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Abstract

The research described in this thesis addresses itself to the problem of maintaining
large, undocumented systems written in languages that contain a module con-
struct. Emphasis is placed on developing techniques for analysing the code of
these systems,‘thereby helping a maintenance programmer to understand a sys-
tem. Techniques for improving the structure of a system are presented. These

techniques help make the code of a system easier to understand.

All the code analysis techniques described in this thesis involve reasoning with,
and manipulating, graphical representations of a system. To help with these graph
manipulations, a set of graph operations are developed that allow a maintenance
programmer to combine graphs to create a bigger graph, and to extract subgraphs

from a given graph that satisfy specified constraints.

A relational database schema is developed to represent the information needed
for inter-module code analysis. Pointers are given as to how this database can be

used for inter-module code analysis.
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Chapter 1

Introduction

1.1 Purpose of the Research

Analysis techniques are described that can be applied to programs consisting of
interconnected modules®. These analysis techniques are intended to help mainte-
nance programmers understand the code of large, undocumented systems. Some of
the techniques concentrate on analysing the architectural structure of a system,
while others concentrate on analysing the module interfaces. The proposed tech-
niques lead to methods for analysing the code of a system. These methods, together
with their supporting software tools, can be used by maintenance programmers in

order to understand a large system.

*In this thesis, words in bold typeface are defined in the glossary given in Appendix A




1.2 Motivation

In his Turing award address Dijkstra said,

“As long as there were no machines, programming was no problem at
all; when we had weak computers, programming became a mild problem
and now that we have gigantic computers, programming has become an

equally gigantic problem.” [50]

This comment is referring to the problem of designing and implementing large
complex systems that are beyond the intellectual capacity of the programmers
working on them. Dijkstra’s comment is equally valid when it comes to maintaining

large complex programs.

As the power of the available machines has grown, so ever more complex pro-
grams have been developed that make use of the new power of the hardware. Many
of these programs were written without the aid of any design method and as a re-
sult have a very complex structure. This complexity of structure seriously affects
the productivity of maintenance programmers who have to spend over 50% ([33])

of their time on code analysis activities.

Software maintenance is the most costly stage of the software lifecycle, account-
ing for between 50% and 80% of software expenditure [90, 108]. An important part
of any software maintenance task is code analysis. Code analysis is performed sev-
eral times for any given maintenance task. Before any maintenance operation can
bev performed, a maintenance programmer has to have a general understanding of
how a program works, together with knowledge about which sections of the code

are important for the maintenance operation. This information can be obtained

2



by analysing the program code and determining the dependencies that exist be-
tween the different entities. The information gained from this analysis can be
supplemented by information obtained from the documentation. After a proposed
modification has been designed, another code analysis process is performed in order
to ensure that the change will not have any unforeseen side effects. It is therefore
important that techniques are developed that can help programmers in their code
analysis work. An important part of the process of understanding programs writ-
ten in module languages is determining the role that a module plays within a
system, and determining the nature of the connections between modules. It is the
production of techniques in this area that is the goal of the research described in

this thesis.

1.3 Objectives of the Research

1.3.1 Assumptions

The work of this thesis is concerned with the analysis of the dependencies

betwéen the modules that comprise a software system. As such the work is aimed
at languages that support a module construct as part of the language. In some
languages modules have to be simulated (e.g., in C [86] a .h file can represent the
specification part of a module and a .c file can represent the implementation part).

The special requirements needed to consider such languages will not be addressed

in this thesis.

Lisp-based languages like Flavours [107] and Common Lisp [13] determine many



of their inter-module dependencies dynamically. These languages will not be served
by this thesis. Languages like Adat [1], Modula-2 [169], Simula [5] and Eiffel* {104,
105] determine their inter-module dependencies statically, and it is to this form of

module language that the thesis will confine itself.

1.3.2 Goals

The research described in this thesis is aimed at the maintenance phase of the
software lifecycle. The primary objective of the research is to find techniques to help
a programmer understand an undocumented system. To this end, ways to analyse
the architectural structure of a system are developed which give a clue as to what
design strategy, if any, has been used on the system. This involves establishing the
different module hierarchies within a system that one expects from the different

design methods.

At a more detailed level, the role played by individual modules within a system
is established. This helps a maintenance programmer to detect modules that are
playing a particular role within a system. As a result of this, modules can be located
that require closer examination because they belong to a category of modules that

has been identified as being overly complex.

In order to be able to understand the role of a module within a system prop-
erly, it is necessary to derive and classify the nature of the connections between
modules. To do this, techniques are developed to analyse the connections between

modules, and thereby classify the connections according to some of the existing

TAda is a registered trademark of the U.S. Government, Ada Joint Program Office
tEiffel is a trademark of Interactive Software Engineering Inc.



classifications.

Techniques are developed for taking a module that is found to be overly com-
plex, because the module is found to provide several disparate services, and for
breaking it into smaller and simpler modules. By breaking up complex modules
into smaller modules that contain logically related entities, the structure of a sys-

tem is then improved because each of the modules represents a single service.

When dealing with large systerﬁs, it is impractical to regenerate the information
on the module interconnections for every code analysis operation. Therefore a
relational database schema is designed that can record the necessary information,
and the thesis provides indicators as to the way in which this database is best

interrogated.

1.3.3 Anticipated Benefits

Time constraints make it impossible to study all the applications of inter-module
code analysis for this thesis. Some of the anticipated benefits of this work are briefly

described below. It is hoped to pursue some of these in future work.

Cohesion and Coupling

Cohesion is the functional strength of a routine and coupling is a measure of
the dependence between routines. Some cohesion and coupling measures have been
given in the literature for routines [116, 175]. With the module construct which

provides clustering facilities these measures need to be reassessed.



For example, Yourdon and Constantine [175] classify two or more routines that
use the same global variable as being commonly coupled. This is regarded as be-
ing a bad form of dependence between routines. This form of connection is used
within a module to implement an abstract-state machine or an abstract data type.
Both of these type of modules are classed as being “good”. This means that with
the existing measures, bad routine dependencies are needed to create some good
modules. This is an undesirable situation so the existing cohesion and coupling

definitions ought to be modified to take into account the module construct.

Software Metrics

Software metrics are used to determine how good a piece of software is according
to a given criterion. The work of this thesis is concerned with trying to help
maintenance programmers understand modules and module interconnections. If
this work is combined with the proposed work on redefining the cohesion and
coupling definitions, a solid base on which to create a set of software metrics on

the inter-module connections will be established.

)

1.4 Thesis Structure

Chapters 2-3 introduce the subject matter of this thesis. Chapter 2 discusses
some of the code analysis techniques from which ideas are borrowed in order to
perform inter-module code analysis. Chapter 3 discusses the module construct and

some of the system decomposition techniques that exist.

Chapters 4-8 discusses the graphs and graph operations that are used for inter-

6



module code analysis. In Chapter 4, the general properties of a graph showing
the dependencies between entities are discussed. In Chapter 5, the notation used
to manipulate graphs is explaiped. Chapters 6-8 describe three different forms of
interconnection graphs that show dependencies between the entities. Chapter 9
discusses the use of the interconnection graphs in analysing a system and breaking

up a module into smaller modules.

The relational database that is to be used for inter-module code analysis is
described in Chapters 10-11. Chapter 10 describes the design of the relational
database and Chapter 11 describes how this database can be used in inter-module

code analysis.



Chapter 2

Code Analysis Techniques — Amn

Overview

2.1 What is Code Analysis?

Code analysis is a generic terxﬁ used to denote those programmer activities
where the primary emphasis is on ezamining a piece of program code. Code anal-
ysis activities take on many different forms, such as: the program derivation and
program proving work of Hoare [71], Dijkstra [52, 53], and Gries [64, 65]; the error
and anomaly detection work of Fosdick and Osterweil [58, 112], Hennell [70], How-
den [75], and Hartmann and Robson [66, 67]; and the program understanding work
of Green [63], Shneiderman [140, 141}, Johnson and Soloway [81, 82], Letovsky and
Soloway [91, 93, 94].



Two important aspects of code analysis are: determining the dependencies be-
tween different entities and analysing the usage of entities. Some of the work in
these areas that has influenced the research direction of this thesis will be described
in the following sections. Section 2.2 describes data flow analysis, where the usage
of va;riables‘ is analysed in order to determine anoma,lous usage. Section 2.3 de-
scribes program slicing, where statements are extracted from a program( segment
because they affect the value of a designated variable. Section 2.4 describes the
use of call graphs which gives a high level representation of a program’s structure.
Finally, section 2.5 describes program transformation systems, a means by which

the structure of a system is improved.

2.2 Data Flow Amnalysis

Data flow analysis techniques examine a piece of program code in order to
determine if there are any anomalous uses of variables within that code. Osterweil
and Fosdick [112] give two rules on variable usage in terms of the actions that can
be performed on variables. It is possible for three actions to be performed on a
variable. Thgse are:

defined  — a value is stored in the variable,
referenced — the value stored in the variable is used,

undefined -— it is impossible to state the value stored in the variable.

Consider for example the Pascal [80] program given in Figure 2.1. (The line
numbers in the leftmost column are to aid the discussion of the program and do

not form part of the actual program.)



int2:= inti 4 20;
WriteLn(int2: 5)
END. (* ExampleProgrami )

i PROGRAM ExamplePrograml (Output);
2

3 VAR inti, int2: INTEGER;

4

5 BEGIN

6 inti:= 10;

7

8

9

Figure 2.1: The Program used for Data Flow Analysis

Prior to the execution of the statement on line 6, the variables inti and int2
are said to be undefined as no values have yet been given to them. When the
statement on line 6 has been executed, the variable int1 is now said to be defined
as it has been assigned the value 10 by the assignment statement. The variable
int2 is still undefined. The statement on line 7 performs actions on two variables.
Firstly the variable int1 is referenced, as its value is needed in order to evaluate
the expression,

intl + 20
The result of this expression is then assigned to the variable int2. Hence the
statement on line 7 causes int1 to be referenced and int2 to be defined. During
the s'ta.tement on line 8, int2 is referenced because its value is used by the
output routine WriteLn. Line 9 marks the end of the program so int1 and int?2

become undefined as with the termination of the program’s execution they lose

their values.
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The following rules on variable usage are given by Osterweil and Fosdick:
Rule 1: a reference must be preceded by a define without an intervening
undefine.
Rule 2: a define must be followed by a reference without an intervening

define or undefine.
Violation of either rule constitutes an anomalous variable usage.

Using the alphabet {D, R, U} to represent the actions defined, referenced and
undefined respectively, the path expressions PURQ, PDDQ and PDUQ, where P and Q
are arbitrary path expressions, represent the three anomalous paths that Fosdick
and Osterweil [58] identified as being the violations of the above rules on variable
usage.

PURQ — Undefined Reference — The value of a variable is used before the vari-
able is given a value. This violates rule 1.
PDDQ — Double Definition — The value of a variable is changed without the

old value being used. This violates rule 2.

PDUQ — Lost Definition — The value of a variable is undefined without

the old value being used. This violates rule 2.

Much work has a,ppe.'-aJred in the computing literature on how to perform data
flow dnalysis. Initially data flow analysis was performed statically, but it proved
necessary to develop dynamic data flow analysis techniques because there are
classes of data flow anomalies that can only be detected at run time. Some of

the different data flow analysis techniques are described below.
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2.2.1 Static Data Flow Analysis

Fosdick and Osterweil developed algorithms for performing static data flow
analysis [57, 58]. These algorithms make use of some of the work on global flow
optimisation, in particular, live-variable analysis and available expression analysis.
(An explanation of live-variable analysis and available expression analysis is given
by Aho et. al. [7].) Fosdick and Osterweil’s data flow analysis technique involves the
analysis of the control flow graph of a program where a node represents a program
statement, and an edge represents a possible execution sequence. For example, the
edge (na, ng) denotes that there is a path through the program code such that the
statement associated with the node ng is executed after the statement associated
with the node n,. DAVE [112], was developed by Fosdick and Osterweil to analyse
programs written in Fortran 66 [3]. Subsequent work by Jachner and Agarwal [79]
corrected some of Fosdick and Osterweil’s algorithms as these algorithms sometimes
incorrectly detected dafa flow anomalies. Jachner and Agarwal also provide some
new data flow analysis algorithms which have half the storage requirement and

twice the execution speed of the Fosdick and Osterweil-algorithms.

Initially the work on data flow analysis was aimed at Fortran. As Fortran does
not require that variables be explicitly declared before they are used, it is possible
for typographical errors in a program to go undetected. Data flow analysis can help
detect this form of error. Since then data flow analysis has been usefully applied

to other languages like C and PL/1 [4], and is used in test data generators.

Wilson and Osterweil [164] have developed Omega, a static data flow analysis
tool for C [86] programs. C, unlike Fortran, allows dynamic variables. A dynamic
variable is a variable whose associated storage is allocated and deallocated as the

program is being executed. This dynamic property hinders the ability to use static
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data flow analysis. In order to perform static data flow analysis on C programs,
Wilson and Osterweil had to restrict the possible pointer operations to a smail sub-
set of those that C allows. Despite this restriction however, Wilson and Osterweil’s
data flow analysis technique has been shown to be of value in regression testing
C programs. TRICS [131] (Testing by Regression and Integration of C Software)
is a program testing tool developed by Raither and Osterweil that helps prepare
test data for C programs. Sarraga developed PROBE [137], a static data flow
analysis tool for PL/1 programs. As with Omega, PROBE can only work with
programs writtén in a subset of the intended language. In order to overcome these

restrictions, it is necessary to perform dynamic data flow analysis.

2.2.2 Dynamic Data Flow Amnalysis

The objectives of dynamic data flow analysis are the same as those of static data
flow analysis, namely the detection and reporting of any data flow anomalies within
a program. The difference is that with dynamic data flow analysis the anomalies

are detected as the program is being executed.

Huang [76] introduced the fundamental aspects of dynamic data flow analysis.
Every variable in a program must have associated with it a status variable, that
records either the last action performed (referenced, defined or undefined) or
the fact that the last action was anomalous. The value of a status variable is

updated by the invocation of a status transfer function.

Huang used dynamic data flow analysis to tackle the problem of performing data
flow analysis on arrays. Static data flow analysis cannot handle arrays properly as

the appropriate array index is often only determinable at run time, e.g., with,
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ReadInt (i) ;

Temp:= IntArray[il;

Huang’s dynamic data flow analysis technique have been extended by several
authors. Calliss and Cornelius [21] show how dynamic data flow analysis can be
used with C programs. Status variables have been developed that can record status
information on compound structures like struct and union, as well as on pointer
variables. In order to do this, new status transfer functions were developed that
cope with pointer and structure operations. Although Huang’s techniques only
finds one anomaly per variable, Calliss and Cornelius’ data flow analysis technique
allow more than one data flow anomaly to be found. Similar work by Chen and

Poole [28] has also produced dynamic data flow analysis techniques for C programs.

2.2.3 Other Data Flow Analysis Work

With the static data flow analysis techniques mentioned in subsection 2.2.1,
the result of performing data flow analysis on a routine must be known before the
result, of a call to that routine can be assessed. With recursive procedures this is
not possible. However, Fairfield and Hennell [56] have developed static data flow

analysis techniques that can cope with recursion.

Data flow analysis techniques have been developed for concurrent software by
Taylor and Osterweil [149] and Osterweil et. al. [113]. At the heart of static data
flow analysis are algorithms which operate on an annotated graphical representa-
tion of a program. With sequential programs, this graphical representation is the

control flow graph (or flowgraph) whereas for concurrent software it is the process
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augmented flowgraph [148]. A process augmented graph is formed by connecting
the flowgraphs representing the individual processes. Data flow anomalies in con-
current software are divided into those anomalies that must occur and those that

may occur depending on the state of one of the processes.

An alternative technique for performing data flow anomaly detection is given by
Bergeretti and Carré {12] and Carré [27]. This technique is based on information-
flow analysis. More information is gathered on variable usage than with data flow
analysis and the number of anomalies than can be de{:ected statically is increased.
Information-flow analysis allows tests for ineffectiveness of statements and variables
and for loop stability which usefully extend the class of anomalies that can be
detected statically. The information-flow analysis techniques of Bergeretti and
Carré have been incorporated in SPADE (the Southampton Program Analysis and

Development Environment).

Data flow analysis can be used for both intra-procedural and inter-procedural
code analysis. With static data flow analysis, the speed suffers greatly as the
number of routines that have to be analysed increases. With dynamic data flow
analysis tools the amount of output generated by a program run is potentially very
la‘rge.‘; These points indicate that, with interactive code analysis tools, data flow
analysis is best suited to intra-procedural code analysis or to inter-procedural code

analysis of small sections of a program.
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2.3 Program Slicing

Program slicing is a form of program decomposition based on control flow and
data flow analysis. The concept of the program slice was introduced by Weiser
in [158, 159, 160]. A program slice, S, from a program, P, is a sequence of statements
where the order of the statements in S is the same as in P. A program slice S, from
a program P is obtained by projecting the statements from P, that conform to some

slicing criterion. This will be denoted by,

P{C]S

where C is the slicing criterion being employed. A slicing criterion is an ordered

tuple of the form,
statement-range, vars-of-interest

For a particular slicing criterion, the value for statement-range is the range of
statements over which a program is to be sliced; the value for vars-of-interest is
some subset of variable identifiers that are visible in the given statement range.
When a program is sliced in this way, the statements in the given range that do
not affect the value of one of the chosen variables of interest are deleted to produce
the program slice which contains all the statements in the chosen range that affect

the chosen variables of interest.

Consider for example, the segment of a Pascal program given in Figure 2.2.
Figure 2.3 gives three different slices for this program segment. Let P be the

program segment in Figure 2.2. The program slice in Figure 2.3(a) represents the
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READ(X, Y);
TOTAL:= 0.0;
SUM:= 0.0;
IFX<=1
THEN SUM:= Y
ELSE BEGIN )
READ(Z) ;
TOTAL:=
END;
WRITE(TOTAL, SUM);

X =Y

Figure 2.2: A Segment of a Pascal Program

READ(X, Y);
IF X <= 1
THEN
ELSE READ(Z);

(a)
((1,10),{z})

READ(X, Y);
(b)

((1,10),{x})

READ(X, Y);
TOTAL:= 0.0;
IF X <=1
THEN
ELSE TOTAL:= X * Y;

(c)

((1,10),{TOTAL})

Figure 2.3: Three Example of Program Slices
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slicing operation,

P((Ia 10)) {2}351

The input statement READ(X, Y) is included in the slice because the value of
X affects whether the second input statement is executed or not, and it is this
statement that affects the value of Z. The program slice in Figure 2.3(b) represents

the slicing operation,

P((la 10)> {x}ssz

This time the variable of interest is X. The condition test on line 4 and the as-
signment statement on line 8 of the program segment P are not included in the
program slice because although they use the value of X they do not affect its value.

The program slice in Figure 2.3(c) represents the slicing operation,

—

P((1, 10), {TOTAL})Ss

It is possible for a slicing criterion to contain more than one variable of interest.

Consider for example the slicing operation,

-

P{(1,10),{z, TOTAL}}S,

This slicing is regarded as an amalgam of the slicing with respect to each of the
variables. Thus,

54551553

where Y denotes an amalgamation operator. This slice is shown in Figure 2.4. This

program slice is an amalgam of the program slices given in Figure 2.3(a) and (c).
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READC(X, Y);
TOTAL:= 0.0;
IF X <=1
THEN
ELSE BEGIN
READ(Z);
TOTAL:= X = Y
END

Figure 2.4: Program Slice Formed from the Criterion ((1,10),{z,TOTAL})

Weiser implemented a program slicer for programs written in Algol-W. The
implementation of this program slicer is described in [160]. It was used in experi-
ments to determine if programmers use slices when debugging programs [158]. The
experiments showed that there is evidence that this in fact true. This conforms to
a;n analogous experiment conducted by Soloway and Erhlich [145] where they deter-
mined that programmers used program plans when analysing programs. Letovsky

provides the following definition of program plans in [92]

“...the cliches of programming, the familiar idioms and algorithms

that make up a programmer’s expertise”.

Work on program slicers has been undertaken by other authors but this work
has mainly been confined to making the slicing algorithms faster (for example
Leung and Reghbati [95]). Ottenstein and Ottenstein [114] describe a graph struc-
ture called the program dependence graph, which allows programs to be sliced in
linear time and the redundant statements on multi-statement lines are stripped
out. (Weiser’s program slicer makes use of statement line numbers so with multi-

statement lines it is possible for redundant statements to be included in the program
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slice.)

Lyle and Gallagher [100] show how program slicing can be of value to the mod-
ification and testing phases of software maintenance, by slicing out the portions
of code that needs to be modified. The effect of a proposed modification can be
determined by performing appropriate slices. Lyle and Gallagher also include out-
put statements in a program slice, because although an output statement does not
affect the value of a variable, it was found that programmers found the inclusion of

output statements in a program slice helpful when tryiﬁg to understand a program.

Ambras and O’Day [8] describe how in the MicroScope system, program slices
are used in conjunction with execution histories (a log of control flow and data
structure changes), in order to understand why certain events happened when a
program was executed. For example, why was a variable set to a particular value,

or why was a particular branch taken in the control flow.

Program slicing is strictly an intra-procedural code analysis technique. If a
program slice is to be performed over a routine call then only the call statement
is included in the program slice. In order to obtain the statement sequence from
the called routine that affects the selected variables of interest, a separate program
slicing operation must be performed on the routine. The intra-procedural nature of
program slicing means that its main value is when a programmer wants to obtain
a detailed picture of how a section of code works, and it is of limited value when

global variables are being considered.
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2.4 Call Graphs

The above code analysis techniques make use of control flow graphs in order to
perform the desired analysis. With modern high level languages, there is another
form of graph that can convey meaningful information about a program — the
call graph. A call graph is a directed graph that represents the dynamic relations
between routines. A node of a call graph denotes a routine and an edge denotes
the calling of one routine by another. The direction-of the edge indicates which
routine is the caller and which routine is being called. Consider for example, an
edge (n), n,). This is an edge going from n, to n, and represents the calling of the
routine denoted by n, by the routine denoted by ny. Techniques for constructing
the call graph of programs have been described by Ryder [134] for Fortran 66 and
Cooper [36] for Pascal.

The call graph forms the backbone of many code analysis techniques where
inter-procedural analysis is to be performed. When trying to understand a program,
it is important to be able to view a program from different levels of abstraction.
The call graph provides a means of examining a program’s structure at a higher

level than the statement level, which is depicted by the control flow graph.

Shneiderman et. al. [142, 143] use call graph information in their program brow-
ser. This progrzim browser is a hierarchical browser that has the objective of making
the program’s structure more visible to programmers. The programmer is presented
with a piece of program text together with a list of callable routines. As the pro-
grammer moves through the program text the list of callable routines is automati-
cally updated so that the list of callable routines is always in synchronisation with
the program text being examined. Other uses of call graphs that have appeared in

the computer literature include: Sengler’s description of how call graph informa-
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tion is used by programmers to divide a program into manageable segments [139],
Khun and Holliss’ automatic documentation system for PL/1 programs [89] and
Ryder’s incremental updates on software [135]. Ryder and Carroll [136] describe

some incremental algorithms for analysing a call graph.

Some specialised forms of call graphs have been devised. Debnath and Bie-
man [45] use the generalised program graph as a model for the analysis of the
interprocedural structure of a program. The generalised program graph is a form

of call graph where information on parameter passing is also recorded.

2.5 Program Transformation Systems

Program transformation systems are systems that transform a program into a
structurally different but logically equivalent program. These systems fall into two

categories.

o Restructurers

These systems manipulate the control flow graph representation of the pro-

gram.

o Formal Transformations

These systems manipulate a series of assertions that depict what the program

is doing.

These two categories will be considered below.
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2.5.1 Restructurers

Bohm and Jacopini [14] showed that it is possible to transform the control flow of
a program so that the control flow is a composition of sequence, repeat ... until,
and if ... then ... else structures. The idea of transforming the control flow
of a program gained further momentum after Dijkstra’s paper, “GOTO Statement

Considered Harmful” [48], was published.

A clearer understanding of unstructuredness was obtained when Williams [161]
examined the nature of unstructuredness in programs and identified the five basic

structures that result in unstructured programs. These structures are:

o abnormal selection path

(o}

loop with multiple exit points
o loop with multiple entry points

o overlapping loops

o]

parallel loops

Williams and Ossher [163] show how to detect these unstructured structures and

to transform thém into a structured form.

Several authors have investigated the problem of restructuring unstructured
programs, e.g., Ashcroft and Manna [9], Baker [10], Cowell et. al. [40], Oulsnam [115],
Prather [130] and Williams [162].

Some problems with automatic restructurers have been identified [20]. For

example, the amount of code produced by a restructurer is usually greater than
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the original program; and many of the restructuring algorithms make use of state
variables which the restructurer adds to the program. These examples illustrate
the main problem with restructurers however: they deal with the symptom of bad
code and not the cause. Restructurers tidy up spaghetti code but do not tidy up

the dubious logic that resulted in the writing of the bad code.

2.5.2 Formal Transformations

Formal transformation techniques approach the subject of program transfor-
mation differently. Instead of searching the control flow graph for a structure that
is deemed bad and transforming it, formal transformation techniques first estab-
lish what the program is doing and then find an alternative and more acceptable

coding.

Formal transformation techniques to derive programs have been known for sev-
eral years, for example, Burstall and Darlington [19], Manna and Waldinger [101],
Reddy [132] and Scherlis [138]. More recéntly some authors like Sneed and Jandra-
sic [144] and Ward [153] .have used formal transformations to derive specifications
from code. Ward has developed transformation techniques that are based on Dijk-
stra’s weakest preconditions [52, 53] and Karp’s infinitary logic language L., ., [84].
These transformations are described in [154]. Ward’s transformations are being

semi-automated in the “Maintainer’s Assistant” [23, 24, 109, 155].

Whereas the transformations used in restructurers are based on preserving the
order of statement execution, duplicating code if needed, Ward’s transformations
are based on deriving the specification for a piece of code, and then obtain an

alternative coding that satisfies this specification. As the driving criterion is not
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to preserve the order of statement execution, programs derived as a result of us-
ing Ward’s transformations can often be smaller than the original program as is

demonstrated in [153].

Restructurers analyse the control flow graph of a section of code and ensure
that the control flow graph consists of a combination of structures that are deemed
desirable. As restructurers analyse and manipulate the control flow graph of a
program they are primarily intra-procedural code analysis tools. Formal transfor-
mation systems work with assertions about the code, ’énd they are therefore more
interested in the semantics of the code rather than the structure. This lack of inter-
est in the structure of the system makes formal transformation systems amenable
to both intra-procedural and inter-procedural code analysis. Sundblad [147], Cor-
nelius and Kirby [39] and Ward [156] demonstrate the use of transformation tech-
niques on routines implementing the Ackermann function in order to achieve a
more efficient implementation. This form of transformation is not possible with

restructurers.

2.6 Summary

+

The work on data flow analysis and program slicing is concerned with deter-
mining information on how a program is to perform in terms of the dependencies
between the variables. Data flow analysis is the analysis of variable usage within
a program. By using data flow analysis, anomalous variable usage within a pro-
gram can be detected and as a result some previously undiscovered program errors
found. Data flow analysis is a code analysis technique that can be used for both

intra-procedural and inter-procedural code analysis. Some of the data flow anal-
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ysis techniques allow the depeﬁdencies between variables to be established. This
is the cornerstone of the program slicing techniques. With program slicing, it is
important to be able to determine which variables are affected by which variables.
This then allows redundant statements to be excluded from program slices. Lyle
and Gallagher [100] show how this provides a means of abstracting out different

views of a system.

Program slicing is less generally useful than data flow analysis, but it introduces
the idea of stripping out statements that do not affect a given variable. In this
thesis, this idea will be generalised to allow program slicing to be performed at a

higher level than the statement level.

The call graph depicts the calling dependencies that exist between routines, i.e.,
which routines are called by which routines. This graph however does not show
the dependency that exists between routines because they use the same global
variable, i.e., which routines are commonly coupled. This is important form of
dependency that needs to be identified in many inter-procedural code analysis

situations.

The call graph also gives an architectural view of a system. This gives a high
level ‘description of how a system has been decomposed into different processes.
However, with modern programming languages the routine is no longer the only
unit of modularity. Therefore new forms of graphs are needed to give a satisfactory

representation of a system’s architectural structure.

Program transformation systems analyse and manipulate representations of a
program in order to improve the system. Most of the program transformation

systems are aimed at improving the statement level structure of a program. Formal
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transformation systems do this, but they also improve the routine level structure
of a system. Most of the work in this area has concentrated on transforming
recursive routines into a more efficient form, by either removing the recursion, or

by introducing global variables.

The system structure is important in helping a programmer to understand a
system; the more complex the structure the harder it is to understand. Some high
level system transformation techniques will be described later in this thesis. These
transformation techniques will group related entities fogether in a way that helps

a programmer to understand a system.
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Chapter 3

Modules and Modularisation

3.1 What is a Module?

3.1.1 Definition

The term module is used by different authors to denote different programming
constructs. Origin#lly the term applied to a routine, but since Parnas published,
“On the Criteria to be used in Decomposing a System into Modules” [119], the
term module has been used to denote a clustering construct. Wirth [168] describes

a module as being,

“...a set of procedures, data types and variables, where the pro-

grammer has precise control over the names that are imported from
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and exported to the environment”.

This description is aimed at the module construct in Modula, but it can form the
basis of a more general description. Some languages like Ada and Modula-2 allow
local modules to be declared. This means that a module can be declared within
another module. This has implications on how the exporting of an entity is to be

interpreted.

When a global module exports an entity, it is exported to the “environment”.
When a local module exports an entity, the entity is exported to the environment
defined by the module containing the declaration of the local module. Therefore,

a module is said to export an entity to the surrounding environment.

Other languages are not as restrictive as Modula in what classes of entities they
allow a module to export. For example Ada allows local modules (called packages
in Ada) to be exported. Therefore a module is said to export entities, rather than

particular classes of entities. For the purpose of this thesis, the term “module” is

defined as,

.a named collection of entities, where the programmer has precise control
* over the entities that are imported from and exported to the surrounding

environment.

The module constructs of existing programming languages differ in the way that
they are used. Some module constructs provide a specialised service, for example an
abstract data type, while others are designed to be more generally useful. Despite

this difference all module constructs provide:
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1. an abstraction mechanism, and

2. a protection mechanism.

These two facilities will now be discussed.

3.1.2 Abstraction Mechanism

The term abstraction mechanism refers to a module construct providing at least

two perspectives of the same program segment:

1. the client view, and

2. the supplier view.

DEFINITION MODULE Stack;
TYPE StackType;

PROCEDURE IsFull(st: StackType): BOOLEAN;

PROCEDURE IsEmpty(st: StackType): BOOLEAN;

PROCEDURE NumberOfElements(st: StackType): CARDINAL,;
PROCEDURE Create(VAR st: StackType);

PROCEDURE Top(st: StackType; VAR element: INTEGER);
PROCEDURE Pop(VAR st: StackType);

PROCEDURE Push(element: INTEGER; VAR st: StackType);

END Stack.

Figure 3.1: An Example from a Language that Provides a Simple Client View
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The client view of a module is the information that a client mbdulle is given
about the public entities of a supplier module. The amount of information that
is given to a user of a module varies from language to language. In languages like
Ada and Modula-2 a simple client view is provided. With these languages the client

view consists of a set of entity names together with a set of entity attributes.

For example, if a module were to provide a stack abstract data type, then the
client view in Modula-2 might be programmed as shown in Figure 3.1. This client
view shows the information that is needed in order to’ use the routines. This form
of client view does not indicate what each of the routines does. A stack is typically
depicted as being a data structure that adheres to the axioms given in Figure 3.2.
Ideally the client view of a module construct should describe these axioms in some

form. Some of the more advanced client views attempt to do this.

pop(push(element, st)) — st
top(push(element, st)) — element
is_empty(create())
~is.empty(push(element, st))

Figure 3.2: Axioms Depicting a Stack

Figure 3.3 gives the client view for a stack module written in Eiffel. The require
and ensure clauses are the pre and post conditions for the routines. Although they
do not express the stack axioms, more information is provided on the effect of each
of the routines. This extra information can be of value to programmers when they

are looking at the services that a module provides.

The number of client views is normally one, but some languages allow for mul-

tiple client views. For example, Extended Pascal [2] has a module construct to
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class interface STACK
exported features num_of.elements, is_full, is_.empty, top, pop, push

feature specification
num_of-elements: INTEGER
is_full: BOOLEAN
is_empty: BOOLEAN

top: INTEGER
require
not is_empty

push(element: INTEGER)
require
not is_full
ensure
not is.empty; top = element; num_of-elements = old num_of-elements + 1

pop
require
not is-empty
ensure
not is_full; num_of-elements = old num_of_elements — 1

Figure 3.3: An Example of an Advanced Client View
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provide several interfaces, each interface being a different client view; and Eiffel
has a restrictive export clause which allows specific entities to be visible only to a

set of named modules.

The supplier view of a module is the view that the implementor of the module
has. This is the more detailed view of the module consisting of the particular al-
gorithmic solutions employed together with knowledge about which other modules
are needed in order for this module to function. A module can acquire entities

from other modules in three ways:

1. Importing
A module can import an entity from another module only if that entity is in

the client view applicable to the importing module.

2. Inheriting
For a module to inherit entities from another module the inheriting module
is built up as an extension or specialisation of the bequeathing module.
When this occurs, the inheriting module normally obtains all of the entities
in the beciueathing module. Simula allows a module to bequeath entities
selectively to a descendent module by hiding entitieé it does not want to

bequeath with the hidden clause.

3. Injecting
An entity is injected into a module if the entity is exported by a local module

and implicitly imported by the module containing the local module.
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3.1.3 Protection Mechanism

A module can help to control the visibility of an entity and thereby help to
restrict the use of that entity to only those modules which need to know about
it. In order to do this, a module construct provides a block structure with the

following scope rules:

o an entity that is visible outside the block can only be used within the block
if the module associated with the block specifically requests permission to do

s0 via an import clause;

o an entity that is declared within the block can be made available to the

surrounding environment by exporting it.

When a program is being developed by a team of programmers, it is important
that each programmer can design and implement his section of the system in semi-
isolation from the other programmers. All that the programmer needs to know is
what facilities other programmers are expecting him to provide, and what he can
assume will be provided to him by other programmers. Both of these points will

have been determined at an earlier design stage.

The scope rules of the module construct help enforce this. The facilities that
other programmers are expecting are given in the client view(s), all other facil-
ities are private to the implementor of a module and are not available to other
programmers. This helps reduce the number of programming tricks employed by
programmers because they cannot make assumptions about how somebody else
has implemented a solution. This protection also helps in restricting the affect of

a change to a system.
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Suppose, for example, a module implements a stack by using an array. As
the system evolves it is determined that the array representation is too restric-
tive, so it is changed to a linked list representation. The affect of this form of
modification is isolated to the module implementing the stack, because users of

this module only ever access the data structure through the routines provided (cf.

Figures 3.1 and 3.3).

The only occasion in which modification to a module should necessitate changes
to other modules is either when a structural change 'is being made, for example,
the addition or removal of an entity from a module’s set of public entities; or when
a public entity is changed so that the way the entity is used has been altered, e.g,

changing the number or order of parameters for a routine.

3.2 The Various Forms of Module C@nstrucits

Many new languages have been developed that contain a module construct,
while many of the established languages have introduced a module construct as
they have evolved. Module constructs in programming languages have tended to
place'the emphasis on either providing data abstraction or on providing general

information hiding. This has led to the creation of two distinct forms of module

constructs which are described in the following subsections.
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3.2.1 Abstract Data Types

The importance of types in programming is explained by Hoare [72]. In a com-
panion paper, Dahl and Hoare [43] introduce the concept of the abstract data type.
With an abstract data type, a programmer views a type in terms of the operations
that are applicable to variables of that type. To implement an abstract data type
in most languages, existing types are used to construct a new type that will rep-
resent the abstract data type. This type is then used to declare parameters of the
routine that will provide the services of the abstract data type. A programmer
is hampered by the fact that precise thinking is possible only in terms of a small
number of elements at a time. Hierarchical abstract data types allow a large data
structure to be partitioned into manageable portions. Since this initial work, the

use of abstract data types in programming has been explored by many authors.

Naphtali and Rich [110] describe the use of abstract data types in developing the
software of a real-time embedded system. The abstract data types were used to hide
hardware features from other programmers. Often the use of abstract data types is
found to be beneficial to the development process, even though the actual language
being used does not contain a construct that facilitates the implementation of
abstract data types. Linden [96] demonstrates that if a system is structured using
abstract data types as the basic unit of modularity, then the resulting system is
easier to extend and modify. Embley and Woodfield [54, 55] give some cohesion
and coupling measures to help assess the quality of the implementation of abstract
data types, and Osterbye [111] proposes a new method of implementing abstract

data types so that abstract data types can share certain operations.

As the virtues of programming in terms of abstract data types became more

accepted, the object-oriented programming paradigm emerged. According to this
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paradigm, software systems consist of a set of communicating abstract data types.
A module construct was designed specifically to implement abstract data types.
In such languages the module construct is called a class. This form of module
has been adopted by the class based languages like Clu [98] and object-oriented
programming languages like C++ [146], Eiffel Simula and Smalltalk-80* [62].

As a class is a type, some of the existing work on type theories is now being
applied to classes. The language Fun was developed by Cardelli and Wegner [26]. It
is based on the typed A-calculus in order to be able to model and reason about the
type structures in several programming languages. Danforth and Thompson [44]
survey some of the existing type theories, examining the manner and extent to
which these theories are able to represent the objects and object interactions that

arise in object-oriented programming.

3.2.2 Module Constructs Providing General Information

Hiding

The class is a module construct that allows a system to be partitioned in terms
of a data structure. This form of partitioning is not always .applicable however;
it may be desirable to partition a system into groups of related entities that do
not work on a common data structure. For example, a module could contain
a set of trigonometric functions. In a case study of using general information
hiding modules, van Kiet [152] states that the need for abstract data types is
rare, and that in the Modula compiler he developed using general information

hiding modules, there was only a need to export two abstract data types. General

*Smalltalk-80 is a trademark of ParcPlace Syétems, Inc.
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information hiding module constructs have been adopted by languages like Ada,

Fortran 8X [102, 103], Modula-2, Modula-3 [25] and Oberon [171, 172].

Several taxonomies for this form of module construct have been proposed. Two
of these taxonomies are of interest to this thesis. These are: the functional classi-
fication given by Booch [16, pages 228-9], and the classification according to the
degree of information hiding given by Ross [133]. Both of these taxonomies are
aimed at Ada’s package construct, but they are general enough to apply to other

languages, although Ross’ taxonomy has to be expancied.

Booch’s Taxonomy

With Booch’s taxonomy, modules are classified according to possible applica-
tions. These applications are characterised by the kind of entities they export.

Booch classifies modules as follows:

o Named Collection of Declarations
The exported entities are constants, variables and types only. The supplier

view is usually empty.

o Groups of Related Program Units
The exported entities are routines and modules only. The supplier view

contains no state variables.

o Abstract Data Types
The exported entities are constants, types, and routines. The supplier view

contains no state variables.
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o Abstract-State Machines
The exported entities are constants, va.i'ia,bles, types, routines and modules.

The supplier view contains at least one state variable.

Booch’s view of an abstract data type is not so strict as the definition given
earlier (page 36). His view is that a collection of types, routines and constants
constitutes an abstract data type if the routines and constants use the types. With

the classical definition, the types would have to be used as parameters.

Booch's taxonomy represents an idealised view of the use of modules. In practice
however, a module is often a combination of these classifications. Such modules
are referred to as potpourri modules. A potpourri module provides a collection
a collection of disparate services to the system. As a result of this, many of the
client modules of a potpourri module will have conflicting interpretations on the

nature of the service being provided.

Ross’ Taxonomy

With the taxonomy proposed by Ross, modules are classified according to the
degreé of visibility of a type defined by the module. Ross classifies modules as

follows:

o The Open Module
An open module is one in which the type is exported and its declaration is
fully visible in the client view. This means that a client module has access

to the internal structure of a variable declared to be of this type.
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o The Private Module
A private module is one in which the type name only is in the client view.
Client modules cannot therefore make use of knowledge about the internal
structure of variables declared to be of this type, but a client module can

assume that assignments and tests for equality are meaningful operations.

o The Limited Module
A limited module is similar to the private module, but this time the client

module cannot perform assignment and tests for equality.

o The Opagque Module
An opaque module is a specialisation of the limited module. With the limited
module if a type declaration is modified then any client module has to be
recompiled even if it has not been modified. This problem can be a,voided if

the type is implemented as a pointer.

o The Closed Module
In a closed module, the type defined is not exported and is therefore not
available to client modules. This form of module is sometimes referred to as

an encapsulated data type.

With Modula-2 an opaque type can be used by a client module in tests for equality
and assignment operations, but there are problems in interpreting this in Modula-2
as has been identified by Cornelius [38]. The problem of interpreting assignment
and test for eqﬁality operations with opaque types makes it more meaningful to

classify a module with an opaque type as an opaque module.

Ross’ taxonomy does not take into account all possible type visibilities however.
It is possible for a type to be part open and part closed. For example, in Oberon

it is possible to have a type declaration of the form
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T1 = RECORD
X, y: INTEGER

END (% T1 *)

in the definition part, and in the associated implementation part the same type

could have the declaration

T1 = RECORD
x, y: INTEGER; (% externally visible fields #)
a, b: INTEGER (* private fields %)

END (* T1 %)

In this way T1 is part open and part closed. With Oberon, if a type has a closed
part then hints to a compiler are needed in order to state a maximum size for the
record (see [170]). Modifications to Oberon have been suggested by van Delft [151]

that remove this problem.

Wirth uses this form of type with his concept of type extensions [170] where
a data structure is constructed as an extension of another type. For example,

consider the following Oberon type declaration

T2 = RECORD(Tl)
z: REAL

END (% T2 *)

This declares the type T2 to be an extension of the type T1, and so variables of

type T2 would have fields a, b, x and y as well as field z.
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In order to cater for languages like Oberon the following classification will be

added to Ross’ taxonomy:

o The Ringent Module
A ringent module is one in which part of the type declaration is visible and
part is private. The client view contains the visible part of the type and
client modules have full access to this part of the type. The closed part of
the type however is concealed from client modules, and so they do not have

direct access to this part of the data structure.

3.3 System Decomposition into Modules

Techniques for decomposing systems into modules at the design stage provide
the much needed method by which the complexity of a large system can be brought
under the control of a small number of people. Hoare [73] relates how the entire
Elliot 503 Mark II software project had to be abandoned because the complexity
had been allowed to get beyond the intellectual grasp of the programmers. Some

of the major design methods are described in the following subsections.

3.3.1 Functional Decomposition

This is known as a top-down or outside-in decomposition method. Two of
the best known forms of functional decomposition are Stepwise Refinement [51,

165, 166, 167] and Structured System Design [46, 116, 174, 175]. Both of these
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techniques are characterised by the description given by Wirth,

“...the program is gradually developed in a sequence of refinement
steps. In each step, one of several instructions of the given program is
decomposed into more detailed instructions. This successive decompo-
sition or refinement of specifications terminates when all instructions
are expressed in terms of an underlying computer or programming lan-

guage.” [165)

By this method, a system is decomposed into a collection of routines.

Page-Jones [116] shows that it is possible, in a limited way, to use functional
decomposition techniques with modules. The module construct that Page-Jones
uses is the information-cluster (a term coined by Parnas [118]). An information-
cluster is a set of routines that have exclusive right of access to a particular item
or items of data. The decomposition technique that Page-Jones shows involves
determining which routines require the use of common data and then refining the

routines around this data.

Page-Jones’ technique is of limited value to systems that are to be written in
module languages as the underlying technique is still routine oriented and Page-
Jones says information-clusters should be implemented as a single routine with a

separate entry point corresponding to each routine the cluster is supposed to have.

Stepwise refinement methods describe a procedure that, if followéd, will help
in the production of good software. However, a problem with stepwise refinement
methods is that they tend to fix at an early stage the implementation details of

each data structure. This has an effect on the maintainability and reusability
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of the software produced. Parnas [122]>Adernonstra.tes this by comparing the prime
program which Dijkstra develops using stepwise refinement ([51, pages 26-39]) with

the version that he developed using information hiding.

3.3.2 Information Hiding

The idea of using information hiding as one of the criteria for decomposing a
system into modules was first proposed by Parnas [119]. Before implementation
can begin, several design decisions must be made so that the system designers can
successfully say how the system is to be decomposed into modules. It is necessary
to try to predict which features of the system are likely to change and which are
unlikely to change. In this way system designers can minimise the effect of a
software change that was anticipated. Korson and Vaishnavi [88] give empirical

evidence to show that information hiding does aid program modifiability.

In a system decomposed with respect to the information hiding criterion a
module is referred to as a “respdnsibility assignment” ([119]) and a “work
assignment” ([125]) by Parnas. This dual meaning for a module highlights two of

the characteristics of a module.

The term “responsibility assignment” shows that a module is regarded as pro-
viding a service in the system. The responsibility of a module should be deter-
minable without having to understand the module’s internal design. Instead the
responsibility should be determinable through the client views that the module
provides to the rest of the system [123, 128]. Therefore, before any implementation

can proceed, three important design decisions have to be made:
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1. identification of features that are likely and unlikely to change
2. identification of the services that are needed within a system

3. identification of the interfaces that services are to provide.

These last two points indicate why a module is said to represent a design decision.

In this context Parnas describes the connections between modules as,
“...the assumptions which modules makes about each other.” [118]

The term “work assignment” shows that the subsequent design and implemen-
tation of that module is the responsibility of a programmer. The work of this
programmer should be done in isolation from other programmers. In this way in
subsequent maintenance work it should be possible to modify the internal structure
of a module without affecting the behaviour of other modules. This cannot be done
if a programmer has made use of knowledge about how another module functions
that is not in the module’s client views (as was pointed out in subsection 3.1.3).
The module languages prevent this, but in languages like C and Fortran, where
module constructs have to be simulated, it is possible for a programmer to violate

a design decision in this way.

Case studies have appeared in the literature to show that system decomposition
into modules using the information hiding is a realistic choice in non-toy programs.
A compiler for the language Modula is described by van Kiet [152], and Parnas
was part of a programming team that implemented the software for the A-7TE

aircraft [17, 29, 30, 31, 32, 69, 117, 127, 129).

Parnas et. al. [125, 126] used the A-TE aircraft software to demonstrate how

information hiding accompanied by hierarchically-structured documentation can be
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of benefit to the reuse of software. The following problems of software reuse were
ameliorated by use of this combination of information hiding and hierarchically-

structured documentation:

O

the specification of the software is either non-existent or too ambiguous;

o the desired software already exists, but the location of the code within the

system is not known;

o the software that can perform the desired task is too general and inefficient;

and

o the cost of modifying existing software is more than the cost of writing new

software.

An important part of a system design to aid reuse is the idea of a hierar-
chy [121] and in particular a hierarchy of virtual machines, where a virtual
machine is a software extension to the underlying hardware of the computer. This
form of programming was first illustrated by Dijkstra in the T.H.E. system [49].
Parnas [122, 124] demonstrates that this hierarchy of virtual machines aids in the
production of program families, which in turn aids in software reuse and software

modifications because the system has been designed for this.

With the growth in popularity of information hiding in software design and
implementation, several software specification techniques have emerged to facilitate
information hiding. Heninger [68] describes the specification technique that is used
with the A-TE aircraft system. Parnas [120] showed how a module could be specified
by means of advanced client views. Bartussek and Parnas [11] extend Parnas’

earlier specification technique by using traces to make it more useful. Hoffman [74]
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proposes a different technique which he claims is easier to teach than traces are.

Middelburg [106] proposes a new specification language for information hiding,

VVSL, which is based on VDM.

3.3.3 Object-Oriented Design

The term object-oriented originated from the work on the Smalltalk-80 pro-
gramming system. Object-oriented design is defined by Gardner [59] as being
information hiding supplemented with the assumption that the difficult design de-
cisions are thoée that concern the implementation of an object and the operations
upon it. Goldberg and Robson [62] describe the structure of Smalltalk-80. This is
probably the best described object-oriented system although other examples can
be found. See for example, Abbott [6], Cox [41], Gardner [59] and Meyer [104, 105].

Given a problem, how does a system designer produce an object-oriented design.
One method has been devised by Abbott [6] which has been expanded upon by
Booch [15, 16]. The Abbott and Booch methods derive an object-oriented design
from a natural language description of the desired system. Abbott describes the

process as consisting of three steps.

1. Develop an informal strategy for the problem.
The informal strategy should state the problem solution on the same concep-

tual level as the problem itself. It should be expressed in problem domain

terms.

2. Formalise the informal strategy.

"The second step is to formalise the solution by formalising its types, objects,
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operators and control constructs.

3. Segregate the solution into parts.

Finally, the solution is broken up into a collection of modules and routines.

The first step consists of describing the desired solution in a natural language
form. The second step consists of analysing the informal description and then

identifying the:

o types
o objects (program variables) of those types

o operators to be applied to those objects

that are needed. When the types, objects and operators have been identified,
they are then organised into the control structure suggested by the informal strat-
egy. The suggested technique for identifying types, objects and operators is by
associating common nouns with types, proper nouns with objects, and verb prop-
erties/characteristics with operators. Although this process appears mechanical,
knowledge of the problem domain is essential in order to be able to derive the

types, objects and operators correctly.

Booch extended the method in order to derive the module structure of a system

by adding the following steps:

o establish the visibility of each object in relation to other objects

o establish the interface of each object
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The object-oriented design methods of Abbott and Booch are primarily of value
to module languages like Ada and Modula-2 where the module i1s a construct aimed
at encapsulating a set of logically related entities and providing a programmer
with some control over the visibility of the entities. The Abbott and Booch design
methods are not well suited to the object-oriented programming languages, where
a module is a user defined type, and where inheritance is used to declare a module
as an extension or specialisation of one or more other modules [157]. With the
object-oriented programming languages, inheritance is an important characteristic

In program construction which is not addressed by Abbott or Booch.

3.3.4 Module Interconnection Languages

De Remer and Kron put forward the maxim that,

“...structuring a large collection of modules to form a system is a
distinct and different intellectual activity from that of constructing the

individuals modules.” [47]

Programming-in-the-large is regarded as being a different activity to programming-
in-the-small and different languages are needed for both of these forms of program-
ming. To assist with programming-in-the-large De Remer an Kron introduce the

concept of a module interconnection language.

A module interconnection language allows a programmer to express the overall
program structure. This information can then be used by a compiler to ensure that
programmers do not violate the structure of the system. By doing this a module

interconnection language helps to enforce the design decisions about, the structure
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of a system by preventing programmers from using entities which they should not

have access to.

De Remer and Kron give the following as the main objectives of a module

interconnection language:

o A project management tool encouraging and recording the stepwise refinement

of a system.
o A design tool for establishing the connections between modules.

o Provides 'a means of communication between programmer working on differ-

ent modules.

o Provides a means of documenting a system structure.

These objectives were met in MIL75, the module interconnection language devel-

oped by De Remer and Kron.

Other module interconnection languages have also emerged: Thomas [150] de-
veloped a module interéonnection language for langﬁage that support data ab-
straction, and Cooprider [37] developed a module interconnection language that

incorporates some version control.

Each of these module interconnection languages are primarily aimed at sup-
porting the design phase of software development. They ignore languages that
contain a module construct aimed at providing a protection mechanism as exist
in Ada and Modula-2. The existence of a module constfuct in a programming
language reduces the need for a module interconnection language, as the module

itself enforces many of the programming restrictions that the module interconnec-
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tion Iaingqués do. With this form of programming laﬁguage, the main value of
a module interconnection language is at the design~stage where programmers are

explicitly told what facilities from another module they can use.

This thesis describes work on analysing the inter-module dependencies, and part
of this analysis process requires analysing the dependencies that exist between the
entities within a module. This information is not recorded in any of the module
interconnection languages as they all confine themselves to recording information
inter-module connections only. Therefore, the informai;ion on inter-module connec-
tions derived in this thesis is not recorded in a format that conforms to any of the

module interconnection languages.

3.4 Summary

The module provides the programmer with an abstraction mechanism more
powerful than the routine. Entities can be grouped together because they are logi-
cally related, and the visibility of these entities can be controlled by the programmer
that is implementing the module. Some of the entities are concealed entirely from
otherlmodules, while others are made visible. With some languages it is possible
for a module to indicate to which other modules the selected entities are being

revealed, and some languages even allow the class of an entity to be concealed from

other modules.

This control over the visibility of entities helps act as a protection mechanism,
as-the risk of unauthorised or accidental.use of entities from other modules can be

mi_nimised. By this means, a module can help ensure the software integrity of a



module, as programmers can be prevented from making use of knowledge to which

they are not entitled.

As languages that contain a module construct as part of the have emerged,
two forms of module constructs have appeared: the class module construct, used
to implement a new type; and the general purpose module construct, used to
encapsulate entities. Together with the emergence of these languages, software
design paradigms have also emerged that use these two module constructs as the

basic unit of modularity for a system.
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Chapter 4

Interconnection Graphs

4,1 Introduction

In order to be able to discuss inter-module connections clearly, it is important
that a suitable structure be used to represent particular properties of a program.
The graph has been found to be a suitable structure for other code analysis tech-
niques, so it will be used in this thesis to record and describe the inter-module

connections of a system.
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4.2 Graph Terminology

Graph theory suffers from a lack of a standard terminology. It is therefore
necessary to give a brief explanation of the terminology used in this thesis. Most

of this terminology is taken from [87].

Formally a graph is represented by G(N, £), where A is the set of nodes
{n;,...,n¢} and £ is the set of ordered pairs called edges, {(n;,ns), ..., (ne—s, ng)}
The number of nodes is represented by | A" | and the number of edges by | £ |.
For all graphs | £ | < | /|, but for most interconnection graphs, | £ | < &| NV |,

where « is a small integer constant.

The graph G,(N,, £,) is a subgraph of G(V, &) if the nodes in N, are also in
N (i.e., Ny C N), and the edges in £, are also in € (i.e., £, C £). This subgraph
relationship will be represented by the symbol  (or by - when strict subgraphing

is being represented). Hence
G,(N,, E,)EGWV, €E)

For the graph G, (N, &,,) to be a strict subgraph of G(N, £), all the nodes and
edges of G, (N4, €,5) must occur in G(N, £). In addition, G(N, €) must contain
some nodes or edges that do not occur in G,,(N,s, €,5). The strict subgraph

relationship will be represented by the symbol C. Hence
Gss(Nou gaa) C G(N1 E)

Both the subgraph and the strict subgraph operators are described more fully in
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Chapter 5. The graph G,,(NV s, £;,) is a proper subgraph of G(V, £) if

Gpe(WNpsy £55) TGN, E)

and if the graph G,,(N,,, £;,) is isolated from all the other nodes in G(V, £).
The subgraph G,,(N,,, £,,) is said to be isolated in G(N, &) if there is no edge

in £ which has only the start-node or the stop-node in A, but not both.

An ordered pair (n,, ng) denotes an edge going from node n, to node ng. Two
nodes are classed as being adjacent if there exists an edge connecting the two nodes.
The neighbours of a node n, is the set of nodes adjacent to n,. A pathis a sequence
of nodes such that successive pairs of nodes are adjacent. The path n;, ns, ..., n,
is a path of length # — 1 from n, to n,. If in a given path each node is visited
only once, then the path contains no cycles and the path is called a simple path.
A graph is termed connected if there is a path between every pair of its nodes;

otherwise the graph is termed disjoint.

C D

Figure 4.1: An Undirected Graph

Figure 4.1 shows an undirected graph, G,(N,, £,). With this form of graph
no importance is placed on the order of the nodes of an edge. The only point of
interest is whether or not there is an edge connecting two nodes. This implies that

if there is an edge (n,, ng) then there is also an edge (ng, n,). Thus, for the graph
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Gu(N s, €4),

Nts:{AaB:CaD’E}
&« = {(A, B), (A, C), (B, A), (B, D), (B, E), (C, A), (C, D),
(D, B), (D, C), (D, E), (E, B), (E, D), (E, E)}

C D

Figure 4.2: A Directed Graph

Figure 4.2 shows a directed graph, G4(N g4, €;). With a directed graph the
order of the nodes of an edge is important: the existence of the edge (n4, ng)
cannot be used to infer the existence of an edge (ng, n,). This has implications
when.determining adjacent nodes. The edge (n,, ng) means that ng is adjacent to
n, but does not mean that n, is adjacent to ng. With G4(NV 4, &,4),

Ni:={A,B,C, D E}
£ = {(A, B), (B, D), (B, E), (G, A), (D, O), (E, D), (E, E)}
Since Ny =N, and §; C &,

Gi(N4, £4) C Gu(Ny, Eu).

In general, it can be shown that a directed graph is a subgraph of its undirected

version.

In many situations it is desirable to associate information with the nodes and
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Figure 4.3: A Labelled Graph

edges of a graph. Figure 4.3 shows the graph, G;(A ,r, &1) which has information
associated with both the nodes and the edges. When information is associated
with the nodes of a graph it is called a labelled graph. The information associated
with an edge can be numeric, as occurs with Markov chains, or the information
can be about the nature of the dependency between the nodes, as occurs with
semantic nets. When information is associated with an edge, it is possible for £
to have multiple occurrences of an edge as the information associated with each of

the occurrences is different.

4.3 Interconnection Graph

In the thesis, a graph called the interconnection graph is introduced. It is
used to record some of the connections between the entities of a program. Most
kinds of interconnection graphs are specialised to record particular dependencies.
For example, a call graph records which entities are connected by an invokes
dependency, whereas a control flow graph and a process augmented graph record
which statements are connected by a execution-can-follow dependency. The

specialised nature of these graphs is also reflected in the kind of entities the nodes
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represent and the information that is associated with each node. A call graph
records the dependencies between routine entities only, and with many call graphs
the node merely records the name of the associated routine. With a control flow
graph and a process augmented graph, each node is associated with a program

statement rather than with a routine entity.

In order for a graph to be useful in inter-module code analysis the graph must be

capable of recording several forms of dependencies between different entity classes.

TYPE ValueType = CARDINAL;
VAR wvalue: ValueType;

PROCEDURE Setvalue(valuePara: ValueType);
BEGIN

value:= valuePara
END Setvalue;

PROCEDURE Getvalue(): ValueType;
BEGIN

RETURN value
END Getvalue;

PROCEDURE Printvalue;
BEGIN

WriteCard(value, 5)
END Printvalue;

Figure 4.4: A Modula-2 Fragment for Showing Entity Dependencies

Consider the Modula-2 code in Figure 4.4. Figure 4.5 gives an interconnec-
tion graph that shows the dependencies that exist between the entities. This
graph records the interconnections between the five global entities that belong
to three entity classes. The parameter valuePara from the routine Setvalue is

not shown in the interconnection graph because it is not being considered as a
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ValueType -

of-type

Getvalue
references

VAR
parameter-of-type

defines references

(ROUTINE)

Salue Printvalue

Figure 4.5: Interconnection Graph Representation of Figure 4.4

global entity. This is because valuePara cannot be used by any other global
entities other than the routine that declares it. This makes it comparable to a
local variable. The dependency that does appear in the interconnection graph is
the dependency that shows the routine Setvalue to be dependent on the type
ValueéType, where ValueType is the type of the parameter valuePara. The edge
(Setvalue, ValueType) shows that the routine Setvalue is dependent on the type
ValueType, and the dependency parameter-of-type that is associated with the
edge (Setvalue, ValueType) records that the type ValueType is used to declare
a parameter of the routine Setvalue. Likewise, the edge (Getvalue, ValueType)
shows that the routine Getvalue is dependent on the type ValueType, but this
time the edge is associated with the dependency of-type which shows that the

routine Getvalue is a function that returns a value of type ValueType. This form
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of interconnection graph is called an entity-to-entity interconnection graph and is
one of the three forms of interconnection graphs that will be used in this thesis to

perform inter-module code analysis.

4.3.1 Existing Interconnection Graphs

Several graph notations have been proposed for depicting the interconnections
between modules. Some of these graph structures will be discussed in this subsec-

tion.

Cunningham and Beck [42] introduce a notation for diagraming the message
sending dialogue that takes place between objects participating in an object-oriented
computation. The notation can be used to show: a module being created as an
extension or specialisation of another module when subclassing is employ;d as
the inheritance mechanism, and the calling dependency between the methods (rou-
tines) of the modules is also shown. Cunningham and Beck’s notation can only
record a subset of the dependencies that can exist in a program, e.g., the dependen-

cies that involve the use of a state variable are not recorded, and it is not possible

to record the existence of multiple inheritance or module instantiation.

Booch [16] and Buhr [18] introduce a notation that is aimed at languages like
Ada. The notation records the inter-module connections in terms of the entities
that are imported to and exported from modules. No distinction is made between
a module importing an entity and a module acquiring an entity because the entity
is explicitly exported to the module. This is a weakness when analysing programs
written in languages like Eiffel that allow an entity to be exported to a set of

named modules. Another problem with the notations of Booch and Buhr, is that
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inheritance is not catered for. As a result, the object-oriented programming lan-
guages cannot be properly represented using these notations. Booch’s notation
suffers from an additional weakness in that the dependencies between the entities
in a module cannot be shown. This means that these graphs cannot be used for

intra-module code analysis.

Ince [77, 78] describes the use of a semantic net data structure to represent the
dependencies between entities in a program. Each dependency is represented by a

relation linking the two entities, i.e.,

entityl — relation — entity2

The direction of the relation indicates the order of the dependency.

Ince’s approach to recording the dependencies between entities has several weak-
nesses when it come to inter-module coda analysis. A pattern match could only
be performed with respect to the second entity of a relation. As a result, for every
relation that can link two entities there must also be an inverse relation so that

pattern matchilig can be performed on the first entity of a relation.

Consider for example, a relation of the form,

R1 — invokes — R2

In order to ascertain that R2 is invoked by R1 a relation of the form,

R2 — invoked-by — R1
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is needed. The number of relations that Ince’s semantic net can record is 20.
In practice this would be 10 because of the need for the inverse relations to be

recorded.

Another problem with Ince’s representation is that it becomes difficult to anal-
yse entities that are subject to several levels of nesting. Consider for example the

following module declarations,

MODULE LevelQ;
MODDULE Leveli;
MODDULE Level2;

END Level?2;
END Levelil;
END LevelO.

In order to establish that the module Level2 is within the module Levelo, the
semantic net representation would have to be traversed several times. When dealing
with large systems the amount of graph traversing would almost certainly become
prohibitively large, especially when it is necessary to establish the interchange of

entities between modules.

To overcome these weaknesses, a new graph structure is developed that will
combine characteristics of all of the interconnection graph structures described in

this subsection.
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4.3.2 Interconnection Graph used in this Thesis

Figure 4.6 describes the directed labelled graph structure which will be used in
this thesis to perform inter-module code analysis. The graph structure is described
in VDM [83]. This allows the graph operations developed in Chapter § to be
formally specified in VDM. The graph is a labelled graph with information also
associated with each of the edges. For the purpose of simplicity, the name of a node
is assumed to be the name of the associated entity, and the node’s label contains
additional information about the associated entity. In particular, it records the
entity class of the associated entity. This is necessary because it is not always
possible to derive the entity class from the dependency connecting two nodes. For
example, if a node Ent is connected to a node T1 by an of-type dependency, then

Ent could be either a type, a variable or a routine.

With module languages it is not possible to use the entity name alone to de-
termine uniquely an entity in a system; extra information is needed. This extra
information is provided by the name of the declaring module and the block number
in which the entity is declared. Each block in a module is given a unique num-
ber. Figure 4.7 shows how blocks could be numbered in Modula-2. Note that the
module BlockNumbersExample has two parts but only one block number. This is
because BlockNumbersExa.mple creates a single block. The entities that appear in
the definition part of the module are automatically also visible in the associated
implementation part. The physical separation of the definition and implementa-
tion parts is syntactic detail that does not affect the block numbering. Similar
numbering can be done with other languages. The name of the declaring module
and the block number in which an entity is declared are represented by the fields,

entity-source and entity-declaration-block.
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Graph :: nodes : set of Node
edges : set of Edge

where

Ve € edges - (start-node(e) € nodes A stop-node(e) € nodes)

inv-Graph(mk-Graph(nodes, edges)) 2

Node :: node-name : Name

node-label : Label

Edge :: start-node : Node
‘ stop-node : Node
dependency : Dependency

Name = ... [* The set of entity names */
Dependency = ... [* The set of dependencies that the graph records */
Label :: entity-class : Class

entity-source : Source
entity-declaration-block : Block-Number

Class = CONSTANT | TYPE | VARIABLE | ROUTINE | MODULE

Source = ... [* The set of module names in the system */

Block-Number = N

Figure 4.6: Description of an Interconnection Graph in VDM
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DEFINITION MODULE BlockNumbersExample;
(* This is block 0 (part a) =)

END BlockNumbersExample.

IMPLEMENTATION MODULE BlockNumbersExample;
(* This is block 0 (part b) =)

PROCEDURE Pi;

(* This is block 1 =)
PROCEDURE P2;
(% This is block 2 #*)
BEGIN

END P2;
BEGIN

END P1;

PROCEDURE P3;

(* This is block 3 %)
BEGIN

END P3;

BEGIN

END BlockNumbersExample.

Figure 4.7: Example of Block Numbers in a Module
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The entity-class field is used to record the class of an entity. When the entity
is a procedure or function, the term ROUTINE is stored in the entity-class field.
The distinction between a procedure and a function is not important to the code

analysis work of this thesis.

An edge in the inter-module connection graph records the dependency between
two entities. Since it is possible that two entities may have more than one de-
pendency, two nodes may have multiple edges connecting them because each edge

records a different dependency. Consider for example the following declarations

TYPE T1 = ...

PROCEDURE Proci(para: T1): Ti;

The corresponding section in an inter-module connection graph would be

T1
TYPE

parameter-of-type of-type

ROUTINE
Procil

The parameter-of-type dependency is because Proci declares a formal parameter
of type T1. The of-type dependency is because the routine is a function that

returns a value of type T1.
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4.4 Three Forms of Interconnection Graphs

An interconnection graph records all the dependencies between all of the compo-
nents of a system, irrespective of whether they are high level entities like modules,
or low level entities like variables. For the purposes of inter-module code analysis,
it is useful to partition the interconnection graph for a system into the following

three specialised forms of interconnection graphs.

1. The module-to-module interconnection graph
Shows the dependencies between the modules that comprise a system. This

graph will be discussed in Chapter 6.

2. The entity-to-module interconnection graph
Shows the dependencies between modules, in terms of the entities that mod-

wules provide each other. This graph will be discussed in Chapter 7.

3. The entity-to-entity interconnection graph
Shows the dependencies between the entities of a module. This graph will be

discussed in Chapter 8.

Each of these interconnection graphs comply with the VDM description given in

Figure 4.6.

These three kinds of graphs can be extracted from a general interconnection
graph that shows how all of the entities within a system are dependent. The
module-to-module interconnection graph, entity-to-module interconnection graph
and the various entity-to-entity interconnection graphs do not contain all the infor-
mation that is contained in a general interconnection graph. This is because none

of the graphs record how a module uses entities acquired from other modules. This
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information is important for detailed code analysis work, but based upon observa-
tions it was not found to be needed for the inter-module code analysis work of this

thesis.
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Chapter 5

Graph Operations

The proposed inter-module code analysis techniques make extensive use of analysing
different graphical representations of a program. It is therefore necessary to intro-
duce a notation that will help discuss the interplay between different graphs. This
chapter explains the graph operations that will be performed and introduces the
notation that will be used. Section 5.1 describes the subgraph operation that was
briefly introduced in Chapter 4. Section 5.2 describes graph union operations that
provide a means of combining two or more graphs. Section 5.3 describes graph
intersection operations that provide a means of determining the features shared by
two or more graphs. Finally, section 5.4 describes some graph slicing operations
that allow a graph satisfying some specified constraints to be extracted from a given

graph. Appendix B serves as a reference guide to the notation being introduced.

The graph operations will be described using the specification language of VDM.

This allows the operations to be described in a formal way, and hence enables proofs
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to be performed on particular operations. The predicate logic and set theory upon

which VDM is based ensures the soundness and completeness of these proofs.

5.1 Subgraph Operators

Consider again the subgraph relation, C, that was introduced on page 54. A

VDM specification for this operation is,

- C -: Graph X Graph — B
mk-Graph(nodesl, edgesl) = mk-Graph(nodes2, edges2) 2

(nodesl C nodes2) A (edges! C edges2)

The signature for this relation indicates that T is a binary relation that works

with two graphs, i.e., the subgraph operator is used as follows,
GV, €1) E Go(Ny, E2)

The subgraph specification indicates that for G;(N, £;) to be a subgraph of
G2(Ne, €2) all the nodes and edges of Gy (N, £;) must exist in Gp(Ne, E2).
G2(N 2, €2) need not have any extra nodes or edges, i.e., the graphs G;(V;, &;)
. and G(Ng, £;) can be equal.
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Figure 5.1: Some Examples to Illustrate Subgraphs
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The strict subgraphing operator C can be defined by,

- C -: Graph X Graph — B
mk-Graph(nodesl , edgesl ) C mk-Graph(nodes2, edges2) A
((nodes! C nodes2) A (edges! C edges2)) V

" ((nodes! C nodes2) A (edgesl C edges?))

The signature of the strict subgraph relation indicates that its usage is similar

to the first subgraph relation, e.g.,
G (N, 1) € Ge(Ny, &)

The strict subgraph relation is more complex than the first subgraph relation.
All the nodes and edges of G;(N;, £;) must be contained in G(Np, £;), and
G;(N, €;) can have either all the nodes or all the edges of Gg(N 2, £2) but not
both.

Consider for example the three graphs in Figure 5.1. Let the graph in Fig-
ure 5.1(a) be the graph G,(N g, £;). Either of the graphs in Figure 5.1(b) or
Figure 5.1(c) can be G;(V, £;) and satisfy the relation,

‘ ) GI(N1,51)[:G2(-N‘2)82)

because with Figure 5.1(b) N'; = N and €; C &,, and with Figure 5.1(c) /', C N,
and 81 = 82.

The supergraph operators J and 3 can be defined in a similar way.



5.2 Graph Union

Graph union is the process of creating a graph as a combination of existing
graphs. There are two forms of graph union: simple graph union and distributed

graph union. These will be considered in turn.

5.2.1 Simple Graph Union

Simple graph union is the creation of a graph that contains all the nodes and

edges from two given graphs. This operation is denoted by,
Gi(WNy, E)UG(Ng, Ep)

and can be specified as follows:
-l Graph x Graph — Graph
mk-Graph(nodesl, edges1) U mk-Graph(nodes2, edges2) 2
mk-Graph((nodes! U nodes2), (edgesl U edges2))

(a) ()
Figure 5.2: Two Labelled Graphs

Problems appear to arise if the two graphs concerned have nodes and edges in

common. However, because of the property of set union upon which the graph
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union operator is based, these are not in fact problems. Consider the graph
G.(N,, &€,) in Figure 5.2(a) and G;(N3, &) in Figure 5.2(b). These two graphs

have the nodes B and D in common. The result of the operation,

GG(NG7 ga) U Gb(Nb’ gb)

is given in Figure 5.3.

Figure 5.3: Union of the Graphs in Figure 5.2

Consider first the problem of node duplication. The property of set union has
ensured that only one occurrence of each of the nodes B and D appears in the new
graph. A node is only the same as a node in another graph, if they have the same
name and label values. If two nodes have the same name but different label values
then they are different nodes and therefore must both appear in the resulting graph.

3

Figure 5.4 gives the result of the operation,
Ga(/va, ga) U Gb(Nbv gb)

where the label for node B in Gy(Ns, £,) has the value £5 (rather than £2) and is
therefore different to the node B in G,(N,, £,).

This ability to have two or more nodes with the same name in the same graph

is important in inter-module code analysis. In a module language an entity is
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Figure 5.4: Graph Union for Two Nodes with the same Names

uniquely identified by combining its name, the ﬁame of the module in which it is
declared, the block number in which it is declared, and if overloading of identifiers
is allowed the entity class as well. A graph showing the dependencies between
entities in a system implemented in one of the module languages will have to be
able to distinguish between different entities with the same name. It is for this
reason that each entity not only has a name, but a label which is used to record
this additional information (see Figure 4.6 on page 64). In this way, the nodes for
different entities with the same name can be distinguished in an interconnection

graph.

Consider now the problem of edge duplication. The graph in Figure 5.3 has
two edées (B, D). This is because the edge (B, D) in G4(N,, ,) has the attribute
A5 a:ssocia,ted with it, while the edge (B, D) in G;(N}, €;) has the attribute A6
associated with it. These different attributes mean that the two edges (B, D) are

different edges and therefore the graph resulting from the operation,
Ga(Na, 8,,) U G[,(Nb, 85)

contains the two edges. If the attributes had been the same, then the resulting

graph would have had only one occurrence of the edge (B, D).
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5.2.2 Distributed Graph Union

The distributed graph union operation builds on the simple graph union oper-

ation. Distributed graph union is denoted by the notation,
L{G (N, €1)y- -, Ga(Na, En)}
This is equivalent to n — 1 applications of the simple graph union operation, i.e.,
L{G/ Ny, 1)y, Ga(WNa, E2)} =GNy, E)U L. UG (N4, En)

This operation has the following specification,

Ll: set of Graph — Graph

Llgraphset 2
if graphset = { }
then mk-Graph({},{})

else let g € graphset in

Li{graphset — {g}} L g

5.3 Graph Intersection

Graph intersection is the process of creating a graph in terms of characteristics
that are common to two or more graphs. Just as with graph union, graph intersec-
tion has a simple form for two graphs, and a distributed form for n graphs (where

n > 0). Graph intersection can be further categorised as strict or full depending
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upon which criterion is used to add edges to the resulting graph. With both cate-
gories of graph intersection, a node is added to the resulting graph only if the node

is common to all the graphs involved in the intersection operation.

@w

(a)

Figure 5.5: The Results of Two Graph Intersection Operations

5.3.1 Simple Graph Intersection

Strict graph intersection employs the criterion that an edge is included in the
resulting graph only if that edge is common to all the graphs involved in the
intersection operation. The simple form of strict graph intersection will be denoted

by the symbol M and is used as folloWs,

G;(Ny, E1)NGe(Ng, €)

The graph formed by this operation contains only the nodes and edges that are
common to both graphs. If this operation is applied to G,(V,, £,) and G4 (N, &)
(the graphs in Figure 5.2), then the resulting graph is given in Figure 5.5(a). Only
the nodes B and D apApea,r in this graph. Neither of the (B, D) edges appear because
they do not occur in both graphs. Strict siniple graph intersection can be specified

as follows,
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- M_: Graph x Graph — Graph

mk-Graph(nodes1, edges1 ) N mk-Graph(nodes2, edges2) &
let nodeset = nodesl N nodes?2 in
let edgeset = edgesl N edges? in

mk-Graph(nodeset, edgeset)

Full graph intersection employs the criterion that an edge is included in the
resulting graph if that edge forms part of at least one of the graphs involved in the
intersection operation, and the stop-node and start-node of the edge are in the set
of common nodes. The simple form of full graph intersection will be denoted by

the symbol M, "and is used as follows,

G Ny, €1) Ny Ge(Ny, Es)

The graph formed by this operation contains the nodes that the two graphs have
in common together with all the edges from either of the two graphs that connect
the common nodes. The result of applying this operation to G,(N,, €,) and
Gi(Ns, €) is given in Figure 5.5(b). The nodes B and D appear in this graph as
do both the (B, D) edges, because each edge appears in at least one of the graphs

involved in the operation. Full simple graph intersection can be specified as follows,

- M4 -: Graph x Graph — Graph
mk-Graph(nodesl, edges1) N, mk-Graph(nodes2, edges2) 2
let nodeset = nodes! N nodes? in
let edgeset = {edge | (edge € (edges! U edges2) A
start-node(edge) € nodeset A

stop-node(edge) € nodeset)} in
mk-Graph(nodeset, edgeset)
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5.3.2 Distributed Graph Intersection

The distributed graph intersection operations are built up in terms of the cor-
responding simple graph intersections in a similar way to distributed graph union.

The distributed form of strict graph intersection,

Ij{(}l (NI; 51)7 RS | Gn(Nna gn)}
is equivalent to,

G WV, E)N...NG(N,, &)

and it can be specified as follows,

[: set of Graph — Graph

[Ngraphset A
if graphset = { }
then mk-Graph({},{})

else let g € graphset in

[{graphset — {g}} N g

Similarly the distributed form of full graph intersection will be denoted by the

notation,

n"‘{GI(NI, 81)’ .. 'aGn(Nn, gn)}

and is equivalent to,
G/ (N, €)My ..My Go(N,, E4)

and it can be specified as follows,
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[y : set of Graph — Graph
ﬂ+ graphset &

if graphset = { }

then mk-Graph({},{})

else let g € graphset in

M4 {graphset — {g}} Ny g

5.4 Graph Slicing

The graph union and graph intersection operations provide a means of creating
a new graph from two or more graphs. The process of creating a new graph by
extracting a subgraph from a given graph according to some criterion is called

graph slicing. In this thesis two forms of graph slicing are proposed:

1. é-slicing, and
2. af-slicing
6-slicing slices a graph with respect to the dependency that an edge represents,

whereas af3-slicing slices a graph with respect to the nodes. Each of these forms of

graph slicing will be discussed in the following subsections.

5.4.1 6-Slicing

¢-slicing is a form of graph slicing where the dependency represented by an edge

is used to determine which edges from the original graph appear in the resulting
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graph. A 4-slice operation is denoted as follows,
§(GWV, £),0)

where C is the slicing criterion being applied to G(A, £). The slicing criterion
for -slicing is a set of dependencies that can appear in the resulting graph. The
nodes that appear in the graph resulting from a é-slicing operation, are those nodes
from the given graph, that are connected by one of the named dependencies. In
order for an isolated node to appear in the resulting graph, the special dependency

$ISOLATEDS is introduced.

The é-slicing operation can be specified as follows,

Delta-Criterion :: dependency-set : set of Dependency

6 : Graph x Delta-Criterion — Graph

8(graph, delta-criterion) &

let edgeset = {e | e € edges(graph) A

dependency(e) € dependency-set(delta-criterion)} in
let nodeset = {n | n € nodes(graph) A

Je € edgeset - n = start-node(e) V

n = stop-node(e)} in

if $ISOLATED$ € dependency-set(delta-criterion)
then mk-Graph(nodeset U get-isolated-nodes(graph), edgeset)

else mk-Graph(nodeset, edgeset)

where the function get-isolated-nodes has the following specification,
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get-isolated-nodes : Graph —  set of Node

—

get-isolated-nodes(mk-Graph(nodes, edges)) 2
{n | n € nodes AVe € edges - n # start-node(e) A
| n £ stop-node(e)}

TYPE Ti = INTEGER;

T2 = CHAR;
T3 = RECORD
Fi: T1;
F2: T2
END; (% T3 %)
VAR Vi: T3;
V2: INTEGER;

PROCEDURE P1;
VAR LocalVar: Ti1;
BEGIN

V1.Fi:= 10;
END Pi;
PROCEDURE P2;
BEGIN ) :
WriteString("Hello World")
END P2;

Figure 5.6: Program Segment to be Used for Graph Slicing

We now consider an éxample. Figure 5.6 gives a segment of program code
ahd Figure 5.7 gives an interconnection graph, G.(N., €.) that recordé the de-
pendencies present. This is an example of an entity-to-entity graph. This form
of interconnectibn graph will be discussed in Cha.pfer 8. This graph has two i;o-

lated nodes V2 and P2 and shows three forms of depéndencies_;'between the entities,
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of-type
V2
VARIABLE
uses-type o
P2

Figure 5.7: Entity-to-Entity Graph for Figure 5.6

namely: defines, of-type and uses-type. Figure 5.8 gives the result of applying

three é-slicing operations on G.(V,, €.).

Figure 5.8(a) gives the result of slicing G.(A., £.) with respect to the depen-
dency of-type. The node P1 is connected to the nodes T1 and V1 in G, (., &.)

but P1 does not appear in the graph resulting from,
5(GC(NC, 83)7 {Of-type})

because neither of the dependencies between the node P1 and the nodes T1 and V1

is the of-type dependency.

Figure 5.8(b) gives the result of slicing G.(V., £.) with respect to the de-

pendencies uses-type and defines. The nodes T1 and P1 are connected by the
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5(Ge (Nc ’ ge)»’ {Of'type})

(a)

T1 - Vi

uses-type

P1

5G.(NV., £.),{uses-type,defines})
- (b)

V2
VARIABLE

P2

8(G.(N., E.),{SISOLATEDS})

(<)
Figure 5.8: Three § slices of Figure 5.7
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uses-type dependency and the nodes Vi and P1 are connected by the defines

dependency. The gfaph resulting from,
6(G (N, E.), {uses-type, defines})

is the union of the §-slicing with respect to uses-type and the é-slicing with respect

to defines, i.e.,

8(G.(Ne, €.), {uses-type,defines}) =

6(Ge(Ne, E.), {uses-type}) LU 6(G (N, £.), {defines})
In general, a §-slicing operation,
6(G(N1 g)’ {dePI’ s 7depn})

that slices with respect to n dependencies, dep;, ..., dep,, can be shown to be

equivalent to,

LI{8(G(WV, €),{dep1}),...,8(G(N, £), {depa})}

Finally, Figure 5.8(c) shows the result of slicing G.(N., £.) with respect to
the special dependency ‘$ISOLATED$’. The resulting graph consists of the isolated

nodes P2 and V2.
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5.4.2 of-Slicing

af-slicing is a form of graph slicing where information associated with the node
of a graph is used to determine vifhich'nodes appéér in the resulting graph. Since the
dépendency represented by an edge is not considered in af-slicing, no restriction
is plé,céd» on the edges that can appear in the graph resulting from af-slicing. An

of-slicing operation is denoted as follows,

allﬁ(G(N7 5), c)

In this notation the slicing criterion for an «f3-slicing operation is in two parts.
The first part of the slicing criterion appears as the argument C, and the second
part of the slicing criterion are the a and 3 constraints on the slicing operator ||.

Both parts of the slicing criterion will be described in more detail below.

The Argument C

The argument C represents the node based slicing criterion where the nodes
that can appear in the resulting graph are named. The argument C is an ordered
bina;y,tuple, where the first element is the set of nodes that can be the start-node
for an edge, and the second element is the set of nodes that can be fhe»stop-node

for an edge.
Consider, for example, the slicing operation,

ele(G (W, €.),({T1,V1,V2}, {P1,T3})) (5.1)
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where G, (N, 5,.) is the graph in Figure 5.7. The nodes T1, V1, and V2 are named

as valid start-nodes, and the nodes P1 and T3 are named as valid stop-nodes.

It 1s often useful to be able to specify that no restriction is being placed either
on the set of possible nodes or on the o and 8 constraints. The symbol uéed to
denote this is {. When ¢ is used as the « or 3 constraints, as-in the op,eratioﬁ (5.1),
then this -means that no restrictions are being placed on the labels associated with
the nodes in the resulting graph. When € is used as part of the argument C, then
this means that no restriction is being placed on the lset of start-nodes, the set of

stop-nodes or both.

The graph resulting from the operation (5.1) is given in Figure 5.9. The set
of nodes in this graph is a subset of the nodes named in the argument of the
operation (5.1), because not all the named nodes satisfy the start-node and stop-

node requirements.

Figure 5.9: The Slice ¢]|¢(G.(WV., &), ({T1, V1, V2},{P1, T3}))

For the purpose of graph slicing, an isolated node will pass through to the
resulting graph if it is named as a valid start-node or a valid stop-node. For a non-
isolated node to appear in the graph resulting from an of-slicing then that node
must be named as being either a valid start-node or stop-node for the resulting

graph, and one of the other nodes to which it is connected in the original graph
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must also be named so that the connecting edge can appear in the resulting graph.

Consider the graph G.(V., €.). In the set £, there are the edges (V1, T3) and
(P1, T1). Thé édge (v1, T3) appears in the graph ‘resulting"_from the operation (5.1)
because V1 is named as a valid start-node and T3 as a valid stop node. The edge
(P1, T1) does ﬁot appear however as P1 is ﬁdt named as a valid start-node and
T1i is not named as a valid stop-node. The node T1 has been classed as a valid
start-node and P1 as a valid stop-node, but this does not allows the edge (P1, T1)
to zippear in the graph resulting from the operation (51) The node V2 is isolated
in G¢(N., £.), however it appears in the resulting graph because it is named as a

valid stop-node.

A VDM specification for the af-slicing operation with respect to the argument
C is,
Node-Criterion :: start-set : set of Node

stop-set : set of Node

a"ﬁ : Graph x Node-Criterion — Graph
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oll g(mk;Graph(nodes, edges), mk-Node-Criterion(start-set, stop-s"ét)) 4
let edgeset = {e | e € edges A
start-node(e) € start-set A
stop-node(e) € stop-set} in
let isolated-nodeset = {n | n € (start-set U stop-set) A
Ve € edges - n # start-node(e) A
n # stop-node(€e)} in
let non-isolated-nodeset = {n | n € (start-set U stop-set)
de € edgeset - (n = start-node(e) V
n = stop-node(e))} in
let nodeset = isolated-nodeset U non-isolated-nodeset in

mk-Graph( nodeset,‘ edgeset)

The a and 8 Constraints

The argument C allows the nodes that appear in the resulting graph to be
named. It is often useful to be able to extract a subgraph by specifying properties
that must be held by the labels of the nodes in the tesulting graph. This is done
through the « and B conétra.ints on the slicing operator |. The a constraints
apply to the labels for the start-nodes, and the § constraints apply to the labels
for the stop-nodes. In the VDM description of an intercOnnect‘idn graph given in
Figure 4.6 (page .64) the label of a node is described as having three attributes,
namely: the entity-class, whi"ch records the class of the entity associated with node;
the entz'ty-.;'ource which records the module in which the entity is declared; and the
entity-declaration-block, which records the» block number for the block in which the

entity is declared.
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The « and B constraints of the af-slicing operation will be considered in turn.

The a constraint is considered first. An example of such a constraint is,

claaa:ROUTINE”f(Ge(Ne’ ge), (676)) (5‘2)

This operation only places restrictions on the labels for the nodes that can be start-
nodes in the resulting graph. The argument (£,£) says that any of the nodes in
N, can be nodes in the resulting graph. The result of the operation (5.2) is given

in Figure 5.10.

P2

P1 ]

Figure 5.10: The Slice case=rovTIvE|le(Ge(N e, E.), (€,€))

G.(Ve, €.) has two nodes associated with routines: the node P2, which is
isolated; and the node P1, which is connected to the nédé T1 by the edge (P1, T1)
and to the node V1 by the edge (P1, V1). As both these edges have P1 as the
start-node they both appear in the resulting graph, which implies that the nodes

Ti and V1 also appear.

Since a label has three attributes (class, source and block number) three func-

tions are needed to extract the appropriate sub’graph. These three functions can

be specified as:
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alpha-class : Graph X Class — Graph

alpha-class(mk-Graph(nodes, edges), class-name) &
let start-nodeset = {n | n € nodes A
entity-class(node-label(n)) = class-name} in
let edgeset = {¢ | e € edges A
| start-node(e) € start-nodeset} in
let stop-nodeset = {stop-node(e) | e € edgeset} in

mk-Graph((start-nodeset U stop-nodeset), edgeset)

alpha-source : Graph x Source — Graph

alpha-source(mk’-Graph(nodes, edges), module-name) &
let start-nodeset = {n | n € nodes A
| entity-source(node-label(n)) = module-name} in
let edgeset = {e | e € edges A
start-node(e) € start-nodeset} in
let stop-nodeset = {stop-node(e) | e € edgeset} in

mk-Graph((start-nodeset U stop-nodeset), edgeset)

alpha-block-number : Graph x Block-Number — Graph

alpha-block-number(mk-Graph(nodes, edges), block-number) &
let start-nodeset = {n | n € nodes A
entity-declaration-block(node-label(n)) = block-number} in
let edgeset = {¢ | e € edges A
st;zi't-node(e) € start-nodeset} in
let stop-nodeset = {stop-node(e) | e € edgeset} in

mk-Graph((start-nodeset U stop-node;set), edgeset)
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P1 Vi
(ROUTINE)  (VARIABLE)

Figure 5.11: Result of the Slice ¢||ciass=TyPE(Ge(N e, E.), (€5 €))

We now consider the 8 constraints. Consider the slicing operation,

€“claas=TYPE’(Ge(Nev g-e)’ (6’6)) (53)

This operation places a restriction on the labels of the nodes that can be stop-
nodes-in the resulting graph. In the graph resulting from operation (5.3) the label
of all the stop-nodes must have the value ‘TYPE’ associated with the entity-class

attribute. Figure 5.11 gives the graph resulting from operation (5.3).

The B slicing functions can be specified in a similar way to the « slicing func-

tions.
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beta-class : Graph % Class — Graph

beta-class(mk-Graph(nodes, edges), class—naﬁze) A
let stop-nodeset = {n | n € nodes A
entz'ty;class(-node-l'abel(n)) = class-name} in
let edgeset = {e | e € edges A |
stop-node(e) € stop-nodeset} in
let start-nodeset = {start-node(e) | e € edges} in

mk-Graph((start-nodeset U stop-nodeset), edgeset)

beta-source : Graph x Source — Graph

beta-source(fﬁk— Graph(nodes, edges), module-name) &
let stop-nodeset = {n | n € nodes A
entity-source(node-label(n)) = module-name} in
let edgeset = {e | e € edges A
stop-node(e) € stop-nodeset} in
let start-nodeset = {start-node(é) | € € edges} in

mk-Graph((start-nodeset U stop-nodeset), edgeset)

beta-block-number : Graph x Block-Number — Graph

beta-block-number(mk-Graph(nodes, edges), block-number) 4
let stop-nodeset = {n | n € nodes A
entity-declaration-block(node-label(n)) = block-number} in
let edgeset = {e | e € edges A
stop-node(e) € stop-nodeset} i
let start-nodeset = {start-nodé(e_) | e € edges} in

mk-Graph((start-nodeset U stop—n;odéset)r, edgeset)
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Finally, operations that involve both an « and a § constraint will be considered.
The qﬁ-slicingbpe:atibn,

Of"ﬁ(G(Na g),C)

can be considered in terms of the operations:

o €"€(G(N, g)’c)
o 0"€(G(Na 8), (£a€>)

°© f”ﬁ(G(N’ g),(f,é‘))

which have already been discussed. The result of the operation ¢||¢(G(N, £),C)
is the subgraph of G(N, £) containing all the nodesv‘satisfying the argument C
together with any of the edges that connect the nodes. Similarly, the results of
the operations ,||¢(G(N, £),(£,€)) and ¢||s(G(NV, £); (£, €)) are the subgraphs of
G(N, €) satisfying the a and B constraints respectively. Intuitively, the result of
the operation a|| s(GWV, €),C) should be the subgraph of G(A, £) that is common
in all three graphs, i.e.,

rl{f”f(G(N’ g)’c)va "E(G(Na 8)) (5)6))6"!’((;('/\[’ 8), (516))}

The result of this operation, however, is not the same as that for ,||g(G(N, £),C).

Consider the slicing operation,

claéb:ROUTINE”cIa.ss:TYPE(Gc(Nc, ge)a (676»

where G, (N, £.) is the graph given in Figure 5.7. If the argument C is (£, £) then
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the result of,

€”€(G6(Ne7 ge)s (E:f))

is G. (N, € e) itself. The result of the operations,

clas_s:ROUTINE"E(Ge(Ne,'ge)’ (51 6)) and E“class:TYPE(Ge(Ne, ge), (6)5))

are given in Figure 5.10 and Figure 5.11 respectively.

T1 Vi

uses-type [

P1

Figure 5.12: The Strict Intersection of the Graphs in Figures 5.7, 5.10 and 5.11

The result of the operation

|_|{£||¢(G(J\/’,FS), (€,6)), | clasa:ROUT!NEll_e(G(N, £), (€,§))
tllctass=TyrE(GIN, £), (£, 6))} (5.4)

is given in Figure 5.12. The isolated node V1 satisfies neither the o or 8 constraints,
therefore it should not appear. The node V1 belongs to the result of operation (5.4),
because it is a property of distributed strict graph intersection that a node common

to all the given graphs appears in the resulting graph.

The node V1 has appeared in the result of operation (5.4) because V1 is not a
real isolated node. If the node V1 had been isolated in G,(N,, £,) then the graphs

resulting fi‘orﬂ'sli'cing G.(NV., &.) with Tr:esApec,t to the o and B constraints would
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have omitted V1 as it does not satisfy the gdin,'coh‘stra,int. ‘The node V1 appears
in the graph resulting from slicing G,(V ., € e) W1th respect to the a conétraint
because it is the stop-node for the edge (P1, V1), where P1 satisfies the o constraint.
The node Vi-also appears in the gra,ph_resullting‘f’rom slicjng with respect to f.he B
constraint because it is the start-node for the edge (V1, T3), where T3 satisfies the

B constraint.

The result of the operation

class:ROUTINEllclass:TYPlé(Ge‘(Ne7 ge)) (6’6))

is the result of the operation (5.4) with the false isolated node V1 removed. A

function remove-false-isolated-nodes can be specified as follows,

remove-false-isolated-nodes : Graph x Graph — Graph

remove-false-isolated-nodes(graphl, graph2) &
let false-isolated-nodes = {n | n € nodes(graph2) A
isolated(n, graph2) A
ﬂisqlafed (n, gra})ii} )} in
' let nodeset = nodes(grap_h?i) - false-isolated-nodes in

mk-Graph(nodeset, edges(graph2))

where theifunction isolated determines if a given node is isolated within a given

graph. This function can be specified as,

96



isolated : Node x Graph — B
isolated(node, graph) &
Ve € edges(graph) -
(node # start-node(e) A node # stop-node(e))

In general,
olls(GWV, €),C) = remove-false-isolated-nodes(G(N, 8),):(;‘!',-(»]\/","._',58,-))
where G;(N;, € ,) is the graph resulting from,

ﬁ{g"f(G(N, 8)70)’ a“ﬁ(G(N) g)’ (f,{)), ﬁ”ﬂ(G(Nv g)’(&g))}

5.5 Examples of the Uses of Graph Operations

The graph dperatiOns specified in this chapter are used in inter-module code
analysis as they provide a means of reasoning about a graph. Three examples-of
how the graph QPergtiéns can be used are given here to help clarify how the graph

operations. can help‘in code analysis work.
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5.5.1 Disjoint Graphs

Chapter 4 describes a disjoint graph as being a graph for which there is not
a pat‘i; between every pair of nodes. Determining whether a graph is disjoint is
important in ¢code analysis as it reveals independence properties between entities.
Consider for example a call graph. If the call graph shows the dependencies between
all the routines in a system rather than just within a module, then it is expected
that the call gra,ph will be connected, with the program body being considered as
a routine. If the call graph is disjoint -then the system contains rdutines’ which are
never called. A function to detecf whether a graph is disjoint can be specified as
follows. This specification is written ina language that is an extension of VDM
which considers graplis as primitive structures. The symbol ¢ denotes the empty

graph.

is-disjoint : Graph — B

is-disjoint(graph) A
Jdsubgraphl, subgraph?2 T graph -
| subgraphl # ¢ A
subgraph2 # ¢ A
(subgraphi N subgraph2) = ¢ A

(subgraphl U subgraph?) = graph

This specification states that a graph is disjoint if two non-empty subgraphs
can be found such that the two subgraphs have no nodes or edges in common, but -

the two subgraphs combined give the original graph.
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5.5.2 Pr@peg" Subgraphs

Chapter 4 deséribes a proper subgraph as being a strict subgraph that is isolated
in the givgéﬁ graph. The specification of the function gctoproper-sﬁbgmphs,,giv_en
below, _desctibes tﬁé,ChaIacteristics of a —fugctiOn that finds all the propef suBgraphs
in angii/éli graph. If the given graph is é(;nﬁécted and therefore contains no proper
subgraphs, the function get-proper-subgraphs returns the graph itself. This is to

ensure: the property,

graph = Llget-proper-subgraphs(graph)

get-proper-subgraphs : Graph —  set of Graph
get-proper-subgraphs(graph) &
if is-disjoint(g}aph)
then {g I‘g C graph A
gF N
Fnot-g C graph - (not-g # $A
g not-g =P A
g U not-g = graph)}

else graph

5.5.3 Abstract Data Types

It is often desirable to extract subgra,p'h'"s' that satisfy particular constraints. An

| ex;?,mple of this is finding the abstract da.ta'types in a graph. Booch gives a very.
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loose interpretation of an:abstract data type in 16, pages 228-9]. Booch classifies
an ‘a,li)ét:i'act data type as being a set of associated types, constants and routines.

The slicing operation to extract this form of abstract data type is

(class=ROUTINEVCONSTANT || ctass=1¥PE(G(N, € ), (€, €U
('clnss:TYPE"_claaa= TYPE(G(Na g)) (57 5))) u

(clau:TYPEllvclasa=CONST4NT(G(N CELGE)) (85)

The second slicing operation in (5.5) is to allow for when a constant is used to

delimit a value in a type declaration, e.g.,

CONST MaxSize = 100;

TYPE IntStack = ARRAY [1..MaxSize] OF INTEGER;

The more classical description of an abstract data type stipulates that the
routine would have to use the type to either declare a parameter, or to declare the
type of value returned by the routine. The appropriate slicing operation for this
form of abstract data type is i

6(ctass=ROUTINEY CONSTANT || class=TYPE

(G, €), (£,£)), {parameter-of-type, of-type}) U

&(ctass=TYPE|| class= coNsTANT

(G(Na ), {6,€))s {delimited-bY})

The dependencies parameter-of-type, of-type and del imited-by-are dependen-
cies that ;,af)p,ea,r in the entity-to-entity interconnection graph that is discussed in

Chapter 8.
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Chapter 6

Module-to-Module

Iﬁtemonme@ti@m Graph

6.1 Imntroduction

A.l-mo:d‘ule-to-module interconnection gré.ph is a specialised form of interconnec-
tion gra.ph that shows the dependencies between the modules in a system. This
graph grves a hlgh level representation of the structure of a system, showing how
a system has been decomposed into subsystems (represented by modules) durrng

t}re_.in,it'ia,l system design stage and subsequent maintenance stages.

This form of graph is important for a mamtenance programmer as it provides a
useful form of documentation that is generated from the program code ‘This makes

the module—tofr_nodule interconnection graph espec1ally useful--for a rnemtenanceq-
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programmer who is working with unfamiliar code that is either undocuq;ént'edi
or incorre’ttlj dgéumented because the documentation has eithier not been main-
tained along with the software, or was hurriedly written at the end of the system

development.

The module-to-module interconnection graph has several uses in software main-
tenance: it can serve as a map of a system, showing in which modules are depen-
dent on each other; and it can be analysed to help classify modules. As a map of a
system, the module-to-module interconnection graph can guide a maintenance pro-
grammer’s scanning of the associated code and can help a maintenance programmer
to consider in which order to look at the modules. As a module classification aid,
the module-to-module interconnection graph can help a maintenance prograr'rixher
classify a module according to. its apparent role within a system. In this way a
maintenance programmer can ideﬁtify modules that require closer examination in

order to understand a system properly.

This.@;hapter will concentrate on the analysis aspects of the quule-to-modul‘e
interconnection graph, showing how modules can be classified according to their
role within a system. Section 6.2 describes in more detail the module-to-module
inttiar_éon;ectic')ﬁr graph, describing the dependencies that are recorded. Section 6.3
descri'bes how the module-to-module interconnection graph can be used to classify

modules, and finally section 6.4 demonstrates these ideas on module classification

by considering the module-to-module interconnection graph for a particular system.
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6.2 '@ﬁé‘méct@ﬁstﬁ@s- of the M@ dule-to-Module In-

terconnection Graph

The module-to-modaile interconnection graph is a specialised form of intercon-
nection gra,?h, that 6n1y records the dependencies between modules. This makes
the module;to-module interconnection graph a high level graph that shows the
dependencies between the main components of a system. In so doing the module-
to-module interconnection graph provides an interprretation of the architectural

structure of a system.

The nodes of an module-to-module interconnection graph represent the modules
that comprise a system, and an edge betv#e;en two nodes denotes the existence of
a‘dependency between the modules associated with the nodes. The modules that
comprise a system can be a combination of global modules, where each module
is an outermost entity, and local modules, where each module is declared within

some block.

‘MODULE GlobalModule;
(% Block 0 %)

MODULE LocalModule;
(% Block 1 #)

END LocalModule;

END GlobalModule.

Figure 6.1: A Program Module Containing a Local Module Declaration

The nodes for module entities record that the associated entity is a module by

103




stoiing the value MDDULE 'i'n.the label attrlbute entity-class. As with‘othe: classes
of entitiés, the name of the global modle in which an entity is declared is stored
in the label ‘:_a;tt;fibute entity-source and .thé‘;nﬁﬁiber as,s,ociafe,d with the block in
which the module is declared is stored in the label attribute entity-declaration-
block. Consider for example the Modula-2 program module given in Figure 6.1.

The nodes associated with these two modules.is given in Figure 6.2.

GlobalModule LocalModule

Fiéure'6.2: Nodes for a Module-to-Module Interconnection Graph

I

The node for LocalModule has the value MODULE stqréd as the entity class,
GlobalModule as the entity source and 0 (zero) as the number of the block in
which LocalModule is declared. If a module is global, it is not declared within
another module, this necessitates that the special value $GLOBAL$ be recorded in
the label étfrivbute entity-source. The module GlobalModule is a global module,
therefore thé value $GLOBAL$ is recorded. anxilarly, as a global module is external
toi.a,ll._»blocks, there is no value-stored in-the label attribute entity-declaration-block.

Hence, the node for GlobalModule has only two values associated with it. -

In the interconnection graphs in this thesis, only the information needed for the
example will appear in eath graph. This is done solely to reduce the amount of
inforfnq_t_;idxi‘- .vbe_ing conveyed to a minimum, so that the reader is not overwhelmed
with unnf;oessary.inf();;natioq and can concentrate on the important aspects that

_the graph is trying to convey.
An edge in a module-to-module interconnection graph represents the déi)en-
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dency that exists between two modules. 'I":hc;;dependencies that can be recorded in

a module-to-module interconnection graph are:

o lYocal=to

Shows the dependency of a local module on a global or local module.

o0 uses
Shows the dependencies between two global modules. This form of depen-
dency denotes the existence of a client /supplier relationship between the mod-

ules:involved.

o instantiates-to

Shows the dependency of a concrete module on a generic module.

0 ‘inherits-from
Shows the dependency between two modules, where one module is an exten-

sion or specialisation of the other.

The number of dependencies connecting two modules is normally one, as the ex-
istence of one dependency tends to exclude the others. For example, if two modules
are connected by an instantiates-to déperid'elviéy,d tfxen the other déﬁeﬁdencies
would be meaningless between the two modules concerned. This also applies for
the local-to dependency. Two modules can be conn_ecﬁed twice by the uses de-
pendency, because the edges (4, B) and (B, 4), where A and B are ‘m’bdu_ies, can both

represent a uses dependency.

It is possible to have two modules-connected by the uses and inherits-from
débendencies, because the dependencies are not mutually exclusive. Consider the
situation described in Figure 6:3. The module A is built as an extension or spe-

ciafli_éfa;,tion of.?nfiodule B, and therefore it has direct access to all the entities in B
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togeth&i@iﬁth those it declares itself. One of the entities-declared in'module A could

take the form,
class A
inherits B
feature P: B

end e class A

This declares a variable P to be of type B, therefore the uses dependency appears

in Figure 6.3.

,inherits-from
\J \/

uses

MODULE

~.-Figure 6.3:-Exampleof- Two Modules Connected by Two Dependencies

Ea,ch of the dependéncies that can exist between two modules will be discussed

in t];féi.f:(?)illowing subsections.
6.2.1 The local-to Dependency
The fi@i;al-to dependency states that the mo__dgle‘associa,ted with the start-

. no’qfe of ‘the nge is loéal ,‘t,o:the module V_ass'ocia_ted"jWith'/t:h'e stop-node ,of?th’é‘e‘dbge.
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Qdﬁsider the TEXT-IO0 package. (inddil}e)i~fgi§qn in. sectlon 14.3.10 of The Ref-
ercﬁcﬁé;«i]@zﬁudlifér the Ada Program?ﬁiﬁg;.Langﬁ'aje. (The parts of TEXT;‘IO‘,‘_that
are \-i?élgw./é:n;t to this discussion are igitvexxl,in,,Figu.re 6.4.) TEXT.IO is dééla@édiﬁo
have four local packages. The fact. éha,t these .local, packages are generic fid:deé not
affect the dependency between them and TEXT.IU Figﬁre 6.5 gives the module-to-
module iﬁter’c'onne‘ctiqn graph for TEXT.I0. This graph has fouredges each of which

is represéritiilg a local-to depeﬁag‘ncy.

packége_ TEXT.IO is
é.éneric
pac.l;a.ge INTEGER-IO is
end TNTEGER.IO;
generic
pac.]k.;;ge.FLOAT_IO is
emi ".I;'LOAT_IO ;
generic

- package FIXED.I0 is
| ei‘igi,”r:'-IXED_iO;
generic
package ENUMERATION.IO is

end ENUMERATION.IO;
. end TEXT-I0; \

Figure 6.4: Th_e”Packa._ges in Ada’s TEXT-IO
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TEXT-10
~ MODULE

7 A>3

local-to \ local-to

INTEGER.I0

ENUMERATION_IO
MODULE

local-to local=to

FLOAT-IO | | FIXED.IO
(MODULE) ((MODULE)

Figure 6.5: The Module-to-Module Interconnection Graph for TEXT_I0

The reasons for using local modules in a system are not easily defined. If the
code of a local module is providing a logically distinct set of entities to those of
the encapsulating module, then it better to separate the two modules textually by

making the local module a global module. Wirth makes the observation,

“Experience with Modula over the lést eight years has shown that local

‘modules were rarely used.” [171]

Wirth uses this observation to justify the omission of local modules from Oberon.
Many other module languagés also do not provide local modules, so in the module-
to-module inte;c_onnecti_pi_;j‘ graphs for programs written in these languages there
will be no iéca—:l'-to-; dependencies. With lang.\ug’gesfliké Ada and Modula-2 which
do provide lOCdl:modules,'a' cibser exaﬁ)iﬁation of what the local-to dependency

represents is needed.
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The: reason for using local modules can vary f:q;n language to.langiage. In
Modula-2, for example it is not possible to ini.ti‘a,liseb a variable at its point of
declaration. To do this in Modula-2 the-pro}gr_amfnerihas to use a local module in

the fQﬁdWihgﬁ manner,

MODULE Deélérationﬂfi;
EXPORT i;
VAR i: INTEGER,;
BEGIN
it= 1

END DeclarationOfi;

Here a module is being used to overcome a perceived weakness in Modula-2.

More generally however, a local module provides a programmer with a mecha-
nism by which he can secure the code of part of the subsystem he is impleméﬁting.
The code placed within the local module is therefore perceived to be logically re-
latgd to‘t'he rest of the encapsulating module by the programmer implementing the

‘module, because he Has chosen not to use a global module,

-

6.2.2 The uses Dependency

The uses dépendency is employed when one global module imports, or is per-
mitted. u_éeof,:a;n entity from another global module. This is an important form
of intef-modulé connection as it is aya,il\él_g'lé}iﬁ all the module languages. The
uses dependency is employed when:btiiil_'dxi‘r:l"g_‘_ program families, and denotes the

existence of a,client /supplier relationship between the two modules involved. The
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‘start-node for an edge representing a uses dependency denotes the chentmodule,
while the stop-node denotes the supplier module. With the classical design meth-
ods, the structure of a system under the uses dependency is a tree or directed

acyclii;f-g‘raph,!]ln' practice this is not always true (see Figure 6.16 on page 133).

.package HWORLD- SYSTEM is
end WORLD_SYSTEM

with WORLD_SYSTEM;
package ACTUAL _TARGET is

endl ACTUAL_TARGET;

with WORLD_SYSTEM;
package ARMAMENT_STATUS is

end ARMAMENT_STATUS;

with HORLD_SYSTEM;
package FLIGHT-PARAMETER is

end FLIGHT_PARAMETER:

with WORLD_SYSTEM;
package TARGET-BOX is

end TARGET_BOX;
package body HEADS_UP_DISPLAY is

end HEADS_UP.DISPLAY;

Figﬁre 6:6: The Packages for Heads-Up Display

Consider the “Heads- Up Display” system developed by Booch [16, Chapter 21].
A Heads- Up Dlsplay system is a way of prov1d1ng important flight information to

tj,h_e p;lot of a fighter aircraft without the pilot ha.vmg to look away from a target
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HEADS-UP.DISPLAY

{ MODULE)

uses I uses
ARMAMENT..STATUS; ] \., FLIGHT_PARAMETER
MODULE | MODULE
uses uses
ACTUAL_TARGET| | TARGET.BOX
G‘IODULE) (‘MODULE )
useé ‘ uses
uses uses
'MODULE )

WORLD_SYSTEM

Figure 6.7: The Module-to-Module Interconnection Graph for Heads-Up Display

aircraft. The Heads-Up Display system developed by Booch consists of six pack-
“azges The di)prbprié,te ﬁéékage declarations are giVen in Figﬁre 6.6. Figure 6.7 gives
ing ACTUAL;TKR’GET ARMAMENTESTATUS TARGET.BOX and FLIGHT-PARAMETER with
HORLD:.SYSTEM record that the package WORLD_SYSTEM is providing some facilities
to the other packages. . (In this instance WORLD.SYSTEM is providing a co-ordinate

system of the world to the other packages.)

A uses dependency only reveals wh.igﬁéimodule is the client module and which
is the supplier module. It does not, reveal W}iiéh -entities are involved in the

client/supplier relationship, nor does it give ‘airiyf'iﬁf'orrna,tion on their visibility.
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HODULE ImportingModule;
IMPORT ExportingModuleA;
FROM ExpértingModuleB IMPORT ...;

END ImportingModule.

Figure 6.8: Modula-2 Module Declaration with Two Forms of Imports

Consider the Modula-2 module declaration in Figure 6.8. Both of the modules
ExportgiﬁgModul'eA and ExportingModuleB are providing entit}ies to the module
ImportingMod;ile. The entities from Eipqrt-ingl\qddulelx are impo_rted in a man-
ner that necessitates qualified referencing of the importeduegtitifés, while the entities
from ExportingModuleB are directly imported thereby allowing simple or unqual-
‘ified referencing of the imported entities. The module-to-module interconnection
graph does not show this difference, instead the module ImportingModule is con-
nected.to both of the modules ExportingModuleA and ExportingModuleB by a

uses dependency, as is shown in Figure-6.9.

ImportingModule

uses uses

ExportingModuleA ExportingModuleB

Figure 6.9: The Module-to-Module Interconnection Graph for Figure 6.8
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6.2:3 The instan’tia;:tes=to'_r~jﬁ}vepen@l,en¢:y

The instantiates-to dependency is the dependency that exists- between a
gene‘ri'eumodule" and a concrete module. A generic module is a template module
that des'(:ribes:.‘the main characteristics of the entities but the description is not
complete enough for the entities to be used, e. g ., the data type may have been
named but. no” f;descrlbed or the interface to a rouﬁne may have been given but
not the algt)rithmic information. This information is gi’ven when a concrete-module
is created by tnstantiating a generie module. A concrete module is a fully elab-
orated version of the generic mq;dule. It is possible for a.genleric module to have
-severajl. dif.fere-x;frcencrete medule iﬁsfances in. tiie same program. With an yédge'
representing an instantiates-to dependency, the start-node denotes. the generic

module and the stop- -node the concréte module

Generic module instantiation can be performed statically (at compile time) as
in Ada and Cly, .or dynamically (at run time) as in Eiffel. The inter-module code
analysis techniques of this thesis are aimed at static code analysis, and so only

sta.t;ic, -module instaﬂtiaﬁon will be discussed.

There are three forms of.generic module instantiations:

1. Type instantiations.

When type elaboration is performed.

2. Value instantiations.

When the entity associated with a variable or constant is given a value.

3. Routine instantiations.

When algorithmic information is bound to a routine name.
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In pfacﬁce, module instantiation canbe'a combination of-the above forms.

sot = cluster [¢: type] is create, insert, délete, member,
~size, choose '
where t has equal: proctype (t, ¢) returns (bool)

rep = arrayl[t]

create = ...
insert
delete
member
size
choose ,
‘getind = proc (s: rep, x: t) returns (int)
i: _J'fﬁt_:: rep$low(s).
while i <= rep$high(s) do
if t$equallx, sl[il)
then return (i)
end
it=1 4+ 1
end
return (i)
end getind
end set

l

- Eig_ug_e_ 610 Pe_z,rf,la,l Declaration of a Generic.Cluster-in-Clu

1}

Figure 6.10 gives a partial declaration of the cluster set based on the one given
by Liskov and Guttag in [99, page 80]. It shows the declaration of a set abstract
data type with the operations create, insert, délete, member, size and choose.
With this particular cluster, the set abstract data type is imp'lemenfed by means
of an array: This ——p,art‘i@:ular information is hidden from user of the cluster set.
The routine getind ‘_i‘_sv,_:pi‘i\'_‘/ate to the cluster set. ThlS ro’t,i_ti:ne is used by some of
the publ'i'cf-éﬁtities to ﬁﬁd the location of a desired élg;ne‘nt»Within the array being

used to 1mp1ementthe set:data structure. The implementation of get ind is in~t1irn ,
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dependent on the generic parameter t as getind performs a test for _ek:llib.l'ity"On':

elemerts of type t. This occurs with the statement,
t$equal(x, s[il)

It is therefQ‘re necessary to. constra,,in--:the set of types that can be used to instantiate
the cluster set to the types that provide a routine c_;;l}ed ‘equal that takes two
arguments of the same type and returns a boolean value. This is denoted by the

clause,
where t has equal proctype (t, t) returns (bool)

The generic module declaration given in Figui‘e 6.10, called a pafa,meterised
cluster in Clu, describes a méféc]lass. The metaclass set has to be instantiated
to create class modules that can be used to declare variables. In Clu, the cluster

set can be instantiated by statements of the form,

intset = sét[int] (6.1)

pset = set([poly] (6.2)

Thg declaration of the class intset in (6.1) instantiates set with the prede-
fined type int, while the declaration of the class pset in (6.2) instantiates set
w1th T‘ii'liie-uisexj defined type poly. This type-will have been déclared as providing
| a,l routine called equal thereby: satisfying the constraints imposed by the where
clause‘in .the'déélaréftién‘-_ro.f "s_’ét. The instantiation statements in (6.1) and (62) are
shown 'gtaphi@g.ily in E_ig_ure’v6-.‘1:1,.‘3;;Any instantiations of the class g}gglules 'i‘ntvset.

and pset would 'a;:l‘SO be represented by an instantiates-to dependency.  The
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instant iates=-to dependency does not dlStlngUISh between msta,ntla.tmg a meta-
class to a class or to another rnetaclass because this can be derived frorn the graph

structure as.is explained in section 6.‘3.2.” '

Set

instantiates-to _instantiates-to

MODULE

intset g ey

Figure 6:11: Two 1nstantia;tions of a Parameterised Cluster

The instantiation of set can be described as being both type and routine in-
stantiation. Type instantiation is needed because the generic pa.ramefer for set is
a type, and routine instantiation is needed because a.:—patticula,r routine has to be
bbund to the call to t$equal in getind. In Clu, type elabora,tion will always be
performed on a parameterised cluster, because the only form of generic parameter
is a type. Other languages like Ada do not impose this restriction, and so with
these languages it is possible to have routine of value instantiations without a type
instantiation. ) R

3

6.2.4 The inherits-from Dependency

The inhe‘rits-f“rom dependency applie‘s“éhly to the object-oriented program-

mmg languages where a module can be created as an extension or spec1a11sat10n

of other module ’ffor example, C++, Elﬂ'el Simula and Smalltalk-80. Oberon pro-

'v1des an mhentance mechamsrn but the inheritance is obtalned by means of type
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extensions [170] rather than module‘extensions. As a‘result the inherits-from de-
pendency does not appear in module:to-module ifiterconnection graphs for Oberon

programs.

class TREE
export ...
inherit
LINKABLE;
LINKED=. LIST;

~end =- class TREFE

Figure 6.12: Declaration of a Module using Multiple Inheritance

There are two forms of inheritance within object-oriented programming lan-
guages: subclassing which is used in Simula and Smalltalk-80, and multiple
inheritance which is used in Eiffel and more recently C++. (Originally C++
used subclassing as its inheritance mechanism.) With subclassing, a module is
created. as an extension of one other -module (Wthh itself may be an extension of
a module) Multiple mhemtance is a generallsatlon of the subclassing mechanism.
With -multiple inheritance, a modalecan be created as a extensmn of one or more
modules (which themselves can be extensions of other modules). Wlthm thié sce-
nario, progréms written in languages that employ subclassing can be viewed in
the same way as programs written in languages that provide multiple inheritance,
but which choose to create modules from only one other module. This means
that a graph structure that can represent multiple inheritance can also represent

sdﬁtﬁésing;

Consider the partial Eiffel clasé given in Figure 6.12. This cla‘;szs' deéla,fa.tion

gives an example of multiple inheritance, where a module is created as an extension
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of two modtles. The module-to~quul"e; interconnéction ‘graph for the Eiffel class

declarati_oii{ m F :igure 6.12 is given inT;'Eigﬁre: 6:13.

[MODULE “MODULE
) v

inherits-?frm : i nherits-flrom

HODULE
TREE

Figure 6.13: The Module-to-Module Interconnection Graph for Figure 6.12

The start'-no‘de of the edge that is an inherits-from dependency represents
the heir module, whiié-’the stop-node repréSents the bequeathing module. When
subclassing is used as the inheritance mechanism;, the resulting module-to-module
inter‘gonnectionigraph for nodes that have an inherits-from should have a tree
structure. The structure for a system using multiiplle inheritance should be either

a tree or a directed acyclic graph.

In theory it is possible for cyclic structures to exist in a module-to-module inter-
connection graph for the nodes that have an inherits-from dependéncy. Consider
for example the declaration of the two pseudo classes in Figure 6.14. A call to the
routine P1 from the class Pa,reﬁt-Class:.WOuld result in a call to the routine C1 from
the class Chilavglass which in turn results in a call to P2 from Parent-Class.
A cyclic structure with respect to the inherits-from dependency is anomalous
because the concept of a module being an extension or specialisation of another
is-obscured. The module-to-module intercénnectionv,graph used in the thesis can
represent such a cycle, and can therefg’reﬁh,e.l'p< a rpaintena;nce pr‘ograminer detect
suCh‘""aQﬁomalous dependencies. More irfforma{tio;ié-:égl the analysis of the module-to-

module interconnection graph is given in-the féllowing_ section.
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CLASS Parent-Class
INHERIT FROM Child-=Class;

PROCEDURE Pi;

BEGIN
WriteLn("P");
Child-Class.Ci

END P1;

PROCEDURE - P2;
BEGIN
HWriteLn("End")
END P2;
END Parent-Class.

CLASS Child-Class
INHERIT FROM Parent-Class;

.. PROCEDURE. C1;
BEGIN
- HriteLn("C");
Parent-Class.P2
END C1; :
END Child=Class.

Figure 6.14: Example of a Cyclic Inheritance Declaration
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6.3 Ana.]lysus of ﬂ:he M@duﬂectQDM@duﬂe Intercon-

necitmm Graph

The module-to-module interconnection:graph shows which modules are depen-
dent on each other, t’oéétlier with information on the nature of the dependency.

The module-to-modiile interconnec_tion;g"rajph"’(‘:a;n*-beuana;lysed in two ways: -

o Stngle Dependency Analysis
The module-to-module interconriection graph is analysed with respect to a

single del;endency thereby helping to classify a module.

o Mized Dependency Analysis
The module-to-module interconnection graph is analysed with respect-to two
or more dgpendencies, and this helps to locate modules that have more than

one role within a system.

With single dependency analysis, specialised subgraphs of a md‘du'le—to-module
interconnection gra,ph are obtamed by performing appropriate. &shcmg _operations

on the module-to module mterconnectmn graph. For example, the: gra.ph showing

the uses dependency is o.btained'- by the operation,
S(GW, £), {uses})
The é-slicing operation ensures that only the nodes »»involved. in a uses depen-

dency appear in the resulting graph Similar opératidns: can be used to obtain the

specialised subgraphs for the lbcal-to, :i’ﬁé?t_a‘ntigtes-to and inherits-from
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dependencies. In general, the expression,

GV, €)=
§(G(WV, £€), {instantiates-to}) US(G(N, &), {uses})
§(G(WV, £),{1local-to}) U S(G(N, £), {inherits-from}) (6.3)

is true, where G(N, £) is a module-to-module interconnection graph. The expres-
sion (6.3) cannot always be guaranteed, as G(AN, £) may contain nodes that are
associated with modules which are never used within ’the system. The node asso-
ciated with a module that is never used within a system, appears as an isolated
node in the module-to-module interconnection graph. To overcome this, the graph

resulting from the §-slicing operation,
8§(G(WV, €), {SISOLATEDS})

has to be included in the expression (6.3).

If the graph showing the isolated nodes is non-empty, i.e.,

(GWN, 8),{$IsoLATEb$}) ;é ¢

then this denotes the existence of redundant modules which can be removed from
the system without affecting its execution. A module becomes redundant within
a system when the services it is providing are no longer required and therefore all

the connections to that module have been removed.

With mixed dependency analysis, the graph is analysed with respect to more
than one form of dependency. Specialised subgraphs of the module-to-module

interconnection graph that show only the dependencies of interest can be obtained
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by using the é-slicing operation. For example,
§(G(N, €), {uses, inherits-from})

results in a graph showing the uses and the inherits-from dependencies only.

This thesis concentrates on the analysis with respect to the uses dependency.
Therefore, in subsection 6.3.1 modules are classified by analysing the module-to-
module interconnection graph with respect to the uses dependency, and subsec-
tion 6.3.2 will discuss how the other forms of dependencies can be analysed and

mixed dependency analysis performed.

6.3.1 Module Classification via the uses Dependency

With the virtual machine approach to software development, a system is built
up by creating software levels. The software at level ¢ provides facilities to the
software at level ¢ + 1. The software at level 0 provides a software interface to
the underlying hardware. Software developed using-the virtual machine concept
is an lexa,mple of software that employs the uses dependency. In genefal, the
uses dependency appears in the module-to-module interconnection graph for any
system where the concept of one module providing facilities for another is employed.
This makes the uses dependency very important, because it can be applied to all
the module languages, and software design techniques like information hiding and

object-oriented design employ the uses dependency to develop systems.

In this thesis it is suggested that five forms of modules can be identified by

analysing the module-to-module interconnection graph with respect to the uses
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dependency. They are:

1. The Specialised Module

A module providing a specialised service.

2. The Terminal Module

A low level module within a system.

3. The Fundamental Module

A module that plays a critical role within a system.

4. The Root Module

A module that represent the system or the properties of part of the system.

5. The Solitary Module

A module that is not part of the module-to-module interconnection graph

with respect to the uses dependency.

These forms of module are described below.

The specialised module is a module that provides a specialised service within
a system of module. Such a module can easily be identified because the node
associated with the module is the stop-.node for an edge that represents a uses
dependency, and that node is the stop node for only one edge representing a uses
dependency, i.e., it provides facilities to only one other module. With classical
design methods that result in the module-to-module interconnection graph having
a tree structure, each module (bar the actual root module) is a specialised module,

because it is providing facilities needed by the module associated with the parent

node.
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The terminal module is a module that is totally self contained, requiring
none of the services provided by the other modules in the system. With directed
“acyclic graphs and trees a terminal module is a module‘fhat occurs at the lowest
level. A terminal module appears in the module-to-module interconnection graph
as a module that is the stop-node of at least one edge that represents the uses

dependency but is not the start-node for an edge representing a uses dependency.

The fundamental module is a module that plays a critical role within a sys-
tem. This form of module appears in the module-to-rriodule interconnection graph
as a module that is the stop-node for many edges denoting uses dependencies, and
is thus required to support many other modules. Fundamental modules can exist in
a system for many reasons. For example, the nature of the service provided by the
module may be the reason it is a critical module of a system (e.g., an I/O module);
or the system may have been poorly designed or maintained with the result that

the module is a potpourri module, providing several logically unrelated services.

The recot module is a module that appears to represent either the entire
system, or part of the system. A root module appears in the module-to-module
interconnection graph in two forms.

1. Uses facilities but provides none, e.g., the program module of Modula-2 pro-

gram.

2. Uses facilities from a large numbér of modules and provides some services.
This form of dependency highlights a module that reQuires the services of
many modules in order to provide its services to the system. As such, this
module tends to represent the modules it uses in a more general form. For
example, an I/O module is often constructed from more specialised I/O mod-

ules.
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The solitary module is a module that is not used with any uses dependency.
The node for this form of module appears in the module-to-module interconnection
graph as an isolated node, i.e., a node that is neither the start-node or the stop-
node of an edge representing a uses dependency. To understand the role of this
module within a system, the module-to-module interconnection graph would have

to be analysed with respect to the other dependencies recorded.

It is possible for a module to be classified as being of several forms. Consider for
example, the structure of the Heads-Up Display given i;l Figure 6.7 (page 111). The
package WORLD_SYSTEM can be classified as being both a terminal module, because
it requires no services from the other packages, and a fundamental module, because

it is providing a service to a large number of packages.

6.3.2 QOther Forms of Analysis and Module Classification

When the module-to-module interconnection graph is analysed with respect
to the uses dependency, the levels of the virtual machines upon which a sys-
tem is constructed are revealed to the maintenance programmer. The module-
to-module interconnection graph can also identify which modules correspond to
each virtual machine level. However, the virtual machine hierarchy is not the
only technique that is used to structure a system in the module languages. The
local-to, instantiates-to and inherits-from dependencies help reveal other

system structuring techniques.

The local-to dependency can reveal how a particular subsystem is further
subdivided into other modules, but these modules provide entities which are log-

ically related, i:e., each module does not properly represent a subsystem. The
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instantiates-to dependency shows how some modules within a system are par-
ticular instences of another more general module whose components cannot be
used in the system. The inherits-from dependency shows another way in which
modules are built up from other modules, but this time the components of each of

the modules can be used in the system.

Each of these dependencies is considered below.

The local-to Dependency

The subgraph of the module-to-module interconnection graph G(A, £) showing
only the local-to dependencies can be extracted by applying the following é-slicing

operation,

§(G(WV, £),{1ocal-to}) (6.4)

The graph resulting from (6.4) shows which modules have been further de-
composed by the programmer implementing the main module. -Unless the local
;nodu“les are being used to circumvent a perceived language weakness, as is demon-
strated on page 109, the graph resulting from (6.4) shows portions of a subsystem
that the programmer implementing a module felt required extra protection from
accidental misuse. Identifying these portions of a module helps a maintenance pro-
grammer identify important parts of a module. This in turn helps a maintenance

programmer understand a module.
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The instantiates-to Dependency

Analysing the module-to-module interconnection graph with respect to the
instantiates=-to dependency can help the maintenance programmer classify mod-

ules. The §-slicing operation,
8GNV, €), {instantiates-to}) (6.5)

extracts a subgraph from G(N, £) that shows which modules are connected via

an instantiates-to dependency.

Let G;(/N;, &;) be the graph that results from (6.5). Each proper subgraph
within G;(N;, £;) denotes an instantiation tree. An instantiation tree is a tree
structure where each of the non-terminal nodes is associated with a generic mod-
ule. A terminal module is normally associated with a concrete module, but it is
possible that the terminal module is a generic module. In this case, the module-
to-module interconnection graph has helped locate a module (or set of modules)
that is not being used within a system, as a geﬁeric module cannot be used unless

it is instantiated.

If the language in which the system is implemented allows for the dynamic
instantiation of a generic module, then the existence of a terminal node in the
instantiation tree which is associated with a generic module cannot be used to
infer that the module is redundant. The existence of such a node, however, does
inform the maintenance programmer that they need to examine the usage of the

generic module to see if the module is redundant.
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ARRAY LIST
MODULE MODULE
Rz 7

inherits-fropy inherits-from

FIXED_.LIST\ /inherits-from\ LINKED.LIST LINKABLE

7 RJinherits-from

inherits-from inherits-from

| THO_HAY.LI.ST TREE BI_LINKABLE

Figure 6.15: The Inheritance Graph for part of the Eiffel Library

The inherits-from Dependency

When analysing the module-to-module interconnection graph with respect to
the inherits-from dependency, the maintenance programmer is in fact a.né.lysing
inheritance gfaphs which show the modules that are created as extensions or
specia.lisa,tiori- of other rﬁoduleé. A module-to-module interconnection gia.ph can
contain several inheritance graphs. Each inheritance graph is the family tree for

the set of modules associated with the nodes in the inheritance graph.

Consider the inheritance graph given in Figure 6.15. This inheritance graph is
taken from “Object-Oriented Software Construction” [105, page 246] by Meyer and
it shows part of the inheritance graph for the Eiffel_ library. This graph shows the
lineage for the modules involved in the inherits-from dependency. For example,
the module TREF is built up from the modules LINKABLE and LINKED_LIST,

which in turn is built up from the module LIST.
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The inheritance graph for a system employing subclassing as the inheritance
mechanism is a tree structure. This is because each module can only be built-
up from one module, but a module can be the base for many modules. This is
analogous to the idea that a node in a tree can only have one parent node but can

have many children nodes.

In order to obtain the subgraph of a module-to-module interconnection graph
that only records the inherits-from dependency, the following é-slicing operation

is used,
s(G(N, £),{inherited-from}) (6.6)

where G(V, €) is the module-to-module interconnection graph being sliced. In
order to derive the inheritance graphs contained within a module-to-module inter-
connection graph, the graph resulting from (6.6) is given as the argument to the

get-proper-subgraphs function specified on page 99.

Mixed Dependency Analysis

Analysing the module-to-module interconnection graph with respect to partic-
ular dependencies, can help a maintenance programmer classify or understand the
function that a module provides within a system. With module languages that
allow more that one form of dependency between modules, it is often fruitful to
analyse a module-to-module interconnection graph with respect to several depen-
dencies in order to ascertain which modules are playing a dual role within a system.
The grouping of dependencies used in mixed dependency analysis with often be a

language dependent decision as some dependencies or combination of dependencies
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will not be possible in some languages.

A useful form of mixed dependency analysis is to analyse a module-to-module
interconnection graph with respect to the uses and the inherits-from depen-
dencies. This form of mixed dependency analysis will be discussed below, but
other forms of mixed dependency analysis are possible. For example, it may be
useful to analyse the module-to-module interconnection graph with respect to the
inherits-from and the instantiates-to dependencies for programs written in
Eiffel, or with respect to the uses and the instan';:iates-to dependencies for

programs written in Ada or Clu.

The number of dependencies involved in mixed dependency analysis need not
be confined to just two, but as the amount of information that the maintenance
programmer is going to have to process is likely to be quite large, performing several
mixed dependency analysis operation with respect to two dependencies and then

combining the results may well prove more fruitful.

When analysing a module-to-module interconnection graph with respect to the
uses dependency, a hierarchy of virtual machines is revealed. This hierarchy can be
aﬁalyéed and the modules claésiﬁed by the wa,}; they are used within the system.
When analyéing a module-to-module interconnection graph with respect to the
inherits-from dependency, a data abstraction hierarchy is obtained. Each level
up this hierarchy describes a more specialised abstract data type, or an enlarge-
ment of an abstract data type. Analysing a module-to-module interconnection
graph with respect to both of these dependencies can provide the maintenance
programmer with more information than might be obtained by analysing each de-

pendency separately.
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Let G,(N,, £,) be the subgraph of a module-to-module interconnection graph
showing the uses dependencies, and let G;(NV;, £;) be the subgraph showing the
inherits-from dependencies. It is possible for the node nys associated with the
module ¥ to be in both G,(Ny, £,) and G;(N}, &;) (i.e. nyy € N, and ny € Ny).
When this occurs, M is said to have a dual role within a system, as it appears in

two of the hierarchies that describe the system.

In order to determine which modules within a system have a dual role with
respect to the uses and the inherits-from hierarchies, a strict graph intersection

operation is used.
Gu(N4, E) NGV, E) (6.7)

The strict graph intersection operation will not pass on an edge to the resulting
graph that does not exist in both the given graphs. As both graphs record differ-
ent dependencies, they have no edges in common. Therefore, the resulting graph
contains no edges. However, it is possible for G4(V 4, £,) and G;(NM;, &;) to have

nodes in common, and these common nodes will appear in the resulting graph.

If the result of (6.7) is the empty graph, then this indicates that the modules
associated with Gi(N;, €;) may be redundant within the system. In order to con-
firm this, Gi(N;, €;) would have to be analysed with the subgraphs of the module-
to-module interconnection graph recording the local-to and instantiates-to

dependencies.
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6.4 An Example of the Analysis of the Module-

to-Module Interconnection Graph

m2dep is a program that Sun Microsystems Inc. provide with their Modula-2
system. The m2dep program analyses the import lists of Modula-2 modules, and
generates the’PéstScript* commands for drawing a grid which shows the modules
that import entities from each other. m2dep is written in Modula-2 and its module-
to-module interconnection graph is given in Figure 6.16. Since it is composed of
global modules only, the module-to-module interconnection graph contains only

uses dependencies.

By examining the module-to-module interconnection graph for m2dep, the mod-
ules Scanner and UnixSupport are identified as being terminal modules of the
m2dep system. This means that these two modules are low level modules within
the m2dep system. The module Scanner performs lexical analysis, while the mod-
ule UnixzSupport provides a Modula-2 interface to the underlying Unix! operating

system.

Further analyéis of the module-to-module interconnection graph shows that
Scam:er is only used by ModuleHandling within the m2dep program. Therefore,
Scanner is classed as being a specialised terminal module within the m2dep pro-
gram. S'i‘mila,dy the module UnixSupport is seen to be used by three modules.
This means that the services represented by the public entities of UnixSupport are

used by a relatively large number of the modules of the m2dep system. As a result

of this, UnixSupport is classified as being a fundamental module within the m2dep

*PostScript is a registered trademark of Adobe Systems Incorporated
tUnix is a trademark of AT&T
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m2dep

ModuleHandling

OptionHandling
/2 2\
MODULE

MODULE

uses

Scanner

UnixzSupport

Figure 6.16: Module-to-Module Interconnection Graph for m2dep
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system. A closer examination of UnixSupport is needed in order to determine if
UnixSupport is providing several logically unrelated services, or one service that

is important to the m2dep program.

The module I0 is not a terminal module, as it uses the module UnixSupport.
The module-to-module interconnection graph shows that the module I0 is used by
two other modules. Within the m2dep system this is a relatively high number of
modules (two modules are a third of the modules in the system), and so the module
I0 can also be classified as a fundamental module. In Chapter 9, techniques for
analysing the contents of modules in order to derive the different sefvices are given,

and the techniques are demonstrated by using the modules I0 and UnixSupport.

The module m2dep is a root module. Using knowledge about the language
Modula-2, it can be derived that the root module is the program module that is
used to initiate program execution. The module m2dep is therefore a high level

module of this system.

The modules ModuleHandling and OptionHandling are mutually dependent,
i.e., the module ModuleHandling uses the module OptionHandling and the mod-
ule OptionHandling uses the module ModuleHandling. This mutual depeﬁdéﬁ;y |
indicates that the m2dep system was not developed using any of the classical soft-
ware design methods, because such methods cannot produce a mutual dependency

with respect to the uses dependency.
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Chapter 7

EnﬂﬁityatmmsM@duH@

Interconnection Graph

7.1 Introduction

An entity-to-module interconnection graph is another form of interconnection
grapﬁ that shows the dependencies between modules. The entity—to-mddule inter-
connection graph gives a more detailed description of the inter-module connections
than is given by the module-to-module interconnection graph. In particular, it
shows which entities are exported from, imported by or inherited by each of the

modules of a system.

Just as with module-to-module interconnection graph, the entity-to-module in-

terconnection graph provides a useful form of documentation that is generated
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from the program code. This information is especially useful to the maintenance

programrner, as it reveals details about the nature of a module.

For example, if a module exports a type and some routines to a module, then
the supplier module is likely to be exporting an abstract data type. This cannot
be confirmed without having analysed the entity-to-entity interconnection graph
associated with-the exporting module, as is explained in section 7.3, but this in-
formation helps give a maintenance programmer a feel for what sort of service the

module is providing within the system.

The module classifications given in Chapter 6 can help identify which modules
require closer examination. The entity-to-module interconnection graph can be
analysed with respect to the taxonomy given by Booch (see Chapter 3) in order
to help determine what form of modules the system is comprised of. The entity-
to-module interconnection graph can also be used to help improve the structure

of a system by a technique known as module factoring which is described in

Chapter 9.

In section 7.2, the characteristics of the entity-to-module interconnection graph
are identified, and section 7.3 describes how the entity-to-module interconnection
graph can be analysed and used to help classify modules and find inconsistent

interpretations of a design decision.
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7.2 Characteristics of the Entity-to-Module In-

terconnection Graph

The entity-to-module interconnection graph is a specialised form of intercon-
nection graph that shows the dependencies between modules. The dependencies
shown in the entity-to-module interconnection graph are more refined than those
in a module-to-module interconnection graph. Whereas the module-to-module in-
terconnection graph shows the dependencies between} médules in terms of which
modules require each other, the entity-to-module interconnection graph shows the
dependencies in terms of which public entities are exported by one module and

imported by another.

The nodes of an entity-to-module interconnection graph represent the modules
that comprise a system, together with the global entities that are involved in the
module coxinections. Normally not all the global entities appear in the entity-to-
rﬁodu‘le interconnection graph-as some of them are private entities that cannot be

involved in the inter-module connections.

Consider for example the case when two mod_ules are connected by a uses
depeﬁdency. Then the only entities from the supplier module that need appear in
the entity-to-module interconnection graph are theentities that the supplier module
exports, i.e., its public entities. The connections between the supplier module and
the client module show the entities that a supplier module either explicitly exports

to a client module, or that a client module requests the use of.

Languages like Ada do not allow a client module to state explicitly which en-

tities are to be imported. Instead, all the entities are imported. With this form
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of language, it is more meaningful from the code analysis perspective, for the
entity-to-module interconnection graph to record which of the imported entities
are actually used. Thus, the same dependency will be used to record an entity be-
ing selectively imported, in languages like Modula-2, and an imported entity being
used, in languages like Ada. This will help simplify the discussion on performing

some inter-module code analysis work described in later chapters of this thesis.

Similarly, no distinction will be made between qualified import, where the iden-
tifier of an imported entity has to be prefixed by th;a identifier of the exporting
module, and direct import, where an imported entity does not need to be qualified
in order to be used in the client module. This reduces the numBer of dependencies
being considered in this thesis. Each of the dependencies given below can be taken

to mean that either qualified or direct access to the imported entity is valid.

An edge in an entity-to-module interconnection graph represents the dependen-
cies that can exist between modules and global entities from other modules. The
dependencies that can be recorded in an entity-to-module interconnection graph

are:

o injected
When a local module exports an entity into the surrounding module.

o imported

When an entity is imported into a module.

0 exported

When an entity is provided to a group of named modules.

o inherited

When an entity is inherited from another module.
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Each of these dependencies will be discussed in the following subsections.

7.2,1 The injected Dependency

The injected dependency indicat.es that the entity associated with: the start-
node of an edge is injected into the module associated with the stop-node of
the edge. An entity is injected into a module if the exporting module is a local
module. A local module has to export the entity into the surrounding environment,
and this environment is the block containing the local module’s declaration. This
means that the module associated with this block has acquired an entity it did not
explicitly ask for. This form of dependency can exist in languages like Ada and

Modula-2, which both contain a local module construct.

package body PLANE_TRACKER is

package ACTIVE_PLANES is
procedure ADD(P: PLANE; ID: out PLANE.ID);
procedure DELETE(ID: out PLANE.ID);
function INTERNAL NAME(ID: PLANE.ID) return PLANE;
end ACTIVE.PLANES;

end PLANE_TRACKER;

Figure 7.1: Example of Entities being Injected into a Package

Consider the declaration of the local package given in Figure 7.1 (taken from [60,
page 261-9]). The package PLANE.TRACKER is part of a real-time radar surveillance
system that keeps track of plane positions. Each plane béing tracked has two names

within the system: the external name which is displayed to the user, and the name
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used Wi’thin the code of PLANE_TRACKER. The mapping between the two names is
performed by the local package ACTIVE_PLANES. This package injects three entities
into PLANE_TRACKER: ADD, which adds a plane to the set being tracked; DELETE,
which removes a plane from the set being tracked; and INTERNAL_NAME which raises
an exception when trying to use an invalid external name. This dependency is

shown in Figure 7.2.

PLANE_-TRACKER

7~ MODULE
$GLOBAL$

injected injected injected

ROUTINE ROUTINE ROUTINE
ACTIVE_PLANES ACTIVE_PLANES ACTIVE_PLANES
ADD DELETE INTERNAL_NAME

Figure 7.2: The Entity-to-Module Interconnection Graph for Figure 7.1

The nodes for the injected entities récor}i- that .tiiey are from the package
ACTIVI_E_PLANES. The entity-to-module interconnection graph does not show directly
that the package PLANE_TRACKER is dependent on the package ACTIVE_PLANES. This
would be shown in the module-to-module interconnection graph. The only time the
entity-to-module interconnection graph shows two modules to be directly depen-
dent, is when one of the modules is a public entity, and is involved in an injected,

imported or exported dependency.

140



7.2.2 The imported Dependency

With the injected dependency, the module acquiring an entity does so because
a local module exported it into the environment of the encapsulating module.
Another way for a module to acquire an entity is to import it. An import can
occur between global modules, and between a local module and its encapsulating

module, when the local module acquires entities from the encapsulating module.

The imported dependency indicates that a module imports an entity from
another module, or in the case of languages like Ada, where a module has to
import all the éntities, it indicates which of the entities that are available from the

supplier module are actually used by the client module.

With the imported dependency, the entity associated with the start-node of an
edge is imported or used by the module associated with the stop-node of the edge.
This form of dependency is the most common in an entity-to-module interconnec-

tion graph and is supported by all the module languages.

Consider again the Heads-Up Display system that is given in Figure 6.7 on
‘page 111. The package WORLD_SYSTEM is used by se;/era,lv‘péck;ges, inéﬂiding the
(pa,cka,'ges: FLIGHT-PARAMETERS and TARGET.BOX. The specification parts of these
three packages are given in Figure 7.3. From this figure it can be seen that the
package TARGET_BOX uses the entities: STATE_VECTOR and DIMENSION; while the
package FLIGHT.PARAMETERS uses the entities: ALTITUDE and STATE_VECTOR. These

dependencies are shown graphically in Figure 7.4.

The entities that are used by the packages FLIGHT_PARAMETERS and TARGET-BOX

are shown as being imported entities. The remaining public entities from the pack-
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package WORLD.SYSTEM is

type STATE_VECTOR is private;
type LATITUDE is private;
type LONGITUDE is private;
type ALTITUDE is private;
type DIMENSION is private;

private
end WORLD_SYSTEM;

with HORLD.SYSTEM;
package FLIGHT_PARAMETERS is

type ALTITUDE is mew WORLD_SYSTEM.ALTITUDE;
type HEADING is new WORLD.SYSTEM.STATE VECTOR;

task COUPLER is
entry STATUS (THE_ALTITUDE : out WORLD_SYSTEM.ALTITUDE;
= THE-HEADING : out WORLD_SYSTEM.ALTITUDE);
end FLIGHT-PARAMETERS;

with HORLD_SYSTEM;
package TARGET_BOX is

type CENTRE is new WORLD_SYSTEM.STATE.VECTOR;
© type SIZE is mew WORLD.SYSTEM.DIMENSION;

task COUPLER is
entry STATUS (THE_CENTRE : out WORLD.SYSTEM.STATE.VECTOR;
THE_SIZE : out WORLD-SYSTEM.DIMENSION);

end TARGET_BOX;

Figure 7.3: Package Specification for Showing imported Dependencies
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FLIGHT-PARAMETERS TARGET-BOX
MODULE MODULE
$GLOBALS$ $GLOBALS$

i A
imported

TYPE TYPE
HORLD_SYSTEM WORLD_SYSTEM
ALTITUDE STATE_VECTOR DIMENSION
“TYPE
 { HORLD_SYSTEM

LATITUDE LONGITUDE

]

Figure 7.4: The Entity-to-Module Interconnection Graph for Figure 7.3
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age HORLD_SYSTEM are shown as being isolated in entity-to-module interconnection

graph because they are not used.

7.2.3 The exported Dependency

The exported dependency is applicable only to languages like Eiffel that allow
a module to state to which other modules the public.entities are being exported.
The exported dependency is applied only to those entities that are exported to
a named module. Entities that are exported and made generally available to any

global module that wishes to import them are not the subject of this dependency.

class LINKABLE
export change-value{ LINKED_LIST}, value{ LINKED_LIST},
change_right{ LINKED_LIST}, right

end -- LINKABLE

Figure 7.5: An Eiffel class with Selective Export

With thé exported dependency, the entity associated with the start-node of
the edge is exported to the module associated with the stop-node. Consider for

example, the Eiffel class declaration given in Figure 7.5.

The entities: value, change_value and change_right are selectively exported to
the module LINKED_LIST, while the entity right is exported normally. The entity-
to-module interconnection graph for this declaration is given in Figure 7.6. The
entity right appears as an isolated node because it is exported normally and is

therefore not the subject of an exported dependency.
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LINKED_LIST

exported exported

FARIABLR ROUTINE
LINKABLE LINKABLE

value change.-value change-right

L

VARIABL
LINKABLE

—right

Figure 7.6: The Entity-to-Module Interconnection Graph for Figure 7.5
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7.2.4 The inherited Dependency

With inheritance, a class module is created as an extension or specialisation of

another class module. Consider for example the following Eiffel class declaration.

class @) export ...

inherit P
end -- class @)

This decla.rés the class @ to be an éxtension or specialisation of the class P. If
the class P. décla,res the entities ent! and ent2, and the class @) declares the entities
entd and ént4, then the class @ has the entities: entl, ent2, entd and ent4. This is
because the entities declared in the class P are inherited by the class Q. Figure 7.7
gives the entity-to-module interconnection graph that shows the class @ inheriting

the entities ent! and ent2.

! inherited inherited

entl ent2

Figure 7.7: The Entity-to-Module Interconnection Graph Showing Inheritance

'The form of inheritance shown in Figure 7.7 corresponds to the idea of class

@ being an extension of class P. The class @ has all the entities in class P and
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some extra entities. A class module can also be regarded as a specialisation of
another module, and this effects which entities appear in the entity-to-module

interconnection graph showing the inherited dependency.

When a class module is created as a specialisation of another module, this
commonly involves redeclaring entities that are inherited. This redeclaring of an

inherited entity is called overriding.

Consider the scenario given above where the class’ P declares the entities ent!
and ent2, but this time the class @ overrides the declaration of ent2 to make
it more appropriate to the task being performed. Thén in the entity-to-module
interconnection graph, given in Figure 7.8, the entity ent2 is not shown as being

inherited, because the entity ent? is declared in Q.

Figure 7.8: The Entity-to-Module Interconnection Graph Showing Inheritance with
Overriding '

With Simula, it is possible for a module to refuse to bequeath an entity, by
declaring the entity hidden. When this occurs, the entity-to-module intercon-
nection graph does not record the hidden entities as being part of an inherited

dependency.
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T3 Ana]lysis of the Entity-to-Module Intercomn-

nection Graph

The information recorded in the entity-to-module interconnection graph can
be used for various types of software maintenance activities. In this section, two
techniques for analysing a entity-to-module interconnection graph are described

that reveal different kinds of information about a system.

11.1‘ subsection 7.3.1 the entity-to-module interconnection graph is analysed with
respect to the imported and exported dependencies, in order to determine any
anomalous dependencies between modules. In subsection 7.3.2 the entity-to-module
interconnection graph is analysed to classify modules according to the taxonomies
of modules given by Booch. In this way modules are further classified, giving a
maintenance programmer more details about the role of a module within a syétem
by determining the service that the module is providing. Note that this is being
done without the maintenance programmer having to examine the implementation

details of a particular module.

7.3.1 An.omally Detection

With the injected dependency, the entity exported by a local module is au-
tomatically imported by the module containing the local module. This is not the
case with entities involved in an exported dependency. It is therefore possible for
a module to export an entity to another module, but for that module not to import
it. In Chapter 3 it is shown how, as part of the design phase, the interface for each

module is determined. If therefore, there exists within a system a module which
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exports an entity to another module, bl_xt that module does not import the entity,
then there is an'inconsistency between the way the programmers are implementing
a design decision. Detecting this form of inconsistency within a system is a form
of anomaly detection that can be performed by analysing the entity-to-module

interconnection graph for a system.

To detect this form of anomaly, the entity-to-module interconnection graph has
to be analysed with respect to both the exported and imported dependencies. The
appropriate graph for this analysis can be extracted from G(N, £), the entity-to-

module interconnection graph for a system by the following é-slicing operation,
8(G(V, &), {exported, imported}) (7.1)
Let Gei(N e, €.i) denote the graph resulting from (7.1).

The function specified below can be used to determine if there exists an anoma-

lous dependency.

ezist-anomaly : Graph — B

ezist-anomaly(mk-Graph(nodes, edges)) &
del € edges -
dependency(el) = exported
—(3e2 € edges -
dependency(e2) = imported A
start-node(el) = start-node(e2) A

stop-node(el) = stop-node(e2))
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The following call of this function, would detect any anomalous dependencies within
Gei(Neia gu’)
exist-anomaly(Ge (N o, Eei))

7.3.2 Module Classification

When analysing the module-to-module interconnection graph with respect to
the uses dependency, modules are classified according to their apparent usage
within a system. With the entity-to-module interconnection graph, the main-
tenance programrher is given information on which entities are imported by or

exported to the modules of a system.

Some languages, like Extended Pascal, allow a module to explicitly provide
several client views, while other languages like Ada and Modula-2 allow only one
client view to be explicitly declared. By providing only one client view of a module,
the fact that the supplier module may be providing a different service to each of
the client modules is obscured. This makes the maintenance programmer’s task of
understanding a module more difficult, bécause the maintenance programmer has
first to determine that a module has several client views. Analysing the entity-
to-module interconnection graph with respect to the exporting and importing of
entities can help a maintenance programmer derive the actual client views of a
supplier module. This information can then be used by a maintenance programmer

to start to classify a module according to Booch’s taxonomy.
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Deriving the Client Views

The af-slicing operation can be used to derive the subgraph of G (N, €)
that shows the client view between a named supplier module and a named client

module. Consider for example, the af-slicing operation

aource:SupplierHodule”E(Gei(Nci; gei)r (67 ClientMOdule)) (72)

This af-slicing operation returns the graph that shows the public entities from
SupplierModule that are either exported to or imported by ClientModule. This

is because the a constraint,
source=SupplierModule

ensures that, in the graph resulting from (7.2), all the edges have as a start-node
a node _with the value SupplierModule stored in the label attribute entity-source.
This means that the start-node of each edge, is associated with an .entity from
Supl.;lierModule. Narm'ng’t_,_he:module.C1ientModu_1e as the second element of the
slicing criterion argumént',"ensures that the node associated with this module is the

stop-node for all the edges in the resulting graph.

In order to derive all the client views of a module, a function satisfying the

following specification can be used.
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get-client-views : Graph X Source — set of Graph

get-client-views(graph, supplier-module) A
let moduleset — {m | m € nodes(graph) A

Je € edges(graph) - m = stop-node(e)} in
{aource:supplier-module”&(graph, (5, m))l m € mOdUIeset}

In order to derive all the client views of the module SupplierModule, the func-

tion get-client-views is used in the following manner,

get-client-views(G ;i(N e, €.i), SupplierModule)

Analysing a Client View

In order to analyse a client view of a module so that it is possible to start
classifying the module in terms of Booch’s taxonomy, it is necessary to consider

the classes of the entities in the client view.

Module Classification | Classes of Entities That can Occur |

Named Collection of Variables, Types
‘Declarations - - 1 o
Group of Related Constants, Routines, Modules

Program Units

Abstract Data Type ‘| Constants, Routines, Types (a Type and
.a Routine must occur)

Abstract-State Machine | Any (b’ut must contain a Routine)

Table 7.1: Classes of Entities Associated with Booch’s Taxonomy

Table 7.1 gives a breakdown of the classes of entities associated with each of
the module classifications in Booch’s taxonomy. By examining the classes of en-

tities in the client view, it is possible to see which of Booch’s classifications the
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module can conform to. It is possible for a module to conform to several of the
classifications. For example, if a module has routine and type entities then the
module could be classified as providing an abstract data type, a group of related
program units and a named collection of declarations. The actual classification
can be obtained by analysing the entity-to-entity interconnection graph, but the
maintenance programmer could dismiss some of these classifications by scanning
the relevant modules. For example, if the module contains no state variables, then
it cannot be an abstract-state machine; or if the type entities are not used to de-
clare parameters for the routines then the module is unlikely to be providing an

abstract data type.
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Chapter 8

Entitynﬂi@s]@mtity Interconnection

Graph

8.1 Introduction

The entity-to-entity interconnection graph differs from the module-to-module
interconnection graph and the entity-to-module interconnection graph in that the
dependencies recorded are not those that exist between modules. Instead, the
entity-to-entity interconnection graph shows the dependencies that exist between
the global eﬁtitiés of a module. As a result, a system that comprises of 7 modules,

has 7 entity-to-entity interconnection graphs.

The entity-to-entity interconnection graph shows the dependencies between all

the global entities of a module. As a result it can be used by a maintenance pro-
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grammer to determine the dependencies that exist between the public and private

entities of a module. This helps classify a module.

In section 8.2, the characteristics of the entity-to-entity interconnection graph
are identified, and section 8.3 describes how the entity-to-entity interconnection

-graph can be analysed and used to help classify modules.

8.2 Characteristics of the Entity-To-Entity In-

terconnection Graph

The entity-to-entity interconnection graph for a module shows the dependen-
cies between the global entities of the module. The entity-to-entity interconnec-
tion graph for a module M can be extracted from a general interconnection graph

G;; (N, ;) by an af-slicing operation of the form,

block:OAsource:H||blocl;:=0Asource=H(Gig (Ns'y ’ gl’g )1 (f) 6) )

With the entity.-to'-éntity interconnection graph for a module, the nodes are
associated with the global entities of the module, and an edge between two nodes
records that the entities associated with the start-node and stop-node are depen-
dent. Some of the dependencies recorded in.the entity-to-entity interconnection

graph will be discussed in the following subsections.
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8.2.1 The delimited-by Dependency

The delimited-by dependency is associated with an edge of the form,

tupe constant
YP% outine

Where the stop-node represents a constant or function entity that is used to
mark the upper and lower bounds of the subrange type associated with the start-

node.

constant C: INTEGER:= 2;

function F: return INTEGER is
begin

return 10;
end F;

type T1 is range C..2%C;

type T2 is range 1..F;
type T3 is range C..F;

Figure 8.1: The Declaration of Range Types in Ada

-Consider the fragment of Ada code in Figure 8.1. In this figure, three range
types are declared. The range T1 uses the constant entity C to delimit both the
upper and lower bounds, while the range T2 uses the constant function F to delimit
the upper bound. The range typéi 'fa uses the constant C fo delimit the lower boun‘d
Qf the range, while the function F deliﬁﬁts the upper bound of the range. The entity-
to-entity interconnection graph showiqg these dependencies is given in Figure 8.2.

The range type T1 is delimited twice by the constant C, but the entity-to-entity
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interconnection graph only shows one occurrence of the dependency delimited-by.
This is because it was decided that an interconnection graph should only record

the existence of a dependency and not the number of times a dependency occurs.

Figure 8.2: The Entity-To-Entity Interconnection Graph for Figure 8.1

8.2.2 The of-type Dependency

The edge representing an of-type dependency is of the form,

constant,

~types, |-
variable, type |

routine,.

With an edge representing the of-type dependency, the start-node is associated

with an entity whose type is the type entity associated with the stop-node of the

edge.

Figure 8.3 gives a Modula-2 program module containing entity declarations.
The entity-to-entity interconnection graph for this program module is given in

Figure 8.4. The edges associated with the variable V show that a node can be
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MODULE Ent ityDeclarat ion;

TYPE.T1 = [1..10];
T2 = RECORD
Field: T1
END; (% T2 *)

VAR V: RECORD
Fieldl: T1;
Field2: T2
END;
_PROCEDURE FO: Ti;
BEGIN
RETURN &
END F;
BEGIN

'END EntityDeclaration;

Figure 8.3: Entity Declaration for Showing of-type Dependencies
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the subject of more than one of-type dependency. The type associated with the
variable V is an anonymous record type with a field of type T1 and another of type

T2. Thus the variable V is dependent on both the types T1 and T2.

If a routine entity is the subject of an of-type dependency then the routine
must be a function. This is because a function stands for a computed result as well

as a computation. And so a function has to have an associated type.

Figure 8.4: The Entity-To-Entity Interconnection Graph for Figure 8.3

8.2.3 The parameter-of-type Dependency

The parameter-of-type dependency is associated with an edge of the form,

( routine, typé)
type,

A parameter-of-type dependency shows that the entity associated with the
start-node of an edge has at least one parameter of the type associated with the

stop-node of the edge.
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With most languages, a parameter=of=type deﬁendency is confined to edges
where the start-node is associated with a routine entity, but some languages like
Modula-2 and Oberon allow for routines types. With languages like these, it is

possible to have a parameter-of-type dependency between type entities.

TYPE T1 = CARDINAL;
" ProcType = PROCEDURE(T1);

PROCEDURE P(paral: T.l; para2: ProcType);

Figure 8.5: Entity Declarations for Showing parameter-of-type Dependencies

Figure 8.5 gives Modula-2 declarations of routine and type entities. These
declarations are represented by parameter-of-type dependencies in the entity-to-

entity interconnection graph given in Figure 8.6

parameter-of-type

parameter-of-type

Figure 8.6: The Entity-To-Entity Interconnection Graph for Figure 8.5

8.2.4 The used-within ']Dependenccies

The used-within dependencies are the dependencies that record a global entity

being used within a global routine. Four examples of this form of dependency are:
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0 uses-constant
This dependency is associated with an edge of the form

(routine, constant)

o uses-type
This dependency is associated with an edge of the form

(routine, type)

o uses-variable
This dependency is associated with an edge of the form

(routine, variable)

o invokes
This dependency is associated with an edge of the form

(routine, routine)

Each of these dependencies show that the entity associated with the stop-node of
an edge isused within the routine associated with the start-node of the edge. The
way in which these entities are used within the routine is not recorded with these

dependencies.

Consider for example the entity declarations in Figure 8.7. This figure gives
the Modula-2 declaration of two global routines, a global constant, a global type
and assorted local entities within the two global routines. The entity-to-entity

interconnection graph for these declarations is given in ‘Fi‘gure 8.8.

Within the routine SillyReader, the constant MaxString is used in two differ-
ent ways. Firstly, it is used to delimit the upper bound of the local type String,
and secondly, it is used as a sentinel value. These different uses have not been

recorded by different dependencies because the code analysis techniques described
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CONST MaxString = 20;
TYPE Value = INTEGER;

PROCEDURE SillyReader;
TYPE String = ARRAY [i..MaxString] OF CHAR;
VAR i : CARDINAL;
~ ch: CHAR;
BEGIN o
WHILE i<= MaxString DO
ReadChar(ch)
END
END SillyReader;

PROCEDURE GlobalRoutine;
PROCEDURE LocalRoutine(para: Value): Value;
BEGIN
RETURN MaxString
END LocalRoutine;
BEGIN
SillyReader
END GlobalRoutine;

Figure 8.7: Entity Declarations for Showing used-within Dependencies

MaxString Value

uses-constant

uses-constant uses-type

. invokes L
{ ROUTINE)— - { ROUTINE)

SillyReader GlobalRoutine

Figure 8.8: The Entity-To-Entity Interconnection Graph for Figure 8.7
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in this thesis do not need information on how an entity is being used within a rou-
tine. If this information were desired, then other dependencies could -be recorded
in the entity-to-entity interconnection graph, e.g., the delimit S?ldcéléﬁype and
sentinel-value dependencies could be refinements of the uses-constant depen-
dency, and defines and references could be refinements of the uses-variable

dependency.

Similarly for the routine LocalRoutine declared in the routine GlobalRoutine.
The type entity Value is used to declare the parameter of LocalRoutine as well
as the resulting type, but these different uses are not shown in the entity-to-entity

interconnection graph.

The constant MaxString is not used by the routine GlobalRoutine directly, but
the routine LocalRoutine does. As a result, the entity-to-entity interconnection
graph shows GlobalRoutine to be dependent on MaxString. This is because a
giobal routine is credited with being dependent on a global entity if this entity is
used by a routine local to the global routine. This" is because the entity-to-entity
interconnection'gra.ph of a module only shows the dependencies between global
entities. If a global routine was not credited with a dependency on a global entity
held Py one of its local routines then t}he existence of dependencies i_i)etween some

entities ‘could be missed and erroneous analysis performed.
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8.3 Amalysis of the Entity-To-Entity Intercomn-

nection Graph

Analysis of the entity-to-entity interconnection graphs is normally performed
in conjunction with the analysis of the entity-to-module interconnection graph. By
analysing the entity-to-module interconnection graph a maintenance programmer
gains information on the client/supplier relationship between modules. In order to
fully establish the relationship between a client modul;a and a supplier module, the
enﬁty—to—entity interconnection grav,ph‘_ ihas to be anaiyéed. As the éﬁtitj~to—entity
interconnectioﬁ graph will determine the dependencies between the entities in the
client view and establish any dependencies that may exist between these public

entities and the.private entities of the supplier module.

The entity groups in a entity-to-entity interconnection graph G(A, €) can be

obtained by the following function call,

get-proper-subgraphs(G(N, £))

where get-proper-subgraphs is the function specified on page 99. The result of this
function call is the set of proper subgraphs of G(V, £). Each proper subgraph
represents an entity group. These entity groups can be used to help understand a

particular client/supplier relationship.

Let A., be the set of nodes associated with the entities in a client view, and
let G,-(./V i, £;) be one of the proper subgraphs obtained from the above call of
get-proper-subgraphs. There are four possible relations between the set of nodes

representing the client view and the set of nodes in Gi(WVy, &):
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o Moy NN; = {}
0 chzM
o Moy CN;

o New DN

The relation N,, NN; = {} says the entity group associated with G;(N;, &;) is
unrelated to the entities in the client view. Therefore the entities in this group can
be disregarded when analysing a module with respect to the client view associated

‘with the set of nodes N ,.

The relations A,, = N; and N, C N; show that the entity group associated
with G;(V;, &) contains all the entities that can affect those in the client view.
The relation N,, = A; shows that the entities in the client view do not require
any of the module’s private entities, whereas the relation A, C A/; shows that the
entities in the client view are dependent on some private entities. If one of these
two relationships is true then all the other entity groups can be disfégarded, as
they cannot relate to the_ client view because all the entity :groﬁps are independent
of eéjéill'éfher. | Ifa modﬁle only h;xs oﬁe ciient view, éheﬁ t-’he’: ‘e;n“t?ity gfoﬁi)s tliz;t a:re

independent of those in the client view consist of redundant entities.

Finally, the relation A,, D A shows that a client view is dependent on more
that one entity group, as the entities in the client view are not contained within a

single entity grdup.

As an example, consider the module IntStack given in Figures 8.9 and 8.10.
Figure 8.9 gives the definition module and Figure 8.10 gives the associated im-

plementation module. The module IntStack provides a stack abstract data type
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DEFINITION MODULE IntStack;
TYPE StackType;

PROCEDURE Create(VAR stack: StackType);

'PROCEDURE Pop(VAR stack: StackType);
PROCEDURE‘"P‘ush(elem: INTEGER; VAR stack: StackType);
PROCEDURE 'NumOfStacks(): CARDINAL;

PROCEDURE NumOfPops() : CARDINAL;

PROCEDURE NumOfPushes(): CARDINAL;

END IntStack.

- Figure 8.9: The Definition Module for IntStack

for integers. The number of times each of the stack operations Create, Pop and
Push is used is recorded. Figure 8.11 gives the entity-to-entity interconnection
graph for IntStack. The dependency p-=-of-fj1pe that appears in Figure 8.11 is an

abbreviation for the parameter-of-type dependency.

A possible client view for this. module is the entire definition module in Fig-
ure-8.9. Let M., be the set of nodes that are associated with these public entities.

The entities groups obtained by the function call
get-proper-subgraphs(G,(N,, &,))
are G, (N, €;) (given in Figure 8.12) and G2(N 2, £,) (given in Figure 8.13).

In this example, Ny C NMy. As aresult, the entities associated with G (N, &;)
are not relevant to the-analysis of IntStack with respect to the chosen client view.

As this client view consists of all of IntStack’s public entities, then the entities
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IMPLEMENTATION MODULE IntStack;
FROM Storage IMPORT ALLOCATE, DEALLOCATE;
TYPE StackType = POINTER TO StackElem;
StackElem = RECORD ! ‘
Data: INTEGER; Link: StackType
END; (* RECORD StackElem #)
VAR CreateCounter, PopCounter, PushCounter: CARDINAL;
Unused: BOOLEAN;
PROCEDURE Create(VAR stack: ‘StackType) ;
BEGIN" 'stack:= NIL; INC(CreateCounter) END Create;
PROCEDURE NumOfStacks(): CARDINAL;
BEGIN RETURN CreateCounter END NumOfStacks;
PROCEDURE Pop(VAR stack: StackType);
VAR P: StackType;
BEGIN ‘
P:= stack; stack:= stack].Link; DISPOSE(P);
INC(PopCounter)
END. Pop;
PROCEDURE NumOfPops(): CARDINAL;
BEGIN RETURN PopCounter  END NumOfPops,
PROCEDURE Push(elem: INTEGER; VAR stack: StackType);
VAR newStackElem StackType,

PROCEDURE CreateStackElem(elem INTEGER; VAR newElem:

,VVAR P: StackType;

BEGIN )
'NEHW(P); Pl.Data:= elem; P{.Link:= NIL;
newElem:= P ,

" END CreateStEEkElem, C o

: BEGIN _

, CreateStackElem(elem, newStackElem) ;
neHStackElemT Link:= stack; stack:= newStackElem;
INC(PushCounter)

END Push;

PROCEDURE NumOfPushes() : CARDINAL;

BEGIN RETURN PushCounter END NumOfPushes;
BEGIN

CreateCounter:= 0; PopCounter:= 0; PushCounter:= 0
END IntStack.

Figure 8.10: The Implementation Module for IntStack

StackType) ;
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uses-variable uses-variable uses-variable

VARIABLE . (VARIABLY (VARTABLE '(VARIABLB
CreateCounter } PopCounter

- PushCounter Unused
'uses-variabie uses-variable uses-variable
( ROUTINE) (ROUTINE) (ROUTINE)
NumOfStacks NumOfPops NumOfPushes

Figure 8.11: The Entity-To-Entity Interconnection Graph for IntStack

Unused’

Figure 8.12: The Entity Group Associated with G, (N, &)
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StackTy;y of=typé StackElem

[ Create

‘Push

uses-variable uses-variable

NumOfStacks NumOfPops NumOfPushes

Figure 8.13: The Entity Group Associated with Go(N 2, £3)
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associated with the nodes in A/; must be redundant, i.e., Unused is a redundant

entity.

The entity group associated with G, (N2, €2) can be classified by examining the
classes of entities associated with a pairtiCula,r subgraph. For example, a subgraph
associated with routine and constant entities only would represent a collection of
routines as 5. constant entity can be considered as a value function. Similarly a
subgraph associated with an entity group consisting of routine, constant and type
entities would represent an abstract data type. By fexa,mining the dependencies
in the subgraph, the abstract data type can be classified according to the clas-
sification giveli by Embley and Woodfield [54, 65]. The entity group associated
with G2(N 2, £2) contains variable entities, therefore the entity group represents

an abstract-state machine.
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Chapt@r 9

Module Factoring

9.1 Introduction

.Parnas {119] suggests that a module should be considered to be a “responsibil-
ity -dSéiéhfrﬁént”, where related entities ?ﬁév grouped together (see Chapter 3 for a
discussion of this definition). By viewing a module in this way, entities that are
logically related within a system wo'uld;'b’e grouped together in a single module.
Booch [16] gives a taxonomy of modules in terms of the service that the module
provides to the system. With Booch’s taxonomy, a module is classéd as being one

of the following:

o Named Collection of Declarations

o Group of Related Program Units
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o Abstract Data Type

o Abstract-State Machine

In Chapter 3 (page 39) we saw that Booch’s taxonomy represents an idealised
view of the use of modules. In practice, a module is often a combination of these

classifications. Such modules are referred to as potpourri modules.

The existence of potpourri modules within a system add considerably to the
complexity of the system. With potpourri modules, a maintenance programmer
must first determine what services a module is providing, and then which of those

services, if any, is important to the maintenance activity being performed.

To aid this task, we propose a technique known as module factoring [22]. The
objective of module factoring, is to determine the different services that a module
is providing according to Booch’s taxonomy, and to establish all the entities that
comprise each of the services. A maintenance programmer can then use this infor-
mation to either decompose a given module into smaller modules, each of which
performs a distinct task, or else the module can be left as it is but the different
services and the entities that comprise each of the s;:r;/i-ces can Abe documented.

In this way knowledge gained by a maintenance programmer can be used help in

future maintenance work.

Three techniques for factoring a module are presented:
o Grouping by Type-Families

Entities are grouped together because they depend on the same type-family

(where a type-family is a collection of inter-related types).
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o Grouping by Imports
Entities are grouped together because they have the same set of client mod-

ules.

o Grouping by State Variables

Entities are grouped together because they use the same state variables.

Each of these techniques makes use of the five specialised forms of the entity-to-

entity graph described in the following section.

9.2 The Five Graphs

In order to perform module factoring, the entity-to-entity graph for a module

needs to be partitioned into the following subgraphs:

1. A type-connection graph.

2. A call graph.

3. 'A reférence graph.

4. A variable/type association graph.

5. A variable usage graph.

These five graphs fully partition an entity-to-entity graph as they contain all
the information that is found in the entity-to-entity graph, i.e., if the graph union
operation is applied to the above graphs the original entity-to-entity graph would

be obtained.
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Each of these graphs will be described in the following subsections, and the
appropriate af-slicing operation needed to extract such a graph from an entity-to-

entity graph is given.

9.2.1 The Type-Connection Graph

The type-connection graph, Ggé(N i, E1c), 18 a graph where all t_l;le_ nodesin Ny,
are associated with entities that are types. This graﬁh only records thrée forms
of dependencies: of-type when a type entity is used to declare another type,
and $ISOLATEDS$ otherwise. Wivtxh Oberon it is possible to have the extension-of
dependency between two type entities. Such a dependency denotes that one type

has been constructed as an extension of another.

CHAR;

T1 =-POINTER TO T2; TO =

T2 = ARRAY [0 .. 9] OF CHAR; T1 = POINTER TO T2;

T3 = CHAR; T2 = ARRAY [0 .. 9] OF TO;
T3 = TO;

(a) (b)

- Figure 9.1: Two Exar-ni)les‘of Type-Families o

Consider for example the Modula-2 type declarations in Figure 9.1. In Fig-
ure 9.1(a) T1 is dependent on T2, and T3 is independent of both T1 and T2, whereas
in Figure 9.1(b) T1 is dependent on T2 and both T2 and T3 are dependent on 'i‘O.
Figure 9.2 gives the type—cofmectiOn graphs associated with the two sets of type

declarations in Figure 9.1.

The type-connection graph helps to determine the type-families contained

within a module. A type-family is a collection of types that are related to each
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T2

(a)

Figure 9.2: Graphical Interpretation of the Dependencies Given in Figure 9.1

other. For example, the Modula-2 type declarations in Figure 9.1(a) introduce two
type-families. "The types T1 and T2 constitute one type-family a:nd the type T3
constitutes another type-family. T2 and T3 are both dependent on the type CHAR,
but as this is a predefined type, T2 and T3 are classed as being independent. For
the purpose of creating type-families for module factoring, the only dependencies
that are important are those between the types declared in the module that is being

fa,cto:ised.

In comparison, the logically equivalent Modula-2 type declarations in Fig-
ure 9.1(b) introduce only one type-family. The type TO is declared to be-syn- -
onymous with the predefined type CHAR, and the new declarations of T2 and T3
show these two types to be dependent on TO. Therefore all the types TO, T1, T2

and T3 are now dependent thereby forming only one type-family.

The type-conﬁection graph can be obtained by an af-slicing operation on the
entity-to-entity graph of a module. Consider for example the type declarations in

Figure 9.1(a). If these type declarations occur within the the same module then the
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type-connection graph G§, (N, £2.) is the subgraph obtained by the operation:

clzzas:TYPE”class:TYPE(G(N7 g)v (é‘,é))

where G(NV, £€) is the entity-to-entity graph associated with the module.

In order to determine the type-families of a module; the function get-proper-
subgraphs that is specified on page 99 is applied to the type-connection graph for
that module. Each proper subgraph that is returned denotes a type-family. For

example, the result of the function call,
get-proper-subgraphs(Ge. (N, £4.))

is the set of graphs,
{Gy (N, €k), G (N, €5)}

where,

Ny = {T1, T2} &} = {(T1, T2)}
Mg ={r3} & =1

+

The result of the function call,
get-proper-subgraphs(Gh.(NV?Y,, £4))

where Gl (V% £%) is the graph in Figure 9.2(b), is the graph G, (V%,, €L, itself
as this graph has no subgraphs and therefore has only one type-family, which is

denoted by the type-connection graph itself.
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9.2.2 The Call Graph

The call graph, G.;(N ¢, €), is a graph that describes the calling or invoking
dependencies between routines. When constructing the call graph for a module
the normal dependencies that are recorded are the invokes and the $ISOLATED$
dependencies. With the call graph for an entire system, detecting the existencévof
$ISOLATEDS$ dependencies in a call graph is the same as detecting routines that are
never called; however, with the call graph for a module the $ISOLATED$ dependency
is common. In this context, the $ISOLATED$ dependency does not determine that
a routine is never invoked, but instead that the routine is not called by any of the

other routines within that module.

Just as with the type-connection graph, the call graph Gy (N ¢, E,) can be

obtained by applying an af-slicing operation:
class=ROUTINEVCONSTANT || class=roUTINEvcONSTANT(G(N, E), (€,€))

where G(/N, £) is the entity-to-entity interconnection graph for the module. For
the purpose of this work, it is useful to regard a constant as a value function that
always returns the same value. As a result, entities that are constants appear in

]

the call graph.

In the previous subsection, it was shown how the type-connection graph could
be used to determine the type-families of a module. In a similar way, the call graph
can be used to obtain routine groups. A routine group is a group of routines that

are dependent because they invoke each other. The routine groups of a module can
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be determined by applying the get-proper-subgraphs function to a call graph, i.e.,
get-proper-subgraphs(G (N, €.,))

Each graph contained in the resulting set of graphs denotes a routine group.

9.2.3 The Reference Graph

The reference graph, G,;(Ny,, ), is a graph where all the nodes in A,, are
associated with either type, constant or routine entities. Embley and Woodfield [55]
use reference graphs to assess the quality of abstract data types according to the
cohesion and coupling measures that they advocate [54]. In module factoring this
graph is used to show the dependencies between the type-families and the routine
groups of a module. As with the type-connection graph and the call graph described
above, the reference graph is analysed in order to detect subgraphs. It can be shown

that each subgraph denotes an abstract data type.

A reference graph G (N ,,,-€,,) is extracted from an entity-to-entity intercon-

nection graph by applying the following of-slicing operations:

(class=ROUTINEVCONSTANT | ctass=TYPE(G (N, E), (€,€))) U
(claas:TYPE”class:TYPE(G(N) 8), (6’&))) U
(clasa:TYPE"claaa:CONSTANT(G(Na g), (515)))

where G(V, €) in the entity-to-entity interconnection graph for the module. This
is the same operation that is given on page 100 for extracting from a module an

abstract data type that satisfies Booch’s classification.
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Analysis of Gy (N, €,;) has to be done with respect to the entity groups that
are produced by analysing G (N, €ic) and G(N ., €,). If there exists one or
more routines that are not connected to any of the type-families, then these routines
are grouped together. They will be placed in another module, i.e., a module which

is sepa.raté from those produced for each of the type families.

Ideally, each routine group should be connected to only one of the type-families.
If there exists a connection between two type-families (because one or more routine
groups depends on both of them), this does not prohiﬁbit'fa,ctoring with respect to
the type-families. However, it does indicate that one of the type-families must be
exported to the module that contains the other type-family. The choice of which
type-family to export cannot be resolved automatically but instead must depend

on the expertise of the programmer who is factoring the module.

Having analysed the type-connection graph, the call graph and the reference
graph, the modules which can replace the original module have been determined.
The next two graphs are analysed with respect to both the type-families and the

routine groups in order to determine how the variables are to be distributed.

9.2.4 The Variable/Type Association Graph

A variable/type association graph, Gu(N ., £,) shows the dependencies be-
tween global variables and the type-families. G,¢i(Ny, £4) is normally a disjoint
graph with each variable being dependent on only one of the type-families. The
dependencies recorded in a variable/type association graph are of-type, when a

variable is declared to be of a type declared in the same module, and $ISOLATED$

otherwise.
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A variable/type association graph G,;(NV ., £,:) is extracted from an entity-to-

entity graph by applying the following af-slicing operation:
class:VARIABLE”claas:TYPE(G(N’ g)’ (6’ 6))

where G(V, £) is the entity-to-entity interconnection graph for the module.

Such a graph has certain characteristics. It will normally be found that the
variables can be split into disjoint groups. The variables that are dependent on
a particular type-family can be grouped together. They will eventually be placed
ih the new module created for the type-family. However, a variable will be inde-
pendent of the type-families if it is declared to be of a type that is not declared in
the same moduie as the variable. Those variables which are independent of all the

type-families can temporarily be grouped together.

VAR ExampleVar: RECORD
Fieldl: TypeFamilyl;
Field2: TypeFamily?2

END;

Figure 9.3: Variable Declaration that is Dependent on Two Type-Families

Tilese characteristics of the variable/type association graph are typical for pro-
grams written in languages like Ada and Modula-2, where a programmer is en-
couraged to build new types in terms of previously declared types. It is possible
however for a variable to be dependent on more than one type-family. Consider
for example, the variable declaration given in Figure 9.3. The variable ExampleVar
is dependent on the types TypeFamilyl and TypeFamily2, which are representing
different type-families. As with the reference graph, this form of connection does

not prohibit module factoring, but indicates that some of the new modules will

180



have to be connected.

9.2.5 The Variable Usage Graph

The variable usage graph, G,y(N 4y, €4u) shows the dependence of the routine
groupé on variables. Variables that are classed as being dependent on one of the
routine groups are assigned to that entity group. For variables that are classed
as being independent of all the routine groups, the variable groups derived from
Gyt(Nu, €,) are considered. If a variable is classed as being dependent on one
of the type-families, it is assignéd to the entity group associated with that type-
family. If, on the other hand, the variable is classed as being independent of the
type-families then it is assigned to the entity group that is independent of all the
type-families. Just as a variable can be dependent on more than one type-family,
it can also be dependent on more than one routine group. The resolution of which
entity group the variable should be assigned to cannot be resolved automatically;

instead the programmer must make this decision.

A variable usage graph G,.(N s, £4) is obtained by applying the af-slicing
operation:

class=ROUTINE || class=v ar1aBLE(G(N, ), (€, €))

on G(N, £), the entity-to-entity graph for a module.
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9.3 Three Module Factoring Techniques

Three techniques for module factoring will be described in the following sub-
sections. Each of the techniques make use of the five graphs described above. The
m2dep program that is provided by Sun Microsystems Inc. with their Modula-2

system will be analysed and factorised.

Figure 6.16 on page 133 gives the module-to-module interconnection graph for
the m2dep system. In the analysis of this graph given in section 6.4, the modules
I0 and UnixSupport are identified as being fundamental modules. This means
that these modules are either providing a single service that is in some way critical
to the system, or they are potpourri modules providing several diverse facilities.
Module factoring provides a means by which it is possible to determine whether
a fundamental module is also a pdtpourri module. In the following sections, the
module UnixSupport will be analysed and factorised by means of the “grouping by
type-families” and “grouping by imports” techniques, while the module IO:Will be

analysed and factorised by means of the “grouping by state variables” technique.
Y 8 g by que.

9.3.1 Grouping by Type-Families
The Technique

The “grouping by type-families” technique factors a module by grouping vari-
able, constant and routine entities with the type-family on which they depend and
by forming a separate module for each of these groups. For example, if the routines

R1, R2 and R3 just use the types of one type-family, and the routines R4 and R5 use
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the types of another type-family, then the technique would cause Ri, R2 and R3 to
be placed in one module, and R4 and R5 to be placed in another. The technique

can specifically be used to factor out any abstract data types defined by a module.

In order to perform the “grouping by type-families” technique, it is necessary
to know which global entities are dependent on each other. This information can
be obtained in a form that facilitates analysis by producing the graphs described

above.

The type-connection graph can be used to determine the type-families, while
the call graph can be used to determine the routine groups. The reference graph
provides a means of determining the dependence between the routine groups and
the type-families. Ideally each routine group should be dependent on at most one
type-family thereby revealing concealed abstract data types. If there is a routine
group that is dependent on more than one type-family then module factoring using
the “grouping by type_:-fa,milies” technique is still possible, but greater programmer

involvement in the module factoring process is needed.

Consider for example the following segment of code

TYPE T1 = [0..9];
T2 = CHAR;

PROCEDURE P(paral: Ti; para2: T2);

The types T1 and T2 are independent and constitute different type-families.
However, the routine P is dependent on both T1 and T2, and so the routine group

containing the routine P is dependent on two type-families. In order to overcome

183



this problem, the programmer can either choose to house T1 and T2 in the same
module or else house T1 and T2 in different modules. Housing T1 and T2 in the same
module means that the programmer has decided to have one module to represent
two type-families; in this way a module rep’res-ents abstract data types with shared

operations as has been proposed by Osterbye [111].

Housing T1 and T2 in different modules means that the programmer does not
favour the interpretation of a module representing abstract data types with shared
operations. Instead, each module represents a single abstract data type. This then
forces the programmer to decide which of the two new modules will house the
routine P and t—herefore have to import the other type-family. This solution always
results in some of the moduies being dependent on each other because one module

has to import some members of type-families housed in other modules.

The routines of any routine group that are independent of the type-families
(because the routines do not use any of the type-families) may be placed in a
separate module that contains none of the type-families. It is possible for a routine
group to be indirectly dependent on a type-family because the routine group is
dependent on a state variable which in turn is dependent on a type-family: -In
order to determine if there are any indirect dependencies between routine groups
and type-families, the variable/type association graph and the variable usage graph
have to be analysed. Any routine groups that are neither directly of indirectly

dependent on any of the type-families are housed in a separate module.

At this stage any concealed abstract data types have been detected. It is now
necessary to check whether the new modules need to record any state informa-
tion. State information is any data that is stored in a state variable. In order

to do this, the variable/type association graph and the variable usage graph are
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analysed. If the module that is being factorised has no state variables then these

two graphs will be empty.

Ideally each state variable should be dependent on one type-family and one rou-
tine group, but as with the dependency between routine groups and type-families,
violation of this ideal does not prohibit module factoring by the “grouping by
type-families” technique. The variable/type association graph when analysed in
conjunction with the type-connection graph, reveals on which type-families each
state variable is dependent. If a state variable is d;apendent on more than one
type-family, then the programmer must decide in which module to house the state

variable and establish the appropriate importing links between these new modules.

The variable usage graph when analysed in conjunction with the call graph
establishes on which routines each state variable depends. If a state variable is
dependent on only one routine grouping then the state variable is housed with the
routine group. If a state variable is dependent on more than one routine group
then the programmer must decide in which module to house the state variable.
This state variable must also be exported to the new module housing the other
routine group. As a guideline on which entity groups should become modules it
is pre?ferable not to export variables. Therefore entity groups should be arranged
to minimise the number of state variables that are exported. This may mean an

occasional merging of different entity groups.

An Example

We now look at an example of module factoring using the “grouping by type-

families” technique. Consider the definition module for UnixSupport given in Fig-
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DEFINITION FOR C MODULE UnixSupport;
FROM  SYSTEM IMPORT BYTE, ADDRESS;

TYPE
Channels = INTEGER;
StringPointer = POINTER TO ARRAY [0 .. 0] OF CHAR;

CONST
maxFileNameLength = 1024;
stdin = 0; stdout = 1; stderr = 2;
EOL = 12C; ’
ReadOnly = O;
WriteOnly = 3001B;

PROCEDURE read(FileDesc : Channels;
VAR Buffer : ARRAY OF BYTE;
ByteCount : CARDINAL): CARDINAL;
PROCEDURE write(FileDesc : Channels;
VAR Buffer : ARRAY OF BYTE;
ByteCount : CARDINAL);

PROCEDURE open(FileName : ARRAY OF CHAR;
Mode : CARDINAL): Channels;

PROCEDURE close(FileDesc : Channels);
PROCEDURE strlen(S : ARRAY OF CHAR): CARDINAL;

TYPE
Comparator = PROCEDURE(ADDRESS, ADDRESS): INTEGER;
PROCEDURE strcmp(S1, S2 : ARRAY OF CHAR): INTEGER;
PROCEDURE gsort (VAR data : ARRAY OF BYTE;
elementCount : CARDINAL;
elementSize : CARDINAL;

compProc : Comparator);

END UnixSupport.

Figure 9.4: The Definition Module for UnixSupport
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ure 9.4. This is a non-standard Modula-2 definition module as there is no associ-
ated implementation module giving the elaboration of the routines. The module
UnixSupport is providing a Modula-? interface to predefined C routines. This nen-
standard medule does not adversely affect the module factoring technique: the only
effect of this non-standard module is that, as there is no implementation module,

all the entity dependencies are derived from the definition module alone.

Figure 9.5 gives the entity-to-entity graph for UnixSupport. This graph also
serves as the reference graph for UnixSupport as all the entities are either con-
stants, types or routines. The type-connection graph for UnixSupport is given in
Figure 9.6. This shows that there are three type-families each consisting of a single
type entity. Similarly, the call graph (Figure 9.7) for UnixSupport consists of 14
routine groups each consisting of a single routine (or constant). As UnixSupport
contains no state variables, the variable/type association graph and the variable
usage graph are both empty. Therefore UnixSupport is factorised by analysing the

type-connection graph, the call graph and the reference graph only.

As the type-connection graph and the call graph show each of the entities
to be independent, the entity groups used to factor UnixSupport will be those
obta,ixlned from the reference graph. Figure 9.5 shows that the type Comparator and
the routine gsort are dependent, and the type Channels and the routines open,
close, read and write are dependent. Therefore, the reference graph has revealed
two abstract data types which can be removed from UnixSupport and housed in
their own modules. The remaining entities will be placed in a new module called

UnixSupport2. The three new definition modules are given in Figure 9.8.

The module-to-module interconnection graph for the new system is given in

Figure 9.9. It shows the new modules, ComparatorADT and ChannelsADT to be
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Comparator StringPointer Channels

Crwe ) (Crwee)

Pa_raﬁleterm parame'ter=0f°'fiype
of-~type
(ROUTINE)
gsorxrt
close open
parameter-of-type parameter-of-type
write read
maxFileNameLength strlen strcmp
CONSTANT ROUTINE ROUTINE
stdin stdout stderr
CONSTANT CONSTANT (CONSTANT )
EOL ReadOnly HriteOnly

Figure 9.5: The Entity-To-Entity Interconnection Graph for UnixSupport

Comparator Channels StringPointer

Figure 9.6: The Type-Connection Graph for UnixSupport
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gsort
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stderr
CONSTANT

WriteOnly

CONSTANT

Figure 9.7: The Call Graph for UnixSupport

specialised modules. This is consistent with the fact that each of these modules

provides an abstract data type to the system.

9.3.2 Grouping by Imports

The Technique

Entities that are connected because they perform similar functions in a system

are typically imported into the same set of modules. The “grouping by imports”

technique suggests that entities that are imported into the same set of modules

should be declared by the same module. As a consequence, entities that are im-

ported into a different set of modules should be declared by different modules.
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DEFINYTOON YOR G MODULE Couwpacatodd)t;
FROM SYSTEM IMPORT BYTE, ADDRESS;

TYPE
Comparator = PRUCEDURE(ADDRESS, ADDRESS): INTEGER;
PROCEDURE ¢gsort (VAR data : ARRAY OF BYTE,

elementCount : CARDINAJL,;
elementSize : CARDINAL,;

compProc : Comparator) ;
END ComparatorADT.

DEFINITION FOR C MODULE ChannelsADT;
FROM SYSTEM IMPORT BYTE;
TYPE
Channels == INTEGER;
PROCEDURE read(FileDesc : Channels;
VAR Buffer : ARRAY OF BYTE;
ByteCount : CARDINAL): CARDINAL;
PROCEDURE write(FileDesc : Channels;
VAR Buffer : ARRAY OF BYTE;
ByteCount : CARDINAL);
PROCEDURE open(FileName : ARRAY OF CHAR;
Mode : CARDINAL): Channels;
PROCEDURE close(FileDesc : Channels);
END ChannelsADT.

DEFINITION FOR C MODULE UnixSupport?2;
TYPE
' StringPointer = POINTER TO ARRAY [0 .. 0] OF CHAR;
CONST
maxFileNameLength = 1024;
stdin = 0; stdout = 1; stderr = 2;
EOL = 12C;
ReadOnly = 0; WriteOnly = 3001B;
PROCEDURE strlen(S : ARRAY OF CHAR): CARDINAL;
PROCEDURE strcmp(S1, S2 : ARRAY OF CHAR): INTEGER;
END UnixSupport2.

Figure 9.8: The Three New Definition Modules
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Figure 9.9: The Module-to-Module Graph for the Second Version of m2dep




The “grouping by imports” technique has two main phases. In phase 1, entity

groups are established; and in phase 2, any inter-group connections are resolved.

Phase 1 of this technique invclves determining which modules make use of
another module’s exported entities. Some languages, like Eiffel, provide selective
export capabilities. With these languages it is possible to determine the different
entity groups by only analysing the export clause of the module to be factorised.
However, in other languages this is not possible and, instead, all the modules that
constitute the program have to be examined to determine if they use any of the

exported entities of the module to be factorised.

When the different entity groups have been derived, these groups are then used
as the basis for creating new modules to replace the given module. Each entity
group could be used to form a new module, but there are situations when this
would not be desirable. Any two entity groups can either be independent of each
other (when neither of the groups shares entities) or be subgrouped (when one of

the groups is regarded as being a subgroup of the other).

Entity groups that are classed as being subgrouped can be merged without
violating the principle behind this factoring technique. Since the supergroup is
connected to all the modules that the subgroup is connected to, the merging of
the two groups can be achieved without adding extra module connections. When
the entity groups are classed as being independent, then the two groups should be

represented by separate modules.

When the different entity groups that are to form the new modules have been
established, any inter-group connections that exist should now be detected. This

constitutes phase 2 of the “grouping by imports” module factoring technique. Fur-
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thermore, a distribution of the module’s private entities must also take place.
3 P

Any private entities that are dependent on only one of the entity groups are
placed in the same module as that entity group, and those entities remain private.
If on the other hand a private entity is dependent on two or more of the entity
groups then it is placed in a separate module and imported by the modules that

contain the entity groups. This entails making some of the private entities public.

Thus, in order to perform the “grouping by imports” technique it is necessary
to determine the dependencies between the private entities. As with the “grouping
by type-families” technique, this analysis can easily be performed once the graphs

described in section 9.2 have been produced.

An Example

Consider the module UnixSupport2 given in Figure 9.8. By examining the
entity-to-module interconnection graph for the m2dep program, Tables 9.1 and 9.2
are obtained. The tables reveal which entities from UnixSupport2 are imported

by which modules.

" Group 1 | Group 2 ] Group 3 [ Group 4 [Group 5 "
maxFileNameLength | StringPointer | EOL stdin stdout
stderr strlen ReadOnly | WriteOnly
strcmp

Table 9.1: The Original Entity Groups for UnixSupport2

Using programmer expertise, some of the entity groups given in Table 9.1 can
be merged. From Table 9.2 the entity in Group 5 is seen to be imported by the

module ModuleHandling only, while the entities in Group 1 are imported by both
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[[ Group | Module Sets |

Group 1 [ ModuleHandling, OptionHandling
Group 2 | ModuleHandling, OptionHandling, 10
Group 3 | XU

Group 4 | $NONE$

| Group § | ModuleHandling

Table 9.2: The Sets of Importing Modules for UnixSupport2

of the modules ModuleHandling and OptionHandling, and the entities in Group 2
are imported by ModuleHandling, OptionHandling and I0. As the set of importing
module for Group 5 is a subset of those for Group 1 and Group 2, the entity in
Group 5 can be merged with either Group 1 or Group 2 without increasing the
number of dependencies between modules. Using knowledge of the Unix operating
system we can see that stdout is similar in function to stderr in Group 1, and so

Group 5 is merged with Group 1.

Table 9.2 shows that the entities in Group 4 are not imported by any of the
modules in the system. This allows the programmer the freedom to remove the
entities without affecting the execution of the program. Alternatively the program-
mer could place these entities into any of the other entity groups. Programmers
often implement a module with a view to future needs, so instead of removing
the redundant entities they can be reallocated to different entity groups. Group 1
now contains the entity stderr and stdout (as a result of merging Group 5 with
Group 1); as these entities are similar in function to stdin in Group 4, stdin is
moved to Group 1. Similarly the entity WriteOnly in Group 4 is moved to Group 3

as it is similar in function to ReadOnly in Group 3.

The entities in Group 2 are related to the string data type, this means that the

entity stremp in Group 1 should really be in Group 2 if each of the entity groups
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were supposed to represent a different responsibility assignment. Table 9.2 shows
that the set of importing modules for Group 1 is a subset of that for Group 2, and
so entities from Group 1 can be moved to Group 2 without increasing the number

of dependencies. Therefore strcmp is moved from Group 1 to Group 2.

i Group 1 [ Group2 | Group 3 |
maxFileNameLength | Strihg?&iﬁﬂ-}f EOL
stderr strlen ReadOnly
stdin strcmp WriteOnly

| stdout

Table 9.3: The Final Entity Groups for UnixSupport2

Table 9.3 gives the final entity groups for UnixSupport2.

9.3.3 Grouping by State Variables

The Technique

The “grouping by state variables” technique factors a module by grouping con-
stant and routine entities with the state variables that they use. This module fac-
toring technique in effect detects any abstract-state machines within a module and
extracts them. This module factoring technique is restricted to grouping variable,
constant and routine entities because the “grouping by type-families” technique

can be used to group type, variable, constant and routine entities.

The “grouping by state variables” technique uses only the call graph and the
variable usage graph. The other graphs contain type entities and therefore are
of no relevance to this factoring technique. The call graph is used to obtain the

routine groups and the variable usage graph is used to show which routine groups
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are dependent on which state variables. Any routine groups that are dependent on
the same state variable are merged into a single group. Any routine groups that
are dependent on none of the state variables are merged intc a single group. In
this way the programmer is eventually presented with a set of entity groups such
that one group may be a set of routines that are independent of the state variables,
and one or more groups consist of variable, constant and routine entities. Each of

these entity groups can be made into a separate module.

An Example

Figure 9.10 gives the definition module for the module I0 from the m2dep
system, and Figure 9.11 gives an outline of its implementation module. The bodies
of the routines have been omitted, but the entities they use are listed. This module
does not have any type entities, and so the “grouping by type-families” technique

is not possible.

Figure 9.12 gives the entity-to-entity graph for the module 10. The absence
of any type entities means that this is also the variable usage graph for 10. The
call graph for I0 in Figure 9.13 shows that the routines WriteChar, WriteLn and
WriteCard are dependent and so constitute a single routine group. The other rou-
tines are independent and so each routine constitutes a routine group. The variable
usage graph shows that the routines ReadChar, CloseSource and OpenSource all
use the state variables sourceFile and sourceOpen, and so they are all grouped |
tbgether, along with the state variables srcBuff and srcBuffIndex, which are
used only by ReadChar, and with the state variable sourceChars which is used by

the routines ReadChar and CloseSource.

196



DEFINITION MODULE 10;

FROM UnixzSuppoxrt IMPORT
Channels, StringPointer;

PROCEDURE WriteChar(ch: Channels; C: CHAR);

PROCEDURE HriteString(ch: Channels; Str: ARRAY OF CHAR);
PROCEDURE HriteStringIndirect(ch: Channels; sp: StringPointer);
PROCEDURE WriteLn(ch: Channels);

PROCEDURE HriteCard{(ch: Channels; C: CARDINAL; Width: CARDINAL);
PROCEDURE OpenSource(namePtr: StringPointer): BOOLEAN;

PROCFDURE ReadChar (VAR CH: CHAR);

PROCEDURE CloseSource;

END I0.

Figure 9.10: The Definition Module for I0

I Group1 | Group 2 |
OpenSource WriteChar
CloseSource | WriteString
ReadChar WriteStringIndirect
sourceFile WritelLn
sourcelpen WriteCard
srcBuff
srcBuffIndex
sourceChars

Table 9.4: The Final Entity Groups for 10
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LMWL FMENTALLON MODULE 10;
¥ROM UnixzSupport IMPORT EDL, StzingPoiater, Channels, open,
close, wcad, Readlnly, write, stxlen;

VAR
sourceFile : Channels; sourceUpen : BOOLEAN;
grcBuff : ARRAY [0..2047] OF CHAR;

srcBuffIndex : CARDINAL; sourceChars : CARDINAL;
PROCEDURE WriteChar(ch: Channels; C: CHAR);

PROCEDURE WriteString(ch: Channels; Stxr: ARRAY OF CHAR);
PROCEDURE HriteStringIndirect(ch: Channels; sp: StringPointer);

PROCEDURE WriteLn(ch: Channels);
(* WriteChar is invoked  *)

PROCEDURE HWriteCard{ch: Channels; C: CARDINAL; Width: CARDINAL);
(* HriteChar is invoked =)

PROCEDURE OpenSource(namePtr: StringPointer): BOOLEAN;
(* sourceFile is defined and referenced  *)

(* sourceOpen is defined %)

PROCEDURE ReadChar (VAR CH: CHAR );

(* sourceFile is referenced %)
(* sourceOpen is referenced %)
(# sourceChars is defined and referenced *)
(% srcBuff is defined and referenced %)

+ (% srcBuffIndex is defined and referenced %)

PROCEDURE CloseSource;

(* sourceOpen is defined and referenced  *)
(* sourceChars is defined %*)
(% sourceFile is referenced %)

BEGIN sourceOpen:= FALSE END IO.

Figure 9.11: The Implementation Module for I0
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Figure 9.13: The Call Graph for 10

As a result of grouping entities around the five state variables of 10, we obtain
the groupings given in Table 9.4. The entities in Group 1 are the state variables
and the routines that use them; the entities in Group 2 are the routines that are

independent of the state variables.

Thus, the result of the “grouping by state variables” suggests that the entities

in these two groups should be put into separate modules.

Here the module factoring process has clearly separated the entities associated
with input from those associated with output operations. Such a clear separation
between the different entity groups should normally occur within a module. This
is because a state variable is a device used to help implement such algorithms. A
state variable is used within a module to either: transport data from one routine
to another; to transfer status information to other routines which they may use
in conditional statements; or the state variable may be a means to record data so

that a routine can reuse that data when it is re-executed.
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Taothic caastor Slegs udue fackoring lechnigues have besn described:

1. Grouping by Type Families

This technique detects abstract data types and extracts them.

2. Grouping by State Variables

This technique groups entities according to the state variables that they use.

3. Grouping by Imports
This technique groups entities because they are used by the same set of

importing modules.

Each of these techniques has merit, and generally there is no one technique that
should be used before the others in all situations. However, it is recommended that
the factoring techniques be used in the order listed above unless the maintenance
programmer, from his knowledge of a system, believes that a different ordering
would be better suited to the module. This ordering of the module factoring
techniques is recommended because it will find the different services of a module in
an order that corresponds to the current thinking about the services that modules

should provide.

The “grouping by type-families” detects the existence of abstract data types
within a module. The use of abstract data types in programming has gained
widespread acceptance, e.g., Naphtali and Rich [110] describe experiences with
designing a system around abstract data types and Linden [96] describes how the
use of abstract data types can make a program easier to maintain. The “grouping

by state variables” groups routines around the state variables that they use, thereby
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creating abstract-state machines. Creating this form of module can help reduce the
problem of a module having to export a variable. The “grouping by imports” can

(£

then be used to create the “named collection of declarations” and the “group of

related program units” modules.
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Chapter 10

Design of a Relational Database

10.1 Imntroduction

So far, inter-module code analysis has been discussed in terms of operations
on the module-to-module, entity-to-module and entity-to-entity interconnection
graphs. It is impractical to regenerate the information needed for the graphs for
every inter-module code analysis operation. Therefore this information should be
stored in a form that allows a maintenance programmer to access the information in
an efficient way. Using the existing work on databases, a database schema has been
designed that will record the necessary information on the dependencies between

the entities of a system.

In section 10.2 several different data storage mediums are discussed and the

reasons for choosing a relational database are given. Section 10.3 introduces the
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necessary relational database terminology, and finally section 10.4 describes how

the relational database schema was derived.

10.2 Reasons for Choosing a Relational Database

The amount of information needed to be recorded for inter-module code anal-
ysis is large, especially when dealing with large systems. In order to store this
information in a form that facilitates efficient data retrieval it is appropriate to

utilise some of the existing work on databases.

Three of the existing database models are:

1. Hierarchical

Where the database has a tree structure.

2. Network

Where the database has a graph structure.

3. IRelational

Where the database is unstructured and consists of a collection of tables

called relations.l

For inter-module code analysis it is important that the database be amenable
to answering several forms of queries, many of which may not be envisaged at the
time the database is designed. The relational model describes a database that
is better suited to these needs. The hierarchical and network models are struc-

tured databases where the links between the data is designed into the database.
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This means that the database is going to be more cumbersome with unanticipated
queries than the relational model. With the relational model, the links are estab-
lished by the data itself, and therefere information from one relation can be used

to search another relation. Different queries will involve searching new relations.

Yau and Grabow [173] demonstrate the use of a relational database to represent
programs written in Pascal. This paper demonstrated the feasibility of using a rela-
tional database to model a program written in a block structured language. Other
authors have built on this work to create software tools that assist a programmer

in scanning the code of a program, e.g., Glagowski [61] and Linton [97].

Each of these relational databases is used to model a different languages. The
work of this thesis involves analysis with respect to a particular program construct
— the module. A relational database is therefore needed that will model this
construct. the resulting database will not be language dependent, so it can be
used to model the inter-module connections in several languages. The relational
database designed in this thesis should also be able to model the inter-module

connections in a program that is written in several languages.

10.3 Relational Database Terminology

This section introduces the relational database terminology and notation that
is needed in order to discuss the relational database schema that is being proposed

for inter-module code analysis.

A relational database consists of a collection of tables, each of which is assigned
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a unique name. With relational databases, these tables are known as relations.
Each relation consists of a collection of tuples. A tuple is an ordered collection of
values, that dencte scme relaticnship between these values. Each of the values in
a tuple is known as an attribute value. An attribute value is a particular value
from a domain of values which is referred to as the attribute type. For the sake of
brevity, the term attribute will be used to refer to both an attribute type and an
attribute value where the context can identify the intended meaning. Figure 10.1

gives an example of a relation with the different parts of the relation highlighted.

The
Relation Attribute
Name Types
stock | part#|part-description|quantity_in_stock An
= Attribute
P1 nut ° —— Value
A P2 bolt 8500

Tuple {( P3 washer 9750 )

P4 nut 2326

Figure 10.1: An Example of a Relation

A relation scheme (or scheme) names the associated attribute types and
corresponds to the programming language notion of a type definition. It has to
be instantiated to a relation. (This is analogous to a type being instantiated to a
variable.) The relation given in Figure 10.1 has the relation scheme:

Stock-scheme = (part#, part_-description, quantity_in-stock)
and this is instantiated to a relation by

stock(Stock-scheme)
For simplicity, these two will be abbreviated to:

stock(part#, part_description, quantity-in_stock)
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In order to retrieve selected tuples from a relation, it is important to be able
to distinguish between the different tuples. This is done via the key attributes.
Candidate keys are the minimum set of attributes nceded to identify a tuple
uniquely. For a given relation, there can be more than one set of candidate keys.
The set of attributes chosen by the database designer as the principle means of

identifying tuples within a relation is called the primary key.

10.3.1 The Relational Algebra

When information is stored in a relational database, it is important that a
user can easily access this information. In order to facilitate this, several query
languages have been developed. The procedural query language relational algebra

is used in this thesis to interrogate a relational database.

There are five fundamental operations in the relational algebra. These are:

1. select,

B

. project,
3. cartesian product,
4. union, and

5. difference.

All of these operations produce a new relation as their result. Each of these oper-

ations is described briefly below.



The select operation selects all the tuples from a given relation that satisfy a
given predicate. The select operation is denoted by the character ¢ and takes the

form,

Gpredicate(relatlon)

Therefore, to select those tuples from stock that correspond to a nut then the

following selection operation can be used,

Opart_description="nut" (Sto Ck)

The relation resulting from this operation is given in Figure 10.2.

stock2 —_— —o
part# | part_description | quantity-in.stock

P1 nut 5000

P4 nut 2326

Figure 10.2: The Result of opart_description="nut”(stock)

The project operation is similar to the select operation in that it operates on
only one relation. Whereas the select operation extracts tuples (rows) from a
relation, the project operation extracts columns of attribute values from a relation
by specifying the attribute types that are to appear in the resulting relation. A

project operation is denoted by the character II, and takes the form,

Hattribute-names (Telation)

As an example, in order to extract the column of part# values that are contained
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in the relation stock, then the following projection operation can be used,

Mpar s (stock)

The result of this operation is given in Figure 10.3.

Figure 10.3: The Result of a project Operation

location
part# | shelf
P1 A
P2 B

Figure 10.4: The Relation location

The cartesian product operation, denoted by x, is used with two relations. A

cartesian product operation has the form,
relationl X relation2

The relation scheme for the relation resulting from this operation is the concate-
nation of the relation scheme for relation2 to that for relationl. As an example,

consider the cartesian product operation,

stock X location
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where the relation location is that given in Figure 10.4. The result of this oper-
ation is given in Figure 10.5. The original relation name is used as a prefix to the

attribute name so as to be able to distinguish between the different attributes.

[ stock. [ stock. stock. location. | location.
part# | part_description | quantity_in_stock | part# shelf
P1 nut 5000 | PI A
P2 bolt 8500 P1 A
P3 washer 9750 P1 A
P4 nut 2326 P1 A
P1 nut 5000 P2 B
P2 bolt 8500 P2 B
P3 washer 9750 P2 B
P4 nut 2326 P2 B

Figure 10.5: The Relation Resulting from stock X location

The union operation, denoted by U, combines two relations that have the same
relation scheme. The relation union operation takes the same form as the set union
operator, i.e.,

relation! U relation?

The resulting relation contains the tuples from relation! together with any tuples

from relation2 that are not in relationl.

The diﬁerenbe operation, denoted by —, provides a means of finding tuples that

are in one relation but not the other. The result of,
relation! — relation?

is the relation containing those tuples in relation! but not in relation2.
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It is possible to combine operations. For example, the answer to the query,

“find the part# associated with a nut part”, can be obtained by the operation,

Hpm# (Upart_descript ion="nut” ( st OCk) )

The result of this compound operation is,

nut-part

part#
P1
P4

The above five operations are sufficient to express any relational algebra query.
Some forms of queries are common enough however, to deserve a special notation, -

thereby simplifying the query.

Relation intersection is denoted by the operator N. The intersection operator

can be built from the difference operator, i.e.,

rlNr2=rl—(rl —r2)

The theta join operation is a binary operation that combines the select and
cartesian product operation. A theta join operation is denoted by the symbol Mg,
where the subscript O represents the predicate that is to be used by the select
operation. TheA theta join operation is built up from the cartesian product and

select operations as follows,

Tl Mg 72 = ge(rl X r2)
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The natural-join operation, denoted by the symbol ™M, is a specialisation of the
theta join which forces equality on those attributes that appear in both relations.

Consider for example, the following natural join operation,
stock M location
This is equivalent to
stock Mgtock part#=locationpart# location
which in turn is equivalent to,

Ostockpart#=locationpart#(Stock X location)

The result of this operation is,

stock-loc
stock. stock. stock. location. | location.
part# | part_description | quantity-in-stock | part# shelf
P1 nut 5000 P1 A
P2 bolt 8500 P2 B

10.4 Rationale for the Relational Database De-

sign

Relational databases were devised by Codd [35] to overcome the problem of
application programs being dependent on the representation of data. With the
hierarchical and network models, application programs are dependent on the links

designed into a database rather than on the data. Techniques for deriving the
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relation schemes of a database have been given by Codd [35] and Kent [85]. The
process of deriving relations from a description of the data that is to be stored is
called normalisation. There are five main normal forms, cach normalisation step
being a refinement of the normalisation. In this thesis only the first four normal

forms will be used.

The first normal form involves fixing the length of the schemes. This is necessary
because relational database theory does not allow varying length schemes. The
second and third normal forms ensure that thereis a coﬁsistent relationship between
key and non-key attributes. Under fourth normal form a scheme cannot contain
two or more iﬂdependent multivalued facts relating to another attribute. Each of

these normal forms will be briefly discussed below.

10.4.1 F@ur Normal Forms

Consider a scheme of the form,
actress(actress-name, {film-title})

The attribute in curly brackets {...} can occur zero or more times for each instance
of the attribute actress-name. The length of the scheme is fixed by making film-
title have only one value per tuple. In order to do this, the value of the attribute
actress-name has to appear several times in the relation. This means that instead

of having a relation of the form,
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actress

_actressname [ film-title
Marilyn Monroe | Bus Stop, The Misfits |
Elizabeth Taylor |  National Velvet

the following relation is used,

actress
actress-name film-title
M‘M;rrilyn Monroe Bus Stop N
Marilyn Monroe The Misfits
Elizabeth Taylor | National Velvet

With second normal form, a non-key attribute must relate to all the key at-
tributes and not just a subset. When a non-key attribute relates to only a subset
of the key attributes then that relation scheme is decomposed into other relation
schemes where the non-key attribute is dependent on the whole key. Consider for

example, the scheme,

store(part#, warehouse, qty, warehouse-addr)

The attributes that form the primary key are in slanted type face. The non-key
attribute warehouse-addr relates only to the key attribute warehouse. Therefore
the scheme store does not conform to second normal form. To do this, store is

decomposed into the following two schemes,

store(part#, warehouse, qty)

warehouse(warehouse, warehouse-addr)

With third normal form, a non-key attribute cannot relate to another non-key

attribute and not to the key attribute. Consider for example, the relation scheme,
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worker(employee, department, location)

The atiribute Jocaiion relaies to the aitribute department and not to employee.
As a tesult the relation scheme worker is decomposed into the following two

schemes,

staff(employee, department)

work-area(department, location)

Consider the scheme

employee-rel(employee, skill, language)

This scheme conforms to the first three normal forms, but there is no relation be-
tween the attributes skill and language. As a result, this scheme violates fourth
normal form. To comply with forth normal form, the scheme employee-rel is de-

composed into the following schemes,

, employee-skill(employee, skill)

employee-lang(employee, language)

10.4.2 Relations for Modules

In order to create a relational database structure for inter-module code analysis,
it is necessary to describe the data that the relational database will have to record.

In order to do this, the idea of abstract syntaz from the work on the formal definition
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of programming languages will be used. The full abstract syntax being used in this
thesis is given in Appendix C. Portions of this description will be introduced in

this chapter as they are needed.

With the module languages, a program is composed of a collection of global

modules. This is denoted by the description:

Program :: s-program : set of Global-Module

Global-Module :: s-global-module : Module-Entity

where

inv-Global-Module(mk-Global-Module(gm)) & region#(gm) = 0

Module-Entity :: s-exports : FEzported-FEntities
s-tmports : Imported-Entities
s-regionF# : N

s-region : Region

From this description we get the following scheme,

system1(sys-id, {mod-id}, {{Ents)}})

The attributes delimited by angled brackets (...) are attributes whose full elabo-

ration is not yet relevant.

The record structure given above, is a variable length structure. Therefore this
record structure must be made to conform to first normal form by making it a fixed
length record. In order to do this, the multiple occurrences are replaced by single

occurrences. This creates the following relational scheme,



system2(sys-id, mod-id, (Ents))

The attributes enclosed by (...} apply only tc the key attribute mod-id. To
make the scheme system2 conform to second normal form it can be decomposed

into the following schemes,

program-components(sys-id, mod-id) (*1)

modulesi(mod-id, (Ents))

An implicit assumption behind this decomposition of system2 is that a global
module can be uniquely identified by its identifier alone. This is a valid assumption
if the database is to record information on only one system. If a database is to
record information on more than one system, then the attribute sys-id is also needed
to guarantee that a global module is uniquely selected. In this thesis we will assume

that the relational database is to record information on only one system.

The attribute (Ents) can be expanded to

{{Ezp-Ents)}, {(Imp-Eﬁts)}, (Region#), ( Region)

This means that the scheme modules1 now becomes
modulesi(mod-id, {{Ezp-Ents)}, {{Imp-Ents)}, (Region#), ( Region))

This scheme has two variable length attributes, namely: (Ezp-Ents), (Imp-Ents).

This scheme is normalised with respect to first normal form giving,

moduleASQ(mod—id, (Ezp-Ents), (Imp-Ents), (Region#), ( Region))
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This scheme satisfies first and second normal forms, but the non-key attributes are
independent of each other (except for (Region#), and (Region)), and so modules?
can be ncrmalised with respect to third norinal form. By norinalising the scheme

modules? in this way, the following schemes are derived:

mod-exports(mod-id, (Ezp-Ents))
mod-imports(mod-id, (Imp-Ents))

mod-region(mod-id, (Region#), (Region))

Each of these schemes is further refined below.

Consider the first scheme mod-exports. The abstract syntax describes the field
s-ezports as being of type Ezported-Entities, and Erported-Entities is described as,

Ezported-FEntities :: s-exported-entity : map Entity to Module-Set
Entity :: s-entity-id : Entity-Id

Module-Set = set of Module-1d

This can be represented by a scheme of the form,

mod-exports2(mod-id, {ent-id, {imp-mod-id}})

This record structure describes a variable length record, so it has to be normalised

with respect to first normal form. This creates the scheme,

exports(mod-id, ent-id, imp-mod-id) (*2)

If the database is to be used for languages that allows overloading of identifiers,

then the abstract syntax for Entity would have to be more detailed, e.g.,

218



Entity 1 s-entity-id : Entity-1d
s-entity-class : Fntity-Class

Entity-Class — Constant | Type | Variable | Routine | Module

and the exports scheme resulting from this new description would have to have
an attribute for Entity-Class. For simplicity the database schema being described

will assume that overloading of entities is not being allowed.

Consider now the scheme mod-imports. The record Module-Entity describes the
field for imported entities as being of type Imported-FEntities. The VDM description

for Imported-Entities is

Imported-Entities :: s-imported-entities : map Module-Id to Entity-Set

Entity-Set = set of Entity

The Module-Id referred to in the abstract syntax for Imported- Entities refers to the
supplier module that is providing the entities in Fntity-Set. Therefore we obtain

the following scheme

mod-imports2(mod-id, {exp-mod-id, {ent-id}})

By normalising mod-imports2 with respect to first normal form the following

scheme is derived

imports(mod-id, exp-mod-id, ent-id) (*3)



10.4.3 The Relations for a Region

The last scheme to be considered as a result of having decomposed the scheme
modules? is mod-region. The attribute, (Region#), is a positive integer that cor-
responds to the block number. The attribute (Region) corresponds to the following

abstract syntax,

Region :: s-constants : map Constant-Id to Constant-Set
s-types : map Type-Id to Type-Set
s-variables : map Variable-Id to Variable-Set
s-routines : map Routine-Id to Routine-Set
s-modules : map Module-Id to Module-Set
s-body : Body

Constant-Set = set of Constant-Entity
Type-Set = set of Type-Entity
Variable-Set = set of Variable-Entity
Routine-Set = set of Routine-Entity

Module-Set = set of Module-Entity

This means that the scheme mod-region expands to

mod-region(mod-id, region#, ( Constant), ( Type), ( Variable), ( Routine),
| (Module), {Body))

This scheme does not satisfies third normal form, because the attributes enclosed
by the angled brackets are independent of each other. Normalising mod-region

with respect to third normal form gives the schemes:
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mod-const(mod-id, region#, (Constant))
mod-typo(mod-id, region#, (Type))
wod~var(mod-Id, regions#,  Veriable))
mod-rout(mod-id, region#, (Routine))
mod mod(mod-id, regiong#, (Module))

mod-body(mod-id, region#, (Body))

With the scheme mod~mod, the same form of decomposition that is described in

subsection 10.4.2 can be performed to obtain the schemes:

local-module(mod-id, region#, local-mod-id, c-region#) (*4)
local-module-exports(mod-id, region#, local-mod-id, ent-id) (*5)
local-module-imports(mod-id, region#, local-mod-id, ent-id) (*6)

The relation scheme local-module-exports does not have to name the modules
that the entities are exported to because it has to be the module containing the
local module declaration. This is because of the definition of a module given on

page 29.

Fi‘nally consider the scheme mod-body. The body of a module or routine is a
sequence of statements. For the purposes of inter-module code analysis the body
is considered in terms of the entities used. The attribute (Body) in mod-body

corresponds to the abstract syntax

Body :: s-constants-used : set of Constant-Id
s-type-used : set of Type-Id
s-variable-used : set of Variable-Id

s-routines-used : set of Routine-Id
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This means that the scheme mod--body expands to,

wodbody(mod-id, region#, {const-id}, {type-id}, {variable-id}, {routine-id})

Normalising this with respect to first normal form gives,

mod-body2(mod-id, region#, const-id, type-id, variable-id, routine-id)

The attributes for each of the different classes of entities are independent of each
other. Therefore this scheme can be normalised with respect to fourth normal form

to give the following schemes,

constants-used(mod-id, region#, const-id) (*7)
types-used(mod-id, region#, type-id) (*8)
variables-used(mod-id, region#, variable-id) (*9)
routines-used(mod-id, region#, routine-id) (*10)

10.4.4 The Relations for Type Entities

A type entity is described in the abstract syntax as follows,

Type-Entity :: s-type : Type-Constructor

In many programming languages, it is possible for a type to be constructed from
other types. For example, the following Modula-2 fragment introduces a record
type with a field that is an array of set elements, and the indices of the array are

specified as a subrange.

222



RECORD
Field: ARRAY [i..10] OF BITSET

END

In erder to deal with this, each type is given a type number that is unique within
a given module. In this way, combining a mod-id attriBute with a type# attribute
will uniquely determine a type. In the above example, the record could have the
type number I, the array 2, the subrange 3and the set 4. Each form of type requires
different information to be recorded, e.g., a record needs to store information on
each of the fields, an array needs to store information on each of the index types
and information on the element type, etc. This requires that different relations be
created for each of the types. (These relations are given in Appendix D.) To aid
the searching of these relations, a special relation called type has been created.

The type relation has the scheme,
type(mod-id, type#, type-fornm) (*11)

The value for type-form indicates which relation to interrogate for more informa-
tion on the type. For the Modula-2 record type given above, the following instance

of the type relation is created.

type
mod-id | type# | type-form
M 1 RECORD
M 2 ARRAY
M 3 SUBRANGE
M 4 SET
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10.4.5 The Relation for Entities Declared in a Regiom

Consider now the scheme mod-type that was obtained after decomposing the

scheme mod-region. The field in Region that corresponds to types has the form
map Type-Id to Type-Set

where

Type-Set = set of Type-Entity

Type-Entity :: s-type : Type-Constructor

The Type-Constructor information is recorded in the database by giving a type
declaration number and using the type relation in association with the relations

needed for the different forms of types. Therefore the scheme for a type declaration

becomes,
type-dec(mod-id, region#, ent-id, type#) (*12)

The schemes mod-const and mod-variable can be expanded in a similar way

to create the schemes,

constant-dec(mod-id, region#, ent-id, type#) (*13)

variable-dec(mod-id, region#, ent-id, type#) (*14)

Finally, the scheme mod-rout will be refined. The unexpanded attribute { Routine)

is associated with the abstract syntax for Routine-Entity.
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Routine-Entity :: s-formal-parameters : Parameters
s-result-type : Type-Constructor
s-region#t : N
s-region : Region

Pgrameters = map Para-Id o Type-Constructor
This creates a variable length record structure of the form,

mod-rout2(mod-id, region#, ent-id, {para-id, p-type#}, r-type#, c-region#,
(Region))

Normalising this structure with respect to first normal form gives,

mod-rout3(mod-id, region#, ent-id, para-id, p=type#, r-type#, c-region#,

(Region))

This record structure does not conform to second normal form because the at-
tributes r=type#, c-region#, (Region) to not relate to the key attribute para-id.

Normalising mod-rout3 with respect to second normal form gives the schemes,

Ll

para-id-rel(mod-id, region#, ent-id, para-id, p=type#) (*15)

mod-rout4(mod-id, region#, ent-id, r~type#, c-region#, (Region))

Normalising the scheme mod-rout4 with respect to third normal form we get the

schemes,

type-of-routine(mod-id, region#, ent-id, r-type#) (*16)

mod-rout5(mod-id, region#, ent-id, c-region#, (Region))
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The scheme mod-rout5 can be expanded and decomposed in the same way that
mod-region is on page 220 but this would result in unnecessary relations being
created. The primary key for the schemes dealing with entity declarations consists
of a declaration of: mod-id, the identifier of the global module in which the entity is
declared, region#, the number of the actual region in which the entity is declared,
and ent-id, the identifier of the entity being declared. Any entities that are declared
within a routine can therefore be represented by the relations already derived. As

a result the scheme mod-rout5 become,

region-of-routine(mod-id, region#, ent-id, c-region#) (*17)

10.4.6 An Example

MODULE EntityDeclarations;
VAR vi: INTEGER;
PROCEDURE P1;

VAR vi: CHAR;
BEGIN

END P1;
BEGIN

END EntityDeclaratioms.

Figure 10.6: A Modula-2 Program Module to Demonstrate Entity Declarations

To demonstrate the validity of this database schema, consider the Modula-2

program module given in Figure 10.6. The relations for this module declaration
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are given in Figure 10.7. The variable vi declared in routine P1 is distinguished

from the state variable v1 by the region number used as the primary key.

program-components

sys-id mod-id |
ben‘fcij;ypeclarations EntityDeclarations
type-of-routine _._ e
mod-id region# | ent-id | x-type#
EntityDeclarations 0 ] Pi 2
variable-dec o
mod-id region# | ent-id | type#
EntityDeclarations 0 vi 1
EntityDeclarations 1 vi 3
type
mod-id type# | type-form
EntityDeclarations | 1 | QUALIDENT |
EntityDeclarations 2 QUALIDENT
EntityDeclarations 3 QUALIDENT
qualident
mod-id type# | ent-id
EntityDeclarations 1 INTEGER
EntityDeclarations 2 $voID$
EntityDeclarations 3 | CHAR

Figure 10.7: The Relations for the Entity Declarations in Figure 10.6

(*11)

10.5 The Full Relational Database Scheme

Appendix D gives the full relational database schema that is proposed for inter-

module code analysis. It does not cater for inheritance or instantiation. This is

because this thesis has concentrated on analysing systems with respect to the uses

and local-to dependencies.
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The relations that are used to record the information about the different forms of
types are given in this appendix. One of these relations is subrange-delimitars
which records the names of the constants and routines (function calls) that are
used in the expressions that are the bounds of a subrange. This relation is needed
because no relations have been created to cater for an expression, and it is possible

to have declarations of the form,

C:constant INTEGER: = 10;

type S is range C..2%C;

All of the information that is to be stored in the database can be generated by

a suitably tailored compiler front end.

10.6 A Prototype Database

A prototype database was implemented in C-Prolog on a Sun 3-50 so that the
relational database schema described in this chapter could be validated. With the
prototype database Prolog facts are used to represent the tuples of a relation, and
a collection of same named Prolog facts constitute a relation. To demonstrate how
this database can be interrogated the entity groups given in Table 9.1 (on page 193)
Table 9.2 (on page 194) will be derived.

In order to find the client views of UnixSupport?2 the following select operations

need to be performed,

Omod-id='UnixSupport2’ (expo rt S)
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exports('UnixSupport2', 'EOL', '$A11$').
exports('UnixSupport2', 'ReadOnly', '$A118$').
exports('UnixSupport2', 'StringPointer', '$A11$').
exports('UnixSupport2', 'WriteOnly', '$All$').
exports('UnixSupport2', 'maxFileNameLength', '8$A11$').
exports('UnixSupport2', stderr, '$A11$').
exports('UnixSupport2', stdin, '$A11$').
exports('UnixSupport2', stdout, '$A11$').
exports('UnixSupport2', strcmp, '$A11$').
exports('UnixSupport2', strlen, '$A11$').

imports('I0', 'UnixSupport2', 'EOL').

imports('I0', 'UnixSupport2', 'ReadOnly').

imports('I0', 'UnixSupport2', 'StringPointer').

imports('I0', 'UnixSupport2', strlen).
imports('ModuleHandling', 'UnixSupport2', 'StringPointer').
imports('ModuleHandling', 'UnixSupport2', 'maxFileNameLength').
imports('ModuleHandling', 'UnixSupport2', gsort).
imports('ModuleHandling', 'UnixSupport2', stderr).
imports('ModuleHandling', 'UnixSupport2', stdout).
imports('ModuleHandling', 'UnixSupport2', strcmp).
imports('ModuleHandling', 'UnixSupport2', strlen).
imports('OptionHandling', 'UnixSupport2', 'StringPointer!').
imports('OptionHandling', 'UnixSupport2', 'maxFileNameLength').
imports('OptionHandling', 'UnixSupport2', stderr).
imports('OptionHandling', 'UnixSupport2', strcmp).
imports('OptionHandling', 'UnixSupport2', strlen).

Figure 10.8: A Collection of Prolog Facts Constituting the imports and exports
Relations




create_import.set (Mod-Id, Fnt.Id, Import.Sct):-
findall (Tmporting Mod 1d,
imports(Importing Mod.Id, Mod.Id, Ent.Id),
Import-Set). :

create_raw_import_list (Module.Id, [Entity_-Id | Import_List]):-
exports(Module.id, kntity.Id, .),
findall(Import.Set,
create_import-set (Module.Id, Entity-Id, Import.Set),
Import.List).

create raw.entity.groups(Module_Id, [Entity_List | Import.List]):-
create_rav.import.list(Module_Id, [- | Import.Listl),
findall(Entity.Id,
create-raw-import_list(Module.Id, [Entity-Id | Import.List]),
Entity-List).

get_entity.groups(Module.Id, Entity.Groups):-
findall(Entity_List,
create.raw_entity_groups(Module.Id, Entity_List),
Tnp_List),
strip.list(Tmp_List, Entity.Groups).

get_and._display_entity-groups(Module_Id) :=

get-entity-groups(Module_Id, Entity_Groups),
display-list-of_lists(Entity-Groups).

Figure 10.9: Prolog Database Interrogation Programs




Script started on Tue Nov 28 20:57:04 1989
ys.eddy i>prolog

C-Prolog version 1.5

| 2= [startup].

startup consulted 7644 bytes 0.833333 scc.

yes
| 7= load.

I0 consulted 204 bytes 0.0500009 sec.
ModuleHandling consulted 280 bytes 0.0666667 sec.
OptionHandling consulted 200 bytes 0.0333334 sec.
UnixSupport2 consulted 444 bytes 0.0833341 sec.
prog-components consulted 256 bytes 0.0500004 sec.
groupingl consulted 688 bytes 0.1 sec.

yes
| 7= get_and_display_entity-groups('UnixSupport2').

[[EOL,ReadOnly], [I0]]

[[stdout], [ModuleHandling]]

[[stdin,¥riteOnly], [1]
[[maxFileNameLength,stderr,strcmpl , [ModuleHandling,OptionHandling]]
[[(StringPointer,strlen], [I0,ModuleHandling,OptionHandling]]

yes
| 7= halt.

[ Prolog execution halted ]

ws_eddy 2>°D
script done on Tue Nov 28 20:57:58 1989

Figure 10.10: A Unix Script Recording a Database Query
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O exp-mod-id='UnixSupport2’ ( import S)

The result of these select operations is given in Figure 10.8. The relations in

Figure 10.8 are then used in a normal join operation of the form,

Omod-id="UnixSupport?2’ (GXPON S) M Fexp-mod-id=UnixSupport2’ ( import S)

This normal join operation forces equality on the ent-id attributes in the exports
and imports relations. Projecting the resulting relation with respect to the ent-id
and imp-mod-id attributes creates a relation that records the client views of the
module UnixSupport2. This information can then be used to derive the entity

groups and module sets in Tables 9.1 and 9.2.

Figure 10.9 gives the Prolog goals that interrogate the given relations. A call
to the goal get_and_display_entity_groups, with the name of a module as an
argument will produce the entity groups and the associated importing module set
for the named module. This is demonstrated in Figure 10.10 which contains a Unix

script file that records the execution of,

get_and_display_entity_groups('UnixSupport2').

The script file shows that the first Prolog command is to consult the file
startup. This file contains the declaration of several Prolog goals that are used
to interrogate Prolog facts. These goals are based on those given by Clocksin and
Mellish [34]. A list data structure is used to simulate a set. Therefore the result of

the goal get_and_display-entity_groups is shown as a list.

The findall goal finds all the facts (tuples) that satisfy some constraint. As

a result this goal is used extensively in the goals given in Figure 10.9. The goal
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create_import_set finds the sets of modules that import a named entity, while the
goal create_raw. import.list ensures that the set of importing modules for each
of the exported entities is derived. The goal creoatc.ray.cntity.groups derives
the set of entities that a set of modules import, e.g., the module I0 imports the
set of entities EOL and ReadOnly. Finally the goal get._entity groups ensures
that there is only one occurrence of each (entity-group, module-group) tuple by
stripping out any tuples that contain the same elements but where the ordering is

different.

The database structure has been shown to be capable of generating the in-
formation needed for inter-module code analysis. All the relation manipulations

described in Chapter 11 have been implemented in the prototype database.
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Chapter 11

The Use of a Relational Datalbase

11.1 Introduction

Chapter 10 describes the process by which the relational database given in
Appendix D was derived. This chapter will show how this database schema can
be used to implement the graph manipulation operations that are described in

Chapters 5-9.

Section 11.2 shows how the relational database can be used to derive the infor-
mation that is recorded in the module-to-module, entity-to-module and entity-to-
entity interconnection graphs. Section 11.3 shows how the graph operations that
are described in Chapter 5. can be implemented as operations on the relational

database.
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11.2 The Graph Structure

Figure 4.6 on page 64 gives the description of a graph structure using VDM.
This description, can be used to develop a relation scheme for an interconnection
graph in the same way that the abstract syntax in Appendix C is used to derive

the relational database schema.

A graph is described as being a collection of related nodes and edges, i.e.,

Graph :: nodes : set of Node

edges : set of Fdge

where

inv-Graph(mk-Graph(nodes, edges)) 2

Ve € edges - (start-node(e) € nodes A stop-node(e) € nodes)

This description of a graph gives rise to the scheme,

graph-schemel({(Node)}, {(Edge)})

Normalising this scheme with respect to first normal form gives the scheme,

graph-scheme2((Node), (Edge))

This scheme does not conform to fourth normal form as there is no relation between
the attributes (Node), and (Edge). Normalising this scheme with respect to fourth

normal form gives,

node-schemel({Node))

edge-schemel((FEdge))
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Consider first the scheme edge~schemel. The attribute (FEdge) is associated
with the edges in a graph. In Figure 4.6 an edge is described as,
Fdge :: start-node . Node
stop-node : Node

dependency : Dependency

as a result, the scheme edge-schemel expands to,

edge-schemel({Start-Node), (Stop-Node), dependency)

Each of the attributes (Start-Node) and (Stop-Node) correspond to a node in

the graph. Therefore these attributes conform to the VDM description,

Node :: node-name : Name

node-label : Label

Label :: entity-class : Class
entity-source : Source

entity-declaration-block : Block-Number

and so edge-schemel expands to the scheme,

edge(ent-idl, ent-classl, mod-idl, regionl#,
ent-id2, ent-class2, mod-id2, region2#,

dependency)

The attributes ent-id1, ent-classl, mod-idl and regionl# are needed to uniquely
identify the entity associated with the start-node of an edge, while the attributes
ent-id2, ent-class2, mod-id2 and region2# uniquely identify the stop-node. This

information is obtainable directly from the relations that record information on the
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declaration of entities, i.e., constant-dec, type-of-routine, region-of-routine
type—-dec, variable-~dec and local-module. The global modules can be identi-
fied by the modules listed in the relation progvram -compenents. The value of the
attribute dependency can be derived by examining the entities named as being

start-nodes and stop-nodes.

Similarly, the scheme node-scheme expands to the scheme,
node(ent-id, ent-class, mod-id, region##)

Therefore a graph is represented by two relations, one an instance of the scheme

node, and the other an instance of the scheme edge.

Some examples are given below to show how to derive the dependencies between

the named modules.

11.2.1 Dependency Derivation

Deriving the dependencies that can appear in the module-to-module, entity-
to-module or the entity-to-entity interconnection graphs initially appears to be a
costly operation, because a large system can contain thousands of entities and the
dependencies that each of these entities is involved with has to be determined.
Each of these dependencies has properties which can help eliminate whole classes
of entities as is demonstrated below. Some of the different dependencies that can
appear in the module-to-module, entity-to-module or the entity-to-entity intercon-
nection graphs will be derived by analysing the relational database schema given

in Appendix D.



Firstly consider the module-to-module interconnection graph. In Chapter 6
this graph is shown to record the instantiates—to, inherits-from, uses and
local~to, The relational database schema in Appendix D docs not cater for in-
stantiation or inheritance, therefore only the Local-to and uses dependencies will

be considered here.

The uses dependency exists between global modules only. Therefore the only
relations that need to be used are those that show the dependence between global
modules. This is done by the relations exports and ir;lpor‘ts and shows the global
modules that aquire entities provided by other global modules. To determine which
global modules are connected by a uses dependency, projection operations are per-
formed on the exports and imports relations. Consider first the imports relation.
This relation shows which modules explicitly import an entity from another global

module. The imports relation has the scheme,
imports(dest_mod_id, src_mod-id, ent_id)

In order to determine the modules involved in a uses dependency, the following

projection operation can be used,

Hdest_mod_id,src_mod_id( import 5 )

Each tuple in the resulting relation denotes an edge that represents a uses depen-
dency, with the module named in the attribute dest_mod_id being the start-node

and the the module named in the attribute src_mod_id being the stop-node.

When selective export has been employed, the exports relation can be used to

determine the existence of a uses dependency. The exports relation shows which
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entities are exported to a module. If selective export is not being represented then
the special value $A11$ is recorded as the importing module. The exports relation
can only he used to determine the existence of a nses dependency if selective cxport

is used. The scheme for the exports relation 1is,

exports(exp..mod_id, ent_id, imp_mod_id)

When the entity named in the attribute ent-id is not selectively exported, the value
$A11$ is stored in the attribute imp_-mod_id. Therefore, only those tuples that have
a module named in imp_mod-id denote a uses dependency. To extract the tuples
from exports that show a uses dependency, the following combination of a project

and select operation can be used,

O imp-mod_id#$A11$ (Hexp_mod_id,imp.mod_id(expo rt S))

In order to find the global modules that are isolated within a system, the re-
lations exports, imports and program_components are used. The following four

operations find all global modules that are subject to a uses dependency,

Hyest _mod_ia(imports)
Hsrc_mod_id( import S)
Ilexp mod_ia(exports)

O inp_nod_id#$A118( inp_moa_id(exports))

By performing a union of these four relations, a single relation is created containing
the names of all the global modules subject to a uses dependency. Call this relation

used_mods. The result of the following project operation is the name of all the
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global modules in a system,
od ia(program. components)

If this relation is called mods then the names of the isolated modules is obtained
by the operation,

mods — used-mods

The local-to dependency exists between a local module and another local
module, or a local module and a global module. In order to find the local and global
modules that are involved in a local-to dependency, the following operation can

be used,

Hloc-mod-id,mod-id(Uregion#=0 (1oca1 -modul e))

Each tuple in the relation resulting from this operation represents an edge denoting
a local-to dependency. The select operation extracts thoses tuples that relate to a
local module declared in the outermost block of a global module, while the project

operation extracts the module names.

In order to find the local-modules connected by a local-to dependency the
local-module relation is again used, but this time it is interrogated differently.
Identifying the local modules that are connected by a local-to dependency takes

two steps.

1. Find the region associated with each local module.

2. Find any local modules declared in this region.
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The result of a project operation of the form,

Hmc:m‘x-id,loc-mod- id,c-Tegion# (].oca.]. "module)

will result in a relation lm-wegion which shows the region associated with each

local module. A theta join operation of the form,
Im-region Mg local-module
where 6 is the predicate,

lm-region.mod-id = local-module.mod-id A

lm-region.c-region# = local-module.region#

will result in a relation showing which local modules are declared within the region

of another local module. A project operation of the form,

local-module.loc-mod-id,local-module.mod-id,local-module.region#, )
lm-region.loc-mod-id,1lm-region.mod-id, im-region.region#

results in a relation where each tuple shows modules that are connected by a

local-to dependency.

As an example, consider the Modula-2 module declaration in Figure 11.1. The
module-to-module interconnection graph for these module declarations is given in
Figure 11.2. The local-module relation for these declarations is given in Fig-

ure 11.3.

)
H=
p—



IMPLEMFNTATION MODULE GM1;
MODULE LMi;
MODULE LM2;

END LM2;
MODULE 1LM3;

END LM3;
END LM1;
MODULE LM4;

END LM4;
END GM1.

IMPLEMENTATION MODULE GM2;
MODULE LM1i;
MODULE LMZ;

END LM2;

END LM1;
END GM2.

Figure 11.1: Modula-2 Module Declarations for local-to Dependency Derivation

GM2
MODULE
$GLOBALS
i

local-=to

Figure 11.2: The Module-to-Module Interconnection Graph for Figure 11.1
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local-module

| mod id

region# | loc-mod-id | ¢c-region#
GM1 0 LMl 1 1
GM1. 1 M2 2
GM1 1 LM3 3
GM1 0 LM4 4
GM2 0 LMi 1
GM2 1 LM2 2

Figure 11.3: The local~to Relation for the Module in Figure 11.1

The result of the operation,

Hmod-id,loc-mod-id,c-region# (l ocal‘mOdule)

is the relation,

Im-region —
mod-id | loc-mod-id | c~region#
GM1 LM1 1
GM1 LM2 2
GM1 LM3 3
GM1 LM4 4
GM2 LM1 1
GM2 LM2 2
Performing the theta join operation gives,
lm-reg | lm-reg Ilm-reg loc-mod | loc~-mod loc-mod loc-mod
mod-id | region# | c-region# | mod-id | region# | loc-mod-id | c-region#
GM1 LM1 1 GM1 1 LM2 2
GM1 LM1 1 GM1 1 LM3 3
GM2 LM1 1 GM2 1 LM2 2

Therefore the edge relation will have three tuples of the form,
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“ent ent mod
idi clasle idi
LM2 | MODULE | ¢
I.M3 | MODULE
M2 MEDUTLE Cli2

ent ent mod
regionl# | id2 | class? | id2 | regil

Lrassae | n2# | depeadency

o
GM1 1 LM1 | MODULE | GM1 0 local-to
GM1 1 I.M1 | MODULE | GM1 0 local to

i LEL ) MUDULE | GM2 0 local to

Consider now the entity-to-module interconnection graph. In Chapter 7 this
graph is shown to record the imported, exported, inherited and injected de-
pendencies. These dependencies all show a dependency between an entity declared
within a module and some other module. These dependencies are characterised by

an edge of the form,

(entity, module)

As the relational database schema being used here does not record information on

inheritance, the inherited dependency will not be discussed here.

The dependencies exported and imported are dependencies that exist between
global modules. All the information needed to record if an entity is exported to,
or imported by, a module can be obtained from the exports and imports rela-
tions. For example, to determine the entities and modules involved in an imported

dependency, the following projection operation can be used.

I_Imod—id,ent -id( import S)

In order to determine the class of the imported entities, the following steps can
be taken. Step 1, obtain the source of the entity. This can be done by the following
projection operation

Hexp~mod-id,ent-id( import S)

o
g
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Call the relation resulting from this operation source~entity. Step 2, determine

the class of the entity by a theta join operation of the form,

source-entity Mg dec-rel

where dec-rel is one of the relations, constant~dec, type-dec, variable-dec,

type-of-rout or region-of-rout, and @ is the predicate,

source-entity.exp-mod-id = dec-rel.mod-id A

dec-rel.region# =

To find the entities and modules involved in an exported dependency, the
exports relation is interrogated in a similar way to the imports relation. When
analysing the exports relation, it is necessary to extract the tuples that do not
have the attribute value ‘$A11%$’ in the attribute imp-mod-id. This can be done

by a select operation of the form,

Hent-id,imp-mod-id(o' imp-mod-id;6$}\11$( exports))

The injected dependency exists between an entity from a local module and the
module containing the local module. The procedure used to derive the local-to
dependency shows how to identify the encapsulating module. The relation that
resulted from the theta join of lm-region and local-module on page 241 can
be used to derive which entities are injected into modules. If 1inked-1ms is the

relation resulting from this theta join operation, the entities and modules involved



in an injected dependency can be obtained by the following operation

Llinked-lms Mg local-module-exports

where © is the predicate,

linked-lms.local-module.mod-id = local-module-exports.mod-id A
linked-lms.local-module.region# = local-module-exports.region# A
linked-lms.local-module.loc-mod-id = local-module-exports.loc-mod-id

Finally consider the entity-to-entity interconnection graph. The dependencies
recorded in this graph are those that exist between the global entities of a module.
It is a characteristic of these dependencies that they are associated with an edge

of the form,

(entity, entity)

Some of the dependencies that can be recorded are those between routines
and entities that are constants, types, variables and routines. These are the
uses-constant, uses-type, uses-variable and invoked dependencies. The enti-
ties involved in these dependencies are the relations constants-used, types-used,
variables-used and routines-used. The analysis of the entity-to-entity inter-
connection graph described in this thesis has confined itself to determining which
global entities are used by other global entities, and so these relations are all that
is needed. The existing relations can be used to determine how a global type or

constant is being used within a routine, if this form of analysis is required.



Three other forms of dependencies that can appear in the entity-to-entity in-

terconnection graph are delimited~by, para-of-type and of-type.

The delimited-by dependency exists between a type and a constant, where
the constant marks a bound of a subrange type. This form of dependency is

characterised by an edge of the form,

(type, constant)

The relation subrange-delimiters lists the constants that are used to delimit a
type, and so the entities involved in a delimited-by dependency can be derived

by interrogating this relation.

The para-of-type dependency exists between a routine and a type, where
the type is used to declare one or more parameters of the routine. The infor-
mation needed to determine which routines and which types are connected by a
para-of-type dependency can be obtained by interrogating the para-id-rel and
the type-dec relations. The para-id-rel relation records the type# value for each
of the parameters of a routine, and the type-dec relation records the type# value
for every type entity. Therefore, the following operation can be used to associate

routines and types involved in a para-of-type dependency,

Hpara-id-rel.mod-id,para-id-rel.ent-id,type ~dec.ent-id(Para' id-rel Mg tYPe‘deC)

where © is the predicate,

para-id-rel.mod-id = type-dec.mod-id A

para-id-rel.type# = type-dec.type# A
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para-id-rel.region# = 0A

type-doc.region# = 0

The of -type dependency exists between entities and type entities. This depen-

dency is characterised by an edge of the form,

(entity, type)

Consider the case when it is required to find the constants and types involved in
an of-type dependency. This pairing of entities can be obtained by the following

operation,

I—Iconfs't:am‘.-de(:.ent-id,t e-dec.ent-id(conStant'dec Mg 'type-dec)
yp

where @ is the predicate,

constant-dec.mod-id = type-dec.mod-id A
constant-dec.typef# = type-dec.type# A
constant-dec.region# = 0A

type-dec.region# = 0

Similar combinations of a theta join and a project operations can be used with
the type~dec, variable-dec and type-of-routine to find the type, variable and

routine entities involved in an of-type dependency.
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11.3 TThe Graph Operations

Having derived the relations needed to represent a graph, and shown how the de-
pendencies represented by an edge can be determined by interrogating the database,
now consider how to implement the graph operations in terms of operations on these

relations.

Chapter 5 describes some graph operations that are used to manipulate and
reason about graphs in Chapters 6-8. Each of these operations will be considered

below.

11.3.1 Subgraphs

There are two subgraph operations, each of which is a boolean operation. Con-

sider the subgraph operation,
GI(N1,51);G2(N2, 82) (111)

This operation is true if all the nodes and edges in the graph G, (N, £,) are also
in the graph G»(N 3, £2). If the relations graphi-nodes and graphi-edges rep-
resent G; (N, £), and the relations graph2-nodes and graph2-edges represent
Gy(Ng, €2), then the graph operation (11.1) can be determined by the following

relation operations,

graphl-nodes — graph2-nodes = empty-relation A

graphl-edges — graph2-edges = empty-relation
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If all the nodes and edges in G, (N, £;) are in Gp(N g, £2), then all the tuples in
the relations representing G, (A, £, ) should also exist in the relations representing
G2{N g, £2). Therefore the result of the two relation difference cperaticas should

be empty relations.

For the strict subgraph operation,
G1 (./VI ,.51) C GQ(NQ, 52)

to be true, it is necessary for all the nodes and edges in G,(N[, &) to be in
G2(Ng, €3), and G2(N g, €2) has some nodes or edges that are not in G, (N, £).
This form of subgraph relationship can be determined by the following relation

operations,

empty-relation A

(graphl-nodes — graph2-nodes

empty-relation) A

graphl-edges — graph2-edges

(graph2-nodes -- graphi-nodes empty-relation V

RN | N

graph2-edges — graphl-edges empty-relation)

11.3.2 Graph Union

A simple graph union operation of the form,

G (N, E1)UG(Nyg, £s)

results in a new graph containing all the nodes and edges of G;(N, &£;) and

G2(Ng, €2). In terms of the relations representing G, (N, £;) and Go(N,, €,)
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a simple graph union is implemented as the following relation operations,
graphi-nedes U graph2-nodes

graphi-edges U graph2-edges

The distributed graph union operation,

LG (N, 1)y oy Ga(Wa, Ea)}

is n — 1 applications of the simple graph union operation. So this operation can

be implemented as,

graphl-nodesU...Ugraphn-nodes

graphl-edges U...U graphn-edges

11.3.3 Graph Intersection

Strict Graph Intersection

With a strict graph intersection operation,
G (N, E1)NGe(Ng, Es)
a graph is created that contains all the nodes and edges that are common to both

graphs. In terms of the relations representing G;(N;, £;) and G2(N g, £2), a
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strict graph intersection operation is implemented as,

graphl-nodes (1 graph?-nodes

graphl-edges (1 graph2-edges

Just as with the graph union operation, the distributed strict graph intersection

operation,

H{GI(NU 51)3'--’Gn(Nm gn)}

is implemented as n — 1 applications of the simple form of strict graph intersec-

tion, i.e.,
graphli-nodes ... graphn-nodes

graphl-edgesN...MN graphn-edges

Full Graph Intersection

A full graph intersection operation of the form,

G (N, €)My G2 (N, E2)

creates a graph containing the nodes that are common to both graphs together
with the edges from both graphs whose start-node and stop-node in this set of
common nodes. In terms of the relations representing the graphs, the full graph

intersection operation can be implemented as follows.

Create the relation common-nodes that records the nodes common to both



graphs by the operations,
graph-nodesi N graph-nodes?

and create the relation all-edges that records all the edges from both graphs
graph-edgesl U graph-edges?2

Then derive the relations ok-start-node and ok-stop-node which records the
edges with a valid start-node and stop-node respectively. These relations are cre-

ated by the following operations,

Ily(common-nodes Mg, all-edges)

ITy(common-nodes Mg, all-edges)

where ¥ is the list of attributes,
ent-idl, ent-classi, mod-id, region#i,
ent-1d2, ent-class2, mod~id, region#2,

dependency

@1 is the predicate,

common-nodes.ent-id = all-edges.ent-id1l
common-nodes.ent-class = all-edges.ent-classl
common-nodes.mod-id = all-edges.mod-idl
common-nodes.region# = all-edges.region#1



and ©2 is the predicate,

common-nodes.ent-id — all-edges.ent-1d?2
common-nodes.ont-class — all-edges.cnt-class?
common-podes.mod-id = all-edges.mod-id2
common-nodes.region# = all-edges.region##2

The distributed form of strict graph intersection is n — 1 applications of the

simple form.

11.3.4 4-Slicing

A é-slicing operation,

§(GWV, £),C)

extracts the subgraph from G(N, £) in which all the edges denote the dependencies

listed in the argument C. Consider the §-slicing operation,

8(G(V, €), {dep1})

If depl is not associated with the dependency $ISOLATED$, then the following
relation operations can be performed to derive the relations that represent the

desired subgraph.

The select operation,

Odependency=dep1 (graph-edge s)



will create the relation that records the edges that exist in the subgraph. This
relation will be called subgraph-edges. All the nodes that exist in this subgraph
are start-nodes and stop-nodes cf the edges. Therefore the relation recording the

nedes of the subgraph can be obtained by the operation,

Hent-idl ,ent-classimod-idiregion#i (Subgi‘aph"edges) U

Hen: -id2,ent-class2mod-id2region#2 ( Subgl‘aph-edges)

If depi represents the dependency $ISOLATED$, then we have to find the nodes
that are neither a start-node or stop-node for any of the edges in a given graph.

This can be done by the following operations,

[y (graph-nodes Mg graph-edges)

where ¥ is the list of attributes,

graph-nodes.ent-id, graph-nodes.ent-class,

graph-nodes.mod-id, graph-nodes.region#

and O is the predicate,

graph-nodes.ent-id graph-edges.ent-id1 A

graph-nodes.ent-class graph-edges.ent-classi A
graph-nodes.mod-id graph-edges.mod-id1 A
graph-nodes.region# graph-edges.region#1 A

graph-nodes.ent-id graph-edges.ent-1d2 A

R N N N N | 8

graph-nodes.ent-class graph-edges.ent-class2 A
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graph-nodes.mod-id # graph-edges.mod-id2 A

graph-nodes.region# # graph-edges.regionf2

A é-slicing operation,

§(G(NV, €),{depl,...,depn})

is equivalent to,

LI{8(GWV, €), {dep1}),...,8(G(WV, £), {depn})}

Therefore a §-slicing operation consisting of more than one dependency can be
performed in terms of relational operations by combining the é-slicing operations
for a single dependency given above with the implementation of distributed graph

union in subsection 11.3.2.

11.3.5 ofB-Slicing
An af-slicing operation,
allg(G(N, 5)10)

employs node-based slicing criteria for extracting a subgraph from the given graph.

The argument C and the o and § constraints will be considered separately.



The Argument C

The argument C, lists the nodes that can be a start-node or stop-node in the
resulting graph. If one of the named nodes is isolated in the given graph, then it

also appears in the resulting graph. The §-slicing operation,

§(G(N, £), {SISOLATEDS})

can be used to find the isolated nodes in a graph, and the technique for implement-
ing this operation is given in the previous subsection on page 255. The relation

representing the subgraph of isolated nodes will be called isolated-nodes.

Let start-nodes be the relation recording the set of nodes that can be a start-
node in the resulting graph, and stop-nodes the relation recording the set of nodes
that can be a stop-node in the resulting graph. The relation ok-start-nodes,

which records the edges with a valid start-node can be obtained by,

start-nodes Mg graph-edges

where O is the predicate,

start-nodes.ent-id = graph-edges.ent-id1A
start-nodes.ent-class = graph-edges.ent-classl A

start-nodes.mod-id = graph-edges.mod-id1 A

start-nodes.region = graph-edges.regioni

Similarly the relation ok-stop-nodes, which records the edges with a valid stop-
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node can be obtained by,

stop-nodes Mg graph-edges

where © is the predicate,

stop-nodes.ent-id = graph-edges.ent-id2 A
stop-nodes.ent-class = graph-edges.ent-class2A
stop-nodes.mod-id = graph-edges.mod-id2 A

stop-nodes.region = graph-edges.region2

The relation subgraph-edges, which records the edges that are to appear in

the subgraph can be obtained by the operation,

[Iy(ok-start-nodes U ok-stop-nodes)

where ¥ is the list of attributes,

ent-idl, ent-classi, mod-id, region#1,
ent-1d2, ent-class2, mod-id, region#2,

dependency

The set of nodes that can appear in the resulting graph can be obtained by find-
ing nodes that are a start-node or a stop-node for the edges in subgraph-edges
and then combining this set of nodes with the set of valid isolated nodes. The com-

bined set of start-nodes and stop-nodes from subgraph-edges (called end-nodes
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say) can be obtained by,

ﬂent- idl,ent-classlmod-idl,region#i ( SUbgraPh"edé’es) U

Hent—:i.dz,ent-c].ass2,1r\od-id2,region#2 ( Sllbgraph"@dges) (] 1 2)

and the set of valid isolated nodes (called valid-isolated) can be obtained by

(start-nodes M isolated-nodes) U

(stop-nodes M isolated-nodes)

The relation subgraph-nodes is then the result of

end-nodes U valid-isolated

The o and # Constraints

The @ and B constraints slice a graph with respect to the label of a node.

Consider the following af-slicing operation of the form,

class:class-name”{(G(N, 5)a (f)é))

In order to find the edges that satisfy this constraint and hence appear in the

resulting graph, the following select operation can be used,

Ograph-edges.ent-class1=class-name (graph'edge S) (1 1 3)

If the relation resulting from this select operation is called subgraph-edges, then
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the operation (11.2) can be used to obtain the relation end nodes which contain

the nodes that are either a start-node or stop-node for an edge in the subgraph.

To find the isclated nodes that satisfy a given « constraint, the fcllowing select

operation can be used,

Uisolated-nodes.ent-class=class-name ( isolat ed'n‘)des)

The relation that results from this operation will be called valid-isolated. The

set of nodes in the resulting graph is therefore the result of,

end-nodes U valid-isolated

For the other o constraints, the same procedure can be followed, but different

predicates given to the select operations.

Consider now the af-slicing operation,

¢llcrase=ciass-name (G(N, £), (£,€))

The procedure to obtain the subgraph of G(N, £) that satisfies this slicing opera-
tion is the same as for the a constraint, but with different attributes named in the
predicate of the select operation (11.3). In operation (11.3), the predicate refers to

the start-node of an edge. The new predicate should be,

graph-nodes.ent-class2 = class-name

which refers to the stop-node of an edge. The other § constraints can be handled

in a similar way.
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On page 97 the af-slicing operation is defined as,

«|ls(GWV, €),C) = remove-false-isolated-nodes(G(N, £), G;(N;, £;))

where G;(NV;, &;) is the graph resulting from,

H{€||€(G(N’ 8),C), a”ﬁ(G(Nv g)’ (‘5’6))7 E”ﬁ(G(N’ g)?(ﬁaﬁ))}

The graph G;(N;, €;) can be obtained by following the procedures given above.
The function remove-false-isolated-nodes removes the nodes that are isolated in
G;(N, &) but which are not isolated in G(A, £). To perform this operation,
derive the set of isolated nodes within G(A, £). The procedure for doing this
is given on page 255. If this relation is called isolated-nodes and the relation
graphi-nodes represents the nodes that are isolated in G;(N;, &;), then the set

of false isolated nodes can be removed by the operation,

isolated-nodes N graphi-nodes
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Chapter 12

Conclusions

12.1 Have the Goals been Achieved?

The work described in this thesis has addressed itself to the maintenance phase
of the software lifecycle, with particular emphasis placed on finding techniques for
reading and understanding large programs. In order to reason about the code of a
program, it is necessary to abstract away from the code so that only the relevant
information is considered. To accomplish this the module-to-module, entity-to-
module and entity-to-entity interconnection graphs are used. A set of graph oper-
ations are developed which help a maintenance programmer to manipulate these

graphs.

The module-to-module interconnection graph can be used to analyse the struc-

ture of a system. Two common hierarchies that are used by different software

262



design strategies are the virtual machine and abstract-data type hierarchies.

For the module languages, the module-to-module interconnection graph can
be analysed in terms of both of these hierarchies. 3y analysing the module-tc-
module interconnection graph, modules can be classified in terms of the role they
are playing within a system. This allows a maintenance programmer to identify
modules that may require a closer examination. Analysing the module-to-module
interconnection graph can also help detect modules that are redundant within a

system, because they are never used.

The entity-to-module interconnection graph provides a less abstract view of a
program, revealing the client and supplier relationships between the modules. This
graph can help detect inconsistent importing and exporting of entities. This in

turn reveals an inconsistency in interpreting a design decision.

The entity-to-entity interconnection graph records information on the depen-
dencies between the level 0 entities of a module. Combining the analysis of this
graph with the analysis of the entity-to-module interconnection graph allows a
module to be classified with respect to the taxonomies of modules given by Booch
and Ross. Having classified modules according to Booch’s taxonomy, potpourri

modules can be identified.

Three techniques are given for breaking up a potpourri module into smaller
modules which provide only a single service to the system. The first technique is
“grouping by type-families”, which is the process of detecting abstract data types
that exist within a module. The second technique is “grouping by state variables”,
which is the process of detecting the abstract-state machines within a module. The

last technique is “grouping by imports”, which uses the different client views of a



module as the basis for breaking up a module.

‘The graph operations allow a maintenance programmer to combine two or more
graphs so as to create a single graph, or to create a graph that is the subgraph
common to two or more given graphs. Graph slicing operations are developed
that extract a subgraph from a given graph that satisfies particular node and
edge constraints. These graphs operations can be used to extract special forms of
subgraphs. In particular, the three module factoring techniques given involve the

use of these graph operations.

When working with a large system, it is impractical to regenerate the informa-
tion needed for inter-module code analysis for every code analysis related activity.
A relational database schema has therefore been designed which can record infor-
mation on the inter-module connections within a system. Techniques for using this

database schema to perform the graph operations are given.

12.2 TFuture Directions

The relational database schema has to be extended to cater for inheritance
and instantiation. This will then allow the database to record all the different
inter-module connections within a system written in one of the module languages.
Furthermore, the existing database schema handles the use of a variables in a very
simple way. The database schema should be modified so that the actions that are
performed on a variable within a region are recorded, i.e., record if the variable is
defined or referenced. Extending the database schema in this way will then allow

inter-module code analysis to be performed with respect to how a state variable is
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being used. This will then help in the detection of ripple effects across a module’s

boundary.

The work on inter-module code analysis can be extended to consider code based
software metrics. With the current work it is possible to detect the different client
views of a module, and it is possible to determine the module categories for each
client view. The simplest form of module is one that provides only one client view,
and that client view corresponds to only one module category. The most complex
module would be one that has many client views, each of which corresponds to
a potpourri module, i.e., it corresponds to several module categories. In order to
determine the éomplexity of the module interconnections, it would be necessary to
combine these relative complexity measures for modules, with complexity measures
for the architectural structure of a system. This work should also help in assessing

the feusability of a module.

Guidelines for determining how well an abstract-state machine is coded need
to be developed. This will involve redefining the existing cohesion and coupling
measures, so that they accommodate the module construct. This will then also

help in developing software metrics on module interconnections.

The relational database schema was designed so that its use was not restricted
to the inter-module code analysis work of this thesis. With some extensions, the
database could be used by software tools such as interactive cross referencers and
documentation generator. Developing the appropriate database front ends, and
integrating them, could form the basis for a software maintenance support envi-

ronment.
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Appendix A

Gl@SS@ry of Terminology

Architectural Structure

Attribute

Attribute Type

Attribute Value

The structure of a system with respect to the unit
of modularity. With the module languages this is
the structure of the system with respect to the

module construct.

See Attribute Type and Attribute Value.

This is the name that identifies a particular do-

main of values.

An attribute value is an instance of a value from

the domain denoted by the associated attribute

type.
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Bequeathing Module

Cali Graph

Candidate Key

Class

Client Module

Client View

Code Analysis

Cohesion

A module that provides entities to another module

via an Inheritance mechanism.

A call graph is a directed graph that represents the

dynamic relations between routines.

A combination of attributes that can uniquely iden-

tify a tuple from a given relation.

This is a data type module used to implement ab-

stract data types.

A module that imports an entity from another

module.

The view of a module that is given to users of a
module. This view normally consists of a lists of
the modules public entities, together with enough

information to know how to use them.

The process of examining a program in order to
gain some knowledge of its structure or execution

behaviour.

A measure of the strength of functional association

of processing activities.
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Common Coupling

Concrete Module

Coupling

Edge

Entity

Entity Attributes

Functional Role

TFundamental Module

A type of coupling characterised by two or more rou-

tines referring to the same shared variable.

A concrete module is a fully elaborated version of
a generic module, where the entities of the concrete

module can be used within the program.

The degree of dependence of one routine upon an-
other; specifically, a measure of the chance that a
defect in one routine will appear as a defect in an-
other, or the chance that a change to one routine will

necessitate a change to the other.

An ordered pair of nodes denoting a dependency be-

tween the start node and the stop node.

An entity is anything that can be named or denoted
in a program. Objects, types, values, modules are all

entities.

Details about the characteristics of an entity, e.g.,
its type, the number of parameters, the type of the

parameters, etc.

The functional role of a module is it’s classification

according to Booch’s taxonomy [16, pages 228-9].

A module that plays a critical role in a system.
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Generic Module

Global Entity

Global Module

Heir Module

Imported Entity

Information Hiding

Inheritance

Inheritance Graph

Injected Entity

A generic module is a template module that describes
the characteristics of its entities in a general way. The
description cf these entities is not complete enough to

allow them to be used in the program.

Entities declared in the outermost block of a module.

A module that is not contained within a block.

A module that aquires entities by means of an inher-

itance mechanism.

An entity that is explicitly imported by a module.

Implementation information is not revealed to client

modules.

The process of creating a module as an extension or

specialisation of another.

A graph showing the modules that are created as ex-
tension or specialisations of each other. The depen-

dency recorded in this graph is the inherits-from.

An entity that is exported by a local module and im-
plicitly imported by the module that encapsulates the

local module.
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Instantiation Tree

Interconnection Graph

Local Module

Metaclass

Module

Module Factoring

Module Languages

An instantiation tree is a tree structure that
shows which modules are instantiations of other

modules.

An interconnection graph is a directed labelled
graph that is used to represent the dependencies

between entities in a program.

A module declared within a block.

A class module whose instances are themselves

class modules.

A module is a named collection of entities, where
the programmer has precise control over the en-
tities that are imported from and exported to the

surrounding environment.

Module factoring is the process of taking a mod-
ule that provides several disparate services, and
creating smaller modules where each module pro-

vides only one service.

Languages that provide a module construct as

part of the language.
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Multiple Inheritance

Node

Object

Overriding

Potpourri Module

Primary Key

Private Variable

Program Comprehension

Public Entities

A form of inheritance where a module can be
crcated as an extension or specialisation of sev-

eral modules.
The objects that comprise a tree or graph.

An object has a set of operations and a state

that remembers the effect of the operations.

Overriding is the redeclaration of an inherited

entity.

A module conforming to several of the classifi-

cations given by Booch [16, pages 228-9].

The set of attributes chosen by the database
designer as the principle means of identifying

tuples within a relation.

A variable that is local to module, but which
is considered non-local by the routines of that

module.

This i1s the process of understanding what a
program does with respect to the real world, or

with respect to a particular problem domain.

Entities exported by a module.
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Relation

Relation Scheme

Respensibility Assignment

Ripple BEffect

Root Module

Routine

Routine Group

Scope

A named set of tuples.

A descrintion of the structure of a relation.

T

he service whick & module is charged with

providing to a system.

The manifestation of a defect in one part of a
system as a defect in other parts of the system,;
the effect of a change in one part of a system
causing defects in other parts of the system
and/or necessitating further changes to other

parts of the system.

A module that appears to represent a system,

or part of the system.

A subprogram unit that could be either a pro-

cedure or function.

A group of routines that are dependent be-

cause they invoke each other.

The scope of a declaration is the region of text

over which the declaration has an effect.
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Selitary Vodule

Spanning Tree

Specialised Module

Start-node

State Information

State Variable

Stop-node

Subclassing

Supplier Module

A variable that is declared as a global variable n &

A module that is independant of the cther modules in

4

2 system with respect to the usey dependency.

The spanning tree is a graph with all backward edges

removed.

A module that provides a specialised services within a

system.

The node that marks the starting point for an edge.

Data that is stored in a state variable.

A variable that is declared at level § in a module.

The node that marks the terminating point for an edge.

A form of inheritance where a module can be con-
structed as an extension or specialisation of only one

module.

A module that provides an entity to other modules.
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Supplier View

Terminal Module

Tuple

Type-Family

Virtual Machine

Visible

The view of a module that the implementor has. It con-
tains all the information given to the client modules, to-

3,
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the service it is providing.

A low level module within a system that requires non of

the facilities offered by the other modules in the system.
A set of related attribute values.

A group of type entities that are dependent on each

other.

A virtual machine ia a software extension to the un-
derlying hardware, and also possibly to other virtual

machines.

At a given point in a program text, the declaration of
an entity with a certain identifier is said to be visible if,
the entity is an acceptable meaning for an occurrence at

that point of the identifier.
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Appendix I3

Glossary of Notation

Gl (st gl) E Gz(N29 52)

G (N, 1) T Ga(Ny, &)

GI(N17 51) = GQ(NZ‘) 52)

G (N, €1) 3 Ga(Ny, &)
G (N, £1) U Ge(WNs, E,)

U{G] (Nla 51) --~Gn(Nn1 gn)}

Graph containment. G;(N,, £;) is a
subgraph of Go(N 3, £2).

Strict graph containment.

Graph containment. G, (N, £;)is a su-
pergraph of G,(Ny, €2).

Strict graph containment.

Simple graph union.

Distributed graph union.



Gi(Ny, £) N Ge(Ny, £) Strict simple graph intersection.
G (N, £)) N Gl g, £5) Full simple graph intersection.
FHG Wy, €1) ... Gu(Ws, £,))  Distributed strict graph intersection.

ﬂ+{G1 (N, €r) ...G.(N,, £,)} Distributed full graph intersection.

(G, €),0) o-slicing.
olls(GWV, €), C) af-slicing.
13 A symbol used to denote that no restric-

tion is being employed.
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Appendix C

Abstract Syntax

Program :: s-program : set of Global-Module
Global-Module :: s-global-module : Module-Entity

where

inv-Global-Module(mk-Global-Module(gm)) & region#t(gm) = 0

Module-Entity :: s-exports : Fxported-Entities
s-imports : Imported-FEntities
s-region# : N
s-region : Region

Ezported-Entities :: s-exported-entity : map Entity to Module-Set
Imported-Entities :: s-imported-entity : map Module-Id to Entity-Set
Module-Set = set of Module-Id

Entity-Set = set of Entity

Entity :: s-entity-id . Entity-I1d

Entity-Id = Constant-1d | Type-Id | Variable-Id | Routine-Id | Module-Id
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Region :: s-constant : map Constant-Id to Constant-Set
s-type : map Type-Id to Type-Sel
s-variable : map Variable-Id to Variable-Set

s-routine : map Routine-Id to Routine-Set
s-module : wap Module-Id 1o Module-Set
s-body : Body

Constant-Set = set of Constant-Entity
Type-Set = set of Type-Entity
Variable-Set = set of Variable-Entity
Routine-Set = set of Routine-Entity

Module-Set = set of Module-Entity

Constant-Entity :: s-type : Type-Constructor
Type-Entity :: s-type : Type-Constructor
Variable-Entity :: s-type : Type-Constructor

Routine-Entity :: s-formal-parameters : Parameters
s-result-type : Type-Constructor
s-region : N
s-region : Region

Parameters = map Parameter-Id into set of Type-Constructor

Type-Constructor = Qualident | Enumerated | Subrange | Array | Record |
Set | Pointer | Routine

Qualident = Type-1d
Enumerated = set of Enum-Id

Body :: s-constants-used : set of Constant-Id
s-types-used : set of Type-Id

s-variables-used : set of Variable-Id

s-routine-used : set of Routine-Id

System-Id = ... )
Module-1d = . ..
Constant-Id = . ..
Type-Id = . .. L Some appropriate set of entity identifiers
Variable-1d = . ..
Routine-Id = . ..
Enum-Id = . ..
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Appendix 1D

The D atabase Relations

1.

o

The relation program-components is used to record which external modules
a named system consists of. The relation program-components has two at-

tributes, and they both form the primary key.
sys-id — This is the key attribute. It is used to denote the

name of the system to which the modules belong.

mod-id — This attribute is the name of a module that belongs

to the named system.

program-components

sys-id | mod-id

L

The relation ezports is used to record which entities are exported by a named
module. The relation ezports has three attributes all of which combine to

form the primary key.
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mod-id — This is the first key attribute. It denotes the name

of the module that exports the entity.

ent-id — This is the second key attribute. This attribute de-
notes the name of an entity exported by the named
module.

imp-mod-id — This is the third key attribute. This attribute de-
notes the name of the module that can import the
named entity, if any external module can import

the entity then the special value ‘§AUlY’ is used.

exporls -

mod-id | ent-id | imp-mod-id

3. The relation imports records information on a named entity exported by
a named module and imported into another named module. The imports

relation has five attributes, four of which are key attributes.

mod-id — This is the first key attribute. It denotes the name
of the importing module.

exp-mod-id — This is the second key attribute. It denotes the
name of the exporting module.

ent-id — This is the third key attribute. It denotes the
name of an entity exported by the module named in
the exp-mod-id attribute field and imported by the

module named in the dest-mod-id attribute field.

imports

mod-id | exp-mod-id | ent-id

In languages like CLU and Eiffel, whose module does not have separate defi-

nition and implementation parts, the imported entities are always classed as
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being visible in both the definition and implementation parts.

4. The relation constant-dec records information on the type of a named con-
stant, declared in a named module. The relation consiant-dec has five at-

°

tribute three of which form the primary key.
mod-id — This is the first key attribute. Its value is the name

of a module

region# — This is the second key attribute. This is the region
number in which the constant is declared. Region
number zero is the outermost level and is associated

with the scope of the declaring module.

ent-id  — This is the third key attribute. Its value is the
name of a constant declared in the module named
in the mod-id attribute.

type# — A “type” is either a qualified identifier or a type-
constructor. A unique identifier called the “type#”
is allocated for each qualified identifier that is used
— the same one is re-used for each occurrence. A
unique identifier is allocated for each occurrence of
a type-constructor.

constant-dec

mod-id | region# | ent-id | type#

5. The relation type-dec records information on the type of a named type de-
clared in a named module. The relation type-dec has four attribute three of

which form the primary key attributes.
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mod-id — This is the first key attribute. [ts value is the name
cf a module

vegiony: -— This is the second key attribute. This is the region
in which the type is declared.

ent-id  — This is the third key attribute. Its value is the
name of a type declared in the module named in

the mod-id attribute.

type# — A “type” is either a qualified identiﬁer or a type-
constructor. A unique identifier called the “type#”
is allocated for each qualified identifier that is used
— the same one is re-used for each occurrence. A
unique identifier is allocated for each occurrence of
a type-constructor.

type-dec

mod-id | region# | ent-id | type#

6. The relation variable-dec records information on the type of a named variable
declared in a named module. The relation variable-dec has four attributes,

three of which form the primary key attributes.
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mod-id — This is the first key attribute. Its value is the name
of a module

region# — This is the second key attribute. This is the region
in which the variable is declared.

ent-id — This is the third key attribute. Its value is the
name of a variable declared in the module named
in the mod-id attribute.

type# — A “type” is either a qualified identifier or a type-
constructor. A unique identifier called the “type#”
is allocated for each qualified identifier that is used
— the same one is re-used for each occurrence. A
unique identifier is allocated for each occurrence of
a type-constructor.

variable-dec

mod-id | region# | ent-id | type#

7. The relation type-of-routine records information on the type of a routine. The
relation type-of-routine has four attributes, three of which form the primary

key relations.

mod-id — This is the first key attribute. Its value is the name
of a module
region# — This is the second key attribute. This is the region

in which the routine is declared.
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ent-id — This is the third key attribute. Its value is the
name of a rcufine declared in the module named
in the mod-ia atisivute.

viype# — This is the attribute that records the result type of
the routine. If the routine is a procedure the result
type is the special value ‘§Void$.

type-of-routine . _ _

mod-id | region# | ent-id | r_type#

8. The relation region-of-routine records information on the region number as-
sociated with a routine. The relation region-of-routine has four attributes,

three of which form the primary key relations.

mod-id ~ — This is the first key altribute. Its value is the name
of a module

region## — This is the second key attribute. This is the region
in which the routine is declared.

ent-id — This is the third key attribute. Its value is the
name of a routine declared in the module named
in the mod-id attribute.

c-region# — This is the region that belongs to the routine iden-
tified by the primary key.

region-of-routine

mod-id | region# | ent-id | c-region#

9. The relation para-id-rel records information about the type and class of a
named formal parameter from a named particular list. The relation para-id-

el has five attributes, four of them being key attribute.



mod-id — This the first key attribute. It denotes the name
of the module in which the symbol recorded in the
para=-list—sym attribute exist.

region## — This is the second key attribute. This is the region
in which the routine is declared.

ent-id '— This is the third key attribute. Its value is the
name of an routine declared in the module named
in the mod-id attribute.

para-id — This is the fourth key attribute, it identifies a par-
ticular formal parameter.

p-type# — A “type” is either a qualified identifier or a type-
constructor. A unique identifier called the “type#”
is allocated for each qualified identifier that is used
— the same one is re-used for each occurrence. A
unique identifier is allocated for each occurrence of
a type-constructor.

para-id-rel

mod-id | region# | ent-id | para-id | p-type#

10. The relation local-module is used to record the region number associated with
a particular local module. The relation local-module has four attributes, three

of which are key attributes.
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mod-id —- This is the first key attribute. Its value is the name
of an external medule

regionz#t - T'his is the second key astiribute. his 1s the region
in which the local module is declared.

loc-mod-id — This is the third key attribute. Its value is the
name of a local module declared in the external
module named in the mod-id attribute.

cregionf# -— This is the region that belongs to the local module
identified by the primary key.

local-module .

mod-id | region# | loc-mod-id | c-region#

. The relation local-module-exports is used to record the name of the entities
exported by a named local module. The relation has four attributes, all of

which combine to form the primary key.

mod-id — This is the first key attribute. Its value is the name
of an external module

regionf##  — This is the second key attribute. This is the region
in which the local module is declared.

loc-mod-id — This is the third key attribute. Its value is the
name of a local module declared in the external
module named in the mod-id attribute.

ent-id — This is the fourth key attribute. Its value, is the
identifier of an entity exported by the named local

module.

local-module-exports

mod-id | region# | loc-mod-id | ent-id
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12. The relation local-module-imports is used to record information on a named

entity imported by the named local module.

mod-id — This is the first key attribute. Its value is the name
of an external module

region#  — This is the second key attribute. This is the region
in which the local module is declared.

loc-mod-id — This is the third key attribute. Its value is the
name of a local module declared in the external
module named in the mod-id attribute.

ent-id — This is the fourth key attribute. Its value, is the

| identifier of an entity imported by the named local

module.

local-module-exports R

mod-id | region# | loc-mod-id | ent-id

13. The relation type records information on the class of each of the types in a
module. The term “type” is used to apply to all types anonymous types in
variable and routine declarations, as well as type declarations. This relation
is used to determine which of the different type relations contains the descrip-
tion of the named type declaration. The relation type has three attributes,

two of which are key attributes.



mod-id  — This is the first key field. It denotes the name of

the module in which the type elaboration exists.

typest — 'This is the second key field. It denotes the type
declaration whose class is being sought.

type-class — This attribute records the class of a named

| type elaboration. Its values can be one of the

following: “QUALIDENT”, “ENUMERATED”,
“SUBRANGE”, “ARRAY”, “RECORD”, “SET”,
“POINTER” or “ROUTINE”.

type

mod-id | type# | type-class

14. The relation qualident records the identifier of a type entity. The value can

be either a predefined type like INTEGER or CARDINAL, the name of a type

entity declared in the named module, or a type module imported into the

named module. The relation qualident has three attributes, two of which are

key attributes.
mod-id — This is the first key field. It denotes the name of

the module in which the type elaboration exists.

type# — This is the second key field. It denotes the type

declaration whose identifier is being sought.

ent-id — This attribute records the identifier of the type

qualident

named in the type# attribute.

mod-id

type# | ent-id

15. The relation enumerated-type record the names of each of the elements of a

named enumerated type. The relation enumerated-type has three attributes,
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two of which are key attributes.

mod-id — This is the first key field. It denotes the name of
the module in which the type elaboration exists.

type## — This is the second key field. It denotes the enu-
merated type whose element identifiers are being

sought.

ent-id — This attribute records the identifier of each of the
elements of a named enumerated type.

enumerated-type

mod-id | type# | ent-id

16. The relation subrange-type records information on the range type of a sub-
range type. The relation subrange-type has five attributes, two of them are

key attributes.
mod-id — This is the first key field. It denotes the name of

the module in which the type elaboration exists.
type# — This is the second key field. It denotes the type
declaration whose subrange elaboration is being
sought.
range-type# — This attribute records the type declaration num-
ber of the base type, i.e. the type of the subrange

elements.

subrange-type

mod-id | type# | range-type#

17. The relation subrange-delimiters records information on the range type of a
subrange type. The relation subrange-type has five attributes, two of them

are key attributes.
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mod-id — This is the first key field. It denotes the name of

the module in which the subrange type elaboration

type## — This is the second key field. It denotes the type
declaration number of the subrange for which the

delimiters are being sought.

ent-id — This attribute records identifier of the routine or
constant used to delimit one of the bounds of the
subrange.

subrange-delimiters

mod-id | type# | ent-id

18. The relation array-type records information on a named array type. The

relation array-type has four attributes, three of them being key attributes.

mod-id — This is the first key field. It denotes the name of

the module in which the type elaboration exists.

typeff — This is the second key field. It denotes the
type declaration whose array elaboration is being
sought.

indices-list-sym — This attribute records a value that is used as a key
attribute with the array-indices relation. It is used
to find the type of each of the indices of a given

array.

elem-type# — This attribute records the type declaration number

for the array elements.



array-type .

mod-id | type# | elem-type#

19. The relation erray-indices record the type declaration number for each array

index in a named array indices list.

mod-id — This is the first key attribute. Its value is the name
of a module
indices-list-sym — This is the second key attribute. Its value is the
symbol that denotes an array index list.
index-type# — This attribute records the type declaration number
| for an array index.

array-indices

mod-id | indices-list-sym | elem-type#

20. The relation record-field-type records information about the type of a named
field in a named record. The relation record-field-type has four attributes,

three of which are key attributes.
mod-id — This is the first key field. It denotes the name of

the module in which the type elaboration exists.

type# — This is the second key field. It denotes the record
type whose field identifiers are being sought.

field-id — This is the third key field. It denotes the name of
a field in a named record.

field-type# — This attribute records the type declaration number

of the named record field.

record-field-type

mod-id | type# | field-id | field-type#
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21. The relation sei-type records information on the type of the elements of a

named set. The relation set-type has three attributes, two of them being key

attributes.

moc-id -- This is the first key field. [t denotes the name cf
the module in which the type elaboration exists.

type# — This is the second key field. It denotes the enu-

merated type whose element identifiers are being
sought.
base-type# — This attribute records the type declaration number

of the base type, i.e. the type of the set elements.

set-type . .
[mod—id type# | base-type#

L

22. The relation pointer-type records information on the type that is bound by

the pointer. The relation pointer-type has three attributes, two of them being

key attributes.
mod-id — This is the first key field. It denotes the name of

the module in which the type elaboration exists.
typedt — This is the second key field. It denotes the
type declaration whose pointer elaboration is be-
ing sought.
bound-type# — This attribute records the type declaration number
of the base type, i.e. the type of the referenced

elements,

pointer-type

mod-id | type# | bound-type#

L

23. The relation proc-type records information on a named routine type. The
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relation proc-type has four attributes, two of them being key attributes.

mod-id — This is the first key field. It denotes the name of

the module in which the type elaboration exists.

type# — This 1s the second key field. It denotes the routine

type to which the information pertains.

para-sym  — This attribute denotes the value that is used as
the key attribute for the relations proc-type-para-
list and proc-type-pos-type

proc-type# — This attribute records the type declaration number
of the routine type. The special value, ‘§Void$’, is

used when the routine has no type, i.e. it is a

PROCEDURE.

proc-type :
mod-id | type# | para-sym | proc-type#

24. The relation proc-type-para-type records information on the type and class of

a named parameter, denoted by its position within the parameter list.

mod-id — This is the first key attribute. Its value is the name
of a module

para-sym  — This is the first key attribute. It identifies a pa-
rameter list.

para-type# — This attribute denotes the type declaration number

that describes the formal parameter’s type

proc-type-para-type
mod-id | para-sym | para-type#

25. The relation constants-used is used to record the global constants used by a

global routine. The relation constants-used has three attributes, and they are
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26.

27.

all used to form a primary key.

mod-id — This is the first key attribute. Its value is the name
of the external module.

routine-id -— This is the second key attribute. Its value is the
name of the name of the routine that uses the
named constant.

constant-id — This is the third key attribute. Its value is the

name of the name of the constant that is used.

constants-used

mod-id | routine-id | constant-id

The relation types-used is used to record the global types used by a global
routine. The relation types-used has three attributes, and they are all used

to form a primary key.

mod-id  — This is the first key attribute. Its value is the name
of the external module.

routine-id — This is the second key attribute. Its value is the
name of the name of the routine that uses the

named type.
type-id — This is the third key attribute. Its value is the

name of the name of the type that is used.

types-used

mod-id | routine-id | type-id

The relation variables-used is used to record the global variables used by a
global routine. The relation variables-used has three attributes, and they are

all used to form a primary key.
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mod-id — This is the first key attribute. Its value is the name
of the external module.

routinc-id — This is the second key attiribute. Its value is the
name of the name of the routine that uses the
named variable.

variable-id — This is the third key attribute. Its value is the

name of the name of the variable that is used.

variables-used

mod-id | routine-id | variables-id

28. The relation routines-used is used to record the global routines called by
another global routine. The relation routines-called has three attributes, and

they are all used to form a primary key.

mod-id — This is the first key attribute. Its value is the name
of the external module.

calling-routine-id — This is the second key attribute. Its value is the
name of the name of the routine that calls the
named routine.

called-routine-id — This is the third key attribute. Its value is the

name of the name of the routine that is called.

routines-used

mod-id | routine-id | variables-id
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