+« O QO™ O~ Q0O «— 0O
0 | i I
Ll a5 i i sl R el . Sl el el e B
[1 0 [o
Lol o v i 2l o iR el o i el e el el i
8 § ! f] ! i 1
Ll S ol e R 5 2 s e B S el aelE o

C16 columns 21 to 41

P

10000001.1_.0000004
OOO—-r~ 000000~ TO00O0
0411«ﬂ0000.l.._|.ﬂ1000
O -"00000O-—0O0O0O0O0
Lt i B i i i i i el
1 [| [| [|

0000000400000001
0000040000000100
0001000000040000
0100000004000000
0001_.00040001.0001
00004100000011_100

181

The second half of Appendix T contain? DFT algorithms for 2,
3, U, 5,7, 8, 9, 11, 13 and 16-polnts., All these algorithms are glven
as two matrices and 1list of coefficients. The coefficients represents
the precalculated product (Bh). The number of multiplications is that

for real data,

41,8 A 2-point DFT Algorithm (M=2)

11 1 0 mo= 1
Ay = {1 -1} C o= {o 1} mo=

A1.9 A 3-point DFT Algorithm (M=3)

17 1 1 10 0 uy = 23
Ag=fo 11 Co=ft 1 1 m = 1
o 1 -1 11 -1 m, = (cosué—1)
m2 = 1 sin 3
£1.10 A 4-point DFT Algorithm (M=4)
T 1 1 1) 1.0 0 0O my = 1
A |1 -1 11 c 00 11 my = 1
¥ 11 0-1 0 450 1 0 0 m, = 1
0 1 0 -1 0 0 1 -1 mg = i
A1.11 A 5-point DFT Algorithm (M=6)
/
111 1) 1000 0 0 u =2ws
0 1 1 1 1 17 1 1 1-=-1 0 m = 1
AS =0 1 -1-1 1 C5 =1 1-1 0 1 1 my = 1(cosu +cosZu5)=1
0 1 0 0 -1 1T 1-1 0-=1-1 m. = 3(cosu -cosZuS)
0 1-1 1-1 1 1 1=1 1 0 m§ = 1{sinu +sin2u5)
0 0-1 10 m, =i sinzgs
‘ mg = 1(sinu_=sin2u_)
5 5
A1.12 A T-point DFT Algorithm (M=9)
111 1) i 0 0 00 0 0 0 O
01 1 1 1 1 1 1171 1 0 1 1 1 0
0 1 0-1-1 0 1 1 1-1 0-1 1-1 0 =1
0 0-1 1 1-1 0 Cr= 11 0-1 1-1 0 1-1
Ay = [0-1 1 0 0 1-1 11 0-1 1 1 0-1 1,
0 1 1-1 1-1-1 17 1-1 0-1-1 1 0 1
01 0.1-1 0-1 1 1 1 1 0=1-1-=1 oJ
0 0-1-1 1 1 0 \
0-1 1 0 0-1 1]

182

-1
L~ 3

m

= 2T
u7 20/7

(eosu7+0052u7—2cos3u7)
(Zsinu7-sin2u7+sin3u7)

1

if(sinu7+sin2u7—sin3u7)

i§(sinu7-231n2u7—31n3u7)
1 ,

i§(sinu7+sin2u7+251n3u7)

1
3
1

i

5
T6
B7
g

(cosu7+cos2u7+c033u7)-1
Zcosu7-0052u7-cos3u7)
cosu7—2@oszu7+0083u7)

A1,13 A 8-point DFT Algorithm (M=8)

0}
20 0 0

O 0 0 0 0 O

’
1

T 1

1

0 0 0 O

1

0

— O

- O

™ O

- C

[N e

o o

O —

oo

1 =1 =1
0
1 -1 -1

1

0 0 0 O

0

-1 0
0 0 O

1

0 0

0

T 0 -1

0

0 -1

1

- O

o O

— O

[2 ol

— O

o o

- O

O

0 =1

0 -1

in2u8

(o]
N n
W_aln.l.lni

H#H unnn

O O ~— O M

S HdHH

12)

A1.14 A 9-point DFT Algorithm (M

00000 O0O0O 0O 0 0

(1

6 0-1-1-1 0 O

1 1

1

0

1 0 -1

0

-1 0 -1 1
0 0 0 0 0 -1

1
1

0 0 0 O

0 -1

-1 0 -1
-1

1

1

1 0-1 0
1

0O 0 0 0 O

-1

1
1

i sinllu9

Bg

0

0

0

0 0 0 1 0 O0-1
1

0 -1 -1
0 0 -1

0 0 0 O

0 -1
0 0 -1

1

1

0

(2003u9ncoszu9-cosuu9)
(cosu9+cos2ugaacosuu9)

i
sin2u9

i0 ~
m11 ==3/2

m

(cosu9—20032u9+cosuu9)

183

21)

A1.15 A 11-point DFT Algorithm (M

! N
O e ™ ™ = — ™~ &= ™
1 LI I | 1
OOt ¢— +— ™ = +— O
I L S |
OO rm= OO0 OO ™~ O
[|
COO0OO—— 00O ~
-
1 1 — -
CO OO 0O—OwwO — o]
1 1) ™ N
- 3]
O™~ O 00000 ™ v — " [0}
[- 3 [22] 3]
™ n O o
T OO0 O00 0O rm O 0O0O00«— O™« O™~ OO+~ QOO0 (2] O +
! 1 § 1t | 1 w Hﬂ. -
=
— O™ ~m O OO0 O — O 00O« 00010410100 | 1|“n~u‘
| — -
- 3 2]
QOO O O~ OO0~ QO v O v v O~ 0O+ OO0 — O «— 3 = ¢}
! 1 !] I 1 t = [12] Q
2] O o
00004101110000140111 O~ OO0+« OO0 «— m 9] +
LI B | | A
! { +4| Lol
O m O QOO OQO ™ rm QO e OO0 O v ™ « v O = & — ™ & & — ™ — — =
i [| 1 1 — o} m
=] m 2]
O = == 0O 0O 00O ™e= O r— OO0 ™ ™ v OO ¢ ¢— — & +— O ™M 0 (o]
I [b t ot 1 [}] /] [*] (9}
[*] 9] o
OCOO0ODO ™ O~ QOO0 ™™ O v v— COrm e~ OCOOO ™™ O o + 1
[} =
!] 1 _.I ..H o
QOO ™~ O™+ O — OO0 O~ O v v O v COOOC ™ r—ce——0OO0O N = =
| § | [1 1 t 1 a...ﬂu_ N N
2] 0
O O 00C™ - 0O rrr—O00QCO0O«— [oN R glell =N ol el e N o] o]
LI [! | [Q (9} Q
) + (o8]
- O O O— 00O O — Orr— 00000 O ™ v 1 — [
i | | 1 | | 1 - N =
— = L
- O O o ﬂuAUAUOAUﬁuﬁu0ﬁvoﬂanﬁuk O OO0 O ™00 «— 3 qou 3
! ')] 9]
' — [0} O .0
OO0~ QO v O— OO0 - Q vt 9]
" : 1 N~ 4~ N
N N
— O~ O~ 0000~ O« N = —nn N
- | !
=q " t I i "
OO0 O™ OO0 O« .
| [- o ~- 3] N
«— # B = &
Lt ol Sl il el il e =
f —_—

(2cosu11-30052u11+20053u11+2005Hu11—30085u11)
(2cosu11—30032u11+Zcos3u11-3003uu11+2cos5u11)
184

1

m, = --g(cosu11+c052u11-H0053u11+cosuu11+co$5u11)

1

5-g(cosu11+cosZu11+cos3u11-McosUu11+cos5u11)
-g(cosu11—&0032u11+cos3u11+cosUu11+0035u11)

1
6~ 5
1

1

7°75

1
mg = —‘§(3cosu11+2c032u11-2cos3u11»2cosuu11-20055u11)
g =

5

m
m
m
m

m = %(cosu +cosZuH+cos3u1 +coslu +cosSu1)-1

10 11 1 11 1
1 .
m11 = 15(451nu11+sin2u11—sin3u11—sinuu11—sin5u11)
1
My, = -ig(sinu11—sin2u11+sin3u11+sinuu11-usin5u11)
.1 .]
m13 = L§(2s1nu11+3sin2u11=3sin3u11+Zsinuu11+2sin5u11)
1, . . .
My = -i—§(31nu11-sin2u11-llsin3u1 +§1n4u11+51n5u11)
i .
m15 = -Lg(sinu11-31n2u11+sin3u11-us1nuu11+sin5u11)
1 .
Mg = ig(ZSinuT1+3sin2u11+251n3u11+231n4u11—331n5u11)
1 . .
m17 = ig(Zsinu11+3sin2u11+2$in3u11—331nuu11+231n5u11)
1 \
m18 = —i§(3sinu11—331n2u11-2sin3u11-ZsinUu11—251n5u11)
1
m19 = Lg(sinu11+Hsin2u11+sin3u11+sinuu11+sin5u11)
1, .
Myg = ig(sinu11—sin2u11+sin3uT1+slnuu11+sin5u11)
A1.16 A 13-point DFT Algorithm (M=21)
(1 1 1 1 1 11 1 11 1 1 1)
o 1 v+ 1 1t 1 1 1 1 1 1 1 1
0-1 1-1-1 1t 1 1 1-=-1=-=1 1-=1
10 0 1 1-% 0-1-1 0-1 1 1 O
0-1 1 1 0-19 0 0-1t 0 1 1-1
0-1 0 0 1=-1T 1 1=-1 1 0 0-1
c 0ot 00 1 1-1-1 0 0-1 0
0-1 1-1 1 1 1=-1=-=1-1 1-=1 1
0-1-1=-1 1=-1=1 1 1T~-1 1 1 1
0 0 1i-9 1 0-1-1 O 1-1 1 O
A13 = 0 1 1=-1 0-1 0 O0-1 O0-1 1 1
0-1 0 0O 1 1-1-1 1T 1 0 0-=1
O 01t o 0-1 0 0 1 0 O0-1 0
0o 01t 00 0~t 1 0 0 0-10
0O 0 0 0 0-1 1-9 1 0 O 0 O
¢ o1 1 1-1 0 0 1-1-1-1T 0
o 1 1 0 1 0-1 1 0-=1 0-=1-1
0-1 0 1 0=-1T 1=-1 1T O0-=1 0 1
o 0 0 1 1 0 0 0 0-1-1 0 O
o 1 0 01t 00 O O-1 0 0-1%
@ - 0 1 6 0 6 0 ¢ O0-1 O 1J

185

13 ~

oy 2 md 3 a3 e eh e oD h e o BV

B N Y N S Gy N G S O o |

00 0 0O0COOD OO OO0 OO0 0 0 0 0]
-1 0-1-17-1T 0 0 1T-19 0 0 0 O 1-7 0 11
o1 +v+1 o0 111 01 1 0 11 0 0 0O
o1 1-1-1 0-1-1 0 0 0 O % 0 1T 1 0 1
i-1T 0171 01 01 06 0O0 1T 1 0 1 1 0
-7 0-* 1 0 1T 01T 1-1 0-1-17 0-1 ¢ 0 O
1«1 010 1-1 0-1T 0-1 1 0-1 1 O O O
1-9 0-1 0-1-1 0-17 0 1-1 0 1-1 0 O O
-1 0-1=1 0-1 0-1 1T %9 0 1 7T 0 1 0 O O
11 0-1=1 0 1 0 1T 0 O O0-1T-1T 0-=1-1 0
o 7Tt 1 1T 0-1-tY 0 O O O=-~1 O0=-=%-=1T 0=1
0o 1 117 0-1 1 1 0-1-1 0-1-1 0 0 0 O
-106-11% 1060 1-1 000 0-1 1 0-1 1]
2n/13

1 .
—+(cosu, ,+cos2u, _+cos3u, . +coslu, +cos5u, +cosbu, .)-1

6 13 13 13 13 13 13

%(cosu13-cosau13+cos3u13+cosuu13-0035u13-cos6u13)

1
g(cosu =2c082u, ,~2cos3u, ,+coslu +cosSu13+cos6u13)

13 13 13 13

]
--g(cosu13+0032u13+cos3u13—Zcosuu13+0055u13-2cos6u13)

%(Zcosu ~cos2u, .—-cos3u,.~-coslu +2cos5u -cos6u13)

13 13 13 13 13

1
-j§(sinu 3+sin2u 3+sin3u 13" -sinlu 3+sin5u13+sin6u 3)

+sin3u13-sinuu13)

+sin5u13+sin6u13)

+c0512u.‘3 cos3u13-cosuu13—20035u13+cos6u13)

1
g(cosu13+20032u13=2cos3u13+cosuu13-0055u13-cos6u13)

-%(cosu13-0032u13+cos3u13-Zcosuu13-c035u13+20036u13)

1, .
-j§(31nu13-sin2u13—Zsin3u13-sinUu13-sin5u13+Zsin6u13)

-2sin2u13-sin3u13+sinuu13+sin5u13+sin6u13)

+sin3u13+2sinuu13+Zsin5u13-sin6u13)

+sin5u13—2sin6u13)

-sin5u13=sin6u13)

—2sin5u13+sin6u13)

+sinUu13—sin5u13+23in6u13)

1
jg(sinu13

.1
-J§(sin2u13

—-%(Zcosu13

1.
j§(231nu13

1
-j§(sinu13-sin2u13

]
-j§(sin2u13

1
j§(2sin2u13

1
—j§(sin2u13

—}l(ZSinu -sin2u,-sin3u
3

13

+sin3u

13

13 13 13+Zsinuu13+sin5u13+sin6u13)

J%(sinu13+sin2u13-Zsin3u13-sinuu13—Zsin5u13+sin6u13)

13

j%(sinu -2sin2u

186

18)

A1.17 A 16-point DFT ALgorithm (M

f— ©-oO0T o000 T O -0
- 1040000100000000
- 4001000011000000
= O OO~ OO0 O—— O v O
- 10.{0001000000000&

1}

(Xe}

-

<

O O~ O OO+« O OO«
0010004000100040
OO~ O0O0O0O~00O0— OO0 O
000010000000,4000
[eNoRsNol NeNeNoNoNoNeoNoll ool ol
OO QOCOO0OOO0OO—O0COO0OOOCO
fTOOOOOOOOOOOOOOO\

i

O

—

[&]

)
16
16

)
)

W \O

jo e} - —

MM 33

[l =] M 0

o e n O

n w [o RN 9]

Oy + O 1
T AO O + O
= B i anl Ve Vo Bt g
M 33 e 3
gaga33Mm
o o o N D W
nnwnnoo
~~ 0 0 0

o o O

w o uw w nop

WO v~ N M N
Ua.vmmmmmm

187

Lppeadix TT

This appendix gives a FORTRAN program far the derivation of the matrices for a
99 cyclle convolution algorithm evaluated using polynomial transforms. The general
scheme of the program is ilitlstrated in the figme overleaf, In this figure the letters
betwean boxes give the name of the array of the valuss at that point in the calaulation,
Foi'a example the input signal is initially contained in XA but after reduction modulo Cg(z)
is contained in array XB.

The program generates matrices for an untransposed system, ie. the C matrix
e&xtains values other than +1, -1 and 0. The result should be normalised by 1/81. In the
interests of size some of the statements have besn compacted, particularly the DATA
statements and as written may not compile. The program should be read down the lefthand

colum and then down the righthand colum of each page.

c o
C TO GENERATE MATRICES FOR A 9X9 CYCLIC CALIL REDCY(XA,XB)
C CONVOLUTION J.S.WARD 6/6/83 CALL REDCY(HA,HB)
o c
INTEGER XA(9,9), HA(9,9), HB(9,6), C FOR C9(Z) BRANCH POLY. TRANSFORM
&XC(9,6), HC(9,6), ROW, COL, POLY, c
&POWER, TEMPX6(6), TEMHA(6), TMPX18(18), CALL POLYT1(XB, XC, .TRUE.)
&TMPH18(18), TEMPX9(9), TEMPI(9), CAIL POLYT1(HB, HC, .TRUE.)
&MPX13(13), T™MPH13(13), XE(9,3), o
8E(9,3), XG(3,6), HG(3,6), XK(3,3), C PREMULTIPLICATION PART OF POLYNOMIAL
&K (3,3), M(229),008F(229), MP(229), o PRODUCT MOD C9(Z)
8XL(3,3), XI(3,6), XJ(3,6), XM(3,9), c
&XN(993)9 XD(996)9H>(996)9 F(399)9]I) 50 POLY = 19 9
& (3,9), TRPX3(3), TRVPH3(3), DO 30 FOWER = 1, 6
&TEMP13(13), HH(3,6), XH(3,6), TEMPX6 (POWER) = XC(POLY ,POWER)
&M(229,81), BM(229,81), @M(81,229), TEMPH6 (POWER) = HC(POLY ,FOWER)
&0UTROW, QUTCOL, ROW1, COL1, XB(9,6) 30 OONTINUE
o c
C SET ONLY CNE INPUT VALUE TO 1 CALL PRECO(TEMPX6,TEMPHG,TMPX 18, TEMPH18)
c o
DO 190 QUTROW = 1, 9 DO 40 MIT = 1, 18
DO 180 GUTCOL = 1, 9 M(18H(POLY-1)+MILT)=
D0 20 ROW= 1, 9 1 T™MPX18(MILT)
DO 10COL =1, 9 COEF (187 (FOLY-1)+MULT)=
XA(ROW,C0L) = 0 1 TMPH18(MILT)
HA(ROW,CCL) = O 40 CONTINUE
10 CONTINUE 50 CONTTNUE
20 CONTINUE o
o C START THE C3(Z) C1(Z) PART
XA (OUTROW,CUTCCL) = 1 C C3(Z) REDUCTIONS FIRST
HA (QUTROW ,0UTCOL) = 1 o
o CALL REDC3(XA, XE)
C FEDUCE X AND H MOD C9(Z) CALL REDC3(HA, HE)

188

xd

s,r
g

Ordering of
Polynomials

XaJ X (z)
v

¥

Reduction Modulo

sz(z) = (zpz—T)/(zp—1)

)

Xb[xlyr‘(z)
Y

Polynomilal
Transform
Modulo C_,(z)
size p?, root z

)

hd

| Reduction
Modulo zp-1

Xe

XZ,P(Z)
p? polys of p terms

hvd

Reordering

va p polys of p? terms

Modulo sz(z)
size p, root z P

XCd £ ¥
p? polynomial Reduction Reduction
Multiplications Modulo C_,(z) Modulo zP-1
Modulo sz(z) ‘wf Xg
T Polynomial xk
Inverse polynomial Transform 5
Transform Modulo C_,(z) Modulo C_,(z) Convolutlon
size p? size p, goot zP of size pxp
J, Xh
xp p polynomial xl
multiplications
Modulo sz(z)
% X1
Inverse
Polynomial
Transform

L Y

Reordering and Chinese
Remainder Reconstruction

Cooputation of Comvolutican of p?xp®? points

C TRANSPOSE THE ARRAYS

LO 70 ROW = 1, 9
DDAOCIL =1, 3
XF(QOL ,ROW) = XE(ROW,COL)
I'F(CCLyHOW) = HE(RW9(DL)
60 CCNTINUE
CONTINUE

FURTHER REDUCTION OF XF & HF MOD C9(2)
AND C3(z)

(e N R NP N
o

DO 110 ROW =1, 3
8 cCcL-=1,09
TEMPX9(COL) = XF(ROW,C0L)
TEMPHY(COL) = HF(RCW,COL)
CONTTNUE

o

CALL CO(TEMPX9, TEMPX6)
CALL CO(TEMPH9, TEMPHG)
CALL C3(TEMPX9, TEMPX3)
CALL C3(TRMPH9, TEMPH3)

D090 QL = 1, 6

© XG(ROW,00L) = TEMPX6(COL)
HG(ROW,COL) = TEMPHG(CCL)
CONTTUE

a8

DO 100 OOL = 1, 3
XK (ROW,COL) = TEMPX3(COL)
HK(ROW,C0L) = TEMPH3(COL)
100 CONTINUE
110 CONTINUE

POLY . TRANSFORM LENGHT 3 ROOT Z&43
MOD €9(2)

aaaaon

CAIL POLYT2(XG, ¥H, .TRUE.)
CALL POLYT1(HG, HH, .THUE.)

(@]

3 POLY MILTS MOD C9(3)

D0 120 POWER 6
TEMPX6(POWER) = XH(POLY ,POWER)
TEMPHG (POWER) = HE(FOLY ,POHER)
120 CONTINUE
c

0 140 POLY = 1, 3
=1,

CALL PRECO(TEMPX6 ,TRMPH6 , TMPX 18, TMPH 18)
o
DO 130 POWER = 1, 18
M(162+ (18 (POLY~1) MPOWER)=
& TMPX 18 (FOWER)
COEF (162+18% (POLY~1)+POWER)=
& TMPH 18 (FOWER)
130 CONTINUE
140 CONTINUE

C CALL PRE-MULT PART OF 33 CONVOLUTION
c

CALL PRE3X3(XK,HK,TMPX13,TMPH13)
c

DO 150 I =1, 13
M(216 + I) = T¥PX13(I)
QOEF (216 + I) = TPH13(I)
150 OONTTMNUE

C
C TRANSFER VALUES TO MATRICES
c

DO 170 ROW = 1, 22
AM(ROW 9 (OUTROW=1)+CUTCOL.) =M(ROW)
BM(ROW, G (QUTROW-1)+0UTCOL)=CORF (ROW)
170 CONTTNUE
180 CONTINUE
190 CONTINUE

LIMITS ON NUMBER OF CHARACTERS PER
LINE)
WRTTE(6,200)

c
c
C WRITE OUT MATRICES (BEWARE SYSTEM
C
C

200 FCRMAT('19X9 CYCLIC CONV. A MATRIX',/)
WRTTE(6,210) ((BM(T,J),J=1,81),1=1,229)
210 FORMAT(' *,81I3)
WRITE(6,220)
220 FORMAT('1 B MATRIX ¥ UNTRANSPOSED
& W SYSTEM' ,/)
WRITE(6,210) ((BM(T ,J),J=1,81),I=1,229)
c
o
C START ON THE C MATRIX
C
DO 420 OUTROW = 1, 229
DO 230 ROW = 1, 229
MP(ROW) = 0
230 CONTINUE
Mp(OUTROW) = 0
o

C POST MILT 3X3 OONV OPERATIONS

D2 T =1, 13
TEMP13(I) = MP(216 + I)
CONTINUE

CALL PST3X3(TEMP13, XL)

c
C POST MILTIPLICATION POLYNOMIAL
C PRODUCTS MID C9(Z)
o

D0 270 FOLY = 1 ,3
DO 250 POWER = 1, 18
TVPX1(POWER)=
& MP (1624 (PORER-1):18+PCHER)

20 CONTTNUE

189

C
CALL POSTCO(TMPX18,TEMPYS)
o
DO 260 POWER = 1, 6
XT (POLY ,FOWER) = TEMPX6(POWER)
260 CONTINUE
210 CONTINUE
C
C INVERSE POLY. TRANS. LENGTH 3 MOD C9(Z)
¢
CALL POLYT2(XI, XJ, .FALSE.)
o
C CRT RECOMBINATION OF Z%!3-9 BRANCH
c
CALL CRT1(XJ, XL, M)
C
C TRANSPOSE ARRAY
o
D0 290 POLY = 1,3
D0 280 POWER = 1,9
XN (POWER,POLY) = XM(POLY ,POWER)
280 CONTINUE
20 CONTINUE
c
C FINISH C9(Z) MATN BRANCH
c
DO 320 POLY = 1, 9
DO 300 FOWER = 1, 18
TMPX 18 (FOWER)=MP ((POLY-1)% 18+POWER
300 CONTINUE
C
CAIL POSTCO(TMPX18, TEMPXA)
C
D0 310 POWER = 1, 6
XD(POLY ,POWER) = TEMPX6 (POWER)
310 CONTINUE
320 CONTINUE
c
C INVERSE POLY. TRANS. LENGHT 9 MOD C9(Z)
o
CALL POLYT1(XD, XP, JFALSE.)
o
C FINAL CRT RECCMBINATTION
c
DO UOPOLY = 1, 9
0 POPEER= 1, 9
OUT (POLY ,POWER) = 0
330 CONTTINUE
U0 CONTINUE
C
D0 390 POLY = 1, 9
D0 350 POWER = 1, 6
TEMPX6 (ROWER) = XP(POLY ,POWER)
350 CONTINUE
C
CALL R1(TRMPX6, TEMPX9)
o

IO 360 POWER = 1, 9

OUT(PCLY ,POWFR) =
1 OUT (POLY ,POWER)-(3°TEMPX9 (POWER))

360 CONTINUE
C
DO 370 POWER = 1, 3
TEMPX3(POKER) = XN(POLY ,PCWER)
370 CONTINUE
C
CALL R2(TEMPX3, TEMPX9)
C

DO 3B POWER = 1, 9
OUT (PCLY , FOWER)=CUT (PCLY , POWER)+
1 TEMPX9 (POWER)
CONTTINUE
CONTINUE

380
3%0
C -
C

DO 410 ROW = 1, 9
ID 40O COL = 1, 9
QM(9™ (ROW-1)+C0L ,CUTROW)=

& OUT (ROW,00L)
o CONTTNUE
410 CONTINUE
420 CONTINUE
C

WRTTE (6,430)
430 FORMAT('1 C MATRIX ©% UNTRANSPOSED

ESYSTEM' ,/)

WRTTE (6,440) ((QM(T,J),J=1,229) ,I=1,81)
4o FORMAT(' *,22913)

SToP
ED
CREERARH AR H AN HHH R HH HHEH R H K HEHHAHHAH?
C
C REDUCTIONS MOD C9(Z) - CALLS NEXT
c ROUTINE
C
SUBROUTINE REDC9(IN, CUT)
INTEGER IN(9,9),0UT(9,6),ROW,COL
&,1(9),0(6)
C
DO 30 ROW= 1, 9
m10d=1, 9
I(C0L) = IN(ROW,COL)
10 QONTINUE
"~
CALL C9(I,0)
C
DD20OL=1,6
OUT(ROW,CCOL)= O(COL)
20 CONTINUE
30 CONTINUE
RETURN
END

Cmtt - HHHHHHHHH R
C

C ACTUAL REDUCTIONS MOD C9(Z)

C

190

SUBRCUTTNE C9(TN, QUT)
INTEFR TN(9), CUT(6)
amr(1) - W) - W7
ar(?) - TN(?) - TN(8B)
QUT(3) = IN(3) - IN(9)
aur(4) = M) - m(7)
auT(5) = M(5) - M(8)
QuT(6) = IN(6) - IN(9)
RETURN

END

i

REDUCTIONS MOD C3(Z)
CALLS NEXT ROUTINE

QOO0

SUBROUTINE REDC3(IN, CUT)
INTEGER IN(9,9), CUT(9,3), ROW, COL
&,1(9), 0(3)

c
. 0 30 ROW= 19 9
DD1MWL=109
I(COL) = IN(ROW,CCL)
10 CONTINUE
c
CALL C3(1,0)
C .
DD20L=13
OUT(ROWyCOL) = O((DL)
20 CONTINUE
30 CONTINUE
RETURN
o .

C+H—!—H++—9—H—H—H+H+++H—+—H+++i—++H—i+—H+H++
o
C ACTUAL REDUCTIONS MOD C3(Z)
o _
SUBROUTINE C3(IN, QUT)
INTEGER IN(9), OUT(3)

CUT(1) = IN(1) + IN(H) + IN(T)
QUT(2) = IN(2) + T(5) + IN(8)
QUT(3) = IN(3) + IN(6) + IN(9)

F

PRE-MULTIPICATION PCLYNOMIAL
MULTIPLICATION MOD C9(Z) (M=18)

oRe* NN

SUBROUTINE PRECO(X, H, M, COEF)
INTEGER X(6), H(6), M(18), COEF(18)

M(1) = X(B) + X(5)
M2) = X(1) + X(2)) - X)) + X(5))
M(3) = X(1) + X(2)

M) = X(5) + X(6)
M(5) = ((X(2) + X(3)) - (X(5) + X(6))

191

M(8) = X(2) + X(3)

M(T) = X() + X(6)
M(8) = ((X(1) + X(3)) - (X(W) + X(6))
M(9) = X(1) + X(3)

M(10) = X(&)
M(11) = X(1) - X(B)
M(12) = X(1)

M(13) = X(5)
M(14) = X(2) - X(5)
M(15) = X(2)

M(16) = X(6)
M(17) = X(3) - X(6)
M(18) = X(3)

QOEF (1) = (H(1) + H(2)) - (H(Y) + H(5))
COEF(3) = H(4) + H(5)

"COEF(4) = (H(2) + H(3)) - (H(5) + H(6))

CCEF(5) = H(2) + H(3)
QUEF(6) = H(5) + H(6)

COEF(7) = (H(1) + H(3)) - (H(W) + H(6))
CCEF(8) = H(1) + H(3)
COEF(9) = H(W) + H(6)

COEF(10) = H(1) - HW)
COEF(11) = H(1)
COFF(12) = H(W)

COEF(13) = H(2) - H(5)
COEF(14) = H(2)
Q0EF(15) = H(5)

QOEF(16) = H(3) - H(6)
COEF(17) = H(3)
COEF(18) = H(6)

NIw

™A no Nem M
DwOoL il RT 3 1\ —

Ll U

SUBROUTINE POSTC9(IN, CUT)
DMPLICIT INTEGER (P, Q, R, S, T)
INTRGER IN(18), OUT(6), F(18)

D10I=1,6
F(221-1) = IN(3PI-2) + IN(3%I-1)
F(2°T) = IN(3PI-2) + IN(37I)
CONTINUE

TO = F(7)
S0 = F(1) -~ F{(7) - F(9)

RO = F(5) - F(7) + F(9) - F(11) c

Q0 = F(3) -F89) - F(71) C INVERSE TRANSFORM SELECTED
PO = F(11) C
c 0 100 BOLY = 2, 9
T1 = F(8) DO 90 FOWER = 1, 6
S1 = F(2) - F(8) - F(10) TEMP(11-POLY ,POWER)=CUT (POLY ,POWER)
R1 = F(6) - F(8) - F(12) + F(10) 90 CONTINUE
Q1 = F(4) - F(10) - F(12) 100 CONTINUE
P1 = F(12) D0 120 POLY = 2, 9
c D0 110 POWER = 1, 6
QUr(1) = Q1 + TO OUT(PCLY ,POWER)=TEMP (FCLY , RCWER)
QT2 = <P1 + SO 110 CONTINUE
QUT(3) = RO 120 OONT
WTW) =W -1+ T1 RETURN
aur(s) = PO - P1 + 81 END
auT(6) = R1 CHHHHHHHHHHHHHHHHHRHHHRHH R
RETURN C
BD C PRE-MJLT 3X3 CYCLIC QONVOLUTION ALG.
Crr R R e C
o SUBROUTINE PRE3X3(X, H, M, COEF)
C POLYNOMIAI, TRANSFORM LENGIH 9 ROOT Z INTEGER X(3,3), H(3,3), M(13),
C MDD Co(2) & COEF(13), AM(13,9), BM(13,9),ROW, COL,
C & ROW1, COL1
SUBRCUTINE POLYT1(IN, CUT, FWD) C
INTBGER IN(9,6), OUT(9,6), TBMP(9,6), C GIVEN IN MATRIX FORM
& POLY, POLY1, POWER, INDEX C

LOGICAL FWD DATA ((AM(ROW,00L),COL=1,9),RCW=1,13) /
C X1, 1, 0,=1, 1, 0,=1, 1, Oy .

W2I=1,9 X 0,-1, 1, Op=1, 1, Og=T, 1,
0 10J=1,6 X1, 0, 1,=1, 0, 1,1, 0y 1,
OUT(I,J) = 0 X1, 1, 0y Oy=1, 1, 1, Op=1,
10 CONTTNUE X 0,=1, 1, 1, 0j=1,=1, 1, O,
20 CONTINUE X1, 0, 1, 1,=1, 0, 0, 1,=1,
c , %1, 1, 0, 1, 0y=1, 0,=1, 1,
DO 80 POLY1 = 1, 9 X 0,-1, 1o=1, 1, 0, 1, 0,=1,
ID 70 FCLY = 1, 9 =1, 0, 1, 05 1,=1, 1,1, O,
IO 60 FOWER = 1, 6 X=T,=1,=1, 1, 1, 1, 0, O, O,
INDEX= (POLY 1-1)2 (POLY-1)+POWER-1 X 0, 0, Oj=Ty=T,=1, 1, 1, 1,
30 TF (INDEX .LT. 9) GO TO 40 X-1,-1,=1, 0, 0, 0, 1, 1, 1,
TNDEX = INDEX - 9 X1, 1, 1, 1,1, 1, 1,
GO TO 30 c
4o IF (INDEX .GT. 5) G0 TO 50 DATA (EM(ROW,CCL),00L=1,9) ,RO0W=1,13) /
OUT (POLY 1, TNDEX+1)= X 0,-1, 1, Op=1, 1, Op=1, 1,

cooglg

OUT (POLY 1, TNDEX+ 1)+IN(POLY ,PUWER)
GOTO 60

IN[EX = INDEX - 3

QUT (POLY 1, TNDEX+1)=

OUT (POLY 1, INDEX+ 1)-IN(POLY , FOWER)
INCEX = INLEX - 3

OUT (POLY 1, TNDEX+1)=

OUT (POLY 1, INDEX+ 1)-IN (POLY ,POWER)

X-1, 0, 1,=1, 0, 1,-1, 0, 1,
X"19 19 09"19 19 09"‘19 19 09
X 0,-1, 1, 15 05=1,=1, 1, Oy
%=1, 0, 1, 1,-1, 0, O, 1,-1,
%=1, 1, 0, 0,1, 1, 1, 0,-1,
X 0,=1, 1,=1, 1, 0, 1, 0p=1,
-1, 0, 1, 0, Ty=1, 1,-1, Oy
X-1, 1, 0y 1, 0,=1, Op=1, 1,
X0, 0y 0p=Ty=1,=-1, 1, 1, T,
X-15=14~1, 0, 0, 0, 1, 1, 1,
X-14=1,=1, 1, 1, 1, 0, O, O,
X1, 1, 1,1, 1, 1, 1, 1, I/

192

10
20
30

F

A

o NeNeNe e

DO 30 ROW = 1, 13
M(ROW) = 0
COEF (ROW) = 0
IO 20 ROW1 = 1, 3
D0 10 COLT = 1, 3

M(ROW) = M(ROW) + X(ROW1,4-COL1)%
& AM(ROW ;3% (ROW1-1)+C0L 1)

OOEF (ROW) = COEF(ROW) +

&BM(ROW,3(ROW1-1)+CCOL1) © H(ROW1,4-COL1)

CONTINUE
CONTTNUE
CONTINUE

POST MULT. 3X3 CYCLIC CONVOLUTION

SUBROUTINE PST3X3(M, Y)
TMPLICIT INTEGER (G,L)
INTEGER M(13), Y(3,3), POLY, POWER

GOO = M(1)+M(2)+M(U)+M(5)+M(7)+M(8)
GO1 = M(1)+M(3)+M()+M(6)+M(7)+M(9)

G10 = M(1)+M(2)+M(6)-M(5)-M(T)-M(9)
G11 = M(1)+M(3)-MU)M(5)M(9)+M(8)

G21 = M(1)+M(3)-M(6)+M(5)-M(7)-1(8)
G20 = M(1)+M(2)-M(%)-M(6)+M(9)-M(8)

LO = 2M(10) + M(11) + M(12) - M(13)
L1 = M(10) + M(11) - 224(12) - M(13)
L2 = -M(10) - 2M(11) + M(12) - M(13)

Y(1,3) = -(GOO + GO1 +L.1)
Y(1,2) = -(-ZG01 + GO0 + L1)
Y(1,1) = -(-2<G00 + GO1 + L1)

Y(2,3) = -(G10 + G11 + L.2)
Y(2,2) = -(-2%G11 + G10 + L2)
Y(2,1) = -(-2%G10 + G11 + L2)

¥(3,3) = -(G20 + G21 + LO)
¥(3,2) = =(-ZG21 + G20 + LO)
Y(3,1) = =(-2G20 + G21 + LO)

RETURN
END

L i o e 0 i e T e e i o e

POLY TRANSFCRM LENGTH 3 ROOT Z%23
MDD C9(Z)

SUBROUTINE POLYT2 (I, OUT, FWD)
INTEGER 1(3,6), OUT(3,6), TBYP(3,6),
& FOLY, FOWER, POLY1, POWER

LOGICAL FWD

aQ

58

50

€0

IO 20 POLY = 1, 3
0 10 POWER = 1, 6
OUT(POLY, POWER) = 0
CONTTNUE
CONTINUE

D 40 ECWER = 1, 6
0 30 POLY = 1, 3
OUT(1,POWER)=
& OUT(1,BOWER)+I(POLY ,POWER)
CONTTNUE
CONTTNUE

OUT(2, 1)=1(1,1)=T(2,4)+1(3,4)-1(3,1)
QUT(2,2)=1(1,2)-1(2,5)+L(3,5)-1(3,2)
OUT(2,3)=I(1,3)-1(2,6)+1(3,6)-1(3,3)
QUT(2,1)=I(1,4)-1(2,4)+1(2,1)-I(3,1)
OUT(2,5)=1(1,5)-1(2,5)+1(2,2)-1(3,;2)
OUT(2,6)=I(1,6)-1(2,6)+I(2,3)-1(3,3)

QUT(3,1)=I(1,1)+I(2,)-I(2, 1)-I(3,1)
0UT(3,2)=I(1,2)+I(2,5)-I(2,2)-1(3,5)
OUT(3,3)=I(1,3)+I(2,6)-I(2,3)-1(3,6)
OUT(3,4)=I(1,4)-I(2,1)-I(3,4)+I(3,1)
OUT(3,5)=I1(1,5)~I(2,2)-I(3,5)+I(3,2)
0UT(396)=I(1 96)‘I(293)—I(396)+I(3g3)

TF (FWD) RETURN

ID 50 POWER = 1, 6
TEMP(2,POWER) = QUT(2,POWER)
TEMP(3,POWER) = OUT(3,POWER)

CONTTNUE

ID 60 POWER = 1, 6
OUT(3,POWER) = TEMP(2,EOWER)
OUT(2,BCHER) = TEMP(3,POWER)

CONTINUE

RETURN
END
CR RN R RN R A H AR E HEH N RN

[eEeNeNe X!

10
2
c

CHINESE REMATNDER THECREM
RECOMBINATIONS THIS RCUTINE USES THE
NEXT TWO

SUBROUTINE CRT1(IN1, IN2, OUT)
INTEGER IN1(3,6), IN2(3,3), CUT(3,9),
& TEMP6(9), TEMPI(9), TEMP3(3),

& POLY, POWER

00 20 POLY = 1, 3
0 10 POVER = 1, 9
OUT(POLY ,POWER) = 0
CONTTNUE
CONTTNUE

193

e85

°3

DO 70 POLY = 1, 3
M 30 POWER = 1, 6
TEMP6(PCWER) = IN1(POLY,POWER)

CONTINUE
CALL R1(TEVP6, TEMPG)
0O L0 POWER = 1, 9
CUT (POLY ,POWER) = CUT(POLY ,POWER) -
& 3RTEYPY (FOWER)
CONTINUE
0 50 POWER = 1, 3
TEMP3(POHER) = IN2(POLY,POHER)
CONTTNUE
CALL R2(TEMP3, TEVP9)
IO 60 POWER = 1, 9
QUT(POLY ,FOWER) = OUT(POLY,POWER) +
& TEMPO(POHER)
CONTINUE
CONTINUE

POLYNOMIAL MILTTPLICATION BY
RECOMBINATION POLYNOMIAL FOR C9(Z)

SUBROUTINE R1(A, OUT)
INTEGER A(6), OUT(9)

OUT(1) = A(Y) ~ A1)
QUT(2) = A(5) - 22A(2)
QUT(3) = A(6) - Z(3)
QUT(4) = A(1) - 2 (W)
QUT(5) = A(2) - 27A(5)
QUT(6) = A(3) = ZHA(6)
QUT(7) = A(1) + A(Y)
QUT(8) = A(2) + A(5)
aIT(9) = A(3) + A(6
FETURNY _ -

|

QO aN

10

FOLY MILT FOR ZH%3-1 RECOMBINATION
POLYNCMIAL

SUBROUTINE R2(B, CUT)
INTEGER B(3), OUT(9), POLY

DO 10 POLY = 1, 3
OUT(PCLY) = B(POLY)
QUT(POLY+3) = B(PCLY)
QUT(PALY+6) = B(PCLY)

CONTINUE

RETURN

ED
- it e e b e e

194

Appendix IIT

This appendix contains a 15-point Discrete Cosine Transform (DCT)

The algorithm is for data in natural order, there are 19

algorithm.

The coefficients are arranged

coefficients all of which are positive.

so as to give the minimum total number of columns in the one-bit

systolic arrays discussed in chapter 8.

The A matrix is

1)

- QO O - - — — = — - O
| t [| [
—FOO0O -~~~ 000000~ 0O00OO
—FO0O00O0O0Or~O0O 00~ 0 0000
— 0O v — Lot ol i Bl o — = O O v
LI T | L} 0
TO0OTTTO000000T00T 00
f
- O O e e o = - — O
1 ! | LI LI B |
— QO ™ — v Lt o i 2l i —-—— OO0 ™
LI I | 1 LI |
—F0 00000000000~ 0O0O0OO0O
— O ™ v ™ ™ — T — = = - — O O v
— - O O T e T = — = — O
] !
~—T0 00T~ ~0000O0QO—0O~0O
i
- QO — - — — O O
ir o 1
—0O000O0O0~0O0O~O0O0O~000O0C
|
...IOOqI.._n — OO0 0O0O0 [eNeloNaNol
I
-~ OO — = T = T - — - - O
N 1 i | [| 1 LI | y

The C matrix is

0o 000 00 00 OO 0O0O0O0CTO0O

(1

-1

1

0 -1

0 0 t-1 1 0 0 O0-1
1

0 -1

0 0 O

0 0 0 0 -1

0 0 0 00 0 0 O0 O 0 0-=-1

1 -1

0-1 0 0 0 1

-1

1

0 0 0 0 0 -1

O
< O
< O
OO
Cr —
o o
< O
- O
o O
< O
o O
<
o
ﬂ.vo
o O
< O
o o

O O

01 0 0 0-1 0 1=1-1
0 0 0-1-1-9 0-1 0 0 O 1

0

0 0

0 0 0 0 0-1
1

0 0 0 0 0 O

-1 0 0 0 000 0 0 0 0O
0 0 0 O
0 0 0 -1

1
1

-1

-1 0 0 O 0 -1 1

0 0 -1

1

00 0 0 0-1-1
00 00
0 0 0 00

-1

1 0 0 0 1

1

0 0 0 -1 -1

0 -1

1

0 0 1

1

-1 1 0 -1

1

195

The coefficients for the above algorithm are found as follows (all

values are positive and are to b2 multiplied by J(2/15).

DO = sinu3 L DY = sin2u5
D2 = sinu5 + sin2u5 D3 = sinu5 - sin2u5
D4 = cosu, - 1 D5 = %(cosu5 + coszus) -1
D6 = %(cosu5 - cosZuS)

where uy = 2%/3 and ug = 27/5. The coefficients are
m, = 14/2 m, = -D4 Mg = 1
m, = D0.D3 Dy = =D4.D1 Moy = D4 .D5
m, = -D4.D2 my = D0.D1 D5 = -DU.D6
my = D2 0,0 = DO Dy = D3
m, = D1 m,, = -D0.D5 _ my, = -D4.D3
m5‘= -D5 m,, = D0.D6 m,g = D0.D2
me = D6

196

IMPLEMENTATIOR OF CONVCOLUTION
AND FOURIER TRANSFORWVIS USING
1-BIT S8YSTOLIC ARRAYS

Indexing terins: Signal processing, Systolic arrays

The use of systolic arrays of 1-bit celis to implement circular
convolution and DFTs is described. The architecture is very
well suited to VLS implementation. 1t is shown that con-
siderable simplification of the architecture is possible for
real-valued DFTs.

Introduction: Recently McCanny and I\/I(:W}:irtf:z"'.2 have
demonstrated how arrays of idertical [-bit processing ele-
ments can be used to perform pipelined multiplication and a

bit-sliced transform. Both of these are regular structures parti-
cularly suited to implementation in VLSI. This letter shows
how these two structures may be combined to perform circu-
lar convolution and Fourier transforms by using algorithms
presented by Winograd.*

Convolutions and the Winograd transform algorithm (WFT A):
Agarwal and Cooley® and Winograd* showed how fast con-
volution algorithms could be derived using a small, often the
minimum, number of multiplications. Winograd applied a
theorem due to Rader® to use these convolutions to perform
DFTs. For the convolutions and the WFTA the general form
of the algorithm is

Y = C(4y x Bz) ()

where Y is the transform of the input date y. A and B are
N x M rectangular matrices, N being the transform length
and M the number of multiplications. C is an M x N matrix.
x denotes pointwise multiplication and the product Bz is
precalculated as a series of M coefficients. For the WFTA
these coefficients are either purely real or purely imaginary.

In all the convolution and DFT algorithms given by Win-
ograd.* except the 9-point DFT, the 4 and C matrices contain
only the elements ~1, 0 and + 1. A 9-point DFT of this form
can be constructed at the expense of an extra multiplication. It
is also possible, using polynomial transforms due to Nussbau-
mer,%7 to construct two-dimensional convolution algorithms
of the same form as eqn. ! in which the 4 and C matrices
contain only —1, 0 and + 1. Thus the method of computation
is the same in each of these cases—a multiplication by a
matrix containing 0, —1 and +1 and a multiplication, fol-
lowed by a further multiplication by a matrix containing 0,
—land +1.

Proposed architecture: McCanny and McWhirter® described a
pipelined bit-slice transform array which performs a matrix
times vectors transform in the form Wx =y, where W is an
n x n matrix of 1-bit coefficients. Utilising two control bits
and two's complement arithmetic, their basic cell can be ex-
tended to operate with coefficients of —1, 0 and +1. When-
ever W,;is —1 the input word is complemented bit by bit and
unity is added to the LSB via the carry-in and the top row of
cells.

An N x M, or M x N, matrix requires N + M — 1 columns
and b+ log,(M), or b+ log,(N), rows of processor cells,
where b is the number of bits of input data. As the array is no
longer square, a gap of M — N, (M > N), cycles is needed
between successive sets of data. This extended array can now
perform the 4 and C matrix multiplications.

The input and output words for this transform array are
staggered bit by bit. The stagger on the output from the bit-
slice transform array is the same as that needed for one of the
input words for the two’s complement pipelined multipler de-
scribed in Reference 2. Furthermore, the stagger on the output
from the multiplier is the same as the input into the bit-slice
transform array. Thus, if a system of transform array, multi-
plier and transform array is used in calculations of the form of
eqn. 1, the arrays of cells can be laid end to end with no reed
for immediate data skew. The throughput of such a cell system
is limited by the propagation delay through one cell. The
transform array and multiplier cells are very similar.

in the transforma array only every alternate processor is
active and datz erters and leaves the array on alternate cycles.
However, with the samme clocking rate, the multiplier architec-
ture can handie data on every cycie. So the multiplier can
prccess two seis of data to tke transform arrays’ oze. If the
‘spare’ processers in the transform array were utilised, these
two sets could e the real and imaginary paris of 2 complex
DFT.

Simplifications to the C matrix for real DFTs: Parsons®
showed that each of the C matrices in the small-n WFTAs can
be simplified by noting that for a DFT of real data ¥y_, = I3,
where ® denotes complex conjugation. Thus there is some
redundanrcy ir the C matrices. This is most clearly seen if the
real and imaginary coefficients are separated into twe distinct
groups: e.g. for N = 5,

For a real input the vertical partition separates those elements
contributing to the real and imaginary parts of the transform.
The horizontal partitions mark off the n = 0 term and the first
and second halves of the transform. (For even N the n = N/2
term is also partitioned.)

y and § generate the complex conjugates of the terms re-
sulting from o and f. Therefore we define a new matrix C’ in
which y and é are discarded and the remaining coefficients

rearranged:
¢ 0
=fa 0
0 B

This places the real part of the first half of the transform into
the first half of the output vector, and the imaginary part of
the first half into the remainder of the output vector. The
coeflicients are entered into the transform arrays in the shape
of a parallelogram. For N = 5, with data words moving left to
right and sums right to left, the arrangement is

oO~0o 00
—_—— O 00

~OOO0Q

0
1
-1
0
0

DO
SOm=—O

(] t
0! 1 '
0 : 1 o ! coefficients
0 0, 1 of !
0 0 | 0 0 1 0
0 0 -1 01 0
o 1 1 10
0 1 1!
0 ro
| 1 |
______ Fm————————-
! I
data words — « sums

Note that, because of the redundancy and the coefficient re-
arrangement, the three left-hand and the two right-hand col-
umns contain only zeros. So the corresponding columns of
processors never contribute to the matrix product and may be
omitted. This halves the array size needed. Additionally, in
this example, a further column can be deleted. Also, at least
one column can be saved in each of the DFT 4 matrices.

Conclusion: We have proposed a general architecture which
can perform convolutions and DFTs. This architecture is very
easy to implement in VLSI with only three cell types needed:
a transform array, a multiplier and a shift register for the
initial and final data skewing. Furthermore, the architecture
has all the inherent features of systolic arrays. There is a high
throughput, and transform size is limited only by the level of
integration possible. Partitioning the C matrix avoids the need
for complex arithmetic, and the C matrix transform array can
be significantly reduced in size for real valued DFTs.

Reprinted from ELECTRONICS LETTERS 2nd September 1982 Vol.18 No.I8 pp.799—-8017

J. S. WARD 13th July 1982
B. J. STANIER

Department of Applied Physics & Electronics

University of Durham
South Roaed, Durham DHI 3LE, England

References

1

MCCANNY, J. V., and MCWHIRTER, J. G.: ‘Implementation of signal
processing functions using 1-bit systolic arrays’, Electron. Lett.,
1982, 18, pp. 241-243 '

MCCANNY, J. V., and MCWHIRTER, !. G.: ‘Completely iterative pipe-
lined multiplier array suitable for VLSY, IEEE Proc. G, Electron.
Circ. & Syst., 1982, 129, pp. 40-46

AGARWAL, R. C., and COOLEY, J. w.: ‘New algorithms for digital
convolution’, IEEE Trans., 1977, ASSP-25, pp. 106-124

4 WINOGRAD, s.. ‘On computing the discrete Fourier transform’,
Math. Comput., 1978, 32, pp. 175-199

5 RADER, C. M.: ‘Discrete Fourier transforms when the number of
data samples is prime’, I[EEE ‘Proc., 1968, 56, pp. 1107-1108

6 NUSSBAUMER, H. 1.: ‘Digital filtering using polynomial transforms’,
Electron. Lett., 1977, 13, pp. 386-387

7 NUSSBAUMER, H. 1., and QUANDALLE, P.: ‘Computation of convolu-
tions and discrete Fourier transforms by polynomial transforms’,
IBM J. Res. Dev., 1978, 22, pp. 134-144

8 PARSONS, T. w.: ‘A Winograd-Fourier transform algorithm for
real-valued data’, IEEE Trans., 1979, ASSP-22, pp. 398402

0013-5194/82/180799-0381.50/0

FAST DISCRETE COSINE TRANSFORWI
A_LGORITHI. FOR SYSTCLIC ARRAYS

Indexing terins: Signal processing, Systolic arrays

A fast algorithm for an N-point discrete cosine transform
(DCT) is derived from a 4N-point Winograd Fourier trzns-
form algorithm (WFTA). This algorithm, which has the same
form as Winograd's Fourier transform and convolution algo-
rithms, is suitable for a high-speed implementation using
one-bit systolic arrays.

Introduction: Several authors'? have shown that the discrete
cosine transform is a good technique to adopt for the data
reductior. of video signals. Earlier methods cf realising the
DCT have, for the most part, been based on the fast Fourier
. transform (FFT}.>~% An alternative technique, using Hada-
mard sparse matrices, has been proposed and implemented.’
Here, a2 method of deriving efficient DCT algorithms is pro-
posed based on length 4N Winograd Fourier transform algo-
rithms (WFTA). This technique yields algorithms using less
multiplications than the method, also based on the WFTA,
outlined in Reference 5.

Furthermore, an efficient implementation is proposed based
on the systolic arrays given by McCanny and McWhirter.?

Theory: The discrete cosine transform may be defined as

1 N—-1

C(0) =78 Y x(n)

=0
) e (252)
k=1,....,.N—1 (1)
with inverse
1 2\ ¥! kn(2n + 1)
x{n) = W C0) + \/(N) kgl c(k) cos (T)’
,N=-1 (2

n=01,...

Notice that, unlike the discrete Fourier transform, the DCT
cannot be used as its own inverse. The DFT of R points is
defined as

N 1 R 2 . (2
Flq) = ﬁ p};o x'(p) I:cos (%) + j sin (%):I,

g=0,1,...,R—-1 (3)

with inverse

x(p) = ﬁ Z. F(g) [cos /27;541) —jsin (27;5(1)

So a DCT may be calculated by a DFT by noticing that

Nil x{n) cos (k—n%i2> = Re Ril x'(p)
n=0 p=0

2npq . . {2npq
X [cos(—-R >+Jsm(R

if

R =4N
and

x2n+1)=xm), n=0,1,...,.N—1
otherwise

xXth=01#2n+1 1=C 1, ...,4N -1

Thus the calculation of the DCT may be described as placing
the N terms of the DCT input sequence in the first N odd
points (I, 3, S, ..., 2N — 1) of a 4N-length sequence. All the
other terms are zero. Then a Fourier-like transform is per-
formed by multiplying by the real part of exp {—2npg/R}. The
DCT, except C(0), is found as the first N — 1 terms of F(g).
From the definitions given above, some normalisation coeffi-
cients are needed.

Application of Winograd Fourier transform algorithm: Win-
ograd’s Fourier transform algorithms* each have the general
form

Y =4y @ Bz) &)

where ® denotes pointwise multiplication, p is the data and ¥
its transform. 4 is an M x N (row x column} matrix and C an
N x M matrix; both contain only +1, —1 and 0. The prod-
uct Bz is precalculated and given as a sequence of M coeffi-
cients. These coefficients are either real or imaginary, never
complex. A WFTA of 4N points is easily modified to calculate
an N-point DCT. The procedure is described below.

(i) Only the columns corresponding to the first N odd samples
of the 4 matrix are retained. All other columns are discarded
as they operate on zero inputs.

(i) Since the DCT involves no complex arithmetic—it has no
imaginary values—all the imaginary WFTA coefficients may
be removed. The corresponding rows of the 4 matrix and the
corresponding columns of the C matrix are now deleted.

(iii) Some rows of the A4 matrix may now be all zero. The
coeflicients for each of these rows may be removed along with
the appropriate column of the € matrix.

(iv) The second to Nth rows of the C matrix are retained.
These represent the DCT—all the others should be discarded.

(v) By inspection it may be possible to simplify the C matrix.
For example, a column of zeros represents an unused coeffi-
cient. Such coefficients and the equivalent rows of the 4
matrix should be removed from the algorithm.

(vi) Finally the C(0) term is added to the algorithm. The exact
arrangement of the normalisation coefficients in egns. 1 and 2
determines the number of additional multiplications to be
added to the algorithm. With the definitions given above one
extra multiplication is needed.

The above procedure results in an efficient algorithm for the
calculation of the DCT using a small number of multipli-
cations.

The same idea can be applied to derive an inverse DCT
from the forward WFTA. In this case the first N — 1 columns
of the 4 matrix and the first N odd columns of the C matrix
are used, i.e. the opposite way round to the forward DCT.

Implementing the DCT: We have previously shown how DFT
and convolution algorithms of the general form of eqn. 5 can
be implemented using 1-bit systolic arrays.** DCT algorithms
derived by the above method still have the general form of
eqn. 5. A 15-point DCT algorithm is given below. This algo-
rithm has been arranged so that all the multiplication coeffi-
cients are positive, and the coefficients are ordered so as to
reduce the number of columns of ‘transform array’ cells re-
quired for this algorithm.

Reprinted from ELECTRONICS LETTERS 20th January 1983 Vol. 19. No. 2 pp. 58 - 60

15-point DCT matrices: The A matrix, for data in natural
order, is .

[N
|

COOLO=O0OOOOO= == mDO—

-1
-1
-1

—
|
—_ O e

OO~ 00O mrm OO —
i

—
t
——) D =

COm QOO0 OO m == OO0

-1

[
—_——

-1
-1
~1
1
1
1 -1
0 ~1
0 —1

|
-

o [
-

|
—

[|
|

—_ D O et s e e b i et b b e s et (D et

I
—
—_

—
—

—
—

|
-
i

Otttk b ek b bt e e b e (D) €D e

€ b it et et bk e kb ek S bt b (D € e

|
—
COCOO—DO~OO~0000O0Q—

[Y = Y T S T e O =
SO Om OO0 O0OO0OOOOOoO 0O~
-

—
(=]

|
l

OO~ OOOO0OQO " m~=O0QO—
t

=R =

OO0~ OLROO~TOOO0OO ~

[=]

The C matrix, with the output in natural order, is

{
COO—O—QOOOODO~O

i

|

i

|

!

|

f
C—00VOC VOO~ O0S

t
—_O~, OO0~ 0=~ 0O~0—~00
|
OO0 OCO=O0O0O= O =TS

C=O=000—-000CQO0O—~C

O, O - 00O~ 00000~
|

|
CO000CO—~0OOOO~0C
1
|

I
i
—OOO O~ OO0~ O -OO
1
{
|

COO0O—=000DO0O0O0DOO—-C

C=O—=O0—0—=QQOoO~=0O=0

!
—O— 00O~ —~0=-0—-00Q
i
|
!
OO0~ 000~ 0~00O0~C
!

OmOmOO0O0—~000OO0O—~0C

i

CODOCQOOOODOO0O0 —
— o000 —=0CLO—~C—00
P - S R . I . R L A = I N -}
i

—-OQO0OO0O= OO~ O =00
C—= 0000 —~0QOOOoOOC
—~ OO0 O00O0LO—~00O0OC

The coefficients for the above algorithm are found as follows
(all values are positive and are to be multiplied by \/(2/ 15)):
MO =sin U,

M2 =sin Ug + sin 2U;

M4 =cos Uy—1

M6 = 1/2(cos Ug — cos 2U)

M1 =sin 2U,
M3 =sin U, — sin 2U;,

where U, = 2n/3 and U = 2n/5. The coefficients are:

1 12 11 MO

2 MO . M3 12 —MO . M5
3 —M4.M2 13 MO . M6
4 M2 14 1-0

5 Ml 15 M4 . M5
6 —MS5 16 —M4 . M6
7 M6 17 M3

8 —M4 18 — M4 . M3
9 —Mé. Ml 19 MO . M2

10 MO . M1

MS5 = 1/2(cos Ug + cos 2U,) — 1

An implementation of a DCT algorithm using these systolic
arrays would have a throughput high enough to cope with
real-time television pictures.

Conclusion: An efficient algorithm for perfcrming the discrete
cosine transform has been derived. The -aigorithm is well
suited to implementation using 1-bit systolic arrays. If advan-
tage is taken of alternate cells being unused in the design for
the transform arrays in Reference 8, conside;able‘compaction
in the size of the arrays is possible. Such compactions would
allow small length DCTs to be implemented in systems re-
quiring only a few VLSI chips.

1'S. WARD

B. J. STANIER

Depart'niept of Applied Physics & Electronics
University of Durham

South Road, Durham City DH1 3LE, England

19th November 1982

References

1 CHEN, w, and SMITH, . H.: ‘Adaptive coding of monochrome and
colour images’, [EEE Trans., 1977, COM-25, pp. 1285-1292
2 ROSE, 1. A., PRATT, W. K., and ROBINSON, A. S.: ‘Interframe cosine
transform image coding’, ibid., 1977, COM-25, pp. 1329-1339
3 AHMED, N., NATARAJAN, T, and RAO, K. R.: ‘On image coding and a
discrete cosine transform’, ibid., 1974, C-23, pp. 90-93
4 HARALICK, R. M.: “A storage efficient way to implement the discrete
cosine transform’, ibid., 1976, C-25, pp. 764-~765
5 NARASHIM, M. J., and' PETERSON, A. M.: ‘On the computation of the
discrete cosine transform’, ibid., 1978, COM-26, pp. 934-936
6 HEIN, D., and AHMED, N.: ‘On a real-time Walsh~Hadamard/cosine
transform image processor’, ibid., 1978, EMC-20, pp. 453-457
7 GHANBARIL, M. and PEARSON, D. E.: ‘Fast cosine transform im-
plementation for television signals’, IEE Proc. F, Comrmun., Radar
& Signal Process., 1982, 129, pp. 59-68
8 MCCANNY, J. V., and MCWHIRTER, J. G.: ‘Implementation of signal
processing functions using 1-bit systolic arrays’, Electron. Lett.,
1982, 18, pp. 241-243
9 MCCANNY,). V., and MCWHIRTER, J. G.: ‘Completely iterative pipe-
lined multiplier array suitable for VLS, 1EE Proc. G, Electron.
Cire. & Syst., 1982, 129, (2), pp. 40-46
10 WINGGRAD, S.: ‘On computing the discrete Fourier transform’,
Math. Comput., 1978, 32, pp. 175-199)
11 WARD, J. §, and STANIER, B. J.: ‘Implementation of convolution and
Fourier transforms using 1-bit systolic arrays’, Electron. Lett.,
1982, 18, pp. 799-801

0013-5194/83/020058-0381.50/0

