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Abstract

In this thesis some fundamental theoretical problems about artificial neural net-
works and their application in communication and control systems are discussed.
We consider the convergence properties of the Back-Propagation algorithm which
is widely used for training of artificial neural networks, and two stepsize variation
techniques are proposed to accelerate convergence. Simulation results demonstrate
significant improvement over conventional Back-Propagation algorithms. We also
discuss the relationship between generalization performance of artificial neural net-
works and their structure and representation strategy. It is shown that the struc-
ture of the network which represent a priori knowledge of the environment has a
strong influence on generalization performance. A Theorem about the number of
hidden units and the capacity of self-association MLP (Multi-Layer Perceptron)
type network is also given in the thesis. In the application part of the thesis, we
discuss the feasibility of using artificial neural networks for nonlinear system iden-
tification. Some advantages and disadvantages of this approach are analyzed. The
thesis continues with a study of artificial neural networks applied to communica-
tion channel equalization and the problem of call access control in broadband ATM
(Asynchronous Transfer Mode) communication networks. A final chapter provides

overall conclusions and suggestions for further work.
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Chapter One

Introduction

1.1 Why Artificial Neural Networks ?

In the past few decades, the development of conventional digital computers
has achieved great success. The application of digital computers has extended into
almost every aspect of our life. Digital computers are extremely good at numerical
calculation, formal logical inference and storage of data in bulk. They are signifi-
cantly inferior to the human brain in such tasks as vision, speech and information
retrieval based on content. This big performance difference between digital com-
puters and the human brain is partly due to their different organizational structure

and computational process.

Compared with digital computers, the operation speed of the human brain
is much slower. If the transmission of an impulse by a neuron is considered as
a fundamental step of computation, then the operation speed of a neuron is in
the range from one step for a few seconds to several hundred steps per second[1],
while a modern digital computer can carry out billions of operations per second.
Although the human brain is slow, it can accomplish many cognitive tasks like
visual recognition and speech understanding in about half of a second. Thus in
[2], Feldman and Ballard suggested that these complex computation problems are
solved in less than a hundred time steps. The explanation of this extremely high
efficiency of computation of the human brain is its highly parallel structure. In
the human brain, the number of connection for each neuron is varied from a few
hundred to several thousand. The computation is carried out simultaneously in
hundreds of thousands of parallel channels. Thus the ‘research on neural networks

is also called the connectionist approach. On the other hand, conventional digital




computers are mainly serial machines. Although parallel structures have been given
more and more attention recently, the parallelism achieved is still far short of that
in the human brain. In the brain in addition to parallel processing, the storage of

information is also distributed.

Clearly, the human brain works in a fundamentally different way from that of
conventional digital computers. The difference can be characterized by the highly
parallel distributed organization and slow operation speed of the human brain and
the generally serial structure and extremely fast operation speed of digital com-
puters. The parallel distributed organization of the human brain not only gives it
high efliciency in cognition, but also helps it to achieve a certain degree of fault
tolerance. Thus it is natural to expect that, by doing research on artificial neu-
ral networks ( or connectionist models ), we may obtain a better understanding of
mechanisms of the human cognition process, and possiblly synthesize new classes of
intelligent machine. Research in neuroscience has made significant progress in the
past decades, and many plausible models about human neural systems have been
proposed. Development of high speed parallel processing now permit the simula-
tion of large artificial neural networks. All these facts have contributed to the rapid
boom of research on artificial neural networks in recent years. Basically there are
two approaches to neural network research. One is concentrated on neuronal mod-
eling which stress the biological plausibility of artificial neural networks. Another
application orientated approach is more concerned in exploring the artificial neural
networks as a parallel computing architecture or an adaptive system for applica-
tion. In this case the biological plausibility is not emphasized. In this thesis the
second af)proach is mainly adopted. In the next two sections, some basic concepts

of neuroscience and artificial neural networks are introduced.



1.2 Basic Concepts of Biological Neural Networks

The brain is an extremely complex system. One of the fundamental achieve-
ments of neurosience in the early part of this century is the recognition that the
neuron is the basic building unit of the brain, and neurons are interconnected with
a high degree of order and specificity [1]. The number of neurons in a human brain
is estimated around 10!!, and they are organized into many specialized regions for
different functions [3]. A diagram of a neuron is shown in Fig-1.1. Although it is

simplified, it captures some of the most important features of neurons.

The cell body of a neuron is called the soma. The spine-like extensions of
the cell body are dendrites. They usually branch repeatedly and form a bushy
tree around the cell body and provide connections to receive incoming signals from
other neurons. The axon extends away from the cell body to provide a pathway
for outgoing signals. Signals are transfered from one neuron to another through
a contact point called a synapse. Although the synaptic junctions can be formed
between axon and axon, between dendrite and dendrite and between axon and cell
body, the most common synaptic junction is between the axon of one neuron and
the dendrite of another. There are two classes of synapses. The excitatory synapse
tends to promote the activation of neurons, while the inhibitory synapse play an
opposite role. When a neuron is activated or firing ( this could be caused by an
external stimulus ), an impulse signal travels down along the axon, until it reaches
a synapse. At this point some kind of chemical transmitter is released to promote

or inhibite the firing of the receptor neuron.

Some research shows that the excitablity and inhibition of synapses can be
enhanced by the activities of neurons, and this synaptic plasticity is believed by

many researchers to be the neuronal mechanism of learning and memory function



of the brain [4] [5]. Artificial neural networks is a the natural extension of this

synaptic plasticity learning theory.
1.3 Basic Concepts of Artificial Neural Networks

An artificial neural network (ANN) consists of neurons, a connection topology
and a learning algorithm. The neurons are also called units or processing elements
etc. A typical unit is depicted in Fig-1.2. The input signals (z4,...,z,) come from
either the external enviroment or outputs of other units in the network. Associated
with each input connection link of the unit is an adjustable value called a weight or
connection strength. This is a direct immitation of the synaptic plasticity which is
described in the previous section, so in some neuroscience and psychology literature
it is also called long-term memory (LTM). Usually w;; represents the weight of the
connection from unit ¢ to unit j. 6, is the threshold of the unit. The operation of

the unit can be described as

Yj =f(Za:,~w,-j—0j) (1-1)

The operation can be time continuous if the ANN is implemented by analog hard-
ware. In the discrete time case it can work in either synchronous mode or asyn-

chronous mode.

The function f( ) in (1-1) is called an activation function. Four most commonly
used activation functions are linear, ramp, step and sigmoid functions. The linear

function shown in Fig-1.3(a) can be defined by
f(z) =az (1-2)

The ramp function shown in Fig-1.3(b) is described by

S, ifz>S;
f(il?):{w, if 2| < S; (1-3)

—S, otherwise.

4



where S is the saturated output. The function in (1-3) can be adapted into other
forms by change of slope and saturation point. The limiting form of a ramp function

is a step function which is depicted in Fig-1.3(c). It can be defined as

S, ifz > 0;
fla) = { —S, otherwise. (1-4)
The sigmoid function displayed in Fig-1.3(d) can take many different analytical
forms. The following equations (1-5) and (1-6) are just two examples.

_ l1—-¢e7%

- 1+e_“3m

f(=) (1-3)

f(z) = m x sign(z)(1 — e 1*1) (1 -6)

where m is the magnitude coefficient. In some situations, when only positive outputs

are needed, binary 1 or 0 for example, these activation functions can be shifted

upward above the x-axis.

The connection topology largely takes two forms. These are the feed-forward
only architecture and the feed-back or recurrent architecture. Many feed-forward
ANN are fully connected, with no fine hierarchical built-in structure. But the
connection topology plays an important role in improving the generalization and

learning performance of ANN.

There are two classes of learning strategies for ANN. They are supervised learn-
ing and unsupervised learning. The learning or training algorithms will be discussed

in more detail in the following chapters.

Although the basic idea of artificial neural networks comes from the study of
biological nervous systems, most ANN capture only some basic features of biological
nervous systems. This simplification can be justified by the lack of powerful mathe-

matical tools for dealing with large nonlinear systems, in addition the simplification

5



still captures some most important features of biological nervous systems which are

assumed to be the underlying mechanism of learning.
1.4 Outline of the Thesis

In this thesis we discuss some theoretical problems associated with artificial
neural networks and their application in control and communication engineering.
Chapter 2 is a brief review of some of the most commonly used artificial neural net-
works. In chapter 3 the convergence performance of the Back-Propagation algorithm
is discussed, and two stepsize variation techniques are proposed for acceleration of
its convergence speed. Chapter 4 addresses the generalization and representation
problem of artificial neural networks. Chapter 5 to chapter 7 consider some po-
tential applications of artificial networks. In chapter 5 some aspects of using MLP
networks for system identification are discussed. Chapter 6 explores the application
of a self-organization network as a structure for communication channel equaliza-
tion, and chapter 7 propose two learning networks for the ATM call access control.
Finally, in chapter 8 some overall concluding remarks and suggestions for further

work are given.
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Chapter Two

A Review of Artificial Neural Networks

There are numerous artificial neural networks (ANN) that have been proposed
in the research literature [6] [7] [8] [9]. In this brief review, only some widely known
ANN are discussed. Based mainly on their learning schemes, the ANN can be
classified into three divisions : (a) Supervised Learning ANN, (b) Unsupervised
Learning ANN, and (c) Prewired or Hardwired ANN.

2.1 Supervised Learning ANN

Supervised learning literally means learning under external instruction. In the
context of machine learning theory (include ANN), it means during the learning
process, when the machine produces an output or action under specific stimulus,
the full or partial information of the desirable output or action is available from
the environment for learning or error correction ( it is usually called weight updat-
ing in ANN learning). We now consider some of the most popular ANN learning

algorithms which use supervised learning schemes.
2.1.1 Back-Propagation Algorithm

The Back-Propagation Algorithm is basically a gradient-descent algorithm
which is widely used in numerical calculation and control and system engineering.
The 1dea of using a gradient-descent algorithm as a learning algorithm can be traced
back to the early work of Widrow [10] and Rosenblatt [11]. Their pioneering work
was mainly concerned with single layer networks. The basic structure of these
single layer networks is shown in Fig-2.1. It can be seen that it is a kind of adaptive

linear combiner, its output is a linear combination of its input. Although the single

9




layer network has a very simple structure, it has achieved great success and wide
acceptance in adaptive signal processing and control [12] [13] [14] [15]. However
when it is used to model cognitive processes of the brain, it has been shown by
Minsky and Papert that the single layer structure has some fundamental limitations

[16].

The publication by Minsky and Papert significantly reduced the interest in
ANN, although some researchers were still pursuing the field. In 1974 Werbos in-
troduced the gradient-decent algorithm into the multi-layer networks [17] which are
now usually called Multi-Layer Perceptrons (MLP). In particular, when Rumelhart,
Hinton and Williams independently discovered the Back-Propagation Algorithm of
MLP [18] and exploited the power and potential in great detail in [19], the research
interest in this field has been revived. There have been numerous papers pub-
lished on MLP and other ANN. However some fundamental problems associated
with MLP still need to be investigated, and many potential applications need to be
explored. In the following chapters, some properties of MLP and its applications

will be considered.

While the majority of research activities are concentrated on using Back-
Propagation Algorithm for training of feed-forward networks, like MLP, there is
also some research which has been reported on recurrent or feedback networks [20]

[21] [22] [23).

One conspicous way of dealing with input signals which have temporal struc-
tures is to represent time explicitly by associating the serial order of the input
signals with the dimensionality of the input vector of a feed-forward network. The
first temporal event is represented by the first element of the input vector, the

second temporal event is represented by the second element, and so on. However

10



this scheme of dealing with temporal structure has inherent weakness. It is very
similar to the FIR filter in digital signal processing, which can only model finite im-
pulse response systems. Thus it lacks the ability of modeling the kinds of dynamic
properties like self-sustained oscillation for example. Thus recurrent networks are
indispensable for modeling dynamic behaviour. In addition, it is more biologically

plausible, as recurrent paths occur frequently in real nervous systems [24].

In the training of recurrent ANN, the desirable output usually takes the form
of trajectories in state space [22] [23] or a string of symbols [21]. So the objective

function to be minimized takes the form

I(to,ts) = Z (D(1) = O(1))*(D(r) - O()) 2-1)

T=%tpo

where D(7) is the desirable output vector at time 7, and O(7) is the actual output
vector of the recurrent network at time 7. It is very similar to the optimal trajectory
problem in dynamic programming [25]. Actually, the dynamic programming tech-
nique can be used for training of recurrent networks [23]. For the J(%o,ts) defined
in (2-1), a gradient-descent based algorithm which is very similar to the Back-

Propagation Algorithm for the feed-forward networks can be used for minimization

Note that
J(to,ts) = (D(to) — O(t0))(D(to) — O(to))
+ It +1,t,) 2-2)
let
e() = (D(7) — O(7))"(D(r) — O(r))
then

I(to,ts) = e(to) + J(to + 1,1,) (2-3)
So the gradient to weight vector W can be calculated as
vw/(to,ts) = Vwe(to) + VwJ(to +1,1,) (2-4)

11



The value of \ywe(7) is the weighted sum of all the previous gradients until time 7.
This is the difference between Back-Propagation in recurrent networks and that in

MLP. So from (2-4), ywJ(t — 0,%,) can be calculated by summation of 7we(r).

In a strict sense, to minimize J(to,%;) in (2-1) by a gradient-decent algorithm,
the weights can only be updated after the network goes through the whole training
sequence D(7)(7 = to,...,ts). However in practice, weights are usually updated at
each time step. As long as the changing of weights is much slower compared with

the time scale of dynamics of the network, it would not be a serious problem [23].

The main objective of exploring recurrent ANN is to make ANN context sen-
sitive. In other words, its action should depend not only on present input stimulus,
but also the previous context environment. This would require ANN to be able to
generalize from its learning samples. As the general understanding of complex dy-
namic systems is still poor, this is a very difficult task. Compared with the progress

in research on feed-forward ANN, there is still a great deal to be done for recurrent

ANN.

In the case of multi-modal objective functions, the gradient-descent based al-
gorithm has its local minima problem. One way of escaping from local minima is
to use a stochastic technique. In the following two sections, two stochastic learning

ANN will be discussed.
2.1.2 Boltzmann Machines

The idea of Boltzmann machines was introduced by Hinton, Ackley and Se-
jnowski [26] [27]. It is a kind of ANN which tries to satisfy a large number of

constraints in a probabilistic sense. This is also called weak constraints satisfac-



tion.

The key point of the Boltzmann machine is to use a simulated annealing tech-
nique to estimate the state probability distribution functions either under environ-
ment constraints or in unconstrained conditions. Then the gradient-descent algo-

rithm is used to reduce the discrepancy between these two distribution functions

[28].

The idea of simulated annealing comes from physics [29] [30]. Annealing is the
physical process used for the making of crystal. During the annealing process, the
solid is first melted under very high temperature, then the temperature is decreased
slowly, especially in the vicinity of the freezing point. The perfect crystal, or in
another words a system with the lowest energy, can be made from this process.
From a mathematical point of view it is a minimization process. The physical
mechanism of the annealing process can be explained with the help of statistic

mechanics.

According to statistic mechanics, for a substance which consists of a large
number of atoms, when it reaches the thermal equilibrium at the temperature T,
its state distribution can be described by a Boltzmann distribution. The probability
of the substance to be in state i with energy E; at temperature T is given by

Pr(e = i) = enlig) (2-5)

where kg is Boltzmanns constant, = is a random variable denoting the current state

of the substance, s(T') is defined by

(1) = Y espl(2) (2-6)

where the summation goes through all possible states. The annealing process can be

simulated by a computer program [31]. In a computer program, the state transition

13



can be modeled by the following algorithm. At state i with energy E;, the subse-
quent state j is generated by applying a perturbation mechanism which transforms
the current state into the next state by a small distortion. If the energy difference
E; — E; is less than or equal to 0, the state j is accepted as the current state. If the
energy difference is greater than 0, the state j is accepted with a certain probability
which is given by

cop( D) (2-7)

where T is the current temperature. If a lot of state transitions are simulated at a
specific temperature T, then the thermal equilibrium is assumed to be reached at

T.

From equation (2-5), it can be seen that when the substance is in a thermal
equilibrium condition and the temperature is approaching zero, the probability of
the substance remaining in the lowest energy state would be much greater than
that for any other energy states. This is the physical mechanism of an annealing

process.

The foregoing annealing mechanism can also be explored for optimization as
the annealing is basically a mininization process. The Simulated annealing was first
introduced into optimization by Kirkpatrick et. [29]. In simulated annealing the
objective function has replaced the energy function E; and E; in (2-7). By properly
reducing the emulated temperature, the minimum point of an objective function

can be reached with probability 1 [28§].

In a Boltzmann machine, simulated annealing is used for estimation of prob-
ability distribution functions. Fig-2.2 shows an example of a Boltzmann machine.
It is an ANN. Some of its units which have direct connection with the environment

are called environment contact units. Each unit in the network is a neuron like

14



processing element which can be described by

o 1, if Eia),"w,‘j + 9j > 0;
Yi= { 0, otherwise. (2-8)

where z; is input to the unit, w;; is the weight of connection from unit i to unit
j and 6; is the threshold and y; is the output. So it is a binary type ANN. Its

objective function or energy function is defined by
E=-) wiyy;+ Y _0iy; (2-9)
i,J J

As 6; in (2-8) can be regarded as a connection which is connected to a permanently
active unit, if this unit is assumed to be part of the network, then (2-9) can be

rewritten as

E=-Y wijyy; (2-10)
ij

Let p(7) represent the probability of the machine in state i when its input and output
units are clamped to training sample vectors, and it is in the thermal equilibrium
under simulated annealing using energy function defined in (2-10). p'(¢) is the
corresponding probability when the machine is running freely with no environment
constraints. An information theoretic measure of the discrepancy between these

two probability distributions can be given as

) )
D= ZP( )L () (2-11)

D is zero if and only if two distributions are identical, otherwise it is positive [28].

The partial derivative of D to w;; is given by [27]

oD 1
= (v~ 2}) (2-12)

Ow;j
where p;; is the probability of unit i and unit j both being in ‘1’ state when the

machine is running under environment constraints, that is to say it is clamped to

15



training samples. In equation (2-12) p}; is the corresponding probability when the
machine is running freely with no environment constraints. The values of p;; and p} i
can be estimated by the foregoing simulated annealing process. Then the weights

of the machine can be updated by the formula
Awij = apij — p;;) (2-13)

where a is the stepsize.

So the Boltzmann machine learning can be summarized as follows:

1 The environment contact units of the machine are first clamped to
learning samples under simulated annealing, and p;; are estimated
during the process. Then p;; are estimated under a free run condition

when the environment contact units are not clamped.

2 Weights are updated using formula (2-13), then go back to the previ-

ous step until p;; and pﬁj are close enough.

The most serious drawback of Boltzmann machines is their extremely slow
learning speed. Simulated annealing is a very slow process, and in Boltzmann
machines, it has to be repeated many times. This makes it extremely slow. There
has been some research on accelerating the learning speed of Boltzmann machines
by using a Cauchy distribution [32] or using high-order energy functions [33]. The
learning scheme using a Cauchy distribution is called a Cauchy machine, in which
the Cauchy distribution replaces the Boltzmann distribution in (2-7). However all

these learning schemes are based on the Monte Carlo method and are thus always

slow compared to a determinstic approach.
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2.1.3 Reinforcement Learning

In both Back-Propagation and Boltzmann machine learning, full information
on the desirable output is required. However under some circumstances the environ-
ment only provides partial information of the desirable output, like a critic signal
with reward /penalty responses to an output of a ANN. In these cases reinforcement

learning has to be explored [34].

Reinforcement learning ANN is closely related to learning automata theory
[35]. A learning automaton is an automaton that improves its performance while
operating in a random environment. A simple binary environment can be defined as
a triple {a, ¢, 8} where a = {ay, as,...,an} represents a finite input set, 8 = {0,1}
represents a binary output set, ‘0’ is an favourable or reward response, and ‘1’ is an
unfavourable or penalty response. ¢ = {c1,¢a,...,¢n} is a penalty probability set,

which can be defined as
¢ = Pr(ﬁ(t) =1 l O‘(t) = ai) (Z = 1v2a---an)

where t represents at discrete time t.

A simple variable structure stochastic automaton can be represented as a triple
{a,B,T}, where a and f are as defined for the environment, but for the automation

o is an output set and B is an input set. A reinforcement learning automaton can

be described as
p(t+ 1) = T[p(t), a(t), B()] (2-14)
and

p(t) = {pl(t)apQ(t)a s 7pn(t)}

where p,(t) is the probability of selecting action o; at time t. A linear reward-

penalty (Lr-p) learning algorithm for the automaton and the environment can be

17



expressed as

if a(t) = a; and B(t) = 0 (reward)
pi(t +1) = pi(t) + a(1 — pi(1));
pi(t+1) =1 —a)p;(t) (G #9);
else if A(t) = 1 (penalty)
pi(t+1) = (1 - b)pi(t);
pilt+1) =1 ~bpi()+ 25 (G #9)

The properties of Lr_p learning has been discussed in great detail in [35], and
it has been applied to telecommunications [36] and decision making [37] and other

applications.

The Associative Reward/Penalty (Ar—p) learning ANN is an extension of the
foregoing learning automata. It was first introduced as a neuron-like computing
element by Barto [38] [39]. An Ar_p learning element is depicted in Fig-2.3. Each
input link has an associated weight w;, and the link labelled r is a pathway of
reinforcement signal. The output y of an Ar_p element is calculated by

: T .
y(t) = +1, W (t)X(t) + n(t) 0; 2 - 15)
—1, otherwise.
where WT(2) = [wi(t), wa(t),. .., w,(t)] is the weight vector, XT(t) = [z1(t), za(t),
..+, Tn(t)] is the input vector at time t, and 7(t) is any random variable taken from

a specific distribution. The learning algorithm or the updating of weights can be
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described as

[ o) — E{y(t) | WE), X@OX(@E), i rt) =0;
Wt+1)-wW(t) = {ip(tﬁ(_y@_‘fé{)y(t) |(v37<t>f>)<<t>}(1>)<<t>, it r8=1.
(2 - 16)

where 0 < A <1 and p(t) > 0, r(¢) = 0 means reward and r(t) = 1 means penalty.

The convergence of Ap_p learning can be proved under certain conditions
[39], and simulation shows that Ar_p learning performs quite well in certain test
problems apart from slow learning speed [40]. However there is a fundamental
limitation of the learning ability of single layer Ag_p network which is stated as a
condition of convergence in [39]. It demands that the set of input vectors be a linear
independent set. As is known, for an n-dimensional space there can only be at most
n vectors in a linear independent set. Thus this condition excludes many complex
learning tasks like the XOR problem out of the coverage of the convergence theorem.
Some simulation studies have been reported on using Ar_ p learning networks with
multi-layer structures to deal with this problem [40]. However a more thorough
study is still needed to address problems like convergence and learning capacity for

multi-layer Ap_ p learning ANN.
2.2 Unsupervised Learning ANN

The ANN discussed in the previous sections are all trained under the super-
vision of a external intructor which can give some information about the desirable
response of the network. In this section, a class of ANN which learn by endogenous

mechanism are discussed.
2.2.1 Associative Memory

In conventional digital computers, the storage and retrieval of information is
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organized by spatial location ( or address ) in the hardware. On the other hand
for the biological neural systems, the storage and retrieval of information is based
on the collective interaction of a great number of neurons, so it seems more natural
to assume that the representations of concepts and other pieces of information are
stored in a distributed fashion as collective states of the neural systems rather than

in a specific spatial point in the systems.

According to this non-local memory theory, the pieces of information are rep-
resented by the pattern of activity of many interconnected units instead of one unit.
Each unit acts as an element in the representation of many pieces of information.
This distributed representation scheme is a more plausible model of human memory
than digital computers, as it has captured some features of human memory. For
example content addressable memory, in which the retrieval of information is based
on content instead of its spatial location. When only a partial pattern is available,

the whole pattern can be reconstructed. This is called associative memory.

Obviously ANN are attractive for the implementation of distributed memory or
associative memory. In [41] Hopfield suggested a binary network which can perform
associative memory. The architecture of the network is shown in Fig-2.4, which is a
fully connected network. The activation function of units in the network is defined

as

j#i (2-17)

0, otherwise.

1, if ) ; yjwji>0;
Y =

where y; is the output of unit i, wj; is the strength of the connection from unit j to

unit i. Information is stored by the learning algorithm as
wii = Y (2yF —1)(2y5 — 1) (2-18)

where y; is the ith element of vector Y* (s = 1,2,...,n), and Y* are the state

vectors to be stored in the network. w;; are assumed zero.
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For the retrieval of information, when a distorted state vector is presented
to the network, each unit will synchronously or asynchronously update their states
with activation function given in (2-17), until the network settles into a stable state.

The stable state vector represents the retrieved piece of information.

The stability of the network can be proved using a Liapunov function method.

The Liapunov function for the network can be defined as [41]

E= —-% Zwijy,-yj (2-19)

3
From (2-18) it is obvious that w;; = wj;, and if we consider the network activation
function in (2-17), it can be proved that E defined in (2-19) is a positive monoton-
ically decreasing function in the recall process of the network. Thus the network is

stable. The stability theorem can be extended to the situation where w;; # 0 and

wii > 0 [42].

From the foregoing discussion it can be seen that a memory item or vector is
represented by a stable state or an attractor of the network. So the memory capacity
of the network is dependent on the dynamic properties of the network. How many
stable states a network has determines how many item or vectors can be stored.
The simulation study reported in [41] concluded that if the network has N units,
then about 0.15N vectors or items can be simultaneously remembered without any
severe retrieval error. A theoretical analysis based on statistical theory [42] shows

the capacity of the network can be expressed as

— 925)?
m= L20) 1 (2 — 20)
2 logn

where n is the number of units in the network. This capacity can be explained as

follows. If the items or vectors to be stored are choosen randomly with probabilty
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0.5 for each bit of their elements to be 1 or 0, and they are statistically indepedent,
then these vectors can all be correctly recalled with high probability by any recall
vector which lies within the distance of pn from the correct memory vector if their

number is less than or equal to the m given in (2-20).

The capacity of the network can be increased by using pseudo-inverse tech-
niques [43] or by storing correlated vectors [44] [45]. However correlated vectors
may cause cross-talk when noise is present in the recall signals. Thus just making
each memory vector an attractor or a stable state is not enough to guarantee satis-
factory recall performance, the attraction basin of each stable state should be large
enough to ensure a certain degree of noise immunity. The research reported in [44]
also suggested that a larger attraction basin means smaller memory capacity. Thus

it 1s a trade-off between the memory capacity and the noise immunity.

The associative memory ANN introduced by Hopfield is an autoassociative
associative network. The bidirectional associative memory (BAM) suggested by
Kosko [46] is a kind of heteroassociative associative memory network in which vector
pairs (A;, B;) are to be stored and recalled. When one element of the data pair is
available, the other element can be recalled by running the network. In the following

discussion, the dimensionality of A; and B; are assumed to be n and m respectively.

A schemetic diagram of a BAM network is presented in Fig-2.5. The connec-
tions in the network are all bidirectional. F4 is the layer which represents vector
A; and Fg is the layer for vector B;. If the weights of the connections are denoted

by a matrix M which is p X n, then when a vector A is presented to F4, the recall



process is an iteration process described by

A —-— M — f — B
Al — f «— MT — B
Al — M — f -5 B (2 — 21)

where f is a nonlinear function or mapping. The iteration stops at a stable state.
Hence stability of the system is a precondition for successful recall. It can be proved
that if the threshold function (2-17) is used for as the nonlinear function f in (2-21),
then the above iteration process is stable for any real matrix M. This strong stability
property of a BAM network provides a great degree of flexibility for the design of
an associative memory network. For the discrete BAM network introduced in [46],
the weight matrix M can be obtained by

N

M=) B;AT (2 -22)

i=1

or the weights can be calculated by an adaptive rule [47] as

dwyj _ 5 NGB,
S = a-wij + 5(ai)S(5)) (2-23)

where S( ) is a sigmoid function.

From (2-21) it can be seen that the BAM network is a nonlinear dynamic
system and analytical study of the network is non-trivial. Its storage properties are

still under investigation [48] [49].
2.2.2 Adaptive Resonance Theory (ART)

One objective of the research on ANN is to develop the kind of intelligent
machine which can categorize the input stimulus and self-organise according to its
experience with an external environment. Competitive learning [50] is one approach

to self-organization learning. A general competitive learning ANN can be described
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by Fig-2.6, which has several layers. Within each layer, a winner-take-all strategy
is used to cluster the input patterns. Features discovered in the first layer can
be used as input patterns in the subsequent layers. However when a competitive
learning network is exposed to a complex environment, it may suffer from a serious
stability problem which is discussed by Grossberg [51]. The problem is that when
the network goes through a series of learning samples, the learning may keep on
going and never settle into a stable solution even when there are repeated patterns
in learning samples. This is called the stability-plasticity dilemma. The purpose
of the adaptive resonance theory (ART), which was first introduced by Grossberg
[62] and elaborated by Carpenter and Grossberg [53], is to embed a self-regulating

mechanism into competitive learning in such a manner as to provide stability.

An ANN based on Adaptive Resonance Theory is depicted in Fig-2.7. It is
called an ART1 network [53]. The operation of ART1 can be described briefly as

follows.

When an input pattern Ay = (af,a¥,...,af) is presented to the bottom layer
F, the units in F} will be activated and sustain an activation or short-term memory
(STM). The activation in Fy will be send through long-term memory (LTM, they
are also called weights in other literature ) connection w;; to activate the top layer
F,. The units in F3 will compete with each other until one unit wins the competition
and inhibits the activation of all the other units. Then the winning unit sends back a
top-down expectation pattern to Fy through LTM connection v;;. If the difference
between the two patterns exceeds a vigilance parameter, then the classification
would be regarded as incorrect, and F3 layer would be switched to another unit,
the previous winning unit would be disabled. If the difference is acceptable, then
A would be classified to the class represented by the winning unit. The LTM is

then updated.
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The STM activity in Fy can be described by a differential equation

da:,

dt = —z; + (1 — ,Ulmz)h’l Zf(yj)vjl +a; ] - (IBI + alxt) Zf(yJ (2 - 24)

7=1
where z; and y; are the activation of unit i in F} and unit j in F, respectively, f( )

is a nonlinear function defined by

N )1, fy;=max{ys | k=1,2,...,m}
Fys) = { 0, otherwise. (2-25)
€ 11, 71, B1 and a; are all positive constant for the regulation of system dynamics.

The constraints on their value are discussed in [53]. A similar differential equation

which describes the STM activity in F3 is

dc:;/t =—-y;+ (1 — uzy, ")’2 Z S(:IJ )wz] + f(yj)] - (132 + a‘ZyJ Z S(yk) (2 26)
k=1

k#j

One drawback of the ART network, which is discussed by Lippmann in [6], is
that in noise free situations the vigilance parameter can be set to a very low value
to discriminate any small difference between input patterns. However in noisy
conditions a low vigilance parameter could lead to rapidly increasing number of
classes which would exhaust all the units in layer F,. This problem could be solved

by using slow learning rate and an adaptive vigilance parameter approach [6] [54].
2.3 Prewired or Hardwired ANN

Prewired ANN are the networks which have their connection weights pre-
determinted in an initial design process. Thus they are not strictly learning net-
works. waever they can play a significant role by action as preprogramed modules
in large learning networks to accelerate the learning and improve the generaliza-
tion performance. The feature extraction networks used in a Darwin machine is an

example [55].



2.3.1 Connectionist Semantic Networks

There has been some research which considers each unit or cell in the ANN as
the basic unit for representation of concepts [56] [57]. Usually these cells work in
binary mode. Excitation mode or ‘1’ mode represents logical true, and inhibition
mode or ‘0’ mode represents logical false. In some research the false is represented
by ‘-1°, and ‘0’ is used for ‘Unknown’ [57]. A simple example showing how this
kind of cell or unit works is given in Fig-2.8, where the weights of all the input
connections are 1, and the threshold is 0. It uses a step function like that in (2-
17) as its activation function. It is obvious the output y is the logic OR of all
the input identities. Although these kinds of network lack biological plausibility,
they can be used properly for logic inference in semantic networks [58]. A semantic
network is a network structure used to express knowledge in terms of concepts, their
properties and the relationship between concepts. Each concept is represented by a
node and the hierarchical relationship between concepts is represented connecting
appropriate concept nodes via IS-A or INSTANCE-OF links. In [58] six classes
of neural units are defined to implement a semantic network. They are enable units,
concept units, properties units, concept property binder units, property value binder
units and relay units. The high level description of the network is processed by a
compiler and a network generator which can generate the topological structure and
the weight value of the ANN for that specific task. From this description, it can be
seen that this process is very similar to conventional VLSI design. The difference

is the connectionist semantic networks are more parallelized.

2.3.2 The Hopfield-Tank Network

Marr’s computational theory [59] suggests that to understand the information

processing process in brains requires comprehension at several levels. According to
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this theory, the information processing process can be understood at three levels.
They are computational, algorithm and implementation levels. At the algorithm
level, much vision processing especially early vision processing can be characterized
as a mathematical transform or minimization problem [60]. The Hopfield-Tank
network is an attempt to understand how particular computations can be performed
by selecting appropriate patterns of synaptic or weight connectivity in a dynamical

ANN [61].

A four unit Hopfield-Tank network is depicted in Fig-2.9. The units or neurons
work in analog mode and are a simplified model of biological neurons. The activation

of the units can be described by the differential equation

N

Ci% = > wjigi(e;) - %ii + 1 (2-27)
j=1

where C; is the characteristic capacitance of cell z, R; is the equivalent membrane

resistance ( or leakage resistance ), wj; is the conductance of connection from cell j

to cell 7, z; is the electric potential of cell ¢, g;( ) are sigmoid functions and I; are

external stimulus current. So the function of a cell can be summarised as charging

the characteristic capacitance C; with the sum of postsynaptic currents induced in

cell 7 by presynaptic activity in cell j and the leakage current due to R; and the

input current I; from other sources external to the network.

An energy function can be defined on the network as [62]
E= —}-Zwi~yiy-+zi/yi g7 (v)dv — > Ly (2-28)
2 i o ZRiJo ;

where y; = gi(z;). It can be proved that

dE dE dyi .
o S 0; T 0 7 0 forall: (2 —29)
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So the network is a stable system. If the sigmoid function g¢;( ) has a steep rise ( or

high gain ), then the E function defined in (2-28) can be approximated by [62]
1
FE = —5 ;wijyiyj— Zi:.[,'yi (2—30)

Thus the operation of the network is very similar to binary networks. This fea-
ture has been explored successfully in the application of Hopfield-Tank network to

various optimization problems [63] [61].

For high gain function g;( ), its shape is very close to a step function. So the
output y; is usually clamped to take only two states. They can be regarded as ‘1’
and ‘0’ states like those in digital circuits. The states of the network can therefore be
used to represent binary numbers. Thus the network can be used in implementing
an A/D converter [63]. If the network has n cells, and external analog input is S,

then an n-bit A/D converter can be designed by minimizing the energy function
1 ~ oiy2
B =35~ 3 v (2-31)

To help clamp the states of the network into corners of the state space, or to push

y; into ‘1’ or ‘0’ states, a second term

—5 D) sl — ) (2-32)

is added to the E defined in (2-31). So the final energy function is

1 itj . ie i
E=—s > (=2 — > (207D 425y, (2 - 33)
i=1,j=1 i=1
1#]

If this expression is compared with (2-30), it follows that

Wi5 = —2i+j

I = (—2%Y 1 2i8) (2 - 34)

28



If a Hopfield-Tank network is assigned the connection weights given by (2-34), the
operation of the network would lead to the minimization of the energy function
defined in (2-33), Thus under an analog input excitation S, the stable state of the

network [y1,v2,...,yn] would be a binary representation of S.

However the Hopfield-Tank network has a local minima problem. For hardware
implementation this can be a serious problem. Adding correction current I;. into

the cells could help to eliminate this problem [64].
2.3.3 Silicon Neural Systems

The silicon neural systems here are a class of silicon artificial neural networks
which are based on biological information processing mechanisms and implemented
by analog VLSI technology [65], like electronic cochlea [66] and silicon retina [67]
for example. These systems do not copy biological features like anatomy structure
directly, instead they imitate the computation functions of biological systems by
electronic circuits. The motion computing network is a typical example [68]. There
are two methods of computing motion for vision systems. One is the intensity-based
scheme and the other is a token identification scheme. Both schemes coexist in
biological systems [68]. For the intensity-based scheme, the computation of motion

can be abstracted as the minimization of
du OJu Ov ov
_ 2 2 2 2 Z2)2 —

where (u,v) represent the velocity field, I(z,y,t) is light intensity and A is the

regulation parameter. This minimization problem is equivalent to solving a set of
linear equations [68]

Pu+ LIy-Aviu+ LI =0

LIju+Iv—Aviv+ LI =0 (2 - 36)
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and (2-36) can be discretized into

-2
Laijuis + Toijlyijvig — Muirnj + i jan — duij +vioyj 4 vi 1)
+ Lzijluj =0
2
Loijlyijuij + Iyijvi; — Mvig1,5 + vij41 — 4055 + vie1,5 + 0i5-1)

+Iy,'thij =0 (2_37)

where (1, j) is the index of a lattice grid. The electric current in a lattice electronic
resistive network can be calculated by a similar set of equations if Kirchhoff’s current
law is used. So (2-37) can be solved by measuring the current in an electronic

resistive network which is under a proper external excitation [68].

These silicon networks basically follow Marr’s computation theory philosophy
[59]. They are an attempt to imitate the computation functions of biological systems
instead of their implementation detail. They are more like a functional model of

neural systems.

In this chapter we have surveyed briefly some ANN. In the following chapters,
we discuss some theoretical properties of ANN and their potential application in

engineering.
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Chapter Three
MLP and Back-Propagation Algorithm

Among the existing ANN, the Multi-Layer-Perceptron ( MLP ) using a Back-
Propagation learning algorithm is one of the most widely used networks because of
its simplicity and powerful representation ability. The single layer perceptron [69]
has a limited representation ability. For example, it can not implement the XOR
function. This representation limitation has been thoroughly diécussed by Minsky
and Papert in the late 1960s [16]. Unlike the single layer perceptron, MLP networks
can implement any complicated function due to the additional hidden layer. In the
following sections, the Back-Propagation learning algorithm and some techniques

for improving its learning speed are discussed.
3.1 Delta Rule and Back-Propagation

An MLP network is depicted in Fig-3.1. It is a layered and feed-forward net-
work. The output from a unit can only feed into a unit in an adjacent layer.

Recurrent connections and connections within the same layer are not allowed.

The input to a unit in the network is a weighted sum of the outputs of units
in the previous layer to which the unit is connected. Let :cf represent the input to
the unit 7 in layer j, wfj stand for the weight of the connection from unit ¢ in layer
k to unit j in layer k+ 1, y{ is the output of unit ¢ in layer j and 9{ is the threshold
( or bias ) of unit ¢ in layer 7. Then the activation of units can be described by

2i = S whyt (3-1)

1

and
1

1+ exp(—27)

yl = f(al) = (3-2)
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The activation function f( ) can take other forms. For example, in applications

where negative output is needed, it can be of the form

1—exp(— z;f)

f(z) =

= 3-3
1+ exp(—258) (3-3)

For MLP networks, there are two modes of operation during the training or
learning phase. They are feed-forward computation and the weight updating oper-
ation. In feed-forward computation, when an input pattern or vector is presented
to the input layer, the units in the next layer use the weighted sum of inputs and
the activation function defined in (3-2) or (3-3) to calculate their outputs. These
outputs are passed forward for computation in the next layer until the output layer
is reached. During the weight updating operation, an error signal which is based on
the discrepancy between the desired response and the actual output of the network
is backpropagated through the network for the updating of weights. Obviously
this Back-Propagation algorithm is a form of spervised learning. During the recall
process, only feed-forward computation is involved. The derivation of the Back-

Propagation algorithm is presented in the following paragraphs.

Basically Back-Propagation is a gradient decent algorithm. When an input
pattern is presented to the input layer of the network, a corresponding output will
be produced by feed-forward computation. This is called a forward pass. The
discrepancy between the desired or target output d; and actual output y; can be

measured by

1 2
E=§Z(dj—yj) (3—-4)
J
Let the number of training samples be N, the total error is

N
Etotal = Z Ek (3 - 5)
k=1

where E) denotes the discrepancy error of the kth pattern calculated by (3-4).
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The objective of the training phase is to minimize the E;o41 defined in (3-5).
A straight forward way of mininization is to use a gradient descent (hill-climbing)
algorithm, that is to adjust the weights according to an amount proportional to the

derivative

oF
Jw f‘]

where 7 is the step size, which is used to control the convergence. The convergence

Awﬁ- = -7 (3-16)

can be improved significantly by the inclusion of a momentum term. Actually this

is a first order low pass filter which smooths out fast changes in Aw,’-‘j.

OFE

Awj(t) = —nz—r
J dwk ()

+ alAwf(t ~ 1) (3-17)

« is a small positive real number.

In the strict sense gradient descent algorithm, the E in (3-6) and (3-7) should
be Eyota1, that is the updating of weights would take place once every pass through
all the training samples. This is called batch mode Back-Propagation. However
a more common practice is to update weights for every presentation of an input
training sample. In this case the E defined in (3-4) can be used to replace E in

(3-6) and (3-7) for calculation. This is a wide sense gradient decent algorithm.

For a single layer perceptron, the output is given by

n—1
yi = f(O_wili +6;) = f(s) (3-8)
=1
As the threshold 6; can be regarded as an input from an always active unit through

a connection with weight 6, (3-8) can be rewritten as
y; = FOQ_wili) = f(s) (3-9)
i=1

If the desired output is d;, From (3-4), it is obvious that

OE  OF Oy,
Ow; Oy; Ow;
= (- ) (3-10)
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Let
6; = (d; —y;)

then the adjustment of weights is given by

Aw; = i
1

= 8;f(s)I; (3 - 11)

This weight updating scheme is sometimes called the Delta rule. Back-Propagation

is also refered to as the generalized Delta rule.

For Back-Propagation in an MLP network, the weight updating for the con-
nection to the output layer is straight forward. If the MLP network has N layers
and function f( ) defined in (3-2) is used as an activation function, then from (3-4)

0FE

T = —(d; —y}) (3-12)

where the superscript N means the output is from layer N and from (3-2)

N
9y;

507 = f'(=3) =v; (1= y;") (3-13)

From equation (3-1) it is clear that

Oz} N-1
a’u)N_l = yz (3 - 14)
i
So
OE _ OE Oyl da¥
ng_l - By]N 015\’ Bw,f}’
= —(dj —yMyN A -y ! (3—-15)
Let
57 = (dj =y )y (L -y} (3-16)
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then

oF
w1 = _5?, lytN ' (3 - 17)
ij

So from (3-7) and (3-17) we have
1(15 +1)= w 1) + 775N lyz -1y a[wf},_l(t) - wf},_l(t -1)] (3-18)

This is the weight updating formula for the connection to the output layer. Note

that the delta in (3-16) can be rewritten as

N1 OE oyl OF

i aJNOm =_0:v;-v (3-19)
then generally for weight w . we have
O0E _ OE 8y;*' 9z;*
uwk, ByHl 0’31‘“ aw
= afﬁlyﬁl(l yi s
= 11— ity Z aﬁz g;::
=yiyiti(1 - y]“)z ;,+2 wit!
—yfyiti(1 - y]“)zwk“@k“ (3-20)
let
6k = y;“H y;"H zwk+16k+1 (3—21)
then
aff = gyt (3-22)

This equation is similar to (3-17). If we combine equations (3-18) and (3-21),
we obtain the complete Back-Propagation algorithm. The delta’s are propagated
backward from the output layer by equation (3-21). This is why the algorithm is

called Back-propagation algorithm. The initial delta is calculated using (3-16).
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The program structure for implementation of the Back-Propagation algorithm
on MLP networks i1s shown in Fig-3.2. The initializing program in box-1 is used to
initiate weights and thresholds of MLP networks with stochastic or deterministic
techniques. A common practice is to assign a small value which is taken from a
random number generator to every weight and threshold. The program in box-2
is used to set up a training sample set or learning sample set. The main program
in box-3 is the implementation of the Back-Propagation algorithm. Its structure
is depicted in Fig-3.3. A complete pass through the loop is called a cycle. The
weight updating occurs in every cycle. However in the strict sense gradient descent
algorithm, 59—10’?; are accumulated over a pass through all the samples in the training

set, and then weights are updated. The program in box-4 is for display purposes.

Input X; | Input X5 [ Output {
0 0 0
0 1 1
1 0 1
1 1 0

Table-3.1 XOR function

To demonstrate the learning ability of the MLP network with a Back-
Propagation algorithm, the above simulation program is used to train an 2-2-1 MLP
network to implement a XOR function, which is not possible by a single layer per-
ceptron. The XOR function can be summarized by Table-3.1 The implementation
MLP network is shown in Fig-3.4. The displayed value of weights and thresholds
are obtained by the Back-Propagation algorithm. Further examples which demon-
strate the learning ability of MLP networks with Back-Propagation algorithm can

be found in {70] [19]. Although the MLP network has strong representation ability,
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the Back-Propagation algorithm is very slow. In the next section the convergence

of the Back-Propagation is discussed.
3.2 The Convergence of Back-Propagation

As the back-propagation algorithm is a kind of gradient descent algorithm, the
error surfaces for learning problems frequently possess some geometric properties
that makes the algorithm slow to converge. The stepsize of the algorithm is sensitive
to the local shape and curvature of the error surfaces. For example, a small stepsize
will make the algorithm take a very long time to cross a long flat slope. On the
other hand, a large stepsize will cause the iteration process to bounce between the
two opposite sides of a valley rather than following the contour of its bottom. Even
if a satisfactory stepsize for one stage of the learning process is found, this does not
ensure it will be appropriate for any other stage of the same learning process. On
the other hand, the premature saturation of the network units also causes problems

for the convergence of the algorithm.

There has been some research on improving the convergence speed of the Back-
Propagation algorithm, such as that mentioned in [71] [72] [73]. In [71] the authors
suggested Conjugate gradients, the Quasi-Newton algorithm and other more so-
phisticated algorithms. The conjugate gradient with linear search is also reported
in [74]. They are also called second order methods, and these algorithms are more
computationally expensive, especially when the scale of the problem is large, so that
in many cases it is impractical to use them. In order to reduce the computation cost
of the second order method, a kind of approximation technique has been introduced
into Newton’s algorithm{72]. The authors used a diagonal matrix to approximate
the Hessian matrix. This makes it possible to derive a back propagation algorithm

for the second order derivatives in a similar manner to the first order derivatives.
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But the applicability of this new a,lgorithm depends on how well the diagonal Hes-
sian approximation models the true Hessian[72]. Only when the effects of weights
on the output are uncoupled or nearly uncoupled, can the diagonal Hessian repre-
sent a good approximation. In addition the learning parameters are more critical
in obtaining reasonable behaviour with this Newton-like algorithm than with the
back-propagation algorithm {72]. Our simulation also confirm this point. Another
attempt to use a second order method to improve the convergence property of the
back-propagation algorithm was introduced in [73], which is called Quickprop. It
uses the difference between two successive -g—% as a measure of the change of cur-
vature and uses this information to change the stepsize of the algorithm. E is the

output error function, and w represent weights. Using this method a significant

improvement in convergence speed has been reported in [73].

In [75] another kind of adaptive stepsize algorithm was introduced. According
to this algorithm, if an update of weights results in reduced total error, the stepsize
is increased by a factor ¢ > 1 for the next iteration. If a step produces a network
with a total error more than a few percent above the previous value, all changes to
the weights are rejected, the stepsize is reduced by a factor § < 1, the momentum
term is set to zero, and the step is repeated. When a successful step is then taken,

the momentum term is reset.

As is well known in adaptive signal processing theory, the direction of the
negative gradient vector may not point directly towards the minimum of the error
surface. In adaptive filter theory, this kind of bias can be measured by the ratio
of the maximum eigenvalue and the minimum eigenvalue of the auto-correlation
matrix[76]. Recently an adaptive stepsize algorithm which gives every weight a
stepsize which can adapt separately has been proposed[77]. This is only a rough

approximation, as it will be noted that these stepsizes adapt in the direction of each
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weight rather than on the eigenvector direction as required[76][77].

As mentioned in the previous section, the update of weights can take place
after presenting all the training samples to the network or after every presentation
of a training sample, these methods are called batch mode back-propagation and
online back-propagation respectively. Generally speaking, online back-propagation
algorithms converge faster than the batch mode back-propagation[72](73], and batch
mode back-propagation is more likely to fail to converge on a large training sample
set[78]. In the following section, two stepsize variation techniques are introduced
for acceleration of the online Back-Propagation algorithm. Compared with previous

algorithms, they are more simple to implement.
3.3 Acceleration of Back-Propagation
3.3.1 Adaptive Stepsize Technique

In designing an appropriate algorithm the following faptors should be consid-
ered. First the momentum term cannot be set to zero, as the update occurs for
every presentation of a new training sample. If the momentum term is set to zero,
there exists a risk of losing past experience. Generally speaking. a large training
sample set requires a large n value ( 7 is the stepsize for the momentum). This fact
has been confirmed by computer simulation[79]. Thus the adaption is restricted to

the gradient term. We used the following form of adaptive stepsize algorithm:
a(t) = a(t = 1)(1 - FOVE(Q) ) (3—23.0)
ft) =u1f(t — 1) + ua AE(L) (3 —23.b)
AE(t) = E(t) - BE(t - 1) (3 —23.c)
a(t) is the stepsize for the gradient term in the update formula in the back-

propagation algorithm. It is the stepsize at time t. E(t) is the summation of
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squared errors between the desired output and the actual output at time t. It can

be calculated as

lulr—-‘

N p
Z Z b oF)? (3 —24)
k=1 1=1

AE(t) is the decrement of the E(t). f(t) is a filtered version of AE(t). Actually
(3-23.b) is a first order low-pass recursive filter, which can smooth the significant
changes in AE(t), making the algorithm more stable. u; and u, are the parameters
used to control the adaptation. For small u; and big u,, the adaptation is fast,
but it is also more likely to be trapped in oscillation. For big u; and small us, the
adaptation is slow, but it is more stable. Thus the parameter selection involves
a trade off. In our simulation, we used u; = 0.9 and u; = 0.3. The term (1 —
F()V/E(t) ) also controls the adaptation of the stepsize. If f(t) is positive, that
means thé tendency of E(t) in the near past is to increase, so 1 — f(t)\/E(t) <1,
the stepsize will be decreased. A similar analysis shows that if the tendency of E(t)
is to decrease, the stepsize will be increased. When the E(t) is very small, that is
the network has almost learned, the adaption will be very weak, which stablizes the
algorithm. The square root is used as compensation, it can amplify the small E(t)

to avoid the premature termination of adaptation.

Before we start to discuss the simulation of the adaptive stepsize algorithm,
we give a brief description about two commonly used benchmark test problems for

ANN.

Parity Problem : The parity function is a generalization of XOR function which
is described in section 3.1. It only considers a binary input. For a N-bit parity
function, when there odd number of ‘1’ in the input vector, the output is ‘1’, other-
wise the output is ‘0’. As mentioned in the previous discussion the XOR function

cannot be realized by a single layer perceptron, but is amenable to MLP networks,
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so the parity functions are commonly used as a test problem for ANN.

Compression Encoding Problem : The ANN used for this kind of encoding
usually takes the structure of N-M-N. It means both input and output layers have
N units and the hidden layer has M units. Usually M < N. The network can
only accept binary input and the output also takes binary form. From information
theory we know that if there are S patterns, then binary codes of length log, S can
code all these patterns. This encoding problem is used to test whether the ANN
can learn to compress a set of redundant N-nit binary codes to more compacted

M-bit codes.

The simulation results on adaptive stepsize Back-Propagation algorithm are
shown in Fig-3.5, Fig-3.6, Fig-3.7 and Fig-3.8. In the figures shown, the E defined
in (3-24) are plotted as a function of iteration times for different learning problems.
They are called learning curves, and can be used to evaluate the convergence prop-
erty of the learning algorithm. Fig-3.5 shows comparative simulation results of the
non-adaptive back-propagation algorithm and the adaptive algorithm for the XOR
problem. Fig-3.6 shows the comparision on the 4-2-4 encoder problem. Fig-3.7 and
Fig-3.8 are for the 4-bit parity problem implemented with 4-4-1 MLP network. All
broken lines represent learning curves for the non-adaptive algorithm, while solid
lines are for the adaptive algorithm. It is clear the adaptive stepsize has improved
the convergence speed, just as we expected. However, it will be noted that the
improvement for a complex problem, like the 4-bit parity problem, is more impres-
sive than that for the simpler problem, like the XOR problem or the 4-2-4 encoder
problem. The reason may be that since adaptation is a dynamic process, it needs a
finite time to be effective. For simple problems, the learning process is very short,
and the adaptation process has insufficient time to be significant. Thus there is

only a small effect of adaption on simple learning problems.

46



3.3.2 Differential Stepsize Back-Propagation

Although the adaptive stepsize back-propagation algorithm has improved the
learning speed to some degree, it can not cope with the premature saturation of
the network units. It has been noted in the simulations that MLP neural nets are
often trapped in a very flat valley in which the convergence speed is very slow. This
corresponds to the flat line intervals on the learning curves of Fig-3.7 and Fig-3.8.
It should be noticed that this cannot be solved by an adaptive stepsize technique,
because the reason for this phenomenon is that the absolute value of weights are
growing so fast as to make the units, especially hidden units, prematurely saturated.
There is a term like s(1-s) in the update formula for the back-propagation algorithm,
in which s is the output state of the unit. It is quite clear that if s is close to 1 or 0,
whichever output is desirable, almost no update will be passed backward through
that unit. This kind of phenomenon is also known as the flat spot[73]. In [73] the
author proposed to change the sigmoid-prime function s(1-s) to s(1-s)+0.1, so it can
avoid the flat spot. But according to our simulations, this change often causes the
weights to grow so fast as to lead to floating point overflow on the digital computer.
Although some weight-decay term may be used to counteract this[72], it makes the

algorithm more complex. A simple method can be used to cope with the flat spot.

To circumvent the flat spot, the term s(1-s) is removed from the update formula
for the output layer, and the stepsize for the update of weights between the hidden
layer and the input layer is set smaller than that for the weights between the upper
layers. If denote the stepsize for the update of weights between the output layer and
the hidden layer as a3, and the stepsize for the update of weights between the hidden
layer and the input layer as ay, then as > aq. This is called the differential stepsize
back-propagation algorithm(DSBP). In our simulation, the learning parameters are

set to a; = 0.1lap. The simulation results are shown in Fig-3.9, Fig-3.10 and Fig-
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3.11, and it is very clear the convergence speed is improved considerably.

In [73] the Quickprop algorithm was claimed to be the fastest learning algorithm
among the existing algorithms. In order to compare the DSBP with the Quickprop,
the simulation has been repeated 30 times on the 10-5-10 encoder problem. The
termination condition for the simulation is that the discrepancy between the desired
output and the actual output for every output unit and every training sample is
less than 0.1. The average training time in terms of iterations for this problem by
DSBP is 23.5, with a standard derivation of 3.27. This is only marginally slower
than the Quickprop algorithm, for which the average training time is 22.1. However
although the Quickprop plus a hyperbolic arctan error function algorithm can reach
the same solution with an average training time of 14.01, it is much more complex
than DSBP, and a weight-decay term is needed. The results for the simple DSBP
algorithm represent a considerable improvement on the standard back-propagation

algorithm, which gave an average training time of 129 iterations.

From the above discussion, it can be seen that the adaptive stepsize technique
can improve the convergence performance of the Back-Propagation algorithm. The
simulation results presented also suggest the inprovement of performance is more
obvious on a large training sample set problem than that on small training sample
set problems. Thus it is reasonable to speculate that there would be more potential
for using adaptive stepsize technique in large scale application problems, like Net-
Talk [80]. The simulation results also show that the DSBP method is effective in
circumventing the premature saturation or flat spot under some circumstances. The

improvement in convergence speed is significant.

Numerical optimization is still based more on empirical experience rather than

on rigorous theoretical analysis. It has been pointed out by Powell [81] that while
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the vast majority of theoretical questions related to the performance of optimization
algorithms in practice are unanswered, it would be both unrealistic and counter-

productive to expect each new algorithm to be justified theoreticallly.

As the Back-Propagation algorithm is basically a numerical optimization algo-
rithm, the measurement of its performance has to largely depend on simulation test
on some bench mark problems. Many algorithms have been suggested to accelerate
the learning speed of Back-Propagation [82]. Different algorithms may show ad-
vantages for specific applications. It would be extremely difficult if not impossible
to analyze their performance in a mathematically rigorous way. At this stage a
realistic strategy for selecting an appropriate algorithm for a specific problem can

only be based on simulation study on similar problems and empirical knowledge.

In the next chapter, we will discuss another important aspect of ANN, the

generalization problem.
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Chapter Four

Generalization and Representation

in MLP Networks

In the previous chapter, we have discussed the convergence of the Back-
Propagation learning algorithm. However an efficient convergent learning algorithm
can only guarantee the network will settle into a solution. Asto whether there exists
a solution, the representation problem, and how good the solution is, the general-
ization performance, are largely dependent on the structure of the network and the
learning critera. In this chapter, we discuss the generalization problem of ANN espe-

cially MLP networks and the representation capability of a class of self-association

networks.
4.1 Basic Problems of Generalization

The main objective of neural network research is to develop intelligent learning
( or self-programming ) machines, which are able to learn ( or generalize ) from
examples. Generalization in this context is a kind of inductive inference. Although
induction has been a central problem of philosophy, psychology and artificial intel-
ligence for a long time, the formulation of a complete and comprehensive theory of

induction is still the aim of current research [83].

For human beings, generalization ability is closely related to our species-specific

heritage the capacity and the tendency to convert encounters with the partic-

ular into instances of the general{84], or in another words, from part to whole. The

following simple example can demonstrate some basic features of generalization.

When the first three terms of a sequence are observed as 1, 2, 3, ...... it is quite
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natural to conjecture or generalize that the fourth term will be 4. However this

may not be the case. If the generation mechanism is given by the recursive relation

as

Tpy1 =aTp + b (4-1)

Then from the first three terms, it is easy to calculate that a = 1 and b = 1. So
the fourth term is actually 4. However if the generation mechanism is given by the

recursive relation

Tn42 = Tnyl + Tn (4 - 2)

then instead, the fourth term should be 5. As the generation mechanism can take

many other forms, for example
Tppo = ATpyy + b2y (4-3)

or even higher order forms, the fourth term can take many other possible values.
Selection of 4 as the fourth term is based on the simplest model of the observation.
If it is a continuous observation process, and a human is trying to find out the
underlying generation mechanism of the observed sequence, then when the actual
observation does not match with the prediction of the model, the model will be
adapted to be compatable with the observation. Thus generalization is a model
building or rule extraction process. The generalization performance is judged on

how well the extracted rule or model matches the observation.

In abstract form generalization can also be regarded as interpolation and ex-
trapolation of data ( or surface fitting ) in abstract space [85] [86], each input-output
pair in the learning sample set is a data point in the space. From this perspective,
different models are just different surfaces. Thus for artificial neural networks, their
potential models of the environment are heavily dependent on their structure and

the representation strategy used to represent the input signal and output action.
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This is especially true for networks which use the kind of learning algorithms which

minimize the error function within the learning sample set, like Back-Propagation

algorithm for example.

As the above simple example has demonstrated, learning problems are usually
under-determined, or using a numerical analysis term ill-posed, so some kind of
constraints must be imposed to restrict possible solutions. In the previous example,
simplicity is the constraint. If generalization is regarded as surface fitting, then
regularization theory can be used to impose necessary constraints on a learning
problem. However the constraints derived from regularization theory, like minimal
integrated curvature for example, may be considered too orientated to pure surface
fitting rather than to the real world generalization [86], so a generalization the-
ory based on high-level notions is proposed [86]. In this theory, some constraints
imposed on generalization are geometrical properties like rotation, translation and
scaling invariants. Although these geometrical constraints look closer to real world
generalization, they also have their limitations. The geometrical invariant can help
to obtain good generlization in some pattern recognition problems. However there
are many other situations where geometrical invariancy is not valid. For example
in a fractal pattern there are many variations of regularities, so the geometrical
invariant in one sub-region may not be applicable to other regions. On the other
hand, although minimal integated curvature may not sound relevent to high level
concepts, it is a good constraint for some early vision problems. Actually, the con-
straints imposed are an expression of a priori knowledge of the problem. It is very
difficult to judge absolutely which generlization constraint is the best and solution
must be problem specific. Under situations where no a priori knowledge is available,

some kind of statistical constraints have to be imposed for generalization [87] [88].
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4.2 The Generalization of MLP Networks

In the previous section we have stressed that the generalization performance
of ANN depends on their representation strategy and structure. In this section we

consider how representation and structure can influence the generalization of MLP

networks by considering some specific examples.
4.2.1 Representation and Multi-Solution Problems

Considered the MLP network used to implement the 4-2-4 encoding problem
[19]. The network architecture is shown in Fig-4.1. In the 4-2-4 encoding problem,
it is hoped that the network under training will find a transformation which can
transform a redundant four-bit binary code into a suitable two-bit code to reduce
the redundancy. In Table-4.1, Table-4.2 and Table-4.3, we have given three differ-
ent simulation results on the 4-2-4 problem with different input codes. If we look
at Table-4.1, we will find that after learning the internal representation or hidden
unit states for corresponding input output pairs are quite close to 00, 11, 10 and
01 respectively. It seems that the network has found the transformation which
can transform redundant four-bit binary codes into two-bit codes through gener-
alization. However if we look at Table-4.2 and Table-4.3, we will find the internal
representation in these situations are not so meaningful as in Table-4.1. Why did
the Back-Propagation Algorithm fail to find a similar transformation in these two
cases? Actually they are the same kind of problem, the only difference is the input
representation. The answer is that because of the different input representation,

the geometric constraints implied are different.

The four internal representations corresponding to the four inputs can be re-

garded as four points in a unit square on a two dimensional plane, and the weights
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connecting the hidden units and the output units form four dividing lines on the
plane. If two output codes have only one different bit, then there is one and only
one dividing line between their internal state points. From this observation, it is
quite easy for us to get the implied geometric constraints of the input and output
patterns in Table-4.1, which can be shown as in Fig-4.2. The four lines L,, Lq, L3
and L4 must form a four sides polyline, and four internal states A;, A, A3 and 44
must lie in the region shown in Fig-4.2. As the Back-Propagation Algorithm has
the tendency to move the points to the corners of the unit square or unit hyper-
cubic, so A;, Ay, A3 and A4 are very likely to be forced into the four corners of
the unit square which correspond to the two-bit code shown in Table-4.1 internal
states column. But for the input and output patterns in Table-4.2 and Table-4.3,
the implied geometric constraints are different. They are shown in Fig-4.3 and Fig-
4.4, Fig-4.3 for Table-4.2 and Fig-4.4 for Table-4.3. For the internal states pattern
shown in Fig-4.3, A; stands for the internal state of output pattern 0000, it gener-
ally lies in the middle of Ay, A3 and A4. This is consistent with the results shown
in Table-4.2. All these internal state patterns displayed in Fig-4.3 and Fig-4.4 are
unlikely to be forced into corners of the unit square. This is why in Table-4.2 and
Table-4.3 the Back-Propagation Algorithm did not find the internal states which

are as meaningful as in Table-4.1.

Another problem associated with the generalization of MLP networks is the
multi-solution feature of some learning tasks, the parity problem is an example. In
[19] a highly organized structure has been discovered by an MLP network using
a Back-Propagation algorithm which can solve the parity problem. However if we
look at a simple version of the parity problem with only 3 bits, a 3-3-1 MLP net-
work is used to implement it, and all the possible combinations of input patterns

are used as learning samples, then there are three different ways of dividing input
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space which can satisfy the condition set by the training sample set. These divisions
are shown in Fig-4.5, Fig-4.6 and Fig-4.7. Which solution the Back-Propagation
Algorithm adopts is dependent on the initial weights and learning parameters. In
our simulations, we have obtained all three solutions for different simulations. Thus
if the algorithm starts with random weights, which solution we will obtain is to-
tally unpredictable, in other words, the generalization of the algorithm is totally
unpredictable. This is the situation in which all possible input patterns are used as
learning samples. For the cases where only a smaller learning sample set is available,

the unpredictability could be even greater.

The generalization made by the MLP using the back propagation algorithm
is based on the geometric constraints posed by the training sample set. Different
training samples set up different constraints, but in some cases, for the same training
samples, because of the multi-solution nature of the problem, (like the parity prob-
lem we mentioned above) there are many different ways of dividing the input space,
all of which can satisfy the constraints. This will make the learning behaviour of
the algorithm difficult to predict. Previous reference [18] stated ‘The most obvious
drawback of the learning procedure is that the error-surface may contain local min-
ima so that gradient descent is not guaranteed to find a global minimium. However,
experience with many tasks show that the network very rarely gets stuck in poor
local minima that are significantly worse than the global minimum. We have only
encountered this undesirable behaviour in networks that have just enough connec-
tions to perform the task. Adding a few more connections creates extra dimensions
in weight space and these dimensions provide paths around the barriers that create
poor local minima in the lower dimension subspace.’ From £he above discusion,
we will note that ‘Adding a few more connections’ will also increase the number

of possible ways of dividing the input space while satisfying the constraints, and
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thus the learning will be more unpredictable. This conclusion is also confirmed by
the observation reported in [88]. In their experiment, the network is first set to a
solution with F = 0. Then the weights are perturbed to another point in the weight
space, and the network is re-trained. The new solution obtained by the network

could be quite different from the original solution.
4.2.2 Initial Structure and Generalization

Fully connected MLP networks are the most commonly used artificial neural
networks in research and application. The initial structure constraints imposed
on them are very weak. Theoretically they can divide the input space into arbi-
trary shapes. It has been recently proved that any continuous mapping can be
approximately represented by an MLP network[89]. This universal feature of MLP
provides a high degree of flexibility, but also reduces its generalization capability
and makes learning difficult. Even using a learning algorithm which can always con-
verge to the global minima, in multi-solution cases the final solution reached may
not be unique, and thus generalization is unpredictable. The small mean square
error on the learning samples does not necessarily imply that generalization outside
the learning sample set would be good. A universal MLP is more likely to store
information into a memory structure than to identify the hidden structure of the
process which generates the training samples[90]. Thus some prior structure (not
so universal) may be necessary for nontrivial learning. It may be argued that a
universal MLP can be regarded as a parameterized structure, for example, a weight
of zero value means there is no connection between the two neurons associated with
the weight. But the formidable high dimension of the parameter space and the
complexty of the error function surface makes it impossible to guarantee the most
suitable structure will be selected by the learning process. One may argue that an

exhaustive search method can be used, but apart from the fact that it cannot solve
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the multi-solution problem, it also makes the learning very slow as in some cases it
becomes an NP problem[91]. Thus nontrivial self-programming in artificial neural
networks can take place only if a priori knowledge about the enviroment in which

the system is to learn is built into the system as an initial structure(Shepard in

[92]).

The abstraction of neural networks with full connectivity and randomly dis-
tributed initial connection weights surely lacks biological plausibility. Real biological
neural networks do have structure, and this structure determines how they process
inputs. For example, the visual system has at least a dozen subsystems, each with
elaborate internal and external structure(93]{94]. These structures can only be in-
herited, because after the embryonic development phrase, organisms cannot develop

any new connection between two neurons which are not initially connected.

Thus the initial structure is crucial to satisfactory generalization of artificial
neural networks. The initial structure or internal constraints can guide the general-
ization process. We can illustrate this fact by a simple pattern recognition example.
It is a two class pattern recognition problem. The sample points from class A are
uniformly distributed in a circle or an ellipse. The sample points from class B are
uniformly distributed around the circle or ellipse. The task for a recognizer is that
after initial training when given new samples it should be able to classify them with
a satisfactory precision. We used two different kinds of networks to solve this prob-
lem. One is a 2-10-1 fully connected MLP shown in Fig-4.8. The second network
shown in Fig-4.9, we call a nonlinear perceptron, in which all weights between the
input layer and hidden layer are fixed ( they all have value of 1). The two hidden
units on the left use a quadratic function as their activation function and the two
hidden units on the right are just all-pass units (that is the output is equal to in-

put). The weights between the hidden layer and the output layer are modifiable, the
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output unit uses a sigmoid function as activation function. Both networks use the
gradient descent learning algorithm (or back-propagation algorithm). Some simu-
lation results are shown in Fig-4.10a, Fig-4.10b, Fig-4.11a and Fig-4.11b. Fig-4.10b
and Fig-4.11b show the results of the 2-10-1 MLP, and Fig-4.10a and Fig-4.11a are
for the nonlinear perceptron. The time for the MLP network to go through the
training set is twice that for the nonlinear perceptron. The decision boundary or
generalization of the nonlinear perceptron is better than that of the MLP. Actually
the nonlinear perceptron is not as universal as the MLP. As the MLP can form
piece-wise linear decision boundaries which can approximate any curve to any pre-
cision provided there are enough hidden units, the nonlinear perceptron can only
form circular or elliptic decision boundaries. It is more problem specific. However
it is this internal constraint that the nonlinear perceptron can only form circular
and elliptic decision boundaries which provides better generalization in this specific
enviroment. This is because it matches with the characteristic of the problem. Al-
though the MLP is more universal, the back-propagation learning algorithm cannot
make full use of hidden units, and some of them become redundant. As every hid-
den unit corresponds to a division line in Fig-4.10b and Fig-4.11b, it can be seen

that some division lines have not been fully utilized to form decision boundaries.

Some other examples of initial structure facilitating learning and generalization
can be found in[95], in which a hierarchical MLP network is designed for hand
writing digits recognition, and the simulation results demonstrate some obvious

improvement on generalization performance.

From the above discussion we can conclude that MLP networks using a Back-
Propagation algorithm are a suitable choice for problems in which no a priori knowl-
edge is available and the learning sample set is a typical representation of the func-

tional space. However when some a priori information is available, as shown by
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the above pattern recognition example, a custom-tailored network or learning al-
gorithm which incorporates the a priori knowledge can always be advantageous.
The representation strategy can also influence the generalization performance. It
is suggested in {85] that for abstract learning problems it may be advantageous to
attempt to code the data so as to produce a relationship which is as smooth as

possible. However this may not be easy.

4.3 Hidden Units and the Representation Capabil-
ity of Self-Association MLP

Although it has been proved that MLP networks can implement any nonlinear
mapping if there are enough hidden units in the network, when the number of
hidden units is bounded, their representation ability is also limited. In this section

we consider the limitation on an MLP type self-association network used for feature

extraction.

Feature extraction is an important technique for pattern recognition[96]. As
the raw input information usually has high dimensionality and a lot of redundancy,
compression techniques are used to form low dimensional feature vectors. This
process is also called dimensionality reduction. One aspect of recent research is
the application of neural networks to perform feature extraction or dimensionality
reduction[97][98]. Ackley , Hinton and Sejnowski used the neural network for the
compression coding problem[27], Baldi and Hornik analysed the linear unit neural
network for information compression[99]. The neural network used for these ap-
plications are usually self-association ( or auto-association ) networks. There have

also been attempts to use a self-association network to realize image compression

[100].
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A self-association neural network is shown in Fig-4.12. It is a fully connected
feed-forward multi-layer network, with an input layer and an output layer , and
one or more hidden layers. The input layer and the output layer have the same
number of units. The task for this network is that after going through some training
samples, when a pattern is presented to the input layer, the output layer should be
able to reconstruct the same pattern. The hidden la.ye_r can be regarded as a.feature
detector, it compresses the input patterns into more concise form. Some researchers
hope that this kind of network can be used to find useful transforms which can
compress the input information into feature vectors[101). For this network, an
important question is that for a specific number of input units how many hidden
units are needed to make the network capable of reconstructing every possible input

pattern? The following theorem gives the answer to this question.

Theorem: For a self-association neural network like that shown in Fig-4.12,
the number of input units is n, hidden units is p, usually p < n, all the input
and output patterns are considered to be binary ( black/white image ). If perfect
reconstruction is required, that is every possible input pattern should be able to be
reconstructed on the output layer, then the necessary condition is p must satisfy
p > n — 1. We assume that the activation function of hidden units is a sigmoid

function ( see Fig-1.2 ), and the activation function of the output units is step

function ( see Fig-1.3 ).

Proof: We denote the activation of hidden units as a vector H with dimension

of p,

H = [hy,hs, ..., h)T (4 - 4)

each hi(k = 1,2,...,p) corresponds to an activation level of a hidden unit. The

input to the output units can also be denoted as a vector I with dimension of n,
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and the corresponding output as a n dimension O

I=[i1,42,...,8n)7 (4-5)
each ix(k = 1,2,...,n) can be expressed as,
P
i = Zwk,jhj + Ok (4-6)
i=1
to facilitate the following discussion, we regard the 8x(k = 1,2,...,n) as a weight

which connects to an always active unit with active level of 1. Now if we expand

the vector H by one row of 1, that is,
H = [hy,ha,..., hp, 1]T = [h1,ha, .o hpyt]T (4-7)

then (4-6) can be rewritten as;

p+1
ik = ) wih; (4-8)
i=1

now H is a p+1 dimension vector, the relation between I and H can be expressed

as
1:1 wi1 w2 ... W1 p4d _ hl
13 w1 W22 ... W2ptl ho (4-9)
Zn wn,l wn’2 “oe wn,p-*-l hp'*'l

we denote the above matrix as W. The relation between the I and O can be ex-

pressed by a nonlinear operator NF as
O=NF'I (4 -10)
For any s-dimensional vector X, NF can be defined as,

NF- X = [f(z1), f(z2), .., f(z)]" (4-11)
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f( ) is the step function defined by

f(-r)={0’ ifz<0; (4-12)

1, otherwise.
So from (4-10) we can see that, for any i, if ix > 0, then its corresponding o is 1;
otherwise o is 0. If §ve regard every row of matrix W as a coordinate of a point in
a (p+1)-dimensional space, then every output pattern corresponds to a division of
these n points in a (p+1)-dimensional space into two groups by a linear hyperplane
defined in (4-8). For any output unit which is 1, its corresponding point is above
the hyperplane. otherwise it is below the hyperplane. Now we define F(m, p) as the
number of all possible linear divisions of m points in a p-dimensional space (taking
account of the direction of the hyperplane), we have F(m, 1) = 2 and F(1, p) = 2.

If the distribution of the points satisfy the general position condition, then it can

be shown that [102]
and from the initial condition F(m, 1) =2 and F(1, p) =2, it can be proved that

p—1
F(m, p) =23 Ck_, (4-13)
k=0

For an output layer with n units, the number of all possible output patterns is
2™. So our original problem can be replaced by the problem of seeking the smallest

p which satisfies 2" < F(n,p + 1). Now we will prove that p must be greater than

or equal to n-1.
Ifp=n-—1, then
F(n, p+1) = F(n, n)
n—1
k=0
=2x2" 1 =2" (4 - 14)
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for any p < n — 1, it is obvious that
P n-1
F(n,p+1)=2Y Ck  <2) Ck =2
k=0 k=0
So the smallest p which can guarantee F(n, p) > 2" is n-1. We have thus proved

the theorem.

The condition p > n—1 is only a necessary condition, not a sufficient condition.
So it is a lower bound. This is especially true since the last element of H hpy; is
fixed to 1, so it could limit the possible swap of polarity of hyperplanes. This can be
demonstrated in a two dimensional example. Consider an auto-associative network

with two output units and only one hidden unit. Then the ouputs can be described
by
O: = fi(z) = fi(wih +61)

02 = fo(y) = fa(wzh +62) (4-19)

where f;( ) is the step function defined in preceding paragraphs, w; and w, are the
weights, #; and 6, are the thresholds, h is the activation of hidden unit. If pair
(z,y) is regarded as a point on a plane, and the point (z,y) for which fi(z) = 0 and
f2(y) =0 as the original point of the coordinate system, then the point which can
produce 01 must lie in the second quadrant or on a positive half of the y-axis, the
point which can produce 10 must lie in the fourth quadrant or on a positive half of
the x-axis, and the point which can produce 11 must lie in the first qudrant. Thus if
we want output pair (O, O;) to be able to take all possible binary combinations as
00, 01, 10 and 11, then the distribution of four corresponding points (z,y) should be

a pattern like that shown in Fig-4.13. As all possible (z,y) points lie on a straight

line defined by
T = wlh + 01
y =wh + 0, (4 -16)
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It is obvious that no straight line can go through all the four points displayed

in Fig-4.13. That is to say a single hidden unit cannot reproduce all the binary

combination patterns for two output units.

The above result seems quite pessimistic for the feed-forward self-association
network, but it may not be so. If we demand only half of all possible input patterns

are reconstructable, then the bound of p can be reduced by half. The proof is given

as follows.
In this case the problem is to find the smallest p which satisfies
F(n, p) > 2" (4-17)
If n is an odd number, then let n = 25 + 1 ( s is an integer ). Because
2s
Y ck =21 and Ci_,=CpI17"
k=0

s0 we have
3
2y Ct_ > 2
k=0

s—1

2y Ck_ <2
k=0

Thus to satisfy the condition (4-17), p must satisfy p > [252]. ( where [ ] means

truncate the decimal part ) If n is an even number, it can be represented as n =

2s + 2. It is easy to obtain

2 Z C§s+1 = 2n—1
k=0

so to keep (4-17) hold, p must satisfy p > ["—;—1] We can conclude that for half

reconstruction, p must satisfy

pz["gl} (4-18)
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Finally we may conclude that the limitation on the number of hidden units has
nothing to do with the learning algorithm, it is only related to the structure of the
network. Thus it is a structure problem which cannot be solved by the learning
algorithm. The lower bound of the number of hidden units cannot be circumvented
by adding more hidden layers. From our foregoing analysis, it can be seen that the
quantitative relation of the number of output units and that of the adjacent hidden
layer for the perfect reconstruction condition is always held no matter how many

hidden layers the network has. Thus it is a fundamental limitation.

The result provided by the theorem seems quite pessimistic, although it may
not be so. It is only under the perfect reconstruction condition that we would
have to have the same number of hidden units as that of the input. But in most
real application problems, useful patterns are only a small portion of all possible
patterns, many of them are meaningless for a specific problem. In these cases we
can use less hidden units than that demanded for perfect reconstruction. Actually,
we have already shown that if only half of all possible patterns are needed, the

bound of p can also be reduced by half.

In this and the previous chapters we have discussed some properties of ANN,

especially MLP networks. In the following chapters we will discuss potential appli-

cations of ANN.
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Input Pattern

Internal Representation

Output Pattern

0001 0.0 0.0 0001

0010 1.01.0 0010

0100 1.0 0.0 0100

1000 0.01.0 1000
Table-4.1

Input Pattern

Internal Representation

Output Pattern

0000 0604 0000

0001 0.0 0.0 0001

0010 1.0 0.0 0010

0100 0.31.0 0100
Table-4.2

Input Pattern

Internal Representation

Output Pattern

0001 1.0 0.0 0001

0011 1.00.6 0011

0111 0.71.0 0111

1111 0.01.0 1111
Table-4.3
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OUTPUT LAYVER

HIDDEN LAYER

INPUT LAYER

Fig-4.1 MLP network for 4-2-4 encoding problem

Fig-4.2
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Fig-4.3

Fig-4.4
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Fig-4.5

Fig-4.6

Fig-4.7
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Fig-4.10a

This figure shows the distribution of training samples and the decision bound-

ary learned by the nonlinear perceptron.
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Fig-4.10b

This figure shows the distribution of training samples and the decision bound-

ary learned by the 2-10-1 MLP. THe distribution is the same as Fig-4.10a
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Fig-4.11a

This figure shows the distribution of training samples and the decision bound-

ary learned by the nonlinear perceptron.
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Fig-4.11b

This figure shows the distribution of training samples and the decision bound-

ary learned by the 2-10-1 MLP. THe distribution is the same as Fig-4.11a
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Fig-4.12 Feed-forward self-association network
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Fig-4.13 Output vector distribution pattern
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Chapter Five

MLP Networks for Nonlinear
System Identification

5.1 Introduction

Representation and identification are fundamental problems in system theory
and signal processing. One way of establishing a mathematical model of a given
system is by analyzing the physical mechanisims governing the operation of the
system, and then write down the differential or difference equations which describe
the operation of the system based on physical laws. This approach may not be
possible in many situations, because of our incomplete knowledge of the system. An
alternative approach is to build a system model based on observation of the input
and output of the system. Thus the representation and identification of systems
with given input-output relationship is an important problem for system research.
For linear time-invariant systems this problem has been well studied and many
methods and algorithms are available [103] [104]. However for nonlinear system

identification the problem is much more complex and difficult.

One way to describe nonlinear systems is to use the Volterra series[105]. For a
system with output time function y(t) and input excitation x(t), the input and the

output relations can be expressed in the form

y(t) = /0 " ha(m)e(t — m)dm + /0 ” /0 ” ha(r, ma)a(t — 1)a(t — 72)dridr,
+ /°° /°° /°° ha(t1,72,73)z(t — 11)z(t — T2)x(t — T3)dT1dT2dT3

/ / (71,72 TR)z(t = T)z(t = T2) - -

z(t — 1o )dry -+ dT, +

This series is called a Volterra series, and the functions hn(7y,...,7,) are called
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the Volterra kernels of the system. The analysis assumes that the system is time
invariant. However there are two basic difficulties associated with the practical ap-
plication of the Volterra series. The first difficulty concerns the measurement of
the Volterra kernels of a given system and the second concerns the convergence of
the series. Other functional series expansion methods for nonlinear system repre-
sentation include Wiener series [105] and the Uryson operator [106]. In spite of
the theoretical promise, all these models have some practical difficulties for general
applicability. While the input-output finite order differential or difference equa-
tion model achieves wide acceptance in representation and identification of linear
systems, it is natural to try to extend the input-output model to nonlinear sys-
tems. The input-output difference equation model for discrete nonlinear systems
was proposed by Leontaritis and Billings in [107]. Recently with the development of
research in ANN, Narendra and Parthasarathy proposed a nonlinear system iden-
tification scheme based on an finite order input-output difference equation model
and MLP network [108]. There are many open questions concerning the theoretical
and practical issues of the identification of nonlinear systems with neural networks.
Examples are the excitation condition and the convergence of the weights. In this
chapter, we discuss some of these fundamental problems and provide some computer
simulations. Because of the theoretical difficulties of nonlinear systems, computer

simulation is still an indispensible approach for nonlinear system study.

5.2 Identification of Nonlinear Systems with Static

Nonlinearity
Many nonlinear systems can be described by the recursive difference equation
z(n+1) = f(z(n),z(n-1),...,z(n—p+1),u(n),u(n-1),...,u(n—g+1)) (5-1)

where z(i) is the output of the system, and u(i) is the input to the system. It can
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be proved that under some mild conditions nonlinear systems which operate near
the equilibrium point can always be described by a difference equation of the form
given in (5-1) [107]. From this expression we can see the essence of applying the
neural network to nonlinear system identification is to use the neural network to
approximate the nonlinear mapping f( ) in (5-1). Theoretically, the MLP neural
network can approximate any continuous nonlinear mapping to any precision, pro-
vide there are enough hidden units [89]. | However in a practical implementation,
how well a MLP network approximates a given nonlinear function depends on many
factors, such as number of learning samples and network structure. As the foun-
dation of this nonlinear system identification scheme is a static nonlinear mapping

approximation, we initially discuss the identification of static nonlinear mappings.

5.2.1 Static Nonlinear Mappings

The identification of a static nonlinear mapping can be implemented with the
structure shown in Fig-5.1, where the back propagation algorithm is used to adjust
the weights of the neural network. Fig-5.2 shows the simulation results of using a

1-20-10-1 neural network to approximate the nonlinear function
f(z) =2° +0.3z% - 0.4z

and Fig-5.3 shows the simulation results of using a 1-20-10-1 neural network to fit

the nonlinear function
1 4 2
f(z) = Z(:r - 2.94z* — 0.44z — 0.5)

It may be observed that within the learning section, the fitting of the curves is
almost perfect. However if we expand the displayed sections to [-2, 2}, as shown
in Fig-5.4 and Fig-5.5, we find the fit outside the learning section is disappointing.

This poor generalization is the intrinsic weakness of unstructured neural networks.
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Fig-5.6 shows the simulation result for fitting the nonlinear function
f(z) = 0.8sin(wrz) + 0.2sin(57z)
and Fig-5.7 is for
. T .
f(z) = -0.31z + 0.8sm(—2—) — 0.1sin(107z)

The results are not as good as those in Fig-5.2 and Fig-5.3. From our own simulation
and that in Narendra’s paper[108], we suggest that the more singular points ( the
points where the derivative of the function is zero ) the function has, the more

difficult it is to fit with a neural network. That is more hidden units and training

time are needed.

As it is usually difficult to envisage the shape of multi-variable functions, we

define a Discrepency Estimation Function (DEF) d(x) in our simulation,
d(z) = max |f(Y) - NN(Y)|

where Y is the variable vector, and S, is a shell defined as S, = {Y | YTY =
22 or |Y|| = z} So d(x) can be used to measure the discrepency between the
nonlinear function and the neural network. To save computation time, we used the
random samples in S, to estimate the d(x). The number of samples is 2™, dim
is the dimension of the Y. For example, for a three variable function, eight random
samples are used for every fixed x to estimate the d(x). If eight random samples

are denoted as Y;,Ys,...,Ys, and ||[Yi||=2 (: =1,2,...,8), then

diz) ~ Y;) - NN(Y;
_d(z) el |£(Y5) (Y3)]
Fig-5.8 shows the d(x) for the fitting of

z1z3(z; + 2.5)(z; — 1.0)
1+ z? + 2}

f(xlyzZ) =
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with a 2-20-10-1 neural network. Fig-5.9 and Fig-5.10 show the surface of f(z,,z2)

and the neural network respectively. In Fig-5.11, the error surface e(z;,z2) is

displayed, it is defined as
e(z1,z2) = |f(z1,22) — NN(z1,22)|

We can see that the central region is low and relatively flat, it corresponds to the
initial part of d(x) in Fig-5.8. The general tendency of e(z1,z2) and the d(x) is the
same. This can also be shown in Fig-5.12 and Fig-5.13, in which

f(z1,22) = (z1 — 0.9)(z2 + 0.3)

This gives us confidence to use d(x) as a coarse estimation of fitting error between

a nonlinear function f( ) and the neural network.
5.2.2 Dynamic Systems with only Static Nonlinearity

Now we consider the identification of nonlinear systems with only a static non-
linearity ( in [108] they are called Model-I nonlinear systems ) with MLP networks.
A second order Model-I nonlinear system can be described by the difference equation
of the form

z(k +1) = ayz(k) + azz(k — 1) + f(u(k)) (5-2)
which is a linear dynamic system with a nonlinear input mapping, u(k) as the ex-
citing signal. We used a 1-20-10-1 neural network to identify the nonlinear function
f( ) which has the form

flu) =u® + _0.3u2 —0.4u

The neural network has two hidden layers, the first hidden layer has 20 units and

the second has 10 units. The difference equation of the neural system is

3k +1) = ay2(k) + agd(k — 1) + NN(u(k)) (5-3)
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NN( ) represents the neural network. If the error function e(k) is defined as e(k) =

z(k) — £(k), then from equation (5-2) and (5-3) we have
elk+1) = are(k) + aze(k ~ 1) + (f(u(k) ~ NN(u(})) (5-4)

The partial derivative of e(k+1) with respect of w;; ( w;; is a weight of the neural

network ) is
Oe(k+1) . de(k) +a Oe(k — 1) _ ON (u(k)) (5~ 5)

— ] 2
Bw,-j 3w,'j 8w,~,~ Bwij

Equation (5-5) describes a linear system which has the same form as the linear part
of equation (5-2) and thus is known. The input term 6_1%(_&(_115)) can be calculated
by the back propagation algorithm. As the partial derivative is often used as a
measurement of sensitivity, the structure used for computing the partial derivative,
like the back propagation algorithm, is called a sensitivity network[108]. Thus the
structure for the identification of a Model-I nonlinear system is shown in Fig-5.14.
Strictly speaking, the equation (5-5) is only valid when the weights of the neural
network are constant. As the weights are always changing in the identification
process, the partial derivative obtained from equation (5-5) is only an approximate
estimation. Thus, unlike the back propagation algorithm, the algorithm used here

is not a strict gradient descent algorithm. The simulation results are shown in the

following figures. (Fig-5.15—5.17)

It seems the transient time of the back propagation is very short and it can trace
the output of the plant very quickly. But actually this is not completely true. If
we stop the weight updating of the neural network, the output of the neural system
will fail to trace the output of the plant. This can be seen very clearly in Fig-5.15,
in this case the weight updating stopped at time 300. The reason for this is that
in the identification algorithm, we have two dynamic processes, one is described by

the difference equation (5-3), and the other is the weight updating process. During
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the period before time 300, it is the weight updating process itself that is tracing

the dynamic process, rather than the process defined by the equation (5-3).

To provide more evidence for our argument, we repeated the above simulation
with another two different excitations. One is a triangular wave, which can be

expressed as

(k) = 0.01(t — 2k x 100), if 2k x 100 < ¢ < (2k + 1) x 100;
=0 0.01(2k x 100 — t), if (2k 1) x 100 < t < 2k x 100,

where k is an integer, the results are shown in Fig-5.16. The results of random
excitation are shown in Fig-5.17. It is quite clear that in Fig-5.16, the back propa-
gation algorithm can trace the output of the nonlinear system quite well after only
50 iterations, just as in Fig-5.15. But Fig-5.17 shows the results obtained with a
uniform random excitation. In this case even after time 350 the tracing is still very
poor. This provides strong evidence that it is not the fast and correct identification
of the system which permits the output of the neural system to trace the output
of the nonlinear system, but the weight updating process itself that is tracing the
nonlinear system. The waveforms in Fig-5.15 and Fig-5.16 are slowly changing and
regular, so it is possible for the weight updating process to trace them. Actually
we see that the during the training period, the output of the neural system is al-
most a slightly delayed replica of the output of the nonlinear system. However for
the random excitation case, the output of the nonlinear system is changing so dra-
matically and irregularly that only when the neural network has approximated the
nonlinear function to a specific precision can the neural system trace the nonlinear
system. The randomness needed here is to force the identification process into ac-
tion. therwise the tracing of the outpﬁt of the nonliﬁea;r system is realised by the
continuous changing of the weights. It is more like a weight convergence condition
and it is different from the persistent excitation in adaptive system theory [109]

[110]. Persistent excitation ensures that the excitation should be rich enough to
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make every aspect of the system identifiable. But the randomness needed here is
employed in a different sense. Actually we are only going to identify the nonlinear
function f(u) for u € [-1,1], the excitation u(k) = sin(4¥) is revealing enough.
Fig-5.18a and Fig-5.18b show the simulation results after 199700 learning iterations.
Fig-5.18a shows the output traces and Fig-5.18b shows the curve of the nonlinear
function f(u) in equation (5-2) and that of the 1-20-10-1 neural network. Although
the learning is extremely long ( 199700! ), the identification shown in Fig-5.18b is
poor and tracing broke down after the learning ( weight updating ) stopped ( see
Fig-5.18a ). On the other hand the tracing during the learning period is perfect. It

provides a strong case that the irregular excitation should be used to break down

the tracing by the weight updating, and force the identification process into action.

Randomness can actually lead to better identification. Fig-5.19a and Fig-5.19b
show the simulation results for random excitation. The excitation is an independent
random process with a uniform distribution over [0, 1]. We can see from Fig-
5.19b that the identification of f(u) for v € [0,1] is perfect. We can also use a
sinusoidal excitation to get similar results. If the sinusoidal excitation has the form
u(k) = sin(¥zk), and a is irrational number, the trace of u(k) will appear irregular.
As it is impossible to implement an irrational number on a digital computer, we
used the function u(k) = sin(52==) instead. The identification results are shown

in Fig-5.20. Thus, what is necessary for correct identification is some irregularity

in the excitation.

As it has plagued all the neural network applications, it is nof surprising that
geﬁeralization is also a problem in nonlinear system identification. If we extend the
display section of the curve of neural network in Fig-5.19b, as is shown in Fig-5.21,
then we will find that the fitting outside the section [0, 1] is much worse than within

[0, 1]. So for a real application, the magnitude of the excitation should be sufficient
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to cover the whole dynamic range of interest.

To study the noise immunity of the back propagation algorithm for model-1
system identification, we added some random noise with normal distribution to the
system, as shown in Fig-5.22. The simulation results are shown in Fig-5.23. Using
the noise with the standard deviation of 0.333 ( or variance of 0.1 ), the identification
is reasonable, but obviously worse than that shown in Fig-5.20. If we increase the
standard deviation to 0.5, we can see in Fig-5.24 that the identification is very poor.
If the noise is added at the input port of the neural system as shown in Fig-5.25,
rather than at the output of the nonlinear system, the identification will also be
unsatisfactory. This can be seen in Fig-5.26, where the noise level is the same as in

Fig-5.23, but the identification is inferior.

5.3 Identification of Systems with Nonlinear Dy-

namics

In this section we discuss the identification of nonlinear systems which have
nonlinear dynamics but linear input excitation. They are called Model-II nonlinear

‘systems in [108]. The system can be described by a nonlinear difference equation
as
m—1
z(k+1) = f(z(k),z(k = 1),...,a(k—n+1))+ Y biu(k 1) (5 - 6)
1=0
where the coefficients b; are known, and the f( ) is an unknown continuous function.

To simplify the simulation and the analysis, (5-6) can be replaced by the following

equation

z(k+1) = f(z(k),z(k = 1),...,z(k = n+1)) +u(k) (56-17)

Because all the coefficients b; and the excitation u(k) are known, there is not much

difference between using equation (5-6) or (5-7) for simulation.

90



In this identification problem, the neural system which is used to model the

plant can be represented as
#(k+1)=NN(&(k),&(k-1),...,8k-n+1)) + u(k) (5-28)

where #(k) is the estimation of x(k), and u(k) is the known excitation which is the
same as that in (5-7). From equation (5-7) and (5-8), the discrepancy between the

plant and the neural system can be calculated as

e(k+1)=z(k+1)—2(k+1)

= f(z(k),...,z(k—n+1)) - NN(&(k),...,&(k—=n+1)) (5-9)

the e(k) is used in the identification processes to adjust the neural network to
minimize the discrepency between the plant and the neural network. As the par-
allel identification scheme described in (5-9) is difficult to converge even in linear
identification, in our following study the series model is used. The architecture

of identification is shown in Fig-5.27, and equation (5-9) can be replaced by the

equation

e(k +1) = f(z(k),...,z(k = n+1)) - NN(z(k),...,z(k—-n+1)) (5-10)

From equation (5-10) we can see that the identification problem in this case
is almost the same as the function fitting problem which is discussed in section 2.
The difference here is that the éamples used for calculating e(k) are determined by
the property of the system to be identified. However in the function fitting case the
samples can be selected arbitrarily. Thus to obtain a satisfactory identification, the

system and the excitation should meet some demand .
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5.3.1 System Dynamic Properties and Identification Performance

First we consider the linear system situation, in this case the function f( ) has

the form
f(z(k),...,z(k=n+1)) =arz(k)+ - +az(k -n+1) (5-11)

If a FIR adaptive filter and LMS algorithm are used for the identification, it can be
shown that under the persistent excitation condition, the coefficients of the filter will
converge to a; exponentially. This also means if a single layer linear perceptron is
used as NN( ), it will converge to the linear function f( ) under a persistent excitation
condition. However if a Multi Layer Perceptron is used, as is the case in this chapter,
the persistent excitation can no longer guarantee the convergence of NN( ) to the
f( ). In the adaptive filter case, the structure of the filter is the same as that of the
plant, so identification is essentially parameter estimation and the convergence of
the parameters under the persistent excitation implies the convergence of NN( ) to
the f( ). In the case of a MLP neural network, its structure is different from the plant
and it is more universal than a single layer perceptron. This universality gives it
a powerful representation ability, but also renders poor generalization (see Chapter
4). The generalization mechanism of the MLP neural network is the interpolation
between the learning samples and extrapolation outside the learning region. To
make the interpolation match the function which produces the learning samples,
Athe learning samples should be very dense within the learning region of the input
space, and generally the extrapolation outside the l;:arning region is very poor,
as shown previously in this chapter. Thus to obtain satisfactory identification, the
learning samples should covér the whole input domain which one is interested in, and
have sufficient density. The persistent excitation cannot guarantee this, only a more
general excitation and the system with specific properties can ensure identification.

Because the learning samples are actually the states of the system, they lie on
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the phase trace which is determined by the excitation and the system properties.

Thus the distribution of learning samples is closely related to the excitation and

the system properties.

There are several system properties which can influence the phase trace. First,
we consider the controllability of the system. In system theory, controllability means
any system state can be reached within finite time with an appropriate excita-
tion[111]. Therefore if a system is controllable, theoretically the phase trace can

densely cover the whole phase space under an appropriate excitation. (In some cir-

cumstances this is random excitation. ) This is precisely the requirement in using

a MLP neural network for system identification.

For a linear system which is described by the state equation
Xk+1 =Aik+éuk (5—12)

where A is the transfer matrix, Xy is the state vector, the condition of controllability

is that the C matrix defined by
C=[B,AB,...,A" B

has full rank. For the linear system represented by the equation (5-11), the A

matrix is
a; as Qn-1 Gan
1 0 0 0
A=]0 1 0 0
0 0 ... 1 0

and B = (1,0,... ,0]T. It is easy to verify that the matrix C has the form

1 x x ... X
0 1 x ... X
C=}|. . . . .
0 0 0 ... 1
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irrespective of the values of the x elements , the C matrix is absolutely full rank.

So the linear systems described by the equation (5-11) are always controllable.

Besides the controllability, the phase trace is also influenced by the correlation
property or bandWidth of the system. Although the controllability guarantees that
every corner of the state space is reachable under appropriate excitation, the dis-
tribution of the phase trace is more influenced by the bandwidth of the system if
the excitation is not specifically designed. Under white noise excitation, the output
of a narrow band system will be a highly correlated process, the phase trace will
be more likely restricted in a narrow region along the diagonal line, although there
is the possibility that the phase trace will reach every corner of the state space
ultimately. The distribution of phase trace is highly non-uniform in this case. To
obtain a satisfactory identification in a large portion of state space, the system
must be wideband or the excitation should be specifically designed. It is only under
these conditions, that the coverage of the state space by the learning samples will

be dense and complete, assuming the learning time is of sufficient length.

In Fig-5.28 to Fig-5.32, the simulation results for a narrow band system are

shown. In this case the plant to be identified is a linear system which can be

described by the difference equation
z(k+1) = 1.6z(k) — 0.65z(k — 1) + u(k) (5-13)

This is a narrow band system, and the output is highly correlated even under
random excitation. Its phase portrait is shown in Fig-5.28, and it is clear that the
phase trace is only concentrated in the diagonal region, although the excitation is
random. Thus the learning samples for the neural network are also concentrated
in the diagonal region. After 99,900 learning iterations, the error surface and the

curve of d(x) are shown in Fig-5.29 and Fig-5.30. From Fig-5.29, it is obvious
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that the discrepency between the neural network and the plant is small only in the
diagonal region. This means the generalization will be poor outside this region of
state space. Fig-5.31 shows the tracing performance of the neural system under
the learning random excitation. The learning stopped at iteration 99,900, but the

tracing is still quite good even after that time. If the excitation is replaced by a

square wave which has the form

w(k) = { 7004 100X 1<k <100 X n+ 50
1 0.04, otherwise.

where n is a integer, the tracing performance is shown in Fig-5.32. The generaliza-

tion is not perfect.

If the equation (5-13) be changed to the form
z(k +1) = 0.5z(k) — 0.9z(k — 1) + u(k) (5 - 14)

it will be a wide band system. The simulation results for the wide band system are
shown from Fig-5.33 to Fig-5.37. The phase portrait is shown in Fig-5.33 and is
much more wide spread than Fig-5.28. After 99,950 learning iterations, the curve
of d(x) is shown in Fig-5.34. When compared with Fig-5.30, it is quite obvious that
the small discrepency region is much bigger. The tracing performance during the
learning period is shown in Fig-5.35. Fig-5.36 shows the tracing under a square

wave excitation after learning. The square wave is

w(y = { 704 100X < k < 100 x n + 50;
~ 10.4, otherwise.

The two output traces are almost identical in Fig-5.36. Clearly the generalization

is better.

Now we consider the nonlinear system situation. It is assumed that the non-

linear function f( ) in the equation (5-7) is bounded. In this case, it can be proved
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that any state of the nonlinear system which is described by the equation (5-7) can
be reached from any other state in finite time with an appropriate input excitation.
For a nonlinear system with order of N, the equation (5-7) can be rewritten in a

state variable form as

z(k+1) f(z(k),...,z(z = N+1)) u(k)
z(k) z(k) 0
: = : +| (5 -15)
2(k - N +2) (k- N +2) 0

If at time k, the state of the nonlinear system is X", that is

z(k) 7
Xk = = = Xo
z(k— N +1) %
and the destination state is X4 = [z¢,...,z%]T, then the excitation u(k) can be

designed in the following way to make Xk+N = X<, Now let

u(k) =z‘IiV —f(l'?v,...,l'i’)

=z% - f(z(k),...,z(k = N +1))
then we have z(k + 1) = z%. If we let
u(k +1) = z}’v;l - f(z(k+1),...,z(k = N))
then z(k + 2) = z%_,, and go on untill

wk+N-1)=z% - f(z(k+N-1),...,z(k))

then
z(k+ N) z¢
Kepn = =|:|=X¢
z(k+1) :c‘fv

Now we have shown that any state can be reached from any other state in finite
time with an appropriate excitation. That means the nonlinear system described

by the equation (5-7) is controllable and every corner of the state space is reachable.
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The controllability of the system can only guarantee theoretically that the
phase portrait can cover the whole state space, but as shown in the linear system
case, the phase portrait of the system under a general excitation is determined by the
dynamic property of the system. For the linear system, it is the bandwidth which
influences the phase portrait. The bandwidth of the system determines the transient
response of the system. A wide band system has a quick decay transient response, so
under an external excitation the output is less influnenced by the past experence.
Thus the correlation is weak and the phase portrait is usually wide spread. In
contrast for a narrow band system, because of its long lasting transient response,
the correlation is strong and the phase portrait is more likely to be concentrated
in the diagonal region. Although the concept of bandwidth and transient response
cannot be applied to the nonlinear system directly, it is still reasonable to conclude
from the foregoing analysis of the linear system that the phase portrait of the
nonlinear system is influenced by the strength of its equilibrium attractor. For a
strong attractor, the output of the system will have weak correlation and the phase
portrait is wide spread. For a weak attractor, the phase portrait will be more likely
to concentrate in the diagonal region. The strong attractor here means that any
deviation from the equilibrium point will be attracted back very quickly. It is similar

to the fast decay transient response in the linear system.

To verify the above prediction, three different nonlinear systems have been

simulated. System A can be represented by the equation
z(k + 1) = 1.8sat(z(k)) — 0.9sat(z(k ~ 1)) + u(k) (5 - 16)
where sat( ) is a linear saturation function which has the form

09, ifz>09
sat(z) = { z, if ~09<z2<0.9;
~0.9, ifz < —0.9.
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system B can be described by the equation

(k)z(k — 1)(z(k) + 2.5)(z(k) - 1)

z
z(k+1) = T+ 22(k) + 2(k - 1) + u(k) (5-17)
and system C is described by
827x(k)(1 —z(k -1
ok 1) = 22ERA =k D) (5 - 18)

1+ z%(k) +2%(k-1)

All these three systems have a uniformly asymptotically stable equilibrium at z =
0. Fig-5.37a, Fig-5.37b and Fig-5.37c show how following a deviation the system
returns to the equilibrium state for three different systems. The phase portraits of
these three systems are shown in Fig-5.38a, Fig-5.38b and Fig-5.38c respectively.
System A has the longes't> transient process ( see Fig-5.37a ) its output is strongly
correlated and the phase portrait is concentrated in a narrow diagonal region (see
Fig-5.38a ). System B has the shortest transient process ( see Fig-5.37b ), so its
phase portrait exhibits the greatest spread ( see Fig-5.38b ). The identification
simulation results are shown in Fig-5.39 to Fig-5.44. Fig-5.39 shows the output
traces of the system A and its neural network model. It may be seen there is rarely
any dramatic change and thus the correlation is strong. Fig-5.40 shows the output
traces of system B and its neural network model, the correlation is much weaker.
From Fig-5.39 to Fig-5.41, it is clear that the tracing performance of the neural
system is good in all these cases. But the identiﬁcation- performance of the system
A and system C is not satisfactory as shown by the d(x) curves in Fig-5.42 and
Fig-5.44. Because of their narrowly spread phase portraits, the small error regions
a.rc;,.a.lso small. The d(x) 'curve of system B is shown in Fig-5.43, it has a larger
small error region. In summary, to obtain a satisfactory identification of a system

with a MLP neural network, the system needs to have a short transient process.

This is true for both linear and nonlinear systems.
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5.3.2 Prediction of Chaotic Time Series

The above discussion about the application of MLP neural networks to nonlin-
ear system identification is restricted to systems which have an asymptotically stable
equilibrium point. As is well known there are a large number of nonlinear systems
whose attractors are not simply points or limit cycles, but are strange attractors
which can lead the system into chaotic behaviour[112],{113]. It is a natural exten-
sion to discuss the identification of nonlinear systems which have strange attractor
structure with MLP neural networks. Generally speaking, a strange attractor is
an assembly of an infinite number of points which are the states of a autonomous
dynamic chaotic system. A mathematical explanation of strange attractors can be

found in [113]. For the nonlinear system described by the equation
z(k +1) = (z(k) = 1.3)(z(k) + 1.1)(z(k — 1) — 1.1)(x(k ~ 1) + 0.9) + u(k) (5—19)

if u(k) = 0, it has a strange attractor shown in Fig-5.45a. This kind of phase
portrait is obviously unfavourable for identification with an MLP neural network.
If u(k) is a random excitation, the phase porfrait will be more wide spread, which is
shown in Fig-5.45b. The identification simulation results are shown in Fig-5.46 to
Fig-5.48. Fig-5.46 shows the d(x) curve obtained after 399,950 learning iterations
under zero excitation. In this case although the output of the nonlinear system
looks random, its phase portrait is restricted to the strange attractor shown in Fig-
5.45a and the identification has failed. Fig-5.47 shows the d(x) curve obtained after
399,950 learning iterations under random excitation and clearly the identification is
much better. However the real problem with the identification of chaotic systems is
that, fo‘r‘a chaotic system any infinitesimally different starting points will produce
significantly different outcomes. So any small modeling error will be amplified to
its maximum in the dynamic process. The d(x) curve in Fig-5.47 shows that the

neural network approximates the chaotic system quite reasonably in the central
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region of the state plane. However when the neural system and the chaotic system
are started from the same initial point close to the origin of the state plane, the
dynamic processes shown in Fig-5.48 are totally different after a few steps. In
this sense, the identification has failed. This represents a fundamentally difficult

problem for the identification of a chaotic system with an MLP neural network.

One of the objectives of chaotic system research is to predict the development
of some random like processes. ( e.g turbulence, population dynamic process in
Ecology, and climate dynamic processes. ) The pratical problem of prediction is to
use the past sample data to predict the future development of the process. For a

autonomous chaotic system represented by the equation
z(k+1) = f(z(k),z(k - 1),...,z(k —n+1))
its MLP neural network predictor can be formed like
#(k +p) = NN(z(k),z(k = 1),...,z(k—n+1))

where NN( ) is a MLP neural network and p is the forward prediction step. It
is impractical to do long-term prediction about chaotic time series because of the
reason discussed in the above paragraph. However MLP network can be used quite
successfully for short-term prediction. A one step forward prediction simulation is
shown in Fig-5.49. Frqm Fig-5.48 we can see that after about 10 steps the match
be»tween the chaotic system and MLP network model breaks down. So for this

system, the feasible predication range is around ten steps.

As the phase portrait of a chaotic system is restricted to a strange attractor
in its phase space, if we have a reasonable long observation, we can always obtain
a learning sample set which gives a typical representation of the strange attractor.

Then a MLP network can be trained to perform prediction. This feature of phase
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portrait of chaotic time series was explored in some other prediction algorithms

[114].
5.4 Concluding Remarks
In conclusion, the following points should be noted.

e It may appear that the nonlinear system identification with MLP networks
is the same as parameter or coefficient estimation if we regard the weights of the
network as parameters. However there are some difference. In parameter estimation
we usually hope the parameters converge to a unique solution, while in MLP network
identification, we are not concerned with the value of the weights. Due to the multi-
solution feature of MLP networks the weights can take any value as long as the
overall input-output relationship is a good approximation of the mapping we are
modeling. In addition, the MLP network has a more powerful representation ability

than usual parameter models.

o For the identification of systems with an MLP neural network, random exci-
tation is usually needed. This is not only for the coverage of the learning samples,

but also for the convergence of the weights in the model-I case.

e As has already been shown the universality of a neural network does not
necessarily'give it? a.dvanta,ges. in applications. In the identiﬁ—cation problem, this
principle has been illustrated again. For the linear systems discussed in section
3, a single layer linear perceptron can identify the system under a less restricted
condition and use shorter learning time than the MLP neural network, and can also
give a Better generalization, although the MLP neural network has a more power-

ful representation ability. The match between the built-in structure of the neural
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network and that of the system to be modeled is vital for satisfactory identification

and efficient learning. But in the case when little structure information is available,

the MLP neural network model can always be used as a last resort.

e To use the MLP neural network for system identification, the system to be

identified and excitation should meet certain conditions, otherwise the identification

performance will be very poor.

o If the identification is only restricted to a small part of the state space,
theoretically we cannot say the identification is completed. However from a practical
point of view, the results may still have application value. For example in the narrow
band system, correct identification is restricted in the diagonal region, but under
general conditions the phase portrait of the system will rarely go out of this range.
To drive the phase portrait out of the diagonal region, a strong high frequency
excitation is required and would rarely occur in a practical situation. In some
cases, although the neural system is a poor model of the real system, it may still

be a good predictor. The chaotic time series prediction discussed in section 3 is an

example.

In the next chapter we discuss the application of artificial neural networks in

communication channel equalization.
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Fig-5.1 Static Mapping Identification
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Fig-5.2

Solid line is the curve of f(x) and the broken line is of the neural network. learning time is 50000,
learning section is [-1, 1], step s12¢=0.25
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Fig-5.3

Solid line is the curve of f(x) and the broken line is of the neural network. learning time is 50000,
learning section is [-1.5, 1.5], step size=0.25.

20 % -0 43 a0 [$] 1.0 (2%} Lo

Fig-5.4

Solid line is the curve of f(x) and the broken line is of the neural network. learning time is 50000,
learning section is -1, 1], step s1ze=0.25.

104




als

E XY of

-1.9
-39 -1.3 1.0 s a0 [ %] .o L 0

Fig-5.5

Solid line is the curve of f(x) and the broken line is of the neural network. learning time is 50000,
learning section is [-1.5, 1.5}, step size=0.25.
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Fig-5.6

Solid line is the curve of f(x) and the broken line is of the neural network. learning time is 50000,
learning section is [-1, 1], step size=0.25.
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Fig-5.7

Solid line is the curve of f(x} and the broken line is of the neural network. learning time is 50000,
learning section is [-1, 1], step s1ze=0.25.
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Fig-5.8

The curve of d(x) on [0, 2|. The learning time in this case is 300,000. The learning area is defined
by [—1 <z <1, and —-1< Iy < 1], and the step size is 0.25.
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Fig-5.9

The surface of the f(:r:l, .’L‘g). The displaying region is [-—1 <zy <1, and -1 < z2 < 1]
Detail see Fig-5.8 and the text.

T

Fig-5.10

The surface formed by the neural network. The displaying region is [—1 < <], and -1 <
Ty < 1]. Detail see Fig-5.8 and the text.
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Fig-5.11

The error surface between the function f(l'l , 1‘2) and the neural network. The displaying region

is [—15 <z < 1.5, and —15< To < 15] Detail see text.
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Fig-5.12

The curve of d(x) on [0, 2]. The learning time in this case is 200,000. The learning area is defined
by [—1 <z < 1, and —-1< Ty < 1], and the step size is 0.25.
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Fig-5.13

The error surface for surface approximating problem described in Fig-5.12 and the display region

w(=15<z<l5 —15<y< L3

— f(u) —— Linear System L. ;
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Fig-5.14 Model-I Nonlinear System Identification Scheme
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Fig-5.15

The solid line is the output of the nonlinear system to be identified, and the broken line is the
output of the peural system. Weight updating stopped at time 300. @1 = 0.3, a) = -0.6, step

size=0.25, the excitation is u(k) = S‘iTL( ?2;3)

Fig-5.16

The solid line is the output gf the nonlinear system to be identified, the broken line is the output
of the neural system. The simulation condition is the same as in Fig-5.15, except that the excitation is
the triangular wave ( or saw tooth wave ).
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Fig-5.17

The solid line is the output of the nonlinear system to be identified, the broken line is the output
of the neural system. The simulation conditions are the same as in Fig-5.15, except that the excitation
is a random process with an uniform distribution on [0, 1].
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Fig-5.18a

The solid line is the output o.f the noqli.ncar system to be identified, the broken line is the output
of the neural system. The simulation conditions are the same as in Fig-5.15, except that the learning

stopped at time 199700.
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Fig-5.18b

The solid line is the curve of the nonlinear function f(u) for U € [—-1, 1], and the broken line
is the curve of the 1-20-10-1 neural network in [-1, 1. The simulation conditions are the same as in

Fig-5.18a
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Fig-5.19a

The solid line is the output of the nonlinear system to be identified, the broken line is the output
of the neural system. Actually, they are fitted together. In this case, the learning stopped at time

993800, a; = 0.3,a; = —0.2252, step size=0.25, the excitation is a random process with an uniform
distribution on [0, 1].
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Fig-5.19b

The solid line is the curve of the nonlinear function f(u) for U € [—1, 1], and the broken line
is the curve of the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in

Fig-5.19a.
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Fig-5.20

The solid line is the curve of the nonlinear function in [-1, 1], and the broken line is the curve of
the 1-20-10-1 neural network in |-1, 1|. The simulation conditions are the same as in Fig-5.19a, except

that the excitation is U(k) = Sln(aa—%‘%—gn)
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Fig-5.21

a3

The solid line is the curve of the nonlinear function in [-2, 2}, and the broken line is the curve of
the 1-20-10-1 neural network in [-2, 2]. The simulation conditions are the same as in Fig-5.19a.
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Fig-5.22 Output Noise Immunity Study
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The solid line is the curve of the nonlinear function in {-1, 1], and the broken line is the curve of
the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in Fig-5.20, except

that some noise with normal distribution is added. m=0.0, 0 = 0.333, 0'2 =0.1.

Fig-5.24

The solid line is the curve of the nonlinear function in -1, 1], and the broken line is the curve of
the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in Fig-5.23, except

that 0 = 0.5,
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Fig-5.26

The solid line is the curve of the nonlinear function in [-1, 1}, and the broken line is the curve of
the 1-20-10-1 neural petwork in [-1, 1]. The simulation conditions are the same as in Fig-5.23, except
that the noise is added at the input port of the neural system (see Fig-5.25 ).
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Fig-5.28

The phase portrait of the narrow band system which is described by the equation (5-13). The

-l<y<l1.

display region is [—‘1 <z <l,
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Fig-5.29

The error surface after 99,900 learning iterations. The excitation is a random process, the magui-

tude is uniformly distributed in [-0.175, 0.175
The peural network is a 2-20-10-1 network. T

L. The display region is [—1 < z < 1, -1 <y < 1}
e step size=0.25
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Fig-5.30

The curve of d(x). The learning conditions are the same as Fig-5.29.
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Fig-5.31

The broken line is the output trace of the neural system, and the solid line is the output trace of
the plant. The learning stopped at iteration 99,900. The learning conditions are the same as in Fig-5.29.
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Fig-5.32

The broken line is the output trace of the neural system under a square wave excitation after
99,900 learning iterations, and the solid line is the output trace of the plant under the same excitation.

The learning conditions see explanation of Fig-5.29.
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Fig-5.33

The phase portrait of the wide band system which is described by the equation (5-14).
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Fig-5.34

The curve of the d(x). The learning conditions see the explanation of Fig-5.35.
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Fig-5.35

The broken line is the output trace of the neural system, and the solid line is for the plant. The
learning stopped at iteration 99,950. A 2-20-10-1 network is used in this case, the excitation is a random
process whose magnitude is uniformly distributed in [-0.4, 0.4], and the step size is 0.25.

121



+
T+

G0+

1.2 4

The broken line is the output trace of the neural system under
learning, and the solid line is for the plant under the same excitation.

the explanation of Fig-5.35.

Fig-5.36
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Fig-5.37

The transient process phase portraits of three nonlinear systems. The display region is [—01 <

z<0.1, -01<y<0.1}
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(c)

(b)

Fig-5.38

The phase portraits of the three nonlinear systems under random excitation. The display region

-1 <y<l]

is[—1<$<1,
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Fig-5.39

The output traces of system A and its neural model. The network used has 2-20-10-1 structure,
the learning time is 99,950 and with the step size of 0.25. The random excitation distributed uniformly
on [-0.075, 0.075]. The solid line is for the output of system A, and the broken line is for the neural

system.
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Fig-5.40

The output traces of system B and its neural model. The network used has 2-20-10-1 structure,
the learning time is 99,950 a{ld with the step size of 0.25. The random excitation distributed uniformly
on [-0.6, 0.6}. The solid line is for the output of system B, and the broken line is for the neural system.
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Fig-5.41

The output traces of system C and its neural model. The network used has 2-20-10-1 structure,
the learning time is 99,950 and with the step size of 0.25. The random excitation distributed uniformly
on [-0.4, 0.4]. The solid line is for the output of system C, and the broken line is for the neural system.

(S 3

[ X ¥ 3

al4

a0 a2 s oo [} ne L2 e s 1.8 20

Fig-5.42

The d(x) curve of the neural system of system A. The learning conditions are the same as Fig-5.39.
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Fig-5.43

The d(x) curve of the neural system of system B. The learning conditions are the same as Fig-5.41.
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Fig-5.44

The d(x) curve of the neural system of system C. The learning conditions are the same as Fig-5.40.
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Fig-5.45

range attractor of a nonlinear system, and b is the phase portrait of the same

system under a random excitation. The display region is [—2 <zr<2 -2<y< 2).
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Fig-5.46

The d(x) curve of of the neural system. The neural network has the 2-20-10-1 structure, and the
learning time 1s 399,950 with the step size of 0.25. The excitation is zero.

Fig-5.47

The d(x) curve of of the neural system. The neural network has the 2-20-10-1 structure, and the
learning time is 399,950 with the step size of 0.25. The random excitation is distributed uniformly on

[-0.1, 0.1].



3.0

oS+

[ -F 3

Fig-5.48

- The output traces of the nonlinear system and its neural model after learning. The solid line is
for the nounlinear system, and the broken line is for the neural system. The initial state is (0.2, 0.2]. The

learning conditions are the same as Fig-5.47.
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Fig-5.49

The output traces of the chaotic system and its predictor after learning. The solid line is for the
chaotic system, and the broken line is for the predictor. The learning conditions are the same as Fig-5.46
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Chapter Six

Adaptive Equalization Using
Self-Organizing Neural Networks

6.1 Problem Definition

Intersymbol interference is one of the major practical problems in digital com-
munication systems. This form of interference occurs when the signal to be trans-
mitted has significant components of various frequencies at which the amplitude
and phase response of the channel are different. In this case the waveform of the
received signal would be different from that of the original transmitted signal. Inter-
symbol interference may also result from a channel multipath effect [115], in which
the transmitted signal reaches the destination through different paths. As a result

with different time lags the aggregated waveform will be distorted.

The effect of intersymbol interfence on communication system performance can
be demonstrated by the example of Pulse Amplitude Modulation ( PAM ) trans-
mission. In PAM a synchronous modem transmitter collects an integral number of
bits of data at a time and encodes them into symbols for transmission with am-
plitude of -1 or 1 at the signaling rate. At the receiver end intersymbol interfence
makes each symbol extend beyond the time interval used to represent the symbol
and overlap with adjacent symbols, or in another words the boundaries between
symbols are blurred. As the correct detection of transmitted symbols depends on
a clear distiction between -1 and 1 symbols at the receiver, the blur can lead to a
high bit error rate. Thus some kind of compensative filtering is essential for a high

performance transmission system. This filtering is usually called equalization, and
the filter called an equalizer.
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Since intersymbol interference is one of the major obstacles for high speed data
transmission, it has been an active area of research, and many algorithms and filter
structures have been considered for equalization [116]. There are two classes of
equalization strategies. One class does not need any training signal and is called
blind equalization [117]. In blind equalization the transmitted signal must have
some features, like independent and identifical distributions for example, which can
be exploited as a clue for equalization. In this chapter, we consider the second
class of equalization in which a training signal is used. In this type of equalization,
a prearranged signal known to the receiver can be transmitted at the begining as
a training signal to establish a communication channel. One of the most widely
used ecjualizers is the linear transversal equalizer. It has been shown that this kind
of structure is not satisfactory for non-minimum phase channel compensation and
multi-layer perceptron ( MLP ) neural networks have been proposed as possible
structures for equalizers [118]. In this paper we consider the use of Kohonen self-

organization maps as an alternative structure for adaptive equalizers.

The intersymbol interference effect can be modeled by a finite impulse response
( FIR ) filter. Actually this is the most commonly adopted model. Based on
this model, an equalization system may be represented as in Fig-6.1. The input
signal sequence z; is composed of transmitted symbols with amplitudes of -1 and
1. The transmission channel is modeled by an FIR filter with real coefficients
a; (i = 1,---,n), which is used to model the intersymbol interference effect. Its Z
transform is ag + @12~ + - -+ + a2~ ™. The output y; is represented as
n
Yi = apZT; + a1%;-1+ -+ anTi—pn = Zak-’ri—k

k=0
n; is the additive noise of the channel, which has a zero mean normal distribution.
The noise distorted y; is represented as g;. The function of the equalizer is to

use ¥;, Yi—1, ***, Ui—ms1 as input and to produce the best estimation of z; (or
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z;_q in the delayed equalization cases), where m is the order of the equalizer. In

the following sections, we consider in more detail different kinds of structures for

equalizers.
6.2 Minimum Phase Channel and Equalizers

One kind of equalizer is the linear transversal equalizer. It can be described as
&; = sgn(BTY,)

where Y; denotes the vector of observed channel outputs (4, i1, ***» Fim+1),
B is the coefficient vector of the equalizer which is (b, b1, *-*, bm—1), and sgn(x)

is defined as

sgn(z) = 1, ifz2>0;
9 1 -1, otherwise.

As the characteristics of the channels are not known a priori, the coefficients b; are

usually obtained by using adaptive algorithms, for example the LMS algorithm.

If a linear transversal equalizer is allowed to have infinitely high order, that is
the coefficient vector can have unlimited length, then theoretically, all intersymbol
interference can be compenseted at the output end. Zero intersymbol interference
can be reached, because an infinite-length equalizer can implement a filter which
has the exact inverse frequency response to that of the channel. However as it is
impractical to implement an infinite-length filter, in practice only finite-length filters
are used to approximate the ideal filter. Under this condition, whether the linear
transversal equalizer can correctly recover the symbol z; depends on the channel

model coefficients a; (j = 0, - -+, n) [118]. This can be shown as follows. Let Pr(1)
be defined as
Po()={Y;€R™|z; =1}
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where Y; is defined before. P,(—1) can be defined in similar way. Thus Pp(1)
and P,,(—1) represent the sets of possible channel output vectors (yi, * -, Yi—m+1)
which can be produced from sequences of channel inputs beginning with z; = 1 and
z; = —1 respectively. If we assume that additive noise is absent, that is §; = y;, then
from the foregoing description of the linear transversal equalizer, it is clear that z;
can be correctly recovered if and only if P,,(1) and P,,(—1) are linearly separable
for some integer m. This condition is related to the channel model coefficients

a; (=0, ---, n) by the following two theorems.

Theorem6.1: The condition for P,(1) and P, (—1) to be linearly separable is that

there exist a sequence (bg, b1, ---, bm—1) Which satisfies
m+n~—1
C=AQ®B and o> »_ |cl (6-1)
k=1
where A is the sequence (ag, a1, -+, @) and B is the sequence (bg, b1, -+, bm-1),

® represents convolution. (For proof see Appendix)

Theorem6.2: For the sequence A, the necessary and sufficient condition for the

existence of a sequence B (b, b1, -+, bm—1) which satisfies

n+m-—1

C=A®B o> Y la
) . k=1
is that the polynomial
A: apz"+az2" '+ +a,

has all its roots lie strictly within the unit circle in the complex plane. (For proof

see Appendix)

From the the proof of the theorems given in the Appendix, it may be concluded
that if the roots of the A polynomial lie closer to the unit circle, then m should be

larger. That means a high order linear transversal equalizer should be used.
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Now it has been proved that only under the minimum phase channel ( equiva-
lent to the condition that all roots of the A polyndmial lie strictly in the unit circle
) can the linear transversal equalizer correctly recover all the symbols input to the
channel at any time if the additive noise is absent. For non-minimum phase chan-
nels, to use a linear transversal equalizer, some delay must be introduced into the
equalizer. Thus the output of the equalizer is &;_4 which is the estimation of z;_4
rather than z;. Fig-6.2a and Fig-6.2b show the distribution of a minimum phase
channel P,,(1) and Pp,(—1) and a non-minimum phase channel P,(1) and Pn(-1)
respectively. Fig-6.2c shows the distribution of non-minimum phase channel P.(1)
and P,,(—1) with additive noise. Thus to use a linear transversal equalizer for

channel equalization, the channel should be minimum phase or some delay should

be used.

The above characteristics of linear transversal equalizers make them unsuitable
for nonstationary channel equalization. In this case, the minimum phase condition
cannot be guaranteed and the delay needed is also varying. From the foregoing
discussion it can be seen that equalization may be regarded as a pattern classification
problem, input vectors are classified into Pn(1) and Pp,(—1) classes. Thus MLP
neural networks have been considered as a structure for equalizers [118], and it is
also has been implemented with hardware and extended to the Decision Feedback
Equalizer [119][120]. As MLP neural networks can realize any continuous mapping,
linear separability is no longer an oBstacle for MLP equalizers. However since the
MLP neural networks have the local minimum problem, they may give a suboptimal
division of P,,(1) and P,,(-1), or in the worst case an incorrect division. From the
distribution pattern of P,(1) and P,,(—1) shown in Fig-6.2c, it can be seen that
clustering algorithms may be more suitable for classifying the sample points into

P,.(1) and P,(—1) classes rather than a piecewise linear dividing algorithm, like the
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MLP. As the Kohonen self-organizing feature map is very similar to the K-means

clustering algorithm [6], it can be used as a structure for the equalizer.

6.3 The Kohonen Self-organizing Feature Map as
a Structure for Channel Equalization

The Kohonen self-organizing feature map reflects the organizing principle of
biological neural systems. In the brain there are a lot of fine-structures and many
of them are determined genetically. However there also exists direct experimen-
tal evidence that some of these structures are formed by a self-organizing process
which depends on experience [121]. The Kohonen self-organizing feature map was

introduced by Kohonen as a model of biological self-organizing processes.

The structure of a Kohonen self-organizing feature map is shown in Fig-6.3.
Each unit in the map is connected to n input units, n is the dimension of the input
vectors. Continuous-valued input vectors are presented sequentially in time without
specifying the desired output. After enough input vectors have been presented,
weights will specify cluster or vector centers that sample the input space such that
the point density function of the vector centers tends to approximate the probability
density function of the input vectors [6]. This feature can be an advantage for

classifying the distribution patterns such as shown in Fig-6.2c.
The self-organizing algorithm can be described by the following steps

1: Initjalize weights which connect the units in the map and the input

units with small random values. Set the initial radius of the neighbor-

hood.

2: Present new input vector.
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3: Compute distances d; between the input vector and each unit j in the
map using
n
— 2
dj =) (xi(t) — mis(t))
1=1
where z;(t) is the value of input units i at time t, and m;;(t) is the

weight from input unit i to the unit j inthe map at time t.

4: Select the unit k which has the minimum distance value dyin in the

map.

5: Weights are updated for the unit k and all the units in the neighbour-

hood defined by Ni(t). The update formula is
mii(t +1) = mij(t) + a(t)(zi(t) — mi(t) (=1, -+, n)

The term a(t) is the stepsize which in a similar manner to the neigh-

bourhood decreases in time .
6: Repeat by going to step 2.

A self-organizing feature map formed by using this algorithm and the samples

in Fig-6.2c as input vectors is shown in Fig-6.4. Its advantage for classification is

very clear.

The self-organizing map described above can be easily transformed into an
adaptive equalizer. For the purpose of equalization, the map is split into two
submaps in the middle. The left part is for the input vectors from the P.(1)
set, and the right part for the input vectors fromlthe'Pm(-l) set. Thus when an
input vector is presented to the input units, if it belongs to P,.(1), then the weights
in the left of the map will be updated using the algorithm described above, other-

wise the weights of the right part of the map will be updated. On top of the map
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there is a decision unit whose function can be described as

1 if Y wjy; > 05
t — ) J' 2 ]
output { —1, otherwise.

where y; is the output state of unit j in the map, which is 1 if its weight vector is
the closest to the input vector, otherwise it is 0. This can be im;ﬂemented by lateral
inhibitation neural networks like MAXNET [6], or by software. The parameter w;
is the weight which connects the unit j in the map and the decision unit, it is 1 if

unit j is in the left half of the map, and is -1 otherwise.

Fig-6.5 shows the bit error rate performance of an MLP equalizer and the
self-organizing map equalizer. The MLP equalizer used a 5-9-3-1 structure which
is described in [118], and the self-organizing map equalizer used a second order
input, that is the input vectors are two dimensional. The channel model is 0.3482 +‘
0.8704z~1+0.34822~2 which is the same as that in [118]. It is a non-minimum phase
channel, so linear transversal equalizers cannot recover the original input symbols
without some delay. It is clear from Fig-6.5 that the self-organizing map equalizer

has a lower bit error rate than the MLP equalizer.

To compare with a linear transversal equalizer, a delay of one sample was in-
troduced in the estimation of the channel input symbol. That is we are estimating
r;_, rather than z; at time i. The self-organizing equalizer used fourth order input
vectors in this case. The bit error rates are shown in Fig-6.6. The lowest curve is
obtained by the self-organizing map equalizer. Both the curves for the MLP and
linear transversal equalizer are as reported previously(118]. The improved perfor-

mance obtained from the self-organizing equalizer is clear.

6.4 Conclusions

The Kohonen self-organizing feature map has several advantages as a structure
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for channel equalization. Compared with linear transversal equalizers, it is not
limited by the minimum phase channel condition. It is more robust in performance
than MLP equalizers and does not suffer from a potential local minimum problem.
Another advantage of the self-organizing equalizer is that its map feature is more
suitable for classifing clustering distribution pattern of Pp,(1) and P,,(—1) samples,
so it can obtain a lower bit error rate. Finally it should be mentioned that the highly

parallel structure of the Kohonen self-organizing algorithm would be ameanable to

VLSI implementation.

In next chapter we discusss application of learning algorithms to ATM call

access control in broadband ISDN.
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FIR Channel Model

EQUALIZER

Fig-6.1. Schematic representation of channel model.
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Chapter Seven

Adaptive ATM Call Access Control

Using Learning Networks

7.1 Introduction

The Broadband Integrated Services Digital Network (B-ISDN) is an emerging
communication network which is intended to provide multimedia services to its
customers in a flexible and cost-effective manner. The services include voice, video

and data transmission. Research and development in B-ISDN is a very active area.

The traditional transport paradigm used for ISDN is synchronous transfer mode
(STM) [122]. The rule for subdivision and allocation of bandwidth using STM is
to allocate time slots within a recurring structure ( frame ) to a service for the
duration of call. An STM channel is identified by the position of its time slots
within a synchronous structure. The hierarchical channel structure of STM consists
of several bearer channels, and each of them has different transmission rate. One
of the drawbacks of appling STM to B-ISDN is its rigid bearer channel structure
which make the dynamic allocation of time slots difficult {122]. In an B-ISDN
environment, the services have greatly varied bit rate, and some kind of dynamic
allocation of time slots ( or bandwidth ) is necessary to make efficient use of the
bandwidth resource. Thus the asynchronous transfer mode (ATM) has attracted
significant attention as a transport paradigm for B-ISDN [123] [124]. In ATM,
specific periodic time slots are not assigned to'a fixed service, useable bandwidth
is segmented into fixed size information bearing units called packets or cells. Each
cell consists of a header and an information field. The header contains a logical

address, which identifies the virtual circuit to which the call is assigned, priority
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information and a error detecting and correcting code. Data to be ti‘ansmitted
is conveyed in the information field. These cells can be dynamically allocated to
services on demand. In comparison to STM, ATM is more flexible, and may have
potential gain in bandwidth efficiency by buffering and statistically multiplexing
bursty traffic at the expense of cell delay and loss [125]. To guarantee the quality of
the services provided by the network, the cell loss rate and delay must be controlled
within tolerable range by an appropriate network controller. In this chapter we
concentrate on the statistical multiplexing control strategy and consider two access
control strategies based on learning algorithms. We first discuss the basic problem
of bandwidth resource manegement in ATM. Two new adaptive strategies are then

considered with associated simulation results and a critical discussion.
7.2 The Call Access Control of ATM

ATM has a layered function structure which is shown in Fig-7.1. The ATM
adaption layer transforms the information stream originated from a user terminal
or end system into fixed length cells acco‘rding to the ATM format. These cells are
buffered and asynchronously multiplexed and/or switched by the ATM transport

layer. All these functions are supported by the electronic circuits and transmission

link in the physical layer.

To guarantee performance requirements like cell delay and loss demanded by.
the services which are supported by the B-ISDN, a call access control strategy (
or traffic control strategy, call regulation ) must be implemented in the transport

.layer to control the quality of the services. When an ATM terminal initiates a call
request to the network, the network manager must then check that there is sufficient
bandwidth resource to provide the connection requested with satisfactory quality

of service, or the request is rejected. Generally, there are two call regulation rules
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[125]. One is nonstatistical multiplexing, in which if the sum of the peak cell rate of
all the hold on calls ( including the new incoming call ) does not exceed the output
link rate, then the new incoming call is accepted. Otherwise it would be rejected.

That is the call accept condition is

Y. P<cC
;
where P; is the peak rate of the ith hold on call, and C is the capacity of the output
link at the node. This approach is quite similar to bandwidth reservation for STM,
but with the added flexibility of being able to reserve any peak rate required, rather
than a multiple of a base channel rate. The strong advantage with nonstatistical
multiplexing is minimal cell delay and no cell loss due to buffer overflow. However in
the case when a large proportion of the traffic flow in the link is bursty, nonstatistical
multiplexing can show low efficiency in making use of bandwidth resource. Thus
statistical multiplexing is considered to exploit the burstiness of traffic flow and
obtain potential gain in bandwidth efficiency. In statistical multiplexing, the total
peak cell transmission rate of all the accepted calls is allowed to exceed the capacity
of the link at the expense of cell delay or cell loss. However under a proper control

strategy the cell delay or cell loss can be controlled within a tolerable range.

Statistical multiplexing can only increase bandwidth efficiency under certain
conditions. The preconditions are that the average burst length B of calls is short,
the peak rate to link capacity ratio (PLR) of calls is low and the burstiness of calls
are high [125]. Let P denote the peak rate of a call, A the average rate and C the
capacity of the link, then the burstiness of the call is defined as P/A, and PLR =
P/C. In [125] the authors give some computer simulation results on the feasibility
of using statistical multiplexing in homogeneous traffic and heterogeneous traffic
enviroments. In the homogeneous traffic case, generally PLR should be less than 0.1.

These preconditions can be met in many cases in B-ISDN due to wide bandwidth
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and inherently bursty data services. Also advanced image coding techniques are
making the traditional continuous sources like video into bursty sources [126]. To
obtain an approximate estimation of the possible bandwidth usage efficiency gain,
consider an analysis based on a simple homogeneous traffic model. In this model
all the incoming calls have the same burstiness and the average cell rate is 0.5P,
where P is the peak cell rate. We assume that N calls have been accepted. If the
number of accepted calls are large, then the total cell rate can be approximated by
a normal distribution, as each call is an independent source emitting cells at rate

between 0 and P randomly. The normal distribution can be denoted as G(M, o?),

where

M=Nx0.5P=—]Yz£

To estimate the variance o2, we assume the variance for each call is 0.25P2. This

is a conservative estimation. A random variable with a value between 0 and P, has
0.25P? as maximum variance. Thus we have

2
o2 = n x 0.25P% = Nf =%(ﬂf

2_M2

2 ) N

Thus the call rate in the link can be approximated by the normal distribution G(M,
MTZ) If we want to keep the overload probability below po, ( or cell loss rate below

specification ), then we must have

C-M (7-1)

where C is the capacity of the link and B is given as

+oo 1 1.2
[ e )iz =p (1-2)

Here it is implicitly assumed that C > M. As M represents the mean cell rate in

the link, it is a practical assumption. From inequality (7-1) we have

C—-M?>Bo
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As 02 can be represented by M and N, it is obvious that

M
C-M<B— 7-3
- VN (7=3)
If both sides of (7-3) are divided by C, then
M, B M
¢C ~VNC
that is
M 1
— < (7-4)
- B
C T 1+ TN

The value of AC'!- can be regarded as a measure of the efficiency of the bandwidth
usage. Then (7-2) and (7-4) can be used to estimate the possible efficiency gain at

different p,, and N values. Table-7.1 gives the efficiency estimation for several p,,

and N values.
Overload Probability | N value | Estimated Efficiency

0.0001 50 65.53%

100 72.83%

1000 89.47%

0.001 50 69.58%

100 76.39%

1000 91.09%

0.01 50 75.21%

100 81.10%

1000 93.14%

Table-7.1

From Table-7.1 it can be seen that for large N, there can be significant gain in
bandwidth efficiency by using statistical multiplexing. As an example with p,, =

0.0001 and N = 1000 using proper statistical multiplexing, the bandwidth efficiency
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can be around 89%. While using STM or nonstatistical multiplexing the efficiency
is only 50%, as the ratio of mean cell rate to peak cell rate is 0.5 for all the incoming
calls in this case. The potential gain is significant. However as mentioned in the
foregoing discussion C > M, that is the capacity of the link is larger than the sum
of average cell rate of all the calls in the link. This restriction puts an upper bound
on the value of N. To have large N, the PLR should be small. In the above case, the
peak cell rate of incoming calls should be around one thousandth of the capacity of

the link. In the following parts of the report we usually assume low PLR value and

high burstiness of services.

The services supported by B-ISDN may vary from narrowband to wideband and
from continous to bursty, and their performance requirements are also different. For
example, image and video services require low cell loss rate, interactive services like
telephony requires short cell delay, and some services like data file transfer may
have less stringent requirement on cell delay and loss. However to implement a call
regulation strategy which can meet diverse performance requirements in B-ISDN
would make the cost-effectivness of B-ISDN questionable. One simple strategy is to
use the most stringent performance requirement which is adequate for all services
supported by B-ISDN [125]. More sophisticated control strategies may divide ser-
vices into a few classes, each class l;as its own performance requirement a.nd may be
delay sensitive or cell loss sensitive [127] [128]. It is a trade-off problem to decide
how the call regulation strategy will cover the different performance requirements.

In the following discussion we assume only one class of performance requirement.

The traffic control strategy of traditional communication networks like ISDN
is based on a through study of the statistical traffic characteristics in the network.
In the case of B-ISDN the diverse variety of services and topology or connection

routing evolution make this kind of study very difficult. Thus it is desirable to have
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the call regulation rule of ATM nodes node architecture independent and robust to
traffic uncertainties [125]. This suggests that some kind of adaptive or learning call
regulation would be highly desirable. In the next section, we discuss two adaptive

call regulation strategies.
7.3 Adaptive Call Access Control Strategies

Adaptive call regulation can use learning automata [129] or an artificial neural
network [130] as its basic structure. The neural network controller considered in
[130] used the back-propagation algorithm for training. Thus it has a potential
local minima problem and retraining is not easy. Another undesirable feature of
this controller is that it only uses the incoming cell pattern in the link as the basis
for call regulation and does not take into account the fact that different type calls
may require different bandwidth. Sometimes the traffic condition on a link may not
be able to support a wideband service but is adequate for a narrowband call. This
kind of situation cannot be dealt with efficiently by the neural network controller
mentioned above. If the traffic characteristics can be approximated by a normal
distribution, a simple linear call regulation rule may be used. In the following
we discuss a perceptron like adaptive call regulation controller which uses a linear

inequality as decision rule.

The ATM node model is depicted in Fig-7.2.- It has many input ports and

the incoming cells are statistically multiplexed and transmitted through the output

link.

A general call source model is considered as a Markov chain [125]. A first-
order Markov source is used in the following discussion which is depicted in Fig-7.3.

During the active period the source emits cells at its peak rate, and in passive period
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no cells are emitted. For this model the average burst length B can be calculated

as

B=b+2(1-bb+3(1—-b)2+4(1-b+------

b _1
T (1-1+b)2 b
and the average cell rate is
aP
A= a+b

where P is the peak rate of the source.

A special case for the above model is when a + b = 1 and the source degrades
into an uncorrelated source, and the probability distribution of cell rate at every

moment is a Bernoulli distribution.

As mentioned previously if the PLR value is small, the number of calls which
can be transmitted simultaneously through the link can be very large. If these calls
are statistical independent and are uncorrelated sources which are described above,
" then according to the central limit theorem [131], the statistical characteristics of
the traffic mix in the link can be approximated by a normal distribution. Assume
there are three classes of hold on calls and the number of calls are Ny, N3 and Nj.
The probability distribution of each call’s cell rate is a Bernoulli distribution with
mean of my, my and m3 and variance o1, 02 and o3. The probability distribution

of mixed cell rate can be approximated by a normal distribution N(m, o), where

m= N17n1 + N2m2 + N3m3

and

g = \/Nlaf + N2U% +N30’§

Fig-7.4 shows a simulation result on the distribution of cell rate in a mixed traffic

link. It is very close to a normal distribution. If we assume the link capacity is C,

153




then the overflow probability is

> 1 (x —m)?
v = exp{—~————)dz

"/w Leop(-L)d
TJem w2

The condition for p,, to be less than a specific value can expressed as

C-m

o

> K (7-15)
where K is a constant. The expression (7-5) can be rewritten as

Ko<C-m (7-6)
If we square both sides of (7-6) we obtain

K20IN, 4+ K*0IN, + K*03N;3 < C — 2Cmi Ny — 2CmgN; — 2CmaN;

+(m1N1 + mqa N, -i-’l'TL31V3)2 (7— 7)

from the small PLR assumption, it is clear that the coefficients of second order
terms like m? and m;m; are much smaller than 2Cm;, so the second order terms

can be ignored as an approximation. Then we obtain
(Qle + Kzaf)Nl + (207’7’&2 + Kza'g)Nz + (201713 + K20‘§)N3 <C (7 - 8)

Thus a simple linear inequality can be used to control p,,. As the cell loss rate r,
is a monotonic function of p,, a linear control strategy can be used to control r,.
The simulation results presented in [132] and [133] also suggested a linear control

strategy, but here we give a more rigorous treatment and suggest a method for

calculating the control coeflicients.
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7.3.1 Perceptron Control Rule

From the above discussion, we can suggest an adaptive call regulation rule
based on the inequality

aiN1 +aaNy+a3N3 < T

where N; is the number of hold on calls of narrowband calls, and N, and N3 are
for intermediate-band and wideband calls. Each class of call has different cell rates.
Of course one can classify calls into more classes, but for the simplicity of control
rule, large number of classes are unfavorable. The coefficients a;, a; and a3 can be

adaptively updated using a perceptron like algorithm [16] as follows.

If a call request is accepted but the following cell loss rate exceeds the perfor-

mance requirement, then
ai(n+1)=ai(n) +aNy az(n+1)=azx(n)+alN; a3(n+1)=as(n)+alN;

where a is the learning stepsize. If the call is rejected and the cell loss rate is much

lower than the performance requirement, then
a;(n+1) = ay(n) — BNy az(n+1) = as(n) — BNz a3(n+1) = a3(n) — BN3
where (3 is the learning stepsize.

Although the above discussion is based on an uncorrelated source model as-
sumption, for the correlated Markov source model with a + b # 1 the normal
distribution a.pproxirhation is still valid. Fig-7.5 shons the simulation result on dis-
tribution of cell rate in a link containing mixed calls with first-order Markov model
sources. The distribution is again very close to a normal distribution. Only the

functional relation between p,, and r;; will be changed, but it is still a monotonic
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function. Thus the linear inequality control rule is still applicable. The simula-

tion results presented in section 4 show that it can obviously improve the efficiency

performance.

7.3.2 RAM Map Control Rule

Both the perceptron mentioned above and the neural network controller con-
sidered in [130] essentially implement a functional mapping. If we consider that the
output of the controller is just accept or reject and the input can usually be trans-
formed into binary form, these mappings are just Boolean logic functions. and can
be implemented using digital logic circuits If variables IV}, N; and N3 are viewed as
three orthogonal axes, then every combination of hold on call pattern in a link is rep-
resented as an integer point in the space. All these points form a lattice array with
finite nodes. This lattice array can be implemented by a RAM which is depicted in
Fig-7.6. N1, Ny and Nj are represented as binary numbers to the address lines, the
output is single bit with 1 representing accept and 0 for reject. For a RAM with
16 address lines, it contains a 219 = 65536 node lattice, and is sophisticated enough
for most applications. To train this RAM network, a learning paradigm which is
similar to the self-organization map algorithm [121] is introduced. The learning
algorithm can be explained with the help of Fig-7.7. To simplify the discussion, we
assume there are only two classes of calls. IV} axis represents the number of calls
which belong to class one, and the N, axis for the calls of class two. When there
are n; class one calls and nj class two calls in the link, then the system state can
be represented by a point P which is shown in Fig-7.7. If the cell loss rate exceeds
the performance requirement, then the nodes in the upper-right neighbourhood of
P (which is shown as a shadowed square) including the nodes on the boundary will
be assigned the value of 0. When the system state come into this region later, new

incoming calls will be rejected. If a call is rejected at point P, and the cell loss rate
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is much lower than the performance requirement, then the nodes in the lower-left
neighbourhood of P will be assigned the value of 1. When the system state is in
this region, a new incoming call will be accepted. The neighbourhood used in this
case is a square, and in high dimensional cases, it would be super cubic. Its size
decreases during the training process to reduce random fluctuations. Utimately, the
learning algorithm will divide the map into an A-region ( Accept region ) and an

R-region ( Reject region ) as shown in Fig-7.8.

One advantage of this approach is that it can implement any possible nonlinear
mapping. This is in contrast to the perceptron which is limited to a linear decision
rule. Secondly, compared with the MLP neural network trained with a Back Prop-
agation Algorithm, it is easier to retrain because it has no local minima problem.
In the case of a biased distributed learning sample set, the RAM self-organization
map learning does not need to use a leaky pattern table (LPT) method which is
essential for biased learning in an MLP neural network [130]. This can reduce the
computation time significantly. The drawback is its generalization ability. For a
perceptron or MLP neural network each learning sample moves the whole decision
line to a new position, while in the RAM self-organization map learning each learn-
ing sample can only change a small local portion of the whole decision boundary

which lies in its neighbourhood. Thus the RAM self-organization technique has a

smaller generalization range.
7.4 Simulation Results and Discussion

A flow chart of the simulation program is shown in Fig-7.9 and Fig-7.10. In
module-B, a Poisson flow source is simulated. This is achieved by using a random
number generator whose distribution function is approximately an exponential func-

tion to generate the time interval between incoming calls. The simulated Poisson
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call flow is later demultiplexed into three subflows to simulate three different classes
of calls which have different peak cell rate and burstiness. Module-C simulates the
call access control rule. It can be a neural network or any other control strategies.

In module-F, a learning algorithm is implemented.

To simulate a discrete time system, the sampling period or basic time unit of
the simulation needs to be established. In the simulation reported here, the basic
time unit for the interval between incoming calls is one second, and the basic time
unit for traffic condition monitoring is 10ms. If the cell size is 50 bits, then the
capacity of the link simulated is 500kb/s. It is clearly lower than that of the future
ATM network. However the simulation is at cell level and to keep the simulation
time within a reasonable range, it is a practical assumption. For the three classes
of calls, narrowband has the rate of 5kb/s, mediumband 10kb/s and wideband
50kb/s. As the purpose of the simulation is to investigate the potential bandwidth
efficiency gain from statistical multiplexing of calls in an ATM network, the intensity

of incoming call flow is assumed larger than the capacity of the link.

For the perceptron control rule discussed in section 3, the @ — LM S learning
algorithm [10] is used for training. That is the stepsize which is defined in section 3
decreases with time. This helps to reduce the random fluctuation which is unavoid-
able in learning in a stochastic enviroment. Fig-7.11 and Fig-7.12 show the learning
curves of a;(n) with decreasing stepsize and constant stepsize respectively. The
curve in Fig-7.11 is smoother. The convergence properties of the LMS learning al- "~
gorithm are fully discussed in {134]. Fig-7.13 and Fig-7.14 show the learning curves

of coefficients az(n) and az(n) respectively. Both curves shows a clear convergence.

To verify the analytical prediction, the homogeneous traffic situation was sim-

ulated, and the simulation results are shown below. They are obtained with a
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perceptron control rule.

N (Average number of on hold calls))  p,, [Efficiency | Theoretical Estimation
154 0.000389 73.9% 78.8%
75 0.000552| 70.3% 72.8%
47 0.001952} 69.9% 70.4%
Table-7.2

Using the value of N and p,, and formula (7-2) and (7-4) in section 2, the
analytical estimation of the efficiency are shown in the last column in Table-7.2. It

is obvious that the theoretical predictions are close to the simulation results.

Control strategy Efficiency | Average peak rate| p., [Cell loss rate
nonstatistical mutiplexing | 41.4% 97 0 0
perceptron control rule 54.8% 115 0.0018{ 7.57 x 1073
perceptron control rule 59.8% 121 0.0005( 1.75x 10~°
RAM map control rule 57.7% 116 0.0016 [ 5.25 x 1075
RAM map control rule 62.1% 123 0.0050| 1.68 x 1074
Table-7.3
Control strategy Efficiency | Average peak rate| po, | Cell loss rate
nonstatistical multiplexing | 44.3% 97 0 0
perceptron control rule 61.7% 123 0.0008 | 3.85 x 10~°
perceptron control rule 56.8% 122 0.00006 | 1.86 x 1078
RAM map control rule 67.6% 134 0.0062 | 2.12 x 10~*
RAM map control rule 68.8% 138 0.0053 | 1.79 x 10~*
Table-7.4

The simulation results for a heterogeneous traffic situation are shown in Table-

7.3 and Table-7.4. The composition of incoming call flow is 60% narrowband calls,
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30% mediumband calls and 10% wideband calls. Table-7.3 shows the simulation
results for a short burst call source which has the average burst length 4.25 cells
and the burstiness of 2. Table-7.4 shows the simulation results for long burst call
source which has the average burst length 9.5 cell and burstiness of 2. There are
two ways to measure the bandwith efficiency. One is to use the utilization of the
capacity of the link like that defined in (7-4), and the other way is to measure the
average peak cell rate or the actual throughput in the link. Both of these parameters

are listed in the tables and the capacity of the link is normalized to 100.

It can be seen there is an obvious gain in bandwidth efficiency from statistical
multiplexing ( or statistical call access control ) at the expense of some cell loss.
Generally, the efficiency would increase with an in increase of p,,or cell loss rate.
However the results in Table-7.3 and Table-7.4 suggest that this may not be always
the case. This can be explained by the variation of composition of calls in the
link. In the simulation the composition of the incoming call flow is kept constant
to evaluate the performance of the control rules. However the control rules which
are hyper-surfaces or curves in the two dimensional case (see Fig-7.8) may have
slightly different shape or position because of statistical learning. If the incoming
call flow has an intensity greater than the capacity of the link, the system state
would bounce around the decision surface. The variation of the surface cause the
change in the composition of the accepted calls in the link. Different classes of
calls have different peak cell rate and burst characteristics, and these features have
a significant influence on the relationship between efficiency and p,,. Thus the

variation of composition of accepted calls can distort the monotonic relation between

efficiency and poy-

Another feature shown in Table-7.3 and Table-7.4 is that the p,, and the cell

loss rate are always fluctuating. This is caused by learning in a stochastic enviro-
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ment. A small learning stepsize or a learning neighbourhood can help to reduce
the fluctuation, but the learning speed or the adaptation speed to a change in the
enviroment would be decreased. Thus a compromise must be made between steady

state accuracy and speed of convergence.

7.5 Conclusion

In comparison to STM, ATM has more flexibility in bandwidth resource mange-
ment. To explore the potential gain in bandwidth usage efficiency which is made
possible by ATM, statistical multiplexing is needed in call access control. Of course
there are some preconditions which are necessary for profitable use of statistical
multiplexing. The calls must have high burstiness and low PLR (peak cell rate
to link capacity ratio). Under these conditions, statistical multiplexing with the
learning algorithms discussed in this chapter can provide an obvious gain in band-
width efficiency. This has been demonstrated by simulation results. Further work

is needed on more intensive simulation studies and eventually testing on real ATM

communication networks.
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Fig-7.1. The layered structure of ATM
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Fig-7.2. The ATM node model
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Fig-7.3. The ATM call source model
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Fig-7.4. The cell rate distribution in the link contains mixed calls. N; = 30
N, = 10 and N3 = 5. If we assume the capacity of the link is 100, then peak cell
rate of class one calls P, =1, and P, = 5, P; = 10. The burstiness are 2, 1.67 and
3.33 respectively. The distribution is close to a normal distribution.
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Fig-7.5. The cell rate distribution in the link contains mixed calls with first-
order Markov model. The burstiness are 5, 3.33 and 1.67 respectively. Other

parameters are the same as in Fig-7.4.
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O if t=T stop

No
A
B generate next coming
call dme (set TC)
accept the No

call or not ? (control
strategy )

set Fl=1 ; N=N+1; Y
D CLFL =1. generate the set CLFL =2
call duration ume TD;

traffic conditon monitor

E if overload occur set
OVFL =1

l

Fig-7.9. The flow chart of the simulation program. Continued on next page.
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Fig-7.10. The flow chart of the simulation program. Continued from previous
page.
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Chapter Eight
Conclusions and Further Work

From the discussions presented in the previous chapters, this chapter concludes

with some overall conclusions and suggestions for further work.

8.1 Convergence Speed of Back-Propagation
Algorithm

As the essence of the Back-Propagation algorithm is the hill-climbing or gra-
dient descent algorithm, it is usually slow when the dimensionality is high. Many
techniques have been proposed to accelerate its convergence speed. In this thesis
two stepsize variation techniques are introduced for speeding up the convergence
of Back-Propagation, and the simulation results demonstrated that there is signif-
icant improvement. However it is usually very difficult to judge the convergence
performance of numerical optimisation algorithms based on pure theoretical anal-
ysis, the performance study depends significantly on computer simﬁlation of some
bench mark problems. Thus as with numerical optimization algorithms, the con-
vergence performance of various Back-Propagation algorithms are problem specific.
The ‘selection of an appropriate algorithm for a specific problem has to be based
on empirical knowledge. As the convergence performance of the gradient descent
algorithm is closely related to the initial start point value, so it may be fruitful in
the future reserach to give more attention to the selection of initial weights. At
present in most reported work, the initial weights usually take some small random
values. There has been some research using tree classification algorithm to set up
initial weights of MLP networks [135]. This can significantly reduce the learning

time. A custom-tailored network structure can not only speed up the convergence,

but is also benificial for better generalization.
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8.2 Generalization

As discussed in Chapter 4 satisfactory generalization usually depends on proper
selection of priori constraints and model. In artificial neural networks, the gener-
alization can usually be viewed as an interpolation process. When an input to the
network is not included in the learning sample set, the network produces an output
by interpolating between known learning samples. The contraints imposed on the
network which determines how the network interpolates or generalizes reflect the
priori knowledge about the problem. There is a belief that artificial neural networks
are able to learn to solve problems which we do not know how to solve. This is
obviously excessively optimistic at least at this stage. We have seen in the previous
chapters that the generalization performance is closely related to the structure and
representation strategy of the network. Thus it is unrealistic to expect artificial
neural networks to perform well in situations we know nothing about. It may be
more realistic to suggest that in future research more priority should be given to
develop function specific modules. These modules can be used as building blocks
for large networks. These kind of hierarchical networks may not be as universal as
large homogenous networks, like MLP for example, but would be more efficient to

train and generalize better.
8.3 Biological Plausibility

One of the main original motivations of research on artificial neural networks
was to establish a model of the brain to understand its information processing mech-
anism. Perhaps the most difficult problem is how to associate neuronal activities in
the brain to the high level cognition and thinking process. Artificial neural networks
are invaluable in this research. They can be used to verify new hypotheses, which

is essential for the development of theory and sometimes difficult to carry out on
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biological organisms. So in this sense biological plausibility is very important for
neural modeling. However the intricacy of the biochemical processes involved, and
the extremely complex connection patterns of biological neural systems means we
are still far away from a solid and complete understanding of how the brain works.
Many artificial neural networks proposed for neural modeling have some features
which can be explored for practical applications. For example they can be used as
parallel computing structures to solve engineering problems. It is useful to regard
artificial neural networks as a kind of parallel computing structurei or a flexible non-
linear adaptive filter which are more efficient than a conventional digital computer
on some information processing tasks. From this perspective biological plausibility
is not an essential requirement. It can even be sacrificed to suit a specific applica-
tion if necessary. So far, in most publications about applications of artificial neural

networks, they are rarely treated as a strict model of biological neural systems.

8.4 Application Issues

We have discussed in the last paragraph that artificial neural networks can be
used as nonlinear adaptive filters. This perspective opens a wide application field for
artificial neural networks. It is shown in the previous chapters that artificial neural
networks can be used fér adaptive equalization, nonlinear system identification and
telecommunication call access control. The simulations demonstrated satisfactory

results, and was considered to represent a useful extension of adaptive technology.

In Chapter 5 we gave a detailed discussion about the feasibility of using MLP
networks for nonlinear system identification. This is a fast developing field in the
last few years. Artificial neural networks provide a flexible nonlinear adaptive struc-
ture to approximate the underlying nonlinear mechanism of the process to be iden-

tified. There are still some theoretical and practical questions which need to be

174



investigated. One important question is the validation of the input-output dif-
ference equation model for nonlinear systems. Validation has been proved under
some conditions in the neighbourhood of the equilibrium point. The mathematical
neighbourhood could be as large as infinity or as small as indivisible. Thus the
validation of the model under practical circumstances still need to be investigated,
perhaps by extensive computer simulation and some theoretical analysis. As our
knowledge about nonlinear phenomena is very limited, computer simulation is an
indispensible tool for nonlinear reserach. However this does not necessarily mean it
is not practical to use artificial neural networks for nonlinear system identification.
As in most practical identification problems, the true systems are usually never
known and identification can only establish an approximation model. Thus it may
be more accurate to reformulate the above question as to study how well can an
input-output difference equation approximating model a nonlinear system under

general conditions.

Besides the MLP networks, radial base function networks have also been pro-
posed for nonlinear system identification [136]. When the centers of the radial base
functions are selected before hand, the network coefficients can be calculated by
solving a least mean square equation. Thus the learning speed is much faster than
MLP networks with a Back-Propagation algorithm. However both MLP and radial
base function networks usually require a large sample set to perform well, because
good interpolatio;l need a large number of data points. For a small sample set in-
terpolation, some extra structure information is usually needed. In another words,

the priori knowledge of the system is needed.

In chapter 6, we discussed the application of ANN for communication chan-
nel equalization. This is an example of the application of ANN in digital signal

processing. In this case the neural network is used as a nonlinear adaptive struc-
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ture. There has also been some research carried out at Durham University on using
learning automata for digital filtering [137][138]. However the learning time of the
automata increase almost exponentially with increase in the dimensionality of the
filter. In this respect, ANN performs much better than learning automata. It may

play a significant role in future nonlinear signal processing research.

In summary, we can say that artificial neural networks have a significant po-

tential in applications involving nonlinear adaptive structure.

In this thesis we also discuss the using of ANN for ATM call access control.
The advantages of using ANN for control in this case are that it can implement a
nonlinear control rule and can learn the control rule from examples. This learning
ability or adaptive ability is especially valuable when there is little information
about the system operation mechanism available or in a time varying environment.
However as discussed in the thesis, ANN usually need a large learning sample set
to perform well. This could be a drawback for the application of ANN in control.
However ANN can always be used as a last resort in circumstances where the only

available information is via input and output observations.
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Appendix: Proof of Theorem6.1 and The-
orem 6.2

Proof of Theorem®6.1:

Asy; = apzi+a1xi—1+: - -+anTi—n, so the point Y; in P,,(1) can be represented

Yi apZ; +a1ZT;—1+ -+ anTi-n
Y; =

Yi—m+1 A0Ti—m+1 T A Tiem + - T AnTi—n-—m+1

and the point Y} in P,(—1) can be described as

1 4 ! !
K apT; + 1%,y + -t anTi_,

Y! =

’ ’ ’ ’
yi—m+1 aoxi—m+1 + a1%;_m +ot a’ﬂmi—n—m-i-l

The linear separability of P,(—1) and P, (1) is equivalent to the existance of a

sequence (bg, b1, -+, bm—1) ( it can also be denoted as vector B ) such that
BTY; > BTY!

that is
BT(Y;-Y)>0 (A1 -1)

If
zk=zk—x;c (k='i,i+1,°--) C=AQ®B

then BT(Y; — Y!) can be expressed as

BT(Y; - Y!) = bo(ao(z: — i) + a1(zicy — Ticy) + -+ + @n(Ticn — Tip))

+ 51(00(2;‘—1 - 1‘:_1) + ay(zi-2 — m:_z) + -+ ap(Ticn-1 - 1‘2_,1_1 )

+ bm—l(aﬂ(mi—m‘i-l - x;—m-l-l) +a; (:L‘,;_m - ‘Ti—m) + -
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+ an(zi—ﬂ—m'i-l - m:—n—m+1))
= bo(agz; + ar2i—1 + -+ + @nZi_n)

+ bi(agzi—1 + a1zi—a + - + @nZi—n-1)

+ bm-1(a02Zi—m+1 + @1 Ziem + -+ + anzi—n—m+1)

= aobozi + (aob]_ + albo)zi_l R

+ (an—lbm—l + anbm—Z)zi—n—m-{-Z + anbm—lzi—n-—m+1

=cpzi +€12i-1+* + Cnpm-1Zi—n—m+1
As z; =1 and z! = —1, the expression (Al-2) can be written as
2CO +cC12i-1+ -+ Cngm—-1Zi—n—m+1

The expression (Al-3) reaches its minimum value when

The minimum value is
n+m—1

20co— D lexl)

k=1

So the condition for the inequality (Al-1) to hold is equivalent to

n+m-1
Ao— . lexl) >0
k=1
that is
n+m-—1

Cco > Z Ickl'
k=1

We have proved theorem6.1.

Proof of Theorem®6.2:
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First we assume the A polynomial has a root s which satisfies
|s| >1 (|s| is the norm of s)
and there exists a B sequence such that
N
0> lex] (N=n+m-1)
k=1

As C = AQ® B, the roots of the A polynomial are also the roots of the C polynomial.

That is
cos™ +ec1sV 44 ey =0 (Al - 4)
As
leos™ + sV o+ en| 2 lcos™| = lers™ 1 4o+ en]
N N
ICISN—I + ... 4 CNI < E ICkSN—kI = Z |Ck||.9|N—le
k=1 k=1
N
<Y Jexlls™
k=1
So
N
leos™ + 18V 4+t en| 2 leol|s|N — z lex]|s| Y (Al -5)
k=1
From equation (A1-4), we have
|cosN+613N_1+“'+cN|=0 (Al - 6)
S0
N
leolls|™ = lexlls|¥ < 0 (A1-7)
k=1
: N
5% (leol = Y lexl) < 0 (A1-8)
k=1
as |s| > 1and cg > 0, so
N
co =D lex| <0 (A1-9)
k=1
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that is
N
o <Y lekl (Al - 10)
k=1

This contradicts the original assumption that
N
co> D lex| (Al —11)
k=1

Thus the roots of the A polynomial must lie strictly in the unit circle in the complex

plane.

If all the roots of A polynomial lie strictly in the unit circle, then the A poly-

nomial can be represented as
ag(z —ar)(z —az) - (z — an)
and |a;| <1fori=1, 2, ---, n. Let

a= i=111,12a3.c.’n ;]

If we convolve the A sequence with a sequence B; which has the characteristic

polynomial of

sign(ag)(z + a1)(z + az) - -+ (2 + an)
then we obtain the C) polynomial

jaol(s% — a?)(s% = a}) -+ (= — )
If this process is continued we obtain

Jaol(” — af)(" = af) -+ (% - @)

and
(Al - 12)




then

N

co— 3 leil = laol(1 ~ |af + @ + -+ + o)
k=1

— |afaf + -+ af_jaf

-— s s s s e e —|a¥a§...a£|)

> |ag|(1 = na? — C2a®® — ... — Cla™P)
1 1 1
1-— - ———
>|a0|( n+1l n+1 n+1)
n
= lag|(1 - —— -
lao]( ) 1) >0 (Al - 13)
that is
N . N
c0—2|ck|>0 or c0>2|ck|
k=1 k=1
The B sequence (by, b1, -+, bm—1) is the convolution of the By, By, ---, B,

sequences. The coefficients b; are guaranteed to be real because the coefficients a;

are real. Since the coefficients of the A polynomial are real, any possible complex

roots of the polynomial will be in conjugate form. This is also the case for any

complex roots of the B polynomial, and all the coefficients b; will be real. Hence

Theorem6.2 is proved.
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Adaptive ATM Call Access Control Using Learning Algorithms

J.R.Chen and P.Mars t

1. Introduction

The Broadband Integrated Services Digital Network (B-ISDN) is an emerging communication network
which is intended to provide multimedia services to its customers in a flexible and cost-effective manner.

The services include voice, video and data transmission. Research and development in B-ISDN is a very

active area.

The traditional transport paradigm used for ISDN is synchronous transfer mode (STM) [1). The rule
for subdivision and allocation of bandwidth using STM is to allocate time slots within a recurring structure
( frame ) to a service for the duration of call. An STM channel is identified by the position of its time
slots within a synchronous structure. The hierarchical channel structure of STM consists of several bearer
channels, and each of them has different transmission rate. One of the drawbacks of appling STM to B-
ISDN is its rigid bearer channel structure which make the dynamic allocation of time slots difficult [1]. In an
B-ISDN enviroment, the services have greatly varied bit rate, and some kind of dynamic allocation of time
slots ( or bandwidth ) is necessary to make efficient use of the bandwidth resource. Thus the asynchronous
transfer mode (ATM) has attracted significant attention as a transport paradigm for B-ISDN [2] 3}. In
ATM, specific periodic time slots are not assigned to a fixed service, usable bandwidth is segmented into
fixed size information bearing units called packets or cells. Each cell consists of a header and an information
field. These cells can be dynamically allocated to services on demand. In comparison to STM, ATM is more
flexible, and may have potential gain in bandwidth efficiency by buffering and statistically multiplexing
bursty traffic at the expense of cell delay and loss [4). In this paper we concentrate on the statistical
multiplexing control strategy and consider two access control strategies based on learning algorithms. We
first discuss the basic problem of bandwidth resource manegement in ATM. Two new adaptive strategies are

then considered with associated simulation results and a critical discussion.

2. Bandwidth Resource Management of ATM

To guarantee performance requirements like cell delay and loss demanded by the services which are
supported by the B-ISDN, a bandwidth allocation strategy ( or traffic control strategy, call regulation )
must be implemented in the transport layer to control the multiplexing of cells. Generally, there are two call
regulation rules [4]. One is nonstatistical multiplexing, in which if the sum of the peak cell rate of all the
hold on calls ( include the new incoming call ) does not exceed the output link rate, then the new incoming

call is accepted. Otherwise it would be rejected. That is the call accept condition is
Y psc
i

t The authors are with the School of Engineering and Applied Science University of Durham UK
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where P is the peak rate of the ith hold on call, and C is the capacity of the output link at the node. This
approach is quite similar to bandwidth reservation for STM, but with the added flexibility of being able to
reserve any peak rate required, rather than a multiple of a base channel rate. The strong advantage with
nonstatistical multiplexing is minimal cell delay and no cell loss due to buffer overfiow. However in the case
when a large proportion of the traffic fiow in the link is bursty, the nonstatistical multiplexing can show low
efficiency in making use of bandwidth resource. Thus statistical multiplexing is considered to exploit the
burstiness of traffic flow and obtain potential gain in bandwidth efficiency. In statistical multiplexing, the
total peak cell transmission rate of all the accepted calls is allowed to exceed the capacity of the link at the

expense of cell delay or cell loss. However under a proper control strategy the cell delay or cell loss can be

controlled within a tolerable range.

Statistical multiplexing can only increase bandwidth efficiency under certain conditions. The precondi-
tions are that the average burst length B of calls is short, the peak rate to link capacity ratio (PLR) of calls is
low and the burstiness of calls are high [4). Let P denote the peak rate of a call, A the average rate and C the
capacity of the link, then the burstiness of the call is defined as P/A, and PLR = P/C. In [4] the authors
give some computer simulation results on the feasibility of using statistical multiplexing in homogeneous
traffic and heterogeneous traffic enviroments. In the homogeneous traffic case, generally PLR should be less
than 0.1. These preconditions can be met in many cases in B-ISDN due to wide bandwidth and inherently
bursty data services. Also advanced image coding technique are making the traditional continuous sources

like video into bursty sources [5].
3. Adaptive Statistical Multiplexing Strategies

Adaptive call regulation can use learning automata [6] or an artificial neural network (7] as its basic
structure. The neural network controller considered in [7) used the back-propagation algorithm for training.
Thus it has a potential local minima problem and retraining is not easy. Another undesirable feature of this
controller is that it only uses the incoming cell pattern in the link as the basis for call regulation and does not
take into account the fact that different type calls may require different bandwidth. Sometimes the traffic
condition on a link may not be able to support a wideband service but is adequate for a narrowband call.
This kind of situation cannot be dealt with efficiently by the neural network controller mentioned above. If
the traffic characteristics can be approximated by a normal distribution, a simple linear call regulation rule

may be used. In the following we discuss a perceptron like adaptive call regulation controller which uses a

linear inequality as decision rule.
- (a) Perceptron Control Rule

Consider an adaptive call regulation rule based on the inequality
aiN1+azNz +asNs < T

where N, is the number of hold on calls of narrowband calls, and N3 and Ng are for intermediate-band and
wideband calls. Each class of call has different cell rates. Of course one can classify calls into more classes,

but for the simplicity of control rule, large number of classes are unfavorable. The coefficients a,, a3 and 63
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can be adaptively updated using a perceptron like algorithm [8] as follows.

If a call request is accepted but the following cell loss rate exceeds the performance requirement, then
aj(n+1)=a;(n)+alN; az(n+1)=az(n)+aN; a3z(n+1)=a3(n)+alNs

where a is the learning stepsize. If the call is rejected and the cell loss rate is much lower than the performance

requirement, then
a;(n+1)=a;(n)— BN, az(n+1)=az(n)— BNy a3z(n+1) = as(n) — fNs
where f is the learning stepsize.

(b) RAM Map Control Rule

Both the perceptron mentioned above and the neural network controller considered in [7] essentially
implement a functional mapping. If we consider that the output of the controller is just accept or reject and
the input can usually be transformed into binary form, these mappings are just Boolean logic functions. and
can be implemented using digital logic circuits If variables Ny, N, and N3 are viewed as three orthogonal
axes, then every combination of hold on call pattern in a link is represented as an integer point in the
space. All these points form a lattice array with finite nodes. This lattice array can be implemented by a
RAM. N;, N, and N are represented as binary numbers to the address lines, the output is single bit with
1 representing accept and 0 for reject. For a RAM with 16 address lines, it contains a 26 = 65536 node
lattice, and is sophisticated enough for most applications. To train this RAM network, a learning paradigm

which is similar to the self-organization map algorithm [9] is introduced.
4. Simulation Results and Discussion

For the perceptron control rule discussed, the @ — LMS learning algorithm is used for training. To
verify the analytical prediction, the homogeneous traffic situation was simulated, and the simulation results

are shown below. They are obtained with a perceptron control rule.

N (Average number of on hold calls)]  poy Efficiency | Theoretical Estimation
154 0.000389 | 73.9% 78.8%
75 0.000552| 70.3% 72.8%
47 0.001952| 69.9% 70.4%
Table-1

The simulation results for a heterogeneous traffic situation are shown in Table-2 and Table-3. The
composition of incoming call flow is 60% narrowband calls, 30% mediumband calls and 10% wideband calls.
Table-2 shows the simulation results for short burst call source which has the average burst length 4.25 cells
and the burstiness of 2. Table-3 shows the simulation results for long burst call source which has the average
burst length 9.5 cell and burstiness of 2. There are two ways to measure the bandwith efficiency. One is to

use the utilization of the capacity of the link like that defined in (4), and the other way is to measure the
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average peak cell rate or the actual throughput in the link. Both of these parameters are listed in the tables

and the capacity of the link is normalized to 100.

Control strategy Efficiency | Average peak rate| p,, |Cell loss rate
nonstatistical mutiplexing| 41.4% 97 0 0
perceptron control rule 54.8% 115 0.0018| 7.57 x 10~
perceptron control rule 59.8% 121 0.0005| 1.75 x 10-%
RAM map control rule 57.7% 116 0.0016 | 5.25 x 10~
RAM map control rule 62.1% 123 0.0050{ 1.68 x 104
Table-2
Control strategy Efficiency | Average peak rate| po, | Cell loss rate
nonstatistical multiplexing | 44.3% 97 0 0
perceptron control rule 61.7% 123 0.0008 | 3.85 x 10~%
perceptron control rule 56.8% 122 0.00006 | 1.86 x 10~
RAM map control rule 67.6% 134 0.0062 | 2.12 x 10~
RAM map control rule 68.8% 138 0.0053 | 1.79 x 10~4
Table-3

5. Conclusion

In comparison to STM, ATM has more fexibility in bandwidth resource mangement. To explore the
potential gain in bandwidth usage efficiency which is made possible by ATM, statistical mitiplexing is
needed in call access control. Of course there are some preconditions which are necessary for profitable
use of statistical multiplexing. The calls must have high burstiness and low PLR (peak cell rate to link
capacity ratio). Under these conditions, statistical multiplexing with the learning algorithms discussed in
this report can provide an obvious gain in bandwidth efficiency. This has been demonstrated by simulation
results. Further work is needed on more intensive simulation studies and eventually testing on real ATM

communication networks.
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Some Aspects of Non-Linear System
Identification Using Neural Networks

J.R.Chen and P.M:us

School of Engincering and Applied Scicnce

University of Durham UK

System identification, and in particular non-lincar system identification,
is an important problem for systems control. In this paper we discuss some
fundamental constraints in using MLP ncural networks for non-linear system
identification. -

Recently there has been considerable interest reported in the use of neural
networks for system control and identification [1] [2] [3]. A significant number
of nonlinear dynamic systems can be described by the recursive equation

Tn4i =f(zn,zn—l,"-axn—p-}-l,un (1)

where z; is the output of the system and u, is the input excitation. In this
paper we discuss the identification problem for two classes of nonlinear systems

described by

Tnt1 = A0Tn+ A1Zn—1+ ...+ apTn_ps1 + f(un) (2)
and
Tn+1 =f(:r,,,:z:,,_l,...,:z,,_p.{.,)-}—un (3)

Equation (2) and (3) are called Model-I and model-II nonlinear systems respec-
tively[1]. The essence of applying a neural network to nonlinear system identi-
fication is to use the neural network to approximate the nonlinear mapping f( )
in (1). Theoretically, the MLP neural network can approximate any continuous
nonlinear mapping to any precision, provided there are enough hidden units[4].
In the identification of both Model-I and Model-II nonlinear systems, the MLP
neural network are used as a basic structure for identification [1).

Since the basis of using ncural nctwork for identification of Model-I and
Model-II nonlinear systems is to use the MLP ncural nctwork to approximate
the nonlincar transfer function, the approximation propertics of MLP ncural
network have significant influence on identification performance. Qur simula-
tions show that within the learning range and for relative smooth functions
the approximation is good. However outside the learning range the approxi-
mation is usually poor. This poor generalization is an intrinsic weakness of a
fully connected MLP neural networks [5]. As the mechanism of generalization of
MLP ncural networks are more like interpolation between known learning sam-
ple points [G], the generalization or extrapolation outside the learning range will
be poor unless the MLP neural network has a built-in structure which matches

the learning problem.
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Consider the identification of & Model-I nonlinear system with a MLP neural
network. The nonlinear system can be deseribed by a difference equation shown
in (2). The identification architecture is depicted in Fig-1.

“Us — Nonlincar Function ~|—————=#] Lincar System —> Xn
x
“AUn—] Neural \ Nets Lincar System
\——— Lincar Systcm
Fig-1

If it is assumed the coeflicients ag, a1, ..., a, are known, then the output
of the neural network system is

.’in+1 = (l().f)n +...+a,,:f:,,__,,+1 +NN('U.n) (4)

where NN represent the MLP neural network which is used to model the non-
linear function. Let ¢, = zp, — £n, then from (2) and (4) it obvious that

€p41 = Qo€n +a1€n-1 + ...+ ApCn—p+1 + f(un) - NN(un) (5)

Let E, = f(un) — NN(u,), and take the partial derivative of (5) to give

Ocut1 =aoacn +alac,,_.1 -i-...—f-a,,aen—ﬂ+1 + OF. (6)
Jw Jw Jw ow ow

%%L can be calculated by the back-propagation algorithm, so cquation (6) can
be used as a revised back-propagation algorithm to update the weights of the
neural network which is imbeded in the dynamical system. (see [1] for more
detail). Using the above identification scheme, we have found by simulation
that the identification of f(u) is good only in the range which is covered by the
excitation. Qutside this range the identification is poor.

For the Modcl-IT nonlincar system identification, the nonlincar system is
described by a nonlincar difference equation shown in (3). If a parallel scheme
is used, the neural system which is used to model the plant can be represented
as

i'n-{—l :-A’-Ar(itt»:ilx—l7--°ain—p-{'l)+“n ) (7)
where z,, 1s the estimation of z,, and wu, 1s the known cxcjtntibn which is the
same as that in (3). From equation (3) and (7), the discrepancy between the
plant and the ncural system can be calculated as

Cudgl = L1 — Ty
— e g e I N+ o P
— f(-’ua"-u—-l»---»-I'n-q){l)—'/\lf\("'uv-lu—ly---a-' n—,HI)

—~—~
o2
—
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the ¢, 1s used 1 the identification processes to adjust the neural network to

minimize the discrepancy between the plant and the neural network. I the
series-parallel model 1s used, cquation (8) can be replaced by the equation
Cn4+1 = f(:':vng:u-—]a ey -Tn—p-}-l) - _]V]V(.’L',,, Tn—1,--- amn-p-{J) (9)

In this paper a series-parallel model is used instcad of the parallel model, for
which the covergence is difficult to achicve even in lincar system identification.
The identification architecture is depicted in Fig-2.

Un

Nonlincar Function b » Xn

L |
v Ay :

Neural / Network z

Fig-2

From equation (9) we can see that the identification problem in this case
is almost the same as the function fitting problem discussed previously. The
difference here is that the samples used for calculating e(k) are determined by
the property of the system to be identified. However in the function fitting
case the samples can be selected arbitrarily. As mentioned previously the gen-
eralization mechanism of the MLP necural network is the interpolation between
the learning samples and extrapolation outside the learning region. To make
the interpolation match the function which produces the learning samples, the
learning samples should be very dense within the learning region of the input
space, and gencrally the extrapolation outside the learning region will be poor,
as shown previously. Thus to obtain satisfactory identification, the learning sam-
ples should cover the whole input domain which one is interested in, and have
sufficient density. The systems and the excitation should meet some demand.

The distribution of state vectors in the state space is called a phase trace
or phase portrait. There are several system properties which can influence the
phase trace. First, we consider the controllability or reachability of the system.
In system theory, controllability means any system state can be reached within
finite time with an appropriate excitation[7]. If the system is uncontrollable, for
example if the state space consists of several diconnected subspaces, then the
identification results will be highly dependant on the initial state. If the mitial
state lies in a specific subspace, then the identification can only be obtained m

this specific subspace.
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Apart from controllability, the phase trace is also influenced by the correla-
tion property or bandwidth of the system. Although controllability guarantees
that every corner of the state space is reachable under appropriate excitation,
the distribution of the phase trace is more influenced by the bandwidth of the
system if the excitation is not specifically designed. For example in a highly
corrclated system the system output is highly correlated when it is excited by
a random signal, so the phase portrait is usually restricted to a diagonal region
in the state space. Thus the identification would be restricted to this diagonal

region as well.

The above discussion about the application of MLP neural networks to non-
lincar system identification is restricted to systems which have an asymptotically
stable equilibrium point. As is well known there are a large number of nonlinear
systems whose attractors are not simply points or limit cycles, but are strange
attractors which can lead the system into chaotic behaviour{9],[10]. It could be
speculated that because of the special phase traces of strange attractors in state
space, the identification of chaotic systems would be poor. On the other hand,
for a chaotic system any infinitesimally different starting points will produce
significantly different outcomes. So any small modeling error will be amplified
to its maximum in the dynamic process. This presents a fundamental difficulty
for chaotic system identification.

In conclusion it may be stated that the universality of MLP neural networks
does not necessarily provide advantages in applications like system identifica-
tion. For an MLP neural network without a structure designed to match the
system to be identified, the identification results heavily depend on the range of
distribution for the phase trace. To obtain satisfactory identification, the system
and the excitation should meet some preconditions like controllability, etc. Thus
a prior knowledge of the possible system structure is important for satisfactory
system identification. However in the case when little structure information is
available, the MLP neural network model can always be used as a last resort.

If the identification is only restricted to a small part of the state space,
theoretically we cannot say the identification is complete. However from a prac-
tical point of view, the results may still have application value. For example,
in the narrow band system, correct identification is restricted in the diagonal
region, but under general conditions the phase portrait of the system will rarcly
go out of this range. To drive the phase portrait out of the diagonal region, a
strong high frequency excitation is required and would rarely occur in a practi-
cal situation. In some cases, although the neural system is a poor model of the
real system, it may still be a good predictor. This is especially true of chaotic
systems. In the predictor case there is no crror accumulation process which is
a basic feature of chaotic dynamical systemms. Although the above discussion is
mainly concentrated on Model-1 and Model-IT nceural network systems, the ob-
servations are also applicable to other system identification schemes using neural

networks.
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All the simulation results will be presented at the Colloguium.
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Stepsize Variation Methods for
Accelerating the Back-Propagation Algorithm
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Abstract:

In this paper we discuss results on improving the convergence speed of the back-propagation algorithm,
and introduce an adaptive stepsize lechnique and a differential stepsize method to accelerate the conver-
gence speed of the back-propagation algorithm. Simulation results are presented which illustrate the improved
convergence.

1.Introduction

The recent revival of research activities in neural networks was significantly influenced by the publication
of [1]. With the learning algorithm called the back error-propagation, it was shown that the Multi Layer
Perceptron (MLP) can perform interesting computations[l]. Unlike the perceptron analysed by Minsky(2]
which can only solve linear separable problems, the MLP , theoretically , can divide the input space into
arbitary shape, provided that there are enough hidden units. Thus MLP methods have been applied to
several complex pattern classification-like problems, such as that reported in [3]. However the main drawback
illl ap_pLying MLP networks to many real problems is the slow convergence speed of the back-propagation
algorithm.

While the back-propagation algorithm is a kind of gradient descent algorithm, error surfaces for learning
problems frequently possess some geometric properties that makes the algorithm slow to converge. The
stepsize of the algorithm is sensitive to the local shape and curvature of the error surfaces. For example, a
small stepsize wiﬁ make the algorithm take a very long time to cross a long flat slope. On the other hand,
a large stepsize will cause the iteration process to bounce between the two opposite sides of a valley rather
than following the contour of its bottom. Even if a satisfactory stepsize for one stage of the learning process
is found, this does not ensure it will be appropriate for any other stage of the same learning process. On
the other hand, the premature saturation of the network units also causes problems for the convergence of
the algorithm. Thus in the following we introduce an adaptive stepsize back-propagation ‘algorithm and a
simple method for circumventing the premature saturation.

2.Previous Research

There has been some research on improving the convergence speed of the back-propagation algorithm,
such as that mentioned in [4][5][6]. In [4] the authors suggested Conjugate gradients, Quasi-Newton algorithm
and other more sophisticated algorithms. They are also called second order methods. According to our
knowledge, the convergence speed reported in [1] on the XOR problem is the fastest among the existing
algorithms. However all these algorithms are much more computationally expensive, especially when the
scale of the problem is large, so that in many cases it is impractical to use them. In order to reduce the
computation cost of the second order method, a kind of approximation technique has been introduced into
the Newton’s algorithm([5]. The authors used a diagonal matrix to approximate the Hessian matrix. This
makes it possible to derive a back propagation algorithm for the second order derivatives as that for the
first order derivatives. But the applicability of this new algorithm depends on how well the diagonal Hessian
approximation models the true Hessian[5]. Only when the effects of weights on the output are uncoupled
or nearly uncoupled, can the diagonal Hessian represent a good approximation. We have implemented this
Newton-like method in our back-propagation simulation program. At this stage we have not found it to

. exhibit any advantage over the ordinary back-propagation algorithm. This may be due to the use of sub-
optimal learning parameters. Just as was mentioned in [5], we found the learning parameters are more
critical in obtaining reasonable behaviour with this Newton-like algorithm than with the back-propagation
algorithm. Another attempt to use a second order method to improve the convergence property of the
back-propagation algorithm was introduced in [6], which is called Quickprop. It uses the difference between
two successive %ﬁ as a measure of the change of curvature and uses this information to change the stepsize
of the algorithm. E is the output error function, and w represent weights. Using this method a significant
improvement on convergence speed has been reported in [6).

In [7] another kind of adaptive stepsize algorithm was introduced. According to this algorithm, if an
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update of weights results in reduced total error, the stepsize is increased by a factor ¢ > 1 for the next
iteration. If a step produces a network with a total error more than a few percent above the previous value,
all changes to the weights are rejected, the stepsize is reduced by a factor 3 < 1, the momentum term is set
to zero, and the step 1s repeated. When a successful step is then taken, the momentum term is reset.

As is well known in adaptive signal processing theory, the direction of the negative gradient vector may
not point directly towards the minimum of the error surface. In adaptive filter theory, this kind of bias can
be measured by the ratio of the maximum eigenvalue and the minimum eigenvalue of the auto-correlation
matrix[8]. Recently an adaptive stepsize algorithm which gives every weight a stepsize which can adapt
separately has been proposed[9]. This is only a rough approximation, as it will be noted that these stepsizes
adapt on the direction of each weight rather than on the eigenvector direction as required(8][9).

In the back-propagation algorithm, the update of weights can take place after presenting all the train-
ing samples to the network or after every presentation o% a training sample, they are called batch mode
back-propagation and online back-propagation respectively. Generally speaking, online back-propagation
algorithms converge faster than the batch mode back-propagation([5][6], and batch mode back-propagation
is more likely to fail to converge on a large training sample set[10]. The algorithms described above are
all batch mode back-propagation, because for the second order method it can only use batch mode. In the
following we introduce an adaptive stepsize online back-propagation algorithm. It is considered to represent
an advance on existing algorithms. '

3.Adaptive Stepsize Back-Propagation

In designing an appropriate algorithm the following factors should be considered. First the momentum
term cannot be set to zero, as the update occurs for every presentation of a new training sample. If the
momentum term is set to zero, there exists a risk of losing past experience. Generally speaking. a large
training sample set requires a large n value ( 7 is the stepsize for the momentum). This fact has been
confirmed by computer simulation[11). Thus the adaption is restricted to the gradient term. We used the
following form of adaptive stepsize algorithm:

a(t) = a(t - 1)(1 - f()VE(t) ) (l.a)
J) = u f(t = 1) + w2 AE(t) (1.b)
AE(t) = E(t)— E(t - 1) (1.c)

a(t) is the stepsize for the gradient term in the update formula in the back-propagation algorithm. It is the
stepsize at moment t. E(t) is the summation of squared discrepencies between the desired output and the
actual output at time t. It can be calculated as following:

N p
E= % 35 (dF - of)? (2)
k=1i=1

AE(t) is the decrement of the E(t). f(t) is a filtered version of AE(t). Actually (1.b) is a first order low-pass
recursive filter, which can smooth the significant changes in AE(t), making the algorithm more stable. u;
and uy are the parameters used to control the adaptation. For small u; and big u3, the adaptation is fast,
but it is also more likely to be trapped in oscillation. For big u; and small u,, the adaptation is slow, but
it is more stable. Thus the parameter selection involves a trade off. In our simulation, we used u; = 0.9
and u; = 0.3. The term (1 — f(t)\/E(t) ) also controls the adaptation of the stepsize. If f(t) is positive,

that means the tendency of E(t) in the near past is to increase, so 1 — f(t)\/E(t) < 1, the stepsize will be
decreased. A similar analysis shows that if the tendency of E(t) is to decrease, the stepsize will be increased.
When the E(t) is very small, that is the network has almost learned, the adaption will be very weak, which
stablizes the algorithm. The square root is used as compensation, it can amplify the small E(t) to avoid the
premature termination of adaptation. :

We now present some simulation results to show the advantage of the adaptive step size algorithm. In
the diagrams shown, the E defined in (2) are plotted as a function of iteration times for different learning
rroblems. They are called learning curves, and can be used to evaluate the convergence property of the
earning algorithm. Their maximum are normalized to 1. In Fig-1 we show comparative simulation results
of the non-adaptive back-propagation algorithm and the adaptive algorithm for the 4-4-1 parity problem. It
is clear the adaptive stepsize Eas improved the convergence spced, just as we expected. In our simulation we
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find that the improvement on the complex problem are more impressive than that on simple problem. The
reason may be that since adaptation is a dynamic process, it needs a finite time to be effective. For simple
problems, the learning process is very short, the adaptation process has not sufficient time to play its role.
Thus there is only a small effect of adaption on simple learning problems.

4.Differential Stepsize Back-Propagation

Although the adaptive stepsize back-propagation algorithm has improved the learning speed to some
degree, it cannot cope with the premature saturation of the network units. We have noted in our simulations
that MLP neural nets are often trapped in a very flat valley or so called local minima, in which area the
convergence speed is very slow which corresponds to the flat line intervals on the learning curves of Fig-1.
This cannot be solved by an adaptive stepsize technique, because the reason for this phenomenon is that
the absolute value of weights are growing so fast as to make the units, especially hidden units, prematurely
saturated. There is a term like s(1-s) in the update formula for the back-propagation algorithm, in which
s is the output state of the unit. It is quite clear that if s is close to 1 or 0, whichever output is desirable,
almost no update will be passed backward through that unit. This kind of phenomenon is also known as
the flat spot[6]. In [6] the author suggested to change the sigmoid-prime function s(1-s) to s(1-s)+0.1, so it
can avoid the flat spot. But according to our simulations, this change often causes the weights to grow so
fast as to lead to floating point overflow on the digital computer. Although some weight-decay term may
be used to counteract this[6), it makes the algorithm more complex. We have used a very simple method to

cope with the flat spot.

A straight forward idea to circumvent the flat spot is to remove the term s(1-s) from the update formula
for the output layer, and set the stepsize for the update of weights between the hidden layer and the input
layer smaller than that for the weights between the upper layers. We denote the stepsize for the update
of weights between the output layer and the hidden layer as a5, and the stepsize for the update of weights
between the hidden layer and the input layer as o), then a; > a;. We call this the differential stepsize
back-propagation algorithm(DSBP). In our simulation, we used a; = 0.las. The simulation results are
shown in Fig-2, and it is very clear the convergence speed is improved considerably.

In [6] the Quickprop algorithm was claimed to be the fastest learning algorithm among the existing
algorithms. In order to compare our DSBP with the Quickprop, we have run 30 simulation trials on the
10-5-10 encoder problem. The termination condition for the simulation is that the discrepancy between
the desired output and the actual output for every output unit and every training sample is less than 0.1.
The average training time for this problem by DSBP is 23.5, with a standard derivation of 3.27. This is
only marginally slower than the Quickprop algorithm, for which the average training time is 22.1. However
although the Quickprop plus a hyperbolic arctan error function algorithm can reach the same solution
with an average training time of 14.01, it is much more complex than DSBP, and a weight-decay term is
needed. The results for the simple DSBP algorithm represent a considerable improvement on the standard
back-propagation algorithm, which gave an average training time of 129 iterations.

5.Conclusion

From the above discussion, it is clear that the adaptive stepsize technique can improve the convergence
speed of the back-propagation algorithm. It is obvious that the degree of improvement for a complex learning
problem is greater than that for simple problems. We consider that the potential of the adaptive stepsize
technique lies in the area of real large scale application problems, such as Net-Talk([3], in which the training
sample set is very big, and the training process may last for a few days. From the simulation results shown
above, we can also conclude that the DSBP method we used to circumvent the premature saturation or flat
spot is effective. It is also surprising that such a small change to the algorithm can produce such a significant
improvement, and confirms the importance of concentrating on a theoretical understanding of the dynamics

of the back-propagation algorithm.
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Fig-1

Learning curves for the 4-4-1 parity
problem. Broken line stands for the learn-

ing curve of non-adaptive algorithm. The

initial random value of weights are within
the range(-0.5, 0.5), w-seed=50697,
th-seed=8461, o« = 0.4, = 0.9.

Fig-2

Learning curves of the 10-5-10
encoder problem. Solid line stands for
the learning curve of the differential step-
size back propagation algorithm(DSBP).
The initial random value of weights are
within the range(-1, 1), w-seed=4581, th-
swwd=818953, a = 0.6, = 0.9. But for
the DSBP a; = 0.06, a2 = 0.6.




