
Durham E-Theses

Binary Relation Database BIRD: Issues of

Representation and Implementation

Piercy, Richard Michael

How to cite:

Piercy, Richard Michael (1989) Binary Relation Database BIRD: Issues of Representation and

Implementation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6727/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6727/
 http://etheses.dur.ac.uk/6727/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Binary Relation Database BIRD :

Issues of Representation and Implementation

Richard Michael Piercy

A thesis submitted for the Degree of

Master of Science

of the University of Durham

School of Engineering and Applied Science

(Computer Science)

University of Durham

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

December 11, 1~~~

1 1 MAY 1990

Abstract

This thesis presents a study of two issues, integrity and homogeneity of information
representation, within the area of databases. Treatment of these issues were studied
within the standard and semantic database models, leading to the proposal of a
new model, the Binary Relation Database, BIRD. The BIRD model uses the binary
relationship as the basis for the representation of all database data and meta-data.

The inadequacy of integrity definition facilities within current database technol­
ogy are elaborated in this thesis and were taken into account in the BIRD system.
The effects of inhomogeneity of database data and meta-data in current databases
are described and the benefits of the homogeneity of information representation in
BIRD demonstrated.

BIRD was implemented as a prototype database system, using Modula-2, -the
implementation and subsequent evaluation of the system are included in this thesis.
A simple user menu driven user interface to BIRD was constructed, - the user may
manipulate information at any conceptual level in the system in a homogeneous
manner. The user is free to manipulate information from any conceptual level at
any time, - BIRD ensures that the database is returned to a consistent state before
the next operation may take place.

The new model proposed in this thesis fulfilled its objectives, - suggestions for
further and implementation oriented work are presented at the end of the thesis.

Acknowledgements

This work was supported by the Science and Engineering Research Council.

I wish to thank the staff of Computer Science for their support and friendship
during the course of my undergraduate and postgraduate studies. Thanks are also
due to F. W. Calliss for help along the way, particularly with the subtleties of
LaTeX word processing and to my long suffering house-mate, Dr. S. T. Wait, for
his culinary expertise and help with proof reading.

Contents

1 Introduction

1.1 Introduction to Databases

1.2 Expository Example . .

1.3 Structure of the Thesis

2 Record Oriented Database Models

2.1 Hierarchical Data Model

2.2 Network Data Model .

2.3 Relational Data Model

2.4 Summary . .

3 Semantic Oriented Data Models

3.1 Introduction .

3.2 RM/T

3.3 Entity-Relationship Models

Semantic Database Model . 3.4

3.5

3.6

IFO : A Formal Semantic Database Model .

Discussion

11

1

1

3

3

5

5

9

13

18

21

22

24

27

29

33

35

..

4 Database Integrity

4.1

4.2

4.3

4.4

Introduction ...

Conceptual Levels of Information in a Database

Database Integrity Constraints

Treatment of Integrity within Traditional Databases .

4.4.1

4.4.2

4.4.3

Definition of Explicit Integrity Constraints

Enforcement of Referential Integrity

Integrity Maintenance at the System Level

4.5 Treatment of Integrity within Semantic Models

4.6

4.5.1

4.5.2

Integrity Issues within RM/T

Integrity Issues within other Semantic Models

Discussion ·.

37

38

38

39

40

40

43

45

46

46

48

51

5 Homogeneity of Information Representation in Databases 52

5.1 Homogeneity of Information in Record Oriented Databases . 53

5.2

5.3

5.4

5.1.1 Representation and Manipulation of Schema Information 53

5.1.2 Representation and Manipulation of Application Data. 59

5.1.3 Discussion

Homogeneity of Information in Semantic Models

Related Work

Summary ..

60

61

61

64

6 Formation of the BIRD Model 65

65 6.1 Motivation

lll

6.2

6.3

Conceptual Structure .

6.2.1

6.2.2

6.2.3

Nodes

Relationships

Levels of Information

Manipulation of Information

6.3.1

6.3.2

Insertion .

Deletion .

7 Design of BIRD

7.1 Principles ..

Data Structure

Relationships .

7.2

7.3

7.4 Modular Structure and Levels of Procedures .

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

Level Zero

Level One

Level Two

Level Three

Menu

8 Implementation of BIRD

8.1 Data Structure ..

8.2

8.3

Modular Structure

Implementation of Levels .

8.3.1 Database

lV

66

67

68

69

71

71

72

74

74

75

77

79

79

81

82

83

85

87

88

90

91

91

8.4

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

Level Zero

Level One

Level Two

Level Three

Menu.

Conclusion . .

9 Operation and Evaluation of BIRD

9.1

9.2

9.3

9.4

Information Insertion

Information Deletion .

Information Retrieval .

Is-a Relationships

92

92

94

95

95

98

102

103

108

110

111

9.5 Comparison of BIRD with Record Oriented Implementation 114

Schema Definition . . .

Information Insertion .

Information Deletion .

Information Retrieval .

9.5.1

9.5.2

9.5.3

9.5.4

9.5.5 Discussion of Comparison

9.6 Conclusion

10 Conclusions and Further "\Vork

o o o. Appendix o o o

A Bibliography

v

114

116

117

117

118

118

120

124

B Constituent Functions of BIRD 128

Bol BIRD DATA TYPES 128

Bo2 Level 0- LO 130

Bo3 Levell - Ll 134

B.4 Level 2- L2 138

B.401 Level 2 Deletion - DEL 138

B.402 Level 2 Input - IP 0 0 139

B.4o3 Level 2 Insertion - IN 141

B.4.4 Level 2 Database Integrity DI 143

B.4o5 Level 2 Output - OP 0 0 145

B.4o6 Level 2 Retrieve - RET 147

Bo5 Level3- L3 0 0 0 0 0 0 0 0 0 0 0 150

Bo5o1 Level 3 Deletion- DEL 150

Bo502 Level 3 Insertion - IN 151

Bo5o3 Level 3 Output- OP 152

Bo6 Level4 Menu ••• 0 •• 0 • • 0 ••• 0 • 0 ••• 0 •• 0 • 0 •••• 0 152

Vl

List of Figures

2.1 Modelling Many to Many Relationships Via Record Duplication . . 7

2.2 Modelling Many to Many Relationships Using Connection Records . 8

2.3 Structure of Relations in the Relational Data Model 14

5.1 Schema Definition Statements in the Network Data Model (top) and

Relational Data Model (below) . 54

5.2 Contents of the System Catalogues "relation" (top) and "integri-

ties" (below) in INGRES 5.0 Relational Database. 56

5.3 Sample Output of the "help" Command in INGRES 5.0 Relational

Database- "HELP Relation" (top) and "HELP INTEGRITY ON

InvOrder" (bottom) 58

5.4 Examples of Standard Query Language, SQL, Commands 59

6.1 Conceptual Structure of BIRD 70

7.1 Array Structure Underlying BIRD . 76

7.2 Constituent Levels of BIRD . 80

vn

801 BIRD Database Array Cell Structure at Different Conceptual Levels 89

802 Part of the Modula-2 Definition of the BIRD Database Array 93

803 Database Manipulation Menu in BIRD 97

8.4 High Level Menu in BIRD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97

805 Structure of BIRD Showing Inter-Module Interaction 0 0 0 0 0 0 0 0 100

806 Summary of BIRD Implementation Details 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101

901 Factory Parts Ordering Database Schema 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104

902 Extended Factory Parts Ordering Database Taxonomy 0 0 0 0 0 0 0 112

903 Relational Structure Declared for the Hypothetical Factory Ordering

Database 0 115

Vlll

The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent and information derived from it

should be acknowledged.

IX

Dedicated to my parents, Brian and Lois.

X

Chapter 1

Introduction

This thesis presents a study of issues relating to integrity and homogeneity of

information representation in database systems. This study led to the development

of a new database model, the Binary Relation Database, BIRD, which represents

information in terms of binary relationships between objects. Readers who desire

an overview of the issues described above and a de.scription of the BIRD model are

referred to Pier~y and Slade [35].

1.1 Introduction to Databases

Introductory texts providing a broad background to the many issues of database

technology may be found in [11, 26, 45]. Many definitions of the concept, 'database',

may be found in the literature, Sundgren [45, pp10] describes a database as a,

" ... well organised collection of data. One should be able to process, update, and

make additions to the contents of a database in a simple and flexible way. It should

also be easy to make different kinds of unplanned as well as planned retrievals of

data from the database."

A database system provides convenient, efficient and centralised control over a

body of data. The alternatives to using a database are to record the information

manually or to keep it in system files, each with one or more application programs

to access the information contained therein. The use of a database system has

many advantages detailed below :-

• Consistency - the storage of a single copy of information which might other­

wise be duplicated in multiple locations eliminates redundancy and the po­

tential for inconsistency. In practise, it is sometimes necessary to duplicate

information in the database, to avoid problems associated with particular

representations. However if the duplicates are known and contained within a

single system, then the chances of inconsistency is reduced.

• Flexibility- new applications requiring different information from the database

may be easily accommodated since there is one repository of information with

a query language interface. A file based system would find it harder to ac­

commodate a new application since new application programs may have to

be written to extract the required data, plus problems arise if the pertinent

information is distributed in many different files.

• Multi-user- the database management system, DBMS, may provide facilities

for many applications to access the database concurrently without danger of

anomalous effects.

• Security - a DBMS will provide facilities to define selective access to the

information for different users. Facilities are also provided to protect the

contents of the database against system crashes.

• Integrity- the DBMS may provide facilities for the definition of integrity con­

straints. These constraints catch data values which are outside pre-defined

ranges and thus aid the maintenance of the integrity of the database data.

• Distribution of Data - many database systems will allow information stored

at physically separate locations to be considered part of a single database. In

2

this way there is no need for duplication of information at separate sites and

thus problems of inconsistency are avoided.

1.2 Expository Example

Within this thesis, an example of a hypothetical factory parts ordering database

is used in many chapters for the purposes of exposition. The hypothetical situation

to be represented is a manufacturing company which receives orders from other

companies for its products.

Each order received from a client is dated and includes the client's name and

address. Associated with each order is a list of order items, which are comprised

of part numbers with an associated quantity figure. On receipt of the order, the

company assigns it a unique order number which may be used to identify individual

orders in the database.

This example is then extended, in the chapter detailing the operation and eval­

uation of BIRD, to include a record of the invoices which the company raise in

response to the goods dispatched, as well as the orders sent to their suppliers and

invoices received from them. The invoices include similar information as the orders,

- a unique invoice number; company name; company address; date; item list; unit

cost per item and total cost.

1.3 Structure of the Thesis

The thesis describes record oriented database models, semantic database models

before concentrating upon the issues of integrity and homogeneity of information

representation which led to the development of the BIRD model.

3

The study of record based database models is centred upon an analysis of the

three dominant data models which have evolved since interest in databases started

in the 1960's, including a description of the currently popular relational data model.

Semantic data models are introduced in the next chapter,- these models have been

developed since the early 1970's with a view to capturing more of the semantics of

the application environment than the record oriented models. These models have

so far only been used in database design, as a medium to facilitate communication

between the relevant parties.

The subsequent chapters analyse issues of data integrity and homogeneity of

information representation with respect to traditional and semantic models. This

analysis provides the motivation for the proposal of a new database model, BIRD,

which addresses the problems identified earlier in the thesis.

The description of BIRD commences with a statement of the principles under­

lying the development of BIRD. The design and implementation of BIRD are then

documented including a full evaluation of the resulting system. The last chapter

presents the conclusions of the thesis and includes ideas for further work. The ap­

pendices found at the end of the thesis consist of a section describing the function

of the constituent procedures of the BIRD system, followed by the bibliography.

4

Chapter 2

Record Oriented Database

Models

Traditional databases represent information in records, which are arranged and

connected in different ways according to the model. . This chapter reviews the

record oriented models, comparing and contrasting their features, with the last

section presenting a summary of their features. The ability of each of the models

to maintain data integrity is described in detail in the later chapter on database

integrity. Issues related to the homogeneity of information representation in record

oriented models may be found in the later chapter entitled, 'Homogeneity of Infor­

mation Representation in Databases'. Introductory texts which review the different

database models in more detail may be found in [15, 26, 33, 43].

2.1 Hierarchical Data Model

The Hierarchical Data Model, HDM, such as IBM's Information Management

System, IMS [28], is the oldest traditional data model, and is based on the premise

5

that application domain information is hierarchical in nature. In the HDM, records

are organised in rooted trees, where nodes correspond to records and arcs represent

parent-child relationships. A rooted tree is a graph where there are no cycles and

.only one to one or one to many relationships exist between parent and child nodes

respectively.

A record within the HDM is a collection of fields, where each field may contain

at most one value. No record may exist in the HDM without a parent record except

for the special root record, and thus the deletion of a record causes the deletion

of all records below it in the hierarchy. The utility of this restriction might be

demonstrated in a company database where the deletion of an employee record

would cause the deletion of all personnel records associated with that employee

record. In certain circumstances one may wish to retain records without parents,

-for example in an ordering system where each part number in an order may be

associated with a part description. If the current orders did not include a particular

part number then one would not wish the part's description to be deleted from the

database since it might be referenced by future orders.

In the HDM there is no way of directly modelling a many to many relationship,

such as the teaching relationship between teachers and pupils, since a child record

may not have more than one parent record. Two approaches are used to overcome

this problem, - records may be duplicated, see figure 2.1, or connection records

may be employed, see figure 2.2. Connection records, sometimes known as virtual

or buffer records contain no application domain information, - they are just used

as a connection to other records.

Both of the solutions described reduce the many to many relationship between

teachers and pupils into multiple one to many relationships. The use of connection

records to represent many to many relationships is preferable to the duplication of

information shown in figure 2.1, since connection records are not associated with

data inconsistency problems although they do introduce an extra level of indirection

into the database. Both solutions involve an overhead in storage space and obscure

6

PUPILS

TEACHERS

PUPILS

Taught - By
Relationships

Teaches
Relationships

Figure 2.1: Modelling Many to Many Relationships Via Record Duplication

7

PUPILS

CONNECTION
REC03DS

TEACHERS

Figure 2.2: Modelling Many to Many Relationships Using Connection Records

8·

the form of the relationship by reducing it to multiple one to many relationships.

Connection records can also be used to represent local cycles between records,

such as the manages relationship between employee records. In this case a connec­

tion record is associated with a record at a certain hierarchical level and it in turn

points to other records at that hierarchical level.

By virtue of its organisation, a HDM implementation will favour certain database

operations. Consider a manufacturing database where there is a record for each

company and subrecords for each product a company produces. Retrieving the

names of products a company produces would be trivial, however retrieving the

names of companies which manufacture a certain product would be far more time

consuming since the structure of the records in the database is organised with re­

spect to retrieval via company names. Queries which involve tracing a path from

the root down, can be executed efficiently in the HDM but other queries may take

prohibitively long times. Certain implementations provide facilities for speeding

time consuming queries such as index files, however each index file represents a

storage overhead and they can only be provided for queries which are anticipated

by the database administrator. Owing to the correspondence between the efficiency

of database manipulation operations and the database schema the user must con­

sider internal implementation details when accessing a HDM database,- a situation

which should be avoided wherever possible.

2.2 Network Data Model

The Network Data Model, NDM, is composed of records connected together to

form a graph structure, and thus it is a generalisation of the HDM. CODASYL

[13, 31] is the most dominant NDM and will be described in this chapter, other

implementations include IDMS and ADABAS [47].

9

In 1959 an organisation called the Conference On DAta Systems Languages,

CODASYL, was set up with a brief to develop techniques to aid in data systems

analysis, design and implementation. The CODASYL group comprised individuals

from many institutions and from this a Data Base Task Group, D BTG, was formed

in 1965. The DBTG first published a report in 1969 detailing a Data Description

Language, DDL, to define a database schema and a Data Manipulation Language,

DML, to manipulate the data contained within the database. This report was

further revised and published in 1971 [13] when it was accepted by the Programming

Languages Committee of the CODASYL organisation. Since then the CODASYL

model has continued to evolve [14] and it will be used to illustrate the salient

features of the NDM.

A CODASYL set type consists of a unique set name, an owner record type and

one or more member record types. A set occurrence consists of one owner record

from the owner record type and zero or more records from the member record

types. The rules governing the relationships between CODASYL records may be

summarised as follows :-

• A record type may be the owner of one set type and a member in another.

• A record may be a member in more than one set type.

• There is no limit on the number of set types which may be defined between

any two record types.

• A database may contain any number of record types and any number of set

types.

• Cyclic structuring is permitted, however a record type may not be both the

owner and member of a given set type, prohibiting local cycles within a set

type.

• A record may not appear more than once in the occurrences of any particular

set type.

10

• The field of a record may contain a set of values and thus repeating groups

may be represented.

Unlike in the HDM, records in CODASYL may exist without an owner, -this

permits the retention of records in the database which do not have an owner at

that instant, but which may be needed, such as in the hypothetical parts database

previously described. Set insertion and retention rules which govern the inser­

tion, deletion and disconnection of records may be specified when the record types

are declared. The particular rules and their utility for maintaining consistency is

discussed in the later chapter on database integrity.

Although the NDM extends the representational power of the HDM, it still

suffers from many similar problems. Local cycles cannot be represented, - this

problem can be approached in two ways. Firstly the set type can be split up into a

hierarchy of set types and these can be linked by relationships or secondly the local

cycle can be represented indirectly using connection records as described in the

previous section for the HDM. Thus to model the "manages" relationship between

employees of a company, one could declare different set types for each level in the

hierarchy of employees or define the "manages" relationship so that it points to

connection records which would in turn point back to employee records.

By virtue of its owner-members set structure, the NDM implicitly provides

one to many modelling, however since a record may not appear more than once

in the same set type, many to many relationships cannot be directly modelled.

The solution to this problem is the same as previously described with respect

to the HDM, - either records can be duplicated or connection records employed.

Connection records may also be used to link arbitrary numbers of records together,

and this can be used to represent more complex relationships such as the three way

relationship between teacher, pupils and classroom.

11

The physical links between owner and members of a set occurrence are unidirec­

tional, one can only traverse from an owner record to its member records. When a

connection record is used to implement a many to many relationship, it acts as the

member record in both the set types of the entities involved, and thus one cannot

directly navigate between the two entities in either direction. One method which

enables navigation is to mark the connection records associated with one entity

and then inspect all the connection records associated with all the other entities in

order to find the ones which have been marked. This solution is obviously too inef­

ficient in practise and thus the connection records are augmented with fields which

contain pointers to their parent entities, further increasing the storage overhead.

Schemas within the NDM are complex, - technical experts are often used to

manipulate the database and build application programs for the users due to the

difficulty novice users would experience in accessing the database using the query

language. The reliance on application programs introduces an extra level, resulting

in inflexibility and resistance to change, since a programmer has to be employed to

effect any change to the data manipulation operations desired by the user accessing

the database.

The complexity of schema evolution in the NDM depends on the particular

operation performed. Certain schema evolution operations may be effected with­

out restructuring existing application data, such as the introduction of a new set

type, however other operations involve considerably more effort. Consider a set

type which relates customers in a shop with the articles that they purchase, if it

was desired to extend this with information about the branch at which the articles

were purchased, then a connection record would have to be introduced to represent

the three way relationship and existing pointer values would have to be updated.

Similarly if one desired to change a relationship from one to many into many to

many, such as the situation where employees may be assigned to more than one de­

partment having previously only been assigned to one department, then connection

records would have to be introduced and existing application data restructured.

2.3 Relational Data Model

The Relational Data Model, RDM, (27, 40] is the most recent of the traditional

database models and was introduced by Codd (9] in the 1970's, (10, pp397]

"to free users from the frustrations of having to deal with the clutter of storage

representation details". Commercial relational database systems include Relational

Technology's INGRES (21, 23], IBM's QBE (50] and Ashton-Tate's dBase products.

The structure of the RDM, see figure 2.3, is a collection of tables, called rela­

tions,- thus unlike the other traditional database models, the user no longer has to

consider pointer connections between records. A relation corresponds to an entity

in the application domain, the rows, called tuples, represent instances of the entity,

and each column represents an attribute of the entity.

Date [11, pp239] defines the term relation as :- "A relation on domains Dl, D2,

... ,Dn (not necessarily all distinct) consists of a heading and a body.

• The heading consists of a fixed set of attributes Al, A2, ... , An, such that

each attribute Ai corresponds to exactly one of the underlying domains

Di (i = 1, 2, ... , n).

• The body consists of a time-varying set of tuples, where each tuple in turn

consists of a set of attribute-value pairs (Ai:vi) (i = 1, 2, ... , n), one such

pair for each attribute Ai in the heading. For any given attribute-value pair

(Ai:vi), vi is a value from the unique domain Di that is associated with the

attribute Ai.

The structural principles of the RDM can be summarised from Mayne and

Wood (27, ppl9] and Date (11, pp241] as :-

• Each relation must contain only one type of record, each with a fixed number

of explicitly named attributes.

13

Heading

Name

Attribute Name

COMPANY

COMPANY ROAD CITY POST Pf-0\JE

NAME axE

Abel Engineers 35 Knights St Newcastle NE3 4AL 281-4544

Cromco 13 Cross Rd Birmingham BR2 5XJ 352-7861

Row, or, Tuple Body

Figure 2.3: Structure of Relations in the Relational Data Model

14

• Within a relation each attribute must be distinct and repeating groups are

not allowed.

• Each tuple in a relation is unique, no duplicates allowed.

• The order of attributes is indeterminate.

• The order of tuples is indeterminate.

The RDM can be manipulated via relational algebra or relational calculus, -

both of these methods operate on whole relations. Relational algebra is a high

level procedural language consisting of set operators, - union, difference, intersec­

tion and special operators such as select, project and join. The select operation is a

unary operator which chooses zero or more tuples satisfying a given predicate. The

project operati011 is a unary operator which chooses one or more specified columns.

The join operation is a binary operator which is used to combine information from

two relations creating a new relation. The join is effected by matching values oc­

curring in a pair of columns one from each relation. A typical relational algebra

query which retrieves the names of all employees earning over ten thousand pounds

from an employee relation might be :-

SELECT employee-name

FROM employee

WHERE gross-earnings > 10,000

Relational calculus is a non-procedural language, based on first order logic,

which merely describes the information required from the database.

15

The form of a relational calculus query is :-

{ t I P(t) }

- the set of all tuples, t, such that predicate, P, is true for t.

Thus the previous relational algebra query might be rewritten:-

{ t I t E employee AND t[gross-earnings] > 10, 000}

Although hierarchical information may be represented in a relational database

using relations for each level of the hierarchy, the query languages provide no

explicit constructs for manipulating hierarchical information. For instance there is

no construct to directly phrase the query, "Retrieve all the part numbers of parts

to be found two levels below the subassembly with part number 675".

The tuples within relations are accessed via a primary key which must be non­

null and uniquely identify each entry. There are no direct links or pointers between

the relations, instead the matching of attribute values is used as the connection.

The ability of tuples to exist in relations completely independently of tuples in other

relations can be advantageous in certain situations, like the example previously

quoted where we wish to store parts information even if there is no order form

directly referencing that part. However, the lack of explicit information relating

the attributes of different relations has associated disadvantages. A user may not

realise the existence of many relationships between relations or may match values

from inappropriate domains, such as matching part numbers in one relation to part

quantities in another.

Similarly to the two previous models, the RDM cannot directly represent many

to many relationships and this can be overcome by the introduction of an extra

relation which contains pairs of relation indexes. Consider the many to many

16

relationship "teaches" between teachers and pupils, - this would be represented

in the relational model by creating an extra relation which held pairs of indexes

to the teacher and pupil relations, where each tuple represents one instance of

the relationship. The introduction of an extra relation increases the complexity of

the model, obscures the form of the relationship for the user, produces a storage

overhead and has implications for referential integrity which are described in the

later chapter on database consistency.

Normalisation of relational database schemas is a process carried out in the

database design stage which ensures freedom from insertion, update and deletion

dependencies and facilitates restructuring, - detailed descriptions may be found in

many database books such as [26, pp181-215] or [27, pp55-72] .. The process is

carried out by analysing the functional dependencies between the application data

and forming the structure of the relations with respect to the dependencies.

Consider for example an ordering database which stores order numbers, amounts,

customer name and customer address. If one relation was defined to contain all

four attributes then it is very likely that a lot of the customer information would be

duplicated, since the same company often submits more than one order. Normali­

sation would result in the formation of two relations, one would hold the customer

information indexed on a customer index, the other would hold the order infor­

mation with a customer index attribute to associate the customer with the orders.

In this situation normalisation has ensured that only one copy of the customer

name and address would be kept for each customer, reducing the storage overhead

and simplifying manipulation of customer information. Although normalisation

has many advantages, its disadvantage is the increased number of relations and

indices in the system, which obscure the structure of the information from users

and increase reliance on the computationally expensive join operation.

17.

(.

2.4 Summary

This section provides a summary of the traditional database models and intro­

duces the concept of the semantic data model.

The HDM is based on the assumption that information associated with the

application it is modelling is hierarchical in nature. Random access to information

in the resultant tree structure is only efficient if it involves navigation down through

the tree, otherwise retrieval of information may take a prohibitively long time. The

modelling of non-hierarchical data is possible in the HDM, however it involves

either the duplication of information or the introduction of virtual records.

The NDM extends the representational power of the HDM by modelling an

application environment in terms of an interconnected graph of entities. The NDM

may be used to model most application environments, however this may necessi­

tate the introduction of virtual records. The resultant NDM schemas are often

complex, - these must be controlled by the database administrator and accessed

via application programs.

The RDM is a conceptually simple model based on tabular information, with no

explicit links between the tables. The RDM benefits from being easier to restruc­

ture then the other two models and currently is very popular in industry. Although

the lack of explicit connections between the information contained in tables has ad­

vantages it also enables meaningless joins to be constructed and is associated with

referential integrity problems, described fully in the next chapter.

In general, the record based models are able to store efficiently homogeneous

units of storage, however Kent [24] describes two types of information homogeneity

assumptions which underly them. Horizontal homogeneity is where every record of

a given type contains the same fields, for instance where every part in a part inven­

tory might have a part number, quantity on hand and price. Vertical homogeneity

is where every field of given record type contains the same kind of information, for

18

instance a part number is always a six digit integer.

Homogeneity of information is not always borne out in practice and Kent cites

book identification numbers as an example of horizontal inhomogeneity, as books

may have a Library of Congress number and/or one or more International Stan­

dard Book Numbers. The author proposes various solutions which may be adopted

to cope with horizontal inhomogeneity in a record based system, - declare all the

possible fields and permit null values to be present in some fields or allow a field to

have more than one meaning. The first solution necessitates consistency informa­

tion being built into the application program to ensure that only legal combinations

of fields occur, the second introduces problems of vertical inhomogeneity which is

discussed below and would only be applicable in this example if a book had either

a Library of Congress number or an International Standard Book Number.

An example of vertical inhomogeneity is proposed by Kent as the situation

where a company car may be assigned to an individual or a department. Various

solutions were proposed ~ the car assignment field could be defined to allow iden­

tifiers of both groups, more fields could be used such as assignee type, department

and employee, two different record types could be defined, one for department car

assignments and one for employee car assignments, or employees and departments

could all be given a common identifier. The disadvantage of allowing fields to have

multiple meanings is that type checking of the field is reduced, - only the users

know whether the entity is a department or an employee and thus which record

type to search for further information, the different entities might have the same

identifiers or the two entities may need different numbers of fields to uniquely iden­

tify themselves. Defining more than one field to describe assignments introduces

horizontal inhomogeneity which has been discussed above. The use of more than

one record type unnecessarily increases the number of record types, potentially all

of which may have to be interrogated to extract information about an assignment

of a car to a person or department. A data integrity hazard has also been intro­

duced as the same car may be assigned in more than one record and addition of

19

each new assignment type necessitates the introduction of a new record type. The

use of common identifiers necessitates the introduction of one additional identi­

fier for each vertical inhomogeneity, and has the disadvantage that the identifiers'

meanings are not often apparent.

In record based systems the more inhomogeneous the information being mod­

elled the less a record based system's structure is able to reflect the inherent struc­

ture of the information, as unusual record types and increasing numbers of mean­

ingless identifiers are introduced to overcome the shortfalls of the representation.

The reduced correspondence between the internal and external structure compli­

cates a user's understanding of the system and makes maintenance of the system

harder.

Kent does not propose a solution to the problems presented in the paper, how­

ever he does refer to the superior modelling capabilities of models based on entities

and the relationships in which they take part, rather than record structures. These

models have been commonly termed 'semantic' models, since they provide richer

constructs to model an application environment - the properties of semantic models

are described and various models reviewed in the next chapter.

Although the modelling capabilities of the traditional data models have been

extended by application independent semantic models, models have also been devel­

oped which provide constructs specifically suited to individual applications. Appli­

cation areas which have been approached include medical information [39], literary

texts [7], engineering design information [30], graphics and digitised sound.

20

Chapter 3

Semantic Oriented Data Models

Semantic oriented data models have been developed to provide constructs which

mirror the structure of application domain information in an effort to capture more

of the semantics of the application environment than a traditional record oriented

model. A brief overview of traditional and semantic models may be found in Potter

[36], whereas Hull and King [22] or Peckham and Maryanski [34] review the various

models in more depth.

This chapter discusses the term 'semantic model', analyses examples of these

models and describes their current applicability. The scope of the models reviewed

covers simple extensions to the relational model, to more original models with rich

information modelling constructs. Information integrity issues are briefly men­

tioned where appropriate, - an in depth analysis may be found in the following

chapter on database integrity.

Readers should note that in this chapter and throughout the rest of the thesis,

entity types are denoted in capital letters and relationships between entities are

printed in italics. For example the order number relationship might connect the

ORDER and ORDER NUMBER entity types.

21

3.1 Introduction

The term 'semantic model' is commonly used by authors, however it is a neb­

ulous concept since there is no accepted definition of the features of a semantic

model and few authors define their usage of the term. Below are a number of

relevant descriptions :-

Codd [10, pp397] proposes that the motivation of sematic modelling is to capture

more of the meaning of the application environment so that database design

may become more systematic and the database system may behave more

intelligently.

Hammer and McLeod [20, pp351] state, "This database model (SDM) is

designed to capture more of the meaning of an application environment than

is possible with contemporary database models". They later state that [20,

pp353] " We believe that it is necessary to break with the tradition of record

oriented modelling; and to base a database model on structural constructs

that are highly user oriented and expressive of the application environment."

Peckham and Maryanski [34, pp153] describe the unifying characteristic of

semantic data models as providing more semantic content than the relational

data model.

Abiteboul and Hull [1, pp525] describe semantic models as providing" ... mech­

anisms and constructs that mirror the prevalent kinds of relationships natu­

rally arising between data stored in a database."

Abiteboul and Hull [1, pp526], mentioned above, continue to propose four fea­

tures of semantic data models, - the concepts introduced below will be described

in more detail later in the chapter.

• The ability to model relationships between objects directly, - record based

implementations introduce unnecessary indirection, since a user must think

22

in terms of records, pointers and symbolic identifiers.

• Modelling of data as attributes of objects.

• Construction of taxonomies of objects,- this facility is generally provided via

the is-a relationship.

• The provision of constructor operators, - these enable the description of

object types in terms of other object types.

The varied descriptions detailed above, impart a general idea of the concept of

semantic models and semantic modelling. If Peckham and Maryanski's description

is adopted then almost any simple extension to the relational data model may be

described as a semantic data model, such as RM/T, which is described below. Codd

developed RM/T as an extension to the relational model, however it is an exception

since all the other dominant semantic models are object based in nature. Although

RM/T is described in this chapter, it might be considered a hybrid between a

traditional and semantic model, particularly since most of the above descriptions

of semantic models imply they are object based.

One may summarise the features of a semantic model as providing more ex­

pressive constructs than the 'state of the art' databases, enabling a more natural

and comprehensive description of the application environment to be constructed.

Pure semantic models are object based and currently extend database technology

by the inclusion of some or all of the following features, - taxonomies of objects,

constructor operators and information about the relationships between objects.

Semantic models are generally used as a database specification facility, - the

resulting model is translated into a traditional database implementation. The

semantic model specification provides a representation at a suitable conceptual level

to form a bridge between the application requirements and the database schema.

It also serves as a medium of communication, which is less ambiguous than a prose

specification and more readable than a traditional database schema, - this specifi-

23

cation is at a suitable conceptual level to be referenced by computer experts and

non-specialists alike. Novice users of the database may also use the specification

as a guide to the structure of the database, although consistency problems may

arise between the semantic model database specification and the database itself.

Semantic models may be incorporated into the top down design methodology, due

to their hierarchical information modelling ability, - principle large objects in the

application domain may be defined first and then the definition extended to their

smaller component objects.

3.2 RM/T

In the late 1970's Codd proposed an extension to the Relational Model called

RM/T [10], - 'T' stands for Tasmania where the idea was first presented. The

motivation for this extension was to increase consistency by eliminating insert and

update anomalies as well as increasing the semantic expressiveness of the relational

model.

Codd perceived three problems with user-controlled primary keys in the original

relational data model. Firstly the user, by definition, must be allowed to change

their values and this may result in referential errors. Secondly, two relations may

have keys defined on distinct domains which actually refer to the same entities,

preventing the use of the join operator. Lastly, information may have to be stored

about an entity in situations where it may not have a key value, such as information

about a retired employee who no longer has an employee number.

To approach the problems listed above, every entity within RM/T is assigned

a single unique system surrogate. E-Relations are unary relations which are em­

ployed to represent entity types, - they hold the system surrogate values of all the

members of that type. All system surrogates are drawn from the E-domain and

any attribute defined over this domain is called an E-attribute. P-Relations hold

24

the properties of the entity types, - their primary index is the particular type's

system surrogate, however they may also contain user-controlled keys, if these are

of use to the user.

Consider the following example where RM/T is used to represent the factory

ordering database example described in the introduction. An E-Relation repre­

senting the entity type, supplier, might be associated with P-Relations describing

orders given to the supplier and invoices received. Another E-Relation repre­

senting customers of the company, which may include some values present in the

E-Relation of suppliers, might be linked with P-Relations representing orders re­

ceived and invoices raised. Note that in this situation a P-Relation representing

address information may contain both supplier and customer addresses.

Another type of relation, Property-Graph, PG-Relations have been defined

within RM/T to describe the relationship between theE-Relations and P-Relations

in the database. The PG-Relations are used to maintain consistency of the database

by directing the actions of the insertion and deletion operations. For instance in

this example the deletion of a supplier would cause deletion of all associated en­

tries in the E-Relations describing orders given and invoices received. Note that

in this situation, it would only cause deletion of the associated address entry if the

supplier was not also a customer.

Instances of relationships may be treated as entities in RM/T and information

supplied about them. These entities, called associative entities, are assigned a

surrogate value which may be referenced in P-Relations to describe properties of

the association, such as it's date or place. For example, an instance of the buying

relationship between a person and an article could be given a surrogate value and

additional information specified for it.

Two types of generalisation may be defined within RM/T,- unconditional and

alternative. Unconditional generalisation is used to form the classic type-subtype

hierarchy, where every member of the subtype must be a member of the parent type

25

and all properties of the parent type may be inherited by the subtypes. Multiple

inheritance, resulting from an entity taking part in more than one hierarchy, is

handled by the naive restriction that no entity can inherit two attributes with the

same name, and thus there are no problems of conflict resolution.

Alternative generalisation is used to form subsets of the union of two or more

types. For instance technical college students are an alternative generalisation

of school-leavers, business-trainees and mature-students. A particular technical

college student entered into the database must be either a school-leaver, business­

trainee or mature student, however the reverse is not true since a member of the

latter three types is not necessarily a technical college student. If a new technical

college student was entered into the database, the alternative generalisation rela­

tion for these students would be consulted, and additional information would be

requested in order to determine which E-Relation of the alternative generalisations

the new entity should be placed in.

RM/T is only a theoretical model, it has not been implemented in the ten years

since its definition and thus there is no implementation information evaluating
•

the cost of various proposals. Although RM/T has succeeded in improving the

referential integrity problems of the relational data model, described more fully in

the next chapter, it still suffers from the same representational weakness problems

which were elaborated in the previous chapter. Although many rules have been

specified to maintain referential integrity within RM/T, similar rules have been

defined for the original relational model which have proved to be too expensive to

implement in practise. Integrity issues related to RM/T are discussed more fully

in the chapter on database integrity.

26

3.3 Entity-Relationship Models

The Entity-Relationship, ER, model (8] is attributed by Hull and King [22,

pp232] as being "one of the first true semantic data models to appear in the lit­

erature, although the term "semantic" was not in use at the time". Chen, [8],

proposed the Entity-Relationship model as a data model to facilitate high level

object centred schema design.

An entity is described by Chen [8, pplO] as " ... a 'thing' which may be distinctly

identified", such as physical objects or events. The ER model is composed of entities

connected to each other via relationships. Entity sets are formed by grouping

entities, according to one or more membership predicates, - the resultant entity

sets need not be distinct.

Relationships are used to connect entities sets, and have the following proper­

ties :-

• A relationship may be defined on a single entity set , - thus the relationship

parent-company could be defined on the company entity set. Thus unlike the

traditional data models, a local cycle may be directly represented.

• A relationship may be defined on two or more entity sets, thus the tertiary

relationship between students, courses and grades could be represented di­

rectly.

• It is possible to define more than one relationship on gi~en entity sets, for in­

stance the entity sets company and name could be linked by the relationships

company name and director name.

• Relationships may be defined as one to one, one to many or many to many.

• Existence dependencies may be specified for a relationship, - these are de­

scribed in the following paragraphs.

27

• Relationship sets may be formed by grouping instances of particula: relation­

ships.

Chen distinguishes between relationships which connect entities and attributes

which connect entities to printable values. The printable values correspond to

objects in the world possessing values which can be used for input and output, -

such as characters, character strings or integers. Attributes are viewed as a single

fact about an entity, consequently they map from an entity to a single value or

tuple of values, - a multivalued attribute requires the use of a relationship. For

instance, if humans were to be associated with phone numbers, where one human

might have more than one number, a one to many relationship would be declared

between human and phone which would then have a single valued attribute to phone

number. Relationships themselves may also have attributes, such as the attribute

duration on the relationship married between two members of the HUMAN entity

set.

Existence dependencies may be specified in the ER model and these describe

the relationship between instances of entity sets. Phone number instances could

be declared dependent on human instances in order to ensure that if a human is

deleted from the database then the corresponding phone numbers are also deleted.

The Entity-Relationship model has not been incorporated into a DBMS and

thus Chen describes how an ER database design model may be represented in terms

of a relational database implementation. Information about entities and relation­

ships should be stored separately in entity and relationship relations respectively.

Each tuple in an entity relation represents an entity and each column represents

a value set from which the individual tuple values will be drawn. Each tuple in

a relationship relation is assigned a unique identifier and represents a particular

relationship by detailing the specific entities involved in it.

Chen [8, pp25] describes how various manipulation operations on the ER model

of the database should be performed within the relational implementation. For in-

28

stance the deletion of an entity should be performed by deleting the entity tuple,

and recursively deleting any entity tuple whose existence depends on it as well

as associated relationship tuples. The definition of such existence dependencies is

difficult or impossible using the facilities provided by relational databases and thus

they must be coded by the database implementor into the application programs

accessing the database. A discussion of maintenance of referential integrity within

the relational model may be found in the later chapter on database integrity. Chen

also does not mention the difficulties associated with modelling many to many rela­

tionships within the relational data model since these may not be directly modelled,

as discussed in the earlier chapter on traditional data models.

The ER model is less semantically rich compared to the more recent semantic

models described below, - it has no grouping constructors and until recently (46]

inheritance hierarchies could not be defined. The manual conversion of the Entity­

Relationship data model into a relational model implementation is laborious, error­

prone and loses semantic information captured in the ER description. The ER

model is useful as a database design tool, however its utility would be greatly

increased if it was incorporated into a full database management system.

3.4 Semantic Database Model

The Semantic Database Model, SDM (20], was developed by Hammer and

McLeod to provide a rich database description representation able to capture more

of the semantics of the application environment. Although SDM may only be used

as an abstract database model, the authors recognise the utility of incorporating

it into a DBMS.

As well as attempting to provide a semantically rich formal database specifica­

tion mechanism, SDM was created with two related objectives. Firstly to facilitate

the creation of a high level user interface to the database in order to aid in the

29

identification and retrieval of information, and secondly to support the structured

design of database applications.

The following principles underly the design of SDM [20, pp355] :-

• To organise the database as a collection of entities corresponding to entities

in the application environment.

• To group the entities in meaningful collections, called classes.

• To relate the classes in the database by means of interclass connections.

• Attributes may be specified to describe characteristics of entities and classes as

well as associating them with each other. Derived attribute values computed

from values elsewhere in the database are also supported.

Classes in SDM are formed from homogeneous collections of entities, such as

concrete physical objects, events or higher level objects like groupings of classes.

SDM enables a distinction to be made between member and set properties of a class.

Member attributes are those which apply to each member of a class individually,

-such as the attributes name1 telephone number and address of the class PEOPLE,

and these inherit from class to subclass. In contrast class attributes apply to a class

as a whole, such as the attribute number of members,- these attributes do not apply

to the individual members of the class and may not be inherited by subclasses.

However, SDM does not distinguish between member properties of a class specified

for each member of the class individually and those specified once for the class and

inherited by all the members. Consequently the attribute Absolute_legaLtop_speed

is specified as a class attribute of OIL-TANKERS [20, pp357], although it IS a

member attribute which need only be specified once for the class.

Every entity is the member of exactly one base class and zero or more nonbase

classes which are contained in the base classes. The base classes enable an abstrac­

tion limit to be defined, otherwise all classes would have to be grouped together

30

into one root class. Groups of attributes are defined for each base class, which act

as the primary key to uniquely identify each member of that class.

Classed in SDM are related via two types of interclass connection,- the subclass

and grouping connections. A subclass connection defines a class which contains a

subset of the members of its parent class, - an entity may be the member of more

than one subclass, for instance an individual might be a member of the subclasses

LAWYER, SQUASH_FLAYER and WEALTHY _FEOPLE of the class HUMAN.

Subclasses in SDM are specified by defining a class and a predicate on that class

which restricts the membership to form a subclass.

There are four different ways in which this subclass definition may actually be

specified :-

1. A predicate may be defined on one of the member attributes of a class to form

a subclass. For example the subclass SMALL-BUSINESS might be formed

from the class BUSINESS where number of employees is less than six.

2. The user may be allowed to specify the members of the subclass. The subclass

STUDENT_ON_REPORT might be a specified subclass of STUDENT.

3. A subclass may be defined via set operations specified between other classes.

The subclass RAQUETSPORTSPLAYERS is a subclass of SPORTSPLAY­

ERS that contains the union of the classes TENNIS_PLA YERS, BADMING­

TON-PLAYERS and SQUASH_PLAYERS.

4. A subclass may be defined as containing members which are currently

attribute values of another class. For instance MOTORING_FATALITIES is

a subset of PEOPLE satisfying the predicate fatal victim of the class ROAD

ACCIDENT.

The grouping inter-class connection allows the collection of entities of a similar

type into groups of a higher conceptual level, which can themselves be treated as

31

classes. In a similar manner to the subclass connection there are a variety of ways

in which a grouping connection may be specified. A member predicate may be

used to group entities together on common value, for instance the predicate racing

status may be used to group the class OARSMEN into TYPES-OF-OARSMEN.

An enumerated grouping class may be formed from a list of classes to be included

in the group, where all the named classes are subclasses of one underlying class.

For instance the class HAZARDOUS-TYPES-OF-FOOD is a grouping of FOOD­

STUFFS consisting of classes FAST_FOOD, POULTRY and EGG_FRODUCTS.

The user controlled grouping class is a variation on the previous grouping method

where the user specifies the classes to be included in the grouping.

Attributes are used to connect classes with printable values, - meta-information

must be supplied about each attribute, the most relevant of which is summarised

below:-

• Applicability- whether the attribute is a member or class attribute, discussed

above.

• Single or multivalued, - the value of a single valued attribute is a single

member of its value class, whereas the value of a multivalued attribute is a

subclass of the value class.

• Mandatory - A null value is not allowed for the attribute.

• Not Changeable- Specification of the value is a 'one shot' process, and thus

it may not subsequently be changed.

• Exhaustive - Every member of the value class of the attribute must be the

value of some entity.

• Nonoverlapping- Each member of the value class is used at most once.

SDM provides many different facilities for defining derived attributes, in order to

support data relativism, - the ability to view the same data in many different ways.

32

Amongst some of the many ways of specifying derived attributes are arithmetic

and set operations on member attribute values, as well as cardinality and ordering

functions.

SDM is a successful abstract database modelling tool, providing a rich variety

of data modelling constructs and attribute domain information. An implementa­

tion of SDM would enable a user to interact with the database schema definition

and learn about the database, however SDM has not been implemented either as

a database model or incorporated into a DBMS. Another benefit of implementing

SDM would be the automation of checks on the legality of the schema, such as the

prevention of circular sub-class definitions. It must be realised that the richness of

the representation cannot be directly translated into a traditional database schema

for two reasons. Firstly the domain information specified for attributes cannot

be expressed or enforced by the constructs provided by the traditional database

systems. Secondly the translation of the model into a traditional database imple­

mentation would lose most of the object based form of the information expressed

in the semantic model, since a schema in a traditional databases must be expressed

in a lower level record oriented manner.

3.5 IFO : A Formal Semantic Database Model

The IFO Semantic Database Model [1] is a more recent model than SDM and

provides a similarly rich variety of information modelling constructs. IFO was

designed for the investigation of semantic modelling issues, such as the types of

objects which may be created by the combination of the modelling constructs

provided and the propagational effects of updating data.

The object types within the IFO model can be divided into three atomic types,

printable, abstract and free, all other object types which are constructed from these

are non-atomic. The printable objects correspond to concrete objects in the world

33

which can be used for input and output, as described for the Entity-Relationship

model. The abstract objects correspond to objects which have no underlying struc­

ture with respect to the database designer or user,- they correspond to base classes

in SDM. Abstract objects cannot be referenced directly, but are accessed via their

attributes, such as the the attribute name of the abstract object 'person'. The

free object type corresponds to objects whose structure is inherited via is-a rela­

tionships and these correspond to non-base classes in SDM. Whether an object is

abstract or free depends completely on the database schema in which it takes part,

- in a schema consisting of computers and personal computers, the former would

be an abstract object and the latter a free object.

Atomic and non-atomic object types may be combined to form non-atomic

types via the grouping and aggregation type constructors. The grouping, or finitary

power set, operator combines groups of objects of the same type,- for instance the

grouping of cars into the object type, car fleet. The aggregation, or Cartesian

product, operator combines objects of differing types into one supertype, - such

as the combination of the types keyboard, screen and base into the supertype

workstation.

IFO distinguishes between two forms of the is-a relationship and these may be

used to relate the atomic and constructed types to each other. Specialisation defines

possible roles for members of a particular type, for instance the type 'tradesman'

could be specialised into 'butcher', 'baker' and 'painter'. A member of the super­

type could feasibly play the role of any of the specific subtypes without changing its

fundamental identity, however if the supertype is labelled disjoint then a member

of the supertype may only be a member of one of the subtypes. Generalisation

combines distinct types to form new super-types, such as generalising the objects

'tables', 'chairs' and 'stools' to one super-type 'furniture'. A member of the su­

pertype may only be a member of one of the subtypes, however if the supertype

is labelled 'covers' then it indicates that the union of the members of the subtypes

forms the supertype.

34

The behaviour of the IFO model under update requests is considered with

respect to two types of request, the first is the modification of an attribute value,

the second is modification of the members associated with an object type. The

former type of modification does not produce any propagational effects if the change

does not affect the particular instance whose attribute value is being changed. The

latter type of modification has more complex propagational effects when takings

into account the type constructors and is-a arcs which may be incorporated in the

system. The study of update propagation enables a fuller understanding of how a

working DBMS based on the IFO representation would operate, however the study

has not been completely addressed, since manipulation of the schema has not been

taken into account.

IFO has not been incorporated into an actual database management system, it

is purely a database schema modelling tool, although the representation has been

used in the SNAP [6] schema design system. The work on IFO has specifically

concentrated on data representation issues, -future work on IFO is viewed as the

incorporation of integrity constraints and the development of an appropriate query

language for the model.

3.6 Discussion

The models presented in the chapter have been general purpose data models,

however models with features suited for more specific application domains have

been designed. N arayanaswamy and Bapa Rao [30] propose a data model suited to

use in engineering domains since it has explicit constructs to model the constant

revisions of the schema and Su [44] proposes the SAM* model for modelling man­

ufacturing data. The Information Systems Designer, INSYDE [25], was developed

specifically for use in the design of office information systems and provides con­

structs for the definition of the structure of the data and the processes which will

35

manipulate it. Thus using our factory database example, typical processes would

include receipt of an order, order input and invoice production.

The data models presented in this chapter have varied in the complexity of

modelling constructs provided from the simplicity of the ER model to the more

recent and rich IFO model. Compared with a traditional database schema, the

models presented in this chapter have incorporated more of the semantics of the

information, enabling the model to more truly reflect the application environment.

Only the ER and INSYDE models have been implemented as prototype semantic

database models the other models must be constructed manually. All of the se­

mantic models need to be translated into a traditional database implementation as

none of them have been incorporated into a database management system. Man­

ual translation into a traditional database implementation is laborious, error-prone

and loses a lot of the semantics expressed in the model since the databases cannot

represent the semantic richness of the model.

A semantic model may be useful in the initial stages of design of a database

to facilitate easier communication of the database structure between the interested

parties, however once it has been translated into a traditional implementation its

utility is greatly reduced, since potential inconsistencies may arise between the

database model and the database itself. Initially the database implementation

will not fully reflect the semantic model and subsequently the model may not be

updated to reflect changes to the schema of the implementation.

Great benefits would result from the incorporation of semantic models into

database management systems. The semantic model is very useful in the design

stage for facilitating communication and modelling the application domain. This

model would form the underlying representation of the DBMS and thus the prob­

lems of conversion between the model and the internal representation would be

eliminated.

36

Chapter 4

Database Integrity

Having presented the traditional and semantic data models in the previous two

chapters, the following two chapters consolidate this work by considering two spe­

cific issues within these models, - integrity of database data and homogeneity of

information representation.

The issue of integrity is very important in databases and concerns the control

of data in the database to ensure it agrees with its meta-data and application

domain it is modelling. This chapter reviews the different levels in a system at

which integrity may be compromised, the different types of integrity hazard and

methods of integrity enforcement. Integrity issues are discussed with respect to

both traditional and semantic database models.

Security and integrity maintenance subsystems are complementary since the for­

mer protects system resources from unauthorised access and manipulation whilst

the latter protects resources during authorised access. However, the DBMS pro­

posed in this thesis is a single user prototype system, - security issues are not

relevant and thus they are not addressed.

37

4.1 Introduction

The traditional data models, presented earlier in this thesis, are record oriented,

efficient database systems. The semantic database models, described in the previ­

ous chapter, enable a more detailed description of an application environment to

be formulated than with the traditional data models, by use of a rich set of in­

formation constructs. Although many semantic models have been formulated and

used in the design of database systems, few have been automated and none have

been incorporated into a DBMS.

This thesis concentrates on two problems which have been identified with data

stored in databases. The first problem concerns the integrity of the data, - Frost

[18, pp24] defines database integrity as "a property which reflects the extent to

which the database is an accurate model of that part of the universe which it

represents". The approaches taken by the various traditional models to maintain

integrity are described and contrasted with the facilities provided by the semantic

models. The second problem concerns the homogeneity of information representa­

tion in databases. The following chapter concentrates on the issues of the homo­

geneity of information representation in the two types of model, and describes the

consequences of information inhomogeneity. The consideration of integrity and ho­

mogeneity issues combined with the knowledge of traditional and semantic models

led to the proposal of a new database model, BIRD, described later in this thesis.

4.2 Conceptual Levels of Information in a Database

There are many different conceptual levels at which the integrity of a database

system may be compromised :-

38 0

System Level Damage sustained to physical blocks on a disk drive may lose part

of the database, or a system crash during the execution of a transaction may

leave the database in an inconsistent state due to the loss of main memory

contents.

DBMS Level Inconsistencies may be introduced in many ways due to software

faults in the DBMS, such as incorrect· handling of concurrent updates, or

mismanagement of pointer values.

User Level The input of erroneous data by the user, such as null values, values

out of range or duplicate values. The data may contradict the application

independent rules of the data model, or rules derived from the application

environment being modelling.

4.3 Database Integrity Constraints

Integrity maintenance at the system and DBMS levels is application indepen­

dent and is built into the operating system and DBMS. At the user level, explicit

integrity constraints may be used to augment the description of the application

environment.

Owing to the different representational powers of the data models, a constraint

which may need to be specified explicitly in one model may be implicit in another.

For instance, referential integrity is implicitly enforced in the HDM and yet it may

be defined explicitly in the NDM using the 'connect' and 'disconnect' statements,

- this is discussed later.

Explicit integrity constraints may be classified according to whether they govern

structural or semantic aspects of the data and the granularity of the data affected.

Structural constraints govern the form of the application data in the database,

39

such as ensuring that all orders in a database are associated with a date, or all

people are associated with one or more phone numbers. For example the "create

relation" command within a relational database system is a structural constraint

since it provides information about the structure of tuples in a relation of the

database. Semantic constraints govern the actual values assigned to items in the

database, such as ensuring that amounts of money are greater than zero or that

the total budget of a company adds up to the sum of the individual departmental

budgets. The granularity of a constraint refers to the level of data structure it

governs, - this may vary from individual field values to record types, implying a

high to low enforcement cost respectively.

4.4 Treatment of Integrity within Traditional

Databases

The facilities provided by the traditional data models for integrity constraint

definition and maintenance are compared and contrasted in this section. The rel­

ative merits of the different ways of declaring and enforcing integrity constraints

are also discussed.

4.4.1 Definition of Explicit Integrity Constraints

The traditional data models provide varying facilities for user definition of ex­

plicit integrity constraints. The most rudimentary facilities are provided by the

hierarchical data model where integrity constraint definition is limited to the dec­

laration of types for the application data values, such as integer, real or date.

The network data model provides better facilities for integrity maintenance

than the hierarchical data model. CODASYL provides a simple range checking

40

statement, CHECK [31], which may be used to define legal and illegal ranges of

values. The form of the CHECK statement is as follows :-

CHECK IS VALUE [NOT]literal-1 [THRU literal-2]

[, literal-3 [THRU literal-4]]

The sparse consistency definition facilities of the CHECK statement may be

augmented in CODASYL by the definition of database procedures, - these may

be written in any suitable programming language and interface with the DBMS

via schema statements which detail their preconditions for execution. Typical

preconditions might be the execution of a particular operation or the occurrence

of an attribute falling within or outside a specified range.

There are disadvantages to using external procedures which are detailed below:-

• External procedures are not part of the database since they are external to the

database possibly written in a variety of programming languages. Database

users may neither define, query or alter the constraints which the procedures

enforce, consequently a user may not understand why a transaction has been

rejected or be able to alter the constraints to reflect a changing application

environment.

• Definition and maintenance of external procedures would generally be car­

ried out by the database administrator who understands the programming

language in which they are written. The inconvenience of inserting and main­

taining the integrity procedures makes it likely that only the most important

constraints would be defined, and these may easily become outdated unless

sufficient effort is made in maintaining them.

• Constraints expressed in external procedures are not administered by the sys­

tem and thus there is no possibility of the DBMS checking their consistency,

redundancy and completeness.

41

An alternative to external constraint procedures often used in traditional database

applications is to incorporate the constraints into the application programs which

access the database, however this approach has the associated disadvantages de­

scribed below :-

• All the disadvantages of external constraint enforcement procedures, which

have been detailed above, apply to the enforcement of integrity through

application programs.

• Some users may access the database via the database query language,

bypassing the integrity controls.

• The constraints applying to a particular relation must be duplicated in

every application program which accesses that relation. Duplication of con­

straints is laborious and prone to inconsistency, particularly during mainte­

nance, since every occurrence of the same constraint may not be updated to

reflect changes in the application environment.

The CHECK statement of the network model is present in a similar form in

the relational model, such as the "create integrity" statement in the INGRES 5.0

Relational Database [23]. An example of such a statement, expressed in SQL is

shown below :-

CREATE INTEGRITY ON ORDER IS order.amt :::; 4000

The above constraint specifies that the maximum value in the amount attribute

of the order relation is four thousand.

42

Integrity constraints within INGRES are subject to the following restrictions :-

• The integrity expression must only reference attributes from a single relation.

This has important ramifications for the maintenance of referential integrity

which are discussed later.

• No aggregates are allowed in the integrity expression, - such as SUM, AV­

ERAGE. Aggregates necessitate the retrieval of every tuple in the relation

named in the expression, and this would significantly slow the execution of

the assertion.

• The COPY command which copies tables into other tables bypasses the

integrity constraints specified. This restriction has been made in the interests

of speed, since checking constraints for every tuple which is copied would

significantly slow the execution of the command over large relations.

The above restrictions limit the scope of the integrity statement, -the integrities

section in the INGRES system manuals concludes with the advice that [23, pp5-18]

" ... it may be simpler and faster to check for valid values from within your program

before issuing the query". Checking of values by application programs may be more

efficient than the use of general purpose integrity enforcement facilities, however,

the many disadvantages of this approach have already been detailed above.

4.4.2 Enforcement of Referential Integrity

Referential integrity is an important issue in databases, since it ensures that an

entity exists in the database when information is supplied about it. For instance

referential integrity constraints might ensure that a bank account actually exists

when a credit is specified for that account. The hierarchical model implicitly en­

forces referential integrity, since all records in the database must be associated with

the parent record type they describe, with the exception of the root record. If a

43

bank account record were deleted in the hierarchical model, all information associ­

ated with that account would also be deleted and no further information could be

inserted about that particular account.

It is not necessarily desirable for a model to implicitly enforce referential in­

tegrity, since one may wish to retain information records in a database even when

a parent record does not exist. Such a situation has already been described in the

chapter on traditional data models, - where one might wish to retain information

about parts in a factory parts ordering database even though there were no orders

currently referencing those parts.

The network data model takes a more flexible approach to referential integrity

by means of set insertion and retention specifications, which specify the relationship

between instances of set types and their member records. A storage class may be

specified as either manual, in which case connection of a record into the set type is

left to the user's discretion, or automatic, in which case the new record will always

be connected into a set of the appropriate set type. The removal class specifys rules

for disconnecting records from their set types, and three modes may be specified,

-fixed, mandatory or optional. If the retention is fixed, then member record cannot

be disconnected from the set into which it has been inserted without being deleted.

If the retention is mandatory, then a member record can only be disconnected from

a set if it is reconnected to a set of the same type. If the retention is optional, then

a member record can be disconnected from that set occurrence at will.

For the bank account example, mentioned above, the storage class of transac­

tion records for a bank account would be automatic and the removal class would

be fixed. Network model implementations take different precautions to ensure that

disconnected records cannot remain in the database if there is no means to subse­

quently access them, - such as enforcing the restriction that a record type must be

an automatic member in at least one set type.

The importance and utility of integrity specification facilities 1s often sadly

44

underestimated as they are seen as unnecessary infringements, - for instance Olle

[31, ppSO] in referring to the NDM states that "If the data administrator wishes

to allow flexibility, he would prefer the optional (removal class) alternative every

time."

Date [11, pp89] defines referential integrity within the relational model as fol­

lows. "Let D be a primary domain, and let R1 be a relation with an attribute A

that is defined on D. Then, at any given time, each value of A in R1 must be either

(a) null, or (b) equal to V, say, where Vis the primary key value of some tuple in

some relation R2 (R1 and R2 not necessarily distinct) with primary key defined on

D." Here a primary domain is one which has a single attribute primary key defined

over it.

The relational model does not implicitly enforce referential integrity, this may

possibly be effected using the constraint specification mechanisms or building the

information into the application programs which access the database. The disad­

vantages of building constraints into the application programs have already been

elucidated in this chapter and the constraint specification mechanisms may not be

powerful enough to enforce referential integrity. Integrity constraints in INGRES

5.0 may not reference more than one relation in the constraint expression which

precludes them being used in general referential integrity enforcement, apart from

the situation where one wishes to check referential integrity within a single rela­

tion. Situations in which one checks referential integrity within a relation are very

uncommon, - the process of normalisation increases the number of relations and

makes inter-relation referential integrity checks very desirable.

4.4.3 Integrity Maintenance at the System Level

It is important that the integrity of data in a database system is protected

against unexpected events, such as a system crash, since a transaction may have

45

been interrupted in the middle of execution. Mechanisms such as "roll-back" have

been introduced which record the operations being performed on a database and

attempt to replay the failed operations on the pre-crash version of the database.

Such mechanisms are not relevant since the thesis concentrates on issues of in­

tegrity in a prototype DBMS. Readers who require more information ori integrity

maintenance at the system level are referred to standard database texts such as

Date [11].

4.5 Treatment of Integrity within Semantic Mod­

els

Semantic models attempt to capture as much of the semantics of the application

environment as possible and consequently their representation is much richer than

the schemas of traditional record oriented databases. The semantic models are

able to embody much more consistency information than their traditional model

counterparts, without the use of explicit integrity maintenance statements. The

integrity facilities provided by the various semantic models discussed in the chapter

on semantic data models are presented below. Since none of the semantic models

have been incorporated into a working DBMS, the viability of the constructs in

an implementation has not been evaluated. The integrity facilities of RM/T are

discussed separately, since this model is so different to the other semantic models

presented.

4.5.1 Integrity Issues within RM/T

RM/T was proposed in an effort to increase the consistency of the relational

model, and this was effected by the introduction of system surrogates and the

E-Relations, as described in the chapter on semantic data models.

46

Entity integrity is fundamental to the relational model and dictates that no

component of a primary key of a base relation may be null or duplicate to ensure

that every tuple in a relation may be uniquely identified. Entity integrity is enforced

in RM/T since no E-Relation entry may be null and entries may only be deleted

and inserted but not updated.

Rules have been formulated within RM/T to maintain referential integrity, such

as the action upon deletion of a surrogate value, or the insertion of a tuple into a

P-relation. The information in the PG-relations is crucial for integrity mainte­

nance as it describes the P-relations in which the entities of the E-relations take

part. When removing a surrogate value in the case where the entity in question

is to be completely removed from the database, all tuples are removed which use

the surrogate as the unique identifier, all other tuples have the surrogate identifier

replaced by a special value meaning 'entity unknown'. In the case where one type

or role for an entity is to be removed only the entries corresponding to that role

and entities dependent on that role must be deleted. The above situation might

arise in a factory database where a company is both a customer and supplier. If

the company was deleted as a supplier, then tuples using the supplier's surrogate

as the unique identifier would be deleted, and tuples which relied on the customer's

surrogate would remain.

The facilities for referential consistency control are still rudimentary in RM/T,

- the set removal and storage classes of CODASYL provide more information

about the relationships between entities. Let us consider the factory parts or­

dering database represented in RM/T, - if the user deleted a tuple representing

a particular part, then tuples in the order relations which referenced that part

would have the part number replaced by the 'entity unknown' value, since the tu­

ples would be indexed on the order number, not the part number. This action

would leave the database in a consistent state with respect to referential integrity

but not with respect to semantics, since a tuple detailing that an order refers to

a particular quantity of an unknown part is meaningless. Increased expressiveness

47

in the representation of RM/T is needed to enable the user to specify that in this

situation either the tuple referencing the deleted part is removed, or the complete

order from the customer is cancelled.

4.5.2 Integrity Issues within other Semantic Models

The expressiveness of semantic modelling constructs enables the modelling of

information which would have to be described using integrity constraints in the

traditional data models. An example of this is the ability to define derived data in

semantic models,- where a data value may be defined via an expression on other

data values. For instance an attribute annual total orders could be defined as the

sum of all the monthly total orders. To represent this information in a traditional

data model a separate figure would have to be specified for the annual figure and

a consistency constraint used to ensure it corresponded correctly with the monthly

figures.

The increased modelling capabilities in semantic models avoid duplication of

information and the use of explicit consistency constraints. It must be appreciated

that derived data may be extremely expensive to implement in practise due to

continual recalculation of many values every time one entity value is altered.

The information content of a semantic model is mainly contained in the rela­

tionships which are specified between entities. The semantic models allow many

domains to be specified for these relationships which qualify how they may be used,

enriching the expressiveness of the representation and aiding integrity maintenance.

Typical relationship domain information which may be specified is shown be­

low:-

N arne The name of the relationship.

48,

Value class The name of the value class from which the relationship may take its

value, such as ORDER-NUMBER, EMPLOYEE or STRING.

Single/Multi-Valued Single-valued relationships have values which are mem­

bers of the value class, whereas multi-valued relationships have values which

are a subset of the value class.

Key Whether the relationship provides a unique identifier for the object.

Mandatory Whether null values for the relationship value are allowed.

Member /Class Whether the relationship is a property of the members of the

class or applies to the class as a whole.

One Shot Whether the value can be changed once set.

Exhaustive If an relationship is exhaustive, then its values for the entities in the

database exhausts all the values in the value class of the relationship.

To illustrate how the domains might be used in practise let us consider an

example of the order number relationship of the object ORDER in the hypothetical

factory parts ordering database.

Name : OrderNumber

Value class : ORDER-NUMBER

Single/Multi-valued : Single-valued

Key: TRUE

Mandatory : TRUE

Member/Class : Member

One Shot : TRUE

Exhaustive : FALSE

49

The single/multi-valued and mandatory domains are of crucial importance in

maintaining referential integrity since they define the appropriate action to be

taken if one of the arguments of the relationship is inserted or deleted. Consider

the insertion of an order into the database, -since the order number relationship is

mandatory and single valued, a single order number would have to be supplied. If

that order number were subsequently deleted then the associated order would also

be deleted since the order number relationship is mandatory.

The semantic model also provides increased power over the definition of value

classes which enables more precise control to be exercised over relationship values.

The definition of a class in the semantic model might allow the following types

of descriptions, (these have already been mentioned with respect to SDM in the

chapter on semantic models) :-

Class Type If the class is printable, that is the values of its members can be

outputted, then its type may be described as one of the simple input/output

types such as string, real, integer or date.

Set Combination A class may be defined via set operators between two or more

sets. For instance the class WORKING POPULATION could be defined as

the difference between the class of HUMANS and the union of the PEN­

SIONER and CHILDREN classes.

Restricted Class A class may be constructed from the members of another class

which fulfill a specified predicate. This type of specification may be used to

create sub-ranges of standard value classes, such as ORDER NUMBER is

the class INTEGER where value is less than ten thousand. It would also be

possible to use restricted classes to form classes whose members may only be

computable at runtime, such as the the class SPRINTERS which is the class

RUNNERS where physique is large.

Integrity issues specifically related to implementation, such as recovery from

50

crashes and methods of database restructuring have not been dealt with by any of

the models, since none of them have been incorporated into a DBMS.

4.6 Discussion

Integrity maintenance is a facility which has not been well developed within any

of the traditional record oriented databases. The network data model allows refer­

ential integrity to be defined via the storage and removal class specifications and

provides a limited range checking statement. The relational data model enables

integrity constraints to be defined via assertion statements, however the represen­

tation is limited and implementation overheads may be high. The cost of integrity

maintenance is of paramount importance in realistic database applications, as this

must be balanced against the value of the data being protected.

The semantic models intrinsically provide a high level of integrity maintenance

by virtue of their expressive representations, however the lavishness of the represen­

tation may be unrealistic when compared to their benefits in an implementation.

The representations embodied in semantic models intrinsically enable a higher level

of information integrity than the traditional models even including the use of as­

sertion statements. Advanced representation facilities such as derived data and

relationship domain descriptions are extremely useful in integrity maintenance but

are likely to prove unrealistic in an implementation. Semantic models need to be

incorporated into a DBMS in order to evaluate the cost of the representation.

51

Chapter 5

Homogeneity of Information

Representation in Databases

The previous chapter concentrated upon the issue of integrity in the traditional

and semantic data models. This chapter considers the issue of homogeneity of

information representation in the same models. The conclusions gained from these

two chapters lead to the formulation of the BIRD model, described in the next

chapter.

Information entered by users which is stored in database systems comprises

the schema and application data. This chapter examines the extent to which this

information is stored in a homogeneous manner and the effect which the choice of

information representation has on the utility of the database and the user interface.

52

5.1 Homogeneity of Information in Record Ori­

ented Databases

This section describes how application and schema information is stored in tra­

ditional databases, and how this information may be manipulated. The hierarchical

data model is not discussed since the features which are examined in this chap­

ter are similar to the network model. Note that the figures in this section which

show tabular output from the INGRES relational database have been truncated in

length and width in order to fit them onto the page.

5.1.1 Representation and Manipulation of Schema Infor­

mation

This section initially describes how schema information is represented in the

traditional data models. The manipulation of schema information is presented, -

integrity information is dealt with separately since it is treated differently to the

other schema information.

The schema information comprises a structural description of the application

data, possibly augmented with integrity information detailing constraints on the

structure or values of the application data. Schema definition statements for the

relational and network models are shown in figure 5.1, expressed in the Data De­

scription Language, DDL, of the system. The schema statements show part of the

definitions which might be used to define the hypothetical factory parts database.

The DDL statements are compiled and stored in the system data dictionary and

this description may then be accessed by the system database manager in order to

control the application data admitted to the system.

The data dictionary in INGRES 5.0 comprises a number of "system catalogues",

53

SET NAME IS Factory-Order

OWNER IS Order

MEMBER IS Order-Item

RECORD NAME IS Order-Item

LOCATION MODE IS CALC USING Part-Number

DUPLICATES ARE NOT ALLOWED

02 Part-Number PICTURE IS 9(6)

02 Quantity PICTURE is 9(4)

CHECK IS VALUE NOT 0

CREATE TABLE Factory-Order(Order-No i4 Part-No i6 , Quan i4)

DEFINE INTEGRITY ON Factory-Order IS

Factory-Order.Quantity > 0 ;

Figure 5.1: Schema Definition Statements in the Network Data Model (top) and
Relational Data Model (below)

54

examples of these include the relation catalogue which stores a tuple for every

relation in the database, and the attribute catalogue which stores a tuple for very

attribute of every relation in the database. An example of the contents of the

relation catalogue is shown in figure 5.2

Although a schema may be added to with ease, the process of changing an

existing schema, database restructuring, is more complex and may be effected in

different ways according to the facilities provided by the DBMS :-

1. No facilities may be provided by the DBMS, in which case a new schema

must be constructed and the old database loaded into the new database via

an application program. The database will obviously be unavailable to users

whilst this process is taking place.

2. A Database Restructuring Language, DRL, may be provided which enables

the user to change portions of the schema. In this case the database itself

should be automatically altered to reflect the changes in the schema. The

database may be unavailable for use whilst this process is taking place, or it

may be possible to segment the part of the database which is being restruc­

tured and allow users access to the rest.

3. Use of the data description language to effect restructuring. The relational

model can best cope with restructuring when compared with the other mod­

els due to its lack of explicit pointers, it is also the most convenient since

restructuring may take place whilst the database is being used. In order

to restructure a relation, a new relation is defined with the appropriate at­

tributes; information is copied from the old to the new relation; information

is provided for any new attributes in the new relation; the old relation is

deleted and the new relation renamed.

Querying of schema information within the relational model is effected by the

use of specific commands. In order to view any of the information in the system

55

jrelid jrelownjrelatt jrelwidjrelspejrelstat jrel tups I
1---l

jabfobj s ja6 111 1541 71 10654731 oj
jindexes ja6 101 33j 71 10526911 3j
jqbfmap ja6 51 401 71 10654731 oj
jrcommands ja6 81 1541 111 10654731 oj
!relation ja6 25j 160j 7j 10526911 26j
jintegri ties ja6 8j 33j 7j 1052691j 8j
jprotect ja6 161 521 71 10526911 oj
jzopt2stat ja6 611 2461 71 10649771 oj
jabfappl ja6 71 1361 71 10654731 oj
jgcommands ja6 9j 3091 sj 10654731 oj
jiicompfrm ja6 71 19901 71 10649611 oj
!attribute ja6 8j 35j 7j 10526911 278j
jfdfields ja6 261 4971 71 10654731 oj
jfdframes ja6 121 401 71 10649611 oj
jgraphs ja6 131 60j 71 10649611 oj
jiiqbfinfo ja6 71 781 71 10649611 oj
jtree ja6 7j 1201 7j 10529471 24j
jzopt1stat ja6 101 421 71 10649771 oj
jinvorder ja6 3j 12j 3j 11919441 23j
jreports ja6 8j 29j 7j 1064961j Oj
jinvoice ja6 2j 16j 3j 11919441 111
linvindex ia6 1 21 81 s1 1o6o994l 111
itdtrim ia6 1 sj 1681 11 10654731 o1
1---l

jintrelid jintreljinttrejintdomset1 jintdomset2 jintdomset3 I
1---l

jaddress ja6 I oj 335544321 oj Oj
jinvorder ja6 I Oj 335544321 oj oj
jaddress ja6 I 11 335544321 oj Oj
linvorder la6 I 11 335544321 Ol Ol
jinvorder la6 I 21 671088641 oj Ol
jinvorder ja6 I 3j 1342177281 oj Oj
jinvorder ja6 I 41 671088641 oj Oj
jinvoice ja6 I Oj 335544321 01 Ol
1---l

Figure 5.2: Contents of the System Catalogues "relation" (top) and "integrities"
(below) in INGRES 5.0 Relational Database

56

catalogues, the user must use the "HELP" command. To retrieve information about

a particular relation in the database, the command "HELP relation-name" would

be issued, -figure 5.3 displays the output of the command "HELP relation", which

describes the system catalogue named "relation". Although the contents of the data

dictionary could all be altered by operating directly on the system catalogues using

the query language, this practise is strongly discouraged since it may result in an

erroneous system state. Instead the schema information in the data dictionary is

indirectly manipulated by operating on the relations it describes using the data

description language.

Integrity information may be supplied as part of the schema definition,- see the

'DEFINE' statement in figure 5.1, and this information is also stored in the data

dictionary. INGRES stores integrity information in a particular system catalogue

named "integrities" and an example of the contents of this relation is shown in

figure 5.2. In the case where external procedures are used to perform integrity

checking, only the definition of the trigger conditions will be present in the data

dictionary. Integrity checking may also be built into the application programs

which access the database, and in this case no integrity information at all is stored

in the data dictionary.

Integrity information is an exception since it does not govern the structure

of the relations and thus cannot be indirectly manipulated by operating on the

structure of the relations. Explicit commands are defined for the manipulation

of integrity information, - insertion is effected by the "CREATE INTEGRITY"

command, deletion by the "DROP INTEGRITY" command and querying by the

'HELP INTEGRITY' command shown in figure 5.2.

57

Name:
Owner:
Location:

relation
colO
colO

Type:
Row width:

system catalog
160

Number of rows: 26
Storage structure: hash
Number of pages: 7
Overflow data pages: 0
Journaling: disabled
Optimizer statistics: none
Column information:

key
column name type length sequence
relid c 12 1
relowner c 2
relatts integer 2
relwid integer 2
relspec integer 2
relstat integer 4
reltups integer 4

I* Integrity constraints on invorder are: *I

Integrity constraint 0 -

range of i is invorder
define integrity on i is

(i. invnum >= 0)

Integrity constraint 1 -

range of i is invorder
define integrity on i is

(i. invamt >= 0)

Figure 5.3: Sample Output of the "help " Command in INGRES 5.0 Relational
Database - "HELP Relation" (top) and "HELP INTEGRITY ON InvOrder" (
bottom)

58.

SELECT SerialNum, Quantity
FROM InvOrder , Invoice
WHERE Invoice.InvNum = InvOrder.InvNum

SELECT SerialNum, Quantity
FROM InvOrder
ORDER BY SerialNum

DELETE InvOrder
WHERE InvNum = 100234

INSERT INTO address
VALUES ("15 Squires Lane","DURHAM","DH1 3JD")

CREATE VIEW Towninfo AS
SELECT InvNum, Town
FROM Address

Figure 5.4: Examples of Standard Query Language, SQL, Commands

5.1.2 Representation and Manipulation of Application Data

The reader is referred to the chapter on traditional data models for a descrip­

tion of how application data is represented and manipulated in the various record­

oriented data models. Figure 5.4 shows examples of the usage of a data manipu­

lation language called the Standard Query Language, SQL, to perform insertions,

deletions and queries on the relational data model.

59

5.1.3 Discussion

The inhomogeneity of information representation in the traditional databases

necessitates multiple languages to manipulate the different representations of infor­

mation. All of the traditional databases require the knowledge of a Data Descrip­

tion Language, DDL, to define the database and a Data Manipulation Language,

DML, to access the data in the database. In addition there may exist a Database

Restructuring Language, DRL, to effect changes to the schema structure, a Data

Dictionary Manipulation Language, DDML, to alter information in the data dic­

tionaries and a Data Strategy Description Language, DSDL, [31, pp207) to control

storage, buffering and paging in the database system. For example, INGRES 5.0

has sets of commands to create the relational structure, query application data,

query the data dictionary and control the storage of the database.

The need to learn multiple languages is laborious and limits the scope to which

users may manipulate the information in the database. For instance if there was

one common DDL, DML and DDML operating over a common information repre­

sentation then a user experiencing problems in accessing a database would be able

to use the same language to query the schema and discover the structure of the

database and any pertinent integrity constraints which have been defined. With

different languages, the same user must expend extra effort in order to determine

how to manipulate information at a different conceptual level.

The different information representations restrict the information to which each

language has access, - a common database information representation would en­

able statements in the manipulation language to access schema, integrity and data

information. An example which demonstrates the utility of this feature is the sit­

uation where one wishes to append the contents of relation, A, onto the end of

relation, B. With a common DDL, DML and DDML one could form a query which

retrieved the constraints on each attribute of relation B and tested the correspond­

ing attributes of the tuples in relation A to see if any constraints were violated,

60,

before copying the tuples over.

With a common information representation, application programs built on top

of the database would be easier to write, more maintainable and have the potential

to be more powerful. For example if one desired to write an application program

which requested the attribute values for all the fields of a particular relation, then

the application program could interrogate the schema to determine which attributes

exist before requesting the values. The application program would be simpler

to write, the code would be reusable for the other relations in the system and

maintenance would be enhanced since the relations could be restructured without

affecting the application program.

5.2 Homogeneity of Information in Semantic Mod­

els

The representation of information within semantic models has already been de­

scribed in previous chapters. None of the semantic representations have been built

into a DBMS and thus it is not possible to comment on the possible inhomogeneity

between schema and application data. If semantic models are used in the design of

databases and then translated into a traditional implementation, then there will be

inhomogeneity between the semantic model, the traditional database schema and

the application data.

5.3 Related Work

Gray et al [19) criticise the lack of sufficient database metadata to help users

interact effectively with databases, consequently they developed a representation,

61

MAKR, to capture database metadata. The authors envisage a metadata adviser

which is able to give both descriptive and procedural information about the struc­

ture of the database and the information within it. The representation MAKR

was developed based on artificial intelligence style knowledge nets and this is used

to represent schema and meta-schema information. MAKR is a rich representa­

tion specifically tailored to the capture of schema and meta-schema information,

however it is still being developed and has not been incorporated into a metadata

adviser or integrated into a DBMS.

The EDICT model [12] has been proposed by Davis and Bonnell as an en­

hancement to relational database systems which captures more of the semantics of

the application environment and enhances the utility of the data dictionary. The

authors propose the storage of information at various levels :-

1. Enterprise Schema- A DBMS independent model of the application domain

expressed in a suitable semantic model, such as the ER model.

2. Enterprise Meta-Schema- description of the structure of the enterprise schema,

stored in the data dictionary.

3. Conceptual Schema - the relational database schema generated from the

enterprise schema.

4. Application Data- the actual enterprise data stored in the database.

5. Internal Schema - description of the underlying storage structures, created

and accessed by the DBMS. This describes how the database is physically

stored and indexed.

6. Dictionary Schema- contains information about the conceptual schema, such

as the number of relations, attributes and integrity information.

7. Dictionary Meta-Schema- information about the data dictionary, such as the

names of the relations in the dictionary and the meanings of the attributes.

62

The authors postulate that since all of the above information apart from the

internal and enterprise schemas are stored in relations, they may be accessed using

the same query language. Unfortunately, as demonstrated earlier in this chapter,

the fact that you can access the data dictionary catalogues using the query lan­

guage does not mean you can understand the information found therein. System

catalogues may be filled with copious amounts of unintelligible information, which

is not easy to interpret even with a dictionary meta-schema to help explain. Other

problems with this approach is that the relational model is not expressive enough

to capture the sort of information discussed. For instance Davis and Bonnell use

the ER model as an example of the enterprise schema and state that in this model

[12, ppl87] " ... an attribute is either associated with an entity set or a relationship

set , but not both and not neither", - this information would be impossible to

capture in the enterprise meta-schema.

The motivation of the EDICT project, to provide enhanced database meta­

information and represent information homogeneously is valid, however success

has been limited due to the reliance on the relational data model. The project

highlights the problem of choosing a suitable representation to store information at

varying conceptual levels, - although the relational model may have many benefits

at the application data level, the representation is not adequately expressive at the

enterprise meta-schema level. The adoption of a much richer representation, such

as in the MAKR model, is associated with many implementation problems. To

actually implement a representation such as MAKR would be difficult plus storage

requirements and application access times may be greatly increased. Davis and

Bonnell also do not discuss the manipulation of information at varying levels and

how the effects propagate to other levels.

63

5.4 Summary

Current databases employ different representations for information at differ­

ing conceptual levels. This inhomogeneity complicates a user's perception of the

database, restricts information sharing and makes application programs less flex­

ible. Although homogeneity of information is desirable, a representation suitable

for information at one conceptual level may not be able to efficiently express in­

formation at another. The desire for homogeneity of information may be fulfilled

by a rich expressive language, however the benefits must be evaluated against the

disadvantages. The richer representation will be partially redundant at some levels

and there will be an increase in storage costs and access times.

64

Chapter 6

Formation of the BIRD Model

This chapter draws together all the information contained in the previous chapters,

by documenting the formation of a new database model, BIRD. BIRD is a simple

semantic model which has been incorporated into a DBMS and approaches the

problems of integrity and inhomogeneity elucidated in the previous chapter. The

motivation which led to the development of the Binary Data Model, BIRD is

described below and this is followed by details of its structure and the operations

which may be performed upon it.

6.1 Motivation

The motivation for BIRD was to incorporate a simple semantic data model

within a DBMS, stressing integrity and homogeneity of information.

The incorporation of a semantic model within a DBMS has many associated

benefits. The design of the database may be effected using the semantic model,

with all the advantages described in the previous chapter on semantic models.

65

The increased representational power provided by a semantic model is expressed

in the database schema and there are no problems of manual conversion between

the design model and the database schema since they have been combined. The

incorporation of the semantic model into a DBMS also enables it's definition to be

checked automatically to ensure it is legal according to the rules of the model.

It was desired to represent all information and meta-information in a homoge­

neous manner in BIRD in order to avoid the disadvantages of data inhomogeneity

described in the previous chapter. A simpler user interface results, since the user

need only learn a single manipulation language which may be used over all the

information levels in the database.

Information integrity was an important motivation due to the rudimentary fa­

cilities provided by the traditional models for integrity constraint definition and

maintenance. It was desired to provide both structural integrity facilities, such

as referential integrity enforcement, as well as semantic integrity facilities, such as

range checking.

6.2 Conceptual Structure

A semantic network consisting of labelled binary relations connecting nodes

was chosen as the basis for information representation in BIRD. The use of binary

relations to represent knowledge was pioneered in the 1960's by Quillian [37, 38]

in his work on semantic nets. Quillian used the semantic net as a model of hu­

man knowledge, - concepts were represented as nodes and relationships between

concepts were represented as named links between the nodes. A lot of semantic

net oriented research has taken place since Quillian's original work, - the repre­

sentation has been used to represent information in many experimental systems

[5, 29, 41, 48].

66

The semantic net has previously been utilised to model real world knowledge in

artificial intelligence systems, however it has not been incorporated into a business

oriented database system. The form of information in a business database is very

different from that of more general knowledge about the world. In the former

very few concepts are stored and these are associated with a large number of

instantiations,- the information can be perceived as being vertical. In contrast real

world knowledge can be perceived as horizontal in nature, - a large interconnected

net of concepts with relatively few associated instantiations. For a comprehensive

introduction to semantic nets, readers are referred to Brachman [3] which contains

a detailed history and discussion of the representation.

6.2.1 Nodes

Two semantic networks are used to represent the information in BIRD, one for

the schema information and the other for the application data information, - there

are no explicit links. between these two networks. The nodes of the semantic net

represent different types of object at the different information levels in BIRD. At

the schema level the nodes represent object types, such as people, cars or orders,

- the object type is defined by its name and the relationships it takes part in at

this level. At the application data level, nodes are used to represent instantiations

of the object types defined at the schema level. The object type definition details

the instantiation type, - which may be printable or abstract. Printable instantia­

tions have a numerical or alphanumerical value, such as the instantiations of order

numbers or product names respectively. Abstract instantiations have no associated

printable label, but are defined via the relationships they take part in, such as the

instantiations of the object types PEOPLE or HOUSE.

67

6.2.2 Relationships

Relationships, or labelled arcs, are used to connect either the object types or

instantiations to each other and may be classified into two types, - application

dependent and system defined. Application dependent relationships, such as or~er

number, have no actual meaning to the DBMS, - they are declared by the user

at the schema level and may be instantiated in the application data level. System

defined arcs, such as value-greater-than, have their meaning built into the DBMS,­

they are specified by the user in order to express structural and semantic integrity

constraints and consequently they affect the application data level, but are not

instantiated in it.

The specification of application dependent relationships must be augmented by

domain information, - this is not necessary for the system defined relationships

since their semantics are built into the DBMS. Of the many domains described

in the previous chapter on semantic data models, two domains were chosen for

their utility in referential integrity maintenance. The duplication domain states

whether the relationship is single-valued or multi-valued and the definition domain

states whether the relationship is mandatory or optional. The domain information

must be specified with respect to both objects which take part in a relationship,

consequently BIRD understands relationships in both directions between any two

connected objects in the database.

The duplication domain is of crucial importance since it describes the form

of the relationship between object instantiations, - whether it is one to one, one

to many, many to one or many to many. The definition domain is fundamental

to the maintenance of referential integrity since it enables users to describe the

dependencies between the object instantiations in the system. When an insertion

or deletion is effected, this information is used to guide any related insertions or

deletions respectively.

68

6.2.3 Levels of Information

The semantic net is used to capture the database schema and application data

and this information is captured in two separate nets which have no explicit con­

nections between them.

The structure of information in BIRD can be naturally visualised in terms of

stacks of cards, see figure 6.1, where the top card of every stack represents an object

description and the cards in the body of each stack represent instantiations of that

object description. The top cards in the stacks may be connected to each other,

constituting the database schema. The cards in the body of the stack may also

be comiected to each other constituting the application information. The object

instantiations may only possess values and take part in relationships permitted by

the corresponding object type description.

BIRD was initially visualised as a structure which could represent information

at an arbitrary number of levels, where information at level, n, is governed by the

meta-information present at level, n + 1. In this manner a meta-schema level

could be introduced to describe the meaning and rules of the schema in a similar

manner to the EDICT model [12] discussed in the previous chapter. The rules

might include construction advice such as the illegality of circular is-a loops,- this

information could then be queried by the user when constructing the schema.

It was decided to initially design and implement BIRD using two levels of infor­

mation to ensure project completion within the available time, - then-level struc­

ture is mentioned in the later chapter entitled "Conclusions and Further Work".

69

Object Type

Object

Instantiations

Instantiations of
Schema Relationship

Figure 6.1: Conceptual Structure of BIRD

70

Date

Schema

Relationship

/

6.3 Manipulation of Information

It was desired to manipulate information at all levels in the system in the same

manner and this was facilitated by the homogeneous representation of both applica­

tion and schema information. Although information manipulation operations may

be formulated in a level independent manner, the effects of these manipulations

differs according to the level. The effects of manipulation of schema level informa­

tion must be propagated through the application data level since the structure of

all information at the lower level is governed by the information at the higher level.

Manipulation of application data level information may only be carried out with

reference to the schema level information, - the manipulation effects propagate

through the application data level.

Manipulation of the database will be considered by examining the operations

of insertion and deletion over application data and schema information.

6.3.1 Insertion

Insertion of information may take place at the application and schema levels,

consequently BIRD was designed to ensure that the domain information guides the

operation of all insertions to ensure the database is left in a consistent state after

the operation finishes. Insertion of information at the schema level has effects which

propagate down the object instances of the object types affected by the insertion.

Insertion of a schema fact incorporating an application dependent relationship

affects the definition of the object instances of the two object types which take

part in the fact. The effect on the instances of an object type is determined by the

value of the definition domain with respect to that object type . If the definition

domain of a schema fact has the value mandatory with respect to an object type,

then that relationship must be specified for all instantiations of that object type.

71

If the definition domain of a schema fact has the value optional with respect to

an object type, then the relationship need not be specified for the instantiations

of that object type. If a fact must be specified for the instantiations of an object

type, then the user must not be allowed to progress to the next database operation

until all the appropriate instantiations have had that fact specified.

Integrity constraints may also be inserted at the schema level, - these restrict

the legal range of values of object instantiations at the application data level.

Subsequent to the insertion of an integrity constraint, object instantiation values

should be checked and any illegal values should be changed or deleted.

Instantiation of facts at the application data level is always performed with

reference to the associated facts in the structural schema level. Values of the

definition domain detail which facts must be specified for an object instantiation

and values of the duplication domain detail how many times a fact may be specified

for a particular instantiation. No fact may be specified for an instantiation unless

it is permitted by its associated object type description.

Insertion of an object instantiation is performed in two stages. Firstly the value

of the instantiation, if it is printable, should be supplied and then all appropriate

facts should be specified for the instantiation. The corresponding object type

description details which facts may be specified for an object instance and which

of these are mandatory. Insertion of facts or objects at the application data level

may lead to associated insertions of objects and therefore facts. Thus the process

of information insertion at the application data level may be viewed recursively.

6.3.2 Deletion

Domain information plays an equally important part in the deletion of informa­

tion as in the insertion of information. The domain information is used to ensure

that deletion of information in the database leads to the deletion of all information

72

which depends on it and thus the database is left in a consistent state.

Consider the deletion of an application data level relationship with respect to

one of the object instantiations which it connects. If the relationship is necessary

and single-valued with respect to that instantiation, then its deletion will leave

the instantiation illegally defined and thus the instantiation itself must also be

deleted. If the relationship is necessary and multi-valued with respect to that

instantiation, then its deletion will only take place if the relationship has only

been specified once with respect to it. If the relationship is optional with respect

to the object instantiation, then deletion of the relationship will never cause the

associated deletion of the instantiation.

Deletion of object instantiations is performed by multiple fact deletions. All

the facts which the instantiation is associated with are deleted, which may lead

to the deletion of other instantiations and then the instantiation itself is deleted

from the database. Similarly to the insertion of application level information, the

deletion of application level information may be viewed as a recursive process.

Deletion of application dependent schema level information affects the infor­

mation in the application data level. If a schema level fact which incorporates an

application dependent relationship is deleted, then all of the instantiations of that

fact in the application data level must also be deleted. If a complete object type

is deleted, then all the schema level facts in which it takes part must be deleted

as well as all of its object instantiations and the facts in which they take part.

Deletion of information at the schema level is not a recursive process since it does

not lead to further deletions at that level and only directly associated information

in the application data level is deleted.

Deletion of integrity information at the schema level does not affect the ap­

plication data level, since constraints are being relaxed and thus the database is

guaranteed to be consistent after the operation if it was consistent before the op­

eration.

73

Chapter 7

Design of BIRD

Having described the BIRD data model in the previous chapter, this chapter details

the development of that model towards an implementation. The chapter addresses

the principles behind the design of BIRD and then describes the data structure

used to represent the database and the procedures which operate over it. The

actual implementation of BIRD is described in the following chapter.

7.1 Principles

The emphasis of this thesis is an i11vestigation of information representation

issues in databases. Consequently the design and implementation of BIRD was

oriented towards simplicity rather than implementation issues. Little effort was

directed towards the development of efficient database manipulation algorithms or

approaching commercial implementation issues such as data persistence, security,

distribution of data, crash recovery and facilities for multiple users.

74

7.2 Data Structure

It was desired to represent the conceptual model of BIRD as directly as possible

in the design and implementation and thus the three dimensional array shown in

figure 7.1 was proposed to hold the database information. Each vertical slice of the

array represents one of the stacks of cards, each horizontal level in a slice represents

a particular card and the different locations within these horizontal levels hold the

relationships between that card and other cards in different stacks. This is a very

simple and intuitive representation since object instances of all object types may be

found by looking directly below the object type declaration in the array. Similarly

the instantiation of any schema level fact is kept directly below it in the application

data level.

The schema level is represented in two levels in the data structure, - the struc­

tural and semantic schema levels. The structural schema layer describes the struc­

ture of the application data, it comprises the application dependent relationships

which may be instantiated in the application data level. The semantic schema level

is made up of system defined relationships, - these specify integrity constraints over

the application data and are not instantiated in the application data level.

Four coordinates, see figure 7.1, are needed in order to identify a single location

in the database :-

Object Type Index Selects the particular object type which the operation will

access, - in our conceptual model this corresponds to the selection of a stack

of cards.

Object Instance Index Selects the particular instantiation of an object type,

- this corresponds to the selection of one of the cards within a stack in the

conceptual model.

Fact Type Index Selects a fact from the many facts which may be specified for

75

Application Data Level

Object Type
Index

Semantic Schema Level

Schema
Level

Fact Type Index

Object Instance
Index

Figure 7.1: Array Structure Underlying BIRD

76

a card in a stack.

Fact Instance Index Selects an instance of a specified fact type, -this coordinate

is necessary since a single fact at the schema level identified by a fact type

index value may be instantiated more than once, according to the domain

information, in the application data level. Thus the fact instance index is

used to select a particular fact instantiation at the application data level.

The database array is a three dimensional array of arrays of facts, - although

every location in the array could potentially hold a fact, the utilisation of the

locations differs according to the conceptual level of information. At the structural

and semantic schema levels, only a single fact may be stored at each location

identified by a fact type index value, - the fact instance index is redundant.

Although facts are expressed in a homogeneous manner irrespective of concep­

tual level, different types of facts are stored at different levels. Information at

the semantic schema level only comprises integrity constraint defining facts which

incorporate system defined relationships. At the structural schema level, object

types are declared with their associated facts and domain information. At the ap­

plication data level, the information comprises the values of object instantiations

and their associated facts.

7.3 Relationships

It was decided to initially define a basic set of system defined relationships with

a view to extending them later if time permitted. The. system defined relationships

employed are described below :-

Max -Specifies the maximum value of integer instantiations of a particular object

type.

77

Min - Specifies the minimum value of integer instantiations of a particular object

type.

MaxLen - Specifies the maximum string length of alphanumeric instantiations of

a particular object type.

MinLen - Specifies the minimum string length of alphanumeric instantiations of

a particular object type.

There is one other system defined relationship not mentioned above, - the is-a

relationship which is probably the most famous relationship in knowledge network

research, - it has existed since the early days of semantic nets and due to its

property of inheritance it has been widely studied [4]. The is-a relationship is

utilised to provide structural information by stating that one object type in the

database is a sub-object type of another object type, consequently it is an exception

since it is a system defined relationship which resides at the structural schema level.

Inheritance within BIRD is rudimentary in nature, - a sub-object type inherits

all the facts specified for the corresponding object type and multiple inheritance is

not allowed. More sophisticated knowledge representation networks provide facili­

ties to handle clashes arising from multiple inheritance and only allow set member

properties to inherit over the link. Set member and class properties were defined

in the section describing SDM in the chapter on the semantic data models. BIRD

provides no facilities for the specification of class properties since their occurrence

is so rare in practise,- it is very hard to think of any useful class properties except

for stating the number of members in a set.

78

7.4 Modular Structure and Levels of Proce-

dures

The software engineering principles of modular design and information hiding

were employed in the design of BIRD,- the benefits of this approach are described

in the following chapter on the implementation of BIRD. Procedures in the system

were grouped into a hierarchy of :five levels, see :figure 7.2 where the procedures

in each level may only access the procedures in the level below. Each level hides

part of the underlying data structure from the level above it and incorporates more

semantics into the operations than is present at the level below it.

The levels into which procedures are grouped are described below, - readers

seeking a full description of all the procedures at the various levels are referred to

the appendix at the back of this thesis.

In order to demonstrate how commands are built up incrementally through the

levels, the insertion operation will be described at each level. In BIRD the name

of each procedure is suffixed with the level at which it operates, for example the

procedure to retrieve a fact CheckFactLO works at level zero.

7 .4.1 Level Zero

Level zero is the only level at which procedures may directly access the array

representing the database. Little of the semantics of the database are built into

the procedures at this level, - they are passed the four dimensional coordinate of

a location in the database and must perform the specified action on that location.

Each procedure at this level performs one simple low level operation, such as the

insertion of an object type name or setting the value of a particular domain.

If one considers the insertion of information, there are many procedures which

79

Menu

Parameter - less
Procedure Call

Level Three

Two - Dimensional
Coordinate

Level Two

Three - Dimensional
Coordinate

Level One

Four - Dimensional
Coordinate

Level Zero

Direct Access

- Hide Object Type
and Fact Type Index

- Hide Object
Instance Index

- Hide Fact
Instance Index

Fact Instance

to Array Structure
Object Type

In de~

Object Instance

Index

Figure 7.2: Constituent Levels of BIRD

80

effect this function. The InsertFactLO procedure operates at every conceptual level

of the data structure and inserts the fact supplied at the location specified. The

InsertNameLO and InsertNumberLO procedures insert the names and numerical

values of object types and instantiations. There are also the procedures Manda­

toryFlagLO and DuplicationFlagLO which set the relevant domains to the value

supplied.

7 .4.2 Level One

Level one procedures manipulate the database data via the procedures provided

at level zero. Level one builds on the procedures provided at level zero and hides

the fact instance coordinate from level two. Level one procedures which insert

facts in the application data level must call level zero procedures to determine the

fact instance cooordinate value of the first free location for that fact. Level one

procedures which delete facts in the application data level are supplied a three

dimensional coordinate and the particular fact, - they must use the level zero pro­

cedures to search through the fact instances at that three dimensional coordinate

to find the fact instance coordinate value of the fact supplied before it may be

deleted. Procedures which operate at the semantic and structural schema levels

implicitly hide the fact instance coordinate from the level above since only one fact

may be stored in each location identified by the fact type index at this level.

Considering insertion of information at level one, the InsertFactlnstLl proce­

dure operates over the application data level and inserts the fact provided. The

procedure uses the level zero procedures to inspect consecutive fact instance loca­

tions until it finds one which is free, - the fact is inserted at this location. The

InsertFactTypeLl procedure operates at the structural and semantic schema levels.

The procedure is passed a three dimensional coordinate and a fact,- it checks the

location specified is free and then inserts the fact. The InsertObjectlnstLl proce­

dure instantiates an object type, - this is effected by setting the instance's value

81

at the location specified to the name or number provided. The InsertObjectType£1

increments the value of the object type index until it finds at free location, - it

then inserts the object type by setting the location to the value supplied. The

insertion of domain information is split up into four procedures at this level, - each

procedure either sets or clears one of the domain values for a specified fact location

in the structural schema level.

7.4.3 Level Two

Level two hides the object instance coordinate from the level above,- instead of

passing a coordinate containing an object instance coordinate value, the procedures

at level three must specify the object type and the actual value of its object instance.

The level two procedures use this object instance value to determine the particular

object instance coordinate. More semantics are built into this level, - insertion

procedures check that the information has not already been inserted, - in this way

duplicate data facts, object types or object instances cannot exist in the database.

All procedures at this level operate on pairs of facts. For instance if a fact is to be

inserted in the application data level then it is inserted into the fact lists of both

the object instance arguments of the fact.

Let us consider the insertion of information at level two. The InsertObjectln­

st£2 procedure inserts object instance values in the application data level at the

first free position below the specified object type, having first checked that there

are no object instances with identical values for the object type specified. The

lnsertObjectType£2 procedure operates over the structural schema level, it firstly

checks for identical object types and then inserts the object type specified. The In­

sertDataFact£2 procedure operates over the application data level, -it inserts the

data fact in the fact list of both object instances which take part in the fact, hav­

ing firstly checked that the fact does not already exist. The InsertSchemaFact£2

procedure operates at the structural schema level, - it inserts the fact and domain

82

information supplied in the fact lists of both of the object types involved, having

first checked for fact duplication. The lnsertConsistencyFactL2 procedure operates

at the semantic schema level and inserts the fact provided in the fact lists of both of

the object types involved. As with all the other procedures at this level, a check is

made to ensure the information has not already been inserted before the operation

takes place.

7 .4.4 Level Three

Procedures at level three form the dividing line between the database proper

and the user interface which is built on top. The procedures are called from the level

above without parameters and thus all the remaining semantics of the operations

must be built into this level. Since the procedures are called without parameters

they perform all input and output necessary to gain the information necessary for

execution.

Structural and semantic integrity of information is stressed at this layer,- object

instance valuesare checked for their semantic legality and structural integrity is

checked after insertion or deletion operations. Insertion or deletion of information

at the schema level affects the corresponding object instances in the application

data level, - the procedures at this level take this into account. The behaviour of

the is-a relationship is also taken into account at this layer, effects of insertions

or deletions of schema level facts must be propagated to any sub-object types of

the object types in the facts. Further information on integrity maintenance and

the incorporation of the is-a relationship may be found in the following chapter

describing the implementation and operation of BIRD.

The lnsertObjectTypeL3 procedure requests all the necessary information from

the user and then inserts the object type into the database. This procedure is

an exception since it's execution cannot compromise the integrity of the database,

83

- an object type has been inserted but it has no associated instantiations whose

definition may be inconsistent.

The InsertConsistencyFactL3 procedure requests from the user the details of a

semantic integrity fact, this is checked to ensure it is a legal fact before it is inserted

into the database. One of the arguments of an integrity fact is a constant, - the

RemedyObjectTypeDefinition ViainsertionL3 procedure is called to propagate the

effect of the insertion to the object instances of the single object type named in the

fact. The operation of the RemedyObjectTypeDefinition ViainsertionL3 procedure

is described below.

The lnsertSchemaFactL3 procedure operates in a similar way to lnsertConsis­

tencyFactL3. Firstly the details of the structural schema fact including the domain

information is requested from the user and it is then inserted into the database.

The fact is propagated to all sub-object types of both the object types which

take part in the fact and then the procedure RemedyObjectTypeDefinition Vialn­

sertionL3 is called for every object type which has been affected by the insertion.

BIRD tests for the special case where the structural schema fact contains the is-a

relationship. In this case the structural schema fact itself is not propagated down

the is-a hierarchy, instead all structural and semantic schema facts associated with

the super-object type are propagated to all the sub-object types.

The lnsertObjectlnstL3 procedure requests from the user the object type to be

instantiated and the object instance value. The object instance value is checked

against the semantic schema information before the object instance is inserted

and the procedure RemedyObjectlnstDefinition VialnsertionL3 is then called. The

operation of the RemedyObjectlnstDefinition VialnsertionL3 procedure is described

below.

The lnsertDataFactL3 procedure establishes from the user the particular struc­

tural schema fact which is to be instantiated. The user must specify the object

instances which form the subject and object of the application data level fact, if

84

the domain information allows the specification of the fact for these arguments

then it is inserted. It is possible that the arguments of the data fact are new

object instances and thus RemedyObjectlnstDefinition VialnsertionL3 is called for

each argument.

The procedure RemedyObjectlnstDefinition VialnsertionL3 inspects the appli­

cation data facts which have been specified for an object instance and compares

them against the structural schema information for the corresponding object type.

If it is found that any structural schema facts which are necessary have not been

instantiated for an object instance then the user is invited to instantiate a struc­

tural schema facts. The user must continue instantiating structural schema facts

until the definition of the object instance is correct with respect to the schema

information. If any new object instances have been created in this process then

RemedyObjectlnst VialnsertionL3 checks their definition as well and thus it operates

recursively. RemedyObjectlnst VialnsertionL3 also checks the values of the object

instances against any appropriate integrity constraints. If an object instance value

contravenes an integrity constraint the user is invited to supply a new value.

The procedure RemedyObjectType Vialnsertion checks the definitions of all the

object instances associated with an object type. RemedyObjectTypeDefinition Vi­

alnsertion steps through all the object instances of the specified object type and

passes them to RemedyObjectlnstDefinition Vialnsertion.

7.4.5 Menu

The menu level forms the highest level of procedures in BIRD and provides the

interface of the database with the user, it is described more fully in the following

chapter on the implementation of BIRD.

BIRD is menu driven,- two levels of menu are presented to the user. The first

level of menu allows the user to perform various housekeeping functions, such as

85

storing or retrieving permanent copies of a database. The second level provides

the functions which actually operate on the database. The user must choose a

function, - insert, delete or query, a level, - semantic schema, structural schema

or application data and a granularity of operation, - object or fact. Having selected

the operation from the menu, the operation is executed by calling the appropriate

level three procedure. The level three procedures request and check the information

they need to execute and thus the user is lead through the execution of commands

in BIRD.

86

Chapter 8

Implementation of BIRD

The previous chapters have described the motivation which led to the formation and

subsequent design of the BIRD model. This chapter describes the implementation

of BIRD using Modula-2. The system was implemented in levels of modules, -each

level is discussed together with a description of relevant implementation decisions

made whilst implementing that level.

Modula-2 was chosen as the implementation language due to its modular soft­

ware development facilities which enabled efficient software engineering of the

project, as described later in this chapter.

As mentioned in the previous chapter BIRD was proposed as an experimental

prototype DBMS, addressing representational rather than implementation issues.

Consequently, implementation decisi'ons which were made during the development

of the system stressed elegance and simplicity rather than optimisation of resources.

87

8.1 Data Structure

The database data structure is defined as a three dimensional array of records.

The record stored in a single location in the array may take the form of either of

three variants. The record variant which is chosen is determined by the conceptual

level of information which the cell represents, see figure 8.1, - either semantic

schema, structural schema or application information. A semantic schema variant

consists only of a fact, in contrast a structural schema variant consists of a fact

with domain information plus an optional description of the object type that cell

represents and the type of its instantiations. An application data variant consists

of an array of data facts plus an optional description of the object instance that

cell represents.

Within the planes identified by the object type index and fact type index all

cells are of the same variant record. However the utilisation of the fields of these

variants changes according to the value of the fact type index. Only cells selected

by the first value of the fact type index may store a name or value as well as a fact.

Thus for a particular object type index value, the record identified by the first value

of the fact type index in the structural schema layer will hold the name of the object

type. By keeping the object type and fact type index values constant whilst varying

the object instance index value, the values of the instances of that object type may

be inspected. In the structural and semantic schema layers, facts associated with

the object types may be selected by individual fact type index values. In the

application data layer, the fact type index is used to select a particular array of

data facts which is further indexed by the fact instance index.

88

Object Type

Index

Ssmantic Scbsma

Structural Scbsma

Object Type Dame

Rpplication Data

Object Instance Value

Hrrav of
Data Facts

Figure 8.1: BIRD Database Array Cell Structure at Different Conceptual Levels

8.2 Modular Structure

The BIRD system was constructed using the modular facilities provided by the

Modula-2 programming language. A module is composed of data structures and

procedures which are associated with an external interface which defines what data

structures and procedures other modules may access. The modular structure may

be used to enforce data hiding, - in this manner a data structure is declared locally

to a module and may only be manipulated via the procedures in that module. Thus

procedures in other modules may only access the data structure indirectly via the

authorised procedures. Data hiding ensures that erroneous system states resulting

from direct accesses to a data structure by procedures distributed throughout a

system may not occur. The modular structure also facilitates independent com­

pilation, - after a change to a module only that module and modules which are

dependent on it need to be recompiled as opposed to the whole system.

The BIRD system was designed in hierarchical layers of procedures, where a

particular layer may be represented in multiple modules according to its size. Each

level of procedures in the hierarchy implemented the same three basic database

operations, - retrieval, insertion and deletion, however the sophistication of the

operations was built up through the layers as described in the previous chapter on

the design of BIRD.

The completion of each level in the hierarchy provided a convenient and logical

stage at which to test the system. This eased the task of testing and debugging

since it was effected in small manageable stages, as well as promoting the efficient

software engineering of the system.

90

8.3 Implementation of Levels

This section describes the implementation of each level of procedures which

constitute the BIRD system, including a description of important decisions made

at each stage. All implementation decisions were made according to the principles

detailed at the beginning of this chapter.

8.3.1 Database

A module called 'database' was created to contain definitions which would be

needed at multiple levels of the system, such as the definitions of names and co­

ordinates. The modules which constitute the levels of the system may all import

definitions from this single module. The 'database' module was a cosmetic exercise

which ensured that each level of modules implementing the database functions only

imported definitions from the level below. The definitions contained in the module

'database' could equally have been placed at level zero and imported into multiple

levels.

The 'database' module also included a single procedure called 'halt' which was

useful to all levels of procedures in the system. The procedure 'halt' is called by

any procedure which encounters an unexpected or erroneous system state, such as

inadequate space in the database array. The error handling procedure displays the

error message passed to it and then induces a system error in order to abnormally

terminate the program. In this manner the tracing facilities of Modula-2 are in­

voked and a call graph of the procedure calls leading to the abnormal termination

is displayed, thus aiding the debugging process.

91

8.3.2 Level Zero

Level zero is the only level at which procedures may directly access the array

containing the database. Part of the declaration of the database array is shown

in figure 8.2, - this declaration is local to level zero and thus invisible to all other

modules.

The operations performed at level zero are all very fundamental in nature, - the

procedures are passed a four dimensional coordinate exactly identifying an array

location and information is inserted, deleted or retrieved at this location.

8.3.3 Level One

Level one procedures build on the low level procedures at level zero in order to

include more semantics. It was decided at this level that information in the array

would not be restricted to occupying successive locations in any one dimension. For

example if a fact is deleted, then remaining facts will not be shuffled up one location

to fill the gap, thus information may be distributed in patches throughout the

array. This decision simplifies the operations of insertion and deletion, - insertion

is performed at the first free appropriate location and deletion is effected by simply

deleting the information. This method introduces an overhead for queries, since

encountering an empty location does not imply that subsequent locations inspected

will be empty.

Similarly in order to simplify programming, object types were not stored in suc­

cessive locations or in any particular order in the array. Alternatives include the use

of hashing routines to locate object types or simply ordering them alphabetically.

Level one procedures introduce some simple semantics into the database ma­

nipulation operations. The value of the fact instance index is hidden from the level

92

TYPE
DataFactType

DBCellType

Database Type

VAR ·; ..
~::.1

database:
~ .~.:~' .

ARRAY FactinstindexType OF DataFactinstType

RECORD

END

CASE Cellidentity
SemanticSchema :

ConsisFact
StructuralSchema:

ObjectTypeDesc
SchemaFact
Domain

Data:

END

ObjectinstDesc
DataFacts

LevelType OF

SchemaConsisFactinstTypel

ObjectTypeDescType ;
SchemaConsisFactinstType;
DomaininformationType I

ObjectinstDescType
DataFactType ;

ARRAY ObjectTypeindexType, FactTypeindexType,
ObjectinstindexType OF DatabaseCellType ;

DatabaseType

Figure 8.2: Part of the Modula-2 Definition of the BIRD Database Array

.J
'

93

above and thus insertion procedures must inspect the locations of the application

data fact arrays to determine where to insert a fact and deletion procedures must

search the locations of the specified application data array to find the fact to be

deleted.

8.3.4 Level Two

At level two the additional complexity of the operations necessitated the cre­

ation of multiple modules to handle the large volume of code. Modules were defined

for the separate database functions of insertion, deletion and retrieval as well as

modules for user input, output and database integrity checking.

In BIRD since all facts are relationships between two entities, the facts have

to be stored twice, once in the fact lists of both entities concerned. At level two

the database manipulation procedures take this into account by operating on pairs

of facts. Procedures which insert information at level two also ensure that the

information does not already exist before inserting it.

The modules which constitute level two each perform a cohesive set of functions

and have no need to reference procedures in other modules at the same level.

Consequently updating the code of any module at level two does not necessitate

recompilation of any other level two module.

An output module was written to provide basic procedures for outputting char­

acter strings, numbers and facts. An input module was written providing proce­

dures for eliciting domain information, object type names, object instance values

and facts from a user. An integrity module was also written which provided proce­

dures for testing the integrity of object instances with respect to the schema level

information and testing if insertion of specified information would compromise the

integrity of the database.

94

8.3.5 Level Three

Level three constitutes the interface between the database manipulation oper­

ations and the user interface above. All remaining semantics were built into the

procedures at level three, - these procedures were separated into three modules

by declaring one each for insertion, deletion and retrieval of information. As with

level two, the procedures in the level three modules do not reference each other.

All procedures at level three perform their own input and output where nec­

essary. The insertion and deletion procedures ensure that the integrity of the

information in the database is intact after the operation has finished and take into

account the semantics of the is-a relationship. For instance, if an instance of an

order is inserted into the database then all information necessary to the definition

of that order instance will be requested from the user before the insertion opera­

tion terminates, -if this leads to the insertion of other object instances then these

will also be correctly defined. Extensive examples of the operation of the integrity

maintenance system are given in the next chapter on operation and evaluation as

well as a full description of the incorporation of the is-a relationship.

Since the level three procedures include all remaining semantics, they may be

called from higher levels without parameters. Any procedure at level three will

ensure it elicits all necessary information for its execution and that the database

integrity is intact before terminating.

8.3.6 Menu

The menu level formed the interface between the database proper and the end

user. Since the thrust of the BIRD project is towards representation issues, the

construction of a complex user interface was not deemed appropriate. The brief

of the user interface was to allow a user to insert and delete information with

95

ease, coupled with a basic information query facility. Owing to the emphasis on

homogeneity it was desired to enable the user to manipulate information at different

conceptual levels in the same manner.

A menu driven interface was implemented which enables the user to build up

simple commands by the selection of options from three lists. The first list expresses

the function,- insert, remove or query; the second list expresses the conceptual level

of the information, -semantic schema (consistency), structural schema (schema) or

application data (data) and the last list expresses the granularity of the operation,

object or fact. Selection of "object" granularity is assumed to mean object type at

the schema levels and object instance at the application data level. Thus examples

of selections might be "insert structural schema level fact" or "delete application

data level fact", - the former is shown in figure 8.3. To execute this selection

the user presses the "RETURN" key with a blank command line. To change the

selection the user enters the first letter of the appropriate list entries, - thus to

select the deletion of an application data fact the letters, 'rdf' would be entered.

Having pressed the "RETURN" key, the menu would change to reflect the selection,

pressing the "RETURN" key again would execute the command.

The BIRD system is "active" by nature, - once the desired command has been

selected, the relevant parameters will be requested and then all necessary measures

will be taken to ensure that database integrity is maintained. BIRD provides the

user with the choice to insert or delete any of the information at any level in

the database without restriction and then ensures that any related insertions or

deletions, respectively, are performed.

During experimentation with the system it was deemed desirable to provide a

facility for storing the database permanently,- since at that time the database was

lost as soon as the program was terminated. Storage of the database could have

been effected in a number of ways of varying complexity, such as retrieving all the

facts and depositing them in a file or keeping all the facts permanently in a file to

replace the use of the internal array. The simplest option was chosen, - to directly

96

I OPERATION I LEVEL I GRANULARITY I

I QUERY I CONSISTENCY I OBJECT

I # INSERT I # SCHEMA I # FACT

I REMOVE I DATA I

To change the command executed, enter the first letter of the
selection you wish to make or enter 'u' to exit to the upper
menu level. Press RETURN to execute the command.

Figure 8.3: Database Manipulation Menu in BIRD

OPERATION I

CHANGE SNAPSHOT LIBRARY I
DELETE DATABASE SNAPSHOT I
LIST DATABASE SNAPSHOTS I

RESTORE DATABASE SNAPSHOT I
SAVE DATABASE
NEXT MENU DOWN
QUIT PROGRAM

I
I
I

To change the command executed, enter the first letter of the
selection you wish to make. Press RETURN to execute the command.

Figure 8.4: High Level Menu in BIRD

97

write the whole array into a file using the file input/output facilities provided by

the Modula-2 library procedures. This concept was named the database 'snap­

shot' since facilities were provide~ to freeze and retrieve complete pictures of the

database, however these snapshots could not be mixed in any way since retrieval

of a snapshot completely overwrites the current array contents.

To write the array into a file necessitated a procedure at level zero in order to

have access to the array. Consequently the menu level directly accesses procedures

at level zero in order to effect database snapshot storage and retrieval. Although

the menu level should only reference procedures at level three, there was no scope

for building up the complexity of the snapshot commands through the levels, since

they were complete at level zero and thus they were accessed directly.

The introduction of snapshots necessitated the construction of a higher level

menu, shown in figure 8.4, consisting of snapshot manipulation options plus options

to descend to the database manipulation menu or to quit to the operating system.

8.4 Conclusion

The BIRD system was successfully implemented in ten thousand lines of source

code which compiled into a one hundred and forty five thousand byte executable

file. During experimentation with the system the dimensions chosen for the array

were as follows:-

• Object Type Dimension : 40

• Object Instance Dimension : 20

• Fact Type Dimension : 20

• Fact Instance Dimension : 10

98

When this array was stored as a snapshot it occupied 2.5 megabytes of memory.

Commonly, most of the locations of the array were not utilised, - the use of the

UNIX "compress" facility yielded a storage reduction by about ninety percent.

The structure of the system is summarised in a call graph, figure 8.5, which

displays the modules comprising the system and highlights the hierarchical nature

of the system effectively. Note the complete lack of interaction between modules

at any particular level. A table summarising information on the size of each level

of procedures is shown in figure 8.6

The ability to develop and test the system in stages greatly facilitated its im­

plementation. The utility of comprehensive testing of the procedures at one level

before implementation was started on the next level was proven since errors orig­

inating in procedures buried in lower levels were always hard to find. One error

involving a reversed array subscript in a procedure contained in a module three

levels below the one currently being implemented took nearly a day to find.

99

deletel3

level1

1

Figure 8.5: Structure of BIRD Showing Inter-Module Interaction

100

Level Name Number of Size/ Size/
Modules kBytes lines

Database 1 6 135

Level Zero 1 30 788

Level One 1 55 1434

Level Two 6 298 6243

Level Three 3 96 2358

Menu 1 26 702

Figure 8.6: Summary of BIRD Implementation Details

Chapter 9

Operation and Evaluation of

BIRD

This chapter details the operation of the BIRD database by describing the exe­

cution of database manipulation operations. Attention is focussed on the internal

processes which ensure that the integrity of the database is intact before each oper­

ation terminates. The interaction between the is-a relationship and the database

manipulation operations is discussed in a separate section. A section is present at

the end of the chapter which contrasts the BIRD approach with a record oriented

database example.

The user selections necessary to perform specified operations are briefly de­

scribed where appropriate, however this chapter is not intended to act as a "user­

manual" for BIRD. The user menus used for specifying the database manipulation

operations may be seen in figure 8.3 and figure 8.4 in the previous chapter. The

hypothetical factory parts ordering database mentioned in the introduction of this

thesis is used as an example throughout this chapter and is extended for the pur­

poses of exposition. The same factory parts ordering database was implemented

102

using the INGRES 5.0 relational database and salient differences between the two

approaches are discussed.

The methods which BIRD employs to maintain database integrity may only

be effectively demonstrated if there is already information in the database which

will be affected by the manipulations. Consequently it is assumed that the schema

shown in figure 9.1 has already been entered into BIRD as well as associated ap­

plication data. Figure 9.1 details the object types present in the database, such as

ORDER and ORDER ITEM as well as describing the relationships between them

and the types of instantiations they support. For example the ORDER object type

has abstract instantiations and is related to the ORDER ITEM object type by the

order number relationship which is mandatory and single-valued with respect to

ORDER and mandatory and multi-valued with respect to ORDER ITEM.

9.1 Information Insertion

This section describes the insertion of information at the semantic schema,

structural schema and application data levels. Attention is directed at the internal

processes which ensure all information related to the insertion is supplied in order

to maintain database integrity.

Let us consider the situation where an order has been received to be entered into

the hypothetical factory parts ordering database. The user would be free to start

describing the order to BIRD by instantiating any of the relevant object types, such

as ORDER NUMBER, ORDER or ORDER ITEM. To instantiate an object type

the insert, application and object options would be selected from the user menu, the

user would then be prompted for the name of the object type and for the purposes

of exposition let us assume that the ORDER ITEM object type was chosen to be

instantiated. An ORDER ITEM instantiation would be created, - a value need

not be supplied for the instantiation since it is an abstract instantiation.

103

Entity ORDER

Instantiations Abstract

Relationships

Name Order Number

Definition Mandatory

Duplication Single-Valued

Argument SERIAL #

N arne Address

Definition Mandatory

Duplication Single-Valued

Argument ADDRESS

Name Order Item

Definition Mandatory

Duplication Multi-Valued

Argument ORDER ITEM

Entity ORDER ITEM

Instantiations Abstract

Relationships

Name Order Item

Definition Mandatory

Duplication Multi-Valued

Argument ORDER

Name Quantity

Definition Mandatory

Duplication Single-Valued

Argument QUANTITY

Name Part Number

Definition Mandatory

Duplication Single-Valued

Argument PART NUMBER

Entity QUANTITY

Instantiations Integer

Relationships

Name Quantity

Definition Mandatory

Duplication Multi-Valued

Argument ORDER ITEM

Constraints

N arne Greater Than

Argument 0

Entity SERIAL #

Instantiations Integer

Relationships

Name Order Number

Definition Mandatory

Duplication Single-Valued

Argument ORDER

Constraints

N arne Less Than

Argument 20,000

Figure 9.1: Factory Parts Ordering Database Schema

104

The structural schema level information would then be consulted by BIRD to

ascertain what further information should be supplied for the new instantiation.

The user would be prompted to choose to instantiate one of the order item, quantity

or order item relationships. If the order item relationship was chosen first then the

user would specify whether the ORDER ITEM instantiation was to be associated

with a new or existing ORDER instantiation. In this case a new ORDER instanti­

ation would be selected, since information is being entered on a new order and this

would lead to the specification of address and order number information associated

with the order instantiation. The insertion would not be finished once the ORDER

instantiation had been defined since the quantity and part number relationships

from the ORDER ITEM instantiation would have yet to be instantiated since the

definition domain states they are mandatory. Once these relationships and the

associated instantiations had been correctly defined the insertion operation would

terminate.

When instantiating a relationship the domain information of that relationship

with respect to the destination object instantiation plays a crucial role. In the

above example, the order item relationship instantiation could be connected to any

existing ORDER instantiation or a new ORDER instantiation, since this relation­

ship is multi-valued with respect to the ORDER object type which indicates that

any ORDER instantiation may be connected to many ORDER ITEM instantia­

tion. If a relationship was single-valued with respect to an object type, then it

might only be connected to an existing instantiation for which the relationship had

not already been specified or a new instantiation. For example if the married to

relationship was declared single-valued with respect to the WOMEN object type,

then an instantiation of the relationship would have to be connected to an exist­

ing WOMEN instantiation for whom it had not already been specified or a new

WOMEN instantiation could be entered into the database. If a relationship was

single-valued and mandatory with respect to an object type then it must already

have been specified for all existing instantiations of that object type. For instance

the relationship date of birth might be declared singl~valued and mandatory with

105

respect to all instantiations of the HUMAN object type, - thus if a new date of

birth was entered into the database it would have to be associated with a new

instantiation of the HUMAN object type.

Let us consider the insertion of information at the structural schema level. The

ability to easily change a database schema is an important feature of a DBMS since

databases model fluid real world environments. BIRD enables a user to insert new

schema information easily and brings the application data up to date using the

newly specified domain information as a guide, - this is demonstrated below.

For the purposes of exposition let us assume that a corporate decision was

made enforcing the storage of the date of receipt of every order in the hypothetical

parts database. In this situation a new object type, DATE, would be defined with

character string instantiations. A relationship called date of receipt could then be

defined between the ORDER and DATE object types. This relationship would

be single-valued and mandatory with respect to ORDER and multi-valued and

mandatory with respect to DATE. These domain values would be appropriate since

all orders must be associated with a single date and every date must be associated

with at least one order but may be associated with more than one.

Having inserted the new structural schema fact, BIRD would inspect the instan­

tiations of the fact's object type arguments to determine whether any inconsistency

had been introduced into the database, taking into account the relevant domain

information. There would not be any instantiations of the DATE object type in

the database, since the object type has just been declared and thus there cannot

be any inconsistency between the definition of the object type and its instantia­

tions. However the definitions of the existing ORDER instantiations would all be

inadequate since each must be associated with a date of receipt. Each instantiation

would be taken in turn and associated with a date of receipt, - the insertion op­

eration would only terminate once every ORDER instantiation had been correctly

defined.

106

It is appreciated that when changing a schema, the user may not possess the

relevant information to bring the existing application data in the database up to

date. For example, the user may not have the dates of receipt of all past orders in

the hypothetical factory parts ordering database.

This problem may be approached in two ways. Firstly, if the domain informa­

tion of new relationships could always be specified as optional, thus they would not

have to be supplied for existing instantiations. This is an unsatisfactory solution

since relationships which are mandatory will not be correctly defined and may their

specification may be avoided in future instantiations. A more satisfactory solution

would involve development of specific facilities in BIRD to handle schema updates.

In this way application data would always be associated with the schema which

was active when it was entered. Explicit relationships could then be used to link

together the versions of the schema and facilities built into the DBMS to interpret

the situation. Narayanaswamy and Bapa Roa, [30], have carried out related work

in modelling schema evolution in engineering environments.

Let us consider the insertion of information at the semantic schema level, this

may be selected by the insert, consistency and fact options on the user menu.

Information at this level expresses restrictions on the values of the object instances

in the application data level. The values of all object type instantiations are always

checked against the semantic schema information before insertion into the database

to ensure erroneous values may not be introduced into the database. In the factory

parts database example, figure 9.1 shows that a fact has already been declared at

this level which limits the maximum value of serial numbers to twenty thousand.

Let us assume it was desired to enter the fact that serial numbers must be greater

than zero, - having selected the appropriate options on the user menu, the object

type which is the subject of the fact, SERIAL #, would be specified, then the

appropriate system defined relationship, Min and lastly the minimum integer value.

Having supplied the new semantic schema level fact, BIRD would check existing

instantiations of the SERIAL # object type to ensure there is no inconsistency

107

between their values and the new fact. If any existing values of instantiations

contravened the new semantic schema information then the user would be requested

to enter a legal replacement value.

9.2 Information Deletion

Deletion of information in BIRD is performed with the same emphasis on con­

sistency as insertion of information. Once the deletion operation has been given,

the specified information is deleted plus any information which relies upon it for

its definition. Since BIRD is only a prototype, deletion of associated information

is carried out without consultation with the user and thus a user may unwittingly

lose more information than expected.

Let us first consider the deletion of information at the application data level.

Considering the hypothetical factory parts ordering database it might be desired to

remove an erroneous order item from a particular order. The user should specify

the removal of the relationship between the appropriate ORDER and ORDER

ITEM instances,- one should not request the deletion of the actual ORDER ITEM

instance since it may be associated with other ORDER instances.

Having selected the delete, application and fact options from the user menu, the

relevant fact would be specified and BIRD would commence the deletion. Having

deleted the fact, BIRD would check the definitions of the two object instantiations

the fact linked. The domain information details that all order instantiations must

be associated with at least one order item, if it is assumed that this order instan­

tiation was associated with another order item instantiation then it would not be

deleted. Similarly since the order item relationship is mandatory and multi-valued

with respect to the ORDER ITEM object type, all instantiations of this object

type must be associated with at least one order. For the purposes of exposition,

let us assume that the relevant ORDER ITEM instantiation was not connected to

108

any other ORDER instantiations,- in which case it must be deleted.

In order to delete an object type instantiation, BIRD deletes all facts in which

that instantiation takes part before deleting the instantiation itself. Thus in this

example the deletion of the ORDER ITEM instantiation leads to the deletion of

the associated quantity and pari number relationships which may then lead to the

associated deletion of the QUANTITY and PART NUMBER instantiations. The

related QUANTITY and PART NUMBER instantiations would only be deleted

if they were not connected to other ORDER ITEM instantiations. Deletion of

application information in BIRD can be programmed recursively since deletion of

facts may lead to deletion of instantiations which may lead to the deletion of more

facts. A single deletion of a fact or instantiation in BIRD may cause a wave of

deletions to spread through the application data, - this wave only subsides once

the database has reached a consistent state.

Deletion of information at the structural schema level has entirely different

propagational effects. Instead of deletions spreading horizontally through the level,

they spread vertically into the application data. Let· us consider the situation

where it is no longer desired to associate orders with order numbers. In this case

the concept of order numbers would be deleted from the database and thus the

delete, schema and object options would be selected from the user menu. Note

that deletion of only the relationship order number between ORDER and ORDER

NUMBER would leave the concept of ORDER NUMBER in the database with all

of its instantiations.

To effect the deletion of an object type, BIRD firstly deletes all the schema

level facts in which it takes part. This has ramifications in the application data

level, causing the deletion of all instantiations of these facts. The object type itself

is then deleted causing the deletion of all associated instantiations in the applica­

tion data level. Note that· deletion of information at the structural schema layer

does not initiate a self propagating wave of deletions, - the deletion of structural

schema information leads only to the deletion of directly associated application

10~

data information.

Deletion of information at the semantic data level is trivial since it has no

propagational effects in that level or any other level. Deletion of this information

signifies a relaxation of restrictions since integrity constraint facts are being deleted

and thus deletion at this level cannot cause associated deletions at other levels.

9.3 Information Retrieval

As mentioned earlier in this chapter, a sophisticated query language has not

been developed for BIRD and instead a simple menu driven user interface has been

constructed. Specifying a retrieval request is performed in the same manner as

deletion and insertion requests, - the operation, conceptual level and granularity

of operation must be provided.

Selection of the query, schema and object options causes the display of all objects

types at the structural schema level. If the 'fact' option is selected instead of 'object'

then, having specified an object type, BIRD displays all the structural schema facts

in which that object type takes part. Selection of the query, consistency and fact

options similarly allows the user to inspect the semantic schema facts for a named

object type. At the application data level, selection of the query1 data and object

options will display the values of all instantiations of a named object type. Selection

of the query1 data and fact options from the menu will display the facts in which a

named instantiation of a named object type takes part.

110

9.4 Is-a Relationships

The is-a relationship is an exception to other relationships in BIRD since it

is the only system defined relationship present at the structural schema level and

may not be instantiated in the application data level. The is-a relationship is used

in BIRD to express the fact that an object type is a sub-object type of another

object type. Consequently the sub-object type inherits all the schema level facts

specified for the object type.

In BIRD the is-a link can be used to form taxonomies of object types. The

ability to specify a taxonomy is advantageous in many ways. Taxonomies facilitate

economy of expression since common features of object types are specified once

in the taxonomy and inherited by the appropriate object types. As well as being

an elegant and natural way to model application environments, taxonomies also

facilitate the process of schema restructuring, as will be shown below.

By considering an extension to the factory parts ordering database example,

the utility of is-a taxonomies may be demonstrated. Let us assume that the man­

ufacturing company wishes to extend the database to include information on all

suppliers and customers of the firm. Suppliers to the firm receive SUPPLIER OR­

DERs and return SUPPLIER INVOICEs, whereas customers send CUSTOMER

ORDERs and receive CUSTOMER INVOICEs. The four different object types

can be elegantly organised into a taxonomy shown in figure 9.2.

The COMPANY DOCUMENT object type is the most general and covers all

documents received and sent by that company. All company documents are deemed

to possess a name and address. ORDER object types are COMPANY DOCU­

MENTS with order number, part number and quantity attributes. INVOICE object

types are COMPANY DOCUMENTS with invoice number, part number, quantity,

unit cost and total cost attributes. The ORDER and INVOICE object types are

then further divided into sub-object types, as shown in figure 9.2.

111

COi\t1PAJ\.JY DOCUMENT

* name

* address

INVOICE

* ·quantity
* invoice number

* part number
* quantity

* order number
* part number

* total cost

* unit cost

CUSTOMER SUPPLIER CUSTOMER
INVOICE

SUPPLIER
INVOICE ORDER ORDER

* date * date
received sent

* date
received

* customer
order
number

* date
sent

* supplier
order
number

Figure 9.2: Extended Factory Parts Ordering Database Taxonomy

112

In BIRD such an is-a taxonomy may be declared since the insertion and deletion

operators take into account the semantics of the is-a relationship. If a structural

schema level fact containing an is-a relationship is inserted, BIRD propagates all

relationships specified for the super-object type to all object types below it in the

taxonomy. Depending on the domain information of the facts associated with the

super-object, this may cause many associated insertions in the application data

level. Whenever a fact is inserted at the structural schema level, BIRD checks

both of the object types which are referenced in the fact, to determine if either

are part of an is-a taxonomy. If either, or both, of the object types are part of a

hierarchy, then BIRD ensures that the newly inserted fact is correctly inherited.

The operation of BIRD upon deletion of information at the structural schema

level is similar to that upon insertion of information. If a fact is deleted containing

a user-specified relationship then BIRD ensures that fact is deleted for every object

type lower in the taxonomy. Note that a user may not specify the deletion of an

inherited fact, - all schema facts must be deleted at the object type where they

were originally specified. If a fact containing an is-a relationship is deleted then

all facts inherited over that link are deleted from all the object types below in the

taxonomy.

Integrity constraints declared in the semantic schema level are deemed to inherit

over is-a links. This may be used to declare general forms or ranges for object

type instantiations which may be further restricted for the instantiations of the

sub-object types.

113

9.5 Comparison of BIRD with Record Oriented

Implementation

The same hypothetical factory parts ordering database was entered into the

INGRES 5.0 relational database and interesting contrasts were noted between the

two systems. It is appreciated that INGRES is vastly superior than BIRD if com­

pared on implementation criteria such as speed, data storage or the query language.

However this section intends to elucidate the differences between the systems which

arise as a cause of their different underlying representations. This section assumes

the reader is aware of the information relevant to relational databases contained in

the chapter describing the traditional data models.

9.5.1 Schema Definition

The relations shown in figure 9.3 were constructed to hold the information for

the hypothetical parts database. Note the introduction of the COMPANY NUM­

BER domain which acts as a link between the INVOICE and ADDRESS relations,­

the INVOICE NUMBER domain cannot be used as the index to the ADDRESS re­

lation since ~he same company may submit multiple invoices. The CONNECTION

relation was introduced in order to model the many to many relationship between

orders and their constituent order items. To find out the order items associated

with an invoice, the user must consult the CONNECTION relation to determine

order item numbers associated with the order number,- these would then be used

to access the ORDER ITEM relation to find out the actual items ordered and

their quantities. The use of the CONNECTION relation was not mandatory,- the

ORDER ITEM relation could have been accessed by order numbers,- this would

reduce the relationship to one to many and might result in some duplication of

information in the ORDER ITEM relation, since different orders may reference the

same order items.

114

ADDRESS

COMPANY
NUMBER

-

INVOICE

INVOICE
NUMBER

COMPANY
NAME

CONNECTION

INVOICE
NUMBER

ORDER ITEM

COMPANY
NUMBER

ROAD. TOWN

ORDER ITEM
NUMBER

ORDER ITEM PART SERIAL

POST
axE

--_/

NUMBER NUMBER NUMBER

-- -~ ----

Figure 9.3: Relational Structure Declared for the Hypothetical Factory Ordering
Database

/ 115

---~//

A user of the relational database must discover the relationship between the in­

formation contained in the various relations since there are no explicit links between

them. In BIRD all the relationships between objects in the database are stored ex­

plicitly, thus a user may navigate around the database, following links, to discover

the structure of the database. Since the relationships between objects in BIRD

are explicit there is no need for the definition of attributes, such as COMPANY

NUMBER or the CONNECTION relation, to act as links between information.

9.5.2 Information Insertion

The lack of information describing the relationship between the domains in the

various relations enables inconsistencies to be readily introduced when accessing

the database using the query language. For instance entries could be made in the

INVOICE relation without associated entries in the ADDRESS relation. Individual

tuples in relations may also be inadequately declared, -for instance a tuple could be

introduced into the INVOICE ORDER relation with a null value for the quantity.

Changes may be made to the schema by redeclaring relations and using the

block copy facilities provided by INGRES. As mentioned in the earlier chapter en­

titled "Database Integrity", the block copy ignores any integrity constraints which

have been declared for the destination relation, - providing a simple potential

source of inconsistency. When new attributes are specified for relations, there is no

domain information to specify its relationship with the rest of the information in

the database and thus one must rely on the user to update existing tuples in the

relation appropriately.

In contrast, the simple domain information supplied for BIRD relationships en­

ables a much higher level of integrity to be maintained, since there is a specification

of the dependency of object instantiations on other object instantiations.
//

116

9.5.3 Information Deletion

INGRES permits the deletion of information almost at will without regard for

the consequences or semantics of the remaining information. Similar situations

may arise as described for the insertion of information, - incomplete tuples and

tuples referencing non-existent tuples in other relations. In contrast the BIRD

system uses the domain information to ensure that referential integrity is restored

after any deletion operation.

9.5.4 Information Retrieval

INGRES is a highly developed system and naturally provides advanced facilities

for the retrieval of information via query languages such as the Standard Query

Language, SQL and QUEL, a query language developed specifically for INGRES.

Sophisticated queries may be built up which access information from multiple re­

lations and perform arithmetic operations.

BIRD was developed as a prototype database management system and thus

possesses a very simple menu driven user interface. Although the query facilities are

very basic, they are also very simple to operate and are presented in a homogeneous

manner to the other types of operations, - having selected the query function the

user selects the conceptual level and granularity of information. In contrast the

style of query used to access information in the relational data model depends upon

its conceptual level, - a separate set of "help" commands must be used to access

the schema level information.

117

9.5.5 Discussion of Comparison

It is realised that many features of INGRES which might be criticised are

present in the interests of efficiency. For instance it was mentioned that the block

copy instruction does not check any integrity constraints when copying data from

one relation into another, but to perform this checking on a large copy of hun­

dreds of thousands of tuples would significantly slow execution. BIRD can afford

to perform extravagant integrity checks since the implementation was not oriented

towards efficiency and thus it is unfair to directly compare two very different sys­

tems.

The lack of domain information inter-relating the information in a relational

database allows an inconsistent database to be created easily, when accessing it

via the query language. Although the necessary semantics may be built into the

application programs accessing the database, the disadvantages of this approach

have already been described in the chapter on database integrity. It is up to the

user of a relational database to be aware of all the relations which exist and the

implicit relationships between them. However in BIRD, all schema information is

stored as database data and may be easily inspected. BIRD itself ensures that

database integrity is maintained and leads the user through the database manipu­

lation operations. Great freedom is afforded to the user in the method of database

information and deletion, since any information at any level may be inserted or

deleted without any danger of compromising integrity.

9.6 Conclusion

BIRD possesses a simple menu driven user interface, which enables the specifica­

tion of database manipulation commands in a homogeneous manner over different

conceptual levels. The active nature of BIRD adds to the simplicity of the user

118

interface, since the user is prompted to supply information necessary for the op­

eration to be performed and the database restored to a consistent state. BIRD

ensures that integrity of information is maintained at all times and can handle the

definition of information taxonomies.

Owing to the fact that BIRD is a prototype, the user interface is rather basic.

The deletion command needs to be developed, since at present the user may find

that a small deletion has produced an unexpected amount of related deletions.

Thus it would be desirable to extend the dialogue between BIRD and the user as

well as specifying a comprehensive query language.

119

Chapter 10

Conclusions and Further Work

This chapter presents the conclusions' of the work undertaken for the thesis, includ­

ing suggestions of applicable further research.

The work for this thesis started with an analysis of record oriented database

models and succeeded in identifying two particular problem areas, - the lack of

integrity enforcement and inhomogeneity of information representation. This anal­

ysis led to the development of a new model, BIRD, whose design, implementation

and evaluation are described in the thesis.

The BIRD model succeeded in fulfilling its objectives detailed in the chapter

entitled "Formation of the BIRD Model". Namely, a DBMS was implemented based

on a simple semantic model representation, meta-information was incorporated

homogeneously as database data and emphasis was placed on integrity issues. The

system was augmented with a simple menu driven interface and the representation

was extended to include simple inheritance hierarchies.

The BIRD system proved very easy to use, due to the homogeneous representa­

tion of information, the advanced integrity maintenance facilities and the "active"

120

nature of the system. The homogeneous representation of information allows a user

to view all information and meta-information as one body of database data which

may be manipulated with the same set of manipulation operations. The integrity

maintenance facilities ensure that there is no inconsistency between the applica­

tion data and the structural and semantic schema information. BIRD affords the

user the freedom to manipulate any of the data in the database, via the user in­

terface, without fear of compromising the integrity of the database. BIRD is an

"active" system making it easy for use by non-experts,- it leads the user through

the database operations, prompting for information where necessary. The repre­

sentation of information using binary relations is very easy for a user to perceive

and the introduction of the is-a relationship increased the information modelling

capabilities of the system. The ability to model information in hierarchies is both

natural and very effective, as described in the previous chapter.

Further work may be viewed in two categories, - theoretical work on the rep­

resentation of information in databases and the development of implementation

issues. The binary relations used to represent information in BIRD were adequate

for simple information modelling, however the limitations of the representation were

more apparent at higher conceptual levels. Simple integrity constraints, expressing

ranges of values or string lengths, were easily specified, however many common

constraints involve more than two entities and these could not be specified. For

example a useful simple constraint would specify that an annual total must be the

sum of monthly totals, however this cannot be expressed using binary relations.

The representation formulated might also be extended to include nested binary

relations, - this would enable representations between more than one entity to be

expressed. For example if a total, A, was the sum of Band C then this could be

expressed as :-

equal(A, sum(B , C))

In addition many of the modelling constructs present in the semantic models de-

121

scribed earlier in this thesis, such as the aggregation and grouping constructors,

would provide useful extensions to the system.

As mentioned earlier in the chapter entitled "Formation of the BIRD model",

it would be very interesting to extend the database to include information at

higher conceptual levels than currently implemented, - such as the semantics of

the database operations or rules to guide the construction of the schema. However

the higher the conceptual knowledge incorporated into the database, the richer the

representation that will be needed to express it. If homogeneity of information

representation at all levels is to be maintained then the enrichment of the repre­

sentation will be unnecessary for the representation of information at the lower

conceptual levels. The implementation implications of further representational ex­

tensions must be considered, -the benefits of an extended representation must be

balanced against the increased storage and processing costs.

Implementation issues in BIRD also need to be approached, particularly storage

and efficiency issues. The most important development of the current system,

would be to eliminate the usage of an array to store the database data, since it is

an inflexible and wasteful method of information storage. The easiest modification

would be to store the information in linked lists of facts, - this would economise

the storage requirements and cope with varying size of databases.

The above solution does not solve the problem of persistence of information,

since the linked list would still be main memory bound. Although it would be

possible to transfer the contents of the linked list structure to permanent storage

when it is not needed, the solution has many associated problems. The overheads

of the transfer increase with the database size and would prove prohibitive with a

very large application, - assuming the machine had enough main memory to hold

the database. Since the database is contained in main memory, the data would

be very vulnerable to system crashes and thus logging facilities would have to be

developed to ensure the database could be reconstructed following a system failure.

122

The most realistic solution to the information storage problem is to store the

information in records in files, in the same manner as standard database tech­

nology. The same problems would then have to be approached as in standard

database technology, - namely the optimum organisation of the records to facili­

tate the expected database operations. To store the information associated with

the complex modelling constructs of a semantic model would require sophisticated

storage structures and would be associated with storage overheads and a reduction

in access time. In the future it is possible that current work on the processing of

knowledge networks may come to fruition. Fahlman [17] describes the implemen­

tation of knowledge networks using parallel architectures and Bic [2] proposes the

use of dataflow graph architectures.

However the data storage and persistence problems are solved, future versions

of BIRD will never be as economical with storage space or as fast as the current

database technologies, since more information is stored for a given application.

BIRD offers a simple user interface, advanced integrity facilities and a simple in­

tuitive representation, - the cost of these features must be balanced against their

utility for the proposed application.

123

Appendix A

Bibliography

[1] Abiteboul, S. and R. Hull, "IFO: A Formal Semantic Database Model," ACM
Transactions On Database Systems, vol. 12, No.4, pp. 52~565, ACM, Decem­
ber 1987.

[2] Bic, L., "Processing of Semantic Nets on Dataflow Architectures," Artificial
Intelligence, vol. 27, pp. 219-227, Elsevier Science Publishers B. V., North
Holland, 1985.

[3] Brachman, R. J ., "On The Epistemological Status Of Semantic Networks,"
Associative Networks- Representation And Use Of Knowledge By Computers,
pp. 3-46, Academic Press, Inc, New York, 1979.

[4] Brachma~, R. J., "What IS-A Is And Isn't: An Analysis of Taxonomic Links
in Semantic Networks" IEEE Computer, vol. 16, No.10, IEEE, New York,
1983.

[5] Brown, J. S. and R. R. Burton, "Multiple Representations Of Knowledge For
Tutorial Reasoning," Representation And Understanding -Studies In Cogni­
tive Science, pp. 311-349, Academic Press, Inc, New York, 1975.

[6] Bryce, D. and R. Hull, "SNAP : A Graphics-Based Schema Manager," Pro­
ceedings of the Second International Conference on Data Engineering, pp. 151-
164, IEEE, New York, February 1986.

[7] Cercone, N. and R. Goebel, "Data Bases And Knowledge RepresentatioJ:?. For
Literary And Linguistic Studies," Computers and the Humanities, vol. 17, pp.
121-137, Elsevier Science Publishers. B.V. North Holland, 1983.

[8] Chen, P. P., "The Entity-Relational Model- Toward a Unified View of Data,"
ACM Transactions on Database Systems, vol. 1, No.1, pp. 9-36, March 1976.

[9] Codd, E. F., "A Relational Model for Large Shared Data Banks," Communi­
cations of the ACNI, vol. 13, No.6, pp. 377-387, June 1970.

[10] Codd, E. F., "Extending the Database Relational Model to Capture More
Meaning," ACM Transactions on Database Systems, vol. 4, No.4, pp. 397-
434, December 1979.

[11] Date, C. J., An Introduction to Database Systems, Addison-Wesley, 1986.

124

(12] Davis, J.P. and R. D. Bonnell, "EDICT: An Enhanced Relational Data Dic­
tionary : Architecture and Example," Proceedings of the Fourth International
Conference on Data Engineering, pp. 184-191, IEEE, Los Angeles, February
1-5 1988.

(13] CODASYL Data Base Task Group April 71 Report, ACM, New York, 1971.

(14] CODASYL Data Description Language Journal of Development, Material
Data Management Branch, Department of Supply and Services, Ottawa, On­
tario, 1978.

(15] Dinerstein, N. T., Database and File Management Systems for the Microcom­
puter, Scott, Foresman & Co, London, 1985.

(16] Etherington, D. W. and R. Reiter, "On Inheritance Hierarchies With Ex­
ceptions," Proceedings American Association for Artificial Intelligence, pp.
104-108, Washington. D.C, 1983.

(17] Fahlman, S. E. and G. E. Hinton, "Connectionist Architectures for Artificial
Intelligence," Computer, vol. 2, no. 1, pp. 100-109, IEEE, January 1987.

(18] Frost, R. A., Database Management Systems, Granada, London, 1984.

(19] Gray, P. M. D., G. E. Storrs and J. B. H. du Boulay, "Knowledge Repre­
sentations for Database Metadata," Artificial Intelligence Review, Blackwell
Scientific Publications vol. 2, No.1, pp. 3-30, 1988.

(20] Hammer, M. and D. McLeod, "Database Description With SDM: A Semantic
Database Model," ACM Transactions On Database Systems, vol. 6, No.3, pp.
351-386, September 1981.

(21] Held, C. D., M. R. Stonebraker, and E. Wong, "INGRES : A Relational
Database System," Proc. ACM Pacific 75 Regional Conference, pp. 409-416,
May 1975.

(22] Hull, R. and R. King, "Semantic Data Modelling : Survey, Applications
and Research Issues," ACM Computing Surveys, vol. 19, No.3, pp. 201-260,
September 1987.

(23] INGRES Release 5.0 VAX/VMS System Manual, Relational Technology Inc,
California, 1986.

(24] Kent, W., "Limitations of Record-Based Information Models," ACM Trans­
actions on Database Systems, vol. 4, No.1, pp. 107-131, March 1979.

(25] King, R. and D. McLeod, "A Database Design Methodology and Tool for
Information Systems," ACM Transactions on Office Systems, vol. 3, No.1, pp.
2-21, January 1985.

(26) Korth, H. F. and A. Silberschatz, Database System Concepts, McGraw-Hill
Inc, 1986.

125

[27] Mayne, A. and M. B. Wood, Introducing Relational Database, NCC Publica­
tions, England, 1983.

[28] McGee, W., "The Information Management System IMS/VS Part 1: General
Structure and Operation," IBM Systems Journal, vol. 16, No.2, pp. 84-168,
June 1977.

(29] McSkimin, J. R. and J. Minker, "The Use of a Semantic Net in a Deduc­
tive Question Answering System," Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pp. 50-58, Cambridge, Massachusetts,
August 22-25 1977.

(30] Narayariaswamy, K. and K. V. Bapa Rao, "An Incremental Mechanism for
Schema Evolution in Engineering Domains," Proceedings of the Fourth Inter­
national Conference on Data Engineering, pp. 294-301, IEEE, Los Angeles,
USA, February 1 - 5, 1988. ·

(31] Olle, T. W., The CODASYL Approach to Database Management, John Wiley
& Sons, New York, 1978. ·

(32] Orman, L., "Functional Database Constraints," Computer Journal, vol. 31.
No.4, pp. 336-343, Cambridge University Press, 1988.

[33] Ozkarahan, E., Database Machines and Database Management, Prentice-Hall
Inc, New Jersey, 1986.

[34] Peckham, J. and F. Maryanski, "Semantic Data Models," ACM Computing
Surveys, vol. 20 No.3, pp. 153-189, September 1988.

[35] Piercy, R. M. and A. J. Slade, "Binary Relation Database : Issues of Rep­
resentation and Implementation," Proceedings of the IXth Conference of the
Latin American Computer Society, Santiago, Chile, pp. 146-157, July 10- 14,
1989.

(36] Potter, W. D. and R. P. Trueblood, "Traditional, Semantic and Hyper­
Semantic Approaches to Data Modelling," IEEE Computer, vol. 21, No.6,
pp. 53-63, June 1988.

[37] Quillian, M. R., Semantic Memory - Ph.D. Dissertation, Carnegie Institute
Of Technology, Pittsburgh, Pa, 1966.

[38] Quillian, M. R., "Semantic Memory," Semantic Information Processing, pp.
227-270, MIT Press, Cambridge, Massachusetts, 1968.

[39] Rishe, N., "On Representation of Medical Knowledge by a Binary Data
Model," Proceedings of the Fifth International Conference on Mathematical
Modelling, 1986.

(40] Schmidt, J. W. and M. L. Brodie eds, Relational Database· Systems: Analysis
and Comparison, Springer-Verlag, Berlin, 1983.

126

[41] Schwarcz, R. M., J. F. Burger, and R. F. Simmons, "A Deductive Question­
Answerer for Natural Language Inference," Communications of the ACM, vol.
13, No.3, pp. 167-183, ACM, March 1970.

[42] Shapiro, S. C., "The SNePS Semantic Network Processing System," Asso­
ciative Networks - Representation and Use of Knowledge by Computers, pp.
179-203, Academic Press, Inc, New York, 1979.

[43] Stocker, P.M., P.M. D. Gray, and M.P. Atkinson eds, Databases- Role and
Structure, Cambridge University Press, 1984.

[44] Su, S. Y. W., "Modeling integrated manufacturing data with SAM*," IEEE
Computer Magazine, pp. 34-49, January 1986.

[45] Sundgren, B., Data Bases and Data Models, Studentlitteratur, Sweden, 1985.

[46] Teory, T. J., D. Yang, and J. P. Fry, "A Logical Design Methodology for
Relational Database using the Extended Entity-Relationship Model," ACM
Computing Surveys, vol. 18, No.2, pp. 197-222, June 1986.

· [47] Tsichritzis, D. C. and F. H. Lochovsky, Hierarchical Data Base Management
Systems, Academic Press, New York, 1977.

[48] Wenger, E., Artificial Intelligence and Tutoring Systems, Morgan Kaufmann,
California, 1987.

[49] Woods, W. A., "What's in a Link : Foundations for Semantic Networks,"
Representation and Understanding - Studies in Cognitive Science, pp. 35-82,
Academic Press, Inc, New York, 1975.

[50] Zloof, M. M., "Query-By-Example," Proc. AFIPS Conference, pp. 431-438,
1975.

127

Appendix B

Constituent Functions of BIRD

B.l BIRD DATA TYPES

DataFactlnstType -contains coordinates of relation , subject and object com­
prising the data fact. The relation is an object type coordinate, the other
two arguments are specified by object instance coordinates.

De'finitionDomainType - a flag indicating a schema fact is mandatory or op­
tional.

DuplicationDomainType - a flag indicating a schema fact is single or multi
valued.

FileNameType -the name of a file holding a database 'snapshot'.

Files - a file handle used by a modula-2 program to refer to a file.

NameType -the name of an object instance or object type.

NumberType -the numerical value of an object instance or object type.

ObjectlnstContentType -describes the contents at each object instance node,
-empty, name, number, abstract.

ObjectlnstDescType - an object instance descriptor comprising three fields,
ObjectlnstContentType, NameType and NumberType.

ObjectlnstFactCoordType -3 dimensional coordinate, made up of object type
index, fact type index and object instance index .

ObjectlnstFactlnstCoordType -4 dimensional coordinate, made up of object
type index, fact type index, object instance index and fact instance index.

ObjectTypeContentType -describes the contents at each object type node,­
unused, relation, nameobject, constant.

128

ObjectTypeCoordType - 1 dimensional coordinate, made up of the object
type index.

ObjectTypeDescType -an object type descriptor comprising three fields, Ob­
jectTypeContentType, NameType and NumberType.

ObjectTypeFactCoordType - 2 dimensional coordinate, made up of object
type index and fact type index.

SchemaConsisFactlnstType -contains coordinates of relation, subject and ob­
ject which comprise a schema or consistency fact. All the constituents of this
type are object type coordinates.

129

B.2 Level 0- LO

InsertFactLO

accept FICoord : ObjectlnstFactlnstCoordType ;
DataFactlnst : DataFactlnstType ;
SchConFactlnst : SchemaConsisFactlnstType ;

return NULL

action Insert either data, schema or consistency fact at the location speci­
fied.

DeleteFactLO

accept FICoord : ObjectlnstFactlnstCoordType ;

return NULL

action Delete either data, schema or consistency fact at the location speci­
fied.

CheckFactLO

accept FICoord : ObjectlnstFactlnstCoordType ;

action DataFactlnst : DataFactlnstType ;
SchConFactlnst : SchemaConsisFactlnstType ;
Present : Boolean ;

action Return the data, schema or consistency fact at the location specified,
set the boolean variable if a fact is present.

InsertN ameLO

accept FICoord : ObjectlnstFactlnstCoordType ;
N arne : N ameType ;

return NULL

action Insert name at the object instance or object type location specified.

InsertN umber LO

accept FICoord : ObjectlnstFactlnstCoordType ;
Number : Number Type ;

return NULL

action Insert number at the object instance or object type location specified.

130

SetCellContentLO

accept FICoord : ObjectlnstFactlnstCoordType ;
DataContent : ObjectlnstContentType ;
SchemaContent : ObjectTypeContentType ;

return NULL

action Set the object instance or object type content flag at the location
specified to the value given, describing the type of that object instance
or type.

RetrieveCellContentLO

accept FICoord : ObjectlnstFactlnstCoordType ;

return DataContent : ObjectlnstContentType ;
SchemaContent : ObjectTypeContentType ;

action Retrieve the object instance or object type content flag at the location
specified.

SetObjectlnstTypeLO

accept FICoord : ObjectlnstFactlnstCoordType ;
ObjectlnstType : ObjectlnstContentType ;

return NULL

action Sets the object instance type descriptor of object types, describing
the type of object instance which may be instantiated.

CheckObjectlnstTypeLO

accept FICoord : ObjectlnstFactlnstCoordType ;

return ObjectlnstType : ObjectlnstContentType ;

action Returns the object instance type descriptor at the object type spec­
ified.

DeleteN ameLO

accept FICoord : ObjectlnstFactlnstCoordType ;

return NULL

action Delete the object instance or object type name at the location spec­
ified.

DeleteNumberLO

accept FICoord : ObjectlnstFactlnstCoordType ;

return NULL

action Delete the object instance or object type number at the location
specified.

131

RetrieveN ameLO

accept FICoord : ObjectlnstFactlnstCoordType ;

return Name : NameType ;

action Return the object instance or object type name at the location spec­
ified.

RetrieveN umber LO

accept FICoord : ObjectlnstFactlnstCoordType ;

return Number: NumberType;

action Return the object instance or object type number at the location
specified.

Du plica tionFlag

accept FICoord : ObjectlnstFactlnstCoordType ;
DuplicationFlag : DuplicationDomainType ;

return NULL ;

action Set the duplication flag of the schema fact specified to the value
provided.

CheckDuplicationFlag

accept FICoord : ObjectlnstFactlnstCoordType ;

return DuplicationFlag : DuplicationDomainType ;

action Return the duplication flag of the schema fact specified.

Mandatory Flag

accept FICoord : ObjectlnstFactlnstCoordType ; DefinitionFlag : Defini­
tionDomainType ;

return NULL ;

action Set the definition flag of the schema fact specified to the value pro­
vided.

CheckMandatoryFlag

accept FICoord : ObjectlnstFactlnstCoordType ;

return DefinitionFlag : DefinitionDomainType ;

action Return the definition flag of the schema fact specified.

OpenFileForStorage

accept StoreFileName: FileNameType;

return StoreFile : Files ;
AllOk : BOOLEAN ;

action Open named file for writing, return file handle and boolean indicating
the success of the operation.

132

OpenFileFor Read

accept ReadFileName: FileNameType;

return ReadFile : Files ;
AllOk : BOOLEAN ;

action Open named file for reading, return file handle and boolean indicating
the success of the operation.

DeleteFile

accept DeleteFileName: FileNameType;

return AllOk : BOOLEAN ;

action Delete named file and return boolean indicating the success of the
operation.

StoreDB

accept StoreFile : Files ;

return AllOk: BOOLEAN;

action Store a complete database snapshot in the named file and return
boolean indicating the success of the operation.

Restore DB

accept RestoreFile : Files ;

return AllOk : BOOLEAN ;

action Restore complete database snapshot from the named file and return
boolean indicating the success of the operation.

133

B.3 Level 1- Ll

InsertFactlnstL 1

accept ObjectlnstFact : ObjectlnstFactCoordType ;
DataFact : DatFactlnstType ;

return NULL

action Insert data fact at the first free fact instance position in the object
instance fact type location specified.

DeleteFactlnstL 1

accept ObjectlnstFact : ObjectlnstFactCoordType ;
DeleteDataFact : DataFactinstType ;

return Success : Boolean

action Look through the data fact instances at the object instance fact type
location specified. If the data fact specified if found then delete it, return
boolean variable indicating the success of the operation.

RetrieveFirstFactlnstL 1

accept ObjectlnstFact : ObjectlnstFactCoordType ;

return DataFact : DataFactlnstType ;
Success : Boolean

action Return the first data fact at the object instance fact type location
specified, return boolean variable indicating the success of the operation.

RetrieveN extFactlnstL 1

accept ObjectlnstFact : ObjectlnstFactCoordType ;
CurrentDataFact : DataFactlnstType ;

return NextDataFact : DataFactlnstType ; Success : Boolean

action Return the first data fact after the data fact provided at the object
instance fact type location specified, return boolean variable indicating
the success of the operation.

InsertFactTypeL1

accept Objectlnst : ObjectlnstCoordType ;
SchConFact : SchemaConsisFactlnstType ;

return ObjectinstFact : ObjectlnstFactCoordType ;

action Insert the schema or consistency fact at the first free fact type loca­
tion for the object type specified, return the coordinate of the fact.

134

DeleteFactTypeLl

accept Objectlnst : ObjectinstCoordType ;

return Success: BOOLEAN;

action Delete the schema or consistency fact at the fact type location spec­
ified, return a boolean variable indicating the success of the operation.

CheckFactTypeLl

accept Objectlnst : ObjectinstCoordType ;

return SchConFact : SchemaConsisFactlnstType ; Success : BOOLEAN ;

action Return the schema or consistency fact at the fact type location spec-
ified, return a boolean variable indicating the success of the operation.

InsertObjectlnstLl

accept ObjectType : ObjectTypeCoordType ;
ObjectinstDesc : ObjectlnstDescType ;

return Objectlnst : ObjectinstCoordType ;

action Create an object instance of the object type specified, instantiating
it with the details provided in the object instance descriptor, return the
coordinate of the new object instance.

DeleteObjectlnstLl

accept Objectlnst : ObjectinstCoordType ;

return NULL ;

action Reset the object instance descriptor at the location specified.

CheckObjectlnstLl

accept Objectlnst : ObjectinstCoordType ;

return ObjectinstDesc : ObjectinstDescType;
Success : BOOLEAN ;

action Return the object instance descriptor at the location specified,. and
a boolean variable indicating whether an object instance was found.

ReplaceD bjectlnstDescL 1

accept ObjectTypeCoord: ObjectTypeCoordType;
ObjectinstDesc : ObjectinstDescType ;
NewObjectlnstDesc : ObjectinstDescType ;

return NULL

action Replace the object instance of the object type specified with the new
object instance descriptor provided.

135

InsertObjectTypeL1

accept ObjectTypeDesc: ObjectTypeDescType;
ObjectinstType : ObjectlnstContentType ;

return ObjectType : ObjectTypeCoordType ;

action Insert a new object type at the first free object type location, assign­
ing it the object type descriptor and description of the type of its object
instances.

DeleteO bjectTypeL 1

accept ObjectType : ObjectTypeCoordType ;

return NULL ;

action Reset the object type descriptor and object instance type descriptor
at the location specified.

CheckObjectTypeL1

accept ObjectType : ObjectTypeCoordType ;

return ObjectTypeDesc: ObjectTypeDescType;
ObjectinstType : ObjectlnstContentType ;
Success : BOOLEAN ;

action Return the object type descriptor and object instance descriptor of
at the object type location specified.

SetFactMandatory L 1

accept ObjectTypeFact : ObjectTypeFactCoordType ;

return NULL

action Set definition flag of specified schema fact to mandatory.

SetFactOptionalLl

accept ObjectTypeFact : ObjectTypeFactCoordType ;

return NULL

action Set definition flag of specified schema fact to optional.

IsFactMandatory L1

accept ObjectTypeFact : ObjectTypeFactCoordType ;

return FactMandatory : Boolean ;

action Check definition flag of specified schema fact, return status.

SetFactSingleL 1

accept ObjectTypeFact : ObjectTypeFactCoordType ;

return NULL

action Set singlevalue flag of specified schema fact to single-valued.

136

SetFactMultiLl

accept ObjectTypeFact : ObjectTypeFactCoordType ;

return NULL

action Set singlevalue flag of specified schema fact to multi-valued.

IsFactSingleLl

accept ObjectTypeFact : ObjectTypeFactCoordType;

return FactSingle : Boolean ;

action Check singlevalue flag of specified fact, return status.

137

B.4 Level 2 - L2

B.4.1 Level 2 Deletion - DEL

Dele teO b jectlnstL2DEL

accept ObjectType : ObjectTypeCoordType ;
ObjectlnstDesc : ObjectlnstDescType ;

return Success: BOOLEAN;

action Delete the object instance of the object type specified, returning a
boolean variable to indicate if the operation was successful.

DeleteObjectTypeL2DEL

accept ObjectType: ObjectTypeCoordType;

return Success : BOOLEAN ;

action Delete the object type at the object type coordinate specified, return
a boolean variable indicating if the object type was found and success­
fully deleted.

DeleteDataFactL2DEL

accept DataFact : DataFactinstType ;
ObjectTypelFact : ObjectTypeFactCoordType ;
ObjectlnstlDesc : ObjectlnstDescType ;

return ObjectType2Fact : ObjectTypeFactCoordType ;
Objectlnst2Desc : ObjectlnstDescType ;
Success : BOOLEAN ;

action Delete the data fact for the object type and object instance provided.
Delete the data fact entry for the other object instance in the fact,
and return the object type and object instance descriptor of the other
argument. Return a boolean variable to indicate whether the deletion
operation succeeded.

DeleteSchemaFactL2DEL

accept SchemaFact : SchemaConsisFactlnstType ;

return Success : BOOLEAN ;

action Delete the schema fact for both the argument object types of the
fact.

DeleteConsistencyFactL2DEL

accept ConsistencyFact : SchemaConsisFactlnstType ;

return Success : BOOLEAN ;

action Delete the consistency fact for both the argument object types of the
fact.

138

B.4.2 Level 2 Input - IP

SpecifyObjectTypeL2IP

accept NewObjectTypeAllowed : BOOLEAN ;
NoObjectTypeAllowed : BOOLEAN ;
ObjectTypeSpecified : BOOLEAN ;

return ObjectTypeDesc : ObjectTypeDescType ;
ObjectlnstType : ObjectlnstContentType ;
Success: BOOLEAN;

action Permits the user to specify an object type, according to various re­
strictions. NewObjectTypeAllowed specifys whether the user may enter
details on a new object type. NoObjectTypeAllowed specifys whether
the user may refuse to specify an object type. ObjectTypeSpecified indi­
cates whether the ObjectTypeContentType field of the ObjectTypeDesc
has already been set, restricting the type of object type which may be
selected. The ObjectTypeDesc and ObjectlnstType of the object type
selected is returned with a boolean variable to indicate whether an ob­
ject type was successfully selected.

SpecifyObjectlnstL2IP

accept NewObjectlnstAllowed : BOOLEAN ;
NoObjectlnstAllowed : BOOLEAN ;
ObjectType : ObjectTypeCoordType ;

return ObjectlnstDesc : ObjectlnstDescType ;
Success: BOOLEAN;

action Permits the user to specify an object instance of the object type spec­
ified, according to various restrictions. NewObjectlnstAllowed specifys
whether the user may enter details on a new object inst. NoObjectln­
stAllowed specifys whether the user may refuse to specify an object in­
stance. The ObjectlnstDesc of the object instance selected is returned
with a boolean variable to indicate whether an object instance was suc­
cessfully selected.

SpecifySchemaFactL2IP

accept ObjectType : ObjectTypeCoordType ;

return SchemaFact : SchemaConsisFactlnstType ;
Success : BOOLEAN ;

action Select a schema fact of the object type specified, return the schema
fact plus a boolean variable to indicate whether the schema fact was
successfully selected.

139

SpecifyConsistency FactL2IP

accept ObjectType : ObjectTypeCoordType ;

return ConsistencyFact : SchemaConsisFactlnstType ;
Success : BOOLEAN ;

action Select a consistency fact of the object type specified, return the con­
sistency fact plus a boolean variable to indicate whether the consistency
fact was successfully selected.

Specify DataFactL2IP

accept ObjectTypeFact : ObjectTypeFactCoordType ;
ObjectlnstDesc : ObjectlnstDesc ;

return CurrentDataFact : DataFactlnstType ;
Success : BOOLEAN ;

action Select a data fact from the fact type location of the object instance
specified plus a boolean variable to indicate whether a data fact was
successfully selected.

GetDomainlnfoL2IP

accept NULL ;

return Mandatory : Boolean ;
Single : Boolean ;

action Ask the user to answer y /n to questions on the two domains.

140

B.4.3 Level 2 Insertion - IN

InsertO bjectlnstL21N

accept ObjectType : ObjectTypeCoordType ;
ObjectinstDesc : ObjectinstDescType ;

return NULL ;

action Insert the specified object instance at the first free position, having
checked that the object instance does not already exist.

ReplaceObjectlnstDescL2IN

accept ObjectTypeCoord : ObjectTypeCoordType ;
ObjectlnstDesc : ObjectinstDescType ;
NewObjectinstDesc : ObjectinstDescType ;

return NULL ;

action Overwrite the ObjectlnstDesc of the ObjectTypeCoord with the new
ObjectlnstDesc value specified.

Insert0bjectTypeL2IN

accept ObjectTypeDescl : ObjectTypeDescType ;
ObjectinstType1 : ObjectinstContentType ;

return ObjectType : ObjectTypeCoordType ;
Success : BOOLEAN ;

action Check the object type does not already exist, insert it in the first
available location. Return the object type's coordinate and a boolean
variable to indicate whether the operation was performed successfully.

InsertDa taFactL21N

accept SchemaFact : SchemaConsisFactinstType ;
SubjectOinstDescl : ObjectlnstDescType;
ObjectOinstDescl : ObjectlnstDescType ;

return NULL ;

action Instantiate the schema fact for the two object instances specified,
thus this procedure inserts two data facts.

InsertSchemaFactL2IN

accept SchemaFact : SchemaConsisFactinstType ;
SubDomain: DomainlnformationType;
ObjDomain : DomainlnformationType;

return NULL ;

action Insert the schema fact for the subject and object of the fact and
insert the domain information provided. This procedure checks against
duplication of facts.

141

Insert Consistency FactL2IN

accept ConsistencyFact : SchemaConsisFactlnstType ;

return NULL ;

action Insert the consistency fact for the two argument object types of the
consistency fact. This procedure checks against duplication of facts.

142

B.4.4 Level 2 Database Integrity DI

InsertFactlnstDomainOkL2DI ·

accept SchemaFact : ObjectTypeFactCoordType;
ObjectlnstDesc : ObjectlnstDescType ;

return lnsertOk : BOOLEAN ;

action Checks whether the specified schema fact may be instantiated for the
object instance described, - this relies on the value of the duplication
domain of the schema fact and whether the schema fact has already been
instantiated. A boolean variable is returned to indicate if the insertion
may proceed.

Objectlnstlntegrity0kL2DI

accept ObjectlnstDesc : ObjectlnstDescType ;
ObjectType : ObjectTypeCoordType ;

return IntegrityOk : Boolean ;

action Consult the consistency facts for the ObjectType specified, checking
the restrictions against the value of the ObjectlnstDesc supplied. A
boolean variable is returned to indicate if the object instance description
contradicts consistency information.

ObjectlnstFactTypeDomainOkL2DI

accept SchemaFact : ObjectTypeFactCoordType;
ObjectlnstDesc : ObjectinstDescType ;

return DomainOk : Boolean ;

action Checks that the data facts in the fact type location of the object
instance specified do not conflict with the domain information of the
schema fact, this involves checking the duplication and definition values
for the schema fact.

AllObjectlnstFactsL2DI

accept ObjectlnstDesc : ObjectinstDescType ;

return DomainOk: Boolean;

action For every fact type of the specified object instance call Objectlnst­
FactTypeDomain0kL2DI, return a boolean variable to indicate whether
all the object instance facts are in agreement with the schema fact do­
main information.

143

Consistency ArcL2DI

accept ObjectTypeDesc: ObjectTypeDescType;

return LegalConsistencyArc: BOOLEAN ;

action Tests the object type descriptor and sets the boolean variable value
according to whether the object type is a legal consistency arc.

SchemaFactPresentL2DI

accept SchemaFactCoord : ObjectTypeFactCoordType;

return FactPresent : Boolean ;

action Sets the boolean variable according to whether a schema fact exists
at that location.

SchemaFactlnstantiatedL2DI

accept SchemaFactCoord : ObjectTypeFactCoordType ; ObjectlnstDesc :
ObjectlnstDescType ;

return Instantiated : Boolean ;

action Sets the boolean variable according to whether that schema fact has
been instantiated for that particular object instance.

SchemaFactMandatory L2DI

accept SchemaFactCoord : ObjectTypeFactCoordType;

return FactMandatory : Boolean ;

action Sets the boolean variable according to whether the specified schema
fact is mandatory.

SchemaFact U niqueL2DI

accept SchemaFactCoord: ObjectTypeFactCoordType;

return Fact Unique : Boolean ;

action Sets the boolean variable according to whether the specified schema
fact is unique.

144

B.4.5 Level 2 Output - OP

OneSchemaFactL20P

accept SchemaFactLocn: ObjectTypeFactCoordType;

action Output. the schema fact at the location specified.

SchemaFactsL20P

accept ObjectType : ObjectTypeCoord ;

action Output all the schema facts of the object type specified.

Objectlnst2L20P

accept ObjectlnstDesc : ObjectlnstDescType ;

action Display the value of the object instance descriptor.

0 b j ectlnstFactsL20 P

accept ObjectTypeLocn : ObjectTypeCoordType;
ObjectlnstDesc : ObjectlnstDescType ;

action Output all the data facts which the specified object instance takes
part in.

AllObjectlnstsL20P

accept ObjectType : ObjectTypeCoordType ;

action Output the object instance descriptors for every object instance of
the specified object type .

All0bjectlnstsFactsL20P

accept ObjectType: ObjectTypeCoordType;

action Output the data facts for every object instance of the specified object
type.

ObjectType2L20P

accept ObjectTypeCoord; ObjectTypeCoordType;

action Output the object type descriptor of the object type specified.

AllObjectTypeL20P

accept NULL

action Output the object type descriptor of every object type.

Consistency FactsL20P

accept ObjectTypeCoord : ObjectTypeCoordType ;

action Output all the consistency facts for the object type specified.

145

Consistency RelationsL20 P

accept NULL ;

action Output the names of all the legal consistency relations.

RelationObjectTypeL20P

accept NULL ;

action Output all the object types which represent relations.

ConstantObjectTypeL20P

accept NULL ;

action Output all the object types which represent constants.

NameObjectTypeL20P

accept NULL ;

action Output all the object types which represent names.

146

B.4.6 Level 2 Retrieve - RET

RetrieveFirstFactlnstL2RET

accept ObjectlnstDesc : ObjectlnstDescType ;
ObjectTypeFact : ObjectTypeFactCoordType;

return DataFact : DataFactlnstType ;
Success : Boolean

action Locate the object instance described and return the first data fact in
the appropriate fact type location supplied. A boolean variable is also
returned indicating whether a data fact was retrieved.

RetrieveN extFactlnstL2RET

accept ObjectlnstDesc : ObjectlnstDescType ;
ObjectTypeFact : ObjectTypeFactCoordType ;
NextDataFact : DataFactlnstType ;

return DataFact : DataFactlnstType ;
Success : Boolean

action Locate the data fact supplied in the fact type location of the object
instance described and return the next data fact. A boolean variable is
also returned indicating whether a data fact was retrieved.

RetrieveFirstO bjectlnstL2RET

accept ObjectTypeCoord : ObjectTypeCoordType ;

return ObjectlnstDesc : ObjectlnstDescType;
Success : Boolean

action Return the first object instance found for the object type supplied. A
boolean variable is also returned indicating whether an object instance
was retrieved.

RetrieveNext0bjectinstL2RET

accept ObjectTypeCoord: ObjectTypeCoordType;

return ObjectlnstDesc : ObjectlnstDescType ;
Ne:xtObjectlnstDesc : ObjectlnstDescType ;
Success : BOOLEAN ;

action Locate the object instance for the object type supplied and return
the object instance which follows it. A boolean variable is also returned
indicating whether an object instance was retrieved.

147

RetrieveConsistency FactL2RET

accept ObjectTypeFactCoord : ObjectTypeFactCoordType;

return ConsistencyFact : SchemaConsisFactlnstType ;
Success : BOOLEAN ;

action Retrieve the consistency fact at the location supplied. A boolean vari­
able is also returned indicating whether consistency fact was retrieved.

RetrieveSchemaFactL2RET

accept ObjectTypeFactCoord : ObjectTypeFactCoordType;

return SchemaFact : SchemaConsisFactlnstType; Success : BOOLEAN;

action Retrieve the schema fact at the location supplied. A boolean variable
is also returned indicating whether schema fact was retrieved.

RetrieveSchemaFactCoordL2RET

accept ObjectType: ObjectTypeCoordType;
SchemaFact : SchemaConsisFactlnstType ;

return ObjectTypeFactCoord : ObjectTypeFactCoordType ;
Success: BOOLEAN;

action Retrieve the schema fact coordinate for the object type specified. A
boolean variable is also returned indicating whether the schema fact was
found.

RetrieveConsistencyFactCoordL2RET

accept ObjectType: ObjectTypeCoordType;
ConsistencyFact : SchemaConsisFactlnstType ;

return ObjectTypeFactCoord : ObjectTypeFactCoordType ;
Success : BOOLEAN ; ·

action Retrieve the consistency fact coordinate for the object type specified.
A boolean variable is also returned indicating whether the consistency
fact was found.

RetrieveObjectTypeCoordL2RET

accept ObjectTypeDesc: ObjectTypeDescType;

return ObjectType : ObjectTypeCoordType ;
Success: BOOLEAN;

action Retrieve the object type coordinate for the object type specified. A
boolean variable is also returned indicating whether the object type was
found.

148

RetrieveObjectTypeDescL2RET

accept ObjectType : ObjectTypeCoordType ;

return ObjectTypeDesc : ObjectTypeDescType ;
. Success : BOOLEAN ;

action Retrieve the object type descriptor for the object type at the coor­
dinate specified. A boolean variable is also returned indicating whether
the object type was found.

149

B.5 Level 3- L3

None of the procedures at this level have any parameters.

B.5.1 Level 3 Deletion- DEL

DeleteDataFactL3DEL

action User chooses a data fact which is then deleted. The definition of
object instances which form the subject and object of the data fact
are checked to ensure they are still legal, if they are not legal then the
object instances themselves are deleted with all their associated data
facts, and the process stops when the database is left in a consistent
state with respect to the domain information.

De let eO b jectlnstL3DEL

action User chooses an object instance which is deleted. All the data facts
associated with that object instance are deleted and the object instances
which are involved in those data facts are checked for legality with re­
spect to the domain information which may lead to additional object
instance deletions. The process stops when the database is left in a
consistent state with respect to the domain information.

DeleteSchemaFactL3DEL

action User chooses a schema fact which is deleted. The corresponding data
facts for all the object instances of the subject and object of the schema
fact are also deleted, however the wave of deletions will not spread any
further than this.

DeleteConsistencyFactL3DEL

action User chooses a consistency fact which is deleted. This has no further
effect on the data base as it is relaxing a restriction and thus the database
is guaranteed to be consistent after the deletion if it was consistent before
the deletion.

Delete0bjectTypeL3DEL

action User chooses an object type which is deleted. The schema facts of
the object type, all the object instances and their associated data facts
are deleted.

150

B.5.2 Level 3 Insertion - IN

Insert0bjectlnstL3IN

action User supplies details of an object instance which is inserted and the
system ensures that all appropriate information is supplied for it to make
it legal with respect to its domain and consistency information.

InsertO bjectTypeL31N

action User supplies details of an object type which is inserted.

InsertSchemaFactL31N

action User specifies details of a schema fact which is inserted, - the system
then checks all object instances of arguments of the schema fact to ensure
that they are legal with respect to its domain information.

Insert Consistency FactL3IN

action User specifies a consistency fact, the system then checks all instances
of the subject of the fact to ensure that they are legal with respect to the
new consistency information. The object of a consistency fact is always
a constant, and thus it has no instances which need to be checked.

InsertDataFactL31N

action User supplies details of a data fact which is inserted if it does not
compromise the domain information of the schema fact of which it is an
instantiation.

151

B.5.3 Level 3 Output - OP

Output0bjectTypesL30P

action All the object types in the database are displayed.

OutputSchemaFactsL30P

action An object type is selected by the user, all of its schema facts are
displayed.

OutputConsistencyFactsL30P

action An object type is selected by the user, all of its consistency facts are
displayed.

Output0bjectlnstL30P

action An object type is selected by the user, all of its object instances are
displayed.

OutputObjectlnstFacts

B.6

action An object instance is selected by the user, all of its data facts are
displayed.

Level4 Menu

Menu

action Uses the level 3 procedures to display information to the user and
permit the user to perform the various database manipulation opera­
tions.

152

