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A b s t r a c t 

I n this thesis some fundamental theoreticaJ problems about artificial neural net

works and their application in communication and control systems are discussed. 

We consider the convergence properties of the Back-Propagation algorithm which 

is widely used for t ra in ing o f ar t i f ic ial neural networks, and two stepsize variation 

techniques are proposed to accelerate convergence. Simulation results demonstrate 

significant improvement over conventional Back-Propagation algorithms. We also 

discuss the relationship between generalization performance of artificial neural net

works and their structure and representation strategy. I t is shown that the struc

ture of the network which represent a pr ior i knowledge of the environment has a 

strong influence on generalization performance. A Theorem about the number of 

hidden units and the capacity of self-association M L P (Multi-Layer Perceptron) 

type network is also given in the thesis. In the application part of the thesis, we 

discuss the feasibihty of using art if icial neural networks for nonlinear system iden

t i f ica t ion . Some advantages and disadvantages of this approach are analyzed. The 

thesis continues w i t h a study of art if icial neural networks applied to communica

t ion channel equalization and the problem of call access control in broadband A T M 

(Asynchronous Transfer Mode) communication networks. A final chapter provides 

overall conclusions and suggestions for fur ther work. 
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Chapter One 
Introduction 

1.1 Why Artificial Neural Networks ? 

I n the past few decades, the development of conventional digital computers 

has achieved great success. The application of digi tal computers has extended into 

almost every aspect of our Hfe. Dig i ta l computers are extremely good at numerical 

calculation, fo rmal logical inference and storage of data i n bulk. They are signifi

cantly inferior to the human brain i n such tasks as vision, speech and information 

retrieval based on content. This big performance difference between digital com

puters and the human brain is par t ly due to their different organizational structure 

and computational process. 

Compared w i t h digi ta l computers, the operation speed of the human brain 

is much slower. I f the transmission of an impulse by a neuron is considered as 

a fundamental step of computation, then the operation speed of a neuron is in 

the range f r o m one step for a few seconds to several hundred steps per second[l], 

while a modern digi ta l computer can carry out billions of operations per second. 

Al though the human brain is slow, i t can accomplish many cognitive tasks Uke 

visual recognition and speech understanding in about half of a second. Thus in 

2], Feldman and Ballard suggested that these complex computation problems are 

solved in less than a hundred t ime steps. The explanation of this extremely high 

efficiency of computat ion of the human brain is its highly parallel structure. In 

the human brain, the number of connection for each netiron is varied f r o m a few 

hundred to several thousand. The computation is carried out simultaneously in 

hundreds of thousands of parallel channels. Thus the research on neural networks 

is also called the connectionist approach. On the other hand, conventional digital 



computers are mainly serial machines. Al though parallel structures have been given 

more and more at tention recently, the parallehsm achieved is s t i l l far short of that 

i n the human brain. I n the brain i n addit ion to parallel processing, the storage of 

in format ion is also distributed. 

Clearly, the human brain works i n a frmdamentally different way f r o m that of 

conventional digi ta l computers. The difference can be characterized by the highly 

parallel distr ibuted organization and slow operation speed of the human brain and 

the generally serial structure and extremely fast operation speed of digital com

puters. The parallel distr ibuted organization of the human brain not only gives i t 

high efficiency i n cognition, but also helps i t to achieve a certain degree of fault 

tolerance. Thus i t is natural to expect that , by doing research on artificial neu

ral networks ( or connectionist models ) , we may obtain a better understanding of 

mechanisms of the human cognition process, and possiblly synthesize new classes of 

intelligent machine. Research in neuroscience has made significant progress in the 

past decades, and many plausible models about human neural systems have been 

proposed. Development of high speed parallel processing now permit the simula

t ion of large ar t i f ic ia l neural networks. A l l these facts have contributed to the rapid 

boom of research on ar t i f ic ial neural networks i n recent years. Basically there are 

two approaches to neural network research. One is concentrated on neuronal mod

eling which stress the biological plausibil i ty of ar t i f icial neural networks. Another 

application orientated approach is more concerned in exploring the art if icial neural 

networks as a parallel computing architecture or an adaptive system for applica

t ion . I n this case the biological plausibili ty is not emphasized. I n this thesis the 

second approach is mainly adopted. I n the next two sections, some basic concepts 

of neuroscience and ar t i f ic ial neural networks are introduced. 



1.2 Basic Concepts of Biological Neural Networks 

The brain is an extremely complex system. One of the fundamental achieve

ments of neurosience i n the early part of this century is the recognition that the 

neuron is the basic bui lding uni t of the brain, and neurons are interconnected wi th 

a h igh degree of order and specificity [1]. The nvunber of neurons i n a htunan brain 

is estimated around 10^" ,̂ and they are organized into many specialized regions for 

different functions [3]. A diagram of a neuron is shown i n Fig-1.1. Although i t is 

s implif ied, i t captures some of the most important features of neurons. 

The cell body of a neuron is called the soma. The spine-Hke extensions of 

the cell body are dendrites. They usually branch repeatedly and fo rm a bushy 

tree around the cell body and provide connections to receive incoming signals f rom 

other neurons. The axon extends away f r o m the cell body to provide a pathway 

for outgoing signals. Signals are transfered f r o m one neuron to another through 

a contact point called a synapse. Al though the synaptic junctions can be formed 

between axon and axon, between dendrite and dendrite and between axon and cell 

body, the most common synaptic junct ion is between the axon of one neuron and 

the dendrite of another. There are two classes of synapses. The excitatory synapse 

tends to promote the activation of neurons, while the inhibi tory synapse play an 

opposite role. When a neuron is activated or firing ( this could be caused by an 

external stimulus ) , an impulse signal travels down along the axon, unt i l i t reaches 

a synapse. A t this point some k ind of chemical transmitter is released to promote 

or inhibi te the firing of the receptor neuron. 

Some research shows that the excitablity and inhib i t ion of synapses can be 

enhanced by the activities of neurons, and this synaptic plasticity is believed by 

many researchers to be the neuronal mechanism of learning and memory function 



of the bra in [4] [5]. Ar t i f i c i a l neural networks is a the natural extension of this 

synaptic plasticity learning theory. 

1.3 Basic Concepts of Artificial Neural Networks 

A n ar t i f ic ia l neural network ( A N N ) consists of neurons, a connection topology 

and a learning algori thm. The neurons are also called units or processing elements 

etc. A typical uni t is depicted in Fig-1.2. The input signals ( x i , . . . , Xn) come f rom 

either the external enviroment or outputs of other units i n the network. Associated 

w i t h each input connection l ink of the unit is an adjustable value called a weight or 

connection strength. This is a direct immi ta t ion of the synaptic plasticity which is 

described i n the previous section, so i n some neuroscience and psychology literature 

i t is also called long-term memory ( L T M ) . Usually Wij represents the weight of the 

connection f r o m uni t i to uni t j . 6j is the threshold of the tmit . The operation of 

the uni t can be described as 

= f(Y^XiWiJ-0j) ( 1 - 1 ) 
i = l 

The operation can be t ime continuous i f the A N N is implemented by analog hard

ware. I n the discrete t ime case i t can work i n either synchronous mode or asyn

chronous mode. 

The func t ion / ( ) in (1-1) is called an activation funct ion. Four most commonly 

used activation functions are linear, ramp, step and sigmoid functions. The linear 

func t ion shown in Fig-1.3(a) can be defined by 

f i x ) = ax (1 - 2) 

The ramp func t ion shown in Fig-1.3(b) is described by 

S, i f a: > 5; 
f ( x ) = { x , i f | x | < 5 ; ( 1 - 3 ) 

-S, otherwise. 



where S is the saturated output . The funct ion in (1-3) can be adapted into other 

forms by change of slope and saturation point. The l imi t ing form of a ramp function 

is a step funct ion which is depicted in Fig-1.3(c). I t can be defined as 

The sigmoid funct ion displayed in Fig-1.3(d) can take many different analytical 

forms. The fol lowing equations (1-5) and (1-6) are just two examples. 

f(x) = ^ — ^ m (1 - 5) 

f{x) = m X sign(x){l - e"!̂ !) (1 - 6) 

where m is the magnitude coefficient. In some situations, when only positive outputs 

are needed, binary 1 or 0 for example, these activation functions can be shifted 

upward above the x-axis. 

The connection topology largely takes two forms. These are the feed-forward 

only architecture and the feed-back or recurrent architecture. Many feed-forward 

A N N are f u l l y connected, w i t h no fine hierarchical bui l t - in structure. But the 

connection topology plays an important role in improving the generalization and 

learning performance of A N N . 

There are two classes of learning strategies for A N N . They are supervised learn

ing and unsupervised learning. The learning or t raining algorithms wi l l be discussed 

in more detail i n the following chapters. 

Al though the basic idea of art if icial neural networks comes f rom the study of 

biological nervous systems, most A N N capture only some basic features of biological 

nervous systems. This simplification can be justif ied by the lack of powerful mathe

matical tools for dealing w i t h large nonhnear systems, in addition the simplification 



s t i l l captures some most important featmres of biological nervous systems which are 

assumed to be the underlying mechanism of learning. 

1.4 Outline of the Thesis 

I n this thesis we discuss some theoretical problems associated w i t h artificial 

neural networks and their application i n control and communication engineering. 

Chapter 2 is a brief review of some of the most commonly used art if icial neural net

works. I n chapter 3 the convergence performance of the Back-Propagation algorithm 

is discussed, and two stepsize variation techniques are proposed for acceleration of 

its convergence speed. Chapter 4 addresses the generalization and representation 

problem of ar t i f ic ial neural networks. Chapter 5 to chapter 7 consider some po

tent ia l applications of ar t i f ic ial networks. I n chapter 5 some aspects of using M L P 

networks for system identification are discussed. Chapter 6 explores the application 

of a self-organization network as a structure for communication channel equaliza

t ion , and chapter 7 propose two learning networks for the A T M call access control. 

Finally, i n chapter 8 some overall concluding remarks and suggestions for further 

work are given. 
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Fig-1.2 A general ANN unit 
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Chapter Two 

A Review of Artificial Neural Networks 

There are numerous artificial neural networks (ANN) that have been proposed 

in the research literature [6] [7] [8] [9]. In this brief review, only some widely known 

ANN are discussed. Based mainly on their learning schemes, the ANN can be 

classified into three divisions : (a) Supervised Learning ANN, (b) Unsupervised 

Learning ANN, and (c) Prewired or Hardwired ANN. 

2.1 Supervised Learning A N N 

Supervised learning literally means learning under external instruction. In the 

context of machine learning theory (include ANN), it means during the learning 

process, when the machine produces an output or action under specific stimulus, 

the fu l l or partial information of the desirable output or action is available from 

the environment for learning or error correction ( it is usually called weight updat

ing in ANN learning). We now consider some of the most popular ANN learning 

algorithms which use supervised learning schemes. 

2.1.1 Back-Propagation Algorithm 

The Back-Propagation Algorithm is basically a gradient-descent algorithm 

which is widely used in numerical calculation and control and system engineering. 

The idea of using a gradient-descent algorithm as a learning algorithm can be traced 

back to the early work of Widrow [10] and Rosenblatt [11]. Their pioneering work 

was mainly concerned with single layer networks. The basic structure of these 

single layer networks is shown in Fig-2.1. It can be seen that it is a kind of adaptive 

linear combiner, its output is a linear combination of its input. Although the single 

9 



layer network has a very simple structure, it has achieved great success and wide 

acceptance in adaptive signal processing and control [12] [13] [14] [15]. However 

when i t is used to model cognitive processes of the brain, it has been shown by 

Minsky and Papert that the single layer structure has some fundamental limitations 

The publication by Minsky and Papert significantly reduced the interest in 

ANN, although some researchers were still pursuing the field. In 1974 Werbos in

troduced the gradient-decent algorithm into the multi-layer networks [17] which are 

now usually called Multi-Layer Perceptrons (MLP). In particular, when Rumelhart, 

Hinton and Williams independently discovered the Back-Propagation Algorithm of 

MLP [18] and exploited the power and potential in great detail in [19], the research 

interest in this field has been revived. There have been ntimerous papers pub

lished on MLP and other ANN. However some fundamental problems associated 

with MLP still need to be investigated, and many potential applications need to be 

explored. In the following chapters, some properties of MLP and its applications 

wil l be considered. 

While the majority of research activities are concentrated on using Back-

Propagation Algorithm for training of feed-forward networks, like MLP, there is 

also some research which has been reported on recurrent or feedback networks [20 

21] [22] [23 . 

One conspicous way of dealing with input signals which have temporal struc

tures is to represent time explicitly by associating the serial order of the input 

signals with the dimensionality of the input vector of a feed-forward network. The 

first temporal event is represented by the first element of the input vector, the 

second temporal event is represented by the second element, and so on. However 

10 



this scheme of dealing with temporal structure has inherent weakness. It is very 

similar to the FIR filter in digital signal processing, which can only model finite im

pulse response systems. Thus it lacks the ability of modeling the kinds of dynamic 

properties like self-sustained oscillation for example. Thus recurrent networks are 

indispensable for modeling dynamic behaviour. In addition, it is more biologically 

plausible, as recurrent paths occur frequently in real nervous systems [24]. 

In the training of recurrent ANN, the desirable output usually takes the form 

of trajectories in state space [22] [23] or a string of symbols [21]. So the objective 

function to be minimized takes the form 

^(^0,^3) = E ( D ( r ) - 0 ( r ) ) ^ ( D ( r ) - 0 ( r ) ) (2 - 1) 
T = tQ 

where D ( r ) is the desirable output vector at time r , and 0 ( r ) is the actual output 

vector of the recurrent network at time r . It is very similar to the optimal trajectory 

problem in dynamic programming [25]. Actually, the dynamic programming tech

nique can be used for training of recurrent networks [23]. For the J{to,ts) defined 

in (2-1), a gradient-descent based algorithm which is very similar to the Back-

Propagation Algorithm for the feed-forward networks can be used for minimization 

Note that 

J{to,ts) = (D(io) - Oito)f{B{to) - O(^o)) 

+ J{to + l , t s ) ( 2 - 2 ) 

let 

then 

e(r) = ( D ( r ) - 0 ( r ) ) ^ ( D ( r ) - 0 ( r ) ) 

J{to,ts) = e{to) + J(to + l,ts) ( 2 - 3 ) 

So the gradient to weight vector W can be calculated as 

\/wJ{io,ts) = Vwe( io) + V w J(^o + 1, ̂ a) (2 - 4) 

11 



The value of V w e ( r ) is the weighted sum of all the previous gradients vintil time r . 

This is the difference between Back-Propagation in recurrent networks and that in 

MLP. So from (2-4), Vw<^(* — 0,is) can be calculated by summation of V w e ( r ) . 

In a strict sense, to minimize J(to,ts) in (2-1) by a gradient-decent algorithm, 

the weights can only be updated after the network goes through the whole training 

sequence D ( r ) ( r = • • • ,^3)- However in practice, weights are usually updated at 

each time step. As long as the changing of weights is much slower compared with 

the time scale of dynamics of the network, it would not be a serious problem [23 . 

The main objective of exploring recurrent ANN is to make ANN context sen

sitive. In other words, its action should depend not only on present input stimulus, 

but also the previous context environment. This would require ANN to be able to 

generalize from its learning samples. As the general understanding of complex dy

namic systems is still poor, this is a very difficult task. Compared with the progress 

in research on feed-forward ANN, there is still a great deal to be done for recurrent 

ANN. 

In the case of multi-modal objective functions, the gradient-descent based al

gorithm has its local minima problem. One way of escaping from local minima is 

to use a stochastic technique. In the following two sections, two stochastic learning 

ANN will be discussed. 

2.1.2 Boltzmann Machines 

The idea of Boltzmann machines was introduced by Hinton, Ackley and Se-

jnowski [26] [27]. It is a kind of ANN which tries to satisfy a large nvimber of 

constraints in a probabilistic sense. This is also called weak constraints satisfac-

12 



tion. 

The key point of the Boltzmann machine is to use a simulated annealing tech

nique to estimate the state probability distribution functions either under environ

ment constraints or in unconstrained conditions. Then the gradient-descent algo

rithm is used to reduce the discrepancy between these two distribution functions 

28 . 

The idea of simulated annealing comes from physics [29] [30]. Annealing is the 

physical process used for the making of crystal. During the annealing process, the 

soUd is first melted under very high temperature, then the temperature is decreased 

slowly, especially in the vicinity of the freezing point. The perfect crystal, or in 

another words a system with the lowest energy, can be made from this process. 

From a mathematical point of view it is a minimization process. The physical 

mechanism of the annealing process can be explained with the help of statistic 

mechanics. 

According to statistic mechanics, for a substance which consists of a large 

number of atoms, when it reaches the thermal equihbrium at the temperature T, 

its state distribution can be described by a Boltzmann distribution. The probabihty 

of the substance to be in state i with energy Ei at temperature T is given by 

M ^ = i ) = J ^ f M ^ ) ( 2 - 5 ) 

where A;̂  is Boltzmanns constant, a; is a random variable denoting the current state 

of the substance, s{T) is defined by 

. ( r ) = Eea:K^) ( 2 - 6 ) 
i 

where the summation goes through all possible states. The annealing process can be 

simulated by a computer program [31]. In a computer program, the state transition 

13 



can be modeled by the following algorithm. At state i with energy Ei, the subse

quent state j is generated by applying a perturbation mechanism which transforms 

the current state into the next state by a small distortion. If the energy difference 

Ei — Ej is less than or equal to 0, the state j is accepted as the ciirrent state. If the 

energy difference is greater than 0, the state j is accepted with a certain probability 

which is given by 

e x p ( ^ ^ ) ( 2 - 7 ) 

where T is the current temperature. I f a lot of state transitions are simulated at a 

specific temperature T, then the thermal equilibrium is assumed to be reached at 

T. 

From equation (2-5), it can be seen that when the substance is in a thermal 

equilibrium condition and the temperature is approaching zero, the probabihty of 

the substance remaining in the lowest energy state would be much greater than 

that for any other energy states. This is the physical mechanism of an armealing 

process. 

The foregoing annealing mechanism can also be explored for optimization as 

the annealing is basically a mininization process. The Simulated annealing was first 

introduced into optimization by Kirkpatrick et. [29]. In simulated annealing the 

objective function has replaced the energy function Ei and Ej in (2-7). By properly 

reducing the emulated temperature, the minimum point of an objective function 

can be reached with probability 1 [28]. 

In a Boltzmann machine, simulated annealing is used for estimation of prob

ability distribution functions. Fig-2.2 shows an example of a Boltzmann machine. 

I t is an ANN. Some of its units which have direct connection with the environment 

are called environment contact units. Each unit in the network is a neuron like 

14 



processing element which can be described by 

^ ^ ~ \ 0 , otherwise. ~ 

where Xi is input to the unit, Wij is the weight of connection from imit i to unit 

j and 6j is the threshold and yj is the output. So i t is a binary type ANN. Its 

objective function or energy function is defined by 

E = - Y , ^HViyj + ^iyi (2 - 9) 
hi j 

As Oj in (2-8) can be regarded as a connection which is connected to a permanently 

active unit, if this unit is assumed to be part of the network, then (2-9) can be 

rewritten as 

E = -Y^wijyiyj ( 2 - 1 0 ) 
hi 

Let p(i) represent the probability of the maclaine in state i when its input and output 

units are clamped to training sample vectors, and i t is in the thermal equihbrium 

under simulated annealing using energy function defined in (2-10). p'{i) is the 

corresponding probability when the machine is running freely with no environment 

constraints. An information theoretic meastire of the discrepancy between these 

two probability distributions can be given as 

^ = EP«'"^ ( 2 - 1 1 ) 

D is zero if and only if two distributions are identical, otherwise it is positive [28]. 

The partial derivative of D to Wij is given by [27] 

=-kp^J-P-j) ( 2 - 1 2 ) dwij 

where pij is the probability of unit i and unit j both being in ' 1 ' state when the 

machine is running under environment constraints, that is to say it is clamped to 

15 



training samples. In equation (2-12) p'- is the corresponding probability when the 

machine is running freely with no environment constraints. The values ofpij and p'-

can be estimated by the foregoing simulated annealing process. Then the weights 

of the machine can be updated by the formula 

Awij = a(pij - p'ij) (2 - 13) 

where a is the stepsize. 

So the Boltzmann machine learning can be summarized as follows: 

I The environment contact units of the machine are £rst clamped to 

learning samples under simulated annealing, and pij are estimated 

during the process. Then p\j are estimated under a free run condition 

when the environment contact units are not clamped. 

2 Weights are updated using formula (2-13), then go back to the previ

ous step until pij and p'-j are close enough. 

The most serious drawback of Boltzmann machines is their extremely slow 

learning speed. Simulated annealing is a very slow process, and in Boltzmann 

machines, i t has to be repeated many times. This makes it extremely slow. There 

has been some research on accelerating the learning speed of Boltzmann machines 

by using a Cauchy distribution [32] or using high-order energy functions [33]. The 

learning scheme using a Cauchy distribution is called a Cauchy machine, in which 

the Cauchy distribution replaces the Boltzmann distribution in (2-7). However all 

these learning schemes are based on the Monte Carlo method and are thus always 

slow compared to a determinstic approach. 

16 



2.1.3 Reinforcement Learning 

In both Back-Propagation and Boltzmann machine learning, ful l information 

on the desirable output is required. However under some circumstances the environ

ment only provides partial information of the desirable output, like a critic signal 

with reward/penalty responses to an output of a ANN. In these cases reinforcement 

learning has to be explored [34]. 

Reinforcement learning ANN is closely related to learning automata theory 

35]. A learning automaton is an automaton that improves its performance while 

operating in a random environment. A simple binary environment can be defined as 

a triple {a, c, /3} where a = {ct i , 0:2, • • •, " n } represents a finite input set, /3 = {0,1} 

represents a binary output set, '0' is an favourable or reward response, and ' 1 ' is an 

unfavourable or penalty response, c = { c i , C 2 , . . . , c„} is a penalty probabihty set, 

which can be defined as 

a = Pr(/3(t) = 1 I a(t) = ai) {i = 1,2,... ,n) 

where t represents at discrete time t. 

A simple variable structure stochastic automaton can be represented as a triple 

{ a , j3, T}, where a and /? are as defined for the environment, but for the automation 

a is an output set and /3 is an input set. A reinforcement learning automaton can 

be described as 

p{t + l) = T\p(t),<^(i),m] ( 2 - 1 4 ) 

and 

p(t) = {Plit),P2{t),...,Pnit)} 

where pi(t) is the probability of selecting action a,- at time t. A linear reward-

penalty (LR-P) learning algorithm for the automaton and the environment can be 
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expressed as 

if a(t) — cvj- and ^ { f ) = 0 (reward) 

p^(t + l)=p,(t) + a(l-pi(t)); 

p,(t-^l) = (l-a)pj(t) (jy^i); 

else if /3(t) = 1 (penalty) 

Pi(t-^l) = (l-b)pi(t)-

p^{t-\-l) = (l-b)pjit)+:^ ( j j ^ i ) 

The properties of LR-P learning has been discussed in great detail in [35], and 

it has been applied to telecommunications [36] and decision making [37] and other 

applications. 

The Associative Reward/Penalty (AR^P) learning ANN is an extension of the 

foregoing learning automata. It was first introduced as a neuron-like computing 

element by Barto [38] [39]. An AR-P learning element is depicted in Fig-2.3. Each 

input link has an associated weight i f j , and the link labelled r is a pathway of 

reinforcement signal. The output y of an AR-P element is calculated by 

y ( t ) = l + l ' i f W ^ ( O X ( t ) + , ( i ) 0 ; ( 2 _ , 5 ) 
' \ - 1 , otherwise. ^ ' 

where W ^ ( f ) = [w]_(t),W2(t),... ,Wn(t)] is the weight vector, X ^ ( i ) = [xi(t),X2(t), 

..., Xn(t)] is the input vector at time t, and 'r](t) is any random variable taken from 

a specific distribution. The learning algorithm or the updating of weights can be 
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described as 

\M[t + l ) ^^i)-\xp{t)[-y{t)-E{y{t)\^{t),^my.{t), i f r ( i ) = l . 

(2 - 16) 

where 0 < A < 1 and p{t) > 0, r{t) = 0 means reward and r(t) — 1 means penalty. 

The convergence of AR-P learning can be proved under certain conditions 

[39], and simulation shows that AR^P learning performs quite well in certain test 

problems apart from slow learning speed [40]. However there is a fundamental 

limitation of the learning ability of single layer AR-P network which is stated as a 

condition of convergence in [39]. It demands that the set of input vectors be a linear 

independent set. As is known, for an n-dimensional space there can only be at most 

n vectors in a linear independent set. Thus this condition excludes many complex 

learning tasks hke the XOR problem out of the coverage of the convergence theorem. 

Some simulation studies have been reported on using AR-P learning networks with 

multi-layer structures to deal with this problem [40]. However a more thorough 

study is still needed to address problems like convergence and learning capacity for 

multi-layer AR-P learning ANN. 

2.2 Unsupervised Learning A N N 

The ANN discussed in the previous sections are all trained under the super

vision of a external intructor which can give some information about the desirable 

response of the network. In this section, a class of ANN which learn by endogenous 

mechanism are discussed. 

2.2.1 Associative Memory 

In conventional digital computers, the storage and retrieval of information is 
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organized by spatial location ( or address ) in the hardware. On the other hand 

for the biological neural systems, the storage and retrieval of information is based 

on the collective interaction of a great number of neurons, so it seems more natural 

to assume that the representations of concepts and other pieces of information are 

stored in a distributed fashion as collective states of the neural systems rather than 

in a specific spatial point in the systems. 

According to this non-local memory theory, the pieces of information axe rep

resented by the pattern of activity of many interconnected units instead of one unit. 

Each unit acts as an element in the representation of many pieces of information. 

This distributed representation scheme is a more plausible model of human memory 

than digital computers, as it has captured some features of human memory. For 

example content addressable memory, in which the retrieval of information is based 

on content instead of its spatial location. When only a partial pattern is available, 

the whole pattern can be reconstructed. This is called associative memory. 

Obviously ANN are attractive for the implementation of distributed memory or 

associative memory. In [41] Hopfield suggested a binary network which can perform 

associative memory. The architecture of the network is shown in Fig-2.4, which is a 

fully connected network. The activation function of units in the network is defined 

as 
1, if E ^ i ^ > 0; 

0, otherwise. 

where m is the output of unit i , wji is the strength of the connection from unit j to 

unit i . Information is stored by the learning algorithm as 

= E(2J/; - l)(2yi - 1) (2 - 18) 
s 

where y? is the ith. element of vector (s = 1,2,... ,n), and are the state 

vectors to be stored in the network, wa are assimied zero. 
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For the retrieval of information, when a distorted state vector is presented 

to the network, each unit wil l synclironously or asynchronously update their states 

with activation function given in (2-17), until the network settles into a stable state. 

The stable state vector represents the retrieved piece of information. 

The stability of the network can be proved using a Liapimov function method. 

The Liapunov function for the network can be defined as [41] 

E ^-^Yl^"ijyiyi ( 2 - 1 9 ) 

From (2-18) it is obvious that Wij = Wji, and if we consider the network activation 

function in (2-17), i t can be proved that E defined in (2-19) is a positive monoton-

ically decreasing function in the recall process of the network. Thus the network is 

stable. The stability theorem can be extended to the situation where wu ^ 0 and 

Wii > 0 [42;. 

From the foregoing discussion it can be seen that a memory item or vector is 

represented by a stable state or an attractor of the network. So the memory capacity 

of the network is dependent on the dynamic properties of the network. How many 

stable states a network has determines how many item or vectors can be stored. 

The simulation study reported in [41] concluded that if the network has N units, 

then about 0.15N vectors or items can be simultaneously remembered without any 

severe retrieval error. A theoretical analysis based on statistical theory [42] shows 

the capacity of the network can be expressed as 

2 logn ^ ' 

where n is the number of units in the network. This capacity can be explained as 

follows. I f the items or vectors to be stored are choosen randomly with probabilty 
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0.5 for each bit of their elements to be 1 or 0, and they are statistically indepedent, 

then these vectors can all be correctly recalled with high probability by any recall 

vector which lies within the distance of pn from the correct memory vector if their 

number is less than or equal to the m given in (2-20). 

The capacity of the network can be increased by using pseudo-inverse tech

niques [43] or by storing correlated vectors [44] [45]. However correlated vectors 

may cause cross-talk when noise is present in the recall signals. Thus just making 

each memory vector an attractor or a stable state is not enough to guarantee satis

factory recall performance, the attraction basin of each stable state should be large 

enough to ensure a certain degree of noise immunity. The reseajch reported in [44 

also suggested that a larger attraction basin means smaller memory capacity. Thus 

it is a trade-off between the memory capacity and the noise immimity. 

The associative memory ANN introduced by Hopfield is an autoassociative 

associative network. The bidirectional associative memory (BAM) suggested by 

Kosko [46] is a kind of heteroassociative associative memory network in which vector 

pairs ( A i , B j ) are to be stored and recalled. When one element of the data pair is 

available, the other element can be recalled by running the network. In the following 

discussion, the dimensionality of A i and B i are assumed to be n and m respectively. 

A schemetic diagram of a B A M network is presented in Fig-2.5. The connec

tions in the network are all bidirectional. FA is the layer which represents vector 

A j and FB is the layer for vector B^. If the weights of the connections are denoted 

by a matrix M which is p x n, then when a vector A is presented to i ^ ^ , the recall 
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process is an iteration process described by 

A ^ M ^ / —^ B 
A' ^ / — ^ B 
A' —^ M ^ / ^ B' 

where / is a nonlinear function or mapping. The iteration stops at a stable state. 

Hence stability of the system is a precondition for successful recall. It can be proved 

that if the threshold function (2-17) is used for as the nonlinear function / in (2-21), 

then the above iteration process is stable for any real matrix M . This strong stabihty 

property of a B A M network provides a great degree of fiexibility for the design of 

an associative memory network. For the discrete B A M network introduced in [46], 

the weight matrix M can be obtained by 

N 

M = J2BiAj ( 2 - 2 2 ) 
i=l 

or the weights can be calculated by an adaptive rule [47] as 

^ = a{-wij + S{ai)S{bj)) (2 - 23) 

where 5'( ) is a sigmoid function. 

From (2-21) i t can be seen that the B A M network is a nonhnear dynamic 

system and analytical study of the network is non-trivial. Its storage properties are 

still under investigation [48] [49]. 

2.2.2 Adaptive Resonance Theory ( A R T ) 

One objective of the research on ANN is to develop the kind of intelligent 

machine which can categorize the input stimulus and self-organise according to its 

experience with an external environment. Competitive learning [50] is one approach 

to self-organization learning. A general competitive learning ANN can be described 
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by Fig-2.6, which has several layers. W i t h i n each layer, a winner-take-all strategy 

is used to cluster the input patterns. Features discovered in the first layer can 

be used as input patterns i n the subsequent layers. However when a competitive 

learning network is exposed to a complex environment, i t may suffer f r o m a serious 

stabil i ty problem which is discussed by Grossberg [51]. The problem is that when 

the network goes through a series of learning samples, the learning may keep on 

going and never settle into a stable solution even when there are repeated patterns 

i n learning samples. This is called the stability-plasticity dilemma. The purpose 

of the adaptive resonance theory ( A R T ) , which was first introduced by Grossberg 

52] and elaborated by Carpenter and Grossberg [53], is to embed a self-regulating 

mechanism into competitive learning in such a manner as to provide stability. 

A n A N N based on Adaptive Resonance Theory is depicted in Fig-2.7. I t is 

called an A R T l network [53]. The operation of A R T l can be described briefly as 

follows. 

When an input pat tern A t = (a f , 05,..., a^) is presented to the bo t tom layer 

F i , the units i n Fi w i l l be activated and sustain an activation or short-term memory 

( S T M ) . The activation i n Fi w i l l be send through long-term memory ( L T M , they 

are also called weights i n other Hterature ) connection Wij to activate the top layer 

F2. The units i n F2 w i l l compete w i t h each other un t i l one unit wins the competition 

and inhibi ts the activation of all the other units. Then the winning unit sends back a 

top-down expectation pat tern to Fi through L T M connection Vij. I f the difference 

between the two patterns exceeds a vigilance parameter, then the classification 

would be regarded as incorrect, and F2 layer would be switched to another unit , 

the previous winning uni t would be disabled. I f the difference is acceptable, then 

Ak would be classified to the class represented by the winning uni t . The L T M is 

then updated. 
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The S T M act ivi ty i n Fi can be described by a differential equation 

= -^i + (1 - f^i^i)biJ2f(y>^i + - + " i ^ ' O (2 - 24) 
i = i j=i 

where Xi and j/y are the activation of unit i i n Fi and uni t j i n F2 respectively, / ( ) 

is a nonlinear func t ion defined by 

f / „ . ^ _ / l ' i f y j = max{?/jt I = l , 2 , . . . , m } . . 
• ^ ^ ' ^ ^ ' ' - \ 0 , otherwise. ^ ^ ' ^ ^ • > 

^) /^ i ) T15 / ^ i and a i are all positive constant for the regulation of system dynamics. 

The constraints on their value are discussed in [53]. A similar differential equation 

which describes the S T M act ivi ty in F2 is 

, n n 

= - y j + (1 - f^2yj)b2 ^ S{xi)wij + f { y j ) ] - (̂ 2 + a2j/i) J2 ^(^/fc) (2 " 26) 
1=1 k=i 

One drawback of the A R T network, which is discussed by Lippmann in [6], is 

that i n noise free situations the vigilance parameter can be set to a very low value 

to discriminate any small difference between input patterns. However i n noisy 

conditions a low vigilance parameter could lead to rapidly increasing number of 

classes which would exhaust al l the units i n layer F2. This problem could be solved 

by using slow learning rate and an adaptive vigilance parameter approach [6] [54 . 

2.3 Prewired or Hardwired A N N 

Prewired A N N are the networks which have their connection weights pre-

determinted in an in i t i a l design process. Thus they are not s tr ict ly learning net

works. However they can play a significant role by action as preprogramed modules 

i n large learning networks to accelerate the learning and improve the generaliza

t ion performance. The feature extraction networks used in a Darwin machine is an 

example [55]. 
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2.3.1 Connect ion i s t Semant ic Networks 

There has been some research which considers each unit or cell i n the A N N as 

the basic uni t for representation of concepts [56] [57]. Usually these cells work in 

binary mode. Exci ta t ion mode or ' 1 ' mode represents logical true, and inhibi t ion 

mode or '0 ' mode represents logical false. I n some research the false is represented 

by and '0 ' is used for 'Unknown' [57]. A simple example showing how this 

k i n d of cell or uni t works is given in Fig-2.8, where the weights of all the input 

connections are 1, and the threshold is 0. I t uses a step funct ion like that in (2-

17) as its activation func t ion . I t is obvious the output y is the logic OR of all 

the input identities. Al though these kinds of network lack biological plausibility, 

they can be used properly for logic inference in semantic networks [58]. A semantic 

network is a network structure used to express knowledge in terms of concepts, their 

properties and the relationship between concepts. Each concept is represented by a 

node and the hierarchical relationship between concepts is represented connecting 

appropriate concept nodes via I S - A or I N S T A N C E - O F hnks. I n [58] six classes 

of neural units are defined to implement a semantic network. They are enable units, 

concept units, properties units, concept property binder units, property value binder 

units and relay units. The high level description of the network is processed by a 

compiler and a network generator which can generate the topological structure and 

the weight value of the A N N for that specific task. From this description, i t can be 

seen that this process is very similar to conventional V L S I design. The difference 

is the connectionist semantic networks are more parallelized. 

2.3.2 T h e H o p f i e l d - T a n k Network 

Marr 's computational theory [59] suggests that to understand the information 

processing process i n brains requires comprehension at several levels. According to 



this theory, the informat ion processing process can be understood at three levels. 

They are computational, algori thm and implementation levels. A t the algorithm 

level, much vision processing especially early vision processing can be charax;terized 

as a mathematical t ransform or minimizat ion problem [60]. The Hopfield-Tank 

network is an at tempt to understand how particular computations can be performed 

by selecting appropriate patterns of synaptic or weight connectivity in a dynamical 

A N N [61 . 

A four uni t Hopfield-Tank network is depicted in Fig-2.9. The units or neurons 

work i n analog mode and are a simplified model of biological neurons. The activation 

of the units can be described by the differential equation 

C i ^ = E ^ m i - j ) - % + I^ ( 2 - 2 7 ) 

where Ci is the characteristic capacitance of cell i, Ri is the equivalent membrane 

resistance ( or leakage resistance ) , Wji is the conductance of connection f r o m cell j 

to cell i , Xi is the electric potential of cell gj{ ) are sigmoid functions and Jj are 

external stimulus current. So the funct ion of a cell can be summarised as charging 

the characteristic capacitance Ci w i t h the sum of postsynaptic currents induced in 

cell i by presynaptic act ivi ty i n cell j and the leakage current due to Ri and the 

input current J j f r o m other sources external to the network. 

A n energy func t ion can be defined on the network as [62 

where yi = gi(xi). I t can be proved that 
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So the network is a stable system. I f the sigmoid funct ion gi( ) has a steep rise ( or 

high gain ) , then the E func t ion defined in (2-28) can be approximated by [62] 

^ = - ̂  S - S ^'J/' (2 - 30) 

i,j i 

Thus the operation of the network is very similar to binary networks. This fea

ture has been explored successfully i n the application of Hopfield-Tank network to 

various opt imizat ion problems [63] [61]. 

For high gain func t ion gi( ) , its shape is very close to a step funct ion. So the 

output yi is usually clamped to take only two states. They can be regarded as ' 1 ' 

and '0 ' states like those i n digi ta l circuits. The states of the network can therefore be 

used to represent binary numbers. Thus the network can be used i n implementing 

an A / D converter [63]. I f the network has n cells, and external analog input is S, 

then an n-bit A / D converter can be designed by minimizing the energy f imct ion 

E = l { s - J 2 y i ' ^ ' y ( 2 - 3 1 ) 

To help clamp the states of the network into corners of the state space, or to push 

yi in to ' 1 ' or '0 ' states, a second te rm 

- ^ E ( 2 0 ' t e - 1 ) ] ( 2 - 3 2 ) 

is added to the E defined i n (2-31). So the final energy funct ion is 

^ = - 1 E (-2'+0y.yi-E(-2^^'-^) + 2^5)j/, ( 2 - 3 3 ) 

i=l,j=l i=l 

I f this expression is compared w i t h (2-30), i t follows that 

Wij = - 2 ' + > 

li = (-2(2»-i) + 2 ' 5 ) (2 - 34) 
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I f a Hopfield-Tank network is assigned the connection weights given by (2-34), the 

operation of the network would lead to the minimizat ion of the energy function 

defined i n (2-33), Thus under an analog input excitation 5, the stable state of the 

network [?/i, y2,..., yn] would be a binary representation of S. 

However the Hopfield-Tank network has a local min ima problem. For hardware 

implementat ion this can be a serious problem. Adding correction current lie into 

the cells could help to ehminate this problem [64 . 

2.3.3 S i l icon N e u r a l Sys tems 

The silicon neural systems here are a class of silicon art i f icial neural networks 

which are based on biological informat ion processing mechanisms and implemented 

by analog V L S I technology [65], Hke electronic cochlea [66] and sihcon retina [67 

for example. These systems do not copy biological features like anatomy structure 

directly, instead they imitate the computation functions of biological systems by 

electronic circuits. The mot ion computing network is a typical example [68]. There 

are two methods of computing mot ion for vision systems. One is the intensity-based 

scheme and the other is a token identification scheme. Bo th schemes coexist in 

biological systems [68]. For the intensity-based scheme, the computation of motion 

can be abstracted as the minimizat ion of 

E{u,v) = J | ( 4 „ + V . , / 0 ^ - , A [ ( | ) ^ + ( | ^ ) ^ + ( | ^ ) ^ + ( | ) ^ ] c f x c i y ( 2 - 3 5 ) 

where (u,v) represent the velocity field, I{x,y,t) is light intensity and A is the 

regulation parameter. This minimizat ion problem is equivalent to solving a set of 

linear equations [68 

IJyU + l l v - \ \ / ^ ' V + l y l t = 0 (2 - 36) 
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and (2-36) can be discretized into 

^lij'^ij + IxijIyijVij - A(ui+i J + U i j + i - AUij -f U i - i J -I- U i , j _ i ) 

+ Ixijiti, = 0 

IxijIyijUij + lyijVij - \(vi+ij + Vij+i - AVij + V i - i j + V i j _ i ) 

+ l y i j l t i j = 0 (2 - 37) 

where is the index of a lattice grid. The electric current i n a lattice electronic 

resistive network can be calculated by a similar set of equations i f Kirchhoff 's current 

law is used. So (2-37) can be solved by measuring the cvurent i n an electronic 

resistive network which is under a proper external excitation [68]. 

These silicon networks basically follow Marr 's computation theory philosophy 

[59]. They axe an at tempt to imitate the computation functions of biological systems 

instead of their implementation detail. They are more like a functional model of 

neiiral systems. 

I n this chapter we have surveyed briefly some A N N . I n the following chapters, 

we discuss some theoretical properties of A N N and their potential application in 

engineering. 
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Chapter Three 
M L P and Back-Propagation Algorithm 

Among the existing A N N , the Multi-Layer-Perceptron ( M L P ) using a Back-

Propagation learning algori thm is one of the most widely used networks because of 

its s implici ty and powerful representation ability. The single layer perceptron [69 

has a l imi t ed representation ability. For example, i t can not implement the X O R 

func t ion . This representation Hmitation has been thoroughly discussed by Minsky 

and Papert i n the late 1960s [16]. Unhke the single layer perceptron, M L P networks 

can implement any complicated funct ion due to the additional hidden layer. In the 

fol lowing sections, the Back-Propagation learning algori thm and some techniques 

for improving its learning speed are discussed. 

3.1 Delta Rule and Back-Propagation 

A n M L P network is depicted in Fig-3.1. I t is a layered and feed-forward net

work. The output f r o m a uni t can only feed into a uni t i n an adjacent layer. 

Recurrent connections and connections w i th in the same layer are not allowed. 

The input to a uni t i n the network is a weighted sum of the outputs of units 

i n the previous layer to which the uni t is connected. Let a;j represent the input to 

the uni t i i n layer j , w^j stand for the weight of the connection f r o m imi t i i n layer 

k to uni t j i n layer k + 1, yj is the output of unit i i n layer j and Oj is the threshold 

( or bias ) of uni t i i n layer j. Then the activation of units can be described by 

i 

and 
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The activation func t ion f ( ) can take other forms. For example, i n applications 

where negative output is needed, i t can be of the f o r m 

l - e x p j - ^ ) 

1 + e x p i - ^ ) m = : , Zei ( 3 - 3 ) 

For M L P networks, there are two modes of operation during the training or 

learning phase. They are feed-forward computation and the weight updating oper

at ion. I n feed-forward computation, when an input pattern or vector is presented 

to the input layer, the units i n the next layer use the weighted sum of inputs and 

the activation func t ion defined in (3-2) or (3-3) to calculate their outputs. These 

outputs are passed forward for computation in the next layer un t i l the output layer 

is reached. Dur ing the weight updating operation, an error signal which is based on 

the discrepancy between the desired response and the actual output of the network 

is backpropagated through the network for the updating of weights. Obviously 

this Back-Propagation algori thm is a fo rm of spervised learning. During the recall 

process, only feed-forward computation is involved. The derivation of the Back-

Propagation algori thm is presented in the following paragraphs. 

Basically Back-Propagation is a gradient decent algori thm. When an input 

pat tern is presented to the input layer of the network, a corresponding output w i l l 

be produced by feed-forward computation. This is called a forward pass. The 

discrepancy between the desired or target output di and actual output yi can be 

measured by 

E = \ E { d , - y j f ( 3 - 4 ) 

Let the number of t ra ining samples be N , the to ta l error is 

N 

E^otal^Y^^k ( 3 - 5 ) 

where Ek denotes the discrepancy error of the kih. jDattern calculated by (3-4). 
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The objective of the training phase is to minimize the Etotai defined in (3-5). 

A straight forward way of mininizat ion is to use a gradient descent (hill-cHmbing) 

a lgori thm, that is to adjust the weights according to an amount proportional to the 

derivative 
a 771 

A 4 = - „ g ^ (3-6) 

where r] is the step size, which is used to control the convergence. The convergence 

can be improved significantly by the inclusion of a momentum term. Actually this 

is a first order low pass filter which smooths out fast changes in Awfj. 

r) W 
- -'?a;;;r(^ + - 1 ) (3 - 7) 

Q: is a small positive real number. 

I n the strict sense gradient descent algorithm, the E in (3-6) and (3-7) should 

be Etotah that is the updat ing of weights would take place once every pass through 

al l the t ra in ing samples. This is called batch mode Back-Propagation. However 

a more common practice is to update weights for every presentation of an input 

t ra in ing sample. I n this case the E defined in (3-4) can be used to replace E in 

(3-6) and (3-7) for calculation. This is a wide sense gradient decent algorithm. 

For a single layer perceptron, the output is given by 
n - l 

As the threshold 9j can be regarded as an input f r o m an always active unit through 

a connection w i t h weight (3-8) can be rewri t ten as 
n 

yj = fC£ioa^) = f(s) ( 3 - 9 ) 

I f the desired output is d j , From (3-4), i t is obvious that 

dE _ dE dyj 

divi dyj dtui 

= -{dj - v A f ' W i (3 - 10) 
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Let 

6j = {dj - y j ) 

then the adjustment of weights is given by 

dE 

= Sjf'is)!, (3 - 11) 

This weight updat ing scheme is sometimes called the Delta rule. Back-Propagation 

is also refered to as the generalized Delta rule. 

For Back-Propagation in an M L P network, the weight updating for the con

nection to the output layer is straight forward. I f the M L P network has iV layers 

and func t ion f ( ) defined in (3-2) is used as an activation funct ion, then f rom (3-4) 

= -(^. - y f ) (3 - 1 2 ) 

where the superscript iV means the output is f r o m layer N' and f r o m (3-2) 

|V = / ' ( - f ) = ! ' f ( l - ! ' f ) (3-13) 

From equation (3-1) i t is clear that 

- y r ' ( 3 - 1 4 ) N-l 

So 

dE dE dyf dxf 
dwf-^ dyf dxf diof^ 

= - ( ^ . - y f ) y f ( i - y f ) y f - ^ ( 3 - i 5 ) 

Let 

S j = i d , - y ' ^ ) y f { l - y f ) ( 3 - 1 6 ) 
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then 
dE 

= -S^^vr' (3 - 17) 

So from (3-7) and (3-17) we have 

w ̂ -\t + 1) = w^-\t) + ,6^-\jr' + -[<-\t) - < - ^ ( * - 1)] (3 - 18) 

This is the weight updating formula for the connection to the output layer. Note 

that the delta in (3-16) can be rewritten as 

then generally for weight w f , we have 

dE dE dy'l+'dx'.+' 

k+2 

let 

then 

(1 )y^ Qyk^y 

y i y j (1 Vj )z^g^k+2^ji 

-yfyr(i-j/DE^'^r'^^' ( 3 - 2 0 ) 

<5t = yr(i-i/DE-r<^^' ( 3 - 2 1 ) 

( 3 - 2 2 ) 

This equation is similar to (3-17). If we combine equations (3-18) and (3-21), 

we obtain the complete Back-Propagation algorithm. The delta's are propagated 

backward from the output layer by equation (3-21). This is why the algorithm is 

called Back-propagation algorithm. The initial delta is calculated using (3-16). 
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The program structure for implementation of the Back-Propagation algorithm 

on MLP networks is shown in Fig-3.2. The initializing program in box-1 is used to 

initiate weights and thresholds of MLP networks with stochastic or deterministic 

techniques. A common practice is to assign a small value which is taken from a 

random number generator to every weight and threshold. The program in box-2 

is used to set up a training sample set or learning sample set. The main program 

in box-3 is the implementation of the Back-Propagation algorithm. Its structure 

is depicted in Fig-3.3. A complete pass through the loop is called a cycle. The 

weight updating occurs in every cycle. However in the strict sense gradient descent 

algorithm, are accumulated over a pass through all the samples in the training 

set, and then weights are updated. The program in box-4 is for display purposes. 

Input Xi Input X2 Output f 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table-3.1 XOR function 

To demonstrate the learning ability of the MLP network with a Back-

Propagation algorithm, the above simulation program is used to train an 2-2-1 MLP 

network to implement a XOR function, which is not possible by a single layer per-

ceptron. The XOR function can be summarized by Table-3.1 The implementation 

MLP network is shown in Fig-3.4. The displayed value of weights and thresholds 

are obtained by the Back-Propagation algorithm. Further examples which demon

strate the learning ability of MLP networks with Back-Propagation algoritlam can 

be found in [70] [19]. Although the MLP network has strong representation abihty, 
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the Back-Propagation algorithm is very slow. In the next section the convergence 

of the Back-Propagation is discussed. 

3.2 The Convergence of Back-Propagation 

As the back-propagation algorithm is a kind of gradient descent algorithm, the 

error surfaces for learning problems frequently possess some geometric properties 

that makes the algorithm slow to converge. The stepsize of the algorithm is sensitive 

to the local shape and curvature of the error surfaces. For example, a small stepsize 

wil l make the algorithm take a very long time to cross a long flat slope. On the 

other hand, a large stepsize will cause the iteration process to bounce between the 

two opposite sides of a valley rather than following the contour of its bottom. Even 

if a satisfactory stepsize for one stage of the learning process is found, this does not 

ensure it wil l be appropriate for any other stage of the same learning process. On 

the other hand, the premature saturation of the network units also causes problems 

for the convergence of the algorithm. 

There has been some research on improving the convergence speed of the Back-

Propagation algorithm, such as that mentioned in [71] [72] [73]. In [71] the authors 

suggested Conjugate gradients, the Quasi-Newton algorithm and other more so

phisticated algorithms. The conjugate gradient with linear search is also reported 

in [74]. They are also called second order methods, and these algorithms are more 

computationally expensive, especially when the scale of the problem is large, so that 

in many cases it is impractical to use them. In order to reduce the computation cost 

of the second order method, a kind of approximation technique has been introduced 

into Newton's algorithm[72]. The authors used a diagonal matrix to approximate 

the Hessian matrix. This makes it possible to derive a back propagation algorithm 

for the second order derivatives in a similar manner to the first order derivatives. 
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But the applicability of this new algorithm depends on how well the diagonal Hes

sian approximation models the true Hessian[72]. Only when the effects of weights 

on the output are uncoupled or nearly uncoupled, can the diagonal Hessian repre

sent a good approximation. In addition the learning parameters are more critical 

in obtaining reasonable behaviour with this Newton-like algorithm than with the 

back-propagation algorithm [72]. Our simulation also confirm this point. Another 

attempt to use a second order method to improve the convergence property of the 

back-propagation algorithm was introduced in [73], which is called Quickprop. It 

uses the difference between two successive as a measure of the change of cur

vature and uses this information to change the stepsize of the algorithm. E is the 

output error function, and w represent weights. Using this method a significant 

improvement in convergence speed has been reported in [73]. 

In [75] another kind of adaptive stepsize algorithm was introduced. According 

to this algorithm, if an update of weights results in reduced total error, the stepsize 

is increased by a factor (j) > 1 for the next iteration. If a step produces a network 

with a total error more than a few percent above the previous value, all changes to 

the weights are rejected, the stepsize is reduced by a factor /9 < 1, the momentum 

term is set to zero, and the step is repeated. When a successful step is then taken, 

the momentum term is reset. 

As is well known in adaptive signal processing theorj'^, the direction of the 

negative gradient vector may not point directly towards the minimum of the error 

surface. In adaptive filter theory, this kind of bias can be measured by the ratio 

of the maximum eigenvalue and the minimum eigenvalue of the auto-correlation 

matrix[76]. Recently an adaptive stepsize algorithm which gives every weight a 

stepsize which can adapt separately has been proposed[77]. This is only a rough 

approximation, as it will be noted that these stepsizes adapt in the direction of each 
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weight rather than on the eigenvector direction as required[76][77 . 

As mentioned in the previous section, the update of weights can take place 

after presenting all the training samples to the network or after every presentation 

of a training sample, these methods are called batch mode back-propagation and 

onUne back-propagation respectively. Generally speaking, online back-propagation 

algorithms converge faster than the batch mode back-propagation[72][73], and batch 

mode back-propagation is more Hkely to fail to converge on a large training sample 

set[78]. In the following section, two stepsize variation techniques are introduced 

for acceleration of the online Back-Propagation algorithm. Compared with previous 

algorithms, they are more simple to implement. 

3.3 Acceleration of Back-Propagation 

3.3.1 Adaptive Stepsize Technique 

In designing an appropriate algorithm the following factors should be consid

ered. First the momentum term cannot be set to zero, as the update occurs for 

every presentation of a new training sample. If the momentuna term is set to zero, 

there exists a risk of losing past experience. Generally speaking, a large training 

sample set requires a large rj value ( ?; is the stepsize for the momentum). This fact 

has been confirmed by computer simulation [79]. Thus the adaption is restricted to 

the gradient term. We used the following form of adaptive stepsize algorithm: 

a{t) = a ( t - l ) i l - f ( t ) ^ / E ( t ) ) (3-23 .a) 

f i t ) = u j ( t - 1 ) 4 - U2AE(t) (3 - 23.6) 

AE{t) = E(t) - E(t - 1) ( 3 - 2 3 . C ) 

a(t) is the stepsize for the gradient term in the update formula in the back-

propagation algorithm. I t is the stepsize at time t. E(t) is the summation of 
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squared errors between the desired output and the actual output at time t. It can 

be calculated as 

^ = ? E - (3 - 24) 

AE{t) is the decrement of the E(t). f ( t ) is a filtered version of AE{t). Actually 

(3-23.b) is a first order low-pass recursive filter, which can smooth the significant 

changes in AE(t), making the algorithm more stable, ui and U2 are the parajneters 

used to control the adaptation. For small ILJ and big 1*2, the adaptation is fast, 

but it is also more likely to be trapped in oscillation. For big ui and small U2, the 

adaptation is slow, but i t is more stable. Thus the parEmieter selection involves 

a trade off. In our simulation, we used Ui = 0.9 and U2 = 0.3. The term (1 — 

f { t ) y / E { t ) ) also controls the adaptation of the stepsize. If f ( t ) is positive, that 

means the tendency of E(t) in the near past is to increase, so 1 — f ( t ) y / E { t ) < 1, 

the stepsize wil l be decreased. A similar analysis shows that if the tendency of E(t) 

is to decrease, the stepsize will be increased. When the E(t) is veiy small, that is 

the network has almost learned, the adaption will be very weak, which stabhzes the 

algorithm. The square root is used as compensation, it can amplify the small E(t) 

to avoid the premature termination of adaptation. 

Before we start to discuss the simulation of the adaptive stepsize algorithm, 

we give a brief description about two commonly used benchmark test problems for 

ANN. 

Parity Problem : The parity function is a generalization of XOR function which 

is described in section 3.1. It only considers a binary input. For a N-bit parity 

function, when there odd number of ' 1 ' in the input vector, the output is ' 1 ' , other

wise the output is '0'. As mentioned in the previous discussion the XOR function 

cannot be reahzed by a single layer perceptron, but is amenable to MLP networks, 
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so the parity functions are commonly used as a test problem for ANN. 

Compression Encoding Problem : The ANN used for this kind of encoding 

usually takes the structure of N-M-N. It means both input and output layers have 

N units and the hidden layer has M units. Usually M < N. The network can 

only accept binary input and the output also takes binary form. From information 

theory we know that i f there are S patterns, then binary codes of length log2 S can 

code all these patterns. This encoding problem is used to test whether the ANN 

can learn to compress a set of redundant N-nit binary codes to more compacted 

M-bit codes. 

The simulation results on adaptive stepsize Back-Propagation algorithm are 

shown in Fig-3.5, Fig-3.6, Fig-3.7 and Fig-3.8. In the figures shown, the E defined 

in (3-24) are plotted as a function of iteration times for different learning problems. 

They are called learning curves, and can be used to evaluate the convergence prop

erty of the learning algorithm. Fig-3.5 shows comparative simulation results of the 

non-adaptive back-propagation algorithm and the adaptive algorithm for the XOR 

problem. Fig-3.6 shows the comparision on the 4-2-4 encoder problem. Fig-3.7 and 

Fig-3.8 are for the 4-bit parity problem implemented with 4-4-1 MLP network. Al l 

broken lines represent learning curves for the non-adaptive algorithm, while solid 

lines are for the adaptive algorithm. It is clear the adaptive stepsize has improved 

the convergence speed, just as we expected. However, it will be noted that the 

improvement for a complex problem, like the 4-bit parity problem, is more impres

sive than that for the simpler problem, like the XOR problem or the 4-2-4 encoder 

problem. The reason may be that since adaptation is a dynamic process, it needs a 

finite time to be effective. For simple problems, the learning process is very short, 

and the adaptation process has insufficient time to be significant. Thus there is 

only a small effect of adaption on simple learning problems. 
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3.3.2 Differential Stepsize Back-Propagation 

Although the adaptive stepsize back-propagation algorithm has improved the 

learning speed to some degree, i t can not cope with the premature saturation of 

the network units. It has been noted in the simulations that MLP neural nets are 

often trapped in a very flat valley in which the convergence speed is very slow. This 

corresponds to the flat line intervals on the learning curves of Fig-3.7 and Fig-3.8. 

I t should be noticed that this cannot be solved by an adaptive stepsize technique, 

because the reason for this phenomenon is that the absolute value of weights are 

growing so fast as to make the units, especially hidden units, prematurely saturated. 

There is a term like s(l-s) in the update formula for the back-propagation algorithm, 

in which s is the output state of the unit. It is quite clear that i f s is close to 1 or 0, 

whichever output is desirable, almost no update will be passed backward through 

that unit. This kind of phenomenon is also known as the flat spot[73]. In [73] the 

author proposed to change the sigmoid-prime function s(l-s) to s(l-s)-|-0.1, so it can 

avoid the flat spot. But according to our simulations, this change often causes the 

weights to grow so fast as to lead to floating point overflow on the digital computer. 

Although some weight-decay term may be used to counteract this[72], it makes the 

algorithm more complex. A simple method can be used to cope with the flat spot. 

To circumvent the flat spot, the term s(l-s) is removed from the update formula 

for the output layer, and the stepsize for the update of weights between the hidden 

layer and the input layer is set smaller than that for the weights between the upper 

layers. I f denote the stepsize for the update of weights between the output layer and 

the hidden layer as 0 2 , and the stepsize for the update of weights between the hidden 

layer and the input layer as cvi, then > ct\. This is called the differential stepsize 

back-propagation algorithm(DSBP). In our simulation, the learning parameters are 

set to ai = 0.1o!2. The simulation results are shown in Fig-3.9, Fig-3.10 and Fig-
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3.11, and i t is very clear the convergence speed is improved considerably. 

In [73] the Quickprop algorithm was claimed to be the fastest learning algorithm 

among the existing algorithms. In order to compare the DSBP with the Quickprop, 

the simulation has been repeated 30 times on the 10-5-10 encoder problem. The 

termination condition for the simulation is that the discrepancy between the desired 

output and the actual output for every output unit and every training sample is 

less than 0.1. The average training time in terms of iterations for this problem by 

DSBP is 23.5, with a standard derivation of 3.27. This is only marginally slower 

than the Quickprop algorithm, for which the average training time is 22.1. However 

although the Quickprop plus a hyperbolic arctan error fimction algorithm can reach 

the same solution with an average training time of 14.01, it is much more complex 

than DSBP, and a weight-decay term is needed. The results for the simple DSBP 

algorithm represent a considerable improvement on the standard back-propagation 

algorithm, which gave an average training time of 129 iterations. 

From the above discussion, it can be seen that the adaptive stepsize technique 

can improve the convergence performance of the Back-Propagation algorithm. The 

simulation results presented also suggest the inprovement of performance is more 

obvious on a large training sample set problem than that on small training sample 

set problems. Thus it is reasonable to speculate that there would be more potential 

for using adaptive stepsize technique in large scale application problems, hke Net-

Talk [80]. The simulation results also show that the DSBP method is effective in 

circumventing the premature saturation or flat spot under some circumstances. The 

improvement in convergence speed is significant. 

Numerical optimization is still based more on empirical experience rather than 

on rigorous theoretical analysis. I t has been pointed out by Powell [81] that while 

48 



the vast majority of theoretical questions related to the performance of optimization 

algorithms in practice are unanswered, it would be both unrealistic and counter

productive to expect each new algorithm to be justified theoreticallly. 

As the Back-Propagation algorithm is basically a numerical optimization algo

ri thm, the measurement of its performance has to largely depend on simulation test 

on some bench mark problems. Many algorithms have been suggested to accelerate 

the learning speed of Back-Propagation [82]. Different algorithms may show ad

vantages for specific applications. It would be extremely difficult if not impossible 

to analyze their performance in a mathematically rigorous way. At this stage a 

realistic strategy for selecting an appropriate algorithm for a specific problem can 

only be based on simulation study on similar problems and empirical knowledge. 

In the next chapter, we will discuss another important aspect of ANN, the 

generalization problem. 
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Chapter Four 
Generalization and Representation 

in M L P Networks 

In the previous chapter, we have discussed the convergence of the Back-

Propagation learning algorithm. However an efficient convergent learning algorithm 

can only guarantee the network will settle into a solution. As to whether there exists 

a solution, the representation problem, and how good the solution is, the general

ization performance, are largely dependent on the structure of the network and the 

learning critera. In this chapter, we discuss the genercilization problem of ANN espe

cially MLP networks and the representation capability of a class of self-association 

networks. 

4.1 Basic Problems of Generalization 

The main objective of neural network research is to develop intelligent learning 

( or self-programming ) machines, which are able to learn ( or generalize ) from 

examples. Generalization in this context is a kind of inductive inference. Although 

induction has been a centred problem of philosophy, psychology and artificial intel

ligence for a long time, the formulation of a complete and comprehensive theory of 

induction is still the aim of current research [83]. 

For human beings, genercdization ability is closely related to our species-specific 

heritage the capacity and the tendency to convert encounters with the partic

ular into instances of the general[84], or in another words, from part to whole. The 

following simple example can demonstrate some basic features of generalization. 

When the first three terms of a sequence are observed as 1, 2, 3, it is quite 
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natural to conjecture or generalize that the fourth term will be 4. However this 

may not be the case. I f the generation mechanism is given by the recursive relation 

as 

x„+i = a i n + 6 (4 - 1) 

Then from the first three terms, i t is easy to calculate that a = 1 and 6 = 1 . So 

the fourth term is actually 4. However i f the generation mechanism is given by the 

recursive relation 

Xn+2 = Xn+i + Z „ (4 - 2) 

then instead, the fourth term should be 5. As the generation mechanism can take 

many other forms, for example 

Xn+2 = ax^+i + bxn (4 - 3) 

or even higher order forms, the fourth term can take many other possible values. 

Selection of 4 as the fourth term is based on the simplest model of the observation. 

I f it is a continuous observation process, and a human is trying to find out the 

underlying generation mechanism of the observed sequence, then when the actual 

observation does not match with the prediction of the model, the model will be 

adapted to be compatable with the observation. Thus generalization is a model 

building or rule extraction process. The generalization performance is judged on 

how well the extracted rule or model matches the observation. 

In abstract form generalization can also be regarded as interpolation and ex

trapolation of data ( or surface fitting ) in abstract space [85] [86], each input-output 

pair in the learning sample set is a data point in the space. From this perspective, 

different models are just different surfaces. Thus for artificial neural networks, their 

potential models of the environment are heavily dependent on their structure and 

the representation strategy used to represent the input signal and output action. 
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This is especially true for networks which use the kind of learning algorithms which 

minimize the error function within the learning sample set, like Back-Propagation 

algorithm for example. 

As the above simple example has demonstrated, learning problems are usually 

under-determined, or using a numerical anadysis term ill-posed, so some kind of 

constraints must be imposed to restrict possible solutions. In the previous example, 

simplicity is the constraint. I f generalization is regarded as surfcice fitting, then 

regularization theory can be used to impose necessary constraints on a learning 

problem. However the constraints derived from regularization theory, like minimal 

integrated curvature for example, may be considered too orientated to pure surface 

fitting rather than to the real world generalization [86], so a generalization the

ory based on high-level notions is proposed [86]. In this theory, some constraints 

imposed on generalization are geometrical properties like rotation, translation and 

scaling invariants. Although these geometrical constraints look closer to red world 

generalization, they also have their limitations. The geometrical invariant can help 

to obtain good generlization in some pattern recognition problems. However there 

are many other situations where geometrical invariancy is not valid. For example 

in a fractal pattern there are many variations of regularities, so the geometrical 

invariant in one sub-region may not be applicable to other regions. On the other 

hand, although minimal integated curvature may not sound relevent to high level 

concepts, i t is a good constraint for some early vision problems. Actually, the con

straints imposed are an expression of a priori knowledge of the problem. It is very 

difficult to judge absolutely which generlization constraint is the best and solution 

must be problem specific. Under situations where no a priori knowledge is available, 

some kind of statistical constraints have to be imposed for generalization [87] [88 . 
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4.2 The Generalization of M L P Networks 

In the previous section we have stressed that the generalization performance 

of ANN depends on their representation strategy and structure. In this section we 

consider how representation and structure can influence the generalization of MLP 

networks by considering some specific examples. 

4.2.1 Representation and Multi-Solution Problems 

Considered the MLP network used to implement the 4-2-4 encoding problem 

19]. The network architecture is shown in Fig-4.1. In the 4-2-4 encoding problem, 

it is hoped that the network under training will find a transformation which can 

transform a redundant four-bit binary code into a suitable two-bit code to reduce 

the redundancy. In Table-4.1, Table-4.2 and Table-4.3, we have given three diff'er-

ent simulation results on the 4-2-4 problem with different input codes. If we look 

at Table-4.1, we wil l find that after learning the internal representation or hidden 

unit states for corresponding input output pairs are quite close to 00, 11, 10 and 

01 respectively. I t seems that the network has found the transformation which 

can transform redundant four-bit binary codes into two-bit codes through gener

alization. However i f we look at Table-4.2 and Table-4.3, we will find the internal 

representation in these situations are not so meaningful as in Table-4.1. Why did 

the Back-Propagation Algorithm fail to find a similar transformation in these two 

cases? Actually they are the same kind of problem, the only difference is the input 

representation. The answer is that because of the different input representation, 

the geometric constraints implied are different. 

The four internal representations corresponding to the four inputs can be re

garded as four points in a unit square on a two dimensional plane, and the weights 
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connecting the hidden units and the output units form four dividing lines on the 

plane. I f two output codes have only one different bit, then there is one and only 

one dividing line between their internal state points. From this observation, it is 

quite easy for us to get the implied geometric constraints of the input and output 

patterns in Table-4.1, which can be shown as in Fig-4.2. The four lines Li, L2, L3 

and L4 must form a four sides polyline, and four internal states Ai, A2, A3 and A4 

must lie in the region shown in Fig-4.2. As the Back-Propagation Algorithm has 

the tendency to move the points to the corners of the unit square or unit hyper-

cubic, so Ai, A2, A3 and A4 are very likely to be forced into the four corners of 

the unit square which correspond to the two-bit code shown in Table-4.1 internal 

states column. But for the input and output patterns in Table-4.2 and Table-4.3, 

the implied geometric constraints are different. They are shown in Fig-4.3 and Fig-

4.4, Fig-4.3 for Table-4.2 and Fig-4.4 for Table-4.3. For the internal states pattern 

shown in Fig-4.3, Ai stands for the internal state of output pattern 0000, it gener

ally lies in the middle oi A2, A3 and A4. This is consistent with the results shown 

in Table-4.2. A l l these internal state patterns displayed in Fig-4.3 and Fig-4.4 are 

unlikely to be forced into corners of the unit square. This is why in Table-4.2 and 

Table-4.3 the Back-Propagation Algorithm did not find the internal states which 

are as meaningful as in Table-4.1. 

Another problem associated with the generaUzation of MLP networks is the 

multi-solution feature of some learning tasks, the parity problem is an example. In 

19] a highly organized structure has been discovered by an MLP network using 

a Back-Propagation algorithm which can solve the parity problem. However i f we 

look at a simple version of the parity problem with only 3 bits, a 3-3-1 MLP net

work is used to implement i t , and all the possible combinations of input patterns 

are used as learning samples, then there are three different ways of dividing input 
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space which can satisfy the condition set by the training sample set. These divisions 

are shown in Fig-4.5, Fig-4.6 and Fig-4.7. Which solution the Back-Propagation 

Algorithm adopts is dependent on the initial weights and learning parameters. In 

our simulations, we have obtained all three solutions for different simulations. Thus 

i f the algorithm starts with random weights, which solution we will obtain is to

tally unpredictable, in other words, the generalization of the algorithm is totzdly 

unpredictable. This is the situation in which aJl possible input patterns are used as 

learning samples. For the cases where only a smaller learning sample set is available, 

the unpredictability could be even greater. 

The generalization made by the MLP using the back propagation algorithm 

is based on the geometric constraints posed by the training sample set. Different 

training samples set up different constraints, but in some cases, for the same training 

samples, because of the multi-solution nature of the problem, (like the parity prob

lem we mentioned above) there are many different ways of dividing the input space, 

all of which can satisfy the constraints. This will make the learning behaviour of 

the algorithm difficult to predict. Previous reference [18] stated ''The most obvious 

drawback of the learning procedure is that the error-surface may contain local min

ima so that gradient descent is not guaranteed to find a global minimium. However, 

experience with many tasks show that the network very rarely gets stuck in poor 

local minima that are significantly worse than the global minimum. We have only 

encountered this undesirable behaviour in networks that have just enough connec

tions to perform the task. Adding a few more connections creates extra dimensions 

in weight space and these dimensions provide paths around the barriers that create 

poor local minima in the lower dimension subspace.' From the above discusion, 

we will note that 'Adding a few more connections' will cilso increase the number 

of possible ways of dividing the input spcice while satisfying the constraints, and 
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thus the learning will be more unpredictable. This conclusion is also confirmed by 

the observation reported in [88]. In their experiment, the network is first set to a 

solution with E = 0. Then the weights are perturbed to another point in the weight 

space, and the network is re-trained. The new solution obtained by the network 

could be quite different from the original solution. 

4.2.2 Init ial Structure and Generalization 

Fully connected MLP networks are the most commonly used artificial neural 

networks in research and application. The initial structure constraints imposed 

on them are very weak. Theoretically they can divide the input space into arbi

trary shapes. I t has been recently proved that any continuous mapping can be 

approximately represented by an MLP network[89]. This universal feature of MLP 

provides a high degree of flexibility, but also reduces its generalization capability 

and makes learning difficult. Even using a learning algorithm which can always con

verge to the global minima, in multi-solution cases the final solution reached may 

not be unique, and thus generalization is unpredictable. The smadl mean square 

error on the learning samples does not necessarily imply that generalization outside 

the learning sample set would be good. A universal MLP is more likely to store 

information into a memory structure than to identify the hidden structure of the 

process which generates the training samples[90]. Thus some prior structure (not 

so universal) may be necessary for nontrivial learning. It may be argued that a 

universal MLP can be regarded as a parameterized structure, for example, a weight 

of zero value means there is no connection between the two neurons associated with 

the weight. But the formidable high dimension of the parameter space and the 

complexty of the error function surface makes it impossible to guarantee the most 

suitable structure will be selected by the learning process. One may argue that an 

exhaustive search method can be used, but apart from the fact that it cannot solve 
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the multi-solution problem, it also makes the learning very slow as in some cases it 

becomes an NP problem[91]. Thus nontrivial self-programming in artificial neural 

networks can take place only if a priori knowledge about the enviroment in which 

the system is to learn is built into the system as an initial structure(Shepard in 

[92]). 

The abstraction of neural networks with ful l connectivity and randomly dis

tributed initial connection weights surely lacks biological plausibility. Real biological 

neural networks do have structure, and this structure determines how they process 

inputs. For example, the visual system has at least a dozen subsystems, each with 

elaborate internal and external structure[93][94]. These structures can only be in

herited, because after the embryonic development phrase, organisms cannot develop 

any new connection between two neurons which are not initially connected. 

Thus the initial structure is crucial to satisfactory generalization of artificial 

neural networks. The initial structure or internal constraints can guide the general

ization process. We can illustrate this fact by a simple pattern recognition example. 

I t is a two class pattern recognition problem. The sample points from class A are 

uniformly distributed in a circle or an ellipse. The sample points from class B cire 

uniformly distributed around the circle or ellipse. The task for a recognizer is that 

after initial training when given new samples it should be able to classify them with 

a satisfactory precision. We used two different kinds of networks to solve this prob

lem. One is a 2-10-1 fully connected MLP shown in Fig-4.8. The second network 

shown in Fig-4.9, we call a nonlinear perceptron, in which all weights between the 

input layer and hidden layer are fixed ( they all have value of 1). The two hidden 

units on the left use a quadratic function as their activation function and the two 

hidden units on the right are just all-pass units (that is the output is equal to in

put). The weights between the hidden layer and the output layer are modifiable, the 
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output unit uses a sigmoid function as activation function. Both networks use the 

gradient descent learning algorithm (or back-propagation algorithm). Some simu

lation results are shown in Fig-4.10a, Fig-4.10b, Fig-4.11a and Fig-4.11b. Fig-4.10b 

and Fig-4.11b show the results of the 2-10-1 MLP, and Fig-4.10a and Fig-4.11a are 

for the nonlinear perceptron. The time for the MLP network to go through the 

training set is twice that for the nonlinear perceptron. The decision boundary or 

generalization of the nonlinear perceptron is better than that of the MLP. Actually 

the nonlinear perceptron is not as universal as the MLP. As the MLP can form 

piece-wise linear decision boundaries which can approximate any curve to any pre

cision provided there are enough hidden units, the nonlinear perceptron can only 

form circular or elliptic decision boundaries. I t is more problem specific. However 

it is this internal constraint that the nonlinear perceptron can only form circular 

and elliptic decision boundaries which provides better generalization in this specific 

enviroment. This is because it matches with the characteristic of the problem. Al

though the MLP is more universal, the back-propagation learning algorithm cannot 

make ful l use of hidden units, and some of them become redundant. As every hid

den unit corresponds to a division line in Fig-4.10b and Fig-4.11b, it can be seen 

that some division lines have not been fully utilized to form decision boundaries. 

Some other examples of initial structure fcicilitating learning and generalization 

can be found in[95], in which a hierarchical MLP network is designed for hand 

writing digits recognition, and the simulation results demonstrate some obvious 

improvement on generalization performance. 

From the above discussion we can conclude that MLP networks using a Back-

Propagation algorithm are a suitable choice for problems in which no a priori knowl

edge is available and the learning sample set is a typical representation of the func

tioned space. However when some a priori information is available, as shown by 
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the above pattern recognition example, a custom-tailored network or learning al

gorithm which incorporates the a priori knowledge can always be advantageous. 

The representation strategy can also influence the generalization performance. It 

is suggested in [85] that for abstract learning problems it may be advantageous to 

attempt to code the data so as to produce a relationship which is as smooth as 

possible. However this may not be easy. 

4.3 Hidden Units and the Representation Capabil
ity of Self-Association M L P 

Although it has been proved that MLP networks can implement any nonlinear 

mapping i f there are enough hidden units in the network, when the number of 

hidden units is bounded, their representation ability is also limited. In this section 

we consider the limitation on an MLP type self-association network used for feature 

extraction. 

Feature extraction is an important technique for pattern recognition[96]. As 

the raw input information usually has high dimensionality and a lot of redundancy, 

compression techniques are used to form low dimensional feature vectors. This 

process is also called dimensionality reduction. One aspect of recent research is 

the application of neural networks to perform feature extraction or dimensionality 

reduction[97] [98]. Ackley , Hinton and Sejnowski used the neural network for the 

compression coding problem[27], Baldi and Hornik analysed the linear unit neural 

network for information compression[99]. The neural network used for these ap

plications are usually self-association ( or auto-association ) networks. There have 

also been attempts to use a self-association network to realize image compression 

[100 . 
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A self-association neural network is shown in Fig-4.12. It is a fully connected 

feed-forward multi-layer network, with an input layer and an output layer , and 

one or more hidden layers. The input layer and the output layer have the same 

number of units. The tcisk for this network is that after going through some training 

samples, when a pattern is presented to the input layer, the output layer should be 

able to reconstruct the same pattern. The hidden layer can be regarded as a feature 

detector, i t compresses the input patterns into more concise form. Some researchers 

hope that this kind of network can be used to find useful transforms which can 

compress the input information into feature vectors[l01]. For this network, an 

important question is that for a specific number of input units how many hidden 

units are needed to make the network capable of reconstructing every possible input 

pattern? The following theorem gives the answer to this question. 

Theorem: For a self-association neural network like that shown in Fig-4.12, 

the number of input units is n, hidden units is p, usually p < n, all the input 

and output patterns are considered to be binary ( black/white image ). I f perfect 

reconstruction is required, that is every possible input pattern should be able to be 

reconstructed on the output layer, then the necessary condition is p must satisfy 

p > n — 1. We assume that the activation function of hidden units is a sigmoid 

function ( see Fig-1.2 ), and the activation function of the output units is step 

function ( see Fig-1.3 ) . 

Proof: We denote the activation of hidden units as a vector H with dimension 

of p, 

H = [ / i i , / i 2 , . . . , M ^ ( 4 - 4 ) 

each hk{k = 1,2,... ,p) corresponds to an activation level of a hidden unit. The 

input to the output units can also be denoted as a vector I with dimension of n, 
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and the corresponding output as a n dimension O 

each ik{k = 1,2,... , n) can be expressed as, 

p 
ik = Y^Wkjhj -\-ek 

3 = 1 

( 4 - 5 ) 

( 4 - 6 ) 

to facilitate the following discussion, we regard the 9k{k = 1,2,..., n) as a weight 

which connects to an always active unit with active level of 1. Now if we expand 

the vector H by one row of 1, that is, 

H = [ h i , h 2 , . . . , h p , l ] ' ^ = [ / i i , / i 2 , . . . , hp+i]'^ 

then (4-6) can be rewritten as; 

p-l-i 

ik = Y^Wk,jhj 
3 = 1 

( 4 - 7 ) 

( 4 - 8 ) 

now H is a p-|-l dimension vector, the relation between I and H can be expressed 

as 

Wi,2 • r ^ 1 1 
i2 1̂ 2,1 W2,2 • • • W2,p-i-l 

An. Wn,2 • . / ip+i-

( 4 - 9 ) 

we denote the above matrix as W . The relation between the I and O can be ex

pressed by a nonlinear operator N F as 

O = N F I 

For any s-dimensional vector X , N F can be defined as, 

NF.X = [ f { x , ) J { x 2 ) , . . . , f { x , ) f 
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f( ) is the step function defined by 

So from (4-10) we can see that, for any ik, i f ik > 0, then its corresponding Ofc is 1; 

otherwise Ok is 0. I f we regard every row of matrix W as a coordinate of a point in 

a (p-f-l)-dimensional space, then every output pattern corresponds to a division of 

these n points in a (p-M)-dimensionaJ space into two groups by a linear hyperplane 

defined in (4-8). For any output unit which is 1, its corresponding point is above 

the hyperplane. otherwise it is below the hyperplane. Now we define F(m, p) as the 

number of all possible linear divisions of m points in a p-dimensional space (taking 

account of the direction of the hyperplane), we have F{m, 1) = 2 and F{1, p) = 2. 

I f the distribution of the points satisfy the general position condition, then it can 

be shown that [102 

F{m + 1, p) = F{m, p) + F{m, p - 1) 

and from the initial condition F ( m , 1) = 2 and F{1, p) = 2, it can be proved that 

p - i 

F ( m , p) = 2 ( 4 - 1 3 ) 
k=Q 

For an output layer with n units, the number of all possible output patterns is 

2". So our original problem can be replaced by the problem of seeking the smallest 

p which satisfies 2" < F{n,p + 1). Now we will prove that p must be greater than 

or equal to n-1. 

I f p = n - 1, then 

F{n, p - | - l ) = F(n , n) 

Jfe=0 

= 2 X 2"-^ = 2 " (4 - 14) 
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for any p < n — 1, it is obvious that 

Fin, P + 1) = 2 C ^ , < 2 Xi C-n'-i = 2" 

So the smallest p which can guarantee F{n, p) > 2'* is n-1. We have thus proved 

the theorem. 

The condition p > n — 1 is only a necessary condition, not a sufficient condition. 

So i t is a lower bound. This is especially true since the last element of H hp^i is 

fixed to 1, so i t could limit the possible swap of polarity of hyperplanes. This can be 

demonstrated in a two dimensional example. Consider an auto-associative network 

with two output units and only one hidden unit. Then the ouputs can be described 

by 

O i = / i ( x ) = / i ( ^ i / i + ^ 0 

0 2 = f 2 ( y ) = f2iw2h + e2) ( 4 - 1 5 ) 

where fi{ ) is the step function defined in preceding paragraphs, wi and W2 are the 

weights, Oi and 02 are the thresholds, h is the activation of hidden unit. I f pair 

(x ,y ) is regarded as a point on a plane, and the point (x ,y) for which fi{x) = 0 and 

f2{y) = 0 as the original point of the coordinate system, then the point which can 

produce 01 must lie in the second quadrant or on a positive half of the y-axis, the 

point which can produce 10 must lie in the fourth quadrant or on a positive half of 

the X-axis, and the point which can produce 11 must lie in the first qudrant. Thus if 

we want output pair (O i , O2) to be able to take all possible binary combinations as 

00, 01, 10 and 11, then the distribution of four corresponding points {x,y) should be 

a pattern like that shown in Fig-4.13. As all possible {x,y) points lie on a straight 

line defined by 

X = wih -\- 9i 

y = W2h + 02 (4 - 16) 
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I t is obvious that no straight line can go through all the four points displayed 

in Fig-4.13. That is to say a single hidden unit cannot reproduce all the binary 

combination patterns for two output units. 

The above result seems quite pessimistic for the feed-forward self-association 

network, but i t may not be so. I f we demand only half of all possible input patterns 

are reconstructable, then the bound of p can be reduced by half. The proof is given 

as follows. 

In this case the problem is to find the smallest p which satisfies 

F{n, p) > 2"-^ (4 - 17) 

I f n is an odd number, then let n = 2^ -|- 1 ( s is an integer ). Because 

E = S'^-' and = C - \ - ' 

SO we have 

fc=0 

a-1 

it=0 

Thus to satisfy the condition (4-17), p must satisfy p > [ ^ ^ ] . ( where [ ] means 

truncate the decimal part ) I f n is an even number, it can be represented cis n = 

2s -I- 2. I t is easy to obtain 

A:=0 
\n-V SO to keep (4-17) hold, p must satisfy p > [ ^ ] . We can conclude that for half 

reconstruction, p must satisfy 

V > f ^ l (4 - 18) 
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Finally we may conclude that the limitation on the number of hidden units has 

nothing to do with the learning algorithm, it is only related to the structure of the 

network. Thus it is a structure problem which cannot be solved by the learning 

algorithm. The lower bound of the number of hidden units cannot be circumvented 

by adding more hidden layers. From our foregoing analysis, it can be seen that the 

quantitative relation of the number of output units and that of the adjacent hidden 

layer for the perfect reconstruction condition is always held no matter how many 

hidden layers the network has. Thus it is a fundamental limitation. 

The result provided by the theorem seems quite pessimistic, although it may 

not be so. It is only under the perfect reconstruction condition that we would 

have to have the same number of hidden units as that of the input. But in most 

real application problems, useful patterns are only a small portion of all possible 

patterns, many of them are meaningless for a specific problem. In these cases we 

can use less hidden units than that demanded for perfect reconstruction. Actucilly, 

we have already shown that i f only hcilf of all possible patterns are needed, the 

bound of p can also be reduced by half. 

In this and the previous chapters we have discussed some properties of ANN, 

especially M L P networks. In the following chapters we will discuss potential appli

cations of A N N . 
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Input Pattern Internal Representation Output Pattern 

0 0 0 1 0.0 0.0 0 0 0 1 

0 0 10 1.0 1.0 0 0 10 

0 10 0 1.0 0.0 0 10 0 

10 0 0 0.0 1.0 10 0 0 

Table-4.1 

Input Pattern Internal Representation Output Pattern 

0 0 0 0 0.6 0.4 0 0 0 0 

0 0 0 1 0.0 0.0 0 0 0 1 

0 0 10 1.0 0.0 0 0 10 

0 10 0 0.3 1.0 0 10 0 

Table-4.2 

Input Pattern Internal Representation Output Pattern 

0 0 0 1 1.0 0.0 0 0 0 1 

0 0 1 1 1.0 0.6 0 0 1 1 

0 1 1 1 0.7 1.0 0 1 1 1 

1 1 1 1 0.0 1.0 1 1 1 1 

Table-4.3 
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OUTPUT LflVER 

HIDDEN LflVER 

INPUT LflVER 

Fig-4.1 M L ? network for 4-2-4 encoding problem 

Fig-4.2 
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Fig-4.3 

Fig-4.4 

74 



/ 1 ' ^— ^ 1 ^ 
/ ' \ / ) it 

c Z _ 1 

Fig-4.5 

Fig-4.6 

Fig-4.7 
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X 

Fig-4.8 2-10-1 MLP Network 

Y 

Fig-4.9 The nonlinear perceptron 
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9 9 

• k , 9 

Fig-4.10a 

This figure shows the distribution of training samples and the decision bound

ary learned by the nonlinear perceptron. 
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Fig-4.10b 

This figure shows the distribution of training samples and the decision bound

ary learned by the 2-10-1 MLP. THe distribution is the same as Fig-4.10a 
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i 9 

Fig-4.11a 

This figure shows the distribution of training samples and the decision bound

ary learned by the nonlinear perceptron. 
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Fig-4.1 l b 

This figure shows the distribution of training samples and the decision bound

ary learned by the 2-10-1 MLP. THe distribution is the same as Fig-4.11a 
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Fig-4.12 Feed-forward self-association network 

01, 
0^11 

Fig-4.13 Output vector distribution pattern 
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Chapter Five 
M L P Networks for Nonlinear 

System Identification 

5.1 Introduction 

Representation and identification are fundamental problems in system theory 

and signal processing. One way of establishing a mathematical model of a given 

system is by analyzing the physical mechanisims governing the operation of the 

system, and then write down the differential or difference equations which describe 

the operation of the system based on physical laws. This approach may not be 

possible in many situations, because of our incomplete knowledge of the system. An 

alternative approach is to build a system model based on observation of the input 

and output of the system. Thus the representation and identification of systems 

with given input-output relationship is an important problem for system research. 

For linear time-invariant systems this problem has been well studied and many 

methods and algorithms are available [103] [104]. However for nonlinear system 

identification the problem is much more complex and difficult. 

One way to describe nonlinear systems is to use the Volterra series[105]. For a 

system with output time function y(t) and input excitation x(t) , the input and the 

output relations can be expressed in the form 

y { t ) = hi{Ti)x{t - Ti)dTi + / h2{Ti,T2)x{t-Ti)x{t-T2)dTidT2 
Jo Jo Jo 

fOO fOO fOO 

+ / / h2{Ti,T2,n)x{t-Ti)x{t-T2)x(t-Tz)dTidT2dT3 
Jo Jo Jo 

/ • O O ôo 
•••+ / / hr^{Ti,T2,...,Tr,)x{t-Ti)x{t-T2)---

Jo Jo 

• • • X{t - Tn)dTi •••dTn+---

This series is called a Volterra series, and the functions hn{Ti,... ,Tn) are called 
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the Volterra kernels of the system. The analysis assumes that the system is time 

invcuriant. However there are two basic difficulties associated with the practical ap

plication of the Volterra series. The first difficulty concerns the mecisurement of 

the Volterra kernels of a given system and the second concerns the convergence of 

the series. Other functional series expansion methods for nonlineax system repre

sentation include Wiener series [105] and the Uryson operator [106]. In spite of 

the theoretical promise, all these models have some practical difficulties for general 

applicability. While the input-output finite order differential or difference equa

tion model ax:hieves wide acceptance in representation and identification of linear 

systems, i t is natural to t ry to extend the input-output model to nonlinear sys

tems. The input-output difference equation model for discrete nonlinear systems 

was proposed by Leontaritis and Billings in [107]. Recently with the development of 

research in A N N , Narendra and Parthasarathy proposed a nonlinear system iden

tification scheme based on an finite order input-output difference equation model 

and MLP network [108]. There are many open questions concerning the theoretical 

and practical issues of the identification of nonlinear systems with neural networks. 

Examples are the excitation condition and the convergence of the weights. In this 

chapter, we discuss some of these fundamental problems and provide some computer 

simulations. Because of the theoretical difficulties of nonlinear systems, computer 

simulation is still an indispensible approach for nonlinear system study. 

5.2 Identification of Nonlinear Systems with Static 
Nonlinearity 

Many nonlinear systems can be described by the recursive difference equation 

x{n + l) = / ( x ( n ) , x ( n - l ) , . . . ,x{n-p+l),u{n),u{n-l),.. .,u{n-q + l)) (5 - 1) 

where is the output of the system, and u{i) is the input to the system. It can 
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be proved that under some mild conditions nonlinear systems which operate near 

the equilibrium point can always be described by a difference equation of the form 

given in (5-1) [107]. From this expression we can see the essence of applying the 

neuraJ network to nonlinear system identification is to use the neural network to 

approximate the nonlinear mapping f( ) in (5-1). Theoretically, the MLP neural 

network can approximate any continuous nonlinear mapping to any precision, pro

vide there are enough hidden units [89]. However in a prcictical implementation, 

how well a MLP network approximates a given nonlinear function depends on many 

factors, such as number of learning samples and network structure. As the foun

dation of this nonlinear system identification scheme is a static nonlinear mapping 

approximation, we initially discuss the identification of static nonlinear mappings. 

5.2.1 Static Nonlinear Mappings 

The identification of a static nonlinear mapping can be implemented with the 

structure shown in Fig-5.1, where the back propagation algorithm is used to adjust 

the weights of the neural network. Fig-5.2 shows the simulation results of using a 

1-20-10-1 neuraJ network to approximate the nonlinear function 

/ ( z ) = -I- 0.3x2 _ Q 4^ 

and Fig-5.3 shows the simulation results of using a 1-20-10-1 neural network to fit 

the nonlinear function 

/ ( x ) = •^(x'' - 2.94x2 _ Q _ Q 5̂  

I t may be observed that within the learning section, the fitting of the curves is 

almost perfect. However i f we expand the displayed sections to [-2, 2], as shown 

in Fig-5.4 and Fig-5.5, we find the fit outside the learning section is disappointing. 

This poor generalization is the intrinsic weakness of unstructured neural networks. 
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Fig-5.6 shows the simulation result for fitting the nonlinear function 

f ( x ) = 0.8sin{TTx) + 0.2sin{5irx) 

and Fig-5.7 is for 

f{x) = -O.aix + 0.8sin{~) - 0.1sm(107ri) 

The results are not as good as those in Fig-5.2 and Fig-5.3. From our own simulation 

and that in Narendra's paper[108], we suggest that the more singular points ( the 

points where the derivative of the function is zero ) the function has, the more 

difficult i t is to fit with a neural network. That is more hidden units and training 

time are needed. 

As it is usually difficult to envisage the shape of multi-variable functions, we 

define a Discrepency Estimation Function (DEF) d(x) in our simulation, 

rf(x) = m^^ | / ( Y ) - NN{Y)\ 

where Y is the variable vector, and Sx is a shell defined as 5i = { Y | Y ^ Y = 

x^ or \\Y\\ = x } So d(x) can be used to measure the discrepency between the 

nonlinear function and the neural network. To save computation time, we used the 

random samples in Sx to estimate the d(x). The number of samples is 2"̂ '"*, dim 

is the dimension of the Y . For example, for a three variable function, eight random 

samples are used for every fixed x to estimate the d(x). I f eight random samples 

are denoted as Y i , Y 2 , . . . , Yg , and | | Y i | | = x {i = 1,2, . . . ,8), then 

d(x) « max | / ( Y i ) - NN(Yi)\ 
ie{i,2,...,8} 

Fig-5.8 shows the d(x) for the fitting of 

x i X 2 ( x i +2 .5) (x i - 1.0) 
/ ( x i , X 2 ) = l + xl + xj 
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with a 2-20-10-1 neural network. Fig-5.9 asid Fig-5.10 show the surface of / ( x i , X 2 ) 

and the neuraJ network respectively. In Fig-5.11, the error surface e ( x i , i 2 ) is 

displayed, it is defined as 

e (x i ,X2) = \f{xi,X2) - NN{xi,X2)\ 

We can see that the central region is low and relatively flat, it corresponds to the 

initial part of d(x) in Fig-5.8. The general tendency of e ( x i , X 2 ) and the d(x) is the 

same. This can also be shown in Fig-5.12 and Fig-5.13, in which 

/ ( x i , X 2 ) = ( x i - 0 . 9 ) ( x 2 + 0 . 3 ) 

This gives us confidence to use d(x) as a coarse estimation of fitting error between 

a nonlinear function f( ) and the neural network. 

5.2.2 Dynamic Systems with only Static Nonlinearity 

Now we consider the identification of nonlinear systems with only a static non-

linearity ( in [108] they are called Model-I nonlinear systems ) with MLP networks. 

A second order Model-I nonlinear system can be described by the difference equation 

of the form 

x{k + 1) = aix{k) + a2x(k - 1) -h f{u(k)) (5 - 2) 

which is a linear dynamic system with a nonlinear input mapping, u(k) as the ex

citing signal. We used a 1-20-10-1 neural network to identify the nonlinear function 

f( ) which has the form 

f{u) = u^ + 0.3u^ - OAu 

The neural network has two hidden layers, the first hidden layer has 20 units and 

the second has 10 units. The difference equation of the neureJ system is 

x{k + l) = aix{k) + a2x{k -1) + NN{u{k)) (5 - 3) 
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NN( ) represents the neural network. I f the error function e(k) is defined cis e(A;) = 

x(^•) — x{k), then from equation (5-2) and (5-3) we have 

e{k + 1) = a^eik) + a2e{k - 1) + {f{u{k)) - NN{u{k))) (5 - 4) 

The partial derivative of e(k-M) with respect of Wij ( Wij is a weight of the neural 

network ) is 

dejk + 1) _ dejk) ^ dejk - 1) dNjujk)) 
dwij dwij dwij dwij 

Equation (5-5) describes a Unear system which has the same form as the linear part 

of equation (5-2) and thus is known. The input term ^^Q^^''^^ can be calculated 

by the back propagation algorithm. As the partial derivative is often used as a 

measurement of sensitivity, the structure used for computing the partial derivative, 

like the back propagation algorithm, is called a sensitivity network[108]. Thus the 

structure for the identification of a Model-I nonlinear system is shown in Fig-5.14. 

Strictly speaking, the equation (5-5) is only valid when the weights of the neural 

network are constant. As the weights are always changing in the identification 

process, the partial derivative obtained from equation (5-5) is only an approximate 

estimation. Thus, unlike the back propagation algorithm, the algorithm used here 

is not a strict gradient descent algorithm. The simulation results are shown in the 

following figures. (Fig-5.15—5.17) 

It seems the transient time of the back propagation is very short and it can trace 

the output of the plant very quickly. But actually this is not completely true. I f 

we stop the weight updating of the neural network, the output of the neural system 

wil l fail to trace the output of the plant. This can be seen very clearly in Fig-5.15, 

in this case the weight updating stopped at time 300. The reason for this is that 

in the identification algorithm, we have two dynamic processes, one is described by 

the difference equation (5-3), and the other is the weight updating process. During 
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the period before time 300, it is the weight updating process itself that is tracing 

the dynamic process, rather than the process defined by the equation (5-3). 

To provide more evidence for our argument, we repeated the above simulation 

with another two different excitations. One is a triangular wave, which can be 

expressed as 

(L\ _ / 0-01(^ - 2k X 100), i f 2k x 100 < t < (2k + 1) x 100; 
~ \ 0.01(2A; X 100 - t), i f {2k - 1) x 100 < < < 2A; x 100. 

where k is an integer, the results are shown in Fig-5.16. The results of random 

excitation are shown in Fig-5.17. I t is quite clear that in Fig-5.16, the back propa

gation algorithm can trace the output of the nonlinear system quite well after only 

50 iterations, just as in Fig-5.15. But Fig-5.17 shows the results obtained with a 

uniform random excitation. In this case even after time 350 the tracing is still very 

poor. This provides strong evidence that it is not the fast and correct identification 

of the system which permits the output of the neural system to trace the output 

of the nonlinear system, but the weight updating process itself that is tracing the 

nonlinear system. The waveforms in Fig-5.15 and Fig-5.16 are slowly changing cind 

regular, so i t is possible for the weight updating process to trace them. Actually 

we see that the during the training period, the output of the neural system is al

most a slightly delayed replica of the output of the nonlinear system. However for 

the random excitation case, the output of the nonlinear system is changing so dra

matically and irregularly that only when the neural network has approximated the 

nonlinear function to a specific precision can the neural system trace the nonUnear 

system. The randomness needed here is to force the identification process into ac

tion. Otherwise the tracing of the output of the nonlinear system is realised by the 

continuous changing of the weights. It is more like a weight convergence condition 

and it is different from the persistent excitation in adaptive system theory [109 

110]. Persistent excitation ensures that the excitation should be rich enough to 
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maJce every aspect of the system identifiable. But the randomness needed here is 

employed in a different sense. Actually we are only going to identify the nonlineax 

function f(u) for u € [—1,1], the excitation u{k) = sin{^^) is revealing enough. 

Fig-5.18a and Fig-5.18b show the simulation results cifter 199700 learning iterations. 

Fig-5.18a shows the output traces and Fig-5.18b shows the curve of the nonUnear 

function f(u) in equation (5-2) and that of the 1-20-10-1 neural network. Although 

the learning is extremely long ( 199700! ), the identification shown in Fig-5.18b is 

poor and tracing broke down after the learning ( weight updating ) stopped ( see 

Fig-5.18a ). On the other hand the tracing during the learning period is perfect. It 

provides a strong case that the irregular excitation should be used to break down 

the tracing by the weight updating, and force the identification process into action. 

Randomness can actually lead to better identification. Fig-5.19a and Fig-5.19b 

show the simulation results for random excitation. The excitation is an independent 

random process with a uniform distribution over [0, 1]. We can see from Fig-

5.19b that the identification of f(u) for u 6 [0,1] is perfect. We can also use a 

sinusoidal excitation to get similar results. I f the sinusoidal excitation has the form 

u{k) = sin{^^), and a is irrational number, the trace of u(k) will appear irregular. 

As i t is impossible to implement an irrational number on a digital computer, we 

used the function u{k) = ^^Mwir^tii) ii^stead. The identification results are shown 

in Fig-5.20. Thus, what is necessary for correct identification is some irregularity 

in the excitation. 

As i t has plagued all the neural network applications, it is not surprising that 

generalization is also a problem in nonlinear system identification. I f we extend the 

display section of the curve of neural network in Fig-5.19b, as is shown in Fig-5.21, 

then we wil l find that the fitting outside the section [0, l ] is much worse than within 

0, 1]. So for a real application, the magnitude of the excitation should be sufficient 
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to cover the whole dynamic range of interest. 

To study the noise immunity of the back propagation algorithm for model-1 

system identification, we added some random noise with normal distribution to the 

system, as shown in Fig-5.22. The simulation results are shown in Fig-5.23. Using 

the noise with the standard deviation of 0.333 ( or variance of 0.1), the identification 

is reasonable, but obviously worse than that shown in Fig-5.20. I f we increase the 

standard deviation to 0.5, we can see in Fig-5.24 that the identification is very poor. 

I f the noise is added at the input port of the neural system as shown in Fig-5.25, 

rather than at the output of the nonlinear system, the identification will also be 

unsatisfactory. This can be seen in Fig-5.26, where the noise level is the same as in 

Fig-5.23, but the identification is inferior. 

5.3 Identification of Systems with Nonlinear Dy
namics 

In this section we discuss the identification of nonlinear systems which have 

nonlinear dynamics but linear input excitation. They are called Model-II nonlinear 

systems in [108]. The system can be described by a nonlinear difference equation 

as 
m-l 

x{k + 1) = f{x{k), x { k - l ) , . . . , x { k - n + l))+Y^ biu{l^ - i ) (5 - 6) 

where the coefficients bi are known, and the f( ) is an unknown continuous function. 

To simplify the simulation and the analysis, (5-6) can be replaced by the following 

equation 

x{k + l ) = f{x{k),x{k-l),...,x{k-n + l ) ) + u{k) (5 - 7) 

Because all the coefficients 6̂  and the excitation u(k) are known, there is not much 

difference between using equation (5-6) or (5-7) for simulation. 
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In this identification problem, the neural system which is used to model the 

plant can be represented as 

x{k + l ) = NN{x{k), x{k -l),...,x{k-n + 1)) + u{k) (5 - 8) 

where x{k) is the estimation of x(k) , and u(k) is the known excitation which is the 

same as that in (5-7). From equation (5-7) and (5-8), the discrepancy between the 

plant and the neural system can be calculated as 

e(k + 1) = x{k + 1)- x(k + 1) 

= f{x{k), ...,x{k-n + l))-NN{x{k), ...,x{k-n + I)) (5 - 9) 

the e(k) is used in the identification processes to adjust the neured network to 

minimize the discrepency between the plant and the neural network. As the par

allel identification scheme described in (5-9) is difficult to converge even in linear 

identification, in our following study the series model is used. The architecture 

of identification is shown in Fig-5.27, and equation (5-9) can be replaced by the 

equation 

e{k +l) = f{x{k), ...,x{k-n + l ) ) - NN{x{k), ...,x{k-n + 1)) (5 - 10) 

From equation (5-10) we can see that the identification problem in this case 

is almost the same as the function fitting problem which is discussed in section 2. 

The difference here is that the samples used for calculating e(k) are determined by 

the property of the system to be identified. However in the function fitting case the 

samples caji be selected arbitrarily. Thus to obtain a satisfactory identification, the 

system and the excitation should meet some demand . 
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5.3.1 System Dynamic Properties and Identification Performance 

First we consider the linear system situation, in this case the function f( ) has 

the form 

f{x{k), ...,x{k-n + l)) = aix{k) + ••• + ar,x{k - n + I) (5 - 11) 

I f a FIR adaptive filter and LMS algorithm are used for the identification, it can be 

shown that under the persistent excitation condition, the coefficients of the filter will 

converge to exponentially. This also means if a single layer Hnear perceptron is 

used as NN( ), i t will converge to the linear function f ( ) under a persistent excitation 

condition. However i f a Mul t i Layer Perceptron is used, as is the case in this chapter, 

the persistent excitation can no longer guarantee the convergence of NN( ) to the 

f( ) . In the adaptive filter case, the structure of the filter is the same as that of the 

plant, so identification is essentially parameter estimation and the convergence of 

the parameters under the persistent excitation implies the convergence of NN( ) to 

the f( ) . In the case of a MLP neural network, its structure is different from the plant 

and i t is more universal than a single layer perceptron. This universality gives it 

a powerful representation ability, but also renders poor generalization (see Chapter 

4). The generalization mechanism of the MLP neural network is the interpolation 

between the learning samples and extrapolation outside the learning region. To 

make the interpolation match the function which produces the learning samples, 

the learning samples should be very dense within the learning region of the input 

space, and generally the extrapolation outside the learning region is very poor, 

as shown previously in this chapter. Thus to obtain satisfactory identification, the 

learning samples should cover the whole input domain which one is interested in, and 

have sufficient density. The persistent excitation cannot guarantee this, only a more 

general excitation and the system with specific properties can ensure identification. 

Because the learning samples are actually the states of the system, they lie on 

92 



the phase trace which is determined by the excitation and the system properties. 

Thus the distribution of learning samples is closely related to the excitation and 

the system properties. 

There are several system properties which can influence the phase trace. First, 

we consider the controllability of the system. In system theory, controllability means 

any system state can be reached within finite time with an appropriate excita-

t i o n [ l l l ] . Therefore i f a system is controllable, theoretically the phase trace can 

densely cover the whole phase space under an appropriate excitation. (In some cir

cumstances this is random excitation. ) This is precisely the requirement in using 

a MLP neural network for system identification. 

For a linear system which is described by the state equation 

Xk+i = AXk + Buk (5 - 12) 

where A is the transfer matrix, Xk is the state vector, the condition of controllability 

is that the C matrix defined by 

C = [ 5 , A 5 , . . . , A " - ^ B 

has fu l l rank. For the linear system represented by the equation (5-11), the A 

matrix is 
/ o i a2 . 

1 0 . 0 0 
A = 0 1 0 0 

I 0 0 . 1 0 / 

and B = [ 1 , 0 , . . . , 0]^ . I t is easy to verify that the matrix C has the form 

C = 

(\ X X . . . X \ 
0 1 X . . . X 

\ 0 0 0 
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irrespective of the values of the x elements , the C matrix is absolutely full rank. 

So the linear systems described by the equation (5-11) are edways controllable. 

Besides the controllability, the phase trace is also influenced by the correlation 

property or bandwidth of the system. Although the controllability guarantees that 

every corner of the state space is reachable under appropriate excitation, the dis

tribution of the phase trace is more influenced by the bandwidth of the system if 

the excitation is not specifically designed. Under white noise excitation, the output 

of a narrow band system will be a highly correlated process, the phase trace will 

be more likely restricted in a narrow region along the diagonal line, although there 

is the possibility that the phase trace will reach every corner of the state space 

ultimately. The distribution of phase trace is highly non-uniform in this case. To 

obtain a satisfactory identification in a large portion of state space, the system 

must be wideband or the excitation should be specifically designed. It is only under 

these conditions, that the coverage of the state space by the learning samples will 

be dense and complete, assuming the learning time is of sufficient length. 

In Fig-5.28 to Fig-5.32, the simulation results for a narrow band system are 

shown. In this case the plant to be identified is a Hnear system which can be 

described by the difference equation 

x{k -h 1) = 1.6x(A;) - 0.65x(ifc - 1) -f- u{k) (5 - 13) 

This is a narrow band system, and the output is highly correlated even under 

random excitation. Its phase portrait is shown in Fig-5.28, and it is clear that the 

phase trace is only concentrated in the diagonal region, although the excitation is 

random. Thus the learning samples for the neural network are also concentrated 

in the diagonal region. After 99,900 learning iterations, the error surface and the 

curve of d(x) are shown in Fig-5.29 and Fig-5.30. From Fig-5.29, it is obvious 
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that the discrepency between the neural network and the plant is small only in the 

diagonal region. This means the generalization will be poor outside this region of 

state space. Fig-5.31 shows the tracing performance of the neural system under 

the learning random excitation. The learning stopped at iteration 99,900, but the 

tracing is still quite good even after that time. I f the excitation is replaced by a 

square wave which has the form 

u{k) = I -0.04, i f 100 X n < A: < 100 X n -I- 50; 
0.04, otherwise. 

where n is a integer, the tracing performance is shown in Fig-5.32. The generaliza

tion is not perfect. 

I f the equation (5-13) be changed to the form 

x{k + l) = 0.5x{k) - 0.9x{k - 1) + u{k) (5 - 14) 

it will be a wide band system. The simulation results for the wide band system eire 

shown from Fig-5.33 to Fig-5.37. The phase portrait is shown in Fig-5.33 and is 

much more wide spread than Fig-5.28. After 99,950 learning iterations, the curve 

of d(x) is shown in Fig-5.34. When compared with Fig-5.30, it is quite obvious that 

the small discrepency region is much bigger. The tracing performance during the 

learning period is shown in Fig-5.35. Fig-5.36 shows the trax:ing under a squcire 

wave excitation after learning. The square wave is 

u{k) = I -0.4, i f 100 X n < it < 100 X n-h 50; 
0.4, otherwise. 

The two output traces are almost identical in Fig-5.36. Clearly the generalization 

is better. 

Now we consider the nonlinear system situation. It is assumed that the non

linear function f( ) in the equation (5-7) is bounded. In this case, it can be proved 
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that any state of the nonlinear system which is described by the equation (5-7) can 

be reached from any other state in finite time with an appropriate input excitation. 

For a nonlinear system with order of N , the equation (5-7) can be rewritten in a 

state variable form as 

x ( ^ + 1) 
x(k) 

x{k-N + 2) 

f{x{k),...,x{x-N+l)) 
x(k) 

x{k -N + 2) 

1 •u{k)-
0 

+ • 

0 

(5 - 15) 

I f at time k, the state of the nonlinear system is X°, that is 

Xk= \ : I = I : I = X ° 

x{k) 

_x{k-N+l)_ 

and the destination state is X'^ = [ x f , . . . , x ^ ] ^ , then the excitation u(k) can be 

designed in the following way to make Xk^^N = X'^- Now let 

u(fc) = x ^ - / ( x ^ , . . . , x ? ) 

= x%-f{x{k),...,x{k-N-Vl)) 

then we have x{k + 1) = x ^ . I f we let 

u{k 4-1) = x ^ _ i - f{x{k -H 1 ) , . . . , x(A: - N)) 

then x{k - f 2) = x ^ _ i , and go on untill 

u{k + N - l ) = x i - f{x{k + N-1),.:., x{k)) 

then 

Xk+N = 

'x{k + Ny 

. 3:{k + l) _ 

= X' 

Now we have shown that any state can be reached from any other state in finite 

time with an appropriate excitation. That means the nonlinear system described 

by the equation (5-7) is controllable and every corner of the state space is reachable. 
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The controllability of the system can only guarantee theoretically that the 

phase portrait can cover the whole state space, but as shown in the linear system 

case, the phase portrait of the system under a general excitation is determined by the 

dynamic property of the system. For the Unear system, it is the bandwidth which 

influences the phase portrait. The bandwidth of the system determines the transient 

response of the system. A wide band system has a quick decay transient response, so 

under an external excitation the output is less influnenced by the past experence. 

Thus the correlation is weak and the phase portrait is usually wide spread. In 

contrast for a narrow band system, because of its long lasting transient response, 

the correlation is strong and the phase portrait is more likely to be concentrated 

in the diagonal region. Although the concept of bandwidth and transient response 

cannot be applied to the nonlinear system directly, it is still reasonable to conclude 

from the foregoing analysis of the linear system that the phase portrait of the 

nonlinear system is influenced by the strength of its equilibrium attractor. For a 

strong attrax:tor, the output of the system will have weak correlation and the phase 

portrait is wide spread. For a weak attractor, the phase portrait will be more likely 

to concentrate in the diagonal region. The strong attractor here means that any 

deviation from the equilibrium point wil l be attracted back very quickly. It is similar 

to the fast decay transient response in the linear system. 

To verify the above prediction, three different nonlinear systems have been 

simulated. System A can be represented by the equation 

x{k + 1) = 1.8sat{x{k)) - 0.93at{x{k - 1)) + u{k) (5 - 16) 

where sat( ) is a linear saturation function which has the form 

rO.9, i f x > 0 . 9 ; 
sat{x) = I X, if -0.9 < X < 0.9; 

1-0.9, i f i < - 0 . 9 . 
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system B can be described by the equation 

and system C is described by 

0 . 8 2 7 x ( ^ ) ( l - x ( i t - 1 ) ) / . .^ 

A l l these three systems have a uniformly asymptotically stable equilibrium at x = 

0. Fig-5.37a, Fig-5.37b and Fig-5.37c show how following a deviation the system 

returns to the equilibrium state for three different systems. The phase portraits of 

these three systems are shown in Fig-5.38a, Fig-5.38b and Fig-5.38c respectively. 

System A has the longest transient process ( see Fig-5.37a ) its output is strongly 

correlated and the phase portrait is concentrated in a narrow diagonal region (see 

Fig-5.38a ) . System B has the shortest transient process ( see Fig-5.37b ), so its 

phase portrait exhibits the greatest spread ( see Fig-5.38b ). The identification 

simulation results are shown in Fig-5.39 to Fig-5.44. Fig-5.39 shows the output 

traces of the system A and its neural network model. It inay be seen there is rarely 

any dramatic change and thus the correlation is strong. Fig-5.40 shows the output 

traces of system B and its neural network model, the correlation is much weaker. 

From Fig-5.39 to Fig-5.41, i t is clear that the tracing performance of the neural 

system is good in all these cases. But the identification performance of the system 

A and system C is not satisfactory as shown by the d(x) curves in Fig-5.42 and 

Fig-5.44. Because of their narrowly spread phase portraits, the small error regions 

are also small. The d(x) curve of system B is shown in Fig-5.43, i t has a larger 

small error region. In summary, to obtciin a satisfactory identification of a system 

with a MLP neurtd network, the system needs to have a short transient process. 

This is true for both linear and nonlinear systems. 
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5.3.2 Prediction of Chaotic T ime Series 

The above discussion about the application of MLP neural networks to nonlin

ear system identification is restricted to systems which have an asymptotically stable 

equilibrium point. As is well known there are a large number of nonlinear systems 

whose attractors are not simply points or limit cycles, but are strange attractors 

which can lead the system into chaotic behaviour[ll2],[113]. I t is a natural exten

sion to discuss the identification of nonlinear systems which have strange attractor 

structure with MLP neural networks. Generally speaking, a strange attractor is 

an assembly of an infinite number of points which are the states of a autonomous 

dynamic chaotic system. A mathematical explanation of strange attractors can be 

found in [113]. For the nonlinear system described by the equation 

x{k + 1) = {x(k) - 1.3)(x(^•) + l.l)(x(k - 1) - l . l)(x(A: - 1) -f- 0.9) + u(k) (5 - 19) 

i f u{k) = 0, i t has a strange attractor shown in Fig-5.45a. This kind of phase 

portrait is obviously unfavourable for identification with an MLP neural network. 

I f u(k) is a random excitation, the phase portrait will be more wide spread, which is 

shown in Fig-5.45b. The identification simulation results are shown in Fig-5.46 to 

Fig-5.48. Fig-5.46 shows the d(x) curve obtained after 399,950 learning iterations 

under zero excitation. In this case although the output of the nonlinear system 

looks random, its phase portrait is restricted to the strange attractor shown in Fig-

5.45a and the identification has failed. Fig-5.47 shows the d(x) curve obtained after 

399,950 learning iterations under random excitation and clearly the identification is 

much better. However the real problem with the identification of chaotic systems is 

that, for a chaotic system any infinitesimally different starting points will produce 

significantly different outcomes. So any small modeling error will be amplified to 

its maximum in the dynamic process. The d(x) curve in Fig-5.47 shows that the 

neural network approximates the chaotic system quite reasonably in the central 
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region of the state plane. However when the neural system and the chaotic system 

are started from the same initial point close to the origin of the state plane, the 

dynamic processes shown in Fig-5.48 are totally different after a few steps. In 

this sense, the identification has failed. This represents a fundamentally difficult 

problem for the identification of a chaotic system with an MLP neural network. 

One of the objectives of chaotic system research is to predict the development 

of some random like processes. ( e.g turbulence, population dynamic process in 

Ecology, and climate dynamic processes. ) The pratical problem of prediction is to 

use the past sample data to predict the future development of the process. For a 

autonomous chaotic system represented by the equation 

x{k + 1) = f{x{k), x{k-l),..., x{k -n + 1)) 

its M L P neural network predictor can be formed like 

x{k + p) = NN{x{k),x{k -l),...,x{k-n + l)) 

where NN( ) is a MLP neural network and p is the forward prediction step. It 

is impractical to do long-term prediction about chaotic time series because of the 

reason discussed in the above paragraph. However MLP network can be used quite 

successfully for short-term prediction. A one step forward prediction simulation is 

shown in Fig-5.49. From Fig-5.48 we can see that after about 10 steps the match 

between the chaotic system and MLP network model breaks down. So for this 

system, the feasible predication range is around ten steps. 

As the phase portrait of a chaotic system is restricted to a strange attreictor 

in its phase space, i f we have a recisonable long observation, we can always obtain 

a learning sample set which gives a typical representation of the strange attractor. 

Then a MLP network can be trained to perform prediction. This feature of phase 
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portrait of chaotic time series was explored in some other prediction algorithms 

[114 . 

5.4 Concluding Remarks 

In conclusion, the following points should be noted. 

• It may appear that the nonlinear system identification with MLP networks 

is the same as parameter or coefflcient estimation i f we regard the weights of the 

network as parameters. However there are some diflference. In parameter estimation 

we usually hope the parameters converge to a unique solution, while in MLP network 

identification, we are not concerned with the value of the weights. Due to the multi-

solution feature of MLP networks the weights can take any value as long as the 

overall input-output relationship is a good approximation of the mapping we are 

modeling. In addition, the MLP network has a more powerful representation ability 

than usual parameter models. 

• For the identification of systems with an MLP neural network, random exci

tation is usually needed. This is not only for the coverage of the learning samples, 

but also for the convergence of the weights in the model-I case. 

• As has already been shown the universality of a neural network does not 

necessarily give i t advantages in applications. In the identification problem, this 

principle has been illustrated again. For the linear systems discussed in section 

3, a single layer linear perceptron can identify the system under a less restricted 

condition and use shorter learning time than the MLP neural network, cind can cilso 

give a better generalization, although the MLP neural network has a more power

ful representation ability. The match between the built-in structure of the neural 
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network and that of the system to be modeled is vital for satisfactory identification 

and efficient learning. But in the case when Uttle structure information is available, 

the MLP neural network model can always be used as a last resort. 

• To use the MLP neural network for system identification, the system to be 

identified and excitation should meet certain conditions, otherwise the identification 

performance will be very poor. 

• I f the identification is only restricted to a small part of the state space, 

theoretically we cannot say the identification is completed. However from a practical 

point of view, the results may still have application value. For example in the narrow 

band system, correct identification is restricted in the diagonal region, but under 

general conditions the phase portrait of the system will rarely go out of this range. 

To drive the phase portrait out of the diagonal region, a strong high frequency 

excitation is required and would rarely occur in a practical situation. In some 

cases, although the neural system is a poor model of the real system, it may still 

be a good predictor. The chaotic time series prediction discussed in section 3 is an 

example. 

In the next chapter we discuss the application of artificial neural networks in 

communication channel equalization. 
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Neural Network 

Fig-5.1 Static Mapping Ideatification 

Fig-5.2 

Solid line is the curve of f(x) and the broken line is of the neural network, learning time is 50000, 
learning section is [-1, 1], step 3ize=0.25 
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.1 .4 - I . ] -1.9 0.0 0.1 a < 1.9 

Fig-5.3 

Solid line is the curve of f ( x ) and the broken line is of the neuraJ network, learning time is 50000, 
learning section is [-1.5, 1.5], step size=0.25. 

Fig-5.4 

1.1 1.0 

Solid line is the curve of f^x) and the broken line is of the neural network, learning time ia 50000, 
learning section is [ -1 , l ] , step size=0.25. 
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Fig-5.5 

Solid line U the curve of f ( x ) and the broken line is of the neural network, learning time is 50000, 
learning section is [-1.5, 1.5], step si2e=0.25. 

- i . a - a t -a> -a> -oi] a.o i.i i < i.o 

Fig-5.6 

Solid line is the curve of f ( x ) and the broken line is of the neural network, learning time is 50000, 
learning section is [-1, 1], step 3ize=0.25. 
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Fig-5.7 

Solid line is the curve of f^x) and the broken line is of the neural network, learning time is 50000, 
learning section is [ -1, 1], step size=0.25. 

Fig-5.8 

The curve of d(x) on [0, 2). The learning time in this case is 300,000. The learning axea is defined 
by [—1 < Z i < 1, and — 1 < X2 < 1], and the step size is 0.25. 
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Fig-5.9 

T h e s u r f a c e o f t h e / ( x i , X 2 ) . The displaying region is [—1 <Xi < 1, and - 1 < l o < 1 • 
Detai l see Fig-5.8 and the text . 

Fig-5.10 

The surface formed by the neural network. The displaying region is [-1 < i i < 1, and - 1 < 

X2 < 1 • Detai l see Fig-5.8 and the text. 
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Fig-5.11 

The error surface between the funct ion f { x i , X 2 ) and the neural network. The displaying region 

— 1.5 < X i < 1.5, and — 1.5 < X2 < 1.5]. Detail see text. 

a o & 3 & 4 &* &i 1.0 I . I I . * I . * I.I 2.0 

Fig-5.12 

The curve of d (x) on [0, 2]. The learning time in this case is 200,000. The learning area is defined 
by — 1 < X i < 1, and — 1 < X2 < 1 , and the step size is 0.25. 
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Fig-5.13 

The error surface for surface approximating problem described in Fig-5.12 and the display region 
•1.5 < X < 1.5, - 1 . 5 <y < 1.5]. 
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Fig-5.14 Model-I Nonlinear System Identification Scheme 
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Fig-5.15 

The solid line is the output of the nonlinear system to be identified, and the broken line is the 
output of the neural system. Weight updating stopped at time 300. = 0.3, a-^ — —0.6, step 
size=0.25, the exci tat ion is u{k) = • S i n ( | | ^ ) 

Fig-5.16 

The solid line is the output of the nonlinear system to be identified, the broken line is the output 
of the neural system. The simulation condition is the same as in Fig-5.15, except that the excitation is 
the tr iangular wave ( or saw tooth wave ). 
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Fig-5.17 

The solid line is the output of the nonlinear system to be identified, the broken line is the output 
of the neural system. The simulation conditions are the same as in Fig-5.15, except that the excitation 
is a random process w i t h an un i fo rm dis t r ibut ion on [0, I j . 

Fig-5.18a 

The solid line is the output of the nonlinear system to be identified, the broken line is the output 
of the neural system. The simulation conditions are the same as in Fig-5.15, except that the learning 
stopped at t ime 199700. 
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Fig-5.18b 

The solid line is the curve of the nonlinear function f(u) for U G [—1, IJ, and the broken line 
is the curve of the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in 
Fig-5.18a 

Fig-5.19a 

The solid line is the output of the nonlinear system to be identified, the broken line is the output 
of the neural system. Actual ly , they are fitted together. In this case, the learning stopped at time 
99800, fli = 0.3, (12 — —0.2252, step size=0.25, the excitation is a random process wi th an uniform 
dis t r ibut ion on [0, i j . 
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Fig-5.19b 

The solid line is the curve of the nonlinear function f (u) for U ^ —1,1, and the broken line 
is the curve of the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in 
Fig-5.19a. 

Fig-5.20 

The solid line is the curve of the nonlinear function in (-1, 1|, and the broken line is the curve of 
the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same aa in Fig-5.19a, except 

that the excitat ion is u{k) = sin[ 0.876513 
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Fig-5.21 

The solid line is the curve of the nonlinear function in (-2, 2), and the broken line is the curve of 
the 1-20-10-1 neural network in [-2, 2]. The simulation conditions are the same as in Fig-5.19a. 

u(k) 

-C4 

Noise i 
Plant Plant 

i 
y 

Neural System 
y 

Neural System 

Fig-5.22 Outpu t Noise Immunity Study 
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Fig-5.23 

The solid line is the curve of the nonlinear function in [-1, I j , and the broken line is the curve of 
the 1-20-10-1 neural network in (-1, 1]. The simulation conditions are the same as in Fig-5.20, except 

that some noise w i t h normal d is t r ibut ion is added. m = 0.0, O = 0.333, o- = 0.1. 

.1.0 -AO •A.i -a* - & 2 0.0 0,2 04 OA OO 1.0 

Fig-5.24 

The solid line is the curve of the nonlinear function in - 1 , 1], and the broken line is the curve of 
the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in Fig-5.23, except 

that a = 0.5. 
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Fig-5.25 Input Noise Immunity Study 
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Fig-5.26 

The solid line is the curve of the nonlinear function in [-1, l ] , and the broken line is the curve of 
the 1-20-10-1 neural network in [-1, 1]. The simulation conditions are the same as in Fig-5.23, except 
that the noise is added at the input port of the neural system (see Fig-5.25 ) . 
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Fig-5.28 

The phase por t ra i t of the narrow band system which is described by the equation (5-13). The 
display region is [-1 < X < 1, - 1 < J/ < 1]. 

Fig-5.29 

The error surface after 99,900 learning iterations. The excitation is a random process, the magni
tude is uni formly dis t r ibuted in [-0.175, 0.1751. The display region is [—1 < X < 1, — 1 < 2/ < Ij . 
The neural network is a 2-20-10-1 network. The step size = 0.25 
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Fig-5.30 

The curve of d (x) . The learning conditions are the same as Fig-5.29. 

Fig-5.31 

The broken line is the output trace of the neural system, and the solid line is the output trace of 
the plant. The learning stopped at i terat ion 99,900. The learning conditions are the same as in Fig-5.29. 
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Fig-5.32 

The broken line is the output trace of the neural system under a square wave excitation after 
99,900 learning iterations, and the solid line is the output trace of the plant under the same excitation. 
The learning conditions see explanation of Fig-5.29. 

» - . • • . 
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Flg-5.33 

The phase portrait of the wide band system which is described by the equation (5-14). 
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Fig-5.34 

The curve of the d(x). The learning conditions see the explanation of Fig-5.35. 

Fig-5.35 

The broken line is the output trace of the neural system, and the solid line is for the plant. The 
learning stopped at iteration 99,950. A 2-20-10-1 network is used in this case, the excitation is a random 
process whose magnitude is uniformly distributed in 1-0.4, 0.4], and the step size is 0.25. 
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Fig-5.36 

The broken line is the output trace of the neural system under a square wave excitation after 
learning, and the solid line is for the plant under the same excitation. For the learning conditions see 
the explanation of Fig-5.35. 
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(a) 

(b ) (c) 

Fig-5.37 

The transient process phase portraits of three nonlinear systems. The display region is [-0.1 < 

X < 0.1, -0.1 < y < O.ll. 
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(a) 

(b ) (c) 

Fig-5.38 

The phase portraits of the three nonlinear systems under random excitation. The display region 
•1< X < 1, - l < y < l \ . 
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Fig-5.39 

The output traces of system A and its neural model. The network used has 2-20-10-1 structure, 
the learning time is 99,950 and with the step size of 0.25. The random excitation distributed uniformly 
on (-0.075, 0.075]. The solid line is for the output of system A, and the broken line is for the neural 
system. 

Fig-5.40 

The output traces of system B and its neural model. The network used has 2-20-10-1 structure, 
the learning time is 99,950 and with the step size of 0.25. The random excitation distributed uniformly 
on [-0.6, 0.6]. The solid line is for the output of system B, and the broken line is for the neural system. 
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Fig-5.41 

The output traces of system C and its neural model. The network used has 2-20-10-1 structure, 
the learning time is 99,950 and with the step size of 0.25. The random excitation distributed uniformly 
on [-0.4, 0.4). The solid line is for the output of system C , and the broken line is for the neural system. 

Fig-5.42 

The d(x) curve of the neural system of system A. The learning conditions are the same as Fig-5.39. 

126 



Fig-5.43 

The d(x) curve of the neural system of system B. The learning conditions are the same as Fig-5.41. 

0.0 0.J Ok» o.» 0.0 1.0 u j i.» >.• >• ' >•» 

Fig-5.44 

The d(x) curve of the neural system of system C. The learning conditions are the same as Fig-5.40. 
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Fig-5.45 

The figure a is the strange attractor of a nonlinear system, and b is the phase portrait of the same 
tem under a random excitation. The display region is [ — 2 < I < 2, —2 < 1/ < 2). 
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Fig-5.46 

The d(x) curve of of the neural system. The neural network has the 2-20-10-1 structure, and the 
learning time is 399,950 with the step size of 0.25. The excitation is zero. 

a o 0,1 o.> a t a i 1.0 i .> >•> i . t i . i 1.0 

Fig-5.47 

The d(x) curve of of the neural system. The neural network has the 2-20-10-1 structure, and the 
learning time is 399,950 with the step size of 0.25. The random excitation is distributed uniformly on 
(-0.1, 0.1]. 
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Fig-5.48 

The output traces of the nonlinear system and its neural model after learning. The solid line is 
for the nonlinear system, and the broken line is for the neural system. The initial state is [0.2, 0.2). The 
learning conditions are the same as Fig-5.47. 

Fig-5.49 

The output traces of the chaotic system and its predictor after learning. The solid line is for the 
chaotic system, and the broken line is for the predictor. The learning conditions are the same as Fig-5.46 
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Chapter Six 

Adaptive Equalization Using 
Self-Organizing Neural Networks 

6.1 Problem Definition 

Intersymbol interference is one of the major practical problems in digital com

munication systems. This form of interference occurs when the signal to be trans

mitted has significant components of various frequencies at which the amplitude 

and phase response of the channel are different. In this case the waveform of the 

received signal would be different from that of the original transmitted signal. Inter

symbol interference may also result from a channel multipath effect [115], in which 

the transmitted signal reaches the destination through different paths. As a result 

with different time lags the aggregated waveform will be distorted. 

The effect of intersymbol interfence on communication system performance can 

be demonstrated by the example of Pulse Amplitude Modulation ( PAM ) trans

mission. In PAM a synchronous modem transmitter collects an integral number of 

bits of data at a time and encodes them into symbols for transmission with am

plitude of -1 or 1 at the signcding rate. At the receiver end intersymbol interfence 

makes each symbol extend beyond the time interval used to represent the symbol 

and overlap with adjacent symbols, or in another words the boundaries between 

symbols are blurred. As the correct detection of transmitted symbols depends on 

a clear distiction between -1 and 1 symbols at the receiver, the blur can lead to a 

high bit error rate. Thus some kind of compensative filtering is essential for a high 

performance transmission system. This filtering is usually Ccilled equalization, and 

the filter called an equaUzer. 

131 



Since intersymbol interference is one of the major obstacles for high speed data 

transmission, it has been an active area of research, and many algorithms and filter 

structures have been considered for equalization [116]. There are two classes of 

equalization strategies. One class does not need any training signal and is called 

blind equalization [117]. In blind equalization the transmitted signal must have 

some features, like independent and identifical distributions for example, which Ccin 

be exploited as a clue for equalization. In this chapter, we consider the second 

class of equalization in which a training signal is used. In this type of equalization, 

a prearranged signal known to the receiver can be transmitted at the begining as 

a training signal to establish a communication channel. One of the most widely 

used equalizers is the linear transversal equalizer. It has been shown that this kind 

of structure is not satisfactory for non-minimum phase channel compensation and 

multi-layer perceptron ( MLP ) neural networks have been proposed as possible 

structures for equalizers [118]. In this paper we consider the use of Kohonen self-

organization maps as an alternative structure for adaptive equalizers. 

The intersymbol interference effect can be modeled by a finite impulse response 

( FIR ) filter. Actually this is the most commonly adopted model. Based on 

this model, an equalization system may be represented as in Fig-6.1. The input 

signal sequence Xi is composed of transmitted symbols with amplitudes of -1 and 

1. The transmission channel is modeled by an FIR filter with real coefficients 

Ui {i = 1, • • • , n ) , which is used to model the intersymbol interference effect. Its Z 

transform is C Q -f- aiz~^ + ••• + C n ^ " " . The output yi is represented as 

n 

yi — aoXi + aiXi-i -j 1- a n ^ i - n = y^QfeJ i - fc 
fc=0 

n,- is the additive noise of the chcinnel, which has a zero mean normal distribution. 

The noise distorted yi is represented as yi. The function of the equalizer is to 

use yi, t / i - i , iii-m+i as input and to produce the best estimation of Xi (or 
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Xi-d in the delayed equalization cases), where m is the order of the equalizer. In 

the following sections, we consider in more detail different kinds of structures for 

equalizers. 

6.2 Minimum Phase Channel and Equalizers 

One kind of equalizer is the linear treinsversal equalizer. I t can be described as 

where denotes the vector of observed channel outputs (y^, y i - i , • • •, yi^rn+i), 

B is the coefficient vector of the equalizer which is (60, 61, • • •, 6 m - i ) , ^Lad sgn(x) 

is defined as 

^ ^ ^ [-1, otherwise. 

As the characteristics of the channels are not known a priori, the coefficients bi are 

usually obtained by using adaptive algorithms, for example the LMS algorithm. 

I f a linear transversal equalizer is allowed to have infinitely high order, that is 

the coefficient vector can have unlimited length, then theoretically, all intersymbol 

interference can be compenseted at the output end. Zero intersymbol interference 

can be reached, because an infinite-length equalizer can implement a filter which 

has the exact inverse frequency response to that of the channel. However as it is 

impractical to implement an infinite-length filter, in practice only finite-length filters 

are used to approximate the ideal filter. Under this condition, whether the Uneax 

transversal equalizer can correctly recover the symbol X j depends on the channel 

model coefficients aj { j = 0, • • •, n) [118]. This can be shown as follows. Let Pm(l) 

be defined as 

Pm(l) = { Y . 6 i ? ^ | x . = l } 

133 



where Y j is defined before. P ^ ( —1) can be defined in similar way. Thus P m ( l ) 

and Pmi — l ) represent the sets of possible channel output vectors (y,, • • •, 

which can be produced from sequences of channel inputs beginning with = 1 and 

Xi = —1 respectively. I f we assume that additive noise is absent, that is yi = yi, then 

from the foregoing description of the linear transversal equalizer, it is clear that 

can be correctly recovered if and only i f Fm(l) a-nd P ^ ( — 1 ) are linearly separable 

for some integer m. This condition is related to the channel model coefficients 

aj { j = 0, •••, n) by the following two theorems. 

Theorems. 1: The condition for P m ( l ) and P n i ( —1) to be linearly separable is that 

there exist a sequence (bo, bi, • • •, bm-i) which satisfies 

m - l - n - l 

C = B and Co > ( 6 - 1 ) 
it=i 

where A is the sequence (ao, c i , • • •, an) and B is the sequence (6o, 6i, • • •, 6m-i) , 

® represents convolution. (For proof see Appendix) 

Theorem6.2: For the sequence A, the necessary and sufficient condition for the 

existence of a sequence B (6o, ^ i , • • •, ^m- i ) which satisfies 

n-|-m—1 

C = A^B Co > J2 
is that the polynomial 

A : ao2"- f a i 2 " - ^ - f •••-l-a„ 

has all its roots lie strictly within the unit circle in the complex plane. (For proof 

see Appendix) 

From the the proof of the theorems given in the Appendix, it may be concluded 

that i f the roots of the A polynomial lie closer to the unit circle, then m should be 

larger. That means a high order linear transversal equalizer should be used. 
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Now it has been proved that only under the minimum phase channel ( equiva

lent to the condition that all roots of the A polynomial lie strictly in the unit circle 

) can the linear transversal equalizer correctly recover all the symbols input to the 

channel at any time if the additive noise is absent. For non-minimum phase chan

nels, to use a hnear transversal equalizer, some delay must be introduced into the 

equalizer. Thus the output of the equalizer is which is the estimation of 

rather than Xi. Fig-6.2a and Fig-6.2b show the distribution of a minimum phase 

channel P m ( l ) and P ^ ( - l ) and a non-minimum phase channel P m ( l ) and Pm{-l) 

respectively. Fig-6.2c shows the distribution of non-minimum phase channel P m ( l ) 

and P m { —1) with additive noise. Thus to use a Hnear trzinsversal equalizer for 

channel equalization, the channel should be minimum phase or some delay should 

be used. 

The above characteristics of linear transversal equalizers make them unsuitable 

for nonstationary channel equalization. In this case, the minimum phase condition 

cannot be guaranteed and the delay needed is also varying. From the foregoing 

discussion i t can be seen that equalization may be regarded as a pattern classification 

problem, input vectors are clcissified into P m ( l ) and 1) classes. Thus M L P 

neural networks have been considered as a structure for equalizers [118], and it is 

also has been implemented with hardware and extended to the Decision Feedback 

Equalizer [119] [120]. As M L P neural networks can realize any continuous mapping, 

linear separability is no longer an obstacle for M L P equalizers. However since the 

M L P neural networks have the local minimum problem, they may give a suboptimal 

division of P ^ ( l ) and P „ , ( - l ) , or in the worst case an incorrect division. From the 

distribution pattern of P m ( l ) and Pm{ — 1) shown in Fig-6.2c, i t can be seen that 

clustering algorithms may be more suitable for classifying the sample points into 

P ^ ( l ) and P m ( —1) classes rather than a piecewise linear dividing algorithm, Hke the 
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MLP. As the Kohonen self-organizing feature map is very similax to the K-means 

clustering algorithm [6], i t can be used as a structure for the equalizer. 

6.3 The Kohonen Self-organizing Feature Map as 
a Structure for Channel Equalization 

The Kohonen self-organizing feature map reflects the organizing principle of 

biological neural systems. In the brain there are a lot of fine-structures and many 

of them are determined genetically. However there also exists direct experimen

tal evidence that some of these structures are formed by a self-organizing process 

which depends on experience [121]. The Kohonen self-organizing feature map was 

introduced by Kohonen as a model of biological self-organizing processes. 

The structure of a Kohonen self-organizing feature map is shown in Fig-6.3. 

Each unit in the map is connected to n input units, n is the dimension of the input 

vectors. Continuous-valued input vectors are presented sequentially in time without 

specifying the desired output. After enough input vectors have been presented, 

weights wi l l specify cluster or vector centers that sample the input space such that 

the point density function of the vector centers tends to approximate the probability 

density function of the input vectors [6]. This feature can be an advantage for 

clcissifying the distribution patterns such as shown in Fig-6.2c. 

The self-organizing algorithm can be described by the following steps 

1: Initialize weights which connect the units in the map and the input 

units with small random values. Set the initial radius of the neighbor

hood. 

2: Present new input vector. 
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3: Compute distances dj between the input vector and each unit j in the 

map using 

di = fl{x,{t)-m,i{t)f 
j = i 

where Xi{t) is the value of input units i at time t, and m,j(t) is the 

weight from input unit i to the unit j inthe map at time t. 

4: Select the unit k which has the minimum distance value dmin ih.^ 

map. 

5: Weights are updated for the unit k and all the units in the neighbour

hood defined by Nk{t). The update formula is 

mijit + 1) = mij{t) + a{t){xi{t) - mij{t)) {i = l, n) 

The term a{t) is the stepsize which in a similar manner to the neigh

bourhood decreases in time . 

6: Repeat by going to step 2. 

A self-organizing feature map formed by using this algorithm and the samples 

in Fig-6.2c as input vectors is shown in Fig-6.4. Its advantage for classification is 

very clear. 

The self-organizing map described above can be easily transformed into an 

adaptive equalizer. For the purpose of equeilization, the map is split into two 

submaps in the middle. The left part is for the input vectors from the Pm(l) 

set, and the right part for the input vectors from the Pm{-1) set. Thus when an 

input vector is presented to the input units, i f it belongs to Pm( l ) , then the weights 

in the left of the map will be updated using the algorithm described above, other

wise the weights of the right part of the map will be updated. On top of the map 
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there is a decision unit whose function can be described cis 

outputs I'' if 
1̂ —1, otherwise. 

where yj is the output state of unit j in the map, which is 1 i f its weight vector is 

the closest to the input vector, otherwise it is 0. This can be implemented by lateral 

inhibitation neural networks hke M A X N E T [6], or by software. The peirameter Wj 

is the weight which connects the unit j in the map and the decision unit, it is 1 i f 

unit j is in the left half of the map, ajid is -1 otherwise. 

Fig-6.5 shows the bit error rate performance of an MLP equalizer and the 

self-organizing map equalizer. The MLP equalizer used a 5-9-3-1 structure which 

is described in [118], and the self-organizing map equalizer used a second order 

input, that is the input vectors are two dimensional. The channel model is 0.3482-1-

0.87042"^ -|-0.34822"^ which is the same as that in [118]. It is a non-minimum phase 

channel, so linear transversal equalizers cannot recover the original input symbols 

without some delay. I t is clear from Fig-6.5 that the self-organizing map equalizer 

has a lower bit error rate than the MLP equalizer. 

To compare with a linear transversal equalizer, a delay of one sample was in

troduced in the estimation of the channel input symbol. That is we are estimating 

X j _ i rather than Xi at time i . The self-organizing equalizer used fourth order input 

vectors in this case. The bit error rates are shown in Fig-6.6. The lowest curve is 

obtained by the self-organizing map equalizer. Both the curves for the MLP and 

linear transversal equalizer are as reported previously[118]. The improved perfor

mance obtained from the self-organizing equalizer is clear. 

6.4 Conclusions 

The Kohonen self-organizing feature map has several advantages as a structure 
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for channel equalization. Compared with linear transversal equalizers, it is not 

limited by the minimum phase channel condition. It is more robust in performance 

than MLP equalizers and does not suffer from a potential local minimum problem. 

Another advantage of the self-organizing equalizer is that its map feature is more 

suitable for classifing clustering distribution pattern of P ^ ( l ) and Pm{ — 1) samples, 

so i t can obtain a lower bit error rate. Finally it should be mentioned that the highly 

parallel structure of the Kohonen self-organizing algorithm would be ameanable to 

VLSI implementation. 

In next chapter we discusss application of learning algorithms to A T M call 

access control in broadband ISDN. 
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Fig-6.1. Schematic representation of channel model. 
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(a) 

L I !•> 

(b) (c) 

Fig-6.2. The distribution pattern of and P m ( - l ) sets, (a) minimum phase 

channel, (b) non-minimum phase channel, (c) is the same as (b) except that 

additive noise is added. 
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Fig-6.3. Structure of Kohonen self-organizing feature map. 
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Fig-6.4. Feature map formed by the Kohonen self-organizing algorithm. 
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10 15 20 25 30SNR(dB) 

Fig-6.5. Bit error rate as a function of signed to noise ratio (SNR). (a) self-organizing 

equalizer, (b) MLP equalizer. 
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Fig-6.6. Bit error rate as a function of signal to noise ratio (SNR). (a) self-organizing 

equalizer, (b) and (c) are as reported in [118] using an MLP equalizer and Unear 

transversal equalizer respectively. 

145 



Chapter Seven 

Adaptive A T M Call Access Control 
Using Learning Networks 

7.1 Introduction 

The Broadband Integrated Services Digital Network (B-ISDN) is an emerging 

communication network which is intended to provide multimedia services to its 

customers in a flexible and cost-effective manner. The services include voice, video 

and data transmission. Research and development in B-ISDN is a very eictive area. 

The traditional transport paradigm used for ISDN is synchronous transfer mode 

(STM) [122]. The rule for subdivision and allocation of bandwidth using STM is 

to allocate time slots within a recurring structure ( frame ) to a service for the 

duration of call. An STM channel is identified by the position of its time slots 

within a synchronous structure. The hierarchical channel structure of STM consists 

of several bearer channels, and each of them has different transmission rate. One 

of the drawbacks of appling STM to B-ISDN is its rigid beairer channel structure 

which make the dynamic allocation of time slots difficult [122]. In an B-ISDN 

environment, the services have greatly varied bit rate, and some kind of dynamic 

allocation of time slots ( or bandwidth ) is necessary to make efficient use of the 

bandwidth resource. Thus the asynchronous transfer mode (ATM) has attracted 

significant attention as a transport paradigm for B-ISDN [123] [124]. In A T M , 

specific periodic time slots are not assigned to a fixed service, useable bandwidth 

is segmented into fixed size information bearing units called packets or cells. Each 

cell consists of a header and an information field. The header contains a logical 

address, which identifies the virtual circuit to which the call is assigned, priority 
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information and a error detecting and correcting code. Data to be transmitted 

is conveyed in the information field. These cells can be dynamically allocated to 

services on demand. In comparison to STM, A T M is more flexible, and may have 

potential gain in bandwidth efficiency by buffering and statistically multiplexing 

bursty traffic at the expense of cell delay and loss [125]. To guarantee the quality of 

the services provided by the network, the cell loss rate and delay must be controlled 

within tolerable range by an appropriate network controller. In this chapter we 

concentrate on the statistical multiplexing control strategy and consider two access 

control strategies based on learning algorithms. We first discuss the basic problem 

of bandwidth resource manegement in A T M . Two new adaptive strategies are then 

considered with associated simulation results and a critical discussion. 

7.2 The Call Access Control of A T M 

A T M has a layered function structure which is shown in Fig-7.1. The ATM 

adaption layer transforms the information stream originated from a user terminal 

or end system into fixed length cells according to the A T M format. These cells are 

buffered and asynchronously multiplexed and/or switched by the ATM transport 

layer. A l l these functions are supported by the electronic circuits and transmission 

link in the physical layer. 

To guarantee performaince requirements like cell delay and loss demanded by 

the services which are supported by the B-ISDN, a call access control strategy ( 

or traffic control strategy, call regulation ) must be implemented in the transport 

layer to control the quality of the services. When aji A T M terminal initiates a call 

request to the network, the network manager must then check that there is sufficient 

bandwidth resource to provide the connection requested with satisfactory quality 

of service, or the request is rejected. Generally, there are two call regulation rules 
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125]. One is nonstatistical multiplexing, in which if the sum of the peak cell rate of 

all the hold on calls ( including the new incoming call ) does not exceed the output 

link rate, then the new incoming call is accepted. Otherwise it would be rejected. 

That is the call accept condition is 

where Pi is the peak rate of the i th hold on call, and C is the capacity of the output 

link at the node. This approach is quite similar to bandwidth reservation for STM, 

but with the added flexibility of being able to reserve any peak rate required, rather 

than a multiple of a base channel rate. The strong advantage with nonstatistical 

multiplexing is minimal cell delay and no cell loss due to buffer overflow. However in 

the case when a large proportion of the traffic flow in the link is bursty, nonstatisticaJ 

multiplexing can show low efficiency in making use of bandwidth resource. Thus 

statistical multiplexing is considered to exploit the burstiness of traffic flow arid 

obtain potential gain in bandwidth efficiency. In statistical multiplexing, the total 

peak cell transmission rate of all the accepted calls is allowed to exceed the capacity 

of the link at the expense of cell delay or cell loss. However under a proper control 

strategy the cell delay or cell loss can be controlled within a tolerable range. 

Statistical multiplexing can only increase bandwidth efficiency under certain 

conditions. The preconditions are that the average burst length B of calls is short, 

the peak rate to link capacity ratio (PLR) of calls is low and the burstiness of calls 

are high [125]. Let P denote the peak rate of a call, A the average rate and C the 

capacity of the link, then the burstiness of the call is defined as P/A, and PLR = 

P/C. In [125] the authors give some computer simulation results on the feasibility 

of using statistical multiplexing in homogeneous traiffic and heterogeneous traffic 

enviroments. In the homogeneous traffic case, generally PLR should be less than 0.1. 

These preconditions can be met in many cases in B-ISDN due to wide bandwidth 
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and inherently bursty data services. Also advanced image coding techniques are 

making the traditional continuous sources like video into bursty sources [126]. To 

obtain an approximate estimation of the possible bandwidth usage efficiency gain, 

consider an analysis based on a simple homogeneous treiffic model. In this model 

all the incoming calls have the same burstiness and the average cell rate is 0.5P, 

where P is the peak cell rate. We assume that N calls have been ciccepted. I f the 

number of accepted calls are large, then the total cell rate can be approximated by 

a normal distribution, as each call is an independent source emitting cells at rate 

between 0 and P randomly. The normal distribution can be denoted as G(M, a^), 

where 
NP 

M = Nx 0.5P = — 

To estimate the variance cr ,̂ we assume the variance for each call is 0.25P^. This 

is a conservative estimation. A random variable with a value between 0 and P, has 

0.25P^ as maximum variance. Thus we have 

, . = „ , 0 . 2 5 P ^ = — = - ( — ) = -

Thus the call rate in the link can be approximated by the normal distribution G(M, 

^ ) . I f we want to keep the overload probability below p^v ( or cell loss rate below 

specification ) , then we must have 

( r - 1 ) 
a 

where C is the capacity of the link and B is given as 

+°° 1 

Here i t is implicitly assumed that C > M. As M represents the mean cell rate in 

the link, it is a practical assumption. From inequality (7-1) we have 

C-M >Ba 
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As (7^ can be represented by M and N , it is obvious that 

M 
C-M <B 

I f both sides of (7-3) are divided by C, then 

( 7 - 3 ) 

M B M 
c - ^ C 

that is 
M 

< 
1 

1 J. B 
( 7 - 4 ) 

The value of can be regarded as a measure of the efficiency of the bandwidth 

usage. Then (7-2) and (7-4) can be used to estimate the possible efficiency gain at 

different pov and N values. Table-7.1 gives the efficiency estimation for several pov 

and N values. 

Overload Probability N value Estimated Efficiency 

0.0001 50 65.53% 

100 72.83% 

1000 89.47% 

0.001 50 69.58% 

100 76.39% 

1000 91.09% 

0.01 50 75.21% 

100 81.10% 

1000 93.14% 

Table-7.1 

From Table-7.1 it can be seen that for large N, there can be significant gain in 

bandwidth efficiency by using statistical multiplexing. As an example with Pov = 

0.0001 and iV = 1000 using proper statistical multiplexing, the bandwidth efficiency 
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can be around 89%. While using STM or nonstatistical multiplexing the efficiency 

is only 50%, as the ratio of mean cell rate to peak cell rate is 0.5 for all the incoming 

calls in this case. The potential gain is significant. However as mentioned in the 

foregoing discussion C > M , that is the capacity of the link is larger than the sum 

of average cell rate of all the calls in the link. This restriction puts an upper bound 

on the value of N . To have large N , the PLR should be small. In the above case, the 

peak cell rate of incoming calls should be around one thousandth of the capacity of 

the link. In the following parts of the report we usually assume low PLR value and 

high burstiness of services. 

The services supported by B-ISDN may vary from narrowband to wideband and 

from continous to bursty, and their performance requirements are also diff'erent. For 

example, image and video services require low cell loss rate, interactive services like 

telephony requires short cell delay, and some services like data file transfer may 

have less stringent requirement on cell delay and loss. However to implement a call 

regulation strategy which can meet diverse performance requirements in B-ISDN 

would make the cost-efFectivness of B-ISDN questionable. One simple strategy is to 

use the most stringent performance requirement which is adequate for all services 

supported by B-ISDN [125]. More sophisticated control strategies may divide ser

vices into a few classes, each class has its own performance requirement and may be 

delay sensitive or cell loss sensitive [127] [128]. I t is a trade-ofF problem to decide 

how the call regulation strategy will cover the diff'erent performance requirements. 

In the following discussion we assume only one class of performance requirement. 

The traffic control strategy of traditional communication networks like ISDN 

is based on a through study of the statistical traffic characteristics in the network. 

In the case of B-ISDN the diverse variety of services and topology or connection 

routing evolution make this kind of study very difficult. Thus it is desirable to have 
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the call regulation rule of A T M nodes node architecture independent ajid robust to 

t raff ic uncertainties [125]. This suggests that some kind of adaptive or learning call 

regulation would be highly desirable. In the next section, we discuss two adaptive 

call regulation strategies. 

7.3 Adaptive Call Access Control Strategies 

Adapt ive call regulation can use learning automata [129] or an art if icial neural 

network [130] as its basic structure. The neural network controller considered in 

[130] used the back-propagation algori thm for t raining. Thus i t has a potential 

local min ima problem and retraining is not easy. Another undesirable feature of 

this controller is that i t only uses the incoming cell pattern in the l ink as the basis 

for call regulation and does not take into account the fact that different type calls 

may require different bandwidth . Sometimes the traff ic condition on a Unk may not 

be able to support a wideband service but is adequate for a narrowband call. This 

k ind of s i tuat ion cannot be dealt w i t h efficiently by the neural network controller 

mentioned above. I f the t raff ic characteristics can be approximated by a normal 

d is t r ibu t ion , a simple linear call regulation rule may be used. I n the following 

we discuss a perceptron like adaptive call regulation controller which uses a Unear 

inequality as decision rule. 

The A T M node model is depicted in Fig-7.2. I t has many input ports and 

the incoming cells are statistically multiplexed and transmitted through the output 

l ink . 

A general call source model is considered as a Markov chain [125]. A first-

order Markov source is used in the fol lowing discussion which is depicted in Fig-7.3. 

Dur ing the active period the source emits cells at its peak rate, and in passive period 
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no cells are emit ted. For this model the average burst length B can be calculated 

as 

J5 = 6 + 2(1 - 6)6 + 3(1 - 6)^6 + 4(1 - 6)^6 + 

6 1 
( 1 - 1 + 6)2 t 

and the average cell rate is 

a + 6 

where P is the peak rate of the source. 

A special case for the above model is when o + 6 = 1 and the source degrades 

in to an uncorrelated source, and the probabil i ty dis t r ibut ion of cell rate at every 

moment is a Bernoul l i d is t r ibut ion . 

As mentioned previously i f the P L R value is small, the number of calls which 

can be t ransmit ted simultaneously through the l ink can be very large. I f these calls 

are statistical independent and are uncorrelated sources which are described above, 

then according to the central l i m i t theorem [131], the statistical characteristics of 

the t raff ic m i x in the l ink can be approximated by a normal dis t r ibut ion. Assume 

there are three classes of hold on calls and the number of calls are Nx, N2 and A^3. 

The probabi l i ty d is t r ibut ion o f each call's cell rate is a Bernoull i dis tr ibut ion w i t h 

mean of m i , 7712 and mz and variance (Ti , 02 and 0-3. The probabil i ty distr ibution 

of mixed cell rate can be approximated by a normal dis t r ibut ion N ( m , a ) , where 

m = NiTUi + N2m2 + Nzmz 

and 

Fig-7.4 shows a simulation result on the dis tr ibut ion of cell rate in a mixed traffic 

l ink . I t is very close to a normal dis t r ibut ion. I f we assume the l ink capacity is C, 
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then the overflow probabil i ty is 

The condit ion for Pov to be less than a specific value can expressed as 

^ > K ( 7 - 5 ) 
cr 

where K is a constant. The expression (7-5) can be rewrit ten as 

Ka <C-m ( 7 - 6 ) 

I f we square both sides of (7-6) we obtaiin 

K^ajNi + K^clN2 + i ^ V ^ A T g <C- 2CmiNi - ICm^N^ - 2CmzNz 

+ {miNi + m2N2 + mzNzf ( 7 - 7 ) 

f r o m the small P L R assumption, i t is clear that the coefficients of second order 

terms like and mirrij are much smaller than 2Cmi, so the second order terms 

can be ignored as an approximation. Then we obtain 

( 2 C m i + K^aj)Ni + (2Cm2 + K^al)N2 + {2Cmz + K'^al)Nz <C ( 7 - 8 ) 

Thus a simple linear inequality can be used to control pov- As the cell loss rate tu 

is a monotonic funct ion oi po^ a linear control strategy can be used to control r / , . 

The simulation results presented in [132] and [133] also suggested a linear control 

strategy, but here we give a more rigorous treatment and suggest a method for 

calculating the control coefficients. 
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7.3.1 Perceptron Control Rule 

From the above discussion, we can suggest an adaptive call regulation rule 

based on the inequality 

a i i V i +a2Ar2 + a3A^3 < T 

where Nx is the number of hold on calls of narrowband calls, and Â 2 and Â 3 are 

for intermediate-band and wideband calls. Each class of call has different cell rates. 

O f course one can classify calls into more classes, but for the simplicity of control 

rule, large number of classes are unfavorable. The coefficients c i , a2 and a3 can be 

adaptively updated using a perceptron like algori thm [16] as follows. 

I f a call request is accepted but the following cell loss rate exceeds the perfor

mance requirement, then 

a i ( n + 1) = a i ( n ) - h a i V i a2{n + I ) = a2{n) + aN2 03(71-f-1) = 03(71) - f aATj 

where a is the learning stepsize. I f the call is rejected and the cell loss rate is much 

lower than the performance requirement, then 

a i ( n - | - 1 ) = a i ( n ) - / 3 7 V i 03 (71 - f 1) = 02(71) - / JTVj az{n ^-\) = az{n) - fiN^ 

where (5 is the learning stepsize. 

Al though the above discussion is based on an uncorrelated source model as

sumption, for the correlated Markov source model w i t h a -|- 6 7̂  1 the normzil 

d is t r ibut ion approximation is s t i l l val id. Fig-7.5 shows the simulation result on dis

t r i bu t ion of cell rate i n a l ink containing mixed calls w i t h first-order Markov model 

sources. The dis t r ibut ion is again very close to a normal dis tr ibut ion. Only the 

funct ional relation between Pov and T13 w i l l be changed, but i t is s t i l l a monotonic 
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func t ion . Thus the linear inequality control rule is s t i l l applicable. The simula

t ion results presented i n section 4 show that i t can obviously improve the efficiency 

performance. 

7.3.2 R A M Map Control Rule 

B o t h the perceptron mentioned above and the neural network controller con

sidered in [130] essentially implement a functional mapping. I f we consider that the 

ou tpu t of the controller is just accept or reject aj id the input can usually be trans

formed in to binary fo rm , these mappings are just Boolean logic functions, and can 

be implemented using digi ta l logic circuits I f variables Ni, A 2̂ and are viewed as 

three orthogonal axes, then every combination of hold on call pattern in a l ink is rep

resented as an integer point in the space. A l l these points form a lattice array wi th 

finite nodes. This latt ice array can be implemented by a R A M which is depicted in 

Fig-7.6. A^i , A 2̂ and N3 are represented as binary numbers to the address lines, the 

ou tpu t is single bi t w i t h 1 representing accept and 0 for reject. For a R A M wi th 

16 address lines, i t contains a 2^^ = 65536 node lattice, and is sophisticated enough 

for most applications. To t ra in this R A M network, a learning paradigm which is 

similar t o the self-organization map algorithm [121] is introduced. The learning 

a lgor i thm can be explained w i t h the help of Fig-7.7. To s implify the discussion, we 

assume there are only two classes of calls. iVi axis represents the number of calls 

which belong to class one, and the axis for the calls of class two. When there 

are n i class one calls and 712 class two calls in the l ink, then the system state can 

be represented by a point P which is shown in Fig-7.7. I f the cell loss rate exceeds 

the performance requirement, then the nodes in the upper-right neighbourhood of 

P (which is shown as a shadowed square) including the nodes on the boundary wi l l 

be assigned the value of 0. When the system state come into this region later, new 

incoming calls w i l l be rejected. I f a call is rejected at point P, and the cell loss rate 
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is much lower than the performance requirement, then the nodes in the lower-left 

neighbourhood of P w i l l be assigned the value of 1. When the system state is in 

this region, a new incoming call w i l l be accepted. The neighbourhood used in this 

case is a square, and in high dimensional cases, i t would be super cubic. Its size 

decreases dur ing the t ra in ing process to reduce random fluctuations. Utimately, the 

learning a lgor i thm w i l l divide the map in to an A-region ( Accept region ) and an 

R-region ( Reject region ) as shown in Fig-7.8. 

One advantage of this approach is that i t can implement any possible nonlinear 

mapping. This is in contrast to the perceptron which is l imi ted to a linear decision 

rule. Secondly, compared w i t h the M L P neural network trained w i t h a Back Prop

agation A l g o r i t h m , i t is easier to retrain because i t has no local minima problem. 

I n the case of a biased dis t r ibuted learning sample set, the R A M self-organization 

map learning does not need to use a leaky pattern table ( L P T ) method which is 

essential for biased learning in an M L P neural network [130]. This can reduce the 

computa t ion t ime significantly. The drawback is i ts generalization ability. For a 

perceptron or M L P neural network each learning sample moves the whole decision 

line to a new posit ion, while in the R A M self-organization map learning each learn

ing sample can only change a small local port ion of the whole decision boundary 

which lies i n i ts neighbourhood. Thus the R A M self-organization technique has a 

smaller generalization range. 

7.4 Simulation Results and Discussion 

A flow chart of the simulation program is shown in Fig-7.9 and Fig-7.10. In 

module-B, a Poisson flow source is simulated. This is achieved by using a random 

number generator whose d is t r ibut ion funct ion is approximately an exponential func

t ion to generate the t ime interval between incoming calls. The simulated Poisson 
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call flow is later demultiplexed into three subflows to simulate three different classes 

of calls which have different peak cell rate and burstiness. Module-C simulates the 

call access control rule. I t can be a neural network or any other control strategies. 

I n module-F, a learning algori thm is implemented. 

To simulate a discrete t ime system, the sampling period or basic time unit of 

the simulation needs to be established. I n the simulation reported here, the basic 

t ime uni t for the interval between incoming calls is one second, and the basic time 

uni t for t raff ic condit ion moni tor ing is 10ms. I f the cell size is 50 bits, then the 

capacity of the l ink simulated is 500kb/s. I t is clearly lower than that of the future 

A T M network. However the simulation is at cell level and to keep the simulation 

t ime w i t h i n a reasonable range, i t is a practical assumption. For the three classes 

of calls, narrowband has the rate of 5kb/s, mediumband lOkb/s and wideband 

50kb/s. As the purpose of the simulation is to investigate the potential bandwidth 

efficiency gain f r o m statistical mul t ip lexing of calls i n an A T M network, the intensity 

of incoming call flow is assumed larger than the capacity of the l ink. 

For the perceptron control rule discussed in section 3, the a — LMS learning 

a lgor i thm [10] is used for t ra in ing. Tha t is the stepsize which is defined in section 3 

decreases w i t h t ime. This helps to reduce the random fluctuation which is unavoid

able i n learning in a stochastic enviroment. Fig-7.11 and Fig-7.12 show the learning 

curves of a i ( n ) w i t h decreasing stepsize and constant stepsize respectively. The 

curve in Fig-7.11 is smoother. The convergence properties of the LMS learning al

gor i thm are f u l l y discussed in [134]. Fig-7.13 and Fig-7.14 show the lecirning curves 

of coefficients a 2 ( n ) and 03(71) respectively. Bo th curves shows a clear convergence. 

To verify the analytical prediction, the homogeneous traff ic situation was sim

ulated, and the simulation results are shown below. They are obtained wi th a 
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perceptron control rule. 

N (Average number of on hold calls) Pov Efficiency Theoretical Estimation 

154 0.000389 73.9% 78.8% 

75 0.000552 70.3% 72.8% 

47 0.001952 69.9% 70.4% 

Table-7.2 

Using the value of N and pov and formula (7-2) and (7-4) in section 2, the 

analytical estimation of the efficiency are shown in the last column in Table-7.2. I t 

is obvious that the theoretical predictions are close to the simulation results. 

Control strategy Efficiency Average peak rate Pov Cell loss rate 

nonstatistical mut iplexing 41.4% 97 0 0 

perceptron control rule 54.8% 115 0.0018 7.57 X 10-5 

perceptron control rule 59.8% 121 0.0005 1.75 X 10-5 

R A M map control rule 57.7% 116 0.0016 5.25 X 10-5 

R A M map control rule 62.1% 123 0.0050 1.68 X lO-'^ 

Table-7.3 

Contro l strategy Efficiency Average peak rate Pov Cell loss rate 

nonstatistical mul t ip lex ing 44.3% 97 0 0 

perceptron control rule 61.7% 123 0.0008 3.85 X 10-5 

perceptron control rule 56.8% 122 0.00006 1.86 X 10-8 

R A M map control rule 67.6% 134 0.0062 2.12 X lO-'^ 

R A M map control rule 68.8% 138 0.0053 1.79 X 10"' ' 

Table-7.4 

The simulat ion results for a heterogeneous traffic si tuation are shown in Table-

7.3 and Table-7.4. The composition of incoming call flow is 60% narrowband calls, 
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30% mediumband calls and 10% wideband calls. Table-7.3 shows the simulation 

results for a short burst call source which has the average burst length 4.25 cells 

and the burstiness of 2. Table-7.4 shows the simulation results for long burst call 

source which has the average burst length 9.5 cell and burstiness of 2. There are 

two ways to measure the bandwith efficiency. One is to use the uti l ization of the 

capacity of the l ink like that defined in (7-4), and the other way is to measure the 

average peak cell rate or the actual throughput in the l ink . Bo th of these parameters 

are listed in the tables and the capacity of the l ink is normadized to 100. 

I t can be seen there is an obvious gain i n bandwidth efficiency f rom statistical 

mul t ip lexing ( or statistical call access control ) at the expense of some cell loss. 

Generally, the efficiency would increase wi th an in increase of PouOr cell loss rate. 

However the results in Table-7.3 and Table-7.4 suggest that this may not be always 

the case. This can be explained by the variation of composition of calls in the 

l ink . I n the simulation the composition of the incoming call flow is kept constant 

to evaluate the performance of the control rules. However the control rules which 

are hyper-surfaces or curves in the two dimensional case (see Fig-7.8) may have 

sl ightly diflFerent shape or position because of statistical learning. I f the incoming 

call flow has an intensity greater than the capacity of the l ink , the system state 

would bounce around the decision surface. The variation of the surface cause the 

change in the composition of the accepted calls in the l ink . Different classes of 

calls have different peak cell rate and burst characteristics, and these features have 

a significant influence on the relationship between efficiency cmd pov- Thus the 

variat ion of composition of accepted calls can distort the monotonic relation between 

efficiency and pov 

Another feature shown in Table-7.3 and Table-7.4 is that the pov and the cell 

loss rate are always fluctuating. This is caused by learning in a stochastic enviro-
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mcnt. A small learning stepsize or a learning neighbourhood can help to reduce 

the fluctuation, but the learning speed or the adaptation speed to a change in the 

enviromcnt would be decreased. Thus a compromise must be made between steady 

state accuracy and speed of convergence. 

7.5 Conclusion 

In comparison to STM, A T M has more flexibility in bandwidth resource mange-

ment. To explore the potential gain in bandwidth usage efficiency which is made 

possible by A T M , statistical multiplexing is needed in call access control. Of course 

there are some preconditions which are necessaiy for profitable use of statistical 

multiplexing. The calls must have high burstiness and low PLR (peak cell rate 

to fink capacity ratio). Under these conditions, statistical multiplexing with the 

learning algorithms discussed in this chapter can provide an obvious gain in band

width efficiency. This has been demonstrated by simulation results. Further work 

is needed on more intensive simulation studies and eventually testing on real ATM 

communication networks. 
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Application Layer 

A T M Adaptation Layer 

A T M Transport Layer 

Physical Layer 

Fig-7.1. The layered structure of A T M 
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• • Multiplexer 
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Fig-7.2. The A T M node model 

active pass ive 

Fig-7.3. The A T M call source model 
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Fig-7.4. The cell rate d i s t r ibu t ion in the l ink contains mixed calls. A^i = 30 
N2 = 10 aj id N3 = 5. I f we assume the capacity of the Unk is 100, then peak cell 
rate of class one calls P i = 1, and P2 = 5, P3 = 10. The burstiness are 2, 1.67 and 
3.33 respectively. The d is t r ibut ion is close to a normal dis t r ibut ion. 
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Fig-7.5. The cell rate d is t r ibut ion in the l ink contains mixed calls w i th first-
order Markov model. The burstiness are 5, 3.33 and 1.67 respectively. Other 
parameters are the same as in Fig-7.4. 
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Fig-7.6. R A M implementat ion of call regulation. 
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Fig-7.9. The flow chart of the simulation program. Continued on next page. 
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Fig-7.10. The flow chart of the simulation program. Continued from p 
page. 
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Fig-7.11. Learning curve of a i (n ) with decreasing stepsize. 

I I 1 1 I 1 1 1 1 1 1 1 1 1 — 
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Fig-7.12. Learning curve of a i (n ) with constant stepsize. 
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Fig-7.13. Learning curve of 02(71) with decreasing stepsize. 
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Fig-7.14. Learning curve of 03(72) with decreasing stepsize. 
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Chapter Eight 
Conclusions and Further Work 

From the discussions presented in the previous chapters, this chapter concludes 

with some overall conclusions and suggestions for further work. 

8.1 Convergence Speed of Back-Propagation 
Algorithm 

As the essence of the Back-Propagation algorithm is the hill-climbing or gra

dient descent algorithm, it is usually slow when the dimensionality is high. Many 

techniques have been proposed to accelerate its convergence speed. In this thesis 

two stepsize variation techniques are introduced for speeding up the convergence 

of Back-Propagation, and the simulation results demonstrated that there is signif

icant improvement. However it is usually very difficult to judge the convergence 

performance of numerical optimisation algorithms based on pure theoretical anad-

ysis, the performance study depends significantly on computer simulation of some 

bench mark problems. Thus as with numerical optimization algorithms, the con

vergence performance of various Back-Propagation algorithms are problem specific. 

The selection of an appropriate algorithm for a specific problem has to be based 

on empirical knowledge. As the convergence performance of the gradient descent 

algorithm is closely related to the initial start point value, so it may be fruitful in 

the future reserach to give more attention to the selection of initial weights. At 

present in most reported work, the initial weights usually take some small random 

values. There has been some research using tree clcissification algorithm to set up 

initial weights of M L P networks [135]. This can significantly reduce the learning 

time. A custom-tailored network structure can not only speed up the convergence, 

but is also benificial for better generalization. 

172 



8.2 Generalization 

As discussed in Chapter 4 satisfactory generalization usually depends on proper 

selection of priori constraints and model. In artificial neural networks, the gener

alization can usually be viewed as an interpolation process. When an input to the 

network is not included in the learning sample set, the network produces an output 

by interpolating between known learning samples. The contraints imposed on the 

network which determines how the network interpolates or generalizes reflect the 

priori knowledge about the problem. There is a belief that artificial neural networks 

are able to learn to solve problems which we do not know how to solve. This is 

obviously excessively optimistic at least at this stage. We have seen in the previous 

chapters that the generalization performance is closely related to the structure and 

representation strategy of the network. Thus it is unrealistic to expect artificial 

neural networks to perform well in situations we know nothing about. It may be 

more realistic to suggest that in future resezirch more priority should be given to 

develop function specific modules. These modules can be used as building blocks 

for large networks. These kind of hierarchical networks may not be as universal as 

large homogenous networks, like M L P for example, but would be more efficient to 

train and generalize better. 

8.3 Biological Plausibility 

One of the main original motivations of research on artificial neurad networks 

was to establish a model of the brain to understand its information processing mech

anism. Perhaps the most difficult problem is how to associate neuronal activities in 

the brain to the high level cognition and thinking process. Artificial neural networks 

are invaluable in this research. They can be used to verify new hypotheses, which 

is essential for the development of theory and sometimes difficult to carry out on 

173 



biological organisms. So in this sense biological plausibility is very important for 

neural modeling. However the intricacy of the biochemical processes involved, and 

the extremely complex connection patterns of biologiccil neural systems means we 

are still far away from a solid and complete understanding of how the brain works. 

Many artificial neural networks proposed for neural modeling have some features 

which can be explored for practical applications. For exaimple they can be used as 

parallel computing structures to solve engineering problems. It is useful to regard 

artificial neural networks as a kind of parallel computing structure or a flexible non

linear adaptive filter which are more efficient than a conventional digital computer 

on some information processing tasks. From this perspective biological plausibility 

is not an essential requirement. It can even be sacrificed to suit a specific applica

tion if necessary. So far, in most publications about applications of artificial neural 

networks, they axe rarely treated as a strict model of biological neural systems. 

8.4 Application Issues 

We have discussed in the last paragraph that artificial neural networks can be 

used as nonlinear adaptive filters. This perspective opens a wide application field for 

artificial neural networks. It is shown in the previous chapters that curtificial neural 

networks can be used for adaptive equalization, nonlinear system identification and 

telecommunication call access control. The simulations demonstrated satisfactory 

results, and was considered to represent a useful extension of adaptive technology. 

In Chapter 5 we gave a detailed discussion about the feasibility of using M L P 

networks for nonlinear system identification. This is a fast developing field in the 

last few years. Artificial neural networks provide a flexible nonlinear adaptive struc

ture to approximate the underlying nonlinear mechanism of the process to be iden

tified. There are still some theoretical and practical questions which need to be 

174 



investigated. One important question is the validation of the input-output dif

ference equation model for nonlinear systems. Validation has been proved under 

some conditions in the neighbourhood of the equilibrium point. The mathematical 

neighbourhood could be as large as infinity or as small as indivisible. Thus the 

validation of the model under practical circumstances still need to be investigated, 

perhaps by extensive computer simulation and some theoretical analysis. As our 

knowledge about nonlinear phenomena is very limited, computer simulation is an 

indispensible tool for nonlinear reserach. However this does not necessarily mean it 

is not practical to use artificial neural networks for nonlinear system identification. 

As in most practical identification problems, the true systems are usually never 

known and identification can only establish an approximation model. Thus it may 

be more accurate to reformulate the above question as to study how well can an 

input-output diff"erence equation approximating model a nonlinear system under 

general conditions. 

Besides the M L P networks, radial base function networks have also been pro

posed for nonlinear system identification [136]. When the centers of the radial base 

functions are selected before hand, the network coefficients can be calculated by 

solving a least mean square equation. Thus the learning speed is much faster than 

M L P networks with a Back-Propagation algorithm. However both M L P and rcidial 

base function networks usucilly require a large sample set to perform well, because 

good interpolation need a large number of data points. For a small sample set in

terpolation, some extra structure information is usually needed. In another words, 

the priori knowledge of the system is needed. 

In chapter 6, we discussed the application of A N N for communication chan

nel equalization. This is an example of the application of A N N in digital signal 

processing. In this case the neural network is used as a nonlinear adaptive struc-
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ture. There has also been some resecirch carried out at Durham University on using 

learning automata for digital filtering [137][138]. However the learning time of the 

automata increase almost exponentially with increase in the dimensionadity of the 

filter. In this respect, A N N performs much better than learning automata. It may 

play a significant role in future nonlinear signal processing research. 

In summary, we can say that artificial neural networks have a significant po

tential in applications involving nonlinear adaptive structure. 

In this thesis we also discuss the using of A N N for A T M call access control. 

The advantages of using A N N for control in this case are that it can implement a 

nonlinear control rule and can learn the control rule from examples. This learning 

ability or adaptive ability is especially valuable when there is little information 

about the system operation mechanism available or in a time varying environment. 

However as discussed in the thesis, A N N usually need a large learning sample set 

to perform well. This could be a drawback for the application of A N N in control. 

However A N N can always be used as a last resort in circumstances where the only 

available information is via input and output observations. 
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Appendix: Proof of Theorem6.1 and The
orem 6.2 

Proof of Theorem6.1: 

As yi = aoXi-f-aiXj-iH t - O n X i - n , so the point Y j in Pm(l) can be represented 

as 
CQXi + a i X j - i -f- • • • + flnXj-n 

_7 / i -Tn+l . _aoXi-rn+l + O l X j - m + ' • * "1" '^nXt—n 

and the point in P m ( - l ) can be described as 

Y ' = 

The linear separability of P ^ ( - l ) and Pm(l ) is equivalent to the existance of a 

sequence (60, ^ i , • • *, ^>m-i) ( it can also be denoted as vector B ) such that 

" y'i ' OoX- -h O i X - _ i -f-• • • + a n x ; _ „ 

1- a „ x j _ „ _ ^ ^ i _ 

that is 

If 

B ^ ( Y . - - Y ^ ) > 0 

Zk = Xk-x'k {k = i , i + •••) C = A®B 

{Al - 1) 

then B ^ ( Y i - Y | ) can be expressed as 

B ^ ( Y i - Y O = boiaoixi - x'J + a i ( x i _ i - x ^ . J + ••• + a n ( x i _ n - x^_„)) 

-I- 6i(oo(x,_i - X - _ i ) + a i ( l i _ 2 - X - _ 2 ) -I- • • • -I- a n ( x i _ n - l - X'i-n-l)) 

+ 

+ bm-liaoiXi^rn+l " ^ i - m + l ) + (^l{^i-m " + ••• 
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-f- a „ ( x i _ n - m + i - a:-_„_m+i)) 

+ 6i(ao2i_i -I- aiZi-2 H + anZi-n-i) 

+ 

+ t m - l ( a o 2 « - m + l + 0.lZi-Tn H H a n ^ i - n - m + l ) 

= aoboZi + (aobi + aibo)zi-i + 

+ {an-lbm-l + O n ^ ' m - 2 ) ' 2 t - n - m + 2 + O n ^ ' m - l ^ i - n - m + l 

= CQZi + C i 2 i _ i -̂  h Cn+m-l2i-n-m+l (^1 - 2) 

As X i = 1 and x\ = - 1 , the expression (Al-2) can be written as 

2co -I- CiZi-i H h C „ + m - l 2 t - n - m + l (^1 " 3) 

The expression (Al -3 ) reaches its minimum value when 

Zk = -2sign{ck) (k = i - I, i - 2, ) 

The minimum value is 
n+m—1 

2 ( c o - E l^^l) 
jfc=i 

So the condition for the inequality (Al -1 ) to hold is equivalent to 

n+m—1 

2 ( c o - \ck\)>0 

that is 
n + m —1 

Jfc=l 

We have proved theorem6.1. 

Proof of Theorem6.2: 

178 



First we assume the A polynomial has a root s which satisfies 

5| > 1 is the norm of s) 

and there exists a B sequence such that 

N 

co>X)l^fcl iN = n + m-l) 
k=i 

AsC = A<2)B, the roots of the A polynomial are also the roots of the C polynomial. 

That is 

cos^ + cis^-' - I - . . . + c;v = 0 ( A l - i ) 

As 

|cos^ 4- c i s ^ - ^ + • • • + c;v| > kos^l - k i s ^ " ^ + --- + CN 

N N 
-k 

k=l k=l 

<Eic. i i^r 

AT 

Jb=l 

So 

|co.^ + c i 5 ^ - ^ + --- + cr,\> Icoll^r - E kfclkr (̂ 1 - 5) 

From equation (Al -4 ) , we have 

\COS'' + CXS''-' + --- + CN\ = 0 ( A l - 6 ) 

so 
AT 

k=l 
N 

\s\''{\co\-Y.\ck\)<0 { A l - 8 ) 
k=i 

as |s| > 1 and C Q > 0, so 
N 

k=i 
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that is 
N 

co<X!|cfc| ( y i l - 1 0 ) 
A;=l 

This contradicts the original assumption that 

N 

co>X;k^l M I - 1 1 ) 

Thus the roots of the A polynomial must lie strictly in the unit circle in the complex 

plane. 

If all the roots of A polynomial lie strictly in the unit circle, then the A poly

nomial can be represented as 

ao{z - ai){z - a2) • • • {z ~ an) 

and | a i | < 1 for i = 1, 2, • • •, n. Let 

a = max 
t = l , 2 , - , n 

If we convolve the A sequence with a sequence Bi which has the characteristic 

polynomial of 

sign{ao){z + ai){z + 02) • • • {z + Q:„) 

then we obtain the C i polynomial 

\ a o \ { z ' - a l ) { z ' - a l ) . . . i z ' - a l ) 

If this process is continued we obtain 

and 

( n - h l ) c i ^ ' ^ ' 
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then 

N 

k=l 

that is 

^0 ~ X! I'̂ *--! ^ - |a^ -h + • • • -h < 

- - | a M • • • < ! ) 

> | a o | ( l - n Q P - C 7 V ^ ^ n O 

> | a o | { l - — - — — ) 

= | a o | ( l - - 4 T ) > 0 ( / I I - 1 3 ) 71 4- 1 

- > O' or co>E|cjfc | 

The B sequence (6o, ^ i , ^ m - i ) is the convolution of the Bi, B2, JB, 

sequences. The coefficients 6̂  are guaranteed to be real because the coefficients 

are real. Since the coefficients of the A polynomial are real, any possible complex 

roots of the polynomial will be in conjugate form. This is also the case for any 

complex roots of the B polynomial, and all the coefficients bi will be real. Hence 

Theorem6.2 is proved. 
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Adaptive ATM Call Access Control Using Learning Algorithms 

J.R.Chen and P.Mars f 

1. Introduction 

The Broadband Integrated Services Digital Network (B-ISDN) is an emerging communication network 

which is intended to provide multimedia services to its customers in a flexible and cost-efl"ective manner. 

The services include voice, video and data transmission. Research and development in B-ISDN is a very 

active area. 

The traditional transport paradigm used for ISDN is synchronous transfer mode (STM) [1]. The rule 

for subdivision and allocation of bandwidth using STM is to allocate time slots within a recurring structure 

( frame ) to a service for the duration of call. An STM channel is identified by the position of its time 

slots within a synchronous structure. The hierarchical channel structure of STM consists of several bearer 

channels, and each of them has different transmission rate. One of the drawbacks of appling STM to B-

ISDN is its rigid bearer channel structure which make the dynamic allocation of time slots difficult [1]. In an 

B-ISDN enviroment, the services have greatly varied bit rate, and some kind of dynamic allocation of time 

slots ( or bandwidth ) is necessary to make efficient use of the bandwidth resource. Thus the asynchronous 

transfer mode (ATM) has attracted significant attention as a transport paradigm for B-ISDN [2] [3]. In 

ATM, specific periodic time slots are not assigned to a fixed service, usable bandwidth is segmented into 

fixed size information bearing units called packets or cells. Each cell consists of a header and an information 

field. These cells can be dynamically allocated to services on demand. In comparison to STM, ATM is more 

flexible, and may have potential gain in bandwidth efl5ciency by buffering and statistically multiplexing 

bursty traflSc at the expense of cell delay and loss [4]. In this paper we concentrate on the statistical 

multiplexing control strategy and consider two access control strategies based on learning algorithms. We 

first discuss the basic problem of bandwidth resource manegement in ATM. Two new adaptive strategies are 

then considered with associated simulation results and a critical discussion. 

2. Bandwidth Resource Management of ATM 

To guarantee performance requirements like cell delay and loss demanded by the services which are 

supported by the B-ISDN, a bandwidth allocation strategy ( or traffic control strategy, call regulation ) 

must be implemented in the transport layer to control the multiplexing of cells. Generally, there are two call 

regulation rules [4]. One is nonstatistical multiplexing, m which if the sum of the peak cell rate of all the 

hold on calk ( include the new incoming call ) does not exceed the output link rate, then the new incoming 

call is accepted. Otherwise it would be rejected. That is the call accept condition is 

t The authors are with the School of Engineering and Applied Science University of Durham UK 
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where Pi is the peak rate o f the i t h ho ld on ca l l , and C is the capacity o f the o u t p u t l ink at the node. T h i s 

approach is qui te s imi lar to b a n d w i d t h reservation for S T M , but w i t h the added flexibility o f being able to 

reserve any peak rate required, rather than a m u l t i p l e o f a base channel rate. T h e s trong advantage w i t h 

nons ta t i s t ica l m u l t i p l e x i n g is m i n i m d cell delay and no cell loss due to buffer overflow. However in the case 

when a large p r o p o r t i o n o f the t r a f f i c flow in the l i n k is bursty, the nonstat is t ical mul t ip lex ing can show low 

efficiency in m a k i n g use o f b a n d w i d t h resource. Thus stat is t ical mu l t i p l ex ing is considered to exploi t the 

burstiness o f t r a f f i c flow and ob ta in poten t ia l gain in bandwid th efficiency. I n s tat is t ical mul t ip lex ing , the 

t o t a l peak cell t ransmission rate o f al l the accepted calls is allowed to exceed the capacity o f the l ink at the 

expense o f cell delay or cell loss. However under a proper control strategy the cell delay or cell loss can be 

con t ro l l ed w i t h i n a tolerable range. 

S ta t i s t i ca l m u l t i p l e x i n g can only increase b a n d w i d t h efficiency under certain condit ions. The precondi

t ions are t h a t the average burs t length B o f calls is short , the peak rate t o l i n k capacity ra t io ( P L R ) o f calls is 

low and the burstiness o f calls are high [4]. Let P denote the peak rate o f a cal l , A the average rate and C the 

capacity o f the l i n k , then the burstiness o f the call is defined as P / A , and PLR = P/C. I n [4] the authors 

give some compute r s imula t ion results on the feasibi l i ty o f using stat is t ical mu l t i p l ex ing in homogeneous 

t r a f f i c and heterogeneous t raf f ic enviromenls . I n the homogeneous t raf f ic case, generally P L R should be less 

t h a n 0 . 1 . These precondi t ions can be met in many cases i n B - I S D N due t o wide b a n d w i d t h and inherently 

burs ty da ta services. A l so advanced image coding technique are mak ing the t r ad i t i ona l continuous sources 

l ike video i n t o burs ty sources [5]. 

3. Adaptive Statistical Multiplexing Strategies 

A d a p t i v e ca l l r egu la t ion can use learning au toma ta [6] or an a r t i f i c i a l neural network [7] as its basic 

s t ruc tu re . T h e neura l ne twork control ler considered i n [7] used the back-propagation a lgor i thm for t ra in ing . 

T h u s i t has a po t en t i a l local m i n i m a prob lem and re t ra in ing is not easy. Ano the r undesirable feature o f this 

control ler is t h a t i t on ly uses the incoming cell pa t t e rn in the l ink as the basis for call regulat ion and does not 

teike i n t o account the f ac t t h a t d i f ferent type calls may require di f ferent b a n d w i d t h . Sometimes the t raff ic 

c o n d i t i o n on a l i n k m a y n o t be able t o suppor t a wideband service b u t is adequate fo r a narrowband call . 

T h i s k i n d o f s i t ua t i on cannot be dealt w i t h ef f ic ient ly by the neural network control ler mentioned above. I f 

the t r a f f i c characterist ics can be approximated by a no rma l d i s t r i bu t ion , a simple linear call regulation rule 

m a y be used. I n the f o l l o w i n g we discuss a perceptron like adaptive cal l regulat ion controller which uses a 

l inear i nequa l i t y as decision rule . 

( a ) P e r c e p t r o n C o n t r o l R u l e 

Consider an adapt ive cal l regula t ion rule based on the inequal i ty 

aiNi-¥aiN2 + a3N3<T 

where A^i is the number o f ho ld on calls o f na r rowband calls, and N j and Ns are for intermediatfrrband and 

wideband calls. Each class o f call has d i f ferent cell rates. O f course one can classify calls in to more classes, 

b u t fo r the s i m p f i c i t y o f cont ro l rule , large number o f classes are unfavorable. T h e coefficients a j , aj and as 

1 8 / 2 
i 



can be adapt ive ly upda ted using a perceptron like a l g o r i t h m [8] as fo l lows. 

I f a call request is accepted b u t the f o l l o w i n g cell loss rate exceeds the performance requirement, then 

aj(n + 1) = oi(n) + o/» î flzC" + 1) = azC") + aA^2 03(11 + 1) = 03(11) + a N3 

where a is the learning stepsize. I f the call is rejected and the cell loss rate is much lower than the performance 

requirement , then 

a i ( n + 1 ) = a i ( n ) - ^ 7 V i cjCn + 1) = 03(71) -/JA^z a3(n + 1) = 03(11) - pNa 

where P is the learn ing stepsize. 

( b ) R A M M a p C o n t r o l R u l e 

B o t h the perceptron mentioned above and the neural ne twork control ler considered in [7] essentially 

implemen t a f u n c t i o n a l m a p p i n g . I f we consider t h a t the o u t p u t o f the control ler is j u s t accept or reject and 

the i n p u t can usual ly be t rans formed in to b ina ry f o r m , these mappings are j u s t Boolean logic funct ions , and 

can be implemented using d ig i t a l logic c i rcui ts I f variables A '̂i, A 2̂ and N3 are viewed as three orthogonal 

axes, then every combina t ion o f ho ld on call p a t t e r n in a l i n k is represented as an integer po in t in the 

space. A l l these po in t s f o r m a la t t ice ar ray w i t h f i n i t e nodes. T h i s la t t ice ar ray can be implemented by a 

R A M . A î, Â 2 and N3 are represented as b ina ry numbers t o the address lines, the o u t p u t is sbg le b i t w i t h 

1 representing accept and 0 for reject . For a R A M w i t h 16 address lines, i t contains a 2 '^ = 65536 node 

la t t i ce , and is sophis t ica ted enough for most appl icat ions . T o t r a i n this R A M ne twork , a learning paradigm 

wh ich is s imi la r to the self-organizat ion map a l g o r i t h m [9] is in t roduced . 

4. Simulation Results and Discussion 

For the percept ron con t ro l ru le discussed, the a — LMS learning a l g o r i t h m is used for t r a in ing . To 

v e r i f y the ana ly t i ca l p red ic t ion , the homogeneous t r a f f i c s i t ua t ion was s imula ted , and the s imula t ion results 

are shown below. T h e y are obta ined w i t h a percept ron con t ro l rule . 

N (Average number o f on ho ld calls) Pov Eff ic iency Theore t ica l Es t ima t ion 

154 0.000389 73.9% 78.8% 

75 0.000552 70.3% 72.8% 

47 0.001952 69.9% 70.4% 

Table-1 

T h e s i m u l a t i o n results fo r a heterogeneous t r a f f i c s i t ua t i on are shown i n Table-2 and Table-3. The 

compos i t i on o f i n c o m i n g cal l flow is 60% na r rowband calls, 30% med iumband calls and 10% wideband calls. 

Table-2 shows the s i m u l a t i o n results fo r short burs t cal l source which has the average burs t length 4.25 cells 

and the burstiness o f 2. Table-3 shows the s imula t ion results for long burs t call source which has the average 

burs t l eng th 9.5 cell and burstiness o f 2. There are t w o ways to measure the b a n d w i t h efficiency. One is to 

use the u t i l i z a t i o n o f the capaci ty o f the l i n k l ike t h a t def ined i n ( 4 ) , and the other way is to measure the 
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average peak cell rate or the actual t h roughpu t in the l i nk . Bo th of these parameters are listed in the tables 

and the capaci ty o f the Unk is normahzed to 100. 

C o n t r o l s trategy Eff ic iency Average peak rate Pot, Cell loss rate 

nonsta t is t ical m u t i p l e x i n g 41.4% 97 0 0 

perceptron control rule 54.8% 115 0.0018 7.57 X 10-5 

perceptron cont ro l rule 59.8% 121 0.0005 1.75 X 10-* 

R A M map control rule 57.7% 116 0.0016 5.25 X 10-5 

R A M map control rule 6 2 . 1 % 123 0.0050 1.68 X 10 - " 

Table-2 

C o n t r o l strategy Eff ic iency Average peak rate Pov Cell loss rate 

nonsta t i s t ica l mu l t i p l ex ing 44.3% 97 0 0 

perceptron control rule 61.7% 123 0.0008 3.85 X 10 -5 

perceptron cont ro l rule 56.8% 122 0.00006 1.86 X 1 0 - « 

R A M map cont ro l rule 67.6% 134 0.0062 2.12 X 10 - " 

R A M map control rule 68.8% 138 0.0053 1.79 X 10-" 

Table-3 

5. Conclusion 

I n comparison t o S T M , A T M has more f e x i b i l i t y i n b a n d w i d t h resource mangement. To explore the 

p o t e n t i a l gain i n b a n d w i d t h usage efficiency which is made possible by A T M , stat is t ical nJ t ip lex ing is 

needed i n ca l l access con t ro l . O f course there are some precondit ions which are necessary fo r profi table 

use o f s ta t i s t i ca l m u l t i p l e x i n g . T h e calls must have h igh burstbess and low P L R (peak cell rate to l ink 

capaci ty r a t i o ) . Under these condi t ions, s ta t i s t ica l mu l t i p l ex ing w i t h the learning algor i thms discussed in 

th i s r epor t can p rov ide an obvious gain i n b a n d w i d t h efficiency. Th i s has been demonstrated by simulat ion 

results. Fur the r work is needed on more intensive s imula t ion studies and eventually test ing on real A T M 

c o m m u n i c a t i o n ne tworks . 
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Some Aspects of Non-Linear System 
Identification Using Neural Networks 

. I .R.Chcn and P.Mais 

Scliool of Engineering and Applied Science 

University of Durhcun U K 

System identification, and in particular non-linear system identification, 
is an important problem for systems control. In this paper we discuss some 
fundamental constraints in using M L P neural networks for non-linear system 
identification. 

Recently there has been considerable interest reported in the use of neured 
networks for system control and identification [l] [2] [3]. A significant number 
of nonlinear dynamic systems can be described hy the recursive equation 

^n+\ = / ( x „ , z „ _ i , . . . , x „ _ p + i , u „ ) (1) 

where x,- is the output of the system and u„ is the input excitation. In this 
paper we discuss the identification problem for two classes of nonlinear systems 
described by 

Xn+i = aoxn + a i z „ _ i -f . . . + aj,x„-p+i + f{u„) (2) 

and 

Xn-l-l = / ( X n , X „ _ i , . . . ,Xn-p+l) + U„ (3) 

Equation (2) and (3) are called Model-I ajid model-II nonlinear systems respec-
tively[l]. The essence of applying a nem-al network to nonlinear system identi
fication is to use the neuraJ network to approximate the nonlinear mapping f( ) 
in (1). Theoretically, the M L P neural network can approximate any continuous 
nonlinear mapping to any precision, provided there are enough liidden units[4 . 
In the identification of both Model-I and Model-II nonlinear systems, the M L P 
neural network are used as a basic structure for identificiition [l]. 

Since the basis of using neural network for identification of Model-I and 
Model-ll nonlinear .sj'stems is to use the M L P neural network to approximate 
the nonlinear tran.sfer function, the approximation properties of M L P neural 
network have significant influence on identification performance. Oiu" simula
tions show that within the learning range and for relative smooth fvuictions 
the api)roximation is good. However outside the learning range the approxi
mation is usually poor. This poor generidization is an intrinsic weakness of a 
fully connected M L P neural networks [5). As the mechanism of generalization of 
M L P neural networks are more like interpolation bet\v(;en known learning sam
ple points [G), the generalization or extrapolation outside the learning range will 
be poor unless the M L P neiu'al netwoik ha.s a. built-in .structure which matches 
the l(>arniiig problem. 
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CoiLsidcr the identification of :i Modcl-I nonlinear sy.steni wiUi a. M L P neural 
network. The noiihnear .s^'steni can be de.scrihed hy a difrenuice e(|ua.tion .shown 

identification archi tecture is de])icted in Fig- 1. 

Nonlinear Function • Linear System - J T ^ 

Neural N. Nets Linear System Neural N. Nets Linear System 

Linear System 

Fig-1 

If it is assumed the coefficients ao, a j , . . . , Up are known, then the output 
of the neural network system is 

i n + l = (loXn + . . . + apX„-p+i + N N { U n ) (4) 

where NN represent the M L P neural network which is used to model the non
linear function. Let e„ = a;„ — in, then from (2) and (4) it obvious that 

Cn+i = aoe„ + a i e „ _ i -|- . . . -f OpCn-p+l + / ( u n ) - NN(un) 

Let En = / ( ' 'n ) — ^^^^(iJ-u), and take the partial derivative of (5) to give 

dc„+i dcn , 5 e „ _ , 
= CLQ-^ + a i — + 

dw nv dw 
dcn-p+x dE„ 

-Jw 1W 

(5) 

(6) 

as , can be calculated by the back-propagation algorithm, so equation (6) can 
be used as a revised back-propagation algorithm to update the weights of the 
neural network which is imbeded in the dynamical system, (see [1] for more 
detail). Using the above identification sclieme, we have found by simulation 
that the identification of f(u) is good only in the range which is covered by the 
excitation. Outside this range the identification is poor. 

For the Model-II nonlinear system identification, the nonlinear systetn is 
described by a, nonlinear difference eqitation shown in (3). If a. parallel scheme 
is used, the neural .system which is used to model the plant can be represented 
a,s 

i „ + i = A^V(.r„,-i"n-i,-• • + (7) 

where £•„ is the estimation of i „ , and u„ is the known excitation which is the 
same <is that in (3). From equation (3) and (7), the discrepancy between the 
plant and the neural system can be calculated ius 

= /(•'•.M^'",,-!, • • • I ) - A'/V(;/" „ , • • ' • . . -1, • • •, - , . H I ) (S) 
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i]\c. <:„ is >I.S<K1 in the identification i)roce.ss<;s to adjust the neural network to 
minimize the discrei)a.ncy between the ))Iaiit and tlie neural network. If the 
s(n i(!s-pa.ra.ll(;l model is used, e(iua(,i()n (S) can he rcpla,ced by the e<iuation 

('n + i - / ( x „ , . 7 ; „ _ , , . . . , . T „ _ , , 4 . i ) - N N { X „ , X „ - ] , . . . ,X„-,,+ i ) ( 9 ) 

In this p;iper a series-parallel model is used instead of the parallel model, for 
which the covergence is difficult to achieve even in linear system identification. 
The identification architecture is depicted in Fig-2. 

Nonlinear Function 

Neural 

H-KI r — 

p 

Network 

Fig-2 

From equation (9) we can see that the identification problem in this case 
is almost the same as the function fitting problem discussed previously. The 
difference here is that the samples used for calculating e(k) are determined by 
the property of the system to be identified. However in the function fitting 
case the samples can be selected arbitrarily. As mentioned previously the gen
eralization meclianism of the M L P neural network is the interpolation between 
the learning samples and extrapolation outside the learning region. To make 
the interpolation match the function whicli produces the learning samples, the 
learning samples should be ver}' dense within the learning region of the input 
space, and generally the extrapolation outside the learning region will be poor, 
as shown previously. Thus to obtain satisfactory identification, the learning sam
ples should cover the whole input domain which one is interested in, and have 
sufficient density. The systems and the excitation should meet .some demand. 

The distribution of state vectors in tlie state space is called a i)ha.se trace 
or pliJLse portrait. There are several s^'stem properties which can influence tlie 
phiisc trace. First, we consider the controllability or reachability of the system. 
In system theory, controllability means any sj'stem state can l.)e reached within 
finite tiine with an appropriate excitation[7). If the system is imcontrollable, for 
example if the state space consists of several diconnected subspaces, then the 
identification results will be highly de]>endant on the initial state. If the initial 
state lies in a s])(!cific subsi)ace, then the identification can only Ix; obtained in 
(his s])ecifi(: sul)space. 

2 / 3 



Apart from r.ontrollabilit}', the phase trace is also influenced by the correla
tion ])r<)i)erty or baiulwidtli of the system. Although controllability guarantees 
that ev<My corner of tlie state space is reachable under a.pj)roi)ria.te excitation, 
th(; distribution of tiie pha.se trace is more infincnced by the bandwidtli of the 
system if the excitation is not specifically designed. For example in a highly 
correlated .system the system output is highly correlated when it is excited by 
a random signal, so the phase portrait is usuallj' restricted to a diagonal region 
in the state space. Thus the identification would be restricted to this diagonal 
region as well. 

The above discussion about the application of M L P neural networks to non
linear system identification is restricted to systems which have an asymptotically 
stable equilibrium point. As is well known there are a large number of nonlinear 
systems whose attractors are not simply points or limit cycles, but are strange 
attractors which can lead the system into cliaotic behaviour[9],[l0]. It could be 
speculated that because of the special phase traces of strange attractors in state 
space, the identification of cliaotic systems would be poor. On the other hand, 
for a chaotic system any infinitesimall}' different starting points will produce 
significantly different outcomes. So any small modeling error will be amplified 
to its maximum in the dynamic process. This presents a fundamental difficulty 
for chaotic system identification. 

In conclusion it may be stated that the universality of M L P neural networks 
does not necessarily provide advantages in applications like system identifica
tion. For an M L P neural network without a structure designed to matcli the 
system to be identified, the identification results heavily depend on the range of 
distribution for the phase trace. To obtain satisfactory identification, the system 
and the excitation should meet some preconditions like controllability, etc. Thus 
a prior knowledge of the possible system structure is important for satisfactory 
system identification. However in the case when little structure information is 
available, the M L P neural network model can alwaj's be used as a last resort. 

If the identification is only i-estricted to a small part of the state space, 
theoretically we cannot say the identification is complete. However from a prac
tical point of view, the results may still have application value. For exjunple, 
in the narrow band system, correct identification is restricted in the diagonal 
region, but under general conditions the pha-se portrait of the .system will rarely 
go out of this range. To drive the pha.se portrait out of the diagonal region, a 
strong high frequency excitation is reciuired and would rarely occur in a ])racti-
cal situation. In some c.ises, although the neural .system is a i)oor model of the 
real .s^'stem, it may still be a good predictor. This is esj)ecia.lly true of chaotic 
systems. In the predictor c;ise there is no error accumulation process which is 
a b<Lsic feature of cliaotic dynamical systems. Although the above discussion is 
mainly concentrated on Model-I and Model-II neural network S3'steins, the ob
servations are also ap])lical)le to other system identification schemes using neural 
networks. 
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All the simulation results will be presented at the Colloqnimn. 
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A b s t r a c t : 

In this paper we discuss results on improving the convergence speed of the back-propagation algorithm, 
and introduce an adaptive stepsize technique and a differential stepsize method to accelerate the conver
gence speed of the back-propagation algorithm. Simulation results are presented which illustrate the improved 
convergence. 

1 . I n t r o d u c t i o n 

T h e recent revival o f research act ivi t ies in neural networks was s igni f icant ly influenced by the publ icat ion 
of [1] . W i t h the learning a l g o r i t h m called the back error-propagat ion, i t was shown tha t the M u l t i Layer 
Perceptron ( M L P ) can p e r f o r m interest ing c o m p u t a t i o n s [ l ] . Unl ike the perceptron analysed by Minsky[2] 
wh ich can on ly solve linesir separable problems, the M L P , theoret ical ly , can divide the inpu t space in to 
a r b i t a r y shape, p rovided t h a t there are enough hidden uni t s . Thus M L P methods have been applied to 
several complex p a t t e r n classification-like problems, such as t ha t reported i n [3]. However the main drawback 
i n a p p l y i n g M L P networks t o many real problems is the slow convergence speed of the back-propagation 
a l g o r i t h m . 

W h i l e the back-propagat ion a lgo r i t hm is a k i n d o f gradient descent cJgori thm, error surfaces for learning 
problems f requen t ly possess some geometric properties t ha t makes the a lgo r i t hm slow to converge. The 
stepsize o f the a l g o r i t h m is sensitive to the local shape and curvature o f the error surfaces. For example, a 
smal l stepsize w i l l make the a l g o r i t h m take a very long t ime to cross a long flat slope. O n the other hand, 
a large stepsize w i l l cause the i t e ra t ion process to bounce between the two opposite sides o f a valley rather 
than f o l l o w i n g the contour o f its b o t t o m . Even i f a sat isfactory stepsize for one stage of the learning process 
is f o u n d , this does not ensure i t w i l l be appropriate for any other stage o f the same learning process. O n 
the other hand , the p remature sa tura t ion o f the network uni ts also causes problems for the convergence of 
the a l g o r i t h m . Thus in the f o l l o w i n g we introduce an adaptive stepsize back-propagation a lgor i thm and a 
s imple m e t h o d fo r c i r cumvent ing the premature sa tura t ion . 

2 . P r e v i o u s R e s e a r c h 

There has been some research on improv ing the convergence speed o f the back-propagation a lgor i thm, 
such as t h a t ment ioned in [4][5][6]. I n 4] the authors suggested Conjugate gradients, Quasi-Newton a lgor i thm 
and other more sophis t icated a lgor i thms . T h e y are also called second order methods. Accord ing to our 
knowledge, the convergence speed reported in [1] on the X O R prob lem is the fastest among the existing 
a lgor i thms . However a l l these a lgor i thms are much more computa t iona l ly expensive, especially when the 
scale o f the p rob l em is large, so tha t in many cases i t is imprac t ica l to use them. In order to reduce the 
c o m p u t a t i o n cost o f the second order method, a k i n d o f approx imat ion technique has been introduced in to 
the Newton ' s a lgo r i t hm[5 ] . T h e authors used a diagonal m a t r i x t o approximate the Hessian ma t r ix . This 
makes i t possible t o derive a back propagat ion a lgo r i t hm for the second order derivatives as tha t for the 
first order derivat ives. B u t the appl icab i l i ty o f this new a lgo r i t hm depends on how well the diagonal Hessian 
a p p r o x i m a t i o n models the t rue Hessian[5]. Only when the effects o f weights on the ou tpu t are uncoupled 
or near ly uncoupled , can the diagonal Hessian represent a good approx imat ion . We have implemented this 
Newton- l i ke m e t h o d in our back-propagation s imula t ion program. A t this stage we have not found i t to 
e x h i b i t any advantage over the o rd ina ry back-propagation a l g o r i t h m . T h i s may be due to the use of sub-
o p t i m a l learn ing parameters. Jus t as was mentioned in [5], we found the learning parameters are more 
c r i t i c a l i n o b t a i n i n g reasonable behaviour w i t h this Newton- l ike a lgo r i t hm than w i t h the back-propagation 
a l g o r i t h m . A n o t h e r a t t e m p t to use a second order method to improve the convergence property o f the 
back-propagat ion a l g o r i t h m was in t roduced in [6], which is called Qu ickp rop . I t uses the difference between 
t w o successive | ^ as a measure o f the change of curvature and uses this i n fo rma t ion to change the stepsize 
o f the a l g o r i t h m . E is the o u t p u t error func t ion , and w represent weights. Using this method a significant 
improvement on convergence speed has been reported in [6]. 

I n [7] another k i n d o f adapt ive stepsize a lgo r i t hm was in t roduced . According to this a lgor i thm, i f an 
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update o f weights results in reduced to ta l error, the stepsize is increased by a factor <̂  > 1 for the next 
i t e r a t i o n . I f a step produces a network w i t h a to ta l error more than a few percent above the previous value, 
a l l changes t o the weights are rejected, the stepsize is reduced by a factor P < I, the momentum te rm is set 
to zero, and the step is repeated. When a successful step is then taken, the momentum term is reset. 

A s is wel l k n o w n in adapt ive signal processing theory, the direct ion o f the negative gradient vector may 
not p o i n t d i r ec t ly towards the m i n i m u m of the error surface. In adaptive filter theory, this k ind o f bias can 
be measured b y the r a t i o o f the m a x i m u m eigenvalue and the m i n i m u m eigenvalue o f the auto-correlation 
m a t r i x [ 8 ] . Recently an adapt ive stepsize a lgo r i t hm which gives every weight a stepsize which can adapt 
separately has been proposed[9]. Th i s is only a rough approx imat ion , as i t w i l l be noted that these stepsizes 
adapt on the d i rec t ion o f each weight rather than on the eigenvector d i rec t ion as re quired [8] [9]. 

I n the back-propagat ion a lgo r i t hm, the update o f weights can take place after presenting all the t ra in
i n g samples to the ne twork or af ter every presentation o f a t r a in ing sample, they are called batch mode 
back-propagat ion and online back-propagation respectively. Generally speaking, online back-propagation 
a lgor i thms converge faster t han the batch mode back-propagation[5][6], and batch mode back-propagation 
is more l ike ly t o f a i l t o converge on a large t r a in ing sample set[10]. The algorithms described above are 
a l l b a t c h mode back-propagat ion, because for the second order method i t can only use batch mode. In the 
f o l l o w i n g we in t roduce an adapt ive stepsize online back-propagation a lgo r i thm. I t is considered to represent 
an advance on exis t ing a lgor i thms . 

3 . A d a p t i v e S t e p s i z e B a c k - P r o p a g a t i o n 

I n designing an appropr ia te a lgor i thm the fo l lowing factors should be considered. Firs t the momentum 
t e r m cannot be set to zero, as the update occurs for every presentation o f a new t ra in ing sample. I f the 
m o m e n t u m t e r m is set to zero, there exists a risk o f losing past experience. Generally speaking, a large 
t r a i n i n g sample set requires a large T) value { rj '\s the slepsize for the momentum) . This fact has been 
con f i rmed by computer s i m u l a t i o n [ l l ] . Thus the adaption is restr icted to the gradient te rm. We used the 
f o l l o w i n g f o r m o f adapt ive stepsize a lgo r i thm: 

a (0 = o ( < - l ) ( l - / ( 0 \ / ^ ) ( l . a ) 

/ ( 0 = u i / ( t - l ) - f u 2 A ^ ( 0 (1.6) 

AE(t) = E{i) - E{t - 1) ( l . c ) 

a{i) is the stepsize for the gradient te rm in the update f o r m u l a in the back-propagation a lgor i thm. I t is the 
stepsize at momen t t . E ( t ) is the summat ion o f squared discrepencies between the desired ou tpu t and the 
ac tua l o u t p u t at t ime t . I t can be calculated as fo l lowing : 

^ = | E E K * ( 2 ) 
i = l 1 = 1 

AE{t) is the decrement o f the E ( t ) . f ( t ) is a filtered version of AE{t). A c t u a l l y ( l . b ) is a first order low-pass 
recursive filter, wh ich can smoo th the significant changes in AE(t), mak ing the a lgor i thm more stable, u j 
and U 2 are the parameters used to control the adapta t ion . For smal l ui and big u j , the adaptat ion is fast, 
b u t i t is d s o more l ikely to be t rapped in osci l la t ion. For big Ui and small u j , the adaptat ion is slow, but 
i t is more stable. T h u s the parameter selection involves a trade off . I n our s imula t ion , we used u i = 0.9 
and = 0.3. T h e t e r m ( 1 — f { t ) s / E { t ) ) also controls the adapta t ion o f the stepsize. I f f { t ) is positive, 
t h a t means the tendency o f E ( t ) in the near past is to increase, so 1 — f(t)^/E{t) < 1, the stepsize w i l l be 
decreased. A s imi lar analysis shows tha t i f the tendency o f E ( t ) is to decrease, the stepsize w i l l be increased. 
W h e n the E ( t ) is very smal l , t h a t is the network has almost learned, the adaption w i l l be very weak, which 
stablizes the a l g o r i t h m . T h e square root is used as compensation, i t can ampl i fy the small E ( t ) to avoid the 
p r ema tu re t e r m i n a t i o n o f adap ta t ion . 

We now present some s imula t ion results to show the advantage of the adaptive step size a lgor i thm. In 
the d iagr f ims shown, the E defined in (2) are p lo t ted as a func t ion o f i te ra t ion times for different learning 
problems. T h e y are called learning curves, and can be used to evaluate the convergence property of the 
learn ing a l g o r i t h m . T h e i r m a x i m u m are normalized to 1. In Fig-1 we show comparative simulat ion results 
o f the non-adapt ive back-propagat ion a lgor i thm and the adaptive a lgor i thm for the 4-4-1 pari ty problem. I t 
is clear the adapt ive stepsize has improved the convergence speed, just as we expected. In our simulat ion we 
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find tha t the improvement on the complex problem are more impressive than t h a t on simple problem. The 
reason may be tha t since adapta t ion is a dynamic process, i t needs a finite t ime to be efFeclive. For simple 
problems, the learning process is very shor t , the adapta t ion process has not suff icient l i m e to play its role. 
T h u s there is on ly a small effect o f adapt ion on simple learning problems. 

4 . D i f f e r e n t i a l S t e p s i z e B a c k - P r o p a g a t i o n 

A l t h o u g h the adapt ive stepsize back-propagation a lgo r i t hm has improved the learning speed to some 
degree, i t cannot cope w i t h the premature sa tura t ion o f the network uni ts . We have noted in our simulations 
t h a t M L P neural nets are o f t en t rapped in a very flat valley or so called local m i n i m a , in which area the 
convergence speed is very slow which corresponds to the flat l ine intervals on the learning curves o f F ig -1 . 
T h i s cannot be solved by an adapt ive stepsize technique, because the reason for this phenomenon is tna t 
the absolute value o f weights are g rowing so fast as to make the uni ts , especially hidden units , prematurely 
sa tura ted . There is a t e r m like s ( l - s ) in the update f o r m u l a for the back-propagation a lgor i thm, in which 
s is the o u t p u t state o f the u n i t . I t is qui te clear t ha t i f s is close to 1 or 0, whichever ou tpu t is desirable, 
a lmost no update w i l l be passed backward th rough t h a t u n i t . Th i s k ind of phenomenon is also known as 
the flat spot[6] . I n [6] the author suggested to change the s igmoid-pr ime func t i on s ( l - s ) to s(l-s)- |-0.1, so i t 
can avoid the flat spot . B u t according to our s imulat ions, th is change o f ten causes the weights to grow so 
fas t as t o lead to floating po in t overflow on the d ig i t a l computer . A l t h o u g h some weight-decay t e rm may 
be used to counteract tbis[6] , i t makes the a lgo r i t hm more complex. We have used a very simple method to 
cope w i t h the flat spot . 

A s t ra ight fo rward idea to c i rcumvent the flat spot is to remove the t e r m s( l -s ) f r o m the update fo rmula 
for the o u t p u t layer, and set the stepsize for the update o f weights between the hidden layer and the input 
layer smaller than tha t for the weights between the upper layers. We denote the stepsize for the update 
o f weights between the o u t p u t layer and the hidden layer as Q 2 , and the stepsize for the update o f weights 
between the hidden layer and the i n p u t layer as Q J , then Q 2 > Oi- We call this the different ia l stepsize 
back-propagat ion a l g o r i t h m ( D S B P ) . In our s imula t ion , we used o i = O-lo- j . T h e s imula t ion results are 
shown in Fig-2 , and i t is very clear the convergence speed is improved considerably. 

I n [6] the Qu ickprop a l g o r i t h m was clciimed to be the fastest learning a lgo r i t hm among the existing 
a lgo r i thms . I n order to compare our D S B P w i t h the Qu ickp rop , we have r u n 30 s imula t ion tr ials on the 
10-5-10 encoder p rob lem. T h e t e rmina t i on condi t ion for the s imula t ion is tha t the discrepancy between 
the desired o u t p u t and the actual o u t p u t for every o u t p u t un i t and every t r a in ing sample is less than 0.1 . 
T h e average t r a i n i n g t i m e fo r this p rob lem by D S B P is 23.5, w i t h a s tandard der ivat ion o f 3.27. Th i s is 
on ly marg ina l ly slower than the Qu ickprop a lgor i thm, for which the average t ra in ing t ime is 22.1. However 
a l though the Qu ickprop plus a hyperbol ic arctan error func t ion a lgor i thm can reach the same solution 
w i t h an average t r a i n i n g t ime o f 14.01, i t is much more complex than DSBP, and a weight-decay t e r m is 
needed. T h e results for the simple D S B P a lgo r i t hm represent a considerable improvement on the standard 
back-propagat ion a l g o r i t h m , which gave aj\ average t r a i n i n g t ime o f 129 i terat ions. 

5. C o n c l u s i o n 

F r o m the above discussion, i t is clear t h a t the adaptive stepsize technique can improve the convergence 
speed o f the back-propagat ion a l g o r i t h m . I t is obvious tha t the degree o f improvement for a complex learning 
p r o b l e m is greater than tha t for s imple problems. We consider tha t the potent ia l o f the adaptive stepsize 
technique lies in the area o f real large scale appl icat ion problems, such as Net -Talk[3] , in which the t ra in ing 
sample set is very b ig , and the t r a i n i n g process may last for a few days. From the s imula t ion results shown 
above, we can also conclude tha t the D S B P method we used to circumvent the premature saturat ion or flat 
spot is effect ive. I t is also surpr is ing tha t such a small change to the a lgor i thm can produce such a significant 
improvement , and conf i rms the impor tance o f concentrat ing on a theoretical understanding o f the dynamics 
o f the back-propagat ion a l g o r i t h m . 
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Fig -1 

Learn ing curves for the 4-4-1 pa r i t y 
p rob lem. Broken line stands for the learn
ing curve of non-adapt ive a l g o r i t h m . The 
i n i t i a l r andom value o f weights are w i t h i n 
the range(-0.5, 0.5), w-seed=5697, 
t h - seed=846I , a = 0.4, T? = 0.9. 

Fig-2 

Learning curves o f the 10-5-10 
encoder problem. Solid line stands for 
the learning curve of the differential step-
size back propagation a l g o r i l h m ( D S B P ) . 
The i n i t i a l random value of weights are 
w i t h i n the range( - l , 1), w-seed=4581, t h -
swwd=818953, Q = O.G, q = 0.9. B u t for 
the DSBP o j - = O.OG, oo = 0.6. 
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