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Abstract 

Recently, the use of distributed computing systems has been growing rapidly due to the 

result of cheap and advanced microelectronic technology. In addition to the decrease in 

hardware costs, the tremendous development in machine to machine communication 

interfaces, especially in local area networking, also favours the use of distributed systems. 

Distributed systems often require remote access to data stored at different sites. Generally, 

two models of access to remote data storage exist: the un-structured and structured models. 

In the former, data is simply stored as row of bytes, whereas in the latter, data is stored along 

with the associated access codes. The objective of this thesis is to compare these two models 

and hence determines the tradeoffs of each model. First of all, an extended review of the field of 

distributed data access is provided which addressing key issues such as the basic design 

principles of distributed computing systems, the notions of abstract data types, data 

inheritance, data type system and data persistence. Secondly, a distributed system is 

implemented using the persistent programming language PS-algol and the high level language 

C in conjunction with the remote procedure call facilities available in Unix 1 4.2 BSD 

operating system. This distributed system makes extensive use of Unix's software tools and 

hence it is called DCSUNIX for Distributed Computing System on UNIX. Thirdly, two specific 

applications which employ the implemented system will be given so that a comparison can be 

made between the two remote data access models mentioned above. Finally, the implemented 

system is compared with the criteria established earlier in the thesis. 

keywords: abstract data types, class, database management, data persistence, information 

hiding, inheritance, object oriented programming, programming languages, remote procedure 

calls, transparency, and type checking. 

1 Unix is a trademark of Bell Laboratories. 



Preface 

This thesis comprises eight chapters and is in two volumes. This volume contains five 

chapters aiming to present all the background knowledge of the thesis. They are briefly 

summarized as follows: 

Chapter one puts forwards the main motivations of this thesis. Chapter two introduces 

the basic design issues of distributed computing systems. However, since the issue of 

remote file server is central to this thesis, the discussion of this topic is developed further 

in chapter three. Chapter four discusses the notion of abstract data types, followed by the 

concepts of data type systems and data persistence in chapter five. 

Syntax Notation 

The following syntax notations are used throughout the thesis: 

(a) All the important phrases, terms and keywords of a programming language are in bold 

letters unless stated otherwise. 

( b ) All the phrases or terms in italic text are entries of a glossary section (in volume 2) 

where a brief definition can be found. 
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Chapter One -- Motivations 

Conceptually, a computing system can be regarded as having several layers of abstraction 

as shown in Figure 1.1: 

epplicetion progrem 

I detebese 

(b)------ t 
structured dete ecess 

(e)------

physicel dete ecess I 

t 
[~l ---

Figure 1.1 Conceptual view of a computing system 

This diagram also depicts the route by which data travel between a user program and the 

physical storage device. However, this route is bi-directional, as indicated by the 

double-headed arrows, because the same underlying data access model will be used for all kind 

of data transactions, eg. data retrieval, data insertion and so on. Also, in the diagram, the 

database layer refers to a repository where a program and its associated variables are 

stored. This layer of abstraction seNes a different role from the lower two layers which are 

concerning with the way data is accessed. The first layer, structured data access layer, is 

often implemented by a modern programming technique called abstract data type (ADT), 
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which will be described in chapter four; whereas in the physical data access layer, data is 

simply treated as rows of bytes. 

When the above abstraction idea is to be established on a distributed computing 

system (DCS), Figure 1.1 is usually broken in two places. If it is broken in position (a), 

the following situation will be incurred: 

Machine 1 Machine 2 

eppl i cation program I 

I detebese 

t 
I structured date ecess I 

/f' 

physicel dete ecess I 

t 

This gives the row of bytes unstructured remote access, or referred as the unstructured 

data access model in this thesis. In this model, data is accessed directly between two (or 

possibly more) remote machines. But if Figure 1.1 is broken at position (b) as shown below, 

this gives remote access to structured data and will be referred as the structured data 
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access model subsequently. 

Me chine 1 Me chine 2 

I eppl i cet ion progrem I 

databese 

I structured date ecess I 

t 
physicel deta acess I 

t -rdi$;1 -
This model is quite different from the previous one because both the data and its associated 

access codes are stored only in one machine this time. So, to access the data, the appropriate 

access procedures have to be called from another machine. 

The discussion of the above two access models has pointed out one major design issue of 

DCSs, that is, how to access remotely stored data. Obviously, this involves transmission of 

data between different nodes via a communication medium, eg. the Ethernet. Unfortunately, 

data can be very simple or complicated depending on the application and therefore sometimes 

the unstructured model may be in favour to the DCS designers due to its simplicity. But this 

does not mean that the structured model is useless especially in terms of security. So each of 
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these models has its own tradeoffs. Among them, the key factors are concerned with data type 

checking and data transfer rate. These factors will affect the flexibility, reliability, security 

and performance of a distributed system as illustrated by the airline reservation example in 

Figure 1.2. 

reservet ion i nformeti on 

---------~ 

Trevel egent's 
mechine 

reply 

reservation 
database 

server 

Airline compeny·s mei nfreme 

Figure 1.2 An airline reservation system 

Before any further discussion, the two terms client and server in the above diagram, 

which will be used frequently throughout this thesis to describe remote data access 

mechanisms in DCSs, are defined as follow: 

server: A node in which the representation for a given object type and the operations on 

this representation are implemented. 

c I i ent : A process which accesses a resource or an object (information) in a server 

provided that the server and the client do not reside in the same machine. 

Referring back to Figure 1.2, if a ticket for a particular flight is being requested by a 

customer, the following sequence of activities will be typically encountered: 
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client side 

(1) Construct the details 

for the booking. 

------------> 

<------------

(4) If an error message is received, 

go back to step (1 ), re-construct 

the booking information and then 

repeat the whole process. 

5 

server side 

( 2 ) Analyse the received information. 

Two alternatives may exist: 

(a) The information is treated as 

rows of characters (eg. Unix 

file structure). 

(b) The information is treated as 

a unit with a well-defined 

structure (similar to the 

Pascal-like records). For 

instance, the first field of the 

unit must be a string of 30 

characters, the second field is 

an integer etc. 

( 3 ) If no mistake is found after the above 

analysis, the system database will be 

updated and an acknowledgement is 

replied, else only an error message 

is replied. 



In the above schema, the decision in choosing which of the two methods to do the analysis is 

totally related to the internal specification imposed by the database organization. Here, the 

term database means simply a repository for data. If the organization is an unstructured one, 

the rows of characters option should be used, otherwise the alternative must be used in oder to 

achieve consistency. Consistency is particularly important for the un-structured pair due to 

its lack of protection mechanism, i.e. clients can interpret the information at their own will. 

Apart from the way information is analysed, another crucial factor for the airline system is 

the time taken for each transaction (update). For example, if the flight is a very popular one, 

it is likely that several customers attempt to make a reservation at the same time while the 

system database is being updated. This may lead to a situation where two customers are 

dealing with two different versions of the database at that instant. One obvious solution is to 

introduce locking on the database to ensure no access can be made when it is busy. Finally, the 

application program in the client's side should also be able to aware of system crash, 

especially during a transaction, for instance, using a suitable time-out interval. 

From the aboved airline example, the choice between the structured and un-structured 

data access approaches is vital to DCS designers. The main objective of this project is to use a 

carefully implemented distributed system to compare the structured and un-structured 

strategies so that DCS designers can have a better overall picture in their mind. However, 

problem of system faults such as node failure, loss of data, data duplication are outside the 

scope of this thesis. 

The rest of this thesis is arranged as follows: Chapter two introduces the basic design 

issues of DCSs. However, since the issue of remote file server design is central to this thesis, 

the discussion of this topic is developed further in chapter three. Chapter four discusses the 

notion of abstract data types, followed by the concepts of data type systems and data 

persistence in chapter five. 

Having provided the required background knowledge for the project in the first five 

chapters, a distributed system based on the programming languages PS-algol (introduced at 

the end of chapter five) and C is described in chapter six. Chapter seven examines the 

tradeoffs of the two data access models by presenting two detailed applications on the 

implemented system. Finally, chapter eight concludes the work of this thesis. 
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Chapter Two -- Distributed Computing Systems 

Nowadays, distributed computing systems (DCSs) have become very popular both in 

industry and in many University research projects. The key advantage of using such systems 

is to make use of multiple processors without user notice. In other words, the users view the 

system as a virtual uniprocessor, not a collection of distinct machines. As a rule of 

thumb, if a user can realize which computer is being used, it is not a distributed system. The 

user of a true distributed computing system should not know (or care) on which machine (or 

machines) programs are running, where files are stored and so on. This is known as 

location transparency. Other important attributes of a DCS includes: replication 

transparency, performance transparency, fault transparency, processing transparency etc. A 

full discussion on transparency can be found in [1 ]. So, it is the software, not the hardware 

which determines whether a system is distributed or not. 

In recent years, there are two common types of DCSs that are of interest: 

tightly-coupled and loosely-coupled distributed systems. Both of them use multiple 

processors. In the former, processors share a single memory and such a system is said to be 

tightly-coupled because each processor has direct access to the same physical resources 

(shared memory) and logical resources (shared information). Moreover, in this type of 

systems, two processors could inhibit interrupts in their respective processors and still not 

be mutually excluded from accessing shared variables at the same time. The problem of race 

conditions between the occurrences of events and the checking for the occurrences in different 

processors also exists. Process synchronization is based on semaphore techniques. Other 

features in a tightly-coupled system include the existence of multiple clocks, system 

initialization of multiple processors, inter-processor interrupt facilities, scheduling for 

dynamic load balancing and the existence of both shared and local memories. Examples of 

tightly-coupled systems are CM* [2] and CYBA-M [3]. 

On the other hand, in a loosely-coupled system, processors do not have shared memories. 

They communicate by sending and receiving messages. This type of systems also allow 

inter-process communications to use the same mechanisms for processes communicating 

over a network as for processes communicating within the same processor. Other features 

include the static and dynamic allocation of processes to processors, flow control and message 
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routing over alternate paths. This kind of distributed systems can be dispered over a wide 

areas such as Arpanet [4]. 

Due to the tremendous development in hardware components, one can use distributed 

systems to design large projects that consist of many small, cheap and powerful 

microprocessors. Some of the well-developed DCSs are the Cambridge Distributed System 

[5], Locus [6], V [7] and Eden [8]. In order to highlight the power of distributed systems, 

the next section gives a comparison between DCSs and the well-known network computing 

systems of the early 1970s [9]. 

2.1. Difference between distributed computing systems and 

network computing systems 

A typical example of a network computing system is the UK Joint Academic 

NETwork (JANET). This is a non-commercial wide area network composed of 

heterogenous machines. JANET can be used by members of the UK academic community 

for terminal access and transfer of mails, files and jobs, between academic institutions. 

Also, access may be made from JANET to other academic networks such as the European 

Academic Research Network (EARN). 

Network systems have many aspects in common with the distributed ones, but 

they also differ in the following ways: 

(a) Each computer has its own private operating system, instead of running part of a 

global systemwide operating system. 

(b) Each user normally works on his or her own machine; using a different machine 

invariably requires some kind of remote login, instead of having the operating 

system dynamically allocate processes to CPUs. 
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(c) Users are typically aware of where each of their files are kept and must move files 

between machines with explicit file transfer commands, instead of having file 

placement managed by the operating system. 

(d) The system has little or no fault tolerance (this issue will be discussed further 

later); if one percent of the personal computers crashes, then one percent of the 

users is out of business, therefore one percent worse performance. 

2.2. System models for constructing distributed computing 

systems 

Three models are normally used for the establishment of DCSs [1 0]. They are 

minicomputer, workstation and processor pool models. 

In the minicomputer model, the system consists of a few minicomputers (eg. 

VAX1 s), each with multiple users and each user is logged onto a unique machine, with 

remote access to the other machines such as the JANET system described eariler. 

In the workstation model, each user has a personal workstation. Nearly all the 

work is done on these workstations. The SUN Microsystems' Network File System 

(NFS) was built on this model which supports a single and global file system, so that 

data can be accessed without regard to their locations. 

Finally, in the processor pool model, one or more CPUs are temporary allocated to 

a user who needs computing power; when the job is finished, the CPUs go back into the 

pool to wait for the next request. The Cambridge Distributed System [5] is a typical 

example of this model. 

1 VAX is a trademark of Digitial Equipment Corporation 
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2.3. Design issues of DCSs 

Although the notion of DCSs is so important, it covers a lot of grounds and 

therefore it is hard to define it just in a few sentences. But a definition is sometimes 

useful to help one to infer principles and guidelines for the design of DCSs, so a 

simplified definition is given in the glossary section. However, the best way to 

understand DCSs is to identify all its distinctive characteristics. 

This section will be divided into six sub-sections. Since a DCS is often 

constructed from a number of inter-connected computers, in order to exchange 

information between computers, each of them must provide an interface through 

which they communicate with each other. As a result, a communication system is 

required. Unfortunately, these computers usually do not have shared memory 

(loosely-coupled), so communication is performed via the technique of message 

passing. The objective of the first sub-section is to discuss the communication 

primitives of the various message passing algorithms. 

The second sub-section addresses the naming issue of DCSs. Naming system 

(sometimes referred as the identification system) is an area at the heart of all 

computing system designs because it is used for a wide variety of purposes such as 

protection, error control, resource management, locating and sharing of resources. 

Following the discussion of naming in DCSs, the third sub-section presents 

another distinctive feature of DCSs which is concerned with resource management. 

There is a wide range of resources that require management such as processors, 

processes, 1/0 devices, communication channels and so forth. Allocating and scheduling 

of resources are the major tasks of a resource manager. Besides, it is also the 

responsibility of the resource manager to ensure that no deadlock occurs. All these 

issues will be discussed in details. 

In the fourth sub-section, the notion of fault-tolerance will be described. 

Baasically, a fault-tolerant distributed system is the one which can tolerate certain 

kind of expected errors, typically node crashes and communication failures such as 
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lost messages. Also, in this sub-section, two widely used fault-tolerance techniques 

will be discussed. 

The fifth sub-section concentrates on the issue of file system which is a vital 

component in any distributed systems. Apart from providing a storage place for data, 

it also acts as an extension of main memory and as a means for inter-user 

communication. 

To conclude this section, a list of user-level services are given in the last 

sub-section. 
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2.3.1. Communication primitives 

2.3.1.1. Communication models 

2.3.1.1.1. The client-server model 

Underlying communication between different machines in a distributed 

computing system is via the technique of message passing. The most common 

model is the client-server model in which a client process sends a request 

to the server and then waits for a reply message as shown in Figure 2.1 below: 

) 
client's request messege 

< 
server's reply message 

Figure 2.1 Client-Server communication model 

The system should provide at least two primitives, SEND and RECEIVE, to 

accomplish this model. The SEND primitive specifies the destination and 

provides the message; the RECEIVE primitive specifies (or listen) from whom 

a message is desired and provides a buffer where the incoming message to be 

stored. So, it can be realized that this model does not need any initial setup. 
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According to Liskov [11 ], three important decisions have to be made. The 

first decision is about reliable and un-reliable transmissions. In the 

former, the SEND primitive will handle lost messages, re-transmissions and 

acknowledgements internally so that when SEND terminates, the program can 

make sure that the message has been received and acknowledged. However, for 

un-reliable transmission, the SEND primitive can only put a message out into 

the network without guarantee of delivery and no automatic re-transmission. 

Thus, in terms of processing power, the reliable approach is often more 

expensive than the un-reliable one. But on the other hand, the un-reliable 

strategy is more difficult to implement due to its complexity. 

The next concern is about blocking and non-blocking. For 

non-blocking SEND, it returns control to the user program as soon as the 

message has been queued for subsequent transmission (or a copy is made), the 

corresponding RECEIVE will signal a willingness to receive a message and 

provides a buffer for it to be placed. The only advantage of these non-blocking 

primitives is that they provide the maximum flexibility: message 1/0 can be 

computed and performed in parallel. However, a big drawback in non-blocking 

primitives is that they make programming difficult because timing dependent 

programs are hard to write and debug. Therefore, blocking primitives are 

preferred at the expense of less flexibility. A blocking SEND does not return 

control to the user program until the message has been sent (un-reliable 

blocking primitive) or until the message has been sent and an acknowledgement 

is received (reliable blocking primitive). Either way, the program can 

immediately modify the buffer without danger. A blocking RECEIVE does not 

return control until a message has been placed in the buffer. Reliable and 

un-reliable RECEIVEs differ in that the former automatically acknowledges the 

receipt of a message while the latter does not. 

The last decision is the choice of buffered or un-buffered messages. In 

the latter, the sender is blocked until a RECEIVE has been done, at which time 

the message is copied from the sender to the receiver. This is sometimes called 

rendezvous. In the former, senders can have multiple SENDs outstanding, 

even without any interest on the part of the receiver. The kernel of the system 
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provides a kernel buffer, sometimes referred as mailbox. To communicate, 

the sender sends messages to the receiver's mailbox, where they will be 

buffered until requested by the receiver. Buffering is more complex such as 

creating, destroying and managing mailboxes, the need for special 

high-priority interrupt messages protection against the mailbox, what to do 

with a dead mailbox, etc. 

2.3.1.1.2. The remote Procedure Can technique 

Another form of message passing mechanism which has been used widely 

recently is known as remote procedure call or RPC for short. Essentially, 

RPC is a distributed programming facility which enables a client program to 

call procedures whose codes and parameters are residents on a remote machine. 

After the invokation, the client blocks while an underlying mechanism, the RPC 

protocol which atcs as an interface between the client and the remote machine, 

will take care of the following activitives: 

( a) sending a call message to the remote machine, 

( b ) initializing a computation on the remote machine which will execute the 

called procedure, 

(c) and finally, transmitting the computation result back to the calling 

program in the client's machine. 

Ideally, it would be desirable to treat RPC as a local procedure call so as to 

make the distribution transparant to the user. For instance, Figure 2.2 shows 

a typical RPC design for a DCS. 
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c 1 i en t mach i n e server mach i n e 

client program 
underlying server's library 

RPC 

EJ / protocol 
} procedure 

<... p 
' 

Figure 2.2 RPC communication model. 

In this model, the client (calling program) first makes a normal procedure 

call, say p(x,y) on its machine, with the intention of invoking the remote 

procedure p on some other machine. Secondly, a dummy or stub procedure is 

included in the caller's address space. This procedure, which may be 

automatically generated by the compiler, collects the parameters and packs 

them into a message. Thirdly, the message is sent to the remote machine via an 

output handling procedure and then the calling program is suspensed by the 

kernel to wait for an answer. At the remote machine, another stub procedure, 

which was created after procedure p had been registered on the server 

machine, should be waiting for a message invoking p. Once this is detected, the 

parameters of the message will be un-packed using an input handling procedure 

and then makes the local call p(x,y). So, the only procedures that know the 

call is remote, are the stubs. After the result of the call of p has been obtained, 

it will be returned to the client with an analogous path in the reverse direction. 

All the stub procedures and 1/0 handling routines will be parts of the 

underlying RPC protocol as indicated in the diagram. 

Although the RPC scheme seems to work fine, some problems still exist. 

The first problem is how parameters and results are passed over the network. 

Usually they can be passed either by value or by reference (pointers). 

Passing by value is easy because the stub procedure just copies the data into the 

message. However, passing by reference needs a unique, systemwide pointer for 
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each object so that it can be accessed remotely. For large objects, such as a 

payroll file, some kind of capability mechanisms [12] could be set up and then 

using these capabilities as the pointers. Unfortunately, the amount of overhead 

and the algorithm required to create a small object, such as an integer or a 

boolean, are so great that it is un-satisfactory in practice. 

Another problem is how parameters and results are represented. This can 

be quite complicated particularly if several different types of machines are 

involved in the communication as each of them may use different internal 

representation for the same set of objects. For example, a floating point 

number produced on one machine may not have the same value on a different 

machine or even a negative decimal number will create problems between the 

1 's complement and 2's complement machines. One obvious solution is to 

convert every incoming and outcoming messages into a standard format. But it 

is quite expensive and time-consuming especially if the sender and receiver 

machines are actually using the same internal format. An alternative solution 

is that the sender uses its internal format to represent parameters and results, 

and then an identification code is included in every messages to indicate which 

format it is. When the receiver receives the message, a conversion will be 

taken place according to the identification code. Thus, every machine must be 

prepared to convert from every other formats. However, when a new machine 

type is introduced, much of the existing software must be up-graded. So, 

whatever the solution is, with RPC, certain difficulties exist. 

The issue of how clients bind with servers is also important. Consider a 

distributed system with multiple servers. If a client creates a file on one of the 

file servers, it is usually desirable that subsequent writes to that file go to this 

specific file server directly. But using RPC, the client will only make a call 

such as 

write(Filedescriptor,BufferAddress,NumberofBytes) 

in his or her program with no information about where the file is. 

Nevertheless, this will work if a table is maintained by the system which 

contains the location details of each file-descriptor. 
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2.3.1.2. Implementation issues about communication primitives 

In the last sub-section, two most commonly used message passing 

techniques have been described. Another widely discussed strategy for message 

passing is the ISO-OSI reference model [13) which has seven layers, each 

performing a well-defined function. By using this model, it is possible to 

connect computers with a wide range of operating systems and hardware 

architectures. Unfortunately, the overhead caused by all the seven layers is 

substantial. This overhead could still be tolerable for distributed systems 

consisting of huge mainframes, connected by low bandwidth communication 

lines. But for a system that is composed of only small computers, such as 

microcomputers, connected by fast local network, the price to pay for the ISO 

model is too high. This observation leads to a great deal of research work in 

making message passing as efficient as possible. 

One major implementation issue of communication primitives is to 

minimize the copying of data because the time for copying excessive data and the 

other sources of overhead eg. the reply message, the time waiting for access to 

the network, transmission time and so on, will slow down the throughput of the 

system. Also, another important implementation issue to be considered is the 

substantial fixed overhead with preparing, sending and receiving a message 

(even for a short one), eg. a request to read from a remote file server. In these 

circumstances, the kernel must be invoked, the state of the current process 

must be saved, the destination must be located, the various tables must be 

updated, permission to access the network must be obtained (eg. wait for the 

network to become free or wait for a token), and also some book-keeping must 

be done. This fixed overhead argues for making the message as long as possible 

to reduce the number of messages. However, if the message are too long, a 

highly interactive user may occasionally be delayed and hence degrading the 

response time. So, the optimum size should depend on the work load. 
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Besides the above issues, there is also much controversy over the past 

years about whether RPC should be built on top of a virtual circuit or a 

datagram. Saltzer et. al. [14] have pointed out that since high reliability can 

only be achieved by end-to-end acknowledgements at the highest level of a 

communication protocol, the lower levels need not be 100 percent reliable. The 

overload incurred in providing a clean virtual circuit upon which to build RPC 

is therefore wasted. This suggested for building RPC on a raw datagram 

interface. But on the other side of the coin is that it would be nice if a 

distributed system can encompass heterogeneous computers in different 

countries with different post, telephone, telegraph networks and possibly 

different national alphabets, although this environment requires complex 

multi-layered protocol structures. So both arguments seem to be valid 

depending on whether one is trying to forge a collection of small computers into 

a virtual uniprocessor or merely access remote data transparently. 

Unfortunately, further consideration is still required even though 

datagram is chosen to implement RPC. There are currently several protocols 

where datagram services are implemented. The simplest one is to have every 

request and reply separately acknowledged as shown in Figure 2.3(a). The ACKs 

are managed by the system kernel without user knowledge. However, the 

number of message can be reduced from four to three by allowing the REPLY to 

serve as the ACK for the request as depicted in Figure 2.3(b). But a problem 

arises when REPLY is delayed for a long time, eg. if a login process sends a RPC 

to a terminal server asking for characters, it may take a long time before 

someone types something on it. In this case, an additional message has to be 

included to allow the sending kernel to inquire whether the message has arrived 

or not. Finally, it is also possible to eliminate the other ACK, as shown in 

Figure 2.3(c). This time lets the arrival of the next REQUEST imply an 

acknowledgement of the previous REPLY. 

1 8 



Request 

----> 
Request Ack. 

<-----
Reply 

<-----
Reply Ack. 

-----> 

(a) 

Request 

----> 
Reply 

<-----

Reply Ack. 

-----> 

(b) 
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Request 1 

---> 
Reply 

< 

Request 2 

----> 

(c) 

Figure 2.3 Remote Procedure Call (a) with individual 

acknowledgements per message, (b) with 

the reply as the request acknowledgement, 

(c) with no explicit acknowledgements. 

Nevertheless, even a straightforward implementation of an efficient 

communication scheme can have unexpected consequences as suggested in [15]. 

Consider a ring containing a circulating token. To transmit a message, a machine 

captures and removes the token from the network, then puts the message on the 

network before it replaces the token to allow other users to transmit their 

messages. This scheme looks fair but suppose two users each wants to read a long 

file from a file server. User A sends a request to the file server and then replaces 

the token on the network for B to acquire. After A's message arrives at the server, 

it takes a short time for the server to handle the incoming message interrupt and 

re-enable the receiving hardware. So the server is deaf until the receiver is 

re-enabled. Within this short period of time, A may replace the token and let B 

grab it and sends its request to the temporary deafed file server. Even if the 

server has re-enabled halfway through B's message, the message will still be 
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rejected due to missing header, bad format and so forth. Furthermore, according 

to the ring protocol mentioned earlier, after sending a message, B has to replace 

the token and therefore A can grab it again to make another transmission. Once 

again B transmits during the server's deaf period, the same result happens. This 

would go on and on until A has read the whole file. So B will get no service at all 

until A has finished. Sventek [15] claimed that the problem can be solved either 

by inserting random delays in places to break the synchrony or using a buffer to 

store the messages. From the result of this example, it is necessary to build and 

observe real systems to gain insight of the problems rather than totally rely on 

abstract formulations and simulations. 

2.3.1.3. Error handling 

Error handling in distributed systems is quite complicated partly due to the 

lack of centralized information about running processes and partly due to the 

massive number of processors involved. It is often quite difficult to find out what 

has gone wrong with the system. For instance, if a client process has initiated a 

RPC with a remote server which crashes after the call is accepted, the client may 

just be left hanging forever for a reply and become an orphan process unless a 

timeout is set on the call or an exception is signalled. However, the former may 

introduce race conditions as the client may timeout too quickly due to the slow 

servers whereas in the latter, the RPC is said to be returned abnormally. 

Conversely, if a client crashes after it makes a RPC, an orphan process will be 

left in the server machine because the result of the RPC cannot be returned. Even 

worse if the server does not know when it is safe to discard the result of the RPC 

which may not be reproducible later. 

Another problem is what happens if a client cannot be sured whether or not 

a server has crashed One solution is to wait until the server has rebooted and then 

try again. This solution sometimes works and sometimes does not. This will work 

if and only if the client's request does not cause any serious consequence such as 

reading ten bytes of a file but not withdrawing one million pounds from a bank. 
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Going back to the orphan problem, apart from using up some of the valuable 

system resources, another danger consequence caused by orphans is concerned 

with their interference with other legitimate computations. As an example, 

suppose a client obtains a lock on a remote terminal and has issued two RPCs, say 

DISPLAY(file1) and DISPLAY(file2). If DISPLAY(file1) returns abnormally and 

leaves an orphan which is allowed to interfere with the computation for 

DISPLA Y(file2), then the lines of the two files could freely mix on the terminal 

screen. In order to solve these problems, the following notion of RPC ca II 

semantics are generally adopted: 

Exactly-once semantics : When a RPC returns, the called procedure is known 

to have been executed exactly once if the return from it is successfully, or 

partially up to the point when an exception was raised if the return is abnormal. 

This semantic can be used to detect orphans. 

At-least-once semantics : For some particular applications, one might settle 

for allowing more than one computation to take place on the behalf of a single RPC. 

This semantic is used to detect interference. 

At-most-once semantics : Under this semantic, a RPC returns successfully 

iff (if and only if) it has given rise to one execution; abnormally iff it has had no 

effect. Sometimes this semantic is referred as atomicity and it is mainly used to 

deal with node crash recovery problems. 

Conclusively, orphans are un-wanted executions caused by communication 

or node failures. Mancini [16] has mentioned several methods to treat orphans. 

Recently, the issues of orphan-detection and orphan-killing have received a 

great deal of attention owing to the fact that orphans are the main source for 

interference to occur in DCSs. Crashcounts, extermination and expiration 

are three of the best known strategies for interference prevention through 

orphan-killing. In the paper given by Nelson [1], the relative merits of these 

three methods have been compared and he has also pointed out that a reliable DCS 

should be able to control interference transparently to the users. 
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2.3.2. Naming systems 

2.3.2.1. 

Naming system (or identification system) is of fundamental importance to the 

construction of a DCS. A name is actually an identifier, typically a character string 

or an integer, used to identify an object such as a file, a directory, a node, a service 

and so forth. To provide an un-ambiguous way of identifying objects, the idea of 

unique identifier has become very popular. A unique identifier is a name in a 

global context that names all the objects in the system. An example of a unique 

identifier is the CPU serial number which is a fixed length integer carefully chosen 

to be large enough to exceed the number of objects even likely to be created by the 

system. Shoch [17] has further categorized identifiers into three classes: names, 

addresses and routes. A name refers to an object; an address refers to an object's 

location in memory; and a route refers to the means of finding the address of an 

object. All these three classes of identifier can occur at all levels of a system 

architecture. Throughout the rest of this sub-section, Shoch's definition for name 

will be adopted wherever the term name is used. 

In the following three sub-divisions, the basic principles of naming will be 

discussed, followed by the design issues of name servers and their goals in DCSs. 

Objectives of naming 

Generally, all naming systems are based on the following principles : 

(a) Identification : Objects are identified by names without reference to their 

properties. Naming provides a unique method for mapping between an 

object and its identity. Thus, naming can be viewed as a way of abstracting 

over identities. The process of replacing a name with the identity of its 

corresponding object is called name resolution. However, in some 

cases, a given object may have more than one name or two distinct 

objects may have the same name and therefore the meaning of a name will 

depend on the context in which it is resolved. 
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(b) Data protection : Before any object is used, it must be identified. If an 

identified object is to be manipulated or accessed, the identifier must be 

mapped, using the appropriate mapping function, into the corresponding 

address in memory. The mapping function may contain information 

concerning the access rights of the object. This strategy has ensured that 

objects are managed in a controlled way and hence data is protected from 

misuse. 

(c) Resource sharing : Communication between two processes can be taken 

place by passing around the name of a common object. For example, 

assuming that there are two processes: one calculates the average of the 

current DOW-JONES stock prices in New York and the other makes 

changes to a database (an object) where the current DOW-JONES stock 

prices are kept. In order to fulfill the tasks of both processes, the stock 

prices database must be shared by passing its name as a parameter. Although 

names permit sharing, it is not always in the most desirable way especially 

if the use of a shared object requires the user to have knowledge about the 

names of the other objects associated with the shared object. 

(d) Transparency : Since one can use names to access objects, the users are 

shielded from the implementation details of the objects. This provides the 

basis for building abstractions over certain system's identities such as the 

locations of the objects. This kind of location transparency is of particular 

interest to distributed systems. 

(e) Structure description : Names can (if desired) serve to describe objects 

to which they refer. In other words, names reflect the similarity in their 

referents; similar names refer to similar objects such as the 

hierarchical file structure of Unix. Moreover, this descriptive property of 

naming can be used to draw the distinction between human-oriented 

names and machine-oriented names. In the latter, names are 

implemented in terms of bit pattern which can be easily manipulated and 

stored by machines and be directly useful with protection such as Unix's 
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inode number. On the other hand, human-oriented names are usually human 

readable character strings with mnemonic value (eg. the name of a machine) 

and at the some stage they must be mapped into the machine-oriented ones. 

This shows the fact that human-oriented names are essential for the higher 

levels of the system whereas machine-oriented names are useful in the 

lower levels and always invisible to users. 

Unfortunately, naming imposes additional difficulties in distributed systems 

because in some cases, mapping only implies a single level of mapping but in 

other cases, it can imply multiple levels. Considering a process wants to use a 

printing service, it may first have to map the service name into the name of a 

server process that is prepared to offer the service. Secondly, the server 

process may then be mapped onto the number of the CPU on which it is running. 

However, the mapping may not be unique if there are more than one process 

prepared to offer the same service. These problems are the major objectives of a 

distributed name server as described shortly. 

2.3.2.2. Name servers 

Recently, several mechanisms have been attempted to implement distributed 

naming system. One strategy is to employ a central authority called the name 

server which is often one of the processors within the distributed system. The 

name server accepts names in one domain and maps them onto names in another 

domain. For instance, to locate a service, one sends the service name (in ASCII 

string) to the node number where that service can be found. To facilitate the 

mapping, the name server needs to build a database by registering services, 

processes, etc, that want to be publicly known with the exception that file 

directories are regarded as a special case of name service because it is supported 

by the operating system. This approach is only acceptable by small computing 

systems such as Smalltalk-80 [18]. For large distributed systems, it is 

undesirable to have a single centralized component (the name server) which will 

bring the efficiency of the whole system down when it is overloaded. 
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Another approach is to partition the system into domains, each with its own 

name server. One way to organize the system is to have a global naming 

hierarchy tree structure with files and other objects having names of the form 

/albic (a Unix-like system). When such a name is presented to a name server, 

it can immediately route the request to some name server which will send it to 

another name server and so on until it reaches the name server in the network 

where the required object is located and the mapping can be done there. Another 

way to organize the name servers is to have each one effectively maintian a table 

of name-pointer pairs where the pointer is some kind of capability for objects in 

the system. 

So when a name such as a/b/c is looked up by the local name server, it may 

yield a pointer to another domian (another name server), to which the rest of the 

name b/c is ·sent for further processing. This facility can be used to provide 

links to files or objects whose location is managed by a remote name server. For 

example, if a file TEST is located in another local network, n, with name server 

n.s. One can make an entry in the local name server's table for the pair (x,n.s) 

and then access x/TEST as it were a local object. Any appropriate authorized 

user or process can also make its synonym, say s, and perform the access using 

s/x/TEST. Finally, the most extreme way of distributing the name server is to 

have each machine managed its own names. To look up a name, one broadcasts it on 

the network. At each machine, the incoming request is passed to the local name 

server which replies only if it finds a match. 

Although name servers frequently maps a string onto a number, which is used 

internally to the system such as a process identifier or node number, the reverse 

mapping is sometimes useful in situation like machine crash; upon rebooting, it 

could present its node number to the local name server to inquire what it was 

doing before the crash so that the server can take the appropriate remedial 

actions. 
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2.3.2.3. Goals of distributed name servers 

Distributed and non-distributed name server differ in that the former 

provides the ability for one machine to identify an object stored on another 

machine. This is often considered to be a major characteristic of a DCS. Every 

(local or remote) objects must be identified before they are accessed, and 

therefore the efficiency of the name server is directly proportional to the overall 

performance of the system. Although distributed name servers are so important, 

no standard has yet been imposed on thier specifications. Nevertheless, the 

following goals are worth aiming at when designing name servers for distributed 

computing systems. 

(a) Support at least two levels of names (identifiers), one convenient for 

users and one convenient for machines. They are human-oriented names and 

machine-oriented names respectively. Also, there should be a clean 

separation of mechanisms for these two levels of identifiers. 

(b) Provide a system viewed as a global space of identified host computers 

containing locally identified objects. Similarly, the naming mechanism 

should be independent of the physical connectivity or topology of the system. 

This means that the boundaries between physical components and their 

connection as a network should be invisible to certain extent and be 

recognized as logically artifical. If these boundaries are represented in 

identifiers, it should be within a unified identifier structure such as a 

hierarchical form. 

(c) Support relocation of objects by means of a mechanism which can update the 

appropriate context for the required mapping when an object is moved. 

There will be at least two levels of identifiers, a name and an address, and 

the binding between them would be dynamic. 

(d) Support multiple copies of the same object such that if the content of the 

object is only going to be read or interrogated, one set of constraints are 
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2.3.3. 

2.3.3.1. 

imposed; if the content can be written or modified, another set of (usually 

more restricted) constraints are used. The key advantages of multiple 

distributed copies are that it reduces response time in case of read only 

access requests because objects can be stored in a node where they are used 

most frequently, and for higher availability/reliability in the presence of 

host computer crashes. 

(e) Allow special purpose objects to share the same identifier. This is 

extremely useful to support broadcasting or to group identifiers for 

conferencing or some other special applications. 

(f) Finally, the number of independent naming systems across and within the 

system architectural levels must be minimized. 

Resource management 

For the reason of reliability, distributed system designers have always 

rejected the idea of having any central tables, for example, to find out whether a 

processor is free or not. Furthermore, even if there is a central table, recent 

events on outlying processors may have made some table entries obsolete without 

the table manager knowing it. Lack of accurate global state information making the 

task of resource management very difficult. 

Processor allocation 

One of the key resources to be managed in a distributed system is the set 

of available processors. A typical strategy is to organize them in a hierarchy 

structure independent of the physical structure of the network. This approach is 

used by MICROS [19] which assigns some of the machines as managers and the 
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others as workers as illustrated in Figure 2.4. For each group of say k 

workers, one manager machine (the department head) is assigned the task of 

keeping track of who is idle. If the system is large, there will be a large number 

of department heads; some machines will function as deans managing the k 

department heads. This hierarchy can be extended infinitely with the number of 

leaves growing algorithmically with the number of workers. Since each 

processor only maintains communication with one superior and k sub-ordinates, 

the information track is manageable. 

chairmen 

~~~~ens 
~ ·································································· ~enegers 

~........----~1 ......... · .__I ______. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ······· · · · · · · · · ~........----~1 .. .. .. .. .. I.______. workers 

Figure 2.4 MICROS processor hierarchy structure 

However, there is a problem when one of the department heads or deans 

has crashed. One solution is to promote one of the direct sub-ordinates of the 

faulted manager to fill the place. This choice may vary from case to case. 

Sometimes it even better not to have a single manager at the top of the tree, 

therefore the tree is truncated at the top, and having a committee as the ultimate 

authority. When a member of the committee malfunctions, the remaining 

members promote someone from one level down as the replacement. The system 

is self-repairing under this scheme and can survive occasional crashes of both 

workers and managers without any long term effects. 
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Also in MICROS, all processors in this system are mono-programmed that 

is if a job requires S processors suddenly appears, the system must allocate S 

processors for it. Since jobs can be created at any level of the hierarchy, each 

manager will keep track of approximately how many workers below it are 

available (or possibly several levels below it). If it thinks there are enough 

workers, it reserves some of them, say R, where R>=S in case some of the 

machines may be down later. However, the manager receiving the request 

thinks that it has not got sufficient workers for the job, it passes the request 

upwards in the tree to its boss. If the boss cannot handle it either, the request 

continues propagating upwards until it reaches a level that has enough workers 

or the top of the tree is reached. In the former, the manager at that level will 

split the request into parts and delivers them to the managers below it which 

then do the same process until the scheduling of the request reaches the bottom 

level. At this point, the processors are marked as busy and the actual number of 

processors allocated is reported back up the tree. In the latter, the request has to 

be suspended until there are sufficient processors available. 

One of the critical factor in the above strategy is the choice for R. If R is 

not large enough, there will not be enough workers to finish the job and the whole 

process has to restart at one level upwards in the hierarchy, wasting 

considerable time and computing power. On the other hand, if R is too large, too 

many processors will be allocated, wasting computing capacity. Besides the 

choice of R, this method can be made complicated due to the fact that requests for 

processors can be generated randomly anywhere in the system, so at any instant, 

multiple requests are likely to be in various stages of the allocation algorithm, 

potentially giving rise to out-of-date estimates of available workers, race 

conditions and deadlocks. 
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2.3.3.2. Scheduling 

The hierarchical model described in the previous sub-section did not 

specify how scheduling is done. No problem will arise if each process uses an 

entire processor and each process is independent of others. However, if several 

processes are working together and must communicate frequently with each other 

such as nested RPCs, it is important to make sure that the whole group runs at 

once. 

As an example to illustrate the difficulty in scheduling, assume each 

processor can handle up to N processes and there are plenty of machines and N is 

sufficiently large. Suppose processes A and B run on one machine and processes 

C and D run on another. Each machine is time-sliced in say 100 millisecond, 

with A and C running in the even slices and B and D running in odd ones. If A 

sends many messages or makes many RPCs to D. During time slice 0, A starts up 

and calls D immediately which is not running because it is now C's turn. After 

1 00 milliseconds, process switching takes places, then D gets A's message and 

carries out the task and replies quickly. However, since B is running at this 

time, it will take another 100 milliseconds before A gets the reply and proceed. 

The net result is that one message exchange every 200 milliseconds. If there are 

a thousand of such processes, the waiting time will grow considerably large. 

Scheduling strategies: 

Although it is difficult to determine dynamically the interprocess 

communication patterns, in many cases a group of related processes are started 

ott simultaneously as filters in a Unix pipeline. Stone [20] has suggested a 

method to deal with scheduling. That is to find out all the processes in the system 

that are working together, so that closely related groups of processes can be 

placed on the same machine to reduce interprocess communication costs. On the 

contrary, Ousterhout [21] has proposed several algorithms, based on the concept 

of co-scheduling, which take interprocess communication patterns into 
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accounts while scheduling, to ensure that all members of a group running at the 

same time. In general, the objective of Ousterhout's work is to place processes 

that work together on different processors, so that they can all be run in 

parallel. Since Stone and Ousterhoust' proposals on scheduling, much attention 

has been received on the subject. As a result, another approach called 

load-balancing [22, 23] was developed which aimed to keep load uniform: to 

prevent a situation in which some processors are overloaded while others are 

relatively free or even empty. 

Each of the approaches to scheduling mentioned above, have made certain 

assumptions about what is known and what is important. People using 

co-scheduling to maximize throughput and people trying to group processes to 

minimize communication costs often assume that: any processes can run on any 

different machines, the computation needs of each process are known in advance 

and the interprocess communication traffic between each pair of processes are 

also known in advance. However, these assumptions may be hardly met in real 

systems due to the dynamic changes in computing environment. Conversely, 

people using load-balancing to do scheduling do not make any assumption about 

the future behaviour of any process. So, loading-balancing provides a more 

flexible and adapative way for scheduling. Several load-balancing algorithms can 

be found in [1 0, pp. 437-438]. 

2.3.3.3. Distributed deadlocks 

There are two kinds of deadlocks in DCSs known as resource deadlocks 

and communication deadlocks. Resource deadlocks arise when all or some set 

of processes are blocked waiting for resources held by other blocked processes. 

This kind of deadlocks is hard to be detected in distributed systems because there 

are no centralized tables giving the status of all resources. On the other hand, 

communication deadlocks occur when several processes waiting for a message 

from each other before they can proceed like a circular loop. For instance, 

process A waiting for a message from B and B is waiting for a message from C and 
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2.3.4. 

C is waiting for a message from A. Chandy [24] has presented an algorithm to 

detect such deadlocks. He has assumed that each process that is blocked waiting 

for a message knows which process or processes might send the message. When a 

process blocks, he assumes that it does not really block but instead it sends a 

query message to each of the processes that might send it the real message. If one 

of these processes is blocked, it sends query messages to the processes it is 

waiting for. If certain messages eventually return to the original process, it can 

can concluded that a deadlock exists. Unfortunately, there is no easy way to 

tackle distributed deadlocks, but one can always try to re-start those processes 

involved in a deadlock at the expense of some extra CPU time. 

Fault tolerance 

A distributed system is potentially more reliable than a centralized or a 

network system because the system can still work even if one instance of some 

critical components such as a CPU, a disc or a network interface is down. In 

addition to hardware failures, one can also consider software failures. Basically, 

there are two common types of software errors: implementation error and 

specification error. Distributed systems can allow both hardware and software 

errors to be dealt with in different ways. In order to understand these methods, the 

difference between fault tolerant and fault intolerant systems must be distinguished. 

A fault tolerant system is one that can continue functioning even if something goes 

wrong; a fault intolerant system collapses as soon as any error occurs. 

Since distributed systems have enough resources to achieve fault tolerance, at 

least with respect to expected errors, eg. loss of packets during a transmission due 

to power cut, which is unavoidable. These systems can be made to tolerate both 

hardware and software faults by using the software to clean up the mess. Recently, 

two kinds of techniques are adopted to make distributed systems fault tolerance. 

They are the redundancy and atomic transaction techniques. Each of them deals 

with different types of fault tolerance. 
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2.3.4.1. Redundancy techniques 

All these techniques aim to make a DCS fault-tolerance in the presence of a 

process crash. They take advantage of multiple processors by duplicating every 

process with a backup process on different processors. All processes 

communicate by means of message passing mechanism such as RPC. Whenever 

anyone sends a message to a process, it also sends the same message to the backup 

process. The system then ensures that the primary and the backup processes can 

continue running until it has been verified that both have received the message 

correctly. If one process crashed, the other can still continue running. But at 

this point, the remaining process must clone itself and make a new backup 

process to maintain fault tolerance in the future. Two big disadvantages exist in 

this scheme: extra processors are needed to duplicate every processes; and if 

processes exchange messages at a high rate, a considerable amount of CPU time is 

required to keep processes synchronize at each message exchange. 

To solve the above problems, Powell and Presotto [25] have described a 

redundancy system that puts almost no additional load on the processes being 

backed up. In their system, all the messages sent on the network are recorded by 

a special recorder process. From time to time, each process checkpoints itself 

onto a remote disc. If a process crashes, recovery is done by sending the most 

recent checkpoint to an idle processor and informs it to start running. The 

recorder process then sends all the messages that the original process received 

between the checkpoint and the crash. Messages sent by the newly re-started 

process are discarded until the new process has worked its way up to point of 

crash, then it begins sending and receiving messages normally again without 

further help from the recording process. 

The benefit of such scheme is that the only additional work that a process 

must do to become immortal is to checkpoint itself from time to time. If the 

recorder process has enough disc spaces to store all the messages that are sent by 

all the currently running processes, checkpoints can also be disposed. If no 

checkpoints are made, the recorder will have to replay the process's whole 
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history when a process crashes. When a process has terminated successfully, 

the recorder process can discard all the messages it received. Unfortunately, no 

scheme is perfect, one shortcoming of this scheme is that it requires reliable 

reception of messages all the time. Generally, local area network are very 

reliable, but occasionally messages can be lost, thus the whole scheme becomes 

less effective. 

All the redundancy techniques discussed so far are concerned with crashes 

caused by hardware failure. The way they achieve fault tolerance is to allocate a 

spare processor and to re-start the crashed program. However, the new process 

may crash too, leading to the allocation of another processor and another possible 

crash. Eventually some kind of manual intervention will be required to figure 

out what is going on. 

For software fault tolerance, a mechanism suggested by Avizienis and Chen 

[26] is to structure each program as a collection of modules, each one with a 

well-defined function and a precisely specified interface to the other modules. 

Instead of writing each module only once, N programmers are asked to program 

it. During execution, the program runs on N machines in parallel. After each 

module finishes, the machines compare their results and vote on an answer. The 

answer agreed by most of them is taken as the final answer of the module and then 

they can continue running in parallel with the next module. This method have a 

good chance to eliminate the occasional software fault bug. It is even better if 

there are some formal specifications for each modules because the answers can be 

checked against these specifications to prevent any non-sense answers. A 

variation of this idea to improve system performance is that all the processes can 

continue with the next module as soon as k suitable number of the machines have 

agreed on an answer, those that having not yet finished are ordered to drop what 

they are doing and just taken the value found by the k processes as the answer. 

Obviously this scheme needs a lot of processors and labours, therefore it is 

only worth considering for large projects. Also, the whole scheme depends on the 

definition of the vote mechanism. 
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2.3.4.2. Atomic transactions 

These techniques play a different role from the redundancy techniques 

described before. Consider the problem of crash recovery in a data storage 

system which is constructed from a number of independent computers, The 

portion of the system which is running on some individual computers may crash 

and then be re-started by some recovery mechanism. This may result in the loss 

of some information whch was present just before the crash. The loss of this 

information may, in turn, lead to an inconsistent state for the information 

permanently stored in the system. The task of atomic transaction is to 

maintain the consistency of a file system in the presence of these possible errors. 

What is atomic transaction? A transaction is composed of a sequence of 

read and write commands sent by a client process to the file system. The write 

commands may depend on the results of previous read commands in the same 

transaction and vice versa. A transaction is said to be atomic if it possesses the 

following properties: 

(a) the transaction is either run to completion or have no effect at all. 

(failure atomicity) 

( b ) if two or more concurrently executing transactions access shared data, then 

the effect is as if the transactions had been obeyed one after the other. 

(serialization atomicity) 

(c) once a transaction terminates, the results produced are not destroyed by 

subsequent node crashes. (permanence of effect) 

The idea of atomic transaction resembles the old magnetic tape system by 

having a master file and an update file as shown in Figure 2.5. 
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Figure 2.5 Atomic transactions 

In the diagram, the master file is the old version while the update file contains 

all the new information. The update file is run to produce a new master file. So 

if the update program crashes, one could always go back to the previous master 

and update file. In other words, an update run can be viewed as either running 

correctly to completion (and producing a new master file) or have no effect at all 

(crash part way through, new master file discarded). Moreover, update jobs 

from different sources always run in some (undefined) sequential order, 

therefore no two users will be run concurrently. 

From the three properties of atomic transaction, it can be realized that they 

are concerned with recoverability, error control and synchronization. 

By having the ability to support atomic transactions, a system can guarantee that 

no information will be lost during a system crash. However, the use of atomic 

transaction is of particular interest when those read/write commands are 

executed in several different nodes of a DCS. If any of these commands do not 

complete for some reasons, the whole transaction will be aborted. Hence, 

consistency is maintained. 
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2.3.4.2.1. Two-phase commit 

In order to acheive atomic transactions, the two-phase commit protocol 

was emerged. This protocol transforms a system from one consistent state to 

another and it works as follows: 

A client process makes a transaction request to a server which is 

accompanied by certain hosts within a distributed system as depicted in the 

following diagram: 

co-operet i ng sites 

transection 

..---se_rve_r ----. / o 
di stri but i ng 0 

the ---
transaction 

~0 

client 

D request for 

As soon as the server has received the request, the transaction will proceed 

in two stages: 

(a) Preparation phase: 

This phase involves both the server and its co-operating sites. On the 

server side, there is a process called the commit co-ordinator [27] 

which sends request commit messages to all participant sites. If any site 

indicates NO (or cannot be contacted), the co-ordinator aborts the whole 

transaction. If all vote YES, the co-ordinator records the information 

necessary to perform the transaction (usually on stable storage which will 
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be discussed in the next sub-section). Then it sets a commit bit, broadcasts 

a commit message to each participants and waits for their 

acknowledgements. Finally, it re-sets the commit bit. 

On each participant sides, after the request commit message has 

arrived, the participant is asked to go into a state in which it can either 

redo or undo the actions allocated to it. If this fails, the participant will 

reply NO as the answer, otherwise it votes for YES. 

( b ) Commit phase: 

At this phase, the transaction will run to completion regardless of 

crashes of the co-ordinator or any participants. 

Several points are worth noting about this protocol: 

( 1 ) The decision to commit is centralized and is stored in one place. 

( 2 ) It is assumed that none of the participants will lie about their willingness 

to commit. 

( 3 ) This protocol cannot survive system crash without the aid of a recovery 

process. This process will be situated at the server site and is started to 

run after a crash but before any user activities. At this point, if the 

previous transaction has not yet committed as indicated by the information 

stored on the stable storage, the recovery process rolls it back (by 

broadcasting abort), re-broadcasts the commit message to the associated 

participants and re-starts the whole transaction. This recovery 

mechanism also applies to the situation where the commit co-ordinator 

crashes after setting the commit bit but before the end of the transaction. 

However, the two-phase commit protocol may still not work in the 

absence of crashes, due to problems such as communication links failures. 
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2.3.4.2.2. An atomic transaction example 

As an example, Lampson [28] has described a way of achieving atomic 

transactions by building up a hierarchy of abstractions. In his model, certain 

assumptions were made. Real disks can crash during READ and WRITE 

operations in an unpredictable way. Even if a disc block is correctly written, 

there is still a possibility that it will be corrupted by a newly developed bad 

spot on the disc surface. His model also assumed that spontaneous block 

corruptions are sufficiently infrequent and the probability of two such events 

happening within some pre-determined time T is negligible. To deal with real 

disks, the system software must be able to find out whether or not a block is 

valid, eg. using a checksum. 

Three layers of abstractions existed in Lampson's model. The first layer of 

abstraction, on top of the real disc, is the careful disc in which every 

CAREFUL_WRITE is read back immediately to verify that it is correct (perhaps 

using Cyclic Redundancy Code checks). If the CAREFUL_WRITE persistently 

fails, the system marks the block as bad and then intentionally crashes. Since 

CAREFUL_WRITEs are verified, CAREFUL_READ will always be good, unless a 

block has gone bad after being written and verified. The next layer of 

abstraction is stable storage. A stable storage block consists of an ordered 

pair of careful blocks, which are typically corresponding careful blocks on 

different drives, to minimize the chance of both being demaged by a hardware 

failure. The stable storage algorithm guarantees that at least one of the blocks 

is always valid. The STABLE_WRITE primitive first performs a 

CAREFUL_WRITE on one block of the pair, and then the other. If the first one 

fails, a crash is forced as described above and the second is left un-touched. 

After every crash and at least once every time period T, a special cleanup 

process is run to examine each stable block. If both blocks are good and 

identical, nothing needs to be done. 

However, if one is good and one is bad (failure during a 

CAREFUL_ WRITE), the bad one is replaced by the good one. If both are good but 
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2.3.5. 

different (crash between two CAREFUL_WRITEs), the second one is replaced 

by a copy of the first one. This algorithm allows individual disc blocks to be 

updated atomically and survives infrequent crashes. 

In Lampson's paper, he also pointed out that stable storage can be used to 

create stable processors. To make itself crashproof, a CPU must checkpoint 

itself ·on stable storage periodically. If it subsequently crashes, it can always 

restart itself from the last checkpoiont. Stable storage can also be used to 

create stable monitors in order to ensure that two concurrent processes never 

enter the same critical region at the same time, even if they are running on 

different machines. Given a way to implement crashproof processors (stable 

processors) and crashproof disks (stable storage), it is possible to implement 

multicomputer atomic transactions. Before updating any part of the data in 

place, a stable processor first writes an intentions list to stable storage, 

providing the new value for each datum to be changed. Then it sets a commit 

flag to indicate that the intentions list is complete. The commit flag is set by 

atomically updating a special block on stable storage. Finally, it begins to 

make all the changes called for in the intentions list. Crashes during this 

phase have no serious consequence because the intentions list is stored in stable 

storage. Furthermore, the actual making of the changes is idempotent, so 

repeated crashes and restarts during this phase are not harmful. 

File system 

This is the most important service in any distributed systems. Typically, a 

distributed file system has three components: filestores, file servers and files. A 

filestore is a repository for data, providing a mnemonic naming scheme for files. A 

file is considered to be a sequence of user-defined arbitrary bytes which is stored 

by the filestore under a given name (or names), but not interpreted by the 

filestore. A file server is taken to mean a repository, where files can be stored 

(usually temporary) and which provides an index address for files contained in it. 

This address may contain authorization information. Associated with the file server 
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is another server called the directory server which will provide a mapping from 

user-arbitary mnemonics to the file server index. In addition, the directory server 

will also provide some kind of data protection mechanism, perhaps using the 

authorization facilities possessed by the file server. This protection issue will be 

discussed further in chapter three. 

File services can be loosely classified into two types: traditional and robust. 

Traditional file service is offered by nearly all centralized systems (eg. the Unix 

file system). Files can be opened, read and rewritten. In particular, a program can 

open a file, seek to a particular position of the file or update blocks of data in the 

file. Thus, there is no structure imposed on files which are simply treated as row 

of bytes in the computer memory as shown in Figure 2.6(a). All the updates of the 

data are undertaken by a process, the file server, which will overwrite the relevant 

disc blocks if necessary. However, for concurrency control, it usually involves the 

locking of these files before updating them. On the other hand, robust file service is 

aimed at those applications (eg, databases) that require extremely high reliability 

by introducing a well-defined structure on files as in Figure 2.6(b). Therefore, 

users are prepared to pay a significant penalty in performance. Finally, robust file 

services offer atomic transactions (as described earlier) and similar features 

lacking in the traditional file services. The next sub-section will describe the 

design issues of these two kinds of file services. 
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2.3.5.1. Traditional file services 

Before going into the design details of a traditional file service, its 

components are discussed first which are the disc service, flat file service 

and directory service. 

The disc service is concerned with reading and writing raw disc blocks 

without regard to how they are organized. A typical command to the disc service 

is to allocate and write a disc, and then return a capability or an address so that 

the block can be read later. The flat file service is concerned with providing its 

clients with an abstraction consists of files and each of them is a linear sequence 

of records, possibly one-byte records (as in Unix) or client defined records. The 

operations involved are reading and writing records, starting at some particular 

places of the file. The clients need not be concerned with how or where the data 

in the file is stored. The directory service provides a mechanism for naming and 

files protection, so that files can be accessed conveniently and safely. The 

directory service normally provides objects called directories which map 

ASCII names onto the internal identification system used by the file service. 

One important design issue of traditional file service are how closely the 

above three components are integrated. At one extreme, one can have distinct 

disc, flat file and directory services running on different machines and only 

interacts via the official interprocess communication mechanism. This approach 

is most flexible because anyone needs a different kind of file service can use the 

standard disc server. It is also potentially the least efficient since it generates 

considerable inter-server traffic. At the other extreme, the three components 

are handled by a single program, typically running on a machine to which a disc 

is attached. With this model, any applications that need a slightly different file 

naming scheme is forced to start from scratch, making its own private disc file 

server. In this approach, there is an increase in run-time efficiency because 

the disc, file and directory services do not have to communicate over the network. 
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Another design issue is about garbage collection. If the directory and file 

services are integrated, it is a matter to ensure that whenever a file is created, it 

is entered into a directory. If the directory system forms a rooted tree, it is 

always possible to reach every file from the root directory. However, if the 

directory service and the flat file service are distinct, it may be possible to 

create files and directories that are not reachable from the root directory. This 

may be acceptable in some distributed systems but not in those where 

unconnected files may be regarded as garbage to be collected by the system. 

Conversely, another approach for garbage collection is to forget about rooted 

trees and permits the system to remove any file that has not been accessed for a 

pre-defined period of time. This approach is intended to deal with the situation 

where a client created a temporary file and then crashed before recording its 

existence anywhere. When the client is rebooted, it creates a new temporary 

file and the old one is lost forever unless a time-out mechanism is used. 

2.3.5.2. Robust file services 

Since robust file services normally include traditional file services as a 

subset, so all the issues discussed in the previous sub-section also apply to them. 

However, reliability is the additional key design issue in robust file services 

because the main task of these file services is to serve applications that demand a 

higher degree of reliability. One of the simplest method to achieve this extra 

degree of reliability is called mirrored disks: Every WRITE request is carried 

out in parallel on two disc drives. At every instant, the two disc drives are 

identical and either one can take over instantly for the other in the event of 

failure. A refinement of this approach is to have the file server offer stable 

storage and atomic transactions. 

Moreover, all file services have to decide whether they are 

virtual-circuit oriented or stateless. In the former, the client must 

perform an OPEN operation on a file before reading it, at which time the file 

server fetches some information about the file (as i-node in Unix) into the 
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memory, and the client is given some kind of a connection identifier. This 

identifier is used in subsequent READ and WRITE commands. In the stateless 

approach, each READ request identifies the file and its position in full, so the 

server needs not keep the i-node in memory. 

Both virtual circuit and stateless file servers can be used with the ISO OSI 

and remote procedure call models. When virtual circuits are used for 

communication, having the file server maintain open files is natural. However, 

each request message can also be self-contained so that the file server need not 

keep the file open throughout the communication session. Similarly, RPC fits 

well with a stateless file server, but it can also be used with a file server that 

maintains open files. In the latter, the client performs a RPC to the file server 

to OPEN the file and then gets back a file identifier of some kind. Subsequent RPCs 

can carry out the READ and WRITE operations using this file identifier. 

Nevertheless, the difference between virtual circuit and stateless 

approaches becomes clear when one considers the effects of a server crash on 

active clients. If a virtual circuit server crashes and is then quickly rebooted, it 

will always lose its internal tables. When the next request comes in to read the 

current block from the file identifier, say 28, it will have no way of knowing 

what to do. The client will then receive an error message which will lead to 

client's process aborting. In the stateless model, each request is completely 

self-contained (file name, file position etc}, so a newly rebooted server will 

have no trouble carrying it out. Obviously, the only price to pay for this 

robustness is a slightly longer messages. 

It can be realized that the file server has been involved in every stages of a 

file transaction (update} which emphasizes the point that the performance of a 

DCS is strongly related to the type of file server used. Since file servers are so 

important to DCSs, the next entire chapter will be devoted to this issue. 
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2.3.6. Other services 

Other services provided by DCSs concern heavily with hardware 

implementation issues, so they will not be discussed in details here. These services 

include: 

(a) Print service, 

( b ) Process creation service, 

(c) Terminal service, 

(d) Time service, 

(e) Boot service, . 

(f) Gateway service. 

2.4. Conclusions 

In this chapter, a literature survey of distributed computing systems (DCSs) has 

been presented. The discussed topics were: the motivations and characteristics of 

DCSs, the distinction between DCSs and network computing systems, examples of some 

existing DCS models and the major implementation issues of DCSs are also given. 

Finally, this section summarizes this chapter by pointing out the tradeoffs of DCSs. 

Advantages 

(a) Distributed systems have both the price and performance advantages over 

traditional systems such as centralized and network systems. 

(b) The relative simplicity of the software which dedicated a function to each 

processor. 
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(c) Easy to add computing power . If users need ten percent more computing power, 

ten percent more processors are added. 

(d) Reliability and availability. A few parts of the system can be down without 

disturbing users using the other parts. 

Disadvantages 

(a) If a user wants to load a file (which may be in the user's machine), a complicated 

communication protocol may be needed. The request may have to be passed through 

several machines before the file is located. So, it is easy for communication 

protocol overhead to reduce the efficiency of the whole system. For instance, one 

of the machines may require the full computing power of some processors just to 

run the protocols, leaving nothing to do the work. Therefore, a high degree of fault 

tolerance is often required. The only sensible solution to this problem is to 

construct an efficient communication protocol. 

( b) Lack of global state and up-to-date information due to the frequent access of files 

over machines. This may result in some inconvenient situations such as it is 

hard to schedule the processors optimally because one cannot be sured about how 

many processors are available at any moment. 
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Chapter Three == Distributed file servers 

A file server provides remote storage of data to single-user machines, typically 

workstations, connected to it via a communication network; it facilities data sharing among 

workstations and supports inexpensive workstations that have limited, expensive or no 

secondary storage. There are processes called clients which can invoke or control the remote 

file servicesusing a set of operations that form the client interface. 

For brevity, hereafter, the term file server will be referred as a distributed file 

server unless stated otherwise. Also, for simplicity, systems with multiple file servers, 

such as the LOCUS distributed system [6], will not be considered in details in this thesis 

because they were intended to support replicated copies of data. 

In the previous chapter, two types of file services have been described: the traditional 

and robust file services. The former differs from the latter in that it does not impose any 

specifications on the nature of files, i.e. no structure. The main theme of this chapter is to 

describe the functions of the corresponding file servers of these services in distributed 

computing systems. As a preparatory stage, the basic design issues of a distributed file server 

are discussed. Then examples of un-structured and structured file servers will be presented 

to illustrate how they fit into the general structure of distributed systems. 

3.1. Requirements of distributed file servers 

For any file servers, four kinds of files may be supported. Ordinary files 

consist of a sequence of disc blocks that may be updated in place and that may be 

destroyed by disc or server crashes. Recoverable files have the property that 

groups of WRITE command(s) can be bracketed by a construct such as BEGIN 

TRANSACTION and END TRANSACTION, and that a crash or abort midway leaves the file 

in its original state. Robust files are files written on stable storage and contain 

sufficient redundancy to survive disc crashes. Finally, the multi-version files 

consist of a sequence of versions, each of them is being immutable. Changes are made 

to a file by creating a new version. Different file servers support various 
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combinations of these four types of files. In addition to these files, robust file servers 

also need some mechanisms to handle concurrent updates to a file or group of files. 

Many of these servers allow users to lock a file to prevent conflicting WRITEs. 

Although locking introduces the problem of deadlocks, it can be dealt with by using 

techniques like two-phase locking in a DCS [29]. 

3.1.1. Design issues 

There are several important issues concerned with the design of a file server. 

Access control: 

The first issue faced by all file servers is who is allowed to use which 

resource. In centralized systems, this problem is solved based on the concept of 

access matrix. By postulating a set of objects Oi to be protected and a set of 

subjects Sj wish to access those objects, a matrix A is set up such that Aij contains 

the access rights of subject j to object i as shown in the following diagram: 
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An entry Aij may contain rights such as read, write, execute, change rights 

etc. However, it is impractical to store the matrix in a computer because of its 

sparseness, so two techniques are adopted to represent it compactly yet allowing fast 

lookup. 

In the first technique, the column of the matrix under Oi, the so-called access 

control list of that object, is stored in association with the object and checked 

when access is requested. Thus, each subject Sj of the list must have a unique 

identifier. For instance, the Unix RWX bits are a simple form of access control list 

which divides all users into three categories: owner, group and others. 

An alternative way to store the access matrix is to take a row correponding to 

one subject and store these data with the subject. Each element of the matrix is then 

called a capability. When a subject requires access to an object, it presents a 

capability, like a ticket, for that object which is then checked for validity. The 

checking will be simple because no extra data is needed. 

Unfortunately, with a distributed system using remote file servers, both of 

these approaches have problems. With access control lists, the file server has to 

verify that the user is in fact who he or she claims to be. With capabilities, one has 

to prevent the users from making them up. One way to solve the access control list 

problem is to insist the client first sets up an authenticated virtual circuit with the 

file server [29]. The authentication may involve a trusted third party. With the 

capability problem, one possible solution is to encrypt all the capabilities [30]. 

Performance: 

This is another important issue in using a remote file server (particularly 

for diskless workstations). Reading a block from a local disc requires a disc access 

and a small amount of CPU processing. Reading from a remote server has the 

additional overhead of accessing across the network. This overhead has two 

components: the actual time to move the bits over the wire and the CPU time that 

the file server must spend running the protocol software. Cheriton and Zwaenepoel 
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[31] have done some experiments to measure the network overhead in the V system 

which has a very fast file server. With an a-megahertz 68000 processor and a 

1 0-megabytes per second Ethernet, they observe that reading a 512 byte block 

from the local machine takes 1.3 milliseconds and from a remote machine takes 5.7 

milliseconds, assuming that the block is in the memory and no disc access is needed. 

They have also observed that loading a 64K program from a remote file server takes 

255 milliseconds versus 60 milliseconds locally. From the above results, one can 

roughly conclude that access to a remote file server is four times as expensive as to 

a local one. One way to improve the performance of a distributed system is to 

reduce the network overhead by having both the clients and servers maintain 

caches of disc blocks or possibly the whole files. 

Reliability: 

For a distributed system which has one file server on a single machine, 

reliability is only a matter of disc management and the simplest strategy is to use 

good quality disks and make periodic tape back-ups. However, for a distributed 

system in which multiple servers are working together, it becomes possible to 

enhance reliability by replicating some or all files over these multiple servers. 

Reading will be easier because the work load is split over several servers but 

writing is much harder since the multiple copies must be updated simultaneously. 

One solution to this problem is to distribute the data or files but keeping some of the 

control information centralized so that one site can be chosen to proceed with the 

update first and leaving the other sites to be brought up-to-date later. 

Nevertheless, this thesis will only focus on the single file server situation. 

3.2. Un-structured file servers 

The characteristic of these servers is that they do not impose any kind of 

formats on the files content other than row-of-byte. Two un-structured file 

servers are considered representative. Each of them used a different approach to 

provide the traditional file services. The selection criteria were as follows. First, 
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they have been actually implemented and available. Second, many research studies 

have been carried out with them. 

3.2.1. Cambridge File Server 

The Cambridge File Server (CFS) was written using the BCPL language and 

runs on a Computer Automation LSI4/30 minicomputer with 64K, 16-bit words 

of memory and an execution rate of approximately 1 Mips (millions of 

instructions per second). The CFS program occupies about 50K words, leaving 

14K for data and disc buffering. The Cambridge Ring [33] serves as the 

communication medium between the CFS and its clients. It has a raw bandwidth of 

1OM bits/second and a maximum point-to-point data bandwidth of about 1M 

bits/second. The CFS uses disc units with average access time of 35 msecs and 

transfer rate of about 1M bytes/second and have an 80M bytes disc capacity. 

3.2.1.1. Design issues of CFS 

CFS was intended to replace the backing store management of the CAP 

computer [34]. This file server provides a service to a range of client machines 

which do not necessarily wish to operate identical filestores, and may not have 

their own secondary store [35]. The design objectives of the file server include 

high speed transfer to random access word-addressed files and a high degree of 

crash resistance. For the purpose of simplicity, the CFS concentrates its full 

bandwidth on one particular client for the duration of a file read/write before 

serving another client. During the period of a single transaction, the CFS uses 

the multiple-readers/single-writer interlocks mechanism to lock the entire 

file. CFS also allows only one file to be updated atomically in a single transaction. 

However, CFS supports concurrent random access to files. 
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In CFS, objects stored are either files or indices, each identified by a unique 

identifier (UID) which is 64 bits long including 32 random bits. A file is a 

sequence of 16-bit words on which random access read and write operations are 

available to clients. An index is a list of UIDs, on which PRESERVE, RETRIEVE 

and DELETE operations are available. Finally, files and indices may be created at 

will and interconnected in an arbitrarily complex graph. Note also that this file 

server does not keep information between operations apart from the files and 

indices. 

Naming in CFS is in terms of UIDs; a client can set up a general directed 

storage graph where nodes are files and indices. Thus, there is a single global 

context in which file UIDs are unique, but it is implemented by stepping through 

indices whose UIDs are known. The UID is also used as a capability for protecting 

access to files and indices. A client must remember the UID of the node given as 

its root; subsequently the client may construct directed graphs [36] and 

exchange UIDs with others knowing only its root UID. No delete operations are 

provided in CFS. A special system root index is designated and a periodic 

asynchronous garbage collector is invoked [37] to remove all objects not 

accessible from the root. If a client wants to use its own naming scheme (eg. a 

Unix-like directory scheme) it may do so in terms of the "file server interface. 

The file server itself has no knowledge of this higher level structure. Thus, Unix 

directories would be implemented using files . 

.t::L..fL A Unix-directory scheme uses the technique of direct access which is to 

use the name of a file to obtain an address and that address called an inode 

is used for accessing the contents of the file. 

CFS using the following mechanism for communication: Cambridge Ring is 

the communication medium between the CFS and its clients. It uses a 

mini-packet containing local source and destination addresses and two data 

bytes as the basic transmission unit. Because of the small data capacity of 

mini-packet, CFS converses with its clients using the basic-block protocol 

(BBP) which forms messages from sequences of mini-packets. A port number is 

included in the destination machine to identify a process. The two well-known 
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problems in designing protocols are error control and flow control. That 

is, the detection of errors in transmitted data and means for matching the speed of 

transmission to the speed of reception respectively. 

In order to tackle the above two problems, CFS exploits the hardware 

features of Cambridge Ring. For error control, the CFS only reports reception 

errors to a transmitting client after a complete write operation, which is 

implemented as a sequence of basic blocks flowing from the client to the server, 

because of the reliability of the ring (one bit error in 5*1 011 ) (33]. For flow 

control, the CFS uses the hardware response bits of a mini-packet that are set 

when it returns to its source. If there is not enough buffer space, the CFS rejects 

one of its early mini-packets to discard the incoming basic block. As the 

transmitter detects this rejected response, it will restart the basic block 

transmission after a suitable interval [33]. This method of flow control is not 

supposed to be used heavily. It is a policy that a file transfer occurs at the ring 

speed, a client only reads as much data as it can be stored immediately in memory 

and the server can accept indefinite amount of data at full ring speed. 

Operations provided by the CFS are designed to be repeatable. File reads and 

writes specify the starting offsets in the file absolutely. Thus, a client can retry 

a command without a reply from the server and the sever can discard its state as 

soon as it has sent a reply and need not wait for a client's acknowledgement of the 

reply. Therefore, almost all CFS operations consist of a single request followed 

by a single reply; reading or writing a file additionally involves an exchange of 

basic blocks containing pure data. However, the CFS only assumes purely local 

area network. 

3.2.1.2. Crash recovery 

Failure part way through a transaction can leave the storage in an 

inconsistent state. In order to prevent the inconsistency, the client must define a 

new file to be normal or special. In the former case, no provision is made for 
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recovery; update may be in place. Special files in CFS are updated using an 

intentions list mechanism [38] which permits a single operation comprised of 

several block operations to be carried out atomically. The block allocation tables 

for special files contain the following state information: 

(i) allocated/de-allocated 

(ii) intending to allocate/de-allocate 

The intentions list algorithm is: 

FOR all blocks to be updated DO 

BEGIN 

choose a de-allocated block and mark it intending to allocate; 

change old block to intending to de-allocate; 

write to the new block 

END; 

set the commit bit; {on stable storage} 

FOR all relevant blocks DO 

BEGIN 

change all intending to allocate blocks to allocated; 

change all intending to de-allocate blocks to de-allocated 

END; 

reset commit bit; 

Up to the setting of the commit bit, all changes can be done. After setting 

the commit bit, the changes will be done eventually. On a crash, the commit bit 

indicates whether to go forward or backward. In the forward case, all intending 

blocks must be definitely allocated or de-allocated. Clearly, a crash part way 

through setting the commit bit or the intention bits will invalidate the above 

algorithm. 
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3.2.1.3. Summary of the CFS 

Success of CFS : 

In general, CFS is a very good un-structured file server. CFS provides 

only a slow backing store service due to its basic principle of keeping the design 

simple such as the simple file transfer protocol described earlier. As a result, 

CFS is used as a file server interface for simple microprocessors. Also, the 

distinction between normal and special files have prevented clients from 

un-necessary atomic transactions. This leads to the intention that the client 

operating system uses special files to contain file directory information and 

normal files for most other purposes. 

Another success of CFS is the interface presented by the server to the clients 

in form of a directed graph with capability access to files and implicit storage 

reclamation. Capability access control is simple to implement and avoids the 

question of client identity which may be difficult to determine reliability in local 

networks. The embedding of disc addresses directly in these capabilities is to be 

recommended as a means of speeding up the access to files. Also, the graph 

structure of indices maintained by the CFS provides a good abstraction as a 

building block for operating systems: the operating systems of CFS's clients can 

construct their file directories from an index and an associated file which 

contains string names and access rights. 

The automatic garbage collection of CFS is another success [34]. A 

reference count mechanism deals with most deletions; an object will be deleted 

whenever the count references to it falls to zero. However, CFS does not ensure 

the accuracy of these counts and certain types of server crashes may leave these 

counts high. 
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Disadvantages of CFS 

One of the most obvious shortcomings of CFS is that atomic transactions are 

restricted to updating a single file or index only. For instance, since file 

directories are implemented as an index with an associated file, it is impossible 

to update both structures in a single transaction. Besides, due to the assumptions 

made on the file transfer protocol, it is difficult to extend CFS to wide area 

networks, so CFS is only a local area network file server. 

3.2.2. Newcastle Connection 

3.2.2.1. Unix United system 

Before going into details of Newcastle Connection (NC), the principles 

behind Unix United is described. Unix United [39] which is composed of several 

Unix systems aims to be functionally equivalent to a single conventional Unix 

system. All the common Unix features including naming, protecting and accessing 

devices, files and directories are provided. Typical examples of a single Unix and 

a Unix United namespaces are shown in Figure 3.1 (a) and Figure 3.1 (b) 

respectively. 
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(a). 
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usr bin etc 

(b). 
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/'\. /'\. 
msc'w'ct k~ith cs cc 

'\. 
john 

/'\. 
Unixb 

/I"' 
usr bin etc 

/'\. 
X y 

Figure 3.1 (a) a single Unix system , 

(b) a Unix-United system. 

In the single Unix namespace, files are named relative to either the root 

directory "/" or the current directory. For Unix United, two Unix systems can 

be simply joined together by attaching one of them as a leaf, where appropriate, 

in the hierarchy as shown in Figure 3.1 (b). More Unix systems can be joined in 

a similar fashion to form even larger systems. One major advantage of this 

scheme is to eliminate the problem of file names clashes, provided that the files 

are in different sub-systems. Subsequently, files can be accessed across the 

united system using the appropriate references. Consider the Unix United system 

in Figure 3.1 (b), if the current directory is "mscwct" of the sub-system Unix a, 

the file y of sub-system Unix b can be accessed using the pathname 

/fs/cc/john/Unixb/etc/y. However, there is a more efficient way of joining the 

various Unix systems with the creation of a virtual superdirectory above the 

roots of all connected systems as depicted in the following diagram: 
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In this case, the same file y will be referenced by a shorter pathname 

/ . ./Unixb/etc/y where "/ .. " referring to the superdirectory and the rest is the 

same as the usual Unix naming scheme. Under this scheme, all the files in the 

united system are named relative to the superdirectory only. This strategy 

possesses two interesting features. First, each sub-systems can manage its own 

hierarchy structure independent of the others. Second, each file of the united 

system can be identified by a unique pathname, provided that the hierarchy of its 

resident system has not been changed. 

In order to implement a Unix United system, an additional layer of 

software-the Newcastle Connection [39] in each of the component Unix systems 

is required. It is situated between the Unix kernel and the rest of the operating 

system as shown in Figure 3.2. NC is implemented as C library routines and its 

functions will be discussed in the next sub-section. 
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Figure 3.2 Newcastle Connection software layer 

3.2.2.2. Goals of Newcastle Connection 

The function of the Newcastle Connection layer is to intercept system calls. 

To perform the interception, NC classified system calls into three categories: 

those which take pathname arguments, those which take arguments such as file 

descriptors which have been derived indirectly from a pathname by a previous 

system call and finally those which take arguments such as user IDs or process 

IDs. 

The first two categories mentioned above can be handled quite comfortably 

because pathnames may be examined to see whether they contain a reference to a 

remote system or start from a remote context whilst file descriptors, which have 

been created by a previous system call, may be looked up in a table maintained by 

the NC. However, the third category is problematical because there is no obvious 

structure in a system identifier that can be extended to a distributed system. The 

best solution may be to assume that such identifiers refer to the system where 

the root directory "/" is located. Once the system call has been analysed, local 
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calls and remote calls will be passed to the appropriate machine. This process is 

invisible to users and the operating system programs. Inter-machine 

communication is performed via the technique of Remote Procedure Call (RPC), 

as described in chapter two. On the remote machine, a spawner process, which 

runs continuously, initially receives an open file request and spawns a file 

server process as a result. Subsequently, the originator communicates directly 

with the file server using the name returned by the spawner. When the file is 

opened, NC makes an entry in a per-process table indicating whether the file 

descriptor (which is often an integer used to refer to the file between open and 

close calls) refers to a local or remote file. This table also holds the 

corresponding remote node addresses so that remote access can be routed 

immediately. 

3.2.2.3. Remarks on Newcastle Connection 

The major advantage of the Newcastle Connection (NC) design is that 

processes can access remote files transparently via the appropriate pathnames; no 

changes are required for the Unix kernel because file access is managed by the NC 

software layer (which is implemented in terms of C routines). 

However, there are still several disadvantages with this design. System 

performance may be degraded. Because of the larger C library, each process takes 

up more memory even though it makes no remote references; the library 

duplicates some of the kernel functions and takes up more spaces. Also, larger 

processes take longer to start up and may cause greater contention for memory, 

inducing a higher degree of page swapping on the system. Local requests may 

execute more slowly as they take longer to get into the kernel, and remote requests 

may also be slow since they have to do more processing at the user level to send 

requests across the network. The extra user level processing provides more 

opportunities for context swapping and paging. Also, programs must be 

recompiled with new libraries to access remote files as old programs and 

vendor-supplied modules will not work any more. 
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Finally, there is apparently no published document on the implementation of 

the NC protocol which means no standard has ever been imposed on the message 

exchange format. Therefore, a 16-bit machine cannot communicate with a 32-bit 

machine. However, this is a political issue rather than a technical one because the 

task of confining messages onto the correct formats for exchange is totally 

optional; it can be done either on the sending site or on the receiving end. So, it 

should be realized that NC is just used as a naming system which does not care 

about the hardware architecture of the individual sub-systems. 

3.3. Structured file servers 

For applications that demanding a higher level of reliability and consistency, 

robust file services are required which, in turns, leads to the evolution of a modern 

data storage technique namely, the database approach. In this section, the following 

issues of database will be addressed: the evolution of databases, the fundamental 

concept of a database, the advantages of the database approach over the conventional 

data file approach and finally a fast-growing database system will be given as an 

example. 

3.3.1. History of databases 

A database may be regarded as the most modern technique of data storage, 

which started with the invention of punched cards by Dr. Herman Hollerith of the 

U.S. Bureau of Census in 1880s [40]. This introduced the era of mechanized card 

files which had been used as an information storage medium for the next 60 years. 

In 1946, the first electronic computer, ENIAC, was in operation. It was 

designed by Professor Eckert and Mauchley of the University of Pennsylvania for 

the U.S. Defence Department mainly to calculate trajectories and firing tables. In 
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these early days, computers were mostly used for scientific computations where the 

facilities for the storage of data did not feature as an important requirement - the 

speed of arithmetic calculation was all that was interested. But when the use of 

computers was gradually extended to data processing, the limitations of card files 

began to be felt. One of the organization that became seriously concerned by such 

limitations was the U.S. Bureau of Census. Faced with the approaching 1950 

Census, the Bureau became particularly anxious to have a faster storage device. In 

1951, a new computer, later to be called Univac-1, designed again by Eckert and 

Mauch ley, was delivered to the Bureau to cope with the 1950 Census data. It had a 

unique device called the magnetic tape system, which could read a magnetic tape 

both forwards and backwards at high speed. Thus, the problem of Census had lead to 

two major inventions in 70 years - the punched card and magnetic tape files. 

The impact of magnetic tape on data storage was overwhelming because in those 

days, card files processing often make people end-up with the frustration of finding 

mispunched, slightly off-punched and screwed up cards scattered in large card files 

produced by a computer. The fear of accidentally dropping a box of cards and getting 

them out of sequence was also considerable. With the advent of the magnetic tape 

system, all these nightmares were over because it was a medium that was light, 

reliable and neat. The storage capacity and speed of magnetic tape was phenomenal 

compared with a card file. However, the use of magnetic tape did not alter the 

processing mode substantially as the file organization was still sequential although 

it allowed the representation of variable length records in a more convenient form. 

All the terminologies of card file systems such as files, records and fields were 

carried over to the magnetic tape system. 

The data processing systems used in 1950s were mostly simple payroll 

sub-systems designed in isolation, that is, independent of other related 

sub-systems. A typical sub-system would consist of a large number of small 

programs with many files each containing fragmented information. The situation 

changed when subsequent attempt to computerize more complex systems brought in 

a new breed of experts - the system analysts. They took a global view and 

introduced the concepts of integrated files to be shared by a number of programs in 

more than one sub-system. These shared files were relatively large and the 
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problem of writing long data descriptions in each program for each file was resolved 

by COBOL's COPY verb, which allowed a program to copy a pre-written general data 

description of a file. From then on, the evolution of databases became the history of 

the progress from less to more integrated storage of data. 

The introduction of magnetic disc in the mid 1960s gave a further boost to the 

integration. To access a record on a magnetic tape, it is necessary to scan all the 

intervening records sequentially, but on a disc it is possible to access a record 

directly by passing the other records. This would gain an overall retrieval speed of 

about 2 to 4 orders of magnitude over magnetic tapes. Disc storage thus provided 

the much needed hardware support for the large integrated files. 

Also, by 1960s, the concept of Management Information System (MIS) 

gained attention. The basic approach was to run the programs of the MIS package on 

the output files of all the relevant sub-systems. However, it was soon found that for 

a large organization the number of input files to the MIS package was excessively 

high, with the attendant problems of extensive sorting and collating. Moreover, the 

failure of one sub-system could easily wreck the whole operation. Data duplication 

in the files leading to update inconsistencies posed yet another problem. Thus, these 

MIS packages turned out to be unreliable, cumbersome and generally unsatisfactory. 

This highlighted the need for still greater integration and led many organizations to 

opt for development in this direction. 

One of the outstanding products in that time was the Integrated Data Store 

(IDS) introduced by General Electric (now owned by Honeywell) in 1965. As the 

name suggested, IDS was used to create large integrated files that can be shared by a 

number of applications. It was a forerunner of the modern database system and 

can support a number of data structures. Its pioneer Charles W. Bachman, 

subsequently played a very active role in the development of Codasyl database 

proposal, which incorporated many of the features of IDS. IDS was soon followed by 

other MIS packages based on integrated files for major systems. Many organizations 

invested large amount of money in them only to discover that their MIS packages 

were not as effective as they would like. The problem was the lack of co-ordination 

between the files of the major systems. It was realized later that what was needed 
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was a database, containing a generalized integrated collection of data for all the 

systems of the organization, serving all the application programs. It was also 

recognized that such a database should be both program-independent and 

language-independent if it was to serve all applications; in particular a change in 

the data should not require a change in the application program. If a database is to 

respond efficiently to the conflicting needs of all the application programs, then it 

must support a variety of data structures from simple to complex, providing 

multiple access paths. This concept of a database crystallized only in the early 

1970s. although the term database or data bank had been used loosely since the 

mid 1960s to refer to almost any integrated files. 

A number of database systems have appeared on the market in the past few 

years which gave variable performance and hardly any compatibility. Codasyl 

became interested in databases in the late 1960s and set up a task group to provide a 

common framework for all database designs. Since the publication of its draft 

specifications, there has been a noticeable movement away from diversity, 

converging on the Codasyl model - the network data model. Nowadays, all major 

computer manufacturers except IBM are committed to implement the Codasyl 

proposal. In 1972, the ANSI (American National Standards Institutes) has set up a 

working group to standardize databases; its proposal were likely to lead to a 

standard model based on the Codasyl specifications. 

Parallel to these developments, the IBM research laboratories produced two 

new models for future database designs, in addition to the hierarchical data 

model on which their present database system, the Information Management System 

(IMS), is based. One of these is the relational database model and the other is 

the data independence accessing model (DIAM). The former is the most 

popular one. 

Conclusively, database systems are designed to manage large bodies of 

information. The management of data involves both the definition of structures for 

the storage of information and the provision of mechanisms for the manipulation of 

information. In addition, the database system must provide for the safety of 

information stored in the database, despite system crashes or attempts at 
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unauthorized access. If data is to be shared among several users, a system must 

avoid the possibility of anomalous results. Finally, the design of a database system 

must include consideration of the interface between the database system and the 

operating system because in most cases, the operating system can only provide the 

most basic services and then the database system has to build on that base. 

3.3.2. The database approach 

From the history of databases, it can be realized that the database concept was 

rooted in an attitude of sharing common data resources, releasing control of these 

data resources to a common responsible authority and co-operating in the 

maintenance of those shared data resources. 

Recently, several definitions have been proposed for the term database as in 

[40] and [41 ]. However, they all generally agree on the fact that a database has two 

properties: it is integrated and it is shared. By integrated, they mean that 

previously distinct data files have been logically organized to eliminate (or reduce) 

redundancy and to facilitate data access. By shared, they mean that all authorized 

users in an organization have access to the same data for use in a variety of 

activities. 

The major components of a database environment have been identified by Clark 

[42] as shown in Figure 3.3: 
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Figure 3.3 A database environment 

With the help of the above diagram, it is easier to understand the database 

approach. The functions of each of the six components are summarized briefly as 

follows: 

(a) User group 

It consists of all requesters of data. There are three basic categories of user 

requests: read only, add/delete and modify. All the user requests for data 

are made through the database management system (DBMS). 

(b) DBMS: 

It is a software system that receives and satisfies all requests for data. 

Normally, the DBMS provides concurrent access to multiple database users. 

Also, the DBMS must be able to recover or restore a damaged database from 
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backup copies. 

( c) Database 

It is the physical repository (eg. magnetic tape) where all user data will be 

kept. 

(d) Data dictionary/directory (DO/D) 

It is a place where all the definitions of the data used by the organization are 

stored. Therefore, it is the key tool in managing data resource, for instance, 

data item names, lengths etc. 

(e) Application programmers : 

People who write code to process user requests for data. 

(f) Database Administrator (DBA) : 

A manager who is responsible for the cost-effective definition of an 

organization's data via the three interfaces as indicated in Figure 3.3. In 

interface 1, the DBA defines user rights and responsibilities in retrieving data 

and mediates any conflicts that may arise. In interface 2, the DBA controls all 

data definitions and establishes standards for all application programs that 

access the database. The DBA also trains users and programmers to use the 

DBMS. Finally, in interface 3, DBA monitors operational performance of the 

DBMS and initiates changes that may be necessary to improve response time or 

other operational characteristics. 

The following sub-sections will describe the various data models for 

database designs, followed by two most commonly used database access methods. 
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3.3.2.1. Data models 

A model is a representation of real world objects, events and their 

associations. It is an abstraction from reality and often is simplified for ease of 

understanding and manipulation. 

A data model is a collection of conceptual tools for describing data, data 

relationships, data semantics and data constraints within an organization. The 

main task of a data model is to represent data and to be understandable. If a data 

model accurately and completely represents the required data and it is 

understandable (and perhaps easy to use), it can be used for special purpose 

applications such as database design.s There are three most widely accepted data 

models for database systems. 

3.3.2.1.1. Hierarchical model 

A hierarchical database consists of a collection of records of the same 

type and they are connected with each other through links. A link is an 

association between exactly two records. Each record of the database is a 

collection of fields and each field contains only one data value. Furthermore, 

records are organized as collections of trees. Therefore, a tree-structure 

diagram is the best way to describe a hierarchical database as shown in Figure 

3.4. 
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Figure 3.4 A hierarchy structure 

This hierarchy is made up of elements, called nodes, which corresponds 

to record types. The arrows in the diagram correspond to links. At the 

uppermost level, there is only one node called the root. Except for the root, 

every other nodes has one node related to it at a higher level which is terned as 

its parent. Each element can have only one parent but many lower level 

elements known as the children. So, the tree-structure diagram specifies the 

overall logical structure of the database. However, when a given record is 

associated with several other records that belong to its parent's level, the 

single-parent rule of the hierarchical data model will force redundant and 

excessive data and structure. 

Despite of redundancy, the hierarchical model is still well-established in 

practice. For example, IMS [43) is a DBMS running on the IBM mainframes 

that supports this hierarchical view of data. IMS uses the retrieval 

sub-language called DU1 as the navigational method of extracting data in an 

IMS database. 
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3.3.2.1.2. Network model 

To eliminate the redundancy problem in the hierarchical model, the 

network data model was emerged. This model originated from the proposal 

of the Database Task Group (DBTG) of the Conference on Database Languages 

(Codasyl). Codasyl is the same group that responsible for the standardization 

of the language COBOL. 

The basic building block in a network database is the structure referred 

as a set, which consists of a collection of information called the members of 

the set. These member collections are attached to the owner via a linkage 

system similar to that of a linked list, with the exception that the last pointer 

of a set structure always points back to the owner of the set where the head 

pointer is stored. Thus, beginning at a set's owner, one can easily find out all 

the members of the set. 

The result of the above set approach to data storage is a database which 

contains a network of paths that can be followed by the user to find the required 

information at any instant. Such a model closely reflects the way data is stored 

in bulk storage. Figure 3.5 below gives an example of such model. 

JOB- ASSIGNMENT 8J ~I EMPLOYEE I 

\ E.MPLOYEE-SET J 
I I 

ASSIGNMENT -SET '\ 
JOB-ASSIGN ME NT 

I I 
'-...__ EMPLOYEE 

I I ~ JOB-ASSIGNMENT 
~I I 

ASSIGNMENT -SET j 
JOB-ASSIGNMENT 

I I 
Figure 3.5 A network database example 

72 



In Figure 3.5, the head pointer (header) serves as an entry point to the 

database. The rectangular boxes represent the group occurrences of a set, with 

the name of the set nearby such as the set EMPLOYEE-SET. By interrogating 

the database, the job history of each employee can be examined. 

IDMS [44] was a network database system developed by Cullinane 

Database System Incorporation. IDMS adhered closely the DBTG model. It 

includes a detailed data manipulation language allowing the database designer 

has a higher degree of control over the physical organization of the database. 

Tha data manipulation language included features identical (or very nearly) to 

those of the DBTG model [45]. However, additional features are included which 

can enable programmers to write more efficient queries. For example, the 

obtain command, which combines the find and get commands of the DBTG 

model into one request. An optional where clause may be attached to an obtain 

command to find and get the next record satisfying the where clause. This 

feature relieves the programmer for writing an explicit test of a record located 

via the find command. 

Unfortunately, the network model has been criticized of being complex 

and difficult to use. Network diagrams, unless thoughtfully arranged, 

frequently look very messy. Moreover, this model has been typically 

implemented in ways to be consistent with the so-called 

record-one-at-a-time processing languages such as COBOL, which make 

database processing become harder. As a result, another model, the relational 

data model , was developed. 

73 



3.3.2.1.3. The relational model 

It is the most popular model owing to the simplicity of its structure. This 

relational approach to databases is based on the mathematical theory of 

relations. The approach thus uses relational algebra and relational 

calculus terms to describe the database and operations on the data. In the 

former, one or two relations are manipulated as operands to produce a new 

relation as the result whilst the latter manipulates relations implicitly by 

specifying conditions that can involve data items from several relations. 

Typical relational algebra operators are SELECT, PROJECT and JOIN. 

Relational calculus usually combines the three algebra operators into one 

single operator called RETRIEVE, and a WHERE clause to specify a condition. 

Although a relational calculus statement can become very complicated, it can be 

stated only in one language command, the equivalent of many relational algebra 

commands. 

Data in a relational database is stored in a tabular form known as a 

relation. Each distinct data item is called an attribute value. A tuple is a 

collection of values that composes of one row of a relation whereas a domain is 

a set of possible values for an attribute. Figure 3.6 illustrates a relation. 

A tt ri.b utes 

~ , ___________ 
CODE NO. DESCRIPTION PRICE 

Tuple• { 

0200 BED 1000 

0300 TABLE 200 

1 211 CHAIR 100 

Figure 3.6 A product relation 
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Codd [46] has contributed significant papers on the relational model and 

he has also proposed the concept of normalization. Normalization was defined 

by Codd as a step by step reversible process of replacing a given collection of 

relations by successive collections in which the relations have a progressively 

simpler and more regular structure. The aim is to find relationships between 

data that are free from undesirable interactions, and then simplifying the 

process of maintenance and data retrieval. 

Nevertheless, the prime objective of normalization is the production of an 

ideal data format known as the third normal form or 3NF for short. Figure 

3.7 shows the stages to 3NF: 
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Figure 3.7 Steps in normalization 

In figure 3.7, the first normal form (1 NF) is a relation which 

contains no repeated groups. Second normal form (2NF) is a relation which 

is already in 1 NF and any partial functional dependencies (attributes depend 

only on one primary key which is a data item that uniquely identifies a record) 

have been removed. Finally, the third normal form is a relation which is 
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already in 2NF and contains no transitive (hidden) dependencies. Boyce-Codd 

normal forms and the fourth normal forms are later additions to the 

third normal forms but under normal circumstances, nothing beyond the third 

normal forms should be required. 

INGRES [47] was a relational DBMS developed at the University of 

California at Berkeley originally running on the Unix operating system. Since 

the first implementation of INGRES, it can now be run on a wide variety of 

operating systems such as VMS1, PC-Dos2 and MS-Dos3. INGRES has a 

relational query language modelled after the ALPHA data sub-language called 

QUEL. Another tool for information retrieval in INGRES is EQUEL which allows 

QUEL statements to be embedded in a program. Additionally, another form of 

query language that accesses an INGRES relational database is called QUERY BY 

EXAMPLE. This allows queries by entering an example of a possible answer in 

the appropriate place in an empty table. Each operation is specified by using 

one or more tables built up on the screen, with field names being supplied by 

the system and other parts by the user. 

3.3.2.2. Database access methods 

An access method is a file management subprogram provided by the 

operating system. It is responsible for delivering a single stored record (whether 

it is structured or un-structured) of a file to and from an application program. 

Access methods normally support the following services (which are transparent 

to the application programmer) : blocking and de-blocking of records, locating and 

accessing required data blocks and transmitting them between main memory and 

secondary memory, and handling exceptions. When a program is executed, a copy 

of the access method, which is usually maintained in the system library, will be 

1 VMS is a trademark of Digital Equipment Corporation. 

2 PC-DOS is a trademark of IBM. 

3 MS-DOC is a trademark of Microsoft Incorporation. 
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linked to it. Thereafter, whenever a READ or WRITE instruction is reached, the 

CPU switches execution to the access method. The concept of access methods is 

essential as they insulate user from many hardware details. They also allow a file 

to be visualized as a series of storage locations. Each storage location can hold one 

or more records and may be addressed by specifying its location relative to the 

beginning of a file. The access method translates this relative address to the 

appropriate hardware address and manages other hardware-dependent details as 

discussed shortly. 

In order to describe the access methods used in the database approach, the 

following terms must be defined first: 

A record is a namely collection of data items and/or data aggregates. A data 

aggregate is a collection of data items that is named and referred as a whole, eg. a 

data aggregate called Name might be consisted of data items Last-name, 

First-name and Middle-name. 

A key is a data item used to identify a record. Essentially, there are two 

types of keys: primary key and secondary key. A primary key is a data item 

that uniquely identifies a record. The primary key of a record corresponds to the 

identifier of a real world entity. For example, the data item student number would 

be probably the primary key for each student's record, although there may be 

several possible primary keys for the same record. On the other hand, a 

secondary key is a data item that normally does not uniquely identify a record but 

instead it identifies a number of records in a set that share the same property. 

For example, the course taken by a student might be used as a secondary key for 

the student's record. 

A file is a named collection of all occurrences of a given record type. A file 

organization is a technique for physically arranging the records of file on a 

secondary storage device (usually magnetic disc). The most commonly used file 

organization is the indexed sequential organization. The reason is that this 

kind of organization allows access to records efficiently in both the sequential 

and random modes as described shortly. Currently, there are two 
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implementations of the index-sequential organization: hardware-dependent and 

hardware-independent, usually referred as the indexed sequential access 

method (ISAM) and the virtual sequential access method (VSAM) 

respectively. An access method is a file management sub-program provided by 

the operating system. VSAM is newer and more powerful and therefore it has 

replaced ISAM in many applications. Nevertheless, both of these access methods 

operate on records that are stored in sequence according to a primary key. In 

addition, the DBMS using these access methods would build an index, separated 

from the data records, which contains key values together with pointers to the data 

records themselves. The type of index used is referred to as a block index in 

which each index entry refers to a block of records rather than just a single 

record. The index in the yellow pages of a telephone directory is a very good 

example of a block index. By looking at this block index, one can quickly locate the 

page that contains the particular subject in interest and then scans through that 

page until the desired company name is found. The basic techniques of ISAM and 

VSAM will be described separately in the following sub-sections. 

3.3.2.2.1. Indexed sequential access method 

Architecture : 

In this kind of access method, the block indexes are organized by tracks and 

cylinders and this is the reason that it is called a hardware-oriented 

implementation. Figure 3.8 shows the architecture of ISAM and this figure 

will be referenced throughout the discussion of ISAM: 
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Figure 3.8 ISAM architecture 

Three area can be found normally in ISAM : 

(a) The prime area which contains the data records and the track indexes. 

(b) An overflow area which contains the overflow tracks and it is used to 

store records that are added to the file but does not fit in the prime area. 

(c) An index which contains the master index and the cylinder indexes. 
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Also, in ISAM, data records of a file are organized according to the following 

rules : 

(a) All data records are stored in ascending order using a primary key 

(usually the record number) such that the last records of each track 

always have a greater primary key value than the others in the same track. 

One exception is that, in the overflow area data recprds are simply chained 

together without regard of the primary key values. 

(b) No record will be stored in a new cylinder unless all the tracks (except 

.tracks in the overflow area) of the previous track are full. 

(c) The notion of multi-level indexes is adopted in order to organize the 

records of a file. Referring to Figure 3.8, each arrow in this figure 

represents a pointer from one index to a lower-level index. Suppose the 

record 500 is the target record. First of all, the master index is searched 

until a value that equals or exceeds the target record number is found, 

which is 1239 in this case, and this will direct the search to the first 

cylinder index. Then, searching the cylinder index using the same strategy 

just described which indicates record 500 is in cylinder 1. At this point, 

the disc head will be moved to cylinder 1 and the track index for that 

cylinder is read into memory (the track index is assumed to be on track 

0). By searching that track index, it can be found that the desired 

record is on track 1 of that cylinder. Finally, the target record 500 is 

read by scanning track 1. This mechanism is termed as the random 

access mode. ISAM also permits rapid sequential access mode. Since 

records are in primary key sequence (except in the overflow area), an 

entire cylinder can be read without moving the access arm. Therefore, 

records can be read from the beginning until the desire record is reached. 
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Processing ISAM files : 

When records are first loaded into an ISAM file, the access method will 

create the indexes for the file as those shown in Figure 3.8. During subsequent 

processing of that file, searching and maintenance of this index are also carried 

out by the access method and are completely transparent to the application 

program. Although application programs are the only means to access an ISAM 

file., they can perform various operations on the file. 

A program can request a particular record by specifying its primary key 

value. The access method (not the program) will search the indexes using the 

mechanism described above and then delivers the requested record to the 

program's data area. 

Updating records in an ISAM file is carried out as the following. Firstly, 

the required data record is read into the main memory using either random or 

sequential mode. The record is then modified and written on top of the old one. 

Records can also be deleted from an ISAM file but not physically removed 

(or erased) from the file immediately. Instead, a special delete character is 

placed in the first character position of each deleted record. This character is 

then used in subsequent accesses to inform the application program that the 

record has been logically deleted from the file. This deletion method causes a 

side-effect as explained later. 

Inserting a new record into an ISAM file (actually all sequential files) 

presents special problems. These problems arise from the matter of how the 

records are maintained in primary key sequence. One obvious solution is to 

push all the records down beyond the point of insertion. However, it turns out 

not to be too efficient practically. So, two other techniques are emerged. In the 

first one, some free spaces are left on the track (not shown in Figure 3.8). 

Those free spaces will allow occasional insertions but not for a cluster of 

records. For a large amount of new records, the second technique is used. In 

this method, an overflow area is required which is usually at the last few 
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tracks of each cylinder. For instance, if record 176 is needed to be inserted to 

the file of Figure 3.8, this record will be inserted on track 1 in order to 

maintain primary key sequence. This means record 207 has to be replaced by 

record 176 and therefore record 207 must be moved to one of the overflow 

track. Subsequently, a pointer will be created in the track index giving the 

address of the first overflow record of track 1 as indicated in Figure 3.9 below: 

[EI]~~~ 

~~IT!I]~ 

Figure 3.9 Inserting a new record into an ISAM 

Similarly, records numbered 254 and 270 will be inserted into the file on 

track 2. The records they replaced, 286 and 314, will be moved to the 

overflow track ~nd then they are chained together by an arrow from record 

286 to record 314. One important point is that the track index has to be 

updated after the insertion immediately. 

One drawback of the second technique is that over a period of time, the 

number of records in the overflow areas of an ISAM file will increase whereas 

the performance of the system will decline since more accesses are needed on 

the average to retrieve each record. Thus, an ISAM file has to be reorganized 

periodically. In the reorganization process, the entire file is re-loaded and 
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records in the overflow areas are moved to their proper location in the prime 

area. Also, the indexes are updated if necessary. All these operations will be 

carried out by the access method. 

Summary of ISAM : 

The major advantages of an ISAM organization are that the file can be 

processed both in sequential and random fashions, new records can be inserted 

in the middle of the file and then processed either randomly or sequentially. 

However, the disadvantages of this file organization are that the file must be 

reorganized from time to time to clean up overflow records and deleted records, 

random access to individual records is relatively slow and the indexes are 

organized by hardware boundaries (tracks and cylinders). Because of this last 

issue, when a file is transferred to a new disc probably with greater track 

capacity, the indexes must be completely reorganized again which is 

time-consuming. 

3.3.2.2.2. Virtual sequential access method 

Architecture 

This type of file organization also uses multi-level indexes, which is 

similar in concept to the one used by the ISAM with one major distinction. That 

is, indexes are free of boundaries, i.e. tracks and cylinders. The basic 

architecture of VSAM is depicted in Figure 3.1 0. 
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In a VSAM file, the basic indexed group is called a control interval 

which may be considered as a virtual track. The size of the control intervals 

are chosen by the file designers which may be less than, equal to or greater 

than the length of the disc track. Control intervals in VSAM are grouped into 

control areas (or called the virtual cylinders). As shown in Figure 3.1 0, 

spaces are reserved automatically at the end of each interval for the insertions 

of new records. This is so-called distributed free space. Also, some 

control intervals in each control area are left empty. The amount of empty 

spaces in each control interval and the number of empty control intervals in a 

control area are specified by the file designer initially before any file is loaded. 

As with ISAM, data records of a file are organized in primary key sequence in 

the control intervals. 
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The index structure in VSAM is very similar to that in ISAM. The index is 

divided into two parts : the index set (up to 3 levels in the following example) 

and the sequence set. One additional feature in the index structure of VSAM is 

that the components of the sequence set are linked together via pointers (see 

Figure 3.1 0). This chain is used for sequential processing as described later. 

As with ISAM, locating a random record proceeds by starting with the highest 

level in the index set and progressively searching the index until the aimed 

control interval is identified. The control interval is then scanned to locate the 

desired record. 

Processing VSAM files : 

When a file is first loaded, all its records are arranged in primary key 

sequence as shown in Figure 3.10. Again, all the processings on VSAM files are 

performed using the application programs. 

In VSAM, the mechanisms used for updating and deleting records are 

exactly the same as those in ISAM. However, VSAM uses more refined and 

efficient methods for handling record insertions. Two situations may occur 

during an insertion: 

(a) If the intended control interval for a new record is not full, all the existing 

records are moved to the right by the access method and the new record 

is inserted in key sequence as illustrated by the example in Figure 3.11, 

where record 350 has been inserted into control interval 2. To make room 

for this new record, record 363 is moved back in that control interval. 

(b) However, if the appropriate interval is full, a different strategy- is needed 

as in the following case. Suppose record 240 is inserted into the file in 

Figure 3.11. This record should be placed in control interval 1 between 

records 221 and 252 according to the primary sequence key rule. Since 

control interval 1 is already full, the access method (VSAM) needs to 

perform an operation namely control interval split : half of the 

records in control interval 1, records 252 and 263, are placed into the 
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first empty control interval which is control interval 3 in Figure 

3.11 (b). A new entry is also placed in the appropriate position of the 

sequence set so that this new control interval can be accessed subsequently. 

Control 
interval 

0 

2 

3 empty 

4 IL..-__ e_mp_tY ___ _. empty 

Control area Control am 

(a) (b) 

Figure 3.11 Managing record insertions in VSAM 

(a) Before the insertions, 

(b) After the insertions. 

Normally, records are maintained in sequence within each control 

interval. However, after a control interval split, the records will be no longer 

87 



in sequence within the control area as a whole. Fortunately, it can be noticed 

that the entries in the sequence set are still in primary key sequence. This 

elegant arrangement and the chain which connected the components of the 

sequence set allow VSAM to access records of a file in a logical order, i.e. 

sequentially. 

Furthermore, a control area may become full after a large number of 

insertions. When this happens, it is no longer possible to perform another 

control interval split for further insertions since all control intervals have 

been occupied. In this circumstance, VSAM will carry out a control area 

split, that is, allocating a new control area to the file. Approximately, half the 

records in the control area (that has become full) are moved to a new control 

area and then the indexes are adjusted to reflect the new file structure. 

Summary of VSAM : 

VSAM needs a more sophisticated program for file handlings than ISAM. 

Besides, VSAM still suffers the same problem of cleaning up the deleted records 

as in ISAM but VSAM offers three major advantages over ISAM. First, periodic 

file organization is not required since the file can grow indefinitely by means of 

the two splitting processes as described before. Second, the file organization is 

independent of hardware characteristics. Hence, a file can be moved to a 

different volume without restructuring the indexes. Finally, some versions of 

VSAM can support secondary keys although this issue is outside the scope of this 

thesis. 

3.3.3. Benefits of using the database approach 

With the aid of Figure 3.3, this section summarizes all the advantages of the 

database approach over the conventional data file approach (i.e. the traditional file 

services mentioned in chapter two). 

88 



(a) Minimal data redundancy : 

As illustrated in Figure 3.3, all redundant data files are integrated into one 

single and logical structure. In addition, each data item occurrence is ideally 

recorded in only one place - the database. As a result, it will save a lot of 

storage spaces and perhaps some input time when all the occurrences of a data 

item are being updated. Despite of the fact that in some circumstances, multiple 

copies of the same data (eg. for data validation checks) are required, the 

redundancy is controlled in the database approach because the system is awared 

of the redundancy. 

( b) Data consistency : 

By controlling (or eliminating) data redundancy, a database approach 

reduces greatly the chance of data inconsistency because each data item is 

usually stored only once. Even if the data item appears in more than one place, 

the database system (DBMS) will enforce consistency by updating each 

occurrence of the data item when a change occurs. 

(c) Data integration 

In a database system, data are organized into a global structure, with logical 

relationships defined between associated data entities. In this way, user can 

easily relate one item to another related item. 

(d) Data sharing : 

A database is intended to be shared by all authorized users in the user group 

of Figure 3.3. However, each user is provided with its own view of the database 

and each of these user views is a subset of the conceptual database model. These 

user views simplify the sharing of data because they provide each user with the 

precise view of data required to make a decision or perform some functions 

without making the user aware of the overall complexity of the database. 
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(e) Enforcement of standards : 

Establishing data administration functions is a major task of the DBMS. 

Thus, the DBMS has the authority for defining and enforcing data standards such 

as the length of data names, data formats and data usages. Moreover, all changes 

to data standards would have to be approved by the DBMS. 

( f) Ease of application development : 

Another major advantage of the database approach is that the cost and time 

for developing new business applications are greatly reduced. Referred back to 

Figure 3.3, application programmers can have direct access rights to the DBMS 

via interface 2 so they do not have to saddle with the burden of designing, 

building, maintaining master files etc, as they all have been organized by the 

DBMS. Hence, the cost of software development is reduced and new applications 

are available to users in a shorter period of time. 

(g) Uniform security, privacy and integrity controls : 

Since the DBMS of the database system has complete jurisdiction over the 

database and therefore it takes the responsibility for establishing controls for 

accessing, updating and protecting data. Having centralized controls and standard 

procedures can always offer improved levels of database protection. However, if 

proper controls are not applied, a database system will probably be more 

vulnerable than a conventional file system since a larger user community is 

sharing a common resource. 

( h ) Data accessibility and responsiveness : 

A database system provides multiple retrieval paths to each item of data. 

Retrieval of data can sometimes cross several domains. To illustrate this 

point (see Figure 3.3), suppose a customer call requesting information about 

several items that have been ordered. While on the phone, the salesperson can 
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lookup the customer's record to display the particular order in question and then 

display the product record for each item on that order. Finally, the work order 

status for each item is displayed to determine their completion date, for 

instance. From this example, it can be realized that a particular item of the 

database can be reached using several different paths. 

Although the above example is a planned sequence of retrievals usually 

written in an application program, a database system can also satisfy certain 

ad-hoc requests for data without the need of application programs by using a 

user-oriented query language, which is compatible with the database 

system. For example, INGRES's OUEL language. Query languages permit an 

interactive programmer to construct record retrievals using expressions that 

specify which records are desired, not the process of record-by-record 

retrieval. So, the database approach is generally more responsive to changing 

information requirements. 

( i ) Data independency : 

The separation of data descriptions from the application programs that use 

the data is called data independency. The DBA in Figure 3.3 defines the data 

formats in conjunction with the Data Dictionary, whereas application 

programmers write programs to process user requests for data. As a result, an 

organization's data can be changed and evolved (within limits) without 

necessitating a change in the application programs which process them. 

Therefore, data independency allows various changes to the database with 

minimum impact on its users. 

( j) Reduced program maintenance : 

In a fast-growing organization, data may have to change frequently for a 

number of reasons. For instance, new data item types are added, data formats 

are changed, new storage devices or access methods are introduced and so on. In 

database terminology, the term maintenance refers to modifying or 

re-writing old programs to make them conform to the new data formats, access 
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methods and so forth. Since data independency is achieved in a database system 

as described previously, either the data or the application programs that use the 

data can be changed without affecting the others. Thus, program maintenance 

can be reduced significantly. 

So far, ten chief benefits of the database approach have been identified. Many of 

them can also be translated into business terms because they result in reduced costs 

of programming new applications, reduced costs of program maintenance, improved 

quality of managerial decisions and also reduced costs of information retrieval. 

Thus, database approach is extremely powerful and this is the main motivation for 

many research projects in this area lately. The next section will describe the basic 

concepts of one of the modern database technology. 

3.3.4. Distributed databases 

Although the principles of the database approach should prevail well into the 

future, the data management technologies used nowadays are inevitably replaced or 

enhanced by emerging equipment, software and ingenious combinations of DBMS with 

other technologies. Recently, the most fast-growing data management technology is 

the distributed database (DDB) technology [48]. 

A distributed database is a database stored on secondary memory devices 

(usually disks) which are attached to several electronically connected computers and 

from which a user at one of the computers can access data stored at any other 

computers. The computers may be relatively far apart geographically, or they may 

be in adjacent rooms or even in the same room. The point is that there are two or 

more connected computers involved in managing parts of a single database and 

subsequently a program can access the data stored at multiple nodes of the computer 

network. 
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The notion of DDB is quite different from the notion of de-centralized database. 

A de-centralized database is a database stored on secondary memory devices which 

are at separate, independent computers and a user at one computer cannot access or 

query data stored at other computers in the network. Although one can still consider 

the stored data conceptually as one database, a de-centralized database is actually 

implemented as a set of databases. 

3.3.4.1. Distributed database management systems 

In order to have a DDB, a distributed DBMS must be present which 

co-ordinates access to data at the various nodes. Even though each node may have 

a local DBMS managing local data at that site, a master DBMS is still required to 

determine from a distributed data dictionary the location from which to retrieve 

the requested data; to compose response to the data request; to translate a request 

from one node using a local DBMS to another node using possibly another DBMS 

and different data model; and also to provide security, concurrency, deadlock 

control, crash recovery and other data management functions across the various 

parts of the database. The general architecture of a distributed computing system 

with a distributed DBMS is shown in the following diagram : 
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Figure 3.12 A distributed DBMS environment 

The distributed environment depicted above consists of local databases with 

associated DBMS at these sites. Interfaces between the local DBMSs and the 

distributed DBMS may need to translate data requests from a local syntax and data 

model to an intermediate level when a mixed DBMS configuration is supported. 

The nucleus of the distributed DBMS (see Figure 3.12) co-ordinates the 

internode communication of retrieval requests and data. 
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3.3.4.2. Objectives and design issues of DDBs 

The goal of a distributed database is to provide data management services as 

transparently as possible so that the user does not realize that data are being 

accessed from multiple locations. That is, the database should appear to be stored 

at only one site and it is managed by the local DBMS at the user's site . 

. Furthermore, data maintenance from one site should be performed as if the data to 

be updated, added or deleted, were stored at only that site despite the possibility 

that the data may be at one or more sites. To achieve these goals, two issues are 

considered : the logical and physical database designs. 

All aspects that related to the view of a database that an application 

programmer is or may be presented, are collectively described under the topic of 

logical database design. On the other hand, physical database design concerns those 

aspects that related to the physical placement of data on the storage media which 

should ideally be transparent to the application programmers. The rest of this 

sub-section will only focus on the logical design aspects whilst a discussion of 

those physical design aspects can be found in Appendix A. 

3.3.4.2.1. Logical database design 

System architecture 

First of all, a data model is required which defines how the database is 

represented. Secondly, all the main functions of the system, and the most 

important, frequent or time-critical traversal paths (or relationships) 

around the database must be identified. The effect of the latter is that : 

( a) It validates the data model by showing that all the necessary navigations 

can be done. 

( b) It may simplify the data model by identifying some seldom used paths. 
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(c) It gives an indication of relationships that are traversed frequently, so that 

some special functions can be developed for them to enhance the database 

performance. 

Distribution performance : 

Two major issues of distribution performances are : 

(a) Is the database closely integrated or is it possible to divide it into more 

loosely related elements? 

( b) Even if the database can be divided, is it advantageous to de-centralize it? 

The first question can be answered directly from the statistics of activity on 

records, i.e. the traversal paths as follows: 

( 1 ) Identify all the low-activity record types. Low-activity means to look 

for a break in the distribution of activity across record types. Is there 

somewhere that the activity is one or two magnitude lower than the rest? 

If there is no break, does the activity distribution curve slope 

steeply downwards in the region of the least active 20% ? 

( 2 ) Assuming that low-activity record types can be identified, do they appear 

at random in the database or can they be joined to form boundaries by 

which the database can be divided? This database division process can 

either be achieved by drawing a line between record types or across 

occurrences of the same record type. If the latter is used, one must ensure 

that all different sets are low-activity. 

If both (1) and (2) are successful, then the database can be split into two, 

three or any number of what effectively are closely but almost self-contained 

databases. So, if it is possible to do this, distribution is possible; otherwise the 

centralized alternative is the only feasible solution. 

96 



However, a database, that can be distributed, does not yet prove that it 

should be. Another crucial factor is in relation to the geographical locations 

where inputs are received to those parts of the database that they require. In 

other words, one has to assess whether the possible divisions in the database 

related to the locations from which transactions are received; whether 

therefore it is possible to break up the total system, database and functions, 

into a number of sub-systems, each consisting of a subset of the database and a 

subset of the total system's functions. If all these can be fulfilled, each 

sub-systems can be geographically distributed. In this situation, the 

transmission costs are likely to be reduced by de-centralization of the data and 

functions. 

The underlying principle of the above strategy is that: It is not feasible or 

economic to distribute a database that needs to be closely integrated. Such a 

database and such a system run best on centralized hardware. The realistic 

objective of distributed database technology is to permit the implementation of 

a distributed database, even though sometimes a relationship is used, that cuts 

across geographical boundaries. 

Cost of a DDB : 

Cost in implementing a DDB is considered in the following ways: 

(a) Hardware : The main tradeoff is likely to be between (1) one central 

processor configuration with a large number of long lines, not all with a 

large bandwidth and possibly not all very highly utilized. This pattern 

follows a star-type network, (2) one smaller central processor, several 

distributed processors, a smaller number .of wide band lines, several 

shorter lines from the users to their local distributed processors. This 

pattern follows from a partially distributed star-type network, (3) 

several distributed processors, all of similar size, wide band lines joining 

them and relatively short local lines. This pattern follows a ring-type 

network. 
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In general, one is trying to minimize both the cost of data 

communication and total expenditure on processors. 

(b) Software : Tradeoffs on hardware means little unless software is taken 

into account. Complex DBMSs and operating systems are only available on 

large mainframes. Minicomputer software is built for simplicity and 

performance. In order to implement a sophisticated DDB, the only solution 

is to use large mainframes such as the IBM/360 machines in the expense 

of high cost and wasting some of the computing power of the mainframes. 

Finally, another important consideration is the availability of a required 

DBMS package on the machine types that are used to build the distributed 

system. 

System development : 

Since DDB is still a relatively new invention, much research has to be 

carried out, therefore a DDB is sold as an experimental venture. So, a more 

realistic approach is to develop several independent systems with the following 

foundations in mind: 

(a) standardize on data names and field formats, 

( b ) standardize on file names, 

(c) standardize on DBMS software, 

(d) standardize on database design, 

(e) and leaves hooks in the design of the basic software so that communication 

modules can be added when required. 

If the distributed system does not eventually get implemented, there are very 

little to lose. In the worst case, the user organization will still have a 
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computer facility (the several independent systems) and some data interchange 

can always be achieved by transporting magnetic tapes, disks etc. 

3.3.4.3. Tradeoffs of DDBs 

Advantages : 

DDBs permit localized, centralized and de-centralized data managements in an 

organization by means of the local and distributed DBMSs. DDBs reduce data 

communications traffic by storing data close to the node which uses the data most 

frequently as well as supporting convenient consolidation of data across locations. 

This reduced communication time has a considerable impact on processing 

throughput (rate) and response time. Furthermore, data is more consistent since 

there is a single DBMS which co-ordinates synchronized updating of redundant 

data. Finally, DDB permit specialization of hardware and DBMS software at each 

node to suit the needs at that site without sacrificing the integration of information 

resources of the organization. Prudent redundant storage of data can achieve 

greater reliability and availability because users are not dependent on data from 

only one site. 

Disadvantages : 

Current distributed DBMS technologies permit less freedom of choice than 

may be intended, regarding the mixing of DBMSs at different sites. Another 

shortcoming of DDBs is that they are expensive and not widely used yet, therefore 

the user of a distributed DBMS is at the forefront of DBMS technology with all the 

concomitant risks. 
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3.4. Conclusions 

This chapter has addressed the major characteristics of structured and 

un-structured distributed file servers. Two examples of un-structured file servers 

are given: the Cambridge File Server (CFS) and Newcastle Connection (NC). Database 

systems are typical examples of structured file servers. One of the modern database 

technology, the distributed database (DDB), has also been discussed. 

Conclusively, a distributed file system (DFS), such as CFS and NC, differs greatly 

from a distributed database in the difference of complexity between their 

implementations and interfaces. 

For the former case, one can consider the problem of file allocation. That is, the 

problem of where to allocate a file and its copies, given a known set of retrievals and 

updates and their execution frequencies such that a cost function is minimized. The 

solutions for the file allocation problem in a DFS do not characterize solutions to the 

same problem in a DDB for the following reasons: 

(a) The objects to be allocated are not known prior to the allocation. Relations which 

describe logical relationships between data are not suited as units of allocation 

because users at different sites might be interested in different fragments of a 

relation. 

(b) The way of accessing the data is far more complex. In the file allocation problem, 

the only transmissions required to combine data from different files are 

transmissions from sites containing files to the result site where the result is 

computed. In current research in distributed query processings, it can be 

observed that to process a query, data transmissions between sites where 

fragments are allocated are also needed. This means that the fragments cannot be 

allocated independently. 

N.B. The difference between a query and an update is that the latter will access all 

copies of a file whereas the former access only one (usually the one nearest to the 

user machine). 
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On the other hand, in order to distinguish the complexity in interface designs 

between a DFS and a DDB, the problem of data retrieval is considered. 

To retrieve data in a DDB, a user process generates a request for data from the 

distributed database globally since the distributed details have been hidden. The 

distributed DBMS (see Figure 3.12) then intercepts the request and determine where to 

send it for processing, or which nodes must be accessed to satisfy the request. This 

process can be facilitated by the introduction of global directory. A global directory 

is capable of indicating the storage nodes at which various units of data within the 

distributed database environment exist. Having accessed this directory, the distributed 

DBMS must co-ordinate the processing and response to the user request if it spans 

nodes, i.e. the target data exists at multiple nodes. The local DBMSs will be responsible 

for retrieving data at the local databases. Before sending back the required data, a local 

process called the local network processor, which resides on each node to provide 

the interface to the network, will carry out any data and process translations if 

necessary. Finally, the distributed DBMS synthesizes all the local retrievals and 

presents the user process with the global response to the request. 

So, it can be realized that the interfaces between the distributed DBMS and the local 

DBMSs are quite complicated in comparison to those in a DFS. The main reason is that 

DFS does not need to interpret the meaning of the retrieved data which has left to the 

user process. Nevertheless, the choice of using a DFS or a DDB for a particular 

application is often affected by the degree of consistency and reliability required. 
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Chapter Four -- Abstract Data Types 

The concept of abstract data types (ADTs) have received much attention lately. This 

chapter will explain the importance of ADTs, how to define an ADT , how to implement an ADT 

and how ADT supports the new program design technique of object-oriented 

programming. In order to achieve these goals, the following stack example will be used 

throughout this chapter. 

Example: stack 

A stack is a collection of data kept in sequence. Each item of data is of the same type. 

Data is added to and removed from the top of the stack. Operations which can be used on stack 

include: 

(a) top- It returns the top item of the stack as result. 

(b) push- Given an item and a stack, it returns a stack with that item inserted at 

the top. 

(c) pop- It takes a stack and returns the same stack with its top item removed. 

(d) createstack- It returns a new empty stack. 

(e) isemptystack- It returns true if a stack is empty, false otherwise. 

4.1. Motivations for Abstract Data Types 

Commercial programs are often large and complex pieces of software written by 

many professional computer programmers. Each programmer or group of 

programmers will be responsible for part of the program in order to save time and 

human effort. For most of the time, each of these units will concentrate on their own 
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responsibility. In other words, complex tasks are sub-divided into parts which are 

themselves broken up until the pieces are sufficiently small to be handled by a small 

individual. This kind of technique is called modularity. A program is said to be 

modular if its various modules (components) are relatively independent of one 

another. That is, each module can operate correctly even in the absence of the others. 

Modularity is a procedural decomposition because it is the method by which a program 

achieves its purpose that is modularized. Apart from achieving modularity, a good 

design also needs to minimize the degree of coupling between modules and to maximize 

the cohesion of individual modules. Coupling is concerned with the inter-connections 

between modules; whereas cohesion is concerned with the responsibility of an 

individual module for the other modules or functions. Usually coupling cannot be 

avoided completely since the modules of a large program have to co-operate in some 

way. But the more tightly modules are coupled, the more difficult they will be to 

implement, test and modify individually. 

Besides, even a perfectly working software system will become obselete as time 

goes by so it is essential to separate each stage of the software life cycle as shown in 

Figure 4.1. According to this diagram, if the requirements of the software are changed, 

it will change the specifications and which will change the design and the design will 

then change the implementation and so on. Thus, the whole process is cyclic. 

Figure 4.1 Software life cycle 
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Furthermore, software is an expensive commodity, especially when compared 

with hardware cost which is becoming cheaper all the time. This is partly due to 

software complexity and that means it is hard to produce a totally correct software. 

An aim to devise methodologies and tools which can reduce the incidence of errors in the 

final product is then required. The cost of a software can be divided into two parts: 

(a) the cost of building the software in the first instance, i.e. the first four stages of 

the software life cycle. 

(b) the cost of maintenance-the final stage of the life cycle. 

The latter usually exceeds the former mainly because of the fast pace and change in 

industry and commerce. A technique is therefore needed to reduce errors and to enable 

software to be easily modified later. 

Conclusively, the desperate demand in finding a way to help programmers to 

separate level of concerns, to reduce software production costs and to produce reliable 

software products leads to the tremendous development of data abstraction. 

4.2. Formal definition of an ADT 

Before defining the meaning of an ADT, some terms must be introduced first. The 

field of study involves the use and implementation of data objects is usually called data 

structures. Data structures serve to implement complex data objects and these 

objects are classified into types according to the way they are used. 

Horowitz [49] put forward the view that a data type is a set of objects and an 

associated set of operations. For example, a stack is a last-in-first-out (LIFO) list 

which usually has those operations described at the beginning of this chapter. Another 

obvious example is the set of integers which is a data type with operations addition, 

substraction, multiplication and division etc. Moreover, one must also differentiate the 

idea of user-defined types such as the enumerated types in Pascal with ADTs. The 
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concept of ADTs aims to deal with types defined by users who can specify their own 

access operations as explained later. 

Since the concept of ADTs is a modern one, several authors have attempted to define 

it. Horowitz has pointed out that the idea of ADTs in programming languages is to 

provide a mechanism whereby a type definition is isolated and protected from the rest of 

the program. Access to the data type may be made only in a very restricted manner. 

The representation of the data type will be hidden so that outside the definition of the 

type the programmer can rely on its representation. The representation of the data and 

the algorithms for manipulating them are encapsulated to protect the ADTs from being 

misused and to promote its independence. The power of the abstraction derives from the 

ability to make use of the ADTs via an externally defined specifications of the 

operations permitted on the type, in isolation from the implementation details. 

However, Martin [50] has presented another definition for an ADT as following: 

An abstract data type is basically a pair consisting of : a set of objects and a set 

of operations that manipulate the objects. Even more precisely, an ADT is a system 

consisting of three components: 

(a) Some set of objects (given, for example, as Pascal type), referred as data. 

(b) A set of syntatic descriptions of {primitive) functions, referred as the 

specification of the ADT. 

(c) A semantic description namely the implementation of the ADT. That is, a 

sufficiently complete set of relationships that specify how the functions interact 

with each other. The technical term for these relationships is axioms. Thus, an 

implementation is the production of a program which carries out the operations 

defining an ADT. 

This definition gives the overall structure of an ADT and it also addresses to a 

greater extent the mathematical aspects of an ADT; the previous definition places 

emphasis on the basic concepts of using ADT in programming. 
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Nevertheless, the key point of an ADT is that it is a collection of related operations 

and the behaviour of the ADT can only be seen by observing the results of applying the 

operations. In order to understand ADT fully, Figure 4.2 depicts a pictorial 

representation of an ADT. 

values operations 
results 

t t t 
source data black box end-products 

Figure 4.2 A pictorial diagram of an ADT 

An ADT is the black box in the diagram which offers the choices of operations to 

users that define the ADT; users must select the operation and provide the correct 

source data and then the black box will compute the associated result. 

4.3. Specification of an ADT 

Like many other definitions in computer science, a language is needed to define a 

specification. Moreover, precision is required in a specification because it is a 

pre-requisite for the achievement of correctness and this kind of precision can be 
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obtained by a forma/language usually based on some mathematical notations. 

Thomas [51, pp. 13] said that "Any programming language is a formal language 

since a program written in that language has a single, fixed meaning. Utimately, this 

meaning is defined by the combination of compiler and machine used to execute the 

program. Repeated executions of the program yields the same result, given the same 

input, if any, to the execution". Unfortunately, these kinds of formal languages are not 

suitable for defining the specification of an ADT because they are languages for 

describing representation but not abstraction. So a formal language which encourages 

abstraction in order to express ideas about specification distinct from representation 

is required. 

Two common approaches to solve the above problem, as noted by Thomas [51], 

are the axiomatic and constructive approaches. Some knowledge about the 

mathematical set theory is required in this particular section. 

4.3.1. The axiomatic approach 

It is also known as the algebraic approach. Before going into details of this 

approach, the distinction between the syntax and semantics of a formal language 

must be understood. The syntax of a language specifies all the legal expressions 

while the semantics concern with the meanings of the various forms of legal 

expressions in the language. Figure 4.3 shows the full syntax and semantics of the 

stack example. 
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Name: 

stack( item) 

Symbols: 

V- universal quantifier 

i - an item 

s - a member of stack 

Sets: 

S - set of stacks 

I - set of items 

B - set consisting of Boolean values true and false 

M - set of message values consisting of the single 

member, the stack is empty 

Syntax : 
createstack: ~ S 

top: S ~ I U M 

pop :S ~ SUM 

push: I X S ~ S 

isemptystack : S ~ B 

Semantics: 
Vs E S, V E 

i 

top(push(i,s))=i 

is em ptysta c k ( createsta ck) =true 

is em ptysta ck(p us h (i ,s) )=false 

pop (push (i,s) )=S 

pop(createstack)=the stack is empty 

top(createstack)=the stack is empty 

Figure 4.3 Axiomatic Specification of a stack 
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In the axiomatic approach, an ADT is defined by its properties as a set of 

axioms which relate meanings of operations to one another as in Figure 4.4. In 

Figure 4.4(a), the meanings of push and top are related to each other by 

asserting something about the application of one operation to the result of applying 

another. 

if an item is pushed onto an existing stack 

and 

the operation top is applied to that stack 

then the item that is returned is the one previously 

pushed onto the stack. 

(a) 

top(push (i,s) )=i 

(b) 

Figure 4.4 Description of the stack operations 

(a) in plain Eng I ish text 

(b) in formal axiom form 

Figure 4.4(a) is an informal axiom whereas Figure 4.4(b) is a formal one. 

The latter expresses the meanings of push and top are related. Firstly, push is 

applied to the source data values, i and s. That is , the item i is pushed onto the 

stack s. Secondly, top is applied to the result of the push operation. Finally, the 

result of top is the value of i. 

From this example, it can be realized that the semantics of an ADT rely 

totally on the precision of the set of axioms defining it. In other words, these 

axioms are a precise definition of the ADT if they are complete. Addressing 

completeness, Thomas [51] has suggested two properties: 
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(a) Complete in the sense that they define the outcome of all permissible 

applications of the operations of the ADT. 

( b ) Complete in the sense that they define operations that allow the construction 

of all permissible instances of the ADT. 

In order to examine the issue of completeness, in the sense of defining the outcome 

of all permissible operations (the first property), consider the following case: 

according to the semantic definitions given in Figure 4.3, the expression 

top(pop(createstack)) 

is invalid if pop is applied to an empty stack (from createstack), pop will 

return a value from M - the stack is empty - and the action of top will be 

undefined. One solution to such problems is to return a value from M, as a result, 

whenever it is used as the source data for application of such pop operation 

discussed above. This solution will lead to the introduction of new axioms as 

illustrated below: 

top(the stack is empty)=the stack is empty 

and 

pop(the stack is empty)=the stack is empty 

Unfortunately, if the expression is complicated or M has more than one member, 

the introduction of new axioms could lead to a specification that begins to exhibit 

the very verbosity it is intended to avoid in the first place. Therefore, Thomas 

suggested a more satisfactory solution called invariant assertion that is 

"Whenever an operation is applied to a value from M then the result of the 

operation is that same value from M". This specifies precisely what is required. 

However, the axioms of Figure 4.3 are complete in the sense of the second 

property of completeness because there are only two operations, createstack and 

push, which allow stacks to be built. Although the other operation pop can 
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modify a stack, it does not produce any stack that could not otherwise built. Hence, 

it is intuitive that any permissible stack can be constructed as a composition of 

createstack and push alone. All expressions which involve these two operations 

are generally referred to as reduced expressions. 

Having discussed the issues of the axiomatic approach, it is useful to give a 

summary of it as follows. An axiomatic specification of semantics involves the 

implicit definition of meaning by relating the semantics of operations to one 

another by use of axioms. These axioms typically involve the definition of the 

result of composing operations together; a set of axioms precisely and completely 

defines the semantics of an ADT. This kind of remoteness from representation 

makes it an excellent device for encouraging abstraction in a specification. 

4.3.2. The constructive approach 

This is also known as the operational approach. This approach defines the 

semantics of operations explicitly by relating each individual operation to an 

underlying model. That is, definitions are built on explicitly from the operations 

defined in the underlying model which have been precisely defined. 

In order to ease the construction process, the principles of pre-conditions 

and post-conditions are used. For instance, in the maximum operation (written 

in Pascal) described below: 

function maximum(x,y:integer) :integer; 
begin 

if X>=Y then maximum:=x 
else maximum:=y 

end; 
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The semantics of operation maximum can be given by the following two statements: 

pre-maximum (x,y) ::=true 

post-maximum(x,y;r) ::=(r>=X) /\ (r>=Y) /\ (r=x V r=y) 

The first statement specifies what must be true about the source data and the second 

one specifies what must be true about the relationship between the source data and 

the result. By using these pre-conditions and post-conditions statements, the 

specifiaction of an ADT can be precisely constructed. 

A pre-condition has three components: 

(a) The name of the pre-condition, eg. pre-maximum. 

(b) Variables representing the input data, eg. variables x,y in pre-maximum. 

(c) A declaration of the condition that must hold before the operation can 

be legally applied, eg. the condition true in pre-maximum. 

Three components are also found in a post-condition: 

(a) The name of the post-condition, eg. post-maximum. 

(b) Variables representing the source data and the result, i.e. x,y and r 

in post-maximum repectively. 

(c) A declaration of the relationship that holds between source data and result 

after application of the operation, eg. the right-hand side expression of 

post-maximum. 

It is worth emphasizing that the pre- and post- conditons do not represent the 

applications of the operations they are defining. They represent what must be true 

before and after the operation is carried out. 
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The stack example shown in the axiomatic approach can be specified by use of 

the constructive approach as shown in Figure 4.5 below (all the operations in a 

combination of italic and bold styles are the operations of an underlying model which 

are well-defined in terms of an abstract list). 

Name: 
stack( item) 

Symbols: 
i - an item 
s - a member of stack 
r - result of an operation 

Sets: 
S - set of stacks 
I - set of items 
B - set consisting of Boolean true and false 
M - set of message values consisting of the single member: 

the stack is empty. 

Syntax: 
createstack : ~ S 

top: S ~ I U M 

pop: S ~ SUM 

push: I X S ~ S 

isemptystack : S ~ B 

Semantic: 
pre-createstack() ::=true 
post-createstack( s) ::=S= createlist 

pre-top ( s): :=true 

post-top(s;r)::= if S=createlist 

then r=the stack is empty 

else r= first( s) 

pre-pop ( s): :=true 

post-pop(s;r)::= if S=createlist 

then r=the stack is empty 

else r=trailer(s) 
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pre-push (i,s) ::=true 

post-push (i,s;r) ::=r=make(i)concatenate ( s) 

pre-isemptystack(s): :=true 

post-isemptystack(s ;b) ::=b=isemptylist ( s) 

invariant assertion : 

Whenever an operation is applied to a value from M then the result of the 

operation is that same value from M. 

Figure 4.5 Constructive specification of a stack 

The general style of this constructive specification is exemplified by the 

entry for top. The pre-condition states that top can always be applied to a stack. 

The post-condition of top states the fact that top will produce a result either an 

item or a message depending on the value of source data s. The inclusion of 

invariant assertion to define the outcome of all permissible stack expressions. 

As a summary, the specifications produced by the constructive approach are 

easier to read and to write than axiomatic specifications. However, this ease of 

use implies that the underlying model must be capable of defining precise 

definitions. Lately, ADTs are usually defined axiomatically in the underlying 

model and then used constructively for more complicated applications. 

Therefore, the partnership of these two methods is vital. 
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4.4. Implementation issues of an ADT 

This is a two-stage process: 

First stage 

(a) Investigate data structures for the representation of the ADT, 

(b) Investigate suitable algorithms for the operations of the ADT, 

Second stage 

(a) Choose the most suitable programming language for the implementation of 

the two issues defined in the first stage. 

(b) Turning the data structures and their associated operations into program codes 

of the chosen language. 

One important point about the implementation of an ADT is that it can contain 

features which have been solely introduced from the representation but not in the 

specification stage such as the size of the stack. 

1 1 5 



4.4.1. Facilities possessed by a programming language to 

support ADTs 

Ideally any (high level) programming language ought to have the following 

ingredients to implement ADTs: 

(a) To separate the whole implementation of an ADT from an application program. 

(b) To limit access to the implementation of an ADT to the headings of the 

routines which implement the operations. 

(c) To allow the application program to manipulate more than one instance of the 

ADT without having to replicate the implementation. 

(d) To compile separately the implementation of an ADT and make the 

implementation easily available to more than one application program. 

(e) To be able to change the implementation of the ADT without in any way 

affecting an application program as long as the specification is met. 

(f) To be able to define the type of the ADT item in the application program. That 

is the ability to define generic (i.e. type-free) ADTs. 

All these items listed above are concerned with the technique of information 

hiding. This enables programmers to use an ADT without knowing the 

implementation details. Unfortunately, there are not many programming languages 

that can satisfy all these ideal requirements. Some of them will be discussed in 

section 4.5 shortly. 
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4.4.2. Advantages of Information Hiding 

There are a number of key advantages of information hiding for system designs: 

(a) An implementation can be changed without causing any functional effects on 

the applic.ation program. 

(b) Maintenance of an implementation can take place without affecting the 

application and vice versa. 

(c) Help to track down programming errors because if ADT implementations are 

proved to be correct, then if something is wrong, it must be in the 

other parts of the program. 

( d ) Users do not have to worry about the implementation details of an operation 

provided that they know the name of the routine; information about its 

parameters; a description of the purpose of the routine; and how to call the 

routine. 

(e) Re-usable: Since users cannot change the implementation of an ADT, 

therefore it can be used by other different applications. 

(f) Independent of any application: By looking at the implementation, an 

application programmer may be unduly influenced by what is there and write 

the application in such a way that it becomes dependent on the implementation 

of the ADT. 

(g) Maintainable: Since only one copy of the implementation exists, 

consistency can be achieved during an update of the software. 
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4.4.3. Error detection in ADTs 

Finally, this sub-section concludes the discussion on the implementation of 

ADTs by addressing errors appeared in an implementation. To be exact, errors 

found in an ADT means that an attempt has been made to violate a constraint. These 

are actually mistakes in application programs because in the specification stage of an 

ADT, these constraints have been taken into full accounts as shown in Figure 4.5. 

One classical example of such a mistake is attempting to use the top operation of a 

stack but having supplied an empty stack. 

Two strategies has been proposed by Thomas to solve such constraint violation 

problems: 

(a) Demand the application should detect a particular use of an operation would 

lead to a constraint violation, eg. topping off an empty stack, then take 

evasive action to ensure that the event does not occur. Therefore, the only 

action required by the implementation is to detect when the application 

program fails to perform a test and take appropriate response such as 

printing out an error message. 

( b ) Allow the implementation to detect the constraint violation event and report 

it to the application program so that remedial action can be taken. This needs 

additional information to be passed between implementation and application, 

either via a new parameter (some sort of status flag) or by using one of the 

existing parameters to indicate the error. 

4.5. Applications of ADTs in programming languages 

Abstract data types used in programming languages provide programmers with an 

abstract view of data in which implementation details are separated from a specification 

of how the type may be used. Essentially, for any programming language to implement 
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ADTs is to support information hiding which can be achieved through encapsulation. 

The term encapsulation is used to describe those information hiding features exhibited 

in that particular language. The rest of this section will concentrate on encapsulation 

features of some programming languages. The main reason for choosing them is due to 

their popularity and pragmatic importance. 

4.5.1. Ada 

Ada is one of the modern languages that has been designed with information 

hiding in mind [52] and its major encapsulation feature is called package. In Ada, 

a program is viewed as a collection of similarly constructed parts - subprograms. 

An Ada package consists of two parts named specification and body. 

Diagrammatically, it can be viewed as follows: 

--) 

--) 

Package PackageName is 

What is 
pro vi de d .... 

End PackageName ; 

Package body PackageName is 

How it is 
implemented .. 

End PackageName ; 

Figure 4.6 Pictorial representation of an Ada package 
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Both the specification and the body of a package can be constructed separately 

provided that the latter is conformed to the former. In use, the specification part is 

available to users and it contains the headings of the routines which implement the 

operations of an ADT. The body part which contains the implementation of the 

routines is then hidden from users. As an example, Figure 4.7 shows an Ada package 

which implements an integer stack by an array and a pointer to indicate the top of the 

stack. 

package NumberStack is 

subtype itemtype is integer range 0 .. 1 0000; 

type stack is private; -- the function of private will be discussed shortly 

procedure CreateStack(S: out stack); 

function lsemptystack(S: in stack) return boolean; 

function Top(S: in stack) return itemytpe; 

procedure Pop(S: in out stack): 

procedure Push(item: in itemtype; S: in out stack); 

private --this part defines the internal representation of the ADT 

maxsize: constant integer:=1 00; 

subtype cursor is integer range O .. maxsize; 

type store is array (1 .. maxsize) of itemtype; 

type stack is record 

top: cursor; 

item: store; 

end record; 

end NumberStack; 

(a) 
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package body NumberStack is 
procedure CreateStack(S: out stack); 
begin 

S.top:=O; 
end CreateStack; 

function lsemptystack(S: in stack) return boolean; 
begin 

return(S.top=O); 
end lsemptystack; 

function Top(S: in stack) return itemtype; 
begin 

if lsemptystack(S) 
then 

put("The stack is empty"); 
else 

retu r.n (S. item (S. top)) 
end if; 

end Top; 

procedure Pop(S: in out stack); 
begin 

if lsemptystack(S) 
then 

put("The stack is empty"); 
else 

S.top:=S.top-1; 
end if; 

end Pop; 

procedure Push(item: in itemtype; S: in out stack); 
begin 

if S.top=maxsize 
then 

put("The stack is empty") 
else 

S.top:=S.top+ 1; 
S.item(S. top) :=item; 

end if; 
end Push; 

end NumberStack; 

Figure 4.7 

(b) 

An Ada stack package - based on 

an array and a pointer. 

1 21 



Among those five routines' headings in Figure 4.7, three Ada modes of 

parameters are present. The in mode is used for input only and cannot be modified 

by a routine. In constrast, the out mode is used for output only and can be used and 

modified by a routine. The last mode in out can be used for both input and output, 

and can be used and modified by a routine. These parameters are responsible for 

updating the stack. Besides these five routine headings, the user also need to know 

the two type definitions: itemtype and stack. The type stack shows an eexample of 

encapsulation in Ada. It is declared to be private which means its definition will be 

defined in the private part of the specification. Although the representation of this 

type is still visible to user as shown, the private declarations are effectively local to 

the package specification: the user will not be allowed to make use of these definitions 

in any other programs. Thus, the implementation is visible but not accessible. When 

the body of a package is compiled, the Ada compiler will make use of the type 

definitions held in the package's specification part and therefore the specification 

must be compiled prior to the compilation of the corresponding body. 

Furthermore, another interesting Ada's encapsulation feature is the provision 

of libraries. For instance, the procedure put inside procedures Top, Pop and Push is 

one of the Ada standard library routines for output which is made available from an 

1/0 package named TEXT _10. However, since this output routine will not be required 

until the package NumberStack is invoked, so inside the body of NumberStack, there 

is no information about the location of put. Thus, it is the user's responsibility to 

import (or make available) the package TEXT _10 into a new application 

sub-program before using the package NumberStack. Details of how this is done will 

be demonstrated in the next sub-section. 

The use of the private type described earlier has two drawbacks. First of all, 

ideally the contents of the private part should be included within the package body. If 

an implementation is to be altered, the changes may be required in both the package 

body and the private part of the package specification, even though that part of the 

package specification accessible to users need snot be changed. Moreover, the user's 

program will need re-compiling since part of the package specification has been 

altered. Secondly, if the representation of the stack's items is to be changed, then the 

type definition of itemtype must also be changed accordingly. But this definition is 
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in the user-accessible area which means the user may allow to alter the original 

intention of the package completely. This could cause disastrous consequence such as 

insufficient storage spaces, two identifiers have the same name etc. Fortunately, Ada 

provides another tool called generic package (see section 4.5.1.2) which can 

tackle these problems. 

4.5.1.1. Using Ada packages 

Taking the package NumberStack as reference, this package can be used by 

placing the statement 

with NumberStack; 

in front of the subprogram heading which results in the importation of the 

NumberStack package into the new sub-program. Thereafter, references to all 

the visible resources (types, procedures, functions and so on) of this package can 

be made using the familiar dot-notation as follows: 

NumberStack.Push(3, onestack); 

currentvalue :=NumberStack.Pop( ones tack); 

The package name is pre-fixed by the procedure names Push and Pop so that, in 

situations where two or more packages have been imported into the same 

subprogram, no confusion between resources with the same name in different 

packages will occur. However, in cases where it can be absolutely certained that 

no such ambiguity will happen, the use statement is used instead in conjunction 

with a with statement: 

with NumberStack; use NumberStack; 

The Push and Pop operations can then be referenced without the package name. 

This use statement resembles Pascal's with statement but it is in force for the 
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whole of the subprogram that it precedes. 

4.5.1.2. Special packages in Ada 

The prime task of Ada's encapsulation features described so far, is to 

separate almost totally the implementation of the resources from its 

specification. In circumstances where there are different application programs 

need to manipulate several stacks with different types, package NumberStack 

may not be validated for all of them except the one in which the definition of type 

itemtype is still an integer. Ada provides a facility called generic packages to 

solve this problem. A generic package is used to create instance of the package 

known as generic instantiations as described below. 

The basic idea of generic package can be thought as Figure 4.8. 

generic 

type itemtype is private; 

package Stackpackage is 

type stack is private; 

the five operations of NumberStack; 

private 

same as those of NumberStack; 

end Stackpackage; 

Figure 4.8 A generic stack package 

This time the type definition of itemtype which comes right after the 

keyword generic is a so called generic parameter. Such a parameter is used 

to specify, outside the package in some other sub-programs, the type of certain 

objects used within the package. For example, if a stack called CharStack (a 
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stack of characters) is required in an application program, the application 

program will contain the declaration: 

package CharStack is new Stackpackage(character); 

The effect is to bring into existence a new package called CharStack which is a 

specific instance of Stackpackage where the type of itemtype is set to be 

character. Therefore, this generic facility enables generic packages to be 

written for which certain objects (with distinctive names) have their types 

defined in later stages. 

4.5.1.3. Exception handling in Ada 

Ada offers a method of dealing with constraint violations known as 

exception handling which enables information about the occurrence of 

constraint violations to be communicated between packages and application 

programs. This mechanism uses a special kind of objects called exceptions. To 

make use of exception handling, three components must be present in an Ada 

program: 

( a) the declaration of exception variables, 

( b ) raise statements to set the exceptions, 

(c) exception handlers (program codes) to be executed when exceptions 

have been raised. 
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For instance, the package NumberStack in Figure 4.7 could be made to incorporate 

exceptions with an Ada program through the following steps: 

(a) by adding, in the package specification part, the declarations 

StackFull, StackEmpty :exception; 

immediately after the line 

type stack is private; 

(b) by replacing, in the package body, the statements 

put("The stack is empty"); 

and 

put("The stack is full"); 

with statements 

respectively, 

raise StackEmpty; 

and 

raise StackFull; 

(c) By adding, at the end of an Ada program (which has imported the package 

NumberStack), the following pieces of exception code which are 

introduced by the keywords when and are executed only if their 

respective exceptions have occurred: 

exception 
when StackFull => 

--do something 
when StackEmpty => 

--do something else 
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So, the overall effect of the exception handling process is that, whenever an 

exception is detected by the package NumberStack, the appropriate exception is 

raised and then control is passed to the corresponding handler in the Ada program. 

By removing the exception handling routine to a separate part of the program, the 

remaining part of the program can be left to deal with normal processing only. 

Although in principle, exception handling in Ada does not offer any new 

programming capability, this mechanism gives programmers the opportunity to 

deal with exceptions under their control. 

However, in situation where an application procedure uses a package that 

includes exceptions but fails to provide the appropriate exception handlers, the 

Ada system will first look for an exception handler in the sub-program which 

invoked the application procedure. If no handler is found, a search will be made in 

the next enclosing sub-program. Eventually, the system will look in the main 

program and if a handler is still not found, the default actions have to be carried 

out. 

Finally, the exception handling mechanism described above is applicable to 

all Ada sub-programs including generic packages. 

4.5.2. Modula-2 

Modula-2 [53] is a direct-descendant of Pascal and it was designed and 

developed by Niklaus Wirth who also invented Pascal. In Modula-2, a program is 

treated as a collection of modules. The module concept has much in common with 

package in Ada. The following diagram shows the general structure of a module in 

the langauge Modula-2: 
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ModuleNeme 
imported 1 i st 
decl eret ions 

BEGIN 

statements; 

END 

Currently, there is no official standard in Modula-2, although one is being prepared. 

The module sample given below conforms to the requirements of the MacMeth 

computer (version 2.3, 1987), a system written for the Apple Macintosh 

computers, with all the keywords in upper cases. 

4.5.2.1. Encapsulation in Modula-2 

For_ the purpose of information hiding, a module is split into twoparts called 

a definition module and an implementation module. These are the direct 

equivalents of package specification and package body in Ada. Definition modules 

and implementation modules can be compiled separately provided that the former 

is compiled first. Figure 4.9 shows an example of a stack implemented as a 

linked-list. 
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DEFINITION MODULE stackops; 

TYPE itemtype=integer; 
TYPE stack; 

PROCEDURE CreateStack(VAR s: stack); 
PROCEDURE lsemptystack(s: stack): boolean; 
PROCEDURE Top(s: stack): itemtype; 
PROCEDURE Pop(VAR s: stack); 
PROCEDURE Push(item: itemtype; VAR s: stack); 

END stackops; 

(a) 

IMPLEMENTATION MODULE stackops; 

FROM lnOut IMPORT WriteString; 
FROM System IMPORT Allocate, Deallocate; 

TYPE 
Unk=POINTER TO StackRecord; 
stack= Link; 
StackRecord=RECORD 

item: itemtype; 
previous: Link; 

END RECORD; 

PROCEDURE CreateStack(VAR s: stack); 
BEGIN 

Allocate(s,size(StackRecord)); 
s:=NIL; 

END CreateStack; 

PROCEDURE lsemptystack(s: stack): boolean; 
BEGIN 

RETURN(s=NIL); 
END lsemptystack; 

PROCEDURE Top(s: stack): itemtype; 
BEGIN 

IF lsemptystack(s) 
THEN 

WriteString('The stack is empty'}; 
ELSE 

RETURN(s".item); 
END 

END Top; 
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PROCEDURE Pop(VAR s: stack); 
VAR temp: Link; 
BEGIN 

IF lsemptystack(s) 
THEN 

WriteString('The stack is empty'); 
ELSE 

temp:=s; 
s:=s"'.previous; 
Deallocate(temp); 

END 
END Pop; 

PROCEDURE Push(item: itemtype; VAR s: stack); 
VAR p: Link; 
BEGIN 

Allocate(p,size(StackRecord)); 
p"' .item :=item; 
p"' .previous :=s; 
s:= p; 

END Push; 
END stackops; 

(b) 

Figure 4.9 A Modula~2 stack based on a linked~list 

(a) definition module 

(b) implementation module 

Several points are worth mentioning from this example: 

(a) Modula-2 uses Pascal's parameter mechanism. Parameters are passed by 

value or by reference and in the latter case the paramater is preceded by 

reserved word VAR. 

(b) Functions are also termed as PROCEDURE in Modula-2. 

(c) To make use of objects defined in other modules, they are brought into 

existence by the IMPORT statement. So the statement 

FROM lnOut IMPORT WriteString; 
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means to import the routine WriteString from the standard library lnOut. 

( d ) All objects defined in the defintion module are exportable and can then be used 

in the implementation module. 

(e) Pre-defined procedures Allocate and Deallocate are equivalent to new and 

dispose in Pascal respectively. Procedure size returns the amount of 

storage space needed for a new object. 

(f) Modula-2 provides full encapsulation as illustrated by the type definition of 

object stack which is hidden totally from the specification part of the ADT. 

This technique is called opaque export. However, the objects are restricted 

to being of type pointer or to subrange of standard types. 

4.5.2.2. The provision of ADTs in Modula-2 

This can be done simply by placing the names of the required resources (or 

objects) appeared in the definition module of the ADT in an IMPORT statement 

immediately following the name of the main module as shown below: 

Module Reverse; 

From stackops IMPORT stack, itemtype, CreateStack, Push, Pop, Top; 

Although Modula-2 supports total hiding of the implementation of an ADT, it does 

not provide any generic type facilities as in Ada which is a big drawback. 
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4.5.3. CLU 

The language CLU [54] was developed at MIT by B. Liskov and her team. One of 

the initiatives for the design of CLU was to provide programmers with a tool that 

would enhance their effectiveness in constructing programs of high quality i.e. easy 

to understand, construct, modify and maintain. This goal is achieved by using 

abstraction. There are three kinds of abstractions in CLU - procedural, control 

and data abstractions. The only concern in this thesis is data abstractions which 

will be viewed as a new user-defined type. A data abstraction is implemented in one 

single program module by means of a cluster. Actually, the name CLU comes from 

the first three letters of the word CLUster. 

4.5.3.1. CLU clusters 

A CLU cluster contains the following three components: 

(a) A header which gives the name of the type being implemented and the name(s) 

of the associated operation(s). 

( b) A definition of the representation chosen in the type being implemented. 

(c) lmplementation(s) of the primitive operation(s) of the type. Additional 

routines ( CL U procedures or CLU iterators) can also be included in the 

cluster but only those named in the header can be called from the outside 

world. 
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Figure 4.10 shows the features of a CLU cluster. 

AbstypeName=cluster is % list of names of the externally 

visible operations go here. 

rep= % definition of the representation used goes here. 

% Implementations of the operations 

% plus some useful local routines if desired. 

end AbstypeName 

N..B.... % is just the comment symbol in CLU 

Figure 4.10 CLU cluster template. 

In order to illustrate how data abstraction is achieved in CLU, the stack 

example is used again as in Figure 4.11 : 
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stack=cluster is CreateStack, lsemptystack, 

Topitem, Pop, Push % heading of the cluster 

rep=array [int] % definition of the internal representation 

% Implementation of all the stack operations are given below: 

% N.B. All the pre-defined CLU routines are in italic style. 

CreateStack=proc () returns (cvt) 
return (rep$create(O)) 

end CreateStack 

lsemptystack=proc (s:cvt) returns(bool) 
return( re p$1o w(s)=O) 

end lsemptystack 

Topitem=proc (s:cvt) returns (int) 
if rep$1ow(s)=0 then 

signal failure("The stack is empty") 
end 
return (rep$ top( s)) 

end Topitem 

Pop=proc (s:cvt) 
if rep$1ow(s)=0 then 
signal failure("The stack is empty") 

end 
rep$remh(s) 

end Pop 

Push=proc (s:cvt, i:int) 
rep$addh(s,i) 

end Push 

choose=proc (s:cvt) returns (int) 
return (rep$bottom(s)) 

end choose 

end stack 

% create a new array with 
% low bound 0 

% low determines the 
% lowest index of an array 

% failure is an exception 
% routine which serves as 
% general error message 
% which will terminate 
% enclosing procedure 
% after its execution. 

% remh removes the last 
% element of an array. 

% addh adds an additional 
% element to the end of 
% an array. 

% bottom returns s[low(s)] 

Figure 4.11 A cluster called stack 

134 



There ar.e several points worth noting about this cluster example: 

(a) The line rep= array [int] serves the following functions: 

It informs the CLU compiler that inside the stack cluster the 

representation is an array of integers and since it is an equate (a 

constant), it permits the reserved word rep to be used as an abbreviation 

for this array type throughout the body of the cluster. 

(b) In any cluster, two types are always under discussion: the new abstract 

type, eg. stack, which is being implemented, and the representation type 

(or rep for short), that is the array type in (a). Inside the cluster, these 

two types must be visible. Furthermore, it must be possible to go back and 

forth betweeen them since users are only allowed to call the 

operations of the abstract type which are implemented in 

terms of the rep type. For instance, operation Topitem of cluster stack 

which receives an argument of type stack, but to implement Topitem, it must 

be able to make use of the array that represents stack. 

(c) In order to achieve the objectives mentioned in (b), CLU provides two 

special operations called up and down. up takes a rep object as 

argument and produces an abstract object as the result; down performs 

the reverse transformation. Each cluster has its own version of up and 

down to accompany itself only. These two operations are defined 

automatically by the CLU compiler so that the actual representation is not 

visible to the users. For instance, the CLU compiler will probably provide 

the up and down operations for the cluster stack with the following headers: 

up=proc (a:array [int]) returns (stack) 

down=proc (s:stack) returns (array [int]) 

Operations up and down can only be used in clusters but independent of the 

location within the cluster. However, up and down are most often used in 

two circumstances. First, when an operation takes an abstract 
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object as an argument, it often uses down to convert that object to the rep 

type; second, when an operation returns a newly-created abstract object, 

it often uses up (just before returning) to convert a rep object to the 

abstract type. 

(d) Although the up and down operations are very useful in the two cases 

described at the end of (c), CLU provides a special syntax - c v t 

(change of viewpoint) to simplify the convertions. The keyword cvt 

may be used as the type of an argument or the type of the result in the header 

of a cluster's operation. In the former , it indicates that the actual parameter 

is of the abstract type but the formal parameter is of the rep type, so 

down should be applied implicitly to the actual parameter immediately 

after the call and the resulting rep object should be assigned to the formal 

parameter. For example, in operation Push of cluster stack, down is called 

on the abstract stack object s, passed as an argument, but inside Push the 

type of s is array [int]. On the other hand, when cvt is used as the type of a 

result, it indicates that the result object is of the abstract type but the 

object being returned is of rep type, so that up should be applied 

implicitly this time to the returned object just before it is returned. 

Consider procedure CreateStack of stack, it returns an abstract object, 

that is a stack, to its caller but the return statement is apparently 

returning an array. As cvt is used in the header of this routine, up will 

be applied implicitly just before the object is being returned. 

(e) It may have noticed that the two keywords returns and 

return appear frequently in cluster stack. returns is often found in the 

header of a routine while return is inside the body of a routine. Actually, 

they have different significant effects on the routine. returns is a CLU 

specific built-in predicate which asserts the fact that the routine will 

return in the normal way; that is, it does not abort, raise a signal or run 

forever. However, return is a statement to terminate execution of the 

containing procedure or iterator. So they must not be mixed. 
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(f) The position of a (local or external) procedure inside a cluster is 

not important, i.e. procedures can be referenced even before they are 

defined. Thus, it is only important in run-time but not in compile-time. 

To illustrate these points, consider a stack which provides an extra 

external procedure called member whose function is to check whether or 

not an item has already existed in the stack. If the answer is positive, the 

item will not be pushed onto the stack, otherwise it will be pushed. In 

conjunction with member is a local procedure named getindex. Since there 

is an additional routine, the new heading of cluster stack will be: 

stack=CreateStack, lsemptystack, member, Topitem, Pop, Push 

and procedures member and getindex are defined as: 

member=proc(s:cvt, i:int) returns(bool) 
return (geti ndex( s, i)<=rep$ high( s)) 

end member 

getindex=proc(s:rep, i:int) returns(int) % a local procedure of stack 
j:int := rep$/ow(s) 
while j<=rep$high(s) do 

if i=s[j] then 
return U) 

end 
j:=j+1 

end 
return(j) 

end getindex 

Operation member can then be accessed externally as usual or internally 

by a slight modification of the procedure Push: 

Push=proc(s:stack, i:int) 
if -member(s,i) then 

rep$addh(down(s) ,i) 
end 

end Push 

In this new version of Push, the abstract type stack is used instead of the 

keyword cvt. The reason for this is because Push uses the procedure 
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member (which may be defined later) that requires a stack argument, 

therefore cvt cannot be used to convert s to an object of the rep type. 

Furthermore, in the call to member, the prefix stack$ is no longer needed as 

the call is made within its own cluster. Also, since getindex is a local 

procedure to the cluster stack, no type conversion is needed and hence s can 

be declared as type rep directly. 

(g) The final comment on this example is that operations create, new, addh, 

top, high etc, are all pre-defined routines in CLU for instances of type 

array whose size can grow or shrink dynamically i.e. no absolute 

boundary. However, different types will have different such pre-defined 

operations (see [54]). 

4.5.3.2. Using a CLU cluster 

Once a data abstraction has been defined , eg. a stack, it is no different from a 

built-in type and its objects and operations can be usable in the same way as those 

of a built-in type. In CLU, variables can be declared of the new type, as in 

s:stack 

and objects can be created and manipulated, as in 

s:= stack$CreateStack() 
stack$Push(s,3) 

User defined types can also be used to represent other user-defined types. 

For instance, one could implement a hierarchy tree structure with the following 

type definition: 

rep=record [item:int, left, right:stack] 

where the ADT stack is employed to represent each node of the tree. 
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4.5.3.3. Parameterized cluster 

Finally, CLU clusters can be parameterized. Parameterization provides the 

ability to define a class of related abstractions by means of a single module. 

However, parameters are restricted to the following types: int, real, bool, char, 

string, null and type. The type parameter is the most useful one. When a module 

is parameterized in this case, no knowledge of the actual parameter type is needed. 

Nevertheless, if the module is related to objects of the parameter type, certain 

operations must be provided by the actual type. Information about the required 

operations is described in a where clause which is part of the heading of a 

parameterized module. Considering, 

set=cluster [t:type] is CreateStack, lsemptystack, Topitem, Push, Pop 

where t has equal: proctype (t,t) returns (bool) 

defines a generalized set of abstraction. Sets of many different types can be 

obtained from this cluster, but the where clause states that the element type 

must provide an equal operation. To use the parameterized module, actual values 

for the parameters must be provided using the general form: 

module_name [parameter_values] 
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4.5.4. A comparison between Ada, Modula-2 and CLU 

Ada, Modula-2 and CLU are classical examples of programming languages that 

support information hiding as illustrated by those stack examples given previously. 

The main reason of using stack is partly due to its simplicity and familarity, and 

partly due to the intention of making a comparison between Ada, Modula-2 and CLU 

with regard to their information hiding capability as follows: 

(a) Transparency : 

Transparency is an essential requirement for any language to support 

information hiding as it shields users from misusing and yet enables easy 

maintenance of abstract objects. CLU and Modula-2 provides tot a I 

transparency through clusters and opaque exports respectively; whereas Ada's 

private type mechanism only supports transparency partially. 

(b) Re-usability 

All three languages encourage programmers to view their tasks as the 

construction of new libraries using, as tar as possible, the facilities 

already available in existing libraries. 

(c) Generic support : 

Ada and CLU supports generic facility using generic packages and 

parameterized clusters respectively. On the contrary, Modula-2 does not 

possess any generic facility. 

(d) Ease of implementation : 

It is apparently easier to implement the ADT, stack, in CLU than in Ada and 

Modula-2 which reflects the more efficient data abstraction mechanisms 

provided by CLU. However, much of the abstraction is done by the 

language itself such as those standard array routines. 
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(e) Program size : 

CLU has used the least amount of codes, compared to Ada and Modula-2, 

for the implementation of those stack's routines owing to the intensive use 

of pre-defined library routines. 

(f) Flexibility : The discussion of this issue will be divided into two parts: 

1/0 facilities : Ada and Modula-2 allow programmers to select the most 

appropriate set of 1/0 routines subject to the requirement of the 

application via the with and import statements respectively. In CLU, this 

kind of flexibility is lost since all the 1/0 statements have been built internally 

such as the failure statement. 

returned function values : There is no restriction on the type of values 

returned by an Ada or a CLU function, but in Modula-2, functions can only 

return values of simple types such as integer, character, real etc. 

(g) Separate Compilation: 

Ada's packages and Modula-2's modules have the same general structure. 

Both have two parts: one containing the definition (specification) of objects 

that can be used by an application program, the other containing the 

body (implementation) of those objects. Hence, the specification part is 

physically separated from the implementation part which enhances the use 

of separate compilation. Although CLU's clusters cannot be compiled 

separately, clusters can be parameterized to define a class of related 

abstractions using a single module which is an important feature of object 

oriented programming as discussed shortly. 

(h) Error handling : 

Ada and CLU have explicit routines to deal with constraint violations 

such as Ada's raise statements and CLU's signal statements. On the other 
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hand, since Modula-2 does not provide this facility, the application 

programmers have to be forced to accept the system's default action (usually to 

abort the whole process). 

4.6. Object-oriented programming 

The idea of ADTs is very useful in sub-dividing a big task into pieces as stated in 

section 4.1. When designing a large complicated program, everythings can be thought 

as an ADT or an object and the designer's task is to identify and define these objects. 

This leads to the technique of object-oriented programming. Problems solved by 

this technique is often easier than the traditional techniques such as top-down and 

bottom-up. However, as Thomas [51] mentioned that a combination of the two 

techniques: object-oriented programming and top-down will provide programmers the 

best way to tackle a really difficult program. The programmer can use the former to 

identify objects and their operations to develop the structure of the program as a 

collection of modules. Then the latter is used to evolve the more complex operations of 

the objects or even perhaps the main program body. 

Thus, object-oriented programming design leads to easier maintainable programs 

for two main reasons. First of all, the procedures are usually short and readable as 

they perform only single and well-defined tasks. Secondly, it is easier to locate and 

modify an operation when it is confined to a single procedure. Recently, 

object-oriented programming has turned out to be a very efficient tool because it allows 

programmers to build new software on top of some existing objects which are reliable 

and usually well-documented. 

From the above discussion, it can be realized that object-oriented programming is 

primarily a system building tool which puts re-usability at the centre of the 

software development process, making re-usability the usual way that new components 

are built. Since object-oriented programming is so useful, a lot of research efforts 

have been made to implant this concept on existing conventional programming 

languages. Apart from retaining the efficiency and compatibility of the base language, 
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the new language will also provide the re-usability power of an object-oriented 

programming language. Two typical examples of this kind of language are Simula-67 

and Smalltalk-80. The main theme for the rest of this chapter is to investigate the 

object oriented programming features of these two languages. 

4.6.1. Object-oriented programming languages 

The programming language Simula-67 [55] is an early ancestor of 

object-oriented programming. It comes by this lineage due to its introduction of the 

class concept. In opject oriented language terminology, a class is viewed as a 

generic ADT. The main role of a class with respect to object-oriented programming 

is its ability to create objects which are the means for communication between them. 

However, the real founder of object-oriented programming is the modern language 

Smalltalk-80 [18], developed at Xerox Palo Alto Research Centre, U.S.A. In fact, the 

term object-oriented programming arose from the enormous development of this 

language. Nevertheless, re-usability is the key issue in any object-oriented 

programming language. To enhance re-usability, the idea of inheritance was 

emerged. 

In the following sub-sections, the basic principles of inheritance will be 

described, followed by an investigation of the inheritance power in Simula-67 and 

Smalltalk-80. Since object-oriented programming has been used widely for 

interactive and graphical applications, the examples given in these sub-sections will 

belong to this category. 

4.6.1.1. Inheritance 

The functions of inheritance in object oriented programming can be 

summarized as follows: 

(a) It is a tool for organizing, building and using reusable classes. 

(b) Inheritance links concepts (ADTs) together so that as a higher level 
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concept changes, the change will be automatically applied throughout the 

rest of the system. 

(c) Inheritance also provides enormous simplification by relating objects as 

closely as possible to one another. As a result, this will reduce the total 

number of objects that must be specified and stored. In other words, 

inheritance has a two-fold effect, reducing code bulk by reducing the need 

to re-develop common functionality, and reducing surface area by 

enhancing consistency. 

So, it can be seen that without inheritance, each class would be a 

free-standing uriit developed from scratch, which will in turn increase the 

possibility of inconsistency. 

4.6.1.2. Simula-67 class concepts 

Simula-67 was a language developed in 1967 at the Norwegian Computing 

Centre in Oslo. The initial motivation for the development of this language was to 

provide an environment, based on the language Algol-60, for producing software 

models to simulate real processes such as a queueing process or an industrial 

process and so on. By running the model, the performance of the real processes 

can be assessed. The designers of Simula-67 introduced a new programming 

construct called class. A class (see Figure 4.12 below) consists of some 

variables, a collection of procedures and a piece of code (the class body) which is 

executed whenever a new object of the class comes into existence. 

class heading; 

class variable(s); 

class procedure heading(s); 

class body; 

Figure 4.12 Components of a Simula-67 class 
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Each object of the class has its own copy of the variables and so has the ability to 

represent a dynamic state. The objects continue to exist until they can no longer 

be referred to by any means. For instance, the following class declaration 

expresses the concept of complex numbers: 

class complex(x,y); real x,y; 

begin real r,theta; 

r:=sqrt(x**2+y**2); 

theta:=arctan(y ,x); 

end complex; 

In Simula-67, a block is a pattern of text: 

begin declarations; 

statements; 

end; 

An instance is a representation of this pattern of data and actions in the computer 

memory. It comes to existence only when its call is executed. In Simula-67, the 

source and the object programs are equivalent. The purpose of a block (or 

procedures) is, for each activation of it, to perform a sequence of operations 

according to a given statement pattern, thereby producing a set of results. To 

achieve its purpose, each instance of the block may set up a suitable data structure 

for its own use. After the completion of its actions, the whole block instance is 

deleted including the local data structures; only the results remain as recorded in 

non-local variables or in the state of input or output devices etc. Thus, the 

apparent symmetry between the declaration part and statement part of a block (as 

shown above) is not matched by the behaviour of the kind of block instance. The 

declarations, at least those variables play a secondary role since they have 

strictly local significance. 

A group of objects having the same heading, layout of variables and action 

pattern are said to be belonged to the same class. The class name is a generic 

name, describing what kind of object it contains. Objects belonging to the same 
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class are collectively described by a class-declaration. Class-heading and 

class-body are very similar to a procedure-declaration. An object may perform 

operation just as any other block instances. At the same time, it is an entity 

which has attributes. The attributes of an object of a given class are instances 

of the quantities declared locally to the class body and instances of the parameters 

listed and specified in the class-heading. The attributes of an object are accessible 

from outside the object by special language mechanism, eg. the dot-notation. For 

example, the following piece of program declares C to be a complex number and 

makes C refer to the object created by standard routine new in the second 

statement: 

ref(complex) C; 

C:-new complex(3.0,4.0); 

The attributes of object C (x, y, r and theta) can then be accessed via the 

usual dot notation and so the statements print(C.x); print(C.y); print(C.r) and 

print(C.theta) will print the values 3.0, 4.0, 5.0 and 0.927 respectively. 

Simula-67 also introduced the notion of super-class and sub-class as a 

way of representing the property of inheritance. For instance, if there is a class 

named list_element which is defined as : 

class list_element; 
begin 

ref(list_element) next; 
next:-none; 

I class procedures insert, delete, push etc. which 
I are operating on the class list_element go here. 

end list_element; 

then a list of complex numbers may be created by prefixing the name list_element 

to the declaration of class complex as follows: 

list_element class complex (x,y); real x,y; 
begin 

! the same code as class complex; 
end complex; 
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Here class list_element is the super-class of class complex or complex is the 

sub-class of list_element. The effect of the super- and sub- classes relationship 

is that, all the actions defined in the super-class are performed prior to those of 

the sub-class, whenever a new object of the sub-class is generated. In other 

words, the sub-class object has inherited all the properties of its super-class but 

not vice versa. 

Although Simula-67 supports the definition of abstract data objects by 

representing the abstract operations of the type as procedures within a class, 

the dot notation provides access not only to the procedures of a class but also to all 

the local attributes like variables. Hence, it is possible to access a Simula-67 

object in a way which violates the properties of the ADT. Nevertheless, the 

Simula-67's class concept was among the first programming languages to provide 

a general mechanism for programmers to define their own types and the 

representation of the hierarchy of type inheritance. 

4.6.1.3. Smalltalk-80 

Smalltalk-80 was a successor of the language Smalltalk-76. It was intended 

as a language for developing user interfaces on personal computers and has lead to 

the ideas behind the notion of desktop. However, it was felt that no programming 

language was really suitable for desktop applications. As a result, new 

programming approach was developed as in Smalltalk-80. 

To be precise, Smalltalk-80 was a graphical interactive programming 

environment rather than a language. It was designed such that every components 

of the system that is accessible to the users can be presented in a meaningful way 

for observation and manipulation. With the aid of suitable hardware, the 

user can select information on the screen usually by means of an icon , and then 

invoke the appropriate actions to interact with that information. Although 

Smalltalk-80 was made up of many components, it was based on only a small 
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number of concepts [18, pp. 5-89] and they can be defined by five terms : 

object, message, class, instance and method 

Key concepts 

All the components of Smalltalk-80 (numbers, strings, programs, 

compilers etc} are represented as an object which is simply an ADT consisted of 

some private memory and a set of operations. 

In Smalltalk-80, all the actions are performed via the technique of 

message passsing. A message is a request for an object to carry out one of its 

operations, but however, the message does not specify how that operation should 

be done. The latter would be performed by a receiver, the object to which the 

message was sent. The partnership between a message and the corresponding 

receiver is that: a message specifies the type of operation desired together with 

the required data; the receiver determines how to accomplish the operation. The 

kind of messages to which an object can respond is called its interface with the 

rest of the system. The only way to interact with an object is through its interface. 

Furthermore, in order to protect the internal implementation of an object, the 

private memory of it can only be manipulated by its own operations and these 

operations can only be invoked by the appropriate messages. 

To make system management easier and better re-usability, a special kind of 

object called class (similar in concept to a Simula class} exist in Smalltalk-80. 

A class describes the implementation of a set of similar objects. The individual 

objects described by a class is called its instance. In other words, a class 

describes the form of its instances' private memories and how the instances carry 

out their operations. The instance of a class are similar in both their public and 

private properties. An object's public properties are the messages that make up 

its interface. All instances of a class have the same message interface since they 

represent the same kind of components. An object's private properties are a set of 

instance variables that make up its private memory and a set of methods 

(routines} that describe how to carry out its operations. The instances of a class 
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use the same set of methods to describe their operations. Each class has a name 

that describes the type of component its instances represent. Each instance 

variable in an object's private memory refers to one object, called its value. 

Each method in a class specifies how to perform the operation requested by a 

particular type of message. When that type of message is sent to any instance of 

the class, the method is executed. 

Nevertheless, the best way to understand all the concepts described above is 

to present an application program written in Smalltalk-80 as shown in the next 

sub-section. 

4.6.1.4. A Smalltalk-80 example 

Smalltalk-80 often considers programming as instructing real objects to 

perform a sequence of actions, eg. drawing figures on the computer screen using a 

computerised pen (often termed as the light pen). So the pen is an object which 

can perform certain tasks. But as in real life, figures can take different forms 

and so does the pen. Therefore, pen is a generic concept. This leads us to define an 

object to be a specific instance of a generic description. As an example, Figure 

4.13 shows how a square can be drawn with Smalltalk-80. 
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class name 
superclass 
instance variable name 

instance methods 

accessing 

create 
self new 

draw: ink 

super colour: ink 
super moveto: (ord: x vert: y) 

square 
apen 
X 

y 
size 

super drawlineto: (ord: x+size vert: y) 
super drawlineto: (ord: x+size vert: y+size) 
super drawlineto: (ord: x vert: y+size) 
super drawlineto: (ord: x vert: y) 
super moveto: (ord: 0 vert:O) 

erase 
draw: background 

stretch: amount 
self erase 
size<- size+amount 
self draw 

Figure 4.13 A class definition of drawing a square 

in Smalltalk-80. 

Several points needed to be noted from the above example: 

(a) Whenever a new instance of class square is created, the procedure create 

must be invoked with three parameters, eg. square create:(x:250 y:375 

size:20), and the function of self new is to create a new initialized 

instance of the class itself. 

150 



(b) Instance variables are local variables and each instance of class square 

will have its own private set of instance variables. 

(c) Instance methods are those procedures that describe the behaviour of the 

instances when they receive messages. They can be shared between all 

instances of class square. 

(d) The word accessing, appeared just before the four procedures, indicates 

that all the procedures following it is accessible by users. 

(e) The procedures moveto and drawlineto are routines that have been defined 

in the superclass apen as indicated by the word super in routine draw. This 

means that class square can inherit all resources of apen. 

( f ) The pseudo-variable self referred to the receiver of a message because 

in general there can be several squares in existence at any time, and it is 

important to identify them individually. 

(g) The colour background is the colour of a blank screen and ink is an 

optional colour. 

From this example, one can realize that object-oriented programming 

languages, such as Smalltalk-80, provide a high degree of information hiding. 

Users are only allowed to know about the messages that can be sent to an object via 

those defined operations and about what additional information may be required i.e. 

the nature of the parameters of the operations. No visibility of private data or of 

the implementations of the operations. Thus, objects are the sole inhabitant of the 

universe. Moreover, objects are treated uniformly. For instance, they all have 

inherent processing facility and they are all referred in the same way. They also 

all communicate via the technique of message passing. Also, though integers are 

provided in the language, they are not considered primitively or specially in any 

way. User defined objects are on the same status level as system defined objects. 

Another interesting feature is that an object cannot be opened up; the inside of it is 

hidden. Of course, if the object wants to permit its insides to be examined, it can 
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be done. The only restriction in Smalltalk-80 is that messages are the only way 

to communicate between objects, so they must be very versatile. A message may 

be parameterized to include one or more objects' names along with its message. 

Then the receiver object responses to the message with a reply. The message may 

initiate computation and the reply confirms that the activity has been successfully 

accomplished. At this point, one may think that message passing or sending sounds 

like procedure invokations. This may be right in some sense but there is a 

difference. In procedure calls, the caller is in control, waiting for the procedure 

to return. Also the caller and the receiver of the call usually share the procedure 

interface and may be some global variables' data spaces. In object-oriented 

programming, once a message is sent, the sender trusts the receiver to accomplish 

its goal. Thus the sender relinquishes control to the receiver. 

Among those features of Smalltalk-80 discussed so far, the most important 

one is the mechanism of inheritance. It can be viewed as a way to define some 

useful constructs in a central place and then automatically broadcasting that 

construct to all places where it is required as indicated by the keyword 

superclass. The advantage of this approach is that new functionality is no longer 

developed by coding from scratch, but by inheriting some superclasses and 

describing how the new one differs. For instance, suppose an object called 

rectangle for which operations draw, erase and stretch have been defined. it would 

be simpler to define the class square as a rectangle whose sides are equal. Square 

can then inherits all the operations of rectangle. This means that no new 

procedures is needed except changing the values of some local variables in Figure 

4.13. So inheritance has advanced the cause of re-usability. Note also that 

Smalltalk-80 supports only single inheritance. That is, an object can only be an 

instance of one class. 
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4. 7. Conclusions 

Abstract data types have been used in almost all stages of software development, 

particularly in the specification, design and implementation stages of the software life 

cycle. This chapter has discussed the important aspects of ADTs that make them so 

useful. 

Basically, an ADT is composed of a set of objects and a set of operations that 

manipulate the objects, and the behaviour of the ADT can only be noticed by observing 

the results of applying the operations. This concept can be used to separate the level of 

concerns of large and complicated software programs by defining every resources 

(objects) as an ADT. As a result, it can reduce the software production costs (which is 

an expensive commodity) and to produce reliable software products. Two methods for 

the specification of ADTs, the axiomatic approach and the constructive approach, are 

described. The former specifies an ADT by defining its properties as a set of axioms 

(rules) while the latter builds an ADT from objects that are already well defined. Also, 

issues for the implementation of ADTs such as information hiding, error detection are 

discussed. 

In order to illustrate the power of ADTs, three modern programming languages, 

Ada, Modula-2 and CLU are chosen as examples. Each of them has used a different 

method to achieve information hiding. They are packages, modules and clusters 

respectively. A comparison between them with respect to the issue of information 

hiding is also given. 

The idea of abstract data types has lead to a new programming technique known as 

object oriented programming. This technique was originated from the class concept of 

Simula-67 in which programmers are allowed to define complex objects (ADTs), made 

up of attributes that have already been defined. These attributes may be of the standard 

Simula-67 types or may be reference types defined by the users. The main objective 

of this approach is reusable software. That is, a new piece of software is created 

from an existing piece of similar software. In this sense, the new software derives or 

inherits its properties from exsting software. The object oriented programming 

language Smalltalk-80 has greatly enhanced the cause of software re-usability as 
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illustrated by the square example in section 4.6.1.4. To be precise, object oriented 

programming is primarily a system building tool which arose from the awareness that 

ambitious software systems are generally too expensive, of sufficient quality and hard 

to schedule reliably. Object-oriented systems should prevail well into the future with 

the exponential improvement in hardware capability. 
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Chapter Five -- Type theory and data persistence in high level 

languages 

5.1. History of types in programming languages 

In the early stage of programming, numerical computation was the only concern 

and therefore all values were viewed as having a single arithmetic type. However, 

with the advent of high-level programming languages such as Fortran in 1950s, it 

was found convenient to distinguish between integers and reals (represented by 

floating point numbers) for two reasons: 

(a) In computer memory, all data are represented as a string of bits of fixed 

size: characters, integers, reals, records and arrays etc. Thus, 

there is no way of differentiating what is being represented by a piece of raw 

memory. However, integers can be represented in an exact form compared to 

reals due to the rounding and truncation errors of the latter. Therefore, integer 

computations and real computations must be considered separately. 

( b) Also, use of integers for iteration and array computations was logically 

different from the use of floating point numbers for numerical computations. 

For example, elements of an array are totally distinct from each other, so 

integers must be used as the index. 

This provided the initial indication of requiring a type system. The best way to 

organize such a system is to cla.ssify objects in terms of the purposes for which they 

are used. Some of these typed languages are described briefly in the following 

paragraphs. 

Fortran [56] used the first letter of a variable to distinguish between integers 

and reals; all identifiers starting with letter I, J, K, L, M or N are integers whereas 

the others are reals. Later, Algol-60 [57] introduced identifier declarations for 
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integer, real and boolean variables, eg. 

real x,y; integer z; 

The language Algol-60 was a pioneer in the notion of type and associated requirements 

for compile-time type checking. The block structure requirements of Algol-60 

allowed not only the type but also the scope (visibility} of variables to be checked at 

compile-time. The ideas of type checking will be discussed shortly. 

In 1960s, the concept of types was developed further. The Algol-60 type notion 

was extended to richer classes of values. There were some new typed languages during 

this period, eg. PUI [58], Pascal [59], Algol-68 [60] and Simula-67 [55] etc. 

PUI attempted to combine features of Fortran [56], Algol-60 [57], COBOL [61] and 

LISP [62]. Its types include typed arrays, records and pointers. However, it has 

certain type loopholes especially in pointer types as illustrated by the following PUI 

program (all keywords are in upper cases} : 

DCL 1 structA 

DCL 06 X 

DCL 06 y 

DCL 1 structB 

DCL 06 a 

DCL 06 b 

DCL (pt1 ,pt2} 

pt1 =addr(structA}; 

pt2=addr(structB}; 

pt1=pt2; 

END; 
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char( G), 

char(20}; 

AUTO, 

char(6}, 

char(21}; 

POINTER; 



Several points are worth noting in this example : 

(a) The number to the left of each identfiier (i.e. a, b, x and y) is called a level 

number which is used to indicate relative levels of names. All level numbers 

must be a decimal number and they are usually appeared in a declaration (the 

DCL statements). By default, level number 1 is always assumed which also 

signifies the beginning of a new structure (eg. structA, structB). 

(b) The two keywords STATIC and AUTO refer to the storage class attributes, static 

and automatic, in PUI respectively. Storage is allocated permanently to 

variables having storage class static throughout the execution of a PUI 

program. However, for variables having storage class automatic, storage is 

allocated only when the block in which the variable declared is active and 

then it will be released after the block has terminated. 

(c) Pointer variables in PUI are declared by the keyword POINTER (or PTR for 

short). These variables can be used to point to the base address of any 

structure as in the statement, 

pt 1 = addr( structA) 

where addr is a built-in function which locates the starting memory address of 

a variable. Also, a pointer variable can be assigned to any other pointer variable. 

Hence, PUI does not offer much type-checking facility on pointers except 

that a pointer cannot be assigned to a non-pointer variable. However, this is 

potentially very dangerous as PUI's pointers are merely memory addresses and 

therefore it is the programmer's responsibility to ensure that he or she is 

accessing the right parts of the memory. Consider the assignment statement: 

pt1 =pt2 

in the above example, pt1 is pointed to the base address of structA which occupies 

26 number of bytes whereas pt2 is pointed to the base address of structB that 

occupies 27 number of bytes in memory. In other words, some previously 
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defined memory values have been overwritten without informing the system. 

This is the reason that Pascal and Ada have to associate each pointer variable with 

objects of one type only. 

In addition to arrays, records and pointers, the language Pascal [59] provides 

even more types: sets, variant records as well as user-defined types. Unfortunately, 

Pascal also contains some type loopholes; for instance, it includes array bounds as 

part of the array type specification which makes procedures that operate uniformly 

on arrays of different dimensions impossible to be defined. Also, Pascal did not 

require the full type (names and definitions) of procedures/functions passed as 

parameters to be specified. For example, if there is a procedure defined as: 

procedure test1 (var a:integer); 

begin 

a:=a+1; 

end; 

it can be passed to any procedure with heading: 

procedure try(procedure t(var x:integer)); 

but so does procedure test2: 

procedure test2(var a:integer); 

begin 

a:=a-1; 

end; 

However, the results after the invokations of these two procedures are 

completely different. Moreover, Pascal allows the tag field of variant records to be 

manipulated independently. 
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Consider the following type definitions: 

itemclasses=(Book,Recording); 

Libraryite ms=reco rd 

Title: packed array [1 .. 30] of char; 

Author: packed array [1 .. 16] of char; 

case class:itemclasses of 

Book: (Edition:1 .. 50; 

Year: -200 .. 1999); 

Recording: (Performer: packed array [1 .. 20] of char) 

end; 

The usage of the tag field of the variant record, class:itemclasses, is absolutely free to 

the user. If the current variant of class is Book but the user thinks it is Recording, 

he or she will then try to access the field Performer which does not exist. Serious 

errors will occur that may not be detected easily in the later stage of a program. 

Finally, Pascal does not define type equivalence either, so the question of when two 

type expressions denote the same type is implementation dependent. 

Algol-68 [60) has a more rigorous notion of types than Pascal, with a 

well-defined notion of type equivalence which enables a compiler to check the type 

of a variable before performing any operations on it. Generally, there are two ways 

to determine whether or not variables belong to the same type. They are known as 

name equivalence and structural equivalence. In the former, two variables 

are considered to be of the same type only if they are declared using the same type 

identifier. For instance, in the following piece of Pascal program, 

type T=array [1..10) of integer; 

var C: array [1..10] of integer; 

D :T; 

E :T; 

variables D, E are of the same type but variable C is not. 
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On the other hand, in structural equivalence (the one used by Algol-68), two 

variables are considered to be of the same type whenever they have components of the 

same type structure. Using this definition, all the variables in the previous Pascal 

program will have the same type. Unfortunately, structural equivalence causes a 

logical problem as demonstrated in the following declarations, 

var K : (Male,Female); 

I : (Female, Male); 

it is difficult to decide whether or not variables K and L are of the same type without 

the help of a sophisticated compiler. 

Furthermore, the notion of type, called mode in Algol-68, is extended to include 

procedures as first class values. Primitive Algol-68 modes are int, real, char, 

bool, string, bits, bytes, format and file, whereas mode constructors include 

array, struct, proc, union and ref for constructing array types, record types, 

procedure types, union types (variant records) and pointer types respectively. 

Algol-68 has well-defined rules for coercion, using dereferencing, deproceduring, 

widening, rowing, uniting and voiding to transform values to the types required for 

further computations as described in [60]. Algol-68 also provides type-checking 

facilities but those algorithms are so complex that it will be a very time-consuming 

task for users to check them. Thus, later languages such as Ada had a simpler notion of 

type equivalence and type checking with severely restricted coercion. 

In chapter four, the langauge Simula-67 has been addressed. It was the first 

object-oriented programming language and its notion of types includes classes whose 

instances may be assigned as values of class-valued variables and may persist 

between the execution of the procedures they contain. Procedures and data 

declarations of a class constitute its interface and are accessible to users. Subclasses 

inherit declared entities in the interface of superclasses and may define additional 

operations and data that specialize the behaviour of the subclass. Instances of a class 

like ADTs in having a declarative interface and a state that persists between 

invokations of operations, but lack the information hiding power of ADTs. 
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Modula-2 was another language mentioned in chapter four which was the first 

widespread language to use modularization as a major structuring principle as well as 

the concept of ADTs. Typed interfaces specify the types and operations available in a 

module; type pointers and subrange of standard types of an interface can be made 

opaque to achieve data abstraction and also an interface can be specified separately 

from its implementation as illustrated by the stack example (Figure 4.9). Module 

interfaces in Modula-2 are similar to class declarations in Simula-67 except for two 

scope rules: 

(a) The scope of visibility of a module's identifiers can be extending by listing 

identifiers in the module's export list. Then identifiers will be visible in the 

surrounding scope. 

( b) An identifier visibles in the surrounding scope is also visible inside the local 

procedure. But it is not visible inside a local module unless the identifier is 

included in the module's import list. 

The above two scope rules can be summarized by the following example (all keywords 

in capital letters): 

VAR a,b:CARDINAL; 
MODULEm; 

IMPORT a; 
EXPORTw,x; 
VAR u,v,w:CARDINAL; 
MODULEn; 

IMPORT u; 
EXPORT x,y; 
VAR x,y,z:CARDINAL; 
(* u, x, y, z visible here *) 

ENDn; 
(* a, u, v, w, x, y visible here *) 

ENDm; 
(* a, b, w, x visible here *) 

If an identifier is to cross several scope boundaries, it has to be listed in all the 

IMPORT lists or the module must be EXPORTed as a whole. Extending visibility from 

an inner module to the outside is achieved by export, while extending from an outer 
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scope to the inside by import. The rules are completely symmetric. Unlike class 

instances in Simula-67, module instances are not first class values. A linking phase 

is necessary to interconnect module instances for execution; this phase is specified by 

the module interfaces but is external to the language. 

Finally, ML [63] was one of the newly developed interactive programming 

languages which has introduced the notion of parametric polymorphism (see section 

5.1.3.1) in languages so that variables are instantiated to different types in different 

contexts. Hence, it is possible to specify type information partially and to write 

programs based on partially specified types that can be used on all the instances of 

those types. However, ML omits type declarations; the most general (less specific) 

type that fit a given situation is then automatically inferred. Another interesting type 

mechanism in ML is that type specifications omitted by the user may be re-introduced 

by a technique called type inference which will be described shortly. For example, 

if the user enters 3+4, the system will respond 7:int and inferring that the operands 

and the value of the expression are of the type int. If the user enters the function 

declaration fun f X=X+ 1, the system responds f:int->int, defining a function value for 

f and inferring that it is of type int->int. ML supports type inference not only for 

traditional types but also for parametric (polymorphism) types, such as the 

following length function for linked lists. Supposing 

fun rec length x=if x=nil then 0 

else 1+1ength(tail(x)); 

is entered, ML will infer that length is a function from lists of arbitrary element 

type to integers (length: a list->int). If the user enters length[1 ;2;3] subsequently, 

ML infers that length is to be specialized to the type int list->int and then applies the 

specialized function to the list of integers. 
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5.1.1. Objectives of a type system 

Cardelli [64] has suggested a definition for type as follows: 

type of an object= a set of data + operations allowed on the set of data 

and he also stated that the major task of any type system is to prevent data 

inconsistency in two senses: it avoids embarassing questions about the 

representations of objects and it prevents inconsistent interactions between 

objects, which may result in an un-determined situation. However, one could 

always provide an additional third goal for a type system: to reserve the right 

amount of storage spaces for objects of the appropriate type. The easiest way to 

achieve the first two goals is to impose some suitable constraints on objects while 

the last one is totally machine dependent. Since different objects often have 

different properties, a unique representation is required for each kind of objects so 

that the expected operations can be performed more easily on the corresponding 

instances of these objects. In other words, a type can be thought as a set of covers 

that protect an underlying untyped representation from arbitrary or un-intended 

use and at the same time it contraints the way objects may interact with other 

objects. Violating a type system involves removing the protective covers and 

operating directly on the underlying representation of objects, i.e. objects could be 

manipulated in some un-intended ways with potentially disastrous results such as 

using of an integer as a pointer can cause arbitrary modifications to programs and 

data. 

In order to prevent type violations (usually due to the result of misusing 

objects of a given type), a static (formatted) type structure is often imposed on 

programs. One strategy is to associate types with items like constants, operators, 

variables and function symbols by means of redundant declarations as in Pascal and 

Ada. Whenever these items appear in the program, they must be defined so that the 

compiler can check the consistency of the item's definition and its use. Another 

strategy is that explicit declarations are avoided whenever possible, but a type 

inference system is employed which can infer the type of expressions from local 

contexts while still establishing consistency as in the language ML. The following 

sub-sections discuss the basic concepts of these different strategies. 
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5.1.2. Type checking in programming languages 

Generally, the process of checking the type of every expressions in a program 

is termed as type-checking. Type-checking can be done either at compile-time 

or at execution-time. As mentioned by Cardelli et al [64], languages in which the 

type of every expressions can be determined at compile-time is said to be 

statically typed (sometimes referred as static typing). Languages in which all 

expressions are type consistent are called strongly typed. Pascal possesses both 

these properties. Noted that every statically typed language is also strongly typed 

but the converse may not be true. 

Static typing allows type inconsistencies to be discovered at compile-time and 

guarantees that executed programs are type consistent. Static typing facilities early 

detection of type errors and allows greater execution time efficiency. It also 

enforces a programming discipline on the programmer which makes programs more 

structured and easy to read. Although static typing has greatly reduced the 

possibility of type violations, it may lead to a loss of flexibility and expressive 

power by prematurely constraining the behaviour of objects to a particular type. 

This is the reason that Pascal does not have generic procedures such as Ada's generic 

package. Type-checking has been greatly enhanced by the notion of polymorphism 

as illustrated below. 

5.1.2.1. Polymorphism 

Conventional typed languages like Pascal, are based on the idea called 

mono morphism. That is every value, variable and expression can be 

interpreted as a unique type. Monomorphic programming languages constrasted 

with polymorphic languages in which some values, variables or expressions may 

have more than one type. There are two commonly used terms associated with 

polymorphic languages: polymorphic functions and polymorphic types. 

The former are functions whose operands (formal parameters) can have more 
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than one type whilst the latter are types whose operations are applicable to 

operands of more than one type. Currently, several types of polymorphism exists 

as shown in Figure 5.1. 

po 1 ymorphi sm 

{ 
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uni versel 

inclusion 

{ 

overloe. ding 
ad-hoc 
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Figure 5.1 Kinds of polymorphism 

5.1.2.1.1. Universal Polymorphism 

The concept of achieving type uniformity in more than one way is called 

universal polymorphism. Universally polymorphic functions normally 

work on an infinite number of types (all types having a given common 

structure) and one can assert with confidence that some values have many 

types. In terms of implementation, a universal polymorphic function will 

execute the same code for arguments of any permissible type. Furthermore, 

universal polymorphism is sub-divided into two kinds: parametric and 

inclusion polymorphism. They are the two major ways that a value can have 

many types. 

Parametric polymorphism is so called because the uniformity of the type 

structure is achieved by the type of a parameter. When a function works 

uniformly on a range of types (usually exhibiting some common structures), 

then parametric polymorphism is said to be achieved and the function is 

referred to as a generic function. Generic functions have an implicit or 

explicit type parameter which determines the type of argument for each 
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application of them. But these functions are actually doing some kind of work 

independent of the argument type. This may sound a bit confusing. Consider the 

case when a stack is being implemented with the three usual operations: push, 

pop and empty. In Pascal, there is no way to construct procedures for these 

three operations such that they can be used for a stack of integers or a stack of 

reals, even though the kind of work involved is the same. Fortunately, this is 

not the case for all programming languages, for example, the Ada's generic 

facilities, described in chapter four, allow those stack operations to be written 

in such a way that the type of the object involved is not defined until the 

procedures are called. The only additional requirement is a type parameter in 

the heading of each procedure. However, the Ada's generic 

procedures/functions are special cases of parametric polymorphism because 

the actual parameter must be instantiated before they can be used. Thus, the 

actual type values have to be determinable at compile-time and then code is 

generated for each particular type. This constrasts with a true parametric 

polymorphic language like ML in which code is only generated once for every 

procedure. ML also allows procedures to be passed as parameters. Finally, 

parametric polymorphism can be classified as the purest form of 

polymorphism because the same object or function can be used uniformly in 

different type contexts without changes or any kind of run-time tests or special 

encodings of representations. However, this uniformity of behaviour requires 

all data to be represented and dealt with uniformly. 

The other kind of universal polymorphism is the inclusion polymorphism 

which is used to model subtypes and type inheritance in object-oriented 

programming languages. The concept of inheritance (see chapter four) is very 

important as it allows relations among types to be specified. Inheritance may 

also be viewed as a type composition mechanism which permits the properties 

of one or more types to be re-used in the definition of a new type. Hence, the 

specification "A inherits B" may be viewed as an abbreviation mechanism that 

avoids re-defining the attributes of type A in the definition of type B. 

Nevertheless, inheritance is more than a shorthand since it imposes structure 

upon a collection of related types. This can reduce the conceptual complexity of 

a system specification like the hierarchy structure of Smalltalk-80. 
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5.1.2.1.2. 

Moreover, in inclusion polymorphism, an object is viewed as belonging to 

many different classes that need not be disjoint, i.e. there may be inclusion of 

classes. To understand inclusion polymorphism better, the language 

Simula-67 is re-visited. Simula-67's classes are user-defined types 

organized in a simple inclusion (or inheritance) hierarchy in which every 

class has a unique immediate superclass except at the root. Instances of a class 

may be assigned as values of class-valued variables and may persist between 

executions of procedures they contain. Procedures and data declarations of a 

class constitute its interface and are accessible to users. Sub-classes inherit 

declared entities in the interface of superclasses and may define additional 

operations and data that specialize the behaviour of the sub-classes. Therefore, 

Simula-67's objects and procedures are polymorphic because an object of a 

sub-class can appear whenever an object of one of its superclasses is required. 

Although instances of a Simula-67 class are similar to data abstractions 

in having a declarative interface and a state that persists between invokations 

of procedures, they lack the information-hiding power of data abstractions. 

This leads to subsequent object-oriented programming languages like 

Smalltalk-80 which combine the class concept derived from Simula-67 with a 

stronger notion of information-hiding. 

Ad-hoc polymorphism 

In constrast to universal polymorphism, ad-hoc polymorphism is 

obtained when a function works, or appears to work, on a finite set of types 

(which may not exhibit a common structure) and may behave in (potentially) 

un-related ways for each type. Also, an ad-hoc polymorphic function may 

execute different codes for each type of argument. Same as universal 

polymorphism, two kinds of ad-hoc polymorphism exist called overloading 

and coercion (see Figure 5.1 ). 
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In overloading, the same variable name can be used to denote different 

functions. However, the choice of which function is denoted by a particular 

instance of the name is decided by its context, i.e. overloading is just a 

convenient syntactic abbreviation. On the other hand, coercion is a semantic 

operation that is needed to convert an argument to the type expected by a 

function. Coercions can be provided statically by automatically inserting them 

between arguments and functions at compile-time or dynamically by run-time 

testings on the arguments. The distinction between overloading and coercion is 

sometimes very confusion as illustrated below: 

2+3 

2.0+3 

2+3.0 

2.0+3.0 

The ad-hoc polymorphism of the operator + can be interpreted in one of the 

following ways: 

{a) The operator + has four overloaded meanings, one for each of the four 

combinations of argument types. 

{b) The operator + has two overloaded meanings for integer and real addition 

respectively. Except that if one of the arguments is of type integer and the 

other is of type real, then the integer argument is coerced to the type real. 

{c) The operator + is defined only for real additions and integer arguments are 

always coerced to the type real. 

In this example, one may consider the same expression to exhibit overloading or 

coercion or both, depending on the implementation. 

The definitions of polymorphism described so far is applicable only to 

languages that have a clear notion of both type and value. However, 

monomorphic languages such as Pascal and Ada have ways of relaxing strict 
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monomorphism in the sense that polymorphism is an exception rather than a 

rule. Real and apparent exceptions to the monomorphic typing rule in 

conventional languages include: 

(a) overloading: Integer constants may have both the types integer and real. 

Operator + can apply to arguments of both types. 

(b) Coercion: For example, in Pascal, an integer value may be used where a 

real is expected but not the reverse case. 

(c) subtyping: Elements of a subrange type also belong to the super-range 

types. 

(d) value sharing: For instance, the value NIL in Pascal is a constant that is 

shared by all pointer types. 

The first two cases are typical examples of ad-hoc polymorphism. 

Subtyping is an instance of inclusion polymorphism. Every object of a subrange 

can be used in a supertyped context so the subtype objects can be operated on all 

the operations of the supertypes. Cardelli et al have pointed out further that 

value sharing is a special kind of parametric polymorphism because one could 

think of the symbol NIL as being heavily overloaded but it is open-ended since 

NIL is a valid element of an infinite collection of types which have not been 

declared yet. Moreover, all the uses of NIL denote the same value which is not a 

common case for overloading. One could also think that there is a different NIL 

for every types but all the NILs have the same representation and can be 

identified, which is a characteristic of parametric polymorphism. 
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5.1.3. Type inference algorithms 

In conventional typed languages, the compiler assigns a type to every 

expression. However, in some of these languages, the programmer does not have to 

specify the type of every expression; type information need only be placed at some 

critical points in a program and the rest is deduced from the context by the 

compiler. This deduction process is called type inference. Typically, type 

information is required for local variables, constants, function arguments and 

function results, then the type of all expressions and statements can be inferred. 

Type inference is usually done in a bottom-up fashion. Given the types of each 

variables and/or constants, and the type rules for the ways of combining 

expressions into bigger expressions provided by the language, it is possible to 

deduce the type of a particular expression. The language ML introduced a very 

sophisticated way of performing type inference. Consider the mathematical 

function f(x)=X+ 1, the ML type inference algorithm will work bottom-up as 

follows: 

In X+ 1 above, x would initially have the type a where a is a new type variable 

(introduced by the system), then the int operator will force a to be equivalent to 

int. This instantiation of type variables is done by Robinson's unification 

algorithm [65], which also takes care of propagating information across all the 

instances of the same variable, so that incompatible usages of the same variable can 

be detected. Also, this type inference algorithm is not limited only to polymorphic 

languages . It could be added to any monomorphic typed language with the 

restriction that at the end of type checking, all the type variables should disappear. 

However, expressions like fun X=X would be ambigious, therefore it is better to 

write fun (x:int)=x to disambiguate them. Nevertheless, the ML type inference 

algorithm is the best known one recently. 

Finally, it is worth noting that type inference will be reduced to type-checking 

when there is so much type information in a program that the type inference task 

becomes trivial. More precisely, type-checking is the case when all the type 
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expressions involved in checking a program have explicitly contained in the 

program text. In other words, there is no need to generate new type expressions 

during compilation and all have to do is matching existing type expressions. 

5.2. Persistent data in programming languages 

5.2.1. Background 

Databases and programming languages have developed nearly independently over 

the past few decades. Since almost every program needs to access some form of 

permanent data, therefore enormous efforts have been spent on developing particular 

database for specific applications or in using an interface between a database and a 

programming language. However, difficulties are frequently found due to the lack of 

enough programming tools for creating databases, or an interface does not exist and it 

would be practically impossible to re-structure the data to conform to the 

programming environment. Therefore, the idea of developing an integrated 

programming environment of databases has stimulated research works on combining 

databases and programming languages. This leads to the recognition of the need to 

provide an integrated system for programming and data management. Two 

approaches [66] are usually used to produce such a system: either by writing a 

completely new programming language or by enhancing an existing language with 

some form of database management. In either case, the usual strategy is to combine 

an existing language with an existing data model. These integrated languages are 

called database programming languages (or DBPLs for short). Particularly, 

DBPLs focus on the problems of providing a uniform typed system usually by the 

technique of polymorphism, and on mechanisms for data to persist. The former has 

just been discussed so the rest of this chapter will concentrate on the data 

persistence issue. 
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5.2.2. Motivations for data persistence 

The persistence of a data object is the length of time that the object exists. In 

traditional programming languages, every object has a well-defined lifetime. A 

variable declared in a block or procedure will persist (exist) during the activation 

of that segment of code and thereafter it will be inaccessible. This mechanism is 

called the scope rule. Some langauges allow explicit control of persistence 

through the use of storage allocation procedures like the C's library functions free 

and malloc. These functions can apply to the full range of types. Without explicit 

de-allocation, the objects persist until the program terminates. In other words, 

data cannot last longer than the activation of a program without the explicit use of 

some storage agency such as a file system or a database management system (DBMS). 

However, for some applications, data are needed to last longer than the duration 

of one program execution, eg. the personal record of a British citizen. 

Unfortunately, in most of the traditional langauges, the only objects with long-term 

persistence are files; in Pascal, files may also be parameterized by other types, eg. 

file of integer, file of real etc, except pointer types. But such file systems have the 

following disadvantages: 

( a ) It does not allow random access of data since searching is always started from the 

beginning of a file, i.e. all the previous data must be examined before getting to 

the target. 

(b) No structure which means no security is imposed on the stored data and 

therefore it is up to the users to interpret the data. 

These kinds of persistence problems lead to the development of the so called 

persistent programming languages. 
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5.2.3. Principles of persistence 

Three principles are suggested by Cardelli et al [64]: 

(a) Persistence should be a property of arbitrary values and not limited to certain 

types. 

(b) All values should have equal rights to persistence. 

(c) While a value persist, so should its description. 

The first two principles state that a value's persistence should be regarded as a 

property of data orthogonal to its type. A corollary is that the code used to 

manipulate a value should not depend on its persistence. The third principle 

emphasizes the fact that it should not be possible to write out a value as one type and 

then subsequently read it in as another type. This final principle is often regarded as 

a property of program environments rather than a property of programming 

languages. 

Nevertheless, one counter-argument to providing persistence exists - it is 

difficult to find good engineering techniques to support an arbitrary persistent 

structure. Certainly, the mechanisms for some types, such as those constructed as 

relations (relational databases), are better understood because of the substantial 

research efforts spent on them. To compete with these existing technologies, the 

general purpose methods will need to be as efficient in placing data and avoiding the 

transfer of irrelevant data. This, in turn, will require adequate mathematical 

models of data and program behaviour, and interpretation of these models to control 

the data collection and to select representations, access methods and so forth. 

Additional problems may arise over implementing concurrency, transactions and 

failure recovery. A sensible refutation of these counter-arguments will be the 

advent of some practical persistence systems which have performed functions for the 

arbitrary collection of data they run. 
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The following sections describe one of the data persistent languages called 

PS-algol with particular interest to its ability to provide data abstraction, data 

protection, modularity, separate compilation, binding and data persistence. The 

main reasons of choosing PS-algol rather than the other persistent programming 

languages are: 

Practically : PS-algol is developed and most widespread in U.K. Therefore, it 

is easier to install; easier to obtain documentation; easier to make 

inquiries via public communication medium such as telephone, 

national mail systems etc. 

Technically : PS-algol adopts a uniform approach to persistence-any 

value may persist independent of types including procedures. It also 

provides mechanisms for dynamic binding and type-checking . In 

each stage of the design, PS-algol designers have tried to permit 

eager type-checking so that the majority of code is statically 

type checked. 

Since PS-algol is such a powerful and convenient tool, it is employed in 

conjunction with the language C as the basis to implement a distributed system as 

described in the next chapter. 

5.2.4. The persistent programming language PS-algol 

The language PS-algol [67] is a derivative of S-algol [68]. It is an 

experimental language designed to show that it is possible to provide persistence 

regardless of type [69] by means of a persistent database system and also to 

illustrate that graphically based human computer interaction can be supported by 

language features (such as bitmap images and line drawings). However, the latter 

property will not be discussed in this thesis. 

PS-algol uses the notion of first class procedures (FCP), to provide all the 

features mentioned in section 5.2.3 (data abstraction, data protection, modularity 

etc), as described in the following sub-sections. 
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5.2.4.1. First class procedures 

Most conventional programming languages provide facilities like functions 

and procedures as the only mechanisms for abstraction over expressions and 

statements, so that a user of a procedure/function (these two terms will be used 

interchangeably unless they have to be differentiated) only needs to know its 

effect, but not the details of how the procedure is executed or implemented. 

As Morris [70] and Zilles [71] have pointed out, to exploit the use of 

procedural abstraction mechanisms to their full potential, it is necessary to 

promote procedures to be full first class data objects (referred as first 

class procedures). That is, procedures should be allowed the same rights as 

any other data objects in the language such as being persist, being assignable by 

the results of expressions, by the results of other procedures or by the elements 

of structures etc, not just being declared and being passed or executed as in Pascal 

and Algol-60. However, the most important concept in understanding first class 

procedures is that of closure [72). The closure of a procedure includes all the 

information required to execute the procedure correctly. A closure has two parts: 

the code to execute the procedure and its environment which contains the local 

variables of the procedure. To understand more about FCP, consider the following 

PS-algol program: 

let sum=proc(*int A->int) 
begin 

let totai:=O 
for i=lwb(A) to upb(A) do 

total :=totai+A(i) 
total I return value of the procedure 

end 

write "How big is the vector" 
let n:=readi() 
let this.vector=vector 1 ::n of 0 
write "Please enter",n," elements" 
for i=1 to n do this.vector(i):=readi() 
let result:=sum(this.vector) 
write sum(this.vector) 

Figure 5.2 An example of PS-algol's 
first class procedure 
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The program in Figure 5.2 reads in the size of a vector, followed by the value 

of each of its elements and finally prints out the sum of the vector's elements. 

Several points are worth noting: 

(a) The dot in identifier such as this.vector is just part of the identifier, not an 

operator. 

( b) All identifiers are introduced by the let declarations. This let is followed by 

:= or = which signifying a variable or a constant, and then an expression. 

The type of the identifier is deduced from an initializing expression which 

must be present. 

(c) Declarations and statements can be freely mixed in a program. 

(d) The * symbol in the very first let declaration represents a one-dimensional 

vector in PS-algol. 

(e) Two characteristics of FCP can be found in Figure 5.2. First of all, procedures 

can be assigned as in let sum=proc(*int->int). Secondly, procedures can 

be passed as parameters, eg. procedure sum has been passed to the pre-defined 

library routine write. 

( f) A value can be returned from a procedure via an identifier name or an 

expression by placing it in a single line such as the variable total inside 

the proced.ure sum. 
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5.2.4.2. Using FCP to implement ADTs 

The notion of ADTs has been discussed in the previous chapter. As a 

recapitulation, ADTs provide programmers an abstraction mechanism and a 

protection mechanism. An ADT defines the operations available on the data object 

while only allowing the definition of the type to manipulate or access the 

representation. 

In order to explain the data abstraction mechanism in PS-algol, a program is 

given in Figure 5.3. The task it sets out to solve is to define an abstract object for 

a complex number and to allow only the opeations of creation, addition and 

printing on the complex number. 

In PS-algol, a structure class is a tuple of named fields with any number of 

any type. The structure statement adds to the current environment a binding in 

the closest enclosing scope for the class name (structure complex in Figure 5.3) 

and a binding for each field name (ipart and rpart in Figure 5.3). When an 

instance of a structure class is created (eg. using complex(i,r)), it yields an 

object of that class which may be assigned to an object of type pointer (pntr). 

However, the value of the pointer is not determined until run-time. Hence, the 

combination of the two classes structure and pointer give PS-algol certain degree 

of polymorphism because the pointer declaration in a procedure is just a place 

holder which can be replaced by any structure class. 

Moreover, the fields of a structure are accessed using a pointer expression 

followed by the structure's field name in parenthesis, such as c(rpart) and 

c(ipart) in Figrue 5.3, provided the required structure class, complex in this 

case, is in scope. In PS-algol, the scope of an identifier starts immediately after 

the declaration and continues up to the end of a block. A block is either a 

procedure or statements within a begin .. end construct or statements within { .. }. 

However, if the same identifier name appears in two different blocks, then while 

the inner one is in scope, the outer one is not. 
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structure complex.pack(proc(rea I ,rea 1->pntr) new .co.mplex; 
p roc (pntr ,pntr->pntr)add.complex; 
pro c (p ntr) print.com pi ex) 

let complex.package=proc(->pntr) 
begin 

structure complex(real rpart,ipart) 

let n=proc(real i,r->pntr); complex(i,r) 

let a=proc(pntr c1 ,c2->pntr) 
begin 

complex(c1 (rpart)+c2(rpart); c1 (ipart)+c2(ipart)) 
end 

let p:proc(pntr c) 
begin 

write c(rpart) 
if c(ipart)<O then 

write "-" 
else write "+" 
write "i" 

end 

complex.pack(n,a,p) 

end 

I Main program body 

let cpack=complex.package() 
let new=cpack(new .complex) 
let add=cpack(add.complex) 
let print=cpack(print.complex) 
let c1 =new(3,4) 
let c2=new(2, 7) 
print(add(c1 ,c2)) 

Figure 5.3 Complex number package in PS-algol 

Since the representation of a complex number (structure complex) is 

encapsulated in a block, it will be inaccessible to other parts of the program. 

Also, since the field names of the representation of the complex number are only 

local to a particular block, therefore only those procedures defined in that block 

can use these names. Thus, the representation of the data object is completely 

separated from its use which is one of the aims of an ADT. Indeed, the block could 
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be written in other co-ordinate systems, say the polar co-ordinates, without 

changing the external meaning of the abstract object complex. However, there is 

still a big drawback that is the lack of information-hiding mechanism. Because 

the details of the representation is visible to users, one can then change the 

structure complex or modifies its three procedures. The way PS-algol deals with 

such problem is to treat procedures as first class procedures and allows them to 

persist, so that the implementation details of an ADT can be compiled separately 

and stored in a PS-algol database with an associated entry name. If one wants to 

use the ADT, an application progam is needed to load the definition of the ADT from 

the database. The full details of this technique will be presented in the separate 

compilation section later. 

5.2.4.3. Data protection 

Morris [70] has specified three ways in which a data object may be used in a 

manner not intended: 

(a) Alteration: An object that involves references may be changed without use of 

the primitive functions provided for the purpose. 

(b) Discovery: The purpose of an object might be explored without using the 

primitive functions. 

(c) Impersonation: An object, not intended to represent anything in particular, 

may be presented to a primitive function expecting an object representing 

something quite specific. 

Since the names of the fields in a PS-algol structure class are only known to 

the primitive procedures by the scope rules, the objects can never be accessed 

except by those primitive functions, therefore the first two problems are 

eliminated. But, impersonation is really a serious problem in PS-algol because a 

pointer may point to a structure of any class and this will not be checked until a 
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program is being executed which may cause a serious failure. For instance, in 

procedure a of the complex number example shown in Figure 5.3, the two 

parameters c1 and c2 are expected to be of structure class complex but it would 

not be identified at compile-time. In order to make sure that c1 and c2 are 

bounded to the correct type before allowing any operations on them, the relational 

operator isnt is applied, as shown in Figure 5.4, to define the appropriate actions 

to deal with impersonations, but it is totally relying on the designers. 

let complex.package=proc( ->pntr) 
begin 

end 

structure complex(real ipart,rpart) 

let error=proc(pntr item->bool) 
begin 

if item isnt complex then 
begin 

write "Error" 
true 

end 
else false 

end 

let a=proc(pntr c1,c2->pntr) 
begin 

end 

if error(c1) or error(c2) then nil 
else 

complex(c1 (rpart)+c2(rpart), c1 (ipart)+c2(ipart)) 

Procedures n and p as in Figure 5.3 

Figure 5.4 Impersonation problem in PS-algol 
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5.2.4.4. FCP as Modules 

The concept of modules has been introduced in many programming 

languages such as Ada, CLU, Modula-2 etc. Atkinson and Morrison [69] have 

pointed out that modules aim to serve the following functions: 

(a) To provide a mechanism for the module's own data, that is, data bound with 

the module over the scope of lifetime of the module, rather than only for 

individual applications of the module. 

(b) To be the unit of program building, being used in system construction as a 

unit of specification and as unit of a compilation, testing and assembly. 

(c) As a localization or hiding of certain design decisions. 

In conjunction with persistence as an orthogonal property, FCP performs 

all the above roles. The first function can depend on either on partial 

application or can be obtained in conjunction with program building facilities, 

that is, programs may use procedures which other programs have left in a 

database; the second function will be discussed in the next sub-section; and the 

last function has been already demonstrated in Figure 5.3. 

To explain how FCP achieves the first function of a module using the 

technique of partial application, consider the procedure make.list.pack in Figure 

5.5 which maintains a list of things to do for different people in different 

contexts. 
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structure list.pack(proc(string)add; proc()clear; proc(}print) 

let make.list.pack=proc(string person,context->pntr) 
begin 

structure cell(string item; pntr next) 

let list.start:=n i I 

list.pack( 

proc(string s); list.start:=cell(s,list.start) ! procedure add 

pro c (); list.start:=nil I procedure clear 

proc() ! procedure print 
begin 

write "'n list of tasks for",person,"doing",context 
let l:=list.start 
while 1-=nil do 
begin 

write "'n",l(item) 
l:=l(next) 

end 
write "'n" 

end 

) 
end 

Figure 5.5 Procedure to implement a list package 

Suppose a person has tasks in a number of contexts, procedure 

make.list.pack can be applied partially to yield procedures for each person as 

defined in Figure 5.6 and then those returned procedures can be used as shown in 

Figure 5.7 to obtain the list of tasks concerning the particular person. From this 

example, one can realize that make.list.pack originally requires two parameters 

supplied at the same time but now these two parameters are separated. 

Furthermore, each procedures yielded by the calling functions have data associated 

with them (the lists, the tasks and the persons), so the first requirement for 

modules has been met by FCP. 
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let make.list.for=proc(string person->proc(string-> pntr) 

begin 

proc(string context->pntr) 

begin 

make.list.pack(person ,context) 

end 

end 

Figure 5.6 Partial application of make.list.pack 

let Rons.list.maker=make.list.for(" Ron") 

let Malcolms.list.maker=make.list.for("Malcolm") 

let MPA.paper=Malcolms.list.maker("First Class Finish Paper") 

let MPA.shopping=Malcolms.list.maker("shopping") 

Figure 5. 7 Using the partial applied procedure 

5.2.4.5. FCP in relation to persistency, separate compilation 

and binding 

This section demonstrates how FCP can be used as the unit of system 

construction and the unit of definition. Suppose a system is to be built out of a 

telephone and address list for employees of a company. In order to separately 

compile the list maintainer, one could write a PS-algol program such as that 

shown in Figure 5.8 : 
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structure person(string name,phone.nb; pntr addr,other) 
structure address(string nb,street,town; pntr next.addr) 

let pw="ok" 
let db:=open .database("list" ,pw, "write") 
if db is error.record do 
begin 

db :=create .database(" list" ,pw) 
if db is error.record do 
begin 

write "The database cannot be created because",db(error.explain),"'n" 
abort 

end 
end 

write "Name ?"; 
write "Phone number?"; 
write "House number?"; 
write "Street ?"; 
write "Town ?" . . ' 

I Construct the address record 

let this.name=read.a.line() 
let this.phone=read.a.line() 
let this.house=read.a.line() 
let this.street=read.a.line() 
let this.town=read.a.line() 

let this.addr=address(this.house, th is.street, this. town ,nil) 

I Construct an employee record 
let this.person=person(this.name,this.phone,this.addr,nil) 

! Look for an entry called employee.info in the database 
let addr .list:=s.lookup("employee.info" ,db) 

! If it is not the first ever entry then create a new table for it 
if addr.list=nil do 
begin 

addr .list:=table() 
s.enter("employee.info" ,db,addr.list) 

end 

I store the list into the database 
s.enter(th is.name,addr .list, this .person) 
let committed=commit() 
if committed=nil then write "Data recordeed'n" 
else write "Data not recorded because ",committed(error.explain),"'n" 

Figure 5.8 A program to add one employee 

to a company's address list 

184 



Before proceeding any further, the persistent mechanism of PS-algol is 

reviewed at this point. 

5.2.4.5.1. Persistent data in PS-algol 

The persistence of data is the length of time that the data exists. In 

PS-algol, any data item (including procedures) has the rights for the full 

range of persistence (i.e. from temporary results in evaluating expressions to 

data which may outlive the program). Therefore, PS-algol provides 

mechanisms for the programmer to identify which data is to persist and in 

which database it should persist, and also provides mechanisms for the storage 

and retrieval of persistent data. All these mechanisms are available via a set of 

standard procedures in a PS-algol library as described shortly. The 

procedures are divided into two groups: the group concerned with identifying 

the relationship between data and the database and the implementation of 

transactions; the group concerned with providing new data structures. 

Database procedures : All data which persists longer than the execution of a 

program is held in a database. In order to inform the database system that a 

new database is required, the database must be created first using the standard 

procedure create.database which is defined as: 

let create.database=proc(string dbname,pw->pntr) 

then the newly created database can be opened using procedure open.database 

defined as: 

let open.database=proc(string dbname,pw,mode->pntr) 

and finally the database can be used. In the definitions of these two procedures, 

dbname is the name of the requested database, pw is a password to prevent 

un-authorized user and mode is either read or write. Note also that these two 
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procedures both return a pointer to a table (see below). Whatever operations 

are performed on the database, no changes are recorded unless the program has 

executed a call of commit: 

let commit=proc( ->pntr) 

This procedure commits the changes made so far to the database opened by the 

program. Either all or none of the changes will be recorded (atomic 

transaction), so the programmer can ensure that all the databases are 

consistent. It is only after a commit that the changes made can be observed by 

other programs. Note that only the changes prior to the last commit of a 

program, if any, are recorded in the database. In the case of an error, an 

instance of the class error.record will be returned which is defined as: 

structure · error.record(stri ng error .context,error .fault,error .explain) 

where error.context is the name of the procedure called by the user in which 

the error was detected, error.fault is a short constant string defining the 

error suitable for testing and error.explain is a readable explanation of the 

fault that a simple program can print. However, if no error occurs, the result 

of a commit is the nil pointer. Finally, there is a special routine called abort 

which may be used to abort a PS-algol program whenever something is wrong 

during the transaction of a database. 

Tables : Tables are a system supported data structure in PS-algol. They are 

commonly used and needed for building databases, but may also be used for 

temporary structures. A table stores an updatable mapping from keys to 

values. The keys may be integers or strings and the values are pointers to 

instances of any structures. These mappings are usually implemented by 

binary-trees or some adaptive hashing techniques such as hashed trees. The 

standard procedure table: 

let table=proc(->pntr) 

186 



creates a new empty table and returns a pointer as a token for it, which is an 

instance of the structure class Table. The keys to values mapping can be done 

via one of the following ways: 

(a) Two procedures are used to modify the entries in the table given as the 

parameter table below: 

let s.enter=proc(string key; pntr table,value) 

let i.enter=proc(int key; pntr table,value) 

A table may contain entries whose keys are integers or entries whose keys 

are strings, a key of one type never matches a key of the other. However, 

when new association is recorded in the table between the key and the 

value, this supersedes any previous association for that key that was held 

in the table. If the value is nil, the effect is to remove any existing entry 

for the given key from the table. 

( b ) Two procedures are used to return value associated with a given key from 

the given table. If there is no entry for that key, the result is nil. 

let s.lookup=proc(string key; pntr table->pntr) 

let i.lookup=proc(int key; pntr table->pntr) 

(c) The two routines: 

let s.scan=proc(pntr table; proc(string,pntr->bool)user->int) 

let i.scan=proc(pntr table; proc(int,pntr->bool)user->int) 

apply the function user, provided by the programmer, to the entries in 

the stored table given as the first parameter. The given function is applied 

to every elements with a string key by s.scan and to every elements with 

an integer key by i.scan. The function will be repeatedly called with the 

key as its first parameter and the associated value as second parameter. 

However,the function is called with keys in ascending numerical order by 

187 



i.scan and with keys in ascending lexical order of ASCII strings by s.scan. 

Repetition continues until either all the entries for the specified type of 

key have been parameters to function user or until it returns false. 

Each scan functions returns the number of times user were called. 

5.2.4.5.2. Separately compiled code 

Having understood the persistent mechanism in PS-algol, consider the 

following example which uses the address list created by the program in Figure 

5.8 to look up the phone number of a particular employee as in Figure 5.9 : 

I open the appropriate database 
let pw="ok" 
let db=open.database("list" ,pw, "read") 
if db is error.record do 
begin 

write "Cannot open database because ",db(error.explain),"'n" 
abort 

end 

I locate the entry position of the required data in the database 
structure person(string name,phone.no; pntr addr,other) 
let addr.list=s.lookup("employee.info",db) 
if addr.list=nil do 
begin 

write "No address list yet'n" 
abort 

end 

I Find the phone number of a particular employee 
write "Name ?"; let this.name=read.a.line() 
let th is.person=s.lookup(th is. name,addr .list) 
if this.person=nil then write this.person,"not known'n" 
else write "Phone number of ",this.name,"is",this.person(phone.no) 

Figure 5.9 An example of using separately 
compiled code in PS-algol 
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Careful examination of Figure 5.9 shows a number of interesting features. 

First of all, previously stored information is obtained from a database (called 

list in this example). Secondly, a structure class {person) is present which 

indicates the internal structure of the information stored in the database. The 

existence of this structure class is vital because it regulates the way how those 

information can be accessed later in the program. However, the field names of 

this structure definition are not as important as their types . 

The above example has illustrated the basic idea of a technique called 

procedure library in PS-algol. Since PS-algol allows procedures to 

persist, so instead of storing ordinary data objects, a table of procedure names 

associated with structures containing the procedures are stored in a database 

(as a library) to allow users to construct a program out of these separated 

compiled routines. Consequently, the effect of modularity can be achieved by 

storing procedure in this way for two reasons: 

(a) The module is used without its implementation being seen by the 

programmer. 

( b) Modules can be synthesized using other modules, allowing construction of 

large programs, while the individual program text that has to be read to 

understand the program at a given level is kept small. 

This gives the basis for constructing a variety of software construction 

tools within PS-algol. 

5.2.4.5.3. Binding 

Binding is a method which maps variables used in a program to the 

corresponding physical values in the computer memory (may be primary or 

secondary). PS-algol uses both dynamic and static binding techniques. 

Variables within program text are statically bound, but values of pointer 
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variables are dynamically bound to instances of structure classes that is the 

reason why pointer variables are determined at run-time. 

The dynamic binding feature does not prevent programs being strongly 

typed, but it implies that some type-checking is dynamic (occurring near in 

time to the final evaluation) rather than static (occurring at initial program 

analysis). So partially analyzed programs may be left for further analysis and 

evaluation when data and resources become available. The consequences may be 

that checks can be factored out of the internal operations. This dynamic 

evaluation has inevitable costs. The program, that depends on it, may contain 

errors which could have been detected at compile-time and hence reported 

more opportunately. Also, the program which uses it, may execute more 

slowly because of run-time checks. But many programs even in a statically 

checked language, may need equivalent run-time checks, for example, to check 

the tag field of a Pascal case statement matches the field being used in a record. 

However, denying dynamic binding, the class of programs that can be written is 

reduced; for instance, without dynamic binding, it would not be possible to 

write the associative structure in PS-algol that maps to members of a mixture 

of structure classes including those yet to be declared when the map is created. 

This lost opportunity can lead to other costs : either these general purpose 

components cannot be written within the language so that some other languages 

have to be used, or the programmer simulates types and languages within the 

original language. The former incurs the cost of linking between languages, 

loss portability and increased programming difficulty. The latter incurs the 

cost of an extra layer of interpretation, mapping and obscure convention to trap 

people who subsequently modify the program. So the choice of static or 

dynamic checking is a matter of choosing the appropriate tradeoffs between 

security and flexibility. 

However, even if dynamic checking is adopted, the language should enable 

programmer to choose the points at which dynamic binding is required since to 

bind all names dynamically would be very un-economical. Therefore, one 

would typically expect small units to be statically bound and to form larger 

units dynamically bound together. In PS-algol, the choice is offered via the 
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constancy mechanism. That is, if an identifier is bound constantly (using 

the symbol =), the system may assume that it will not change. But if it is an 

variable (using the sequence :=), its value may be replaced. In either case, 

since many instances of a class may exist, an instance which implements an 

ADT in a way believed to be appropriate to that particular usage can be bound. 

Subsequently, if another implementation appears to be more suitable, the new 

value can then be assigned. Finally, the binding mechanism of PS-algol, in 

which the type of a referend is checked when it is first brought from the 

database, has provided incremental type checked linking and loading. 

5.2.4.6. Comparison of the PS-algol and INGRES database 

systems 

The PS-algol database system has been used mainly for academic research 

studies. This section presents a summary of the major difference between the 

PS-algol database system and one of the most sophisticated commercial database 

system called INGRES [73). INGRES is a distributed relational database 

management system which can be used on a wide range of microcomputers, 

minicomputers and mainframes to define, manipulate and protect user data and to 

develop new applications for users. The INGRES database system is superior to the 

PS-algol one with respect to the following aspects: 

(a) Since lNG RES is a distributed database management system, a remote 

database may include data residing in INGRES databases on several other 

computers. This distributed database capability is achieved via 

lNG RES/STAR. 

(b) lNG RES can retrieve data stored in a database interactively using a 

structured format known as form which is the electronic equivalent of a 

paper form; it is used for data input and data display. With forms, INGRES 

allows queries to be made on data stored in the different entries (tables) of 

a database. 

1 91 



(c) A pu 11-down menu is supported which allows users to work with the 

various pre-defined INGRES tools (modules) to manipulate information in a 

database. 

(d) lNG RES provides a help facility with information about the usages of each 

INGRES tools so that users can understand what is happening at every 

stages. 

(e) INGRES supports two query languages, Structured-Query-Language 

(SQL) and QUEry Language (QUEL), to enhance data transactions. 

(f) A language called lNG RES 4GL which provides a tool for 

establishing new applications using INGRES forms, eg. create a new module 

for accessing data on a particular database. 

(g) A tool called Visual-Query-Language (VQL) which lets user reformat 

data from INGRES database tables into other Personal Computer 

productivity software such as LOTUS 1-2-3. 

( h) Another distinctiv~ feature of INGRES is its ability to set levels and types of 

locking on a database using SOL's setlockmode command. There are two 

levels and two types of locking. They are defaults, sessions, shared and 

exclusive locks respectively. Unfortunately, locking introduces deadlocks 

even though they enable better concurrency control. However, once a 

deadlock is detected by lNG RES, one of the transactions will be chosen as the 

victim to be aborted and then an error message will be sent to it. 

Thus, the user has to be awared of this situation in order to take the 

appropriate remedial actions. 

Although INGRES is so powerful, it does not support un-structured data access 

(i.e. the row-of-byte strategy) since data can only be stored in terms of forms 

(structured items) which makes it un-suitable for the purpose of this thesis. 
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5.2.4.7. Criticisms of PS-algol 

Having experienced with some PS-algol programs with the aid of the two 

manuals [74] and [75], the following deficiencies are found in the current 

implementation of PS-algol: 

(a) PS-algol is a one-language (standalone) system i.e. software written in 

other languages cannot be used. This is very inconvenient in the sense that 

the users have to write all their own routines apart from the standard ones. 

(b) There is no clear distinction between reserved words and identifiers. 

For instance, all the reserved words must be in lower case letters but 

identifier can be in any combination of upper and lower case letters. 

There is a cruel way to solve this problem by under-lining all the 

reserved words using the directive %ul after %list but there are some 

additional characters eg. hypen, quotes appearing in the output listing of the 

compiled program which may confuse users. 

(c) Slightly complicated 1/0 processes from the programmer point of view. For 

example, once a read statement is executed, i.e. the program is in read mode, 

all the subsequent write operations will be suspended until a RETURN key is 

pressed. Therefore, programmer must have a good plan in constructing the 

output format. 

(d) All the various read operations are implemented in terms of function calls 

rather than procedure calls which results in a lot of PS-algol assignment 

statements. 

(e) If a string is required as input, it must be enclosed in double quotes, e.g. 

"hello". The quotes can be omitted if the function read.a.line is used instead 

of the function reads with the expense of losing certain degree of data 

integrity because all the printable characters can be accepted as the input in 

this case. 

193 



(f) There is no type called char as in Pascal and therefore the type string has 

to be used all the times. 

(g) Since all the structures are referred as type pntr, there is a possibility for 

type mis-understanding and impersonation problem as discussed in section 

5.2.4.3. 

(h) Nested procedure constructs are not allowed. 

(i) One procedure can call another procedure if and only if the latter has already 

been defined. 

( j ) Each statement of a PS-algol program usually occupies only one line of text. 

However, in some circumstances, it is necessary to construct a single 

statement with two or more lines of text such that the program is more 

structured and hence people can understand it easier. Consider the following 

cases: 

( 1 ) If a, b, c, d, e and f are very long boolean expressions, it will be more 

understandable and natural to construct the statement 

if (a and band c and 

d and e and f) then do something 

than the nested if statements 

if (a and b and c) then 

if (d and e and f) then do something 

In this example, the logical operator and, which must be situated at 

the end of a line, is served as a line separator. In fact, all PS-algol 

operators (eg. or, not, +, -, *, /, etc) can be used for the same 

purpose. 
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( 2 ) Another commonly used line separator is the symbol comma as in the 

following write statement: 

write "The total number of input characters are", 

10000000000000000000001 

( k) Some comments about the PS-algol database system are: 

( 1 ) Although the present PS-algol system does not seem to have a limit on 

the total number of databases available to a user, all the information 

about the databases can be only retrieved via application programs. For 

example, in order to obtain a directory of the existing databases, a 

program contains only the function list.database.dir is required. 

Hopefully, there should be a better interface between the PS-algol and 

the operating system in the future. 

( 2) No database can be used unless it has been created explicitly. Therefore, 

it is invalid to open a non-existing database. Unlike in Pascal, if a file 

does not exist, it will be created automatically before opening it. 

( 3 ) In the present PS-algol system, databases can only be removed by the 

routine remove.database. Unfortunately, the removed database still 

occupies an entry on the database directory (as proved by the result of 

calling list.database.dir) which means the database is just removed 

logically but not physically. This is due to the absence of a PS-algol 

garbage collector which is claimed to be available very soon. 

( I ) PS-algol communicates with Unix via files to receive data and send results. 

The function create produces a new object of type file called a file 

descriptor. 

let create=proc(cstring name; cint flag->file) 
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The parameter flag indicates the access mode of the file descriptor. For 

instance, to create a file for write only, the decimal number 128 is used; for 

read and write by the owner only, the decimal number 384 is used. From 

these examples, it can be realized that the effect of flag is to set the 

respective status bits of the newly created file. 

5.3. Conclusions 

Traditionally, the interface between a programming language and a database has 

either been through a set of relatively low-level subroutine calls, or it has required 

some form of embedding of one language in another. Recently, the necessity of 

integrating database and programming language techniques has received much attention. 

As a result, a new range of programming languages, namely the database programming 

languages (DBPLs), were evolved. Two major design issues of a DBPL are the provision 

of a uniform typed system and mechanisms for data to persist. This chapter has 

presented a detailed discussion on these two issues. 

A uniform typed system is often accomplished by using some kind of type 

checking or type inference mechanism. In the former case, the types of each data 

objects and expressions are checked before a program is executed whereas the latter can 

infer the types of objects and expressions from local contexts. The notion of 

polymorphism has enhanced the task of type checking. There are two kinds of 

polymorphism: universal and ad-hoc polymorphism. Mechanisms for these two kinds of 

polymorphism such as parameterization, inclusion, suntyping, type inheritance, 

overloading and coercion are examined, followed by the discussion of the type inference 

algorithm used by the language ML. 

Having discussed the requirements for a uniform typed system, the issue of data 

persistence is addressed. The aim for persistent data is to support applications that 

require data to be last longer than the duration of a program execution. This leads to the 

development of persistent programming languages. The distinctive features of one of 

these languages called PS-algol have been described with particular interest to its 
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notion of first-class-procedures (FCP). The main reason of choosing this langauge is 

due to its ability to support both the structured and un-structured data access methods 

(which is the heart of this thesis) via FCP as illustrated by the PS-algol programming 

examples given in this chapter. 


