
Durham E-Theses

Testability and redundancy techniques for improved

yield and reliability of CMOS VLSI circuits

Bensouiah, Djamel Abderrahmane

How to cite:

Bensouiah, Djamel Abderrahmane (1992) Testability and redundancy techniques for improved yield and

reliability of CMOS VLSI circuits, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/6008/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6008/
 http://etheses.dur.ac.uk/6008/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

TESTABILITY AND REDUNDANCY TECHNIQUES
FOR IMPROVED YIELD AND RELIABILITY

OF CMOS VLSI CIRCUITS

by

Djamel Abderrahmane Bensouiah

This thesis is submitted to the University of Durham

in candidature for the degree of Doctor of Philosophy

School of Engineering and Computer Science

University of Durham

May1992

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

- 2 JUL1993

Abstract

The research presented in this thesis is concerned with the design of fault-tolerant integrated

circuits as a contribution to the design of fault-tolerant systems. The economical manufacture

of very large area ICs will necessitate the incorporation of fault-tolerance features which are

routinely employed in current high density dynamic random access memories. Furthermore, the

growing use of ICs in safety-critical applicatio~and/or hostile environments in addition to the
prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability.

A fault-tolerant IC must be able to detect and correct all possible faults that may affect its

operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance,

but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing

is selected for this research because it achieves better coverage of physical faults and it requires

less extra hardware than on-line error detection techniques.

Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence

generation procedures for the detection of all faults are derived. The test sequences generated by

these procedures produce a trivial output, thereby, greatly simplifying the task of test response

analysis. A further advantage of the proposed test generation procedures is that they do not

require the enumeration of faults.

The implementation of built-in self-test is considered and it is shown that the hardware

overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques

while achieving--a much higli~fault coverage through-the use of the prop<)sed- tesfgeneratiori

procedures. The consideration of the problem of testing the test circuitry led to the conclusion

that complete test coverage may be achieved if separate chips cooperate in testing each other's

untested parts. An alternative approach towards complete test coverage would be to design the

test circuitry so that it is as distributed as possible and so that it is tested as it performs its

function.

Fault correction relies on the provision of spare units and a means of reconfiguring the circuit

so that the faulty units are discarded. This raises the question of what is the optimum size of

a unit? A mathematical model, linking yield and reliability is therefore developed to answer

such a question and also to study the effects of such parameters as the amount of redundancy,

the size of the additional circuitry required for testing and reconfiguration, and the effect of

periodic testing on reliability. The stringent requirements on the size of the reconfiguration logic

is illustrated by the application of the model to a typical example. Another important result

concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing

can achieve approximately the same level of reliability as on-line testing, even when the time

between tests is many hundreds of hours.

DECLARATION

I hereby declare that the work reported in this thesis has not been submitted for any

other degree.

11

ACKNOWLEDGEMENTS

I would like to thank my two supervisors, Dr. M. J. Morant and S. Johnson, for their help

and support and for their careful reading of the text.

I also acknowledge the financial support of the ministry of higher education of Algeria.

lll

List of Contents

CHAPTER 1

INTRODUCTION

1.1 Objectives and Focus of the Research

1.2 Outline of the Thesis

CHAPTER 2

RELATED ISSUES TO FAULT-TOLERANCE:

INTRODUCTION AND REVIEW

2.1 Introduction

2.2 Sources and Types of Faults

2.2 .1 Design Mistakes . . .

2.2.2 Manufacturing Defects

2.2.3 Operational Failures

2.2.4 The Effects of Scaling

2.3 Fault Modelling: The Effects of Faults

2.3.1 Logic Level Fault Modelling . .

2.3.2 Functional Level Fault Modelling

2.3.3 Switch Level Fault Modelling

2.3.4 Layout Level Fault Modelling

2.4 Fault Detection

2.4.1 On-Line Error Detection Using Coding Techniques

2.4.2 On-Line Error Detection Using Time Redundancy

2.4.3 Off-Line Fault Detection

2.4.4 Design for Testability

2.5 Fault Correction

2.5.1 Defect-Tolerance Strategies

2.5.2 Failure-Tolerance Strategies

2.6 Yield and Reliability

2.7 Chapter Summary .

IV

1

2

3

5

5

6

6

7

9

12

13

14

17

. 19

. 20

. 22

. 23

. 27

. 29

. 32

. 35

. 37

. 40

. 43

. 46

CHAPTER 3

TEST GENERATION FOR CMOS CIRCUITS

3.1 Introduction

3.2 Testing a CMOS Cell for all Faults

3.2.1 The Fault List

3.2.2 Test Generation for Specific Faults

3.2.3 Test Invalidation by Circuit Delays

3.2.4 Faults that Induce Intermediate Voltages

3.2.5 Complete Test Sequence

3.3 Stuck-Open Faults as a Representative of all Other Faults

3.3.1 Stuck-at Faults

3.3.2 Stuck-on Faults

3.3.3 Bridging Faults

3.4 Test Sequence Generation Procedures

3.4.1 Exhaustive Stuck-Open Fault Testing

3.4:2 Minimum Length Test Sequences

3.4.3 Robust Test Sequences

3.4.4 Test Generation for Multi-Level Circuits

3.4.5 Testing Multi-Output Circuits

3.5 Chapter Summary

CHAPTER 4

BUILT-IN SELF-TEST FOR CMOS CIRCUITS

4.1 Introduction

4.2 Detection of all Faults in a Built-In Self-Test Implementation

4.2.1 Distributed vs Centralised Analyzer

4.2.2 Design and Placement of the Test Pattern Generator

4.2.3 Design and Placement of the Analyzer Circuit

4.2.4 Area Overhead Figures

4.3 Testing the Extra Hardware: Is Complete Test Coverage Possible?

4.3.1 Testing the Analyzer Circuit

v

. 48

48

49

. 49

51

57

61

63

65

66

67

68

68

69

70

74

77

83

84

86

86

. 88

89

92

97

. 98

100

101

4.3.2 Testing the Test Pattern Generator . 106

4.3.3 Testing the Remaining Test Circuitry 107

4.3.4 Is Complete Test Coverage Possible? 108

4.4 Effect of Partitioning 110

4.4.1 Test Sequence Derivation for an n0-Bit Adder Block 111

4.4.2 Hardware Requirements . . 111

4.4.3 Hardware Overhead Figures 113

4.5 Test Sequence Generators 114

4.5.1 Review of Proposed Techniques 115

4.5.2 Test Sequence Generation Using Shift Registers 116

4.5.3 Finite State Machine Implementation of the Test Sequence Generator 120

4.6 Time Redundancy for Fault Detection 122

4.7 Chapter Summary

CHAPTER 5

YIEbD AND REI:JIABILITY MODELLING

FOR FAULT-TOLERANT VLSI CIRCUITS

5 .1 Introduction

5.2 Review of Modelling Techniques

5.2.1 Yield Modelling for Non-Fault-Tolerant Integrated Circuits

5.2.2 Yield Modelling for Fault-Tolerant Integrated Circuits

5.2.3 Reliability Modelling .

5.3 Chip Model and Assumptions

5.3 .1 Redundancy Strategy

5.3 .2 Reconfi.guration Logic Area

5.3.3 Defect Distribution

5.4 New Models

5.4.1 The Yield Model

5.4.2 The Expectation of What?

5.4.3 Failure Rate of a Section of a Chip

5.4.4 The Reliability Model

VI

124

126

126

127

127

130

132

135

136

136

137

138

138

139

144

144

5.5 A Case Study

5.5 .1 The Effect of the Size of the Reconfiguration Logic

5.5.2 Optimum Replication Factor and Unit Size

5.5 .3 Figures of Merit

5.5.4 Effects of Periodic Testing on Reliability

5.6 Chapter Summary

CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 The Main Achievements of the Research

6.1.1 Fault Detection

6.1.2 Built-In Self-Test

6.1.3 Evaluation of Yield and Reliability Improvements

6.2 General Conclusions of the Research

6.3 Suggestions for Further Research

6.3.1 Reconfiguration

6.3 .2 Testing

APPENDIX A

148

148

150

153

153

156

157

158

159

159

160

161

162.1

162.1

162.1

FAULT ANALYSIS . 163

APPENDIX 8

YIELD AND RELIABILITY CALCULATIONS 205

APPENDIX C

PUBLICATIONS . 214

REFERENCES . 236

VII

Chapter 1
Introduction

The era of Very Large Scale Integration (VLSI) has been going on since the late 70's

early 80's [1]. 1bis is a long period by the standards of the semiconductor industry

where rapid progress is the norm. A new era of higher levels of integration would have

been expected to be in place by now. The two likely successors to the VLSI era are

Ultra Large Scale Integration (ULSI) and Wafer Scale Integration (WSI).

In ULSI, higher levels of ~teg!"ation .. are achieved through the reduction in the

minimum feature sizes*. This is the trend that has been followed since the first ICs were

introduced. So far, it has allowed the successful production of 64-bit microprocessors

and 64-Mbit DRAMs. However, there are limits to this trend, some of which are

theoretical or fundamental, such as the disappearance of the transistor effect below a

certain channel length [3, 6], while others are practical or economical, such as the

colossal investment required for sub-micron technology.

In WSI, higher levels of integration are attainable by increasing the area occupied

by chips, up to a whole wafer. The major limitation in this case being the daunting

problem of defects in manufacture. Furthermore, the prospect of a perfect manufacturing

process is extremely unlikely. However, this problem is of a practical nature, rather than

* Our intetpretation of ULSI is the increase of the number of devices per chip through the reduction

of device dimensions and without significant increases in chip area. However, because of its unpopularity

[2] and the reluctance of many authors to using the tenn WSI, some publications use the tenn ULSI to

refer to very large area ICs. Even Maly et. al. [2] use the tenn 'ULSI-WSI' to refer to such ICs. Most

publications on scaling theory [3, 4, 5] use the tenn ULSI. With this interpretation, ULSI does not require

defect-tolerance. On the other hand, WSI does not require, but neither does it exclude the reduction in

device dimensions.

1

fundamental and there exists design techniques that address this problem successfully as

illustrated by commercial defect-tolerant DRAMs. Hence, from the manufacturability

point of view, defect-tolerance might make large area ICs economically feasible.

At the application level, other considerations, besides manufacturability, also have

to be addressed. Chief among them is reliability. Even when the ICs supplied by

a manufacturer contain no defects and no weaknesses, they are still susceptible to

numerous phenomenon that might cause a chip to fail. Depending on the application,

the consequences of chip failures can range from a slight inconvenience to very dramatic

ones, especially with the increasing use of ICs in many different areas, often with hostile

environments and/or safety critical applications. Furthermore, with higher levels of

integration, a system that previously consisted of few tens or few hundreds chips will

be designed around one or two chips. In this case, the reliability of the system will be

dominated by the reliability of the chips themselves. Hence, failure-tolerance is also a

very desirable feature for highly integrated circuits.

Even when current systems are integrated onto single chips or wafers, there is no

doubt that new applications will emerge that will require a number of such highly

integrated or wafer scale circuits, resulting in systems consisting of billions of devices.

This raises the question of how to ensure the integrity of such systems given that chips

consisting of only few hundred thousand devi_ces ~e a!r~ady ca_!!~jng _headaches -in

testing and-fault iliagnosis tasks.- Te~ requirements in a fault-tolerant integrated circuit

are even more stringent since precise information concerning the presence of faults and

their locations is necessary for performing corrective actions.

1.1 OBJECTIVES AND FOCUS OF THE RESEARCH

The main objective of the research presented in this thesis is the development of design

techniques to improve the yield and reliability of ICs by making them tolerant to faults.

Preliminary investigations suggested a breakdown of this main objective into the

following sub-objectives:

(i) To attempt to derive a method of testing for all detectable faults: Complete

information on every type of fault is required to undertake corrective actions. This

information can only be obtained by aiming at the detection of aU faults, rather

than just the high percentage of faults thought to be adequate by earlier workers.

(ii) To apply the method developed in (i) to the implementation of built-in self-test:

As part of the requirement of detecting all faults, we must also find out how to test

2

the BIST circuitry itself. Another point of focus is the investigation of the effect

of partitioning on the hardware overhead associated with BIST.

(iii) To identify a way of implementing fault-tolerance that is compatible with the

methods of (i) and (ii).

(iv) To develop a method for assessing the effects of design decisions on both yield

and reliability: The design decisions of interest include the amount of redundancy,

the level at which redundancy is introduced (i.e., the size of the replaceable units),

and off-line periodic testing vs continuous checking, all of which were to be con­

sidered.

The yield and the reliability of ICs are continually enhanced through improvements

in the manufacturing process, but this is beyond the control of most IC designers. For

the same reason, design techniques that rely on the addition or modification of some

processing steps are not considered.

The nature of the faults and the way in which they affect the operation of circuits

depend on the technology used. CMOS, being the dominant technology for high density

ICs, is selected for this research. A special emphasis is given to transistor stuck-open

faults which are peculiar to this technology. In this thesis, a stuck-open fault is defined

as any fault that would prevent conduction from the source to the drain of a transistor.

This may- happen -as a result- of breaks -in- the- connections or contacts between the

source/drain and other parts of the circuit or because of the impossibility of driving the

gate to the required voltage level to tum the transistor on.

The special emphasis on CMOS stuck-open faults is due to the stated aim of this

work which is to detect all faults rather than just a high percentage.

1.2 OUTLINE OF THE THESIS

The concept of fault-tolerance appeared with the first applications of digital systems.

Hence, there is an abundant literature on the subject. Chapter Two is a review of this

extensive subject with particular emphasis on those areas of relevance to the imple­

mentation of fault-tolerant ICs. The sources of faults, their effects on the operation of

circuits, and the different abstraction levels used to model faults are discussed. The

treatment of fault detection mechanisms highlights the differences between on-line and

off-line approaches. In particular, it is found that the former cannot provide high fault­

coverage and it also requires high hardware overheads, compared to the latter. In the

discussion of fault-correction techniques, a clear distinction is made between defect­

tolerance and failure-tolerance. Defect-tolerance deals with manufacturing defects and

3

it has very limited capabilities for dealing with field failures, whereas failure tolerance

techniques also have the potential of dealing with manufacturing defects.

A major aspect of off-line fault-detection is the generation of tests that establish

the presence or absence of faults. Test generation is a complex problem, even for

classical faults. In Chapter Three, it is shown that tests derived for stuck-open faults

can also detect all other detectable faults. This result is used to derive simple test

generation procedures for CMOS combinational circuits that produce test sequences for

the detection of all stuck-open faults. An important attribute of the procedures presented

in Chapter Three is that the generated test sequences should produce a trivial fault-free

response. This represents a novel solution to the problem of test response analysis.

The fact that these procedures generate test sequences, as opposed to test patterns, is a

further advantage, since fault enumeration is no longer required.

The hardware implementation of Built-In Self-Test (BIST) is considered in Chapter

Four. It is shown that, using the procedures of Chapter Three, BIST can be imple­

mented with a hardware overhead comparable to that associated with pseudo-random

and pseudo-exhaustive testing, while achieving a much higher fault coverage. The

problem of the detection of faults in the test circuitry itself is also considered and it is

proposed that the most effective solution is to design the test circuits in such a way that

they are tested while performing their functions.

In-Chapter-Five, new yield and reliability models for fault-tolerant ICs are devel­

oped. The models are relatively simple and yet, they incorporate important effects such

as the dependence of reliability on the manufacturing yield and the impact of off-line

periodic testing on reliability. The illustration of the application of the models reveals

the crucial importance of the size of the test and reconfiguration logic in determining

whether there is any yield or reliability improvement. The reconfiguration logic is often

ignored in many proposed fault-tolerance strategies, and even when it is not ignored, the

assumptions concerning its size are shown to have an effect in determining the optimum

amount of redundancy and the optimum size of the replaceable unit.

The main argument that can be used against off-line periodic testing is that the

chip may produce errors between tests. It is shown in Chapter Five that this is nearly

as likely as a complete failure of a continuously checked chip, provided that the time

between tests is short enough: up to many hundred hours.

4

Chapter 2
Related Issues to Fault-tolerance:
Introduction and Review

2.1 INTRODUCTION

Fault-tolerance for electronic circuits is an involved subject, comprising many aspects of

design, manufacturing, and testing. Research on the subject began in the early 1950's.

In these early days, the research was motivated mainly by the high unreliability of

electronic systems. In the _followlll.g _years, and as electronic systems ~g;m_appearing

in many safety-critical applications, research into fault-tolerance became mandatory.

This resulted in many techniques and methods for implementing fault-tolerant systems.

This Chapter is a review of the previous research work and an introduction to the

many aspects related to fault-tolerance and their relevance in implementing fault-tolerant

integrated circuits.

A fault-tolerant system is a system that would continue to provide correct operation

despite the presence of faults. The fault-tolerance attribute can be described in terms

of two factors: detection of faults and correction of faults. This does not imply that

the two factors are always physically separated, but only that they can be separated

conceptually [7].

The presence of a fault in a circuit results in errors. An error is said to have occurred

if the output of the circuit deviates from its specified behaviour. A fault is the physical

phenomenon that produces errors. Faults may originate in any of the three phases of the

life of an integrated circuit: design, manufacturing, and operation. The types of fault

in each of these phases are discussed in Section 2.2. Section 2.3 discusses the effects

of faults on circuit operation, the knowledge of which is necessary for deriving fault

detection and fault correction techniques, discussed in Sections 2.4 and 2.5, respectively.

5

and 2.5, respectively. Faults introduced in the manufacturing stage have a direct effect

on the yield, and an indirect effect on reliability, whereas faults occurring during normal

operation affect the reliability only. Yield and reliability are the two main criteria for

evaluating fault-tolerance strategies. They are discussed in Section 2.6. Section 2.7

summarises the Chapter.

2.2 SOURCES AND TYPES OF FAULTS

Faults may be introduced into an integrated circuit in the design phase, at the manufac­

turing stage, or during normal operation.

2.2.1 Design Mistakes

In the design phase of an IC, a top-down approach is usually adopted, as illustrated

in Fig. 2.1. Design mistakes may be introduced at any of the transitions between

levels. Note that the term used is design mistakes instead of the commonly used terms

design errors or design faults. We do so firstly to avoid the circular situation (design

fault---+fault---+error or design error---+fault---+error) and secondly to stress the fact that

they should not occur. However, because of the increasingly complex ICs that VLSI

has made possible, and the usual practice of having such chips designed by large teams

of designers, design mistakes do occur even in the best design offices [8].

Figure 2.1 The top-down approach to IC design.

Design mistakes likely to be introduced in transitions 1 and 2 (incorrect transistor

dimensions, layout prone to failure, circuit design mistakes, etc ...) can usually be

avoided by the use of efficient CAD tools such as design rule and electrical rule checkers

combined with circuit extractors. Mistakes in transitions 3 and 4 are much harder to

avoid, although extensive and comprehensive simulation can deal with transition 3 to

a certain extent. Transition 4 is the most crucial. It prompted the introduction of the

concept of formal verification based on theorem proving techniques. However these

6

methods are still in their infancy [9, 10]. One of the early results of these methods was

in the design of the VIPER processor intended for use in high reliability applications

[11, 12], the basic idea being in the use of a very simple processor architecture so that

formal verification techniques could be employed.
~So~

Design jaur(s are best handled by ensuring that they do not occur in the first place,

which means providing good specification tools and a means of evaluating the proposed

design before proceeding to realisation [13].

2.2.2 Manufacturing Defects

Faults occurring in the manufacturing stage are due to various defects introduced by a

less than perfect processing. The manufacturing phase is considered to comprise all the

stages that start with the raw silicon material and end with a packaged chip. Defects that

affect the silicon die and those introduced in the assembly/packaging stage are discussed

separately, because of their different nature and because of the fact that fault-tolerance

strategies tend to deal with faults affecting the die only.

a) Die-Related Manufacturing Defects

Defects that affect the silicon die have been well studied in the literature because of

their prime importance in yield forecasting and process improvement [2]. In most cases,

processing defects can -be classified as either global or local. Global defects-affect large

areas of the wafer or the IC, and they are usually easily detected at an early stage in the

manufacturing process, well before the dicing of the wafer (through visual inspection in

the case of area and line defects and by the continuous monitoring (test site observation)

in the case of global process parameter variations). Their frequency should be low in a

well controlled processing line.

Local defects, on the other hand, affect small areas of the wafer or die and are

usually considered as spot defects. They are much more numerous than global defects

and tend to be randomly distributed over the wafer.

Besides their global or local nature, processing defects can also be classified ac­

cording to whether they are caused by photolithography errors or by process quality

errors [14]. Basically, photolithographic errors result in a missing or extra feature on

any of the layers of the IC. Table 2.1 is a list of such defects for a CMOS process.

Process quality errors result from instability in the process conditions or from vari­

ations in the physical properties of the chemicals used [2]. They are listed in Table 2.2.

Most process quality errors will result in a change in the 1-V (current-voltage) charac­

teristic of the MOS device, which in turn may cause higher power consumption, lower

7

Table 2.1 Main Photolithographic Errors for a Standard CMOS Process.

Layer Defect Possible effects

Missing Shorts to GND or VDD

Diffusion

Extra Short circuits

Missing or wrong Variations in VT

Implant

Extra or wrong Variations in V T

Missing - Missing device

- Short between gate and channel regions

Gate oxide

Extra Parasitic device

- Missing device

Missing - Floating gate

- Open circuits

Poly silicon

Extra - Parasitic device

- Short circuits

- Shorts between poly and metal

Missing - Shorts between poly and substrate

- Shorts between metal and substrate
- >~\~ b<.~ f~(rn4o.1.. v\

Field oxide .:k(. ~" ~ Vt-li0 C'>'S. •

Extra Open circuits

Extra Short circuits

Metal

Missing Open circuits

8

noise margins, higher propagation delays, etc. These are usually referred to as perfor­

mance faults. However, in extreme cases, process quality errors also result in breaks

and short circuits.

b) Package and Assembly-Related Manufacturing Defects

The wire bond is considered to be one of the weakest areas of device packaging [15].

Poor bonding pressure can lead to bonds with a low fracture strength, while high bonding

pressure may result in substrate cracking or partial detachment of the die from the carrier.

If the loop formed between the semiconductor and the lead frame droops too much there

is a susceptibility to shorts between adjacent bond wires. On the other hand, if the loop

is too tight, the tension created may lead to fractures.

In plastic encapsulated devices, the plastic compounds used may force the bond

wires against each other resulting in shorts. In hermetic packages, debris from the

materials used in packaging and assembly may be introduced, later becoming loose and

causing short circuits. Poor bonding may also enhance the formation of intermetallic

compounds through gold-aluminium interdiffusion [15].

2.2.3 Operational Failures

During the operational phase, faults occur because of physical failures. Chip failure
'

implies that the chip was initially good and then, for some reason, it became faulty.

Hence, those faulty chips that escape .the manufacturer's screening process and then

'fail' in operation are not considered to have failed since they were never good. Chip

failures may be due either to weaknesses introduced during the manufacturing phase or

to ageing. In the same way as for manufacturing defects, failures are classified into

those affecting the die and those related to the packaging/assembly process.

a) Die-Related Operational Failures

Many of the failures occurring in normal operation can be related to manufacturing

defects. A processing defect may not be severe enough to cause a chip to fail the

manufacturer's tests, but the presence of the defect constitutes a weakness that can be

aggravated in operation because of temperature, voltage or mechanical stress.

There are many failure mechanisms that affect the metallisation. The most important

is electromigration. It is caused by the continuous impact of electrons on the aluminium

grains in high current density situations, resulting in a movement of aluminium atoms

in the direction of electron flow, giving rise to voids [15]. Contact regions are also

subject to migration of aluminium atoms into silicon or Si atoms into Al which results

9

Table 2.2 CMOS Process Quality Errors.

Affected Layer Defect Possible Effects

Substrate Crystal imperfections Excessive leakage currents

Doping levels Variations in V T

Implant Ion implant dose Variations in VT

Implant energy Resistance variation of implanted regions

Gate oxide Bad quality Variations in V T

Pinholes Short circuits

Thickness variations

Contamination

Polysilicon Bad quality Variations in channel length

Variation in thickness Variation in RC time constants

(over or under etching)

Field oxide Contamination Short circuits

Thickness variations Variations in RC time constants

Pinholes (capacitance of conductors to substrate)

Metal Grain size Short circuits

Microcracks Open circuits

Metal liftoff

Contact windows High resistance Short circuits

Spiking Open circuits

Bad metal coverage RC time constant variations

Photoresist Contamination Over or under etching of poly, metal

Over or under exposure or field oxide

Thickness variations

10

in open circuits or spiking of Al into Si. Corrosion is also a major cause of failure of

the metallisation, especially in plastic encapsulated devices where the porosity of the

plastic material is responsible for the diffusion of moisture through the package and

down to the metallisation [15]. Due to their lower power, CMOS devices are more

susceptible to this mechanism than bipolar where the high power dissipation at the

semiconductor surface reduces the moisture content. Microcracks are yet another type

of failure affecting the metallisation layer. They are due to badly processed oxide steps

where the metallisation layer is spread thinly and weakened, enhancing its susceptibility

to electromigration.

The oxide is also prone to many types of failures. The gate oxide is susceptible to

breakdown under the influence of high electric fields generated by electrical overstress

or static discharge [15]. Ion contamination at the manufacturing stage, introduced by

human contact, processing or packaging materials, causes the ions to accumulate at

the oxide-silicon interface of the gate region of MOS devices under the influence of

the electric field. Inversion layers may also be created outside the active regions of

transistors because of the movement of electrical charges through the oxide, resulting

in threshold voltage shifts, shorts between adjacent active regions, or the formation of

parasitic transistors. Another important effect occurs when the electrons in the channel

region acquire a high enough energy (hot electrons) to cross the Si-Si02 interface,

getting trapped in the gate oxide and resulting in a shift of the threshold voltage [15].

Radiation constitutes another source of failures in the field. In addition to radia­

tion produced by trace impurities of radioactive elements in the packaging materials,

semiconductor devices are also prone to external radiation sources [16, 17]. Radiation

may result in threshold voltage shifts, reduction in transconductance, 'soft' errors in

programmed devices, or the activation of parasitic elements. Other external factors that

may cause failures include heat, mechanical stress, and electromagnetic interferences

[15, 18].

b) Package-Related Operational Failures

The commonly observed failures affecting the package [15] are:-

(i) Bonding failures: In most cases, failures are due to bonds lifting, giving complete

open-circuits. This can occur due to formation of intermetallic compounds or insuf­

ficient bonding pressure in manufacture. High resistance bonds can also be formed

by intermetallics.

(ii) Die Attachment: The die, or part of it, may break loose under excessive mechan­

ical/electrical stress. The die attachment is the first link in dissipating the heat

11

generated in the silicon die. If a void is present, then a local hot spot is formed,

leading to further failure.

(iii) Particulate contamination: Any loose particles introduced during the assembly pro­

cess may not be detected in screening, or alternatively, particles may become loose

after the assembly process as a result of breakages within the device itself. Con­

ducting particles found in failed devices include ends of bond wires, particles of

silicon from scribing, gold flakes, and solder balls from cover sealing. Basically,

they may all cause short circuits. These have been reported as the primar ·'Y cause of

'one-off' failures, prompting the introduction of X-ray inspection as well as Particle

Impact Noise Detection (PIND) tests for high reliability devices [18].

2.2.4 The Effects of Scaling

The trend toward greater chip complexity has been accomplished by scaling down

feature sizes and increasing die sizes. As device dimensions are reduced, most of the

defects and failures listed in the previous sections become more prominent for several

reasons. The first is the increasing role played by smaller defects which are much more

numerous than larger ones [2]. These smaller defects would not have been fatal in

non-scaled devices, but they will cause serious yield and reliability problems when they

become commensurate with the reduced device dimensions [19].

Another reason for increased problems with small devices is that the reduction

in device dimensions has so far been carried out following constant voltage scaling

which is worse for chip power density, current density, and electric field strengths

than constant field scaling. High power dissipation leads to higher chip temperatures

and thus higher failure rates for those mechanisms with positive activation energies

[19]. Higher current densities make metallisation interconnects more susceptible to

electromigration, while higher electric field strengths have an impact on hot-electron

injection and dielectric breakdown. On the other hand, if the power supply is scaled

down with the dimensions, then signal strength and noise margins will suffer. However,

capacitive coupling of signal lines will be worse in scaled down devices in both constant

field and constant voltage scaling [19].

From a packaging point of view, larger dies are more susceptible to cracking of the

passivation layer or the die itself. Higher lead counts can also be detrimental due to the

increased probability of a bad or weak bond [19].

12

Design Mistakes Processing Defects Operational Failures

~~~ 
Faults 

~ 
Errors 

Figure 2.2 Cause-effect relationships. 

2.3 FAULT MODELLING: THE EFFECTS OF FAULTS 

It was stated previously that errors are caused by faults which, in tum, may be caused 

by design mistakes, processing defects, or operational failures, as illustrated in Fig. 2.2. 

The effects of processing defects and operational failures, listed in the previous 

section, ranged from short and open circuits to threshold voltage variations and excessive 

leakage currents. If we want to demonstrate the presence or absence of a fault in a circuit 

we need to be able to test it so as to produce an error at the output of the circuit, because 

it is impractical, and most often impossible, to check every interconnect for short or 

open circuits and every MOS device for the correct threshold voltage. An error is 

simply the appearance of an output which deviates from the expected one. 

The problem is then how to make a fimlt af one of the thousands of MOS devices 

or interconnects inside a VLSI chip, such as a threshold voltage variation for example, 

produce an error at the output of the circuit. Clearly, a general solution to this problem 

would be very difficult. The problem is usually simplified by making some assumptions 

about the behaviour of circuits under fault conditions. The process of constructing these 

assumptions about faults is called fault modelling, and the resulting fault assumptions 

are called afault model. 

Hayes [20] defines fault modelling as 'the systematic and precise representation of 

physical faults (defects and failures) in a form suitable for simulation and test genera­

tion. This representation usually involves the definition of abstract or logical faults that 

produce approximately the same behaviour as the actual physical fault'. 

Faults and fault effects may be considered at many different levels: technological, 

structural, or device levels, as in [21], and circuit, switch, gate or functional levels, 

as in [20, 22], in order of increasing levels of abstraction. The effects of the failures 

and defects listed in Section 2.2 belong to the circuit level. At this level, faults are 

characterised by changes in voltages, currents, or propagation delays which do not lead 

to efficient fault modelling, so that higher levels of abstraction are usually required. In 

13 



the following we will discuss the different abstraction levels commonly adopted to deal 

with faults. 

2.3.1 Logic Level Fault Modelling 

Logic level modelling is the most widely used abstraction level in test generation and 

(fault) simulation of digital circuits. At this level, circuits are represented by an inter­

connection of logic gates, and all defects and failures are assumed to result in a single 

node being permanently stuck-at logic one or logic zero [23]. The model was originally 

proposed as a means by which logic circuits could be tested without the need to apply 

every possible input [23]. 

The popularity of the single stuck-at fault model is illustrated by its widespread use, 

virtually as an industry standard, even for present day VLSI chip testing. There are three 

main reasons for this popularity. Firstly, the model proved simple and cost-effective for 

testing logic circuits made up of discrete components mounted on a PCB (the technology 

for which it was initially proposed). Secondly, even after the introduction of SSI and 

MSI TTL devices, it still proved adequate, since many of the typical faults in TTL 

resulted in stuck-at lines. Finally, and most importantly, almost all automatic tools for 

test related activities (test pattern generation, fault simulation, testability measures) are 

still based on this model. 

The simplicity brought about by the stuck-at fault model stems primarily from 

it being a gate level model. This can be illustrated by considering the circuit level 

representation of a single logic gate. The circuit model has many components and 

interconnects, all subject to a variety of faults. The logic model of the gate has only 

a single component and few interconnects that are subject to a restricted set of faults 

[20]. In fact. in the stuck-at fault model, only the inputs and outputs of the gate are 

considered as possible fault sites; the gate itself is assumed to be fault-free. 

An important question about the usefulness of such a simple model is whether 

physical faults at the circuit level can really be model~d by permanent stuck-at O's and 

1 's at the input or output of logic gates. Several studies have attempted to answer this 

question with results ranging from those still accepting the validity of the model [22, 

24, 25] to those doubting its usefulness [26, 27, 28, 29]. However, all such studies 

agree on the fact that there are certainly many physical faults that cannot be modelled 

as stuck -at faults. 

In studies that found the model acceptable, the main argument is usually that a 

test derived for single stuck-at faults would detect many of the circuit level faults that 

cannot be mod¢l~d as line stuck-at. Studies that found the model inaccurate propose 

14 



its extension to include other faults that are usually observed in circuits, such as shorts 

between lines, multiple lines stuck-at, and transistor stuck-on and stuck-open faults. 

In the extension of the stuck-at fault model to include shorts, or bridging faults, it is 

assumed that the shorted lines take the same logical value which is the AND or the OR 

of the values on the lines involved. With this extension, it is clear that some bridging 

faults cannot be detected: an AND-type short between the inputs to an AND gate, 

or an OR-type short between the inputs to an OR gate, are examples. Necessary and 

sufficient conditions for the undetectability of bridging faults are given in [30], together 

with the cases where an undetectable bridging fault invalidates a test set derived for 

single stuck-at faults. 

A short between nodes a and b where the value of a is a function of b, or b is a 

function of a, is called a feedback bridging fault. Shorts that create feedback loops 

represent an additional difficulty because they may introduce asynchronous behaviour 

and they may cause oscillations even in a combinational network [31]. 

A major problem in test generation is due to the very large number of possible 

bridging faults, compared to the number of single stuck-at faults. In a circuit containing 

n lines, there are 2n possible single stuck-at faults, compared with (~) possible bridging 

faults involving r lines. This number can be reduced by looking at the actual layout and 

considering only bridging faults between nodes that are physically close. However, in 

a typical VLSI circuit, the number of bridging faults is so large that it is prohibitively 

expensive to consider each fault individually and derive a test for it. Historically, 

bridging faults have often been detected by aiming at a high level coverage of single 

stuck-at faults (in the high 90%) [32]. Mei [24] has shown that, indeed, many bridging 

faults are detected by single stuck-at test sets, and the remaining faults can be detected 

by a reordering of test vectors or a modification of the single stuck-at test generation 

algorithm. 

In a recent study [33], simulation runs were performed on sample circuits to assess 

the effectiveness of stuck-at test sets in detecting bridging faults. It was found that 

stuck-at test sets provide over 98% coverage of bridging faults which is judged (by the 

authors of the paper) to be inadequate for today's VLSI chips. Their proposed technique 

to increase the bridging fault coverage is, again, to reorder the stuck-at test vectors so 

that all nodes change value as often as possible. 

Multiple stuck -at faults present the same difficulties as bridging faults: their very 

large number and the fact that they might invalidate single stuck-at test sets. Hence, 

they have usually been dealt with in a similar manner, i.e., no attempt is made to derive 

15 



tests for individual multiple stuck-at faults, instead, there have been attempts to show 

that most multiple stuck-at faults are detected by single stuck-at test sets. 

There are 3n- 1 possible multiple stuck-at faults in a circuit consisting of n nodes. 

Even with the use of techniques such as fault equivalence and fault collapsing [34, 35] 

to reduce the number of faults that need to be considered, it is not possible to bring the 

total number of faults to manageable limits, especially for large circuits. 

For certain classes of circuits, such as two-level combinational networks, and 're­

stricted' internal fanout-free circuits [36], it has been shown that any single stuck-at 

test set will detect all multiple faults. However, most practical circuits do not belong 

to these classes and for general combinational circuits, the undetectability of multiple 

stuck-at faults by single stuck-at test sets is due to fault masking. A detectable fault f1 

is said to be masked by another fault f2, with respect to a test set T, if T detects f1 but 

fails to detect the simultaneous occurrence of f1 and f2. The task of detennining all the 

conditions under which fault masking occurs is as complex as the task of considering 

all multiple faults for test generation [37, 38]. In addition, simulating all multiple faults 

to detennine which of them are covered is not practical, although it has been partially 

carried out for a small circuit, the 74LS181 4-bit ALU [39]. In this study, 16 differ­

ent complete single stuck-at test sets, generated by different methods, were simulated 

against all possible double stuck-at faults. Only four test sets (the longest ones) detected 

all double faults. For the remaining test sets, there were between 1 and 30 undetected 

double stuck-at faults. 

The approach usually adopted in estimating the effectiveness of single stuck-at test 

sets in detecting multiple faults is to theoretically evaluate some lower bounds on the 

multiple fault coverage of these test sets [37, 38]. Impressive multiple fault coverage 

figures can be obtained by such theoretical studies. For example, Jacob et.al [37] show 

that, in a circuit having three or more outputs, at least 99.67% of all multiple faults are 

guaranteed to be detected by any single stuck-at test set, irrespective of the size of the 

circuit. In a small circuit, consisting of 100 nodes, this leaves 1.4 x 1045 undetected 

multiple faults (the total number of multiple faults is 5.15 x 1047)! 

The great majority of multiple faults are of relatively high multiplicities, and these 

faults are easily detected because of their drastic effect on circuit operation. However, 

low multiplicity faults, say up to 5 or 6, are more likely to occur in practice and they 

are more difficult to detect. In [37], it was found that for a circuit of 10000 lines and 5 

outputs, the lower bound on the overall multiple fault coverage of any single stuck-at 

test set was 99.9929%. Using the same calculations employed in [37], we find that the 

lower bound on the coverage of double faults is only around 50%. 

16 



Physical faults that cause a transistor to be permanently on or permanently off, 

independently of the gate voltage value, cannot be readily modelled at the gate level 

[40]. An obvious reason for this is that the gate level representation hides the internal 

structure of the gate. Another reason is that transistor stuck-on faults typically result in 

certain nodes assuming intermediate voltage levels, while transistor stuck-open faults 

give rise to high impedance states. Attempts to adapt the gate level model to these 

types of fault are reported in [41, 42]. The approach is to replace the pull-down and the 

pull-up networks of each gate by separate networks of logic gates controlling a flip-flop 

that simulates the memory effect due to stuck-open faults. Besides the complexity of 

such workaround circuits, they contain nodes that have no correspondence in the real 

circuits. 

The above discussion has shown the limitations of gate level modelling. With the 

advent of VLSI, all the three reasons for the popularity of the single stuck-at fault 

model, mentioned earlier, are becoming irrelevant. First, the simplicity brought about 

by the model is more than offset by the exponential growth in circuit densities, and 

the resulting large numbers of faults that need to be considered. Secondly, there is 

definite evidence that many physical faults can result in faulty behaviour that cannot be 

modelled by stuck-at nodes in a gate-level schematic [26, 27, 28, 29]. Thirdly, the tools 

used for automatic test pattern generation, fault simulation, and testability analysis are 

facing increasing problems for chips of VLSI complexities because of the prohibitive 

computational costs involved. 

From the above discussion, we can formulate the following two main problems in 

modelling circuits at the gate-level: 

• For VLSI circuits, the number of primitive elements (gates) becomes very large, 

leading to a prohibitive number of faults. 

• The fault model at the gate level does not cover all realistic physical faults. 

Unfortunately, efforts have been made to solve the above problems separately and 

this has led to the situation where a solution to one problem exacerbates the other. 

2.3.2 Functional Level Fault Modelling 

Functional-level modelling is usually adopted to cope with the complexity of VLSI 

circuits. At the functional level, digital circuits are represented by an interconnection of 

functional units. Each unit is described in terms of the function it implements rather than 

its internal structure. As an example, a decoder circuit can be described functionally 

17 



as having n inputs and 2n outputs, and in normal operation, only one output line is 

activated, corresponding to the input address. 

The most general functional fault model is based on the appearance of arbitrary 

changes in the truth table of a combinational circuit or in the state table of a sequential 

circuit [20]. In the presence of a fault a combinational circuit withlf\ inputs can therefore 

be changed to any of the 22wt -1 otheffliJ-input combinational circuits. The disadvantage 

of such an approach to fault modelling is that test generation based on this model 

essentially requires exhaustive testing. A simpler alternative approach that has been 

suggested consists of considering stuck-at faults on the inputs and outputs of functional 

units themselves ('pin faults'). However, this was shown to be inadequate even for 

simple functional units [43]. 

A more useful approach is to look at a particular function to determine whether any 

functional fault models are suggested by the function itself. Continuing with the example 

of the decoder circuit, this approach would lead to the following set of functional faults 

[22]: 

• Instead of the correct line, an incorrect line is activated. 

• In addition to the correct line, an incorrect line is also activated. 

• No line is activated. 

For a general function, deriving a list of functional faults, as above, would normally 

require an extensive analysis of the effects of physical faults at lower levels of abstrac­

tion. This analysis needs to be carried out only at the first time a particular function 

is used. However, because there is no limit to the number of possible functional units, 

such analyses have been done only for the most commonly used building blocks in 

VLSI chips (decoder, multiplexer, PLA, RAM, etc.) [29, 44, 45]. 

It should be noted that 'functional testing' was in common use before the introduc­

tion of the stuck-at fault model which caused a shift towards 'structural testing'. The 

renewed interest in functional testing, by test engineers in the first instance, has been 

prompted partly by the unavailability of structural information for many off-the-shelf 

components (microprocessors and their support circuitry). But perhaps the main reason 

for the current interest in functional modelling for test generation and fault simulation 

is that it is hoped that it will bring the same reduction in computational complexity 

brought about by the replacement of gate level simulation by functional simulation. 

However, this does not yet appear to be an immediate prospect. 

18 



2.3.3 Switch Level Fault Modelling 

Switch level modelling was developed in the 1970's primarily to meet the requirements 

of the then emerging MOS technologies. It was made possible by the fact that an MOS 

transistor has a switching behaviour that is closer to that of an ideal switch, unlike a 

bipolar transistor. 

At the switch level, logic circuits are modelled as a set of nodes connected by tran­

sistor switches. MOS transistors are modelled as resistive switches, with the resistance 

being a function of the dimensions of the transistor. Nodes have capacitances associ­

ated with them. In addition to the two logic levels 0 and 1, nodes also have strength 

levels, which take into account the impedance of the node, the impedances of the other 

nodes that are connected to it through MOS transistors, and the conductances of these 

connecting transistors. For a more formal description of these concepts see [46, 47]. 

Switch level modelling is very similar to circuit level modelling as in SPICE for ex­

ample. However, in switch level modelling, transistor resistances, node values, strengths 

and capacitances are confined to a small set of possible discrete values, unlike the ana­

log circuit level modelling. It is more accurate than gate level modelling, for both the 

behaviour and the structure of MOS circuits, while avoiding the high computational 

costs associated with analog electrical models. 

The fact that switch level models operate on a direct representation of transistor 

structure makes it possible to model important phenomenon in MOS digital circuits, such 

as bidirectionality of signal flow and dynamic charge storage. Furthermore, MOS logic 

circuits often contain structures, such as pass transistors and dynamic latches, that have 

no correspondence in logic gates. For instance, a CMOS complex gate, implementing 

a non-primitive logic function, can be represented by a network of primitive gates at 

the logic level, as shown in Fig. 2.3. However, it can be seen that some of the nodes 

on the gate level representation do not exist in the real circuit, while some of the nodes 

in the real circuit have no correspondence in the gate level representation. 

The most appealing feature of switch level modelling is the ease of modelling faults 

without the need for the complex work-around circuits that have to be added for gate 

level modelling, especially for CMOS faults. For instance, stuck-open and stuck-on 

faults can be modelled by setting an MOS transistor resistance to a very large (infinite) 

value or to zero. Alternatively, a stuck-open fault can be modelled by inserting a series 

transistor with the gate tied to a fixed value. Similarly, stuck-on faults can be modelled 

by adding parallel transistors. Line breaks and bridging faults can be modelled by just 

breaking or adding connections. 

19 



A 

B 

A 

c 

Figure 2.3 A CMOS complex gate and its gate level representation. 

Rajsuman et.al. [48, 49] found that switch level modelling of bridging faults in 

NMOS and CMOS complex gates can be in good agreement with the equivalent circuit 

level modelling. The only difference between the two was that when the switch level 

analysis results in an indeterminate value, the circuit level analysis can often predict a 

definite voltage. However, this voltage is so dependent on the circuit parameters used 

that it is best taken as indeterminate. 

Hayes [46] claims that the adoption of switch level modelling of fault-free circuits 

results in only a moderate increase in computational costs, whereas Bryant [47] claims 

that it can be implemented without incurring any increase at all, compared to gate level 

modelling. However, when it comes to fault modelling, the switch level is clearly more 

computationally intensive, since the number of primitive elements is much larger, and 

the set of possible faults per primitive element is also larger than in gate level models. 

2.3.4 Layout Level Fault Modelling 

Analyzing the effects of manufacturing faults at the layout level is not as widespread as 

the higher modelling levels mentioned in the previous sections. In fact, only a single 

research group advocates its use [50, 51, 52], and it is included here only because of 

the somewhat controversial results reported by this group. 

In their first paper [50], the authors describe the method, called 'inductive fault 

analysis', by which they relate point defects to faulty behaviour at circuit level and then 

logic level. The method consists of injecting spot defects of random sizes, at random 

locations on the layout, and then extracting the resulting electrical circuit and analyzing 

it to determine any deviations from the fault-free circuit. The sizes and locations of 

20 



the defects are randomly generated so that they follow probability distribution functions 

usually observed on processing lines. The observed faults are then ranked according to 

their frequency of occurrence, hence the label 'realistic'. 

The results of the application of inductive fault analysis to n-MOS circuits are 

reported in [51]. It is indicated that only 10% of the simulated defects actually produce 

significantly faulty behaviour at the circuit level. Among these, only 28% of the faults 

can readily be modelled by line stuck-at faults at the gate level. It is also pointed out 

that most of the transistor stuck faults can be 'implicitly' modelled by the classical 

line stuck-at fault model, which is not surprising for an n-MOS circuit. This makes 

the classical fault model able to account for 64% of all possible faults. Although the 

simulation involved an n-MOS circuit, it is pointed out that less than 3% of the faults 

were transistor stuck-off faults. 

In their latest paper [52], the authors apply their method to CMOS circuits. It is 

found that, for the simulated circuits, the classical single stuck-at fault model accounts 

for less than half of the faults. Furthermore, it is claimed that the adoption of switch 

level modelling provides little improvement. It is claimed that only 1% of the faults 

result in the sequential behaviour due to transistors being stuck-off. It should be noted 

that 70% of the transistors in the example circuits used by the authors are either pass 

transistors or parts of an inverter. Although the authors recognise that this might be the 

reason for the very low percentage of stuck-open faults resulting in sequential behaviour, 

they still maintain that this type of fault does not deserve the considerable research effort 

devoted to it in recent years. Shen [53] considers such type of faults as being arbitrary, 

and the research devoted to it as an academic exercise. 

It should be noted that a large proportion of the simulated defects reported in the 

above papers resulted in breaks. The authors do not seem to realise that a break is a 

potential source of CMOS stuck-open faults. For example, in the NAND gate, shown 

in Fig. 2.4(a), four out of the seven possible breaks shown result in stuck-open faults, 

whereas in the EX-OR gate at (b) all possible breaks result in a stuck-open faults. 

Besides the controversial results, inductive fault analysis is believed to go against 

the philosophy of integrating design and test activities. If a chip designer has to wait 

until the layout phase is completed to find out that the chip is difficult to test, then it 

would be very expensive to redesign the chip so that it is easily testable. Furthermore, 

the suggested approach of submitting a ranked fault list for test pattern generation is 

attractive only to the person generating the tests: it allows him/her to claim impressive 

fault coverage, since tests are generated for the most likely faults and these faults are 

given a higher weight in computing the fault coverage. From a user's point of view, the 

21 



A ~ 

(a) (b) 

Figure 2.4 Possible sites of CMOS stuck-open faults. 

presence of an undetectable fault is unacceptable, even if the fault has a low probability 

of occurrence. 

2.4 FAULT DETECTION 

Fault detection is the cornerstone of any fault-tolerance strategy. Several techniques 

for fault detection have been developed over the years. They can be broadly classified 

as either off-line or on-line detection techniques. In off-line fault detection, the normal 

operation of the circuit is interrupted and a stimuli are applied to the circuit to produce 

errors at the outputs if a fault is present. In on-line techniques, error detection is per­

formed during normal operation by monitoring the output of the circuit or by some form 

of repetition of the function of the circuit. Duplication is the standard for comparison 

with all other fault detection techniques, since it is the simplest and it covers a wide 

variety of fault types. 

There is a fundamental difference between off-line fault detection and on-line error 

detection that is often overlooked. In off-line techniques, stimuli are applied to the cir­

cuit so that, if a fault is present, an erroneous output is produced. Thus, they effectively 

detect the presence of faults by producing errors at the outputs. On-line error detection, 

on the other hand, will detect a fault only if and when the fault produces an error. 

For example, single error detecting schemes will, eventually, detect only those faults 

that result in a single error at the output. This does not imply that all single faults are 

eventually detected, since a single fault can cause more than one output to be erroneous. 

When deriving a test for a fault which causes more than one output to be erroneous, 

22 



the fault is considered to be easily detectable, whereas in on-line detection techniques, 

this situation is undesirable. 

The various fault detection techniques are discussed in the next subsections. 

2.4.1 On-Line Error Detection Using Coding Techniques 

Coding techniques, as applied to digital circuits, are based on the idea that if, for 

an m-output circuit, only k out of the 2m possible output combinations may occur 

in a fault-free circuit , then the occurrence of any of the remaining 2m - k output 

combinations is an indication of the presence of a fault. The outputs of the circuit under 

consideration (CUC) are continuously monitored by another circuit, called a checker, 

for the occurrence of invalid outputs. The combination of a CUC and its checker 

then becomes a self-checking circuit (see Fig. 2.5a). Formally, the k valid output 

combinations are called 'code words' and the remaining 2m - k output combinations 

are called 'non-code words'. For example, in a decoder circuit only one output line 

should be activated at a time. This fact can be used to design a simple circuit that will 

check for correct operation as illustrated in Fig. 2.5(b) where the outputs are assumed 

to be active high. Here, all the output code words will have exactly a single 1 and 

seven Os. Note that if a fault in the decoder causes an incorrect line to be activated, 

then the checker will not detect it. This is because the fault has changed one code 

word into another, incorrect, code word. In addition, a stuck-at 1 fault on the output of 

the checker is undetectable. Solutions to the above problems, and some others, will be 

discussed in the following. 

cue 

(a) 

"""' Checker 

~ 
Error 

Signal 

3-to-8 
Decoder 

(b) 

Figure 2.5 A self-checking circuit (a) and a self-checking decoder (b). 

If a circuit function allows all 2m possible output combinations, which is the case in 

most practical circuits, then there are two approaches to the use of coding techniques for 

error detection. In the first approach, the number of outputs is increased to some value 

23 



m 1 so that there would be 2m1-m output combinations that are non-code words. In 

addition, if the faults on the inputs to the circuit are to be detected, then it is necessary 

to increase the number of inputs so that a proportion of the input combinations would 

be invalid, or non-code words. Although the number of inputs and outputs can be 

augmented in an arbitrary fashion, and the circuit redesigned accordingly, in practice, 

this augmentation is carried out using error detecting codes [54, 55]. Once a code has 

been selected, the circuit must then be redesigned in such a way that: 

1) any fault in the circuit must cause the output to be either a non-code word or the 

correct code word, but never an incorrect code word, and 

2) for each fault in the circuit, there must exist at least one input code word that would 

produce a non-code word at the output, if the fault is present. 

A circuit that has property 1) is said to be fault-secure. Fault-secureness ensures 

that the circuit output is either correct or, if it is incorrect, it is a non-code word and 

hence it is detected by the checker. A circuit having property 2) is said to be self­

testing. This property ensures that every fault will eventually produce a non-code word, 

and therefore, will be detected by the checker. A circuit that is both fault-secure and 

self-testing is called a totally self-checking, TSC, circuit [54]. 

To address the problems of faults in the checker itself, it is necessary to make the 

checker totally self-checking as well. However, since the inputs to the checker, i.e., 

the outputs of the circuit, are already encoded, the design of a totally self-checking 

checker is usually simpler than the design of a TSC circuit Figure 2.6 shows the 

resulting general form of a totally self-checking network when both the circuit under 

consideration and the checker are totally self-checking. 

nllines 

Totally 
Self-Checking 

Circuit 

mllines 

Error 
Signal 

Figure 2.6 The general fonn of a totally self-checking network. 

24 

m lines 



It should be noted that if the encoder and the decoder are considered to be part of 

the network, then it is no longer a TSC network. Faults in the encoder may result in 

an incorrect code word being applied to the circuit, and so that some faults will not be 

detected. The detection of faults within the encoder requires that the encoder itself be 

totally self-checking, i.e, a second encoder is needed before the first one. Similarly, the 

detection of faults in the second encoder requires a third encoder, and so on, ad.finitum. 

The same problem exists on the output side: if faults in the decoder circuit are to be 

detected, then the outputs of the decoder must form a code that is decoded by another 

decoder. These problems can be lessened, but not eliminated, if the inputs to the cue 
are already encoded, and if the outputs do not need to be decoded before being used 

by subsequent units. This requires that the same coding scheme be used uniformly 

throughout the system. 

There is no systematic method for designing an arbitrary circuit so that it is totally 

self-checking. Most, if not all, publications on the subject concentrate on the design 

of totally self-checking checkers for different codes, and the design approach usually 

consists of designing a checker and then verifying that it is TSC. 

The second approach in using coding techniques for concurrent error detection does 

not require the redesign of the CUC so that it is TSC, as illustrated in Fig. 2.7. It is 

therefore somewhat simpler than the first approach. Only separable codes can be used 

in such a manner and most applications of coding techniques in digital circuits use this 

approach. The only section that is TSC is the comparator even though such a structure 

is able to detect all single errors. Note that this is different from single fault detection. 

A single fault in the CUC may cause more than one erroneous output that may not be 

detected. 

The output code generator in this approach is simply an encoder. It is clear that 

the output code prediction requires some knowledge of the function implemented by 

the CUC. In the simple case of an adder circuit using a residue code, for example, 

the output code prediction involves generating the check bits of the input operands and 

summing these check bits. In more general cases, the output code prediction circuitry 

can be as complex as the functional circuit. 

The absence of any uniform error detecting code that can be used in any digital 

circuit has resulted in the situation where many of the practical implementations of 

on-line error detection employ a variety of techniques. For example, data storage and 

transmission are protected by parity coding, arithmetic operations use residue coding or 

duplication, and random logic is usually duplicated. 

25 



Inputs 

cue 

Outputs 

Checker 

Error 
Signal 

Figure 2. 7 Second approach to concurrent error detection. 

An attempt has been made by Sayers et. al. [56, 57] to show that residue codes 

can be used as a unified error detection scheme. However, as early as 1970 [58], it 

was shown that the application of residue codes to adder circuits, for which it is most 

suited, is more costly, in terms of hardware overhead, than the simpler parity coding, 

unless the-addition operands are already provided with the check bits. In a more recent 

paper [59], Elliot and Sayers prefer to use the simpler parity codes in a design which 

is virtually identical to the one presented in [57]. 

Crouzet and Landrault [60] evaluated the sizes of the encoders and the checkers 

for different codes, and found that the least expensive was parity coding followed by 

simple duplication, and the most expensive was residue coding. 

In a recent study, Yen et. al. [61] describe the application of coding techniques to a 

microprogram control unit, where parity coding is used for storage elements, and Berger 

codes are used for PLAs, with duplication of some parts of the chip. This is typical of 

most on-line error detection applications. It should be noted that in circuits containing 

large ROMs or RAMs, impressive results have been reported for area overhead of 

on-line error detection schemes, since the addition of a single check bit will provide 

single error detection in these circuits. In some cases, the chip is deliberately designed 

using ROMs and PLAs, instead of random logic, so that these coding techniques can 

be efficiently implemented [ 62]. 

The discussion in this section is meant to highlight the following characteristics of 

coding techniques: 

26 



• The hardware overhead is high. 

• The coverage of physical faults is low. 

• There is no coding scheme that can be used effectively for different functions. 

• The problems associated with the detection of faults in the added circuitry are much 

worse than in the case of off-line fault detection techniques. 

2.4.2 On-Line Error Detection Using Time Redundancy 

Time redundancy techniques attempt to reduce the extra hardware at the expense of 

using extra time. The basic concept is that the same hardware is used in different ways 

at different times so that comparison of the outputs will allow errors to be detected. 

The simplest approaches to time redundancy techniques were developed for iterative 

circuits where they require a doubling of the execution time. Recomputing with shifted 

operands (RESO) [63, 64], achieves error detection by performing the same operation 

twice. In the first phase, the inputs are applied to the iterative circuit and the outputs 

are stored in a register for later comparison. In the second phase, the inputs are first 

shifted to the left by k positions, say, and then applied to the circuit. The output is 

then shifted to the right by k positions and compared with the previous output. Any 

disperancy indicates the presence of an error. For one-dimensional iterative arrays, this 

method is straightforward and requires simply the extension of the iterative array by k 

cells, a comparator, a register, and the circuitry for operands shifting. The extension 

of this method to two-dimensional arrays is described in [65]. In a similar approach, 

called recomputing with swapped operands [66], the inputs are swapped in the second 

phase, instead of being shifted. 

Although these approaches use time redundancy, they still require a large amount 

of extra hardware. In [66], it is shown that the application of RESO technique to an 

adder results in a larger overhead than with a simple duplication. A new technique is 

proposed for the adder circuit in [66] which requires less hardware than duplication and 

uses two phases to complete the addition of two operands. The n-bit adder, as well as 

the operands, is divided into lower and upper halves with each half consisting of n/2 

bits. In the first phase, the lower halves of the operands are added in both halves of the 

adder, the results are compared and one result is stored to represent the lower half of the 

final output. In the second phase, the same operation is repeated with the upper halves 

of the operands. The reduction in hardware is due to the fact that the register and the 

comparator are less than half the size of those required in the RESO approach. Also, 

27 



the selection between upper and lower operand halves requires less circuitry than the 

shifting of operands. This method is also shown to be faster than the RESO technique. 

Another approach, which does not require a circuit to be an iterative array, is 

alternating logic. In this technique, all binary variables are required to be alternating. 

A binary variable Xi is said to be alternating, denoted by the 2-tuple (xi, Xi), if its 

true value during one time interval is followed by its complemented value during the 

next time interval [67], i.e., (xi, x.i) assumes values from the set {01, 10}. A circuit in 

which the output variable alternates when synchronised alternating variables are applied 

as inputs, is called an alternating circuit. In order for an arbitrary function f to be 

implemented by an alternating circuit, it must satisfy the condition f(X) = f(X), which 

is the definition of a self-dual function. It is evident that not all combinational functions 

are self-dual. However, it can be proved that any arbitrary function f of n variables 

can be represented as a self-dual function f* of n + 1 variables. Moreover, the added 

variable is essentially a clock which changes the function realised from f*, when the 

clock is 1, to f* when the clock is 0 [67]. 

By analogy with the theory of totally self-checking circuits, an alternating circuit 

is said to be totally self-checking if for every fault there exists at least one alternating 

input (X, X) which produces a non-alternating output (the self-testing property), and 

also that there exists no input (X, X) which produces an erroneous alternating output 

(the fault-secureness property). However, it is known that not all alternating circuits are 

fault-secure. Only those faults that result in a non-alternating output are detected. For 

example, if a stuck-at fault is sensitised by both input vectors X and X, it will result 

in an incorrect alternating output. Conditions under which this situation may occur are 

discussed in [67]. In addition, the transformation of an arbitrary function into a self-dual 

function may require a 100% increase in hardware. 

A class of self-exercising combinational circuits is introduced in [68] which tries to 

combine the properties of alternating logic and totally self-checking circuits. In addition 

to the requirements of alternating logic, that all logic variables must be alternating 

variables, all variables are also duplicated in such a way that a zero on a line in the 

normal circuit will be represented by a (01) on the two lines of the self-exercising 

circuit and a logic 1 is represented by (10) (dual-rail variables). This results C~!i~ 

massive hardware redundancy, even more than Triple Modular Redundancy, TMR, and 

offers only error-detection and not error correction. 

An approach, which does not belong to the category of on-line error-detection 

techniques, but is worth mentioning in this section, uses the idle time in a two phase 

design to apply tests to the dormant logic in a circuit [69]. Dormant logic is that part of 

28 



a circuit that does not participate in data processing during some interval of time. The 

approach does not provide on-line error-detection in that the dormant logic is exercised 

by test vectors instead of the actual data, but this is done concurrently with normal 

operation. The approach is conceptually simple, and the additional hardware may also 

be used for off-line built-in test. 

Another approach, close to the above one, is presented in [70], where the normal 

operation of a self-checking microprocessor is periodically interrupted to apply part of 

an off-line test sequence. This points to the important fact that even for on-line fault 

detection, off-line testing is still necessary. This has already been recognised explicitly 

in [71] and implicitly in [72]. 

2.4.3 Off-Line Fault Detection 

Off-line fault detection, or simply testing, is carried out by manufacturers to ensure that 

the devices contain no manufacturing defects, by the users of such devices in what is 

called incoming inspection before the devices are assembled into systems, and it is also 

performed as part of maintenance activities. 

All testing involves three steps: test pattern generation, test evaluation, and test 

appJication. In the following, these three steps are described in more detail mainly to 

highlight the difficulties encountered in each of them. 

a) Test Pattern Generation 

The test pattern generation task consists of deriving a set of test vectors that will 

detect all faults from the assumed fault set. It is a tedious task, even for computers 

and, therefore, it was one of the first digital design related activity to be investigated 

for automation [73]. 

Many algorithms and procedures have been developed over the years for Automatic 

Test Pattern Generation, ATPG, of which the D-algorithm [74] is the most prominent. 

Other ATPG approaches [75, 73], developed subsequently, are basically improvements 

over the D-algorithm, in terms of computational efficiency. 

The problem of fault detection in general combinational circuits has been shown to 

be NP-complete [76], i.e., it is unlikely to be possible to find an algorithm that would 

derive a test for a fault in a time that is PQlynomial in the number of input lines and the 

number of gates. Polynomial time algorithms have been developed only by restricting 

the structure of combinational circuits such as by limiting the number of inputs to each 

gate, or by restricting the interconnection patterns between gates etc. [77]. According to 

29 



empirical studies [78], the cost of generating tests for 100% coverage of single stuck-at 

faults is proportional to the square of the number of gates. 

Recent developments in ATPG have used heuristics and other techniques borrowed 

from artificial intelligence in an attempt to reduce the computational costs [79, 80]. 

Some researchers propose the elimination of ATPG altogether and suggest the use of 

randomly generated test patterns or exhaustive testing [81, 82]. The interest in random 

testing stems from the fact that the first few vectors detect a large number of stuck-at 

faults, regardless of the method used for their generation. However, as the number of 

random vectors increases, the number of faults detected by each vector decreases. In 

exhaustive testing, the problem of excessive test lengths due to large number of inputs 

is tackled by partitioning [81, 83]. The circuit is partitioned in such a way that the 

partition with the largest number of inputs can be tested in a reasonable time. Note that 

the general problem of circuit partitioning is NP-complete [83, 84] as the problem of 

test derivation. 

The major disadvantage of random and exhaustive testing is that they both are 

based on the stuck-at fault model. Also, they require much longer test sequences than 

deterministic test generation. There might even be random pattern resistant faults [85] 

that cannot be detected by random test sequences. This led some researchers to 'bias' the 

random pattern generation to improve the fault coverage and decrease the test sequence 

lengths [86, 87, 88], whereas others attempted to design circuits so that they are testable 

by random patterns [89, 90]. Another problem with random testing is in estimating the 

fault coverage [91, 92]. Fault simulation is the principal means of determining the fault 

coverage, but given the longer test sequences, this requires excessive computational 

times. 

While the problem of ATPG for combinational circuits is considered as 'solved' 

by some [54] and only 'trackable' by others [92], the problem of ATPG for sequential 

circuits has still not received an acceptable solution [93]. Bennetts in [94] gives sev­

eral examples to illustrate the difficulties encountered in generating tests for sequential 

circuits. One of the main difficulties seems to be the fact that a sequence of patterns is 

required to sensitize a fault and another sequence is required to propagate the fault to 

an observable output, whereas in the case of combinational circuits, a single test pattern 

performs both the sensitisation and the fault propagation. 

Various attempts have been made to extend the D-algorithm to sequential circuits 

[54]. However, 'it is very easy to design a circuit that defeats the proposed procedures' 

[94] and there is still no general purpose algorithm that suits complex sequential circuits. 

30 



The current trend is to constrain the design of sequential circuits to some structured 

design methodologies, as will be discussed in Section 2.4.2. 

All the above problems are exacerbated to a large extent if non-classical faults, such 

as CMOS stuck-open and stuck-on faults, are taken into consideration. 

Finally, it should be noted that all test pattern generation algorithms and procedures 

that rely on fault enumeration, i.e., consideration of each individual fault separately and 

derivation of a test for it, are of limited use when the number of faults becomes very 

large as in VLSI. 

b) Test Evaluation 

The test evaluation task is the process of estimating the effectiveness of a test 

set in detecting the faults. Fault simulation is the principal means of evaluating the 

effectiveness of test sequences derived by the test generation process [95]. The list of 

target faults is often kept deliberately small in order to reduce the computational costs 

of test pattern generation. Once a test sequence has been derived, fault simulation is 

used to see whether it also detects other faults not included in the fault list. Another 

important use of fault simulation is in the test generation process itself. After an input 

pattern has been derived for testing for a particular fault, it is usual to invoke the fault 

simulator to see what other faults are also detected by this vector so that they can be 

dropped from the fault list [92, 96]. 

For a circuit consisting of G gates, the cost of fault simulation is proportional to an, 
where n ~ 2 [78]. Various methods have been developed to speed up fault simulation, 

ranging from purely software methods [95] to dedicated hardware accelerators [97]. 

c) Test Application 

Test application has traditionally been carried out on automatic test equipment that 

feed the circuit with test vectors and evaluates its output response. Test application is 

carried out differently, depending on whether the chip is tested by itself or as part of a 

printed circuit board. The former situation occurs after the chip manufacturing stage and 

at the incoming inspection, whereas the latter occurs after the PCB assembly stage and 

in maintenance activities. In the following, the problems involved in the test application 

to a chip by itself will be discussed, noting that these problems are aggravated when 

applying test patterns to a chip that is mounted on a PCB. 

The test sequence is applied to the chip by equipment that must also store the 

expected output response for comparison with the actual chip response. Two major 

drawbacks result from this approach. The first is that it is difficult to exercise the chip 

31 



at its maximum operating speed so that the usual approach is to apply the test sequence 

at a much lower frequency (static testing), and then check some of the timing parameters 

of the chip, such as propagation delays, with a few extra input patterns (dynamic testing). 

This is clearly unacceptable, since the dynamic testing is not comprehensive enough. 

The second problem is that, for a typical VLSI chip, the amount of data to be stored 

on the tester (test sequence and expected response) can very easily become enormous 

and exceed the tester storage capability. 

Many solutions have been devised to address this problem . A first method consists 

simply of comparing the chip output response to another similar chip that is assumed to 

be fault-free (called a golden unit). In all other methods, the basic idea is to compress 

the output response into a 'signature' and then compare it with a precomputed correct 

signature, instead of performing a bit-by-bit comparison. The various methods differ in 

the techniques used for the data compression. In transition counting [98], the number 

of transitions in the output response constitutes the signature. In signature analysis [92], 

the output response is represented by a polynomial. It is divided by the characteristic 

polynomial of the signature analyzer, and the remainder of this division is compared to 

a precomputed remainder. 

It is clear that two completely different output sequences can have the same tran­

sition count or the same remainder, when divided by a certain polynomial. Therefore, 

not all erroneous output sequences will be caught by test response methods that rely 

on data compression. Furthermore, it is difficult to analyze the conditions under which 

this problem occurs [99, 100]. 

2.4.4 Design for Testability 

Design for testability aims at avoiding the problems discussed above. The concept was 

introduced by workers involved in testing activities who realised, long before the advent 

of VLSI [101], that testability issues should be addressed at the design stage. Another 

reason that prompted considerable research in the field was the unsolved problem of 

test generation for sequential circuits. This resulted in guidelines for designers which 

consisted in avoiding circuit structures that are difficult to test, and the provision of 

some test aids in the design, such as addition of test points, global reset lines, etc. An 

extensive list of such guidelines can be found in [93]. 

The above guidelines are usually qualified as ad-hoc techniques, in that, each par­

ticular design requires special consideration for their application. More structured testa­

bility techniques appeared with the introduction of latch scan arrangements [ 1 02] that 

32 



reduced the problem of testing sequential circuits into that of testing combinational cir­

cuits. All latch scan arrangement methods share the same principle, in that they aim to 

gain access to the latches within the circuit to control and observe them for test pur­

poses. All methods achieve this aim by configuring the latches so that they form a shift 

register that is accessed by serially shifting in or shifting out bit patterns. The exception 

to this is random-access scan [103] where the latches are arranged in a configuration 

similar to that of a random access memory so that they can be accessed in a similar 

manner. 

Configuring the latches for a scan arrangement so that they form a shift register 

requires additional area [104]. However, the need to devote a small part of a chip 

to testing purposes has been recognised and accepted, even by chip manufacturers, 

especially since the introduction of IDM's version of scan path, the Level-Sensitive 

Scan Design (LSSD) [92, 102]. 

A major drawback of scan latch arrangements is that the application of a test pattern 

to a combinational section involves the shifting in of a lengthy string of bits, and 

observing the output response involves a similar operation. This increases the time 

required to apply a single test vector by 2n times, where n is the number of latches in 

the design. Solutions to this problem consist of configuring the latches into a number 

of shift registers instead of a single one [ 105]. Other methods, called partial scan [ 106] 

advocate the incorporation of only some of the latches into the scan path. 

The extension of scan path techniques for testing CMOS stuck-open faults presents 

some problems. A CMOS stuck-open fault is detected with an ordered pair of vectors: 

an initialisation vector followed by a test vector. In the process of shifting-in the second 

vector, after the application of the first one, the combinational circuit under test will 

see many input patterns that are very likely to invalidate the initialisation. One solution 

would be to use a 3-latch scan register, one of which is not included in the scan chain 

and is used to hold the initialisation input until the test input has been shifted-in. Liu 

and McCluskey [107] consider that the 3-latch scan register introduces too high an area 

overhead. Their proposed solution is based on the use of "simplified" two-pattern tests, 

where it is assumed that the all-1 input to a CMOS gate sets the output to 0 and the 

all-0 input sets the output to 1. If a gate receives both input x and x then they must 

be assigned the same. value when applying the all-0 or the all-1 inputs. The conversion 

of a combinational circuit into a circuit that is testable with simplified two-pattern tests 

requires an area overhead ranging from 7% to 19% (before the introduction of scan­

path). In addition, an embedded gate in the transformed circuit must not have both x 

and x as inputs, which is not always possible to ensure. If a circuit is testable with 

33 



simplified two-pattern tests, then a simple modification of the scan-register can be used 

to test CMOS stuck-open faults in a scan-path design [107]. 

Boundary scan [108], is an extension of scan path techniques that is aimed at helping 

test and diagnosis of digital boards populated with VLSI devices and surface mounted 

components. 

Once the latches have been reconfigured into shift registers, it takes little extra 

hardware to convert them into test pattern generators (typically Linear Feedback Shift 

Registers, LFSR's) and/or test response evaluators (signature analyzers). Performing 

such a conversion will result in a design that will test itself, Built-In Self-Test BIST, 

which has been described as the ultimate solution in design for testability [109]. Be­

cause such a conversion requires little extra hardware, above that required for a scan 

path, most of the reported approaches to BIST rely on pseudo-random testing [110, 

111, 112], using test patterns generated by an LFSR with response evaluation by sig­

nature analysis. These approaches suffer from the same problems as in random testing, 

mentioned in the previous section, namely, the detection of non-classical faults is not 

addressed, the long near-exhaustive test sequences, and heavy reliance on simulation 

for the computation of fault-free signature and assessing the fault coverage. Pseudo­

exhaustive testing alleviates some of the problems of pseudo-random testing [113, 81]. 

Exhaustive test sequences can detect all stuck-at faults. 

The volume of data representing the test response of a circuit is directly related to 

the length of the test sequences, which are much longer in pseudo-random and pseudo­

exhaustive testing than in the case where test sequences are generated in a deterministic 

manner. Therefore, the only option for processing the test response data is to compress 

it into a much smaller amount, referred to as signature. The different data compression 

approaches used in testing are described in [92]. 

An obvious limitatio~test data compression is as follows: if a fault in the circuit 

under test produces an output response that has the same signature as the fault-free 

response, then the fault is not detected. Furthermore, it is clear that many different 

sequences can have the same number of 1 's, the same number of transitions, or can 

yield the same remainder when divided by a given polynomial. 

Signature analysis is, by far, the most popular approach. An m-bit long circuit 

response is compressed into an n-bit signature, where m is much larger than n. In this 

case, there are 2n signatures and 2m possible circuit responses, only one of which is cor­

rect. Therefore, there are approximately 2m-n different sequences that get compressed 

into the same signature, so that 2m-n - 1 faulty circuit responses are compressed into 

the correct signature. If n = 16 and m = 1024, for example, then there are 21008 - 1 

34 



faulty responses that would escape detection. This phenomenon is known as aliaising. 

Aliaising errors effectively reduce the fault coverage of the input test sequence. Even 

when the input test sequence achieves a 100% fault coverage, some of the fault may 

escape detection if signature analysis is used to process the circuit response, thus, re­

ducing the effective fault coverage. Furthermore, it is very difficult to determine all the 

conditions under which aliaising errors occur [100]. The determination of the fault-free 

signature also requires long simulation times. 

Finally, it should be pointed that the literature contains many articles about the 

benefits and necessity of built-in self-test [114, 78]. This contrasts with the timid 

attempts made in commercially available integrated circuits [115, 116, 117, 118, 119]. 

If chip designers are reluctant to sacrifice silicon estate to improve testability, yield 

or reliability, they will be even more reluctant to sacrifice performance for the above 

goals. When a new microprocessor is released, the publicity stresses the number of 

MIPs rather than the cost of testing the microprocessor or its mean time to failure! 

2.5 FAULT CORRECTION 

Although fault-detection is important for fault-tolerance, it does not by itself provide any 

protection against faults. Having an indication of the presence of a fault is preferable 

to using an incorrect output, but it is sometimes necessary to correct the output from 

the faulty value. 

In certain circumstances, a warning of the presence of a fault is quite adequate, 

such as in cases where temporary interruption of operation is not detrimental so that 

maintenance can be carried out. Note that in these cases, the duration of the interrupted 

operation and the cost of maintenance is directly related to the resolution of the fault­

detection mechanism. The smaller the part reported as faulty, the higher the resolution, 

and thus, the shorter the down-time and the lower the maintenance cost. This fact alone 

makes the fault-detection attribute nearly as important as the fault-correction one, since 

a large proportion of the electronic systems in current use fall into this category. 

However, there are many critical applications where interrupted operation cannot be 

tolerated and/or maintenance is impossible, and the number of such applications is on the 

increase because of the growing reliance on electronic systems in practically all aspects 

of our life (hospital patient monitoring equipment, aircraft and car electronics, real-time 

control computers, etc.). Generally speaking, interrupted operation cannot be tolerated 

in real-time systems where quick response is of paramount importance. Maintenance 

may also be impossible, or very costly, in remotely sited installations, such as space born 

35 



applications. In such situations, it is mandatory to provide the correct outputs despite 

of the presence of faults. 

As far as integrated circuits are concerned, and as was discussed in Section 2.2, faults 

are the result of manufacturing defects and physical failures during normal operation. 

Normally, all chips containing manufacturing defects are thrown away. H possible, 

even those chips containing weaknesses that would result in an early failure are also 

discarded. However, as chip areas are increased and feature sizes are decreased from 

year to year, a large proportion of the manufactured chips may have to be discarded, 

resulting in lower yields and higher cost per chip. The response from manufacturers 

was to depart from the usual practice of throwing away defective chips by trying to 

repair them instead. So far, however, the only commercially available products for 

which fault-tolerance is routinely and successfully adopted are high density memories 

[120]. 

When a chip fails in normal operation the situation is very different. Currently, it 

is unthinkable to send back a chip to the manufacturer to be repaired (however, this 

might be an option when unit chip costs are high enough, and the cost of repairing them 

is sufficiently low; in which case the cost of repair will almost certainly be dominated 

by the cost of fault diagnosis). Other approaches, similar to the ones developed over 

the years to cope with electronic system unreliability have to be used for fault-tolerant 

integrated circuits. 

Fault-tolerance strategies that are aimed at repairing manufacturing defects will be 

referred to here as defect-tolerance. Similarly, techniques developed for operational fail­

ures will be referred to as failure-tolerance. In the following sections, it will be seen that 

current defect-tolerance strategies cannot generally be used for reliability improvement, 

although many failure-tolerance techniques may also be used for yield improvement 

The discussion does not address the question of whether 'what is good for yield is good 

for reliability' [19]. This question seems to be more involved with process engineering 

(which is beyond the scope of the thesis) rather than with chip design. For instance, to 

lessen the problems of electromigration in aluminium interconnects, layered structures 

have been suggested [121]. However, this requires a more complex process which is 

inherently more prone to defects so that it has a lower yield to achieve a longer lifetime. 

As far as chip design is concerned, it will be seen in Chapter 5 that the introduction 

of redundancy into a design can be beneficial to both yield and reliability, and that the 

only instances where trade-offs between the two might be necessary are in choosing 

the optimum amount of redundancy, the distribution of the redundancy and the way the 

chip is partitioned. 

36 



In the following sections, we will first discuss the various ways of repairing a 

defective chip, mentioning the reasons of their suitability or unsuitability for failure­

tolerance. This is followed by a description of the many possible ways so far devised 

to tackle operational failures and their relevance to defect-tolerance. 

2.5.1 Defect-Tolerance Strategies 

As soon as manufacturers mastered their art in making chips, they started investigating 

ways of increasing the number of devices they can put on a single die to get higher 

densities and more functionality [122]. They were rapidly confronted with the problem 

of the occurrence of mainly random manufacturing defects, which was much worse in 

those times than today. Their approach was to limit the die size so that the probability 

of having a defect on it is reasonably small. However, the resulting die size limits were 

too small (and the feature sizes too large) for implementing the highly complex circuits 

aimed at It became apparent that the presence of defects on the die has to be accepted, 

and the problem statement became 'how to get a correctly functioning chip out of a die 

containing defects?'. It was also realised that a solution to this problem will allow the 

manufacturing of whole-wafer circuits, with all the potential benefits that would result. 

Implementing wafer-scale integrated circuits was, and still is, the driving force behind 

the development of defect-tolerance strategies. 

The earliest defect-tolerance approach was discretionary wiring [123, 124]. It con­

sisted of probe testing the wafer before the circuits are completely connected and then 

tailoring a metallisation pattern to connect up the working cells. This approach suffered 

from three problems. The first is that probe testing might add defects to the wafer by 

probe damage or contamination. The second is that each individual wafer requires its 

own metallisation pattern because of the random distribution of defects across wafers. 

The third problem is that the final metallisation patterning must be defect-free. The 

problem of testing was addressed in [ 125] where it is suggested that an initial metallisa­

tion layer should be included solely to facilitate testing, and that it should be selectively 

removed afterwards (this work also addressed other testability issues). The problem 

of the number of individual chip metallisation patterns is addressed in [126] where it 

is shown that under certain circumstances, the same metallisation pattern may be used 

for several wafers. Another discretionary wiring technique, which was ahead of its 

time, was proposed by McKintosh and Green [127]. An electron-beam, controlled by 

a computer holding a map of the wafer's defective cells, is to be used to pattern the 

metallisation layer. 

A disadvantage of discretionary wiring, and all methods that rely on mask pro­

grammability, is that they are not suitable for large production runs. The approach is 

37 



also dismissed as a defect-tolerance strategy in many publications on wafer-scale inte­

gration [128], but it has been used successfully in a recent design of a wafer-scale FFf 

processor at Fujitsu [129]. The technique is also being considered as a solution to the 

problem of speed losses due to long interconnect in WSI [130]. 

In current defect-tolerance approaches, the interconnections between cells are in­

terspersed with switches that are programmed, after manufacture and test, to connect 

or disconnect cells. The various methods differ in the technological implementation of 

the switching mechanism. Figure 2.8 shows a possible classification of the different 

switching mechanisms [ 131]. 

Switches 

----Non-Volatile 

Non-Volatile 

Reversible 

Volatile 

Physically 
Programmed 

Electrically 
Programmed 

Physically 
Programmed 

Electrically 
Programmed 

Electrically 
Programmed 

Figure 2.8 Classification of the switching mechanisms. 

Laser fuses 
& anti-fuses 

Electical fuses 
& anti-fuses 

Floating-gate 
FETs 

Double-gate 
FETs 
MNOS 
FETs 

In laser restructuring, fuses and anti-fuses are laser-programmed to connect/disconnect 

cells to/from a network of cells [128]. Electrically-programmable fuses and anti-fuses 

[132, 133], where high electrical currents are used to make or break connections, are 

38 



proposed to alleviate some of the deficiencies of laser restructuring, such as the require­

ment of expensive laser optics and low throughput. The use of floating-gate transistors 

programmed by an electron-beam, in place of the fuses and anti-fuses, has also been 

shown to be a viable approach [ 134]. 

Both laser-programmable and electrically-programmable fuses and anti-fuses are ir­

reversible switches, so that once a defect-free cell connected to the network subsequently 

fails, it is not generally possible to disconnect it. In addition, laser programming works 

on unpackaged chips which makes the technique of very little use for field failures. 

Although electrically-programmed fuses and anti-fuses have the potential of repairing 

some operational failures, since a packaged chip can be programmed through external 

pins, their use is limited by the irreversible nature of the switching mechanism. A dis­

advantage of electrically-programmed fuses, over laser restructuring, is the requirement 

of access circuitry that must be able to handle the large currents used for programming. 

Floating-gate MOS transistor switches are theoretically reversible, through exposure to 

UV light for erasure, but because the programming is carried out with an e-beam, they 

present access problems once a chip has been packaged. Programming floating-gate 

transistors by applying high voltages to the drain-substrate junction, as in EPROMs, re­

stricts their usage as a general purpose switch (ROM array have a simple regular access 

path for such programming since the drain of each floating-gate transistor is accessible 

through the bit lines). 

Controlled floating-gate transistors and Metal-Nitride-Oxide-Silicon (MNOS) tran-
~2.3o:> 

sistors, referred to as double-gate Fet~in Fig. 2.8, represent a better alternative for 

high voltage electrical programming than floating-gate transistors. However, so far the 

use of double-gate transistors has been confined to EEPROM products and Field Pro­

grammable Logic Devices (FPLDs). This switching mechanism has great potential for 

defect-tolerance and the repair of field failures, because of its reversible nature and be­

cause programming is performed from outside the chip, especially with the new breed 

of FPLDs represented by the general-purpose reconfigurable architectures [ 135] that are 

user-programmed to implement a user-defined function. 

The simplest restructuring approach, called bridging-bond links, is proposed by 

Jesshope and Bentley [136]. The link consists of a piece of metal layer of area com­

parable to a conventional bond pad with an additional gap of a few micron bisecting 

the link. Programming is performed by depositing a gold ball across the gap using a 

standard wire bonding machine. The size of the link limits this approach to the switch­

ing of large area cells only. The authors propose to use the method in a hierarchical 

fashion with other restructuring techniques used at lower levels and the bridging-bond 

link at the highest level. 

39 



Laser and electrically-programmable fuses and anti-fuses are extensively used in 

commercial high density memories [137, 138, 139]. Typically, a few spare rows and/or 

columns are included in the design and they can be switched in to replace defective 

rows and/or columns. Reference [140] gives a list of published designs of defect-tolerant 

memories, up to 1986, together with their organisation, the restructuring technique, and 

the amount and distribution of the redundancy. 

Moore et. al. [141] attribute the success of defect-tolerance in memories to their 

repetitive architecture and their unique feature of not requiring any logical connections 

between cells. Memories have another unique feature: they are the only mass produced 

chips to have a regular architecture. If memories were to be made fault-tolerant using 

soft reconfiguration techniques they would not be as attractive. Therefore, the success 

of defect-tolerance in memories is due not only to their unique architecture, but also to 

the use of physical restructuring and their highly competitive market. 

The successful application of defect-tolerance in memories led many researchers to 

investigate its extension to other architectures. The first candidates for such investi­

gations were regular architectures, mainly one and two-dimensional arrays of identical 

processing elements. At this stage, there was a shift away from the techniques used 

in memories because rows and/or columns replacement techniques proved to be too 

wasteful when the PEs have any greater functionality than just a storage cell. When 

researchers investigated other, less wasteful techniques, they found that physical restruc­

turing, which is acceptable for a small number of replacements, becomes impractical 

for a large number because of its inflexibility. Note that the spare PEs are still provided 

in the form of spare rows and/or columns, since this is the only way to preserve the 

regularity of an array, but it is the PEs that are discarded if faulty, instead of whole 

rows or columns. Almost all the proposed flexible schemes rely on soft-reconfi.guration, 

where the switching mechanism consists of ordinary MOS transistors. This is discussed 

in the next section. 

2.5.2 Failure-Tolerance Strategies 

Achieving failure-tolerance is harder than defect-tolerance for several reasons. The 

most obvious is that external physical restructuring cannot be used against failures. 

Repairing manufacturing defects is a one-time process, at the end of the manufacturing 

stage. Tackling operational failures has to be a continual process, since failures may 

occur any time during operation. In addition, a manufacturing defect is harmless in the 

sense that, it is either repaired or, if not possible, the chip is thrown away, increasing 

the chip cost. However, failure can be very harmless indeed, even in non-critical 

applications, and the cost involved in dealing with a failure may be orders of magnitude 

40 



higher than the increased chip cost due to manufacturing defects. It has been estimated 

that the cost of detecting and locating faults increases exponentially with the level at 

which it is performed (chip level, board level, system level) [102], and since operational 

failures occur when the chip is part of a system, they are the most costly to detect. In 

safety-critical applications, the costs may be incurred in terms of human life, loss of a 

complete space mission, or dangers to the environment and whole communities. 

As stated earlier, the methods developed over the years to deal with system reliability 

(an extensive list of which can be found in [142] and [55]) have constituted a pool out 

of which on-chip fault-tolerant schemes have been selected. 

Error-correcting codes can be used for failure-tolerance. They have the advantage 

of not requiring special testing, reconfiguration and control circuitry. However, the area 

and timing overheads due to error encoders/decoders, which must be fault-free, tend 

to become prohibitive. Error-correcting codes also require very large redundancies in 

order to allow recovery from more than one signal error. In addition, as was stated for 

error-detection, the lack of a uniform coding methodology that could be used throughout 

a digital system, is another drawback of error codes. Error-correcting codes are however 

routinely used in random access memories, where they are mainly aimed at correcting 

soft errors rather than permanent failures. The use of error codes is only efficient for 

large memory chips because of the need to offset the overhead of the encoding and 

decoding circuitry. In situations where a chip contains only a small amount of memory, 

such as in an ASIC, other approaches have to be used, as in [143], where the addresses 

of faulty cells are stored, and whenever they are accessed, the control circuitry re-routes 

the access to a spare bank of memory cells. 

Fault-tolerance techniques that rely on replication and vote-taking can be found in 

any safety-critical application in the form of Triple Modular Redundancy (TMR), its 

generalisation N-Modular Redundancy (NMR), or one of its derivatives or extensions. 

The advantage of these methods include simplicity, hence ease of design, and the fact 

that they do not require special testing and reconfiguration circuitry. However, the 

straight implementation of these methods onto chips has not been an attractive option 

because of the high redundancies, and also because of common-mode failures [144], 

i.e., the simultaneous failure of replicated units, which is aggravated by the clustering of 

manufacturing defects. One approach to overcome the common-mode failures is to use 

non-identical copies, such as a unit and its complementary, as described in [72, 144]. In 

principle, the problem of defect clustering can be avoided through the 'scattering' of the 

different copies over a. wide area, but this creates other problems with the placement of 

the voter and the routing of signals [145]. When replication is carried out in conjunction 

with partitioning, it has some potential for yield improvement [140]. Other approaches, 

41 



that avoid explicit voting and replication have also been investigated, mainly in the 

early 1960's [146], but they have never been implemented because of their massive 

redundancies, although they keep reappearing in recent publications [147, 148]. 

The most recent approaches to fault-tolerance, targeted specifically at VLSI/WSI 

implementations, are those resulting from emulating the development of fault-tolerant 

memories, i.e., those involved with networks of identical PEs. Two-dimensional arrays 

are the most popular since it is an all-purpose structure in which arbitrary networks can 

be embedded [149]. A wide range of computations can be effectively implemented on 2-

D arrays. Some application, such as real-time signal and image processing, mandate the 

use of highly parallel computation engines in the form of 2-D arrays. Such applications 

usually require large numbers of PEs, i.e., they require silicon areas that are beyond the 

capabilities of current manufacturing technology. But, structures consisting of identical 

PEs have a distinctive advantage for fault-tolerance since redundant elements can be 

used to replace any faulty element. 

The MOS transistor used in soft-reconfiguration requires a data storage cell to con­

trol its state (on or off) in addition to the interconnections to set the desired state at each 

switching site. The overhead associated with the storage cell and the interconnections 

for its control should be modest relative to the size of the PE replaced by reconfiguration. 

This degrades the advantage of very small, such as bit serial, replaceable PEs [145]. The 

high ON-resistance of the MOS transistor is a disadvantage, compared to fuses and anti­

fuses, since it degrades speed. Furthermore, MOS transistors are unsuitable for some 

repair problems, such as defective clock or power distribution networks. Despite these 

problems, soft-reconfiguration has major advantages over hard-reconfiguration (physical 

restructuring): 

• the switches are ordinary MOS transistors and do not require any special processing, 

• no special setup is required for reconfiguration, and 

• it can be used for both defect-tolerance and failure-tolerance, 

the last point being probably the most important. Besides, the problems associated 

with soft-reconfiguration can be lessened, at least. Speed degradation can be tackled by 

deriving reconfiguration schemes that limit the number of switches on any path. The 

problems of faults in the clock and power distribution networks are addressed in [150] 

and [151], respectively. When small PEs, such as bit-serial, have to be used, then the 

approach of Chen et. al. [152] might be considered. 

Configuring an array of identical PEs, some of which are faulty, into an array con­

sisting of fault-free PEs is not an easy problem. Even the reconfiguration algorithms for 

42 



the simple spare rows/columns in DRAMs are NP-complete [153]. Practical reconfigu­

ration procedures for defect-tolerant DRAMs use heuristics to speed-up reconfiguration, 

at the expense of not repairing all repairable chips for example. The problem of re­

configuring a one-dimensional array using fault-free elements of an N -element array is 

NP-complete if the length of the longest wire is to be minimised. Furthermore, there 

are some arrangement of good and bad elements for which even the optimal linear array 

has unacceptably long wires. Thus, optimal solutions, even if they could be obtained 

quickly, are not always practical [149]. Reconfiguration algorithms for 2-D arrays are 

clearly very complex. 

Most reconfiguration algorithms proposed in the literature assume that the intercon­

nections between PEs are fault-free. This is justified by the fact that the interconnections 

are much simpler, and hence more reliable, than the PEs. Another assumption is the 

independence of faults in different PEs which is justified if the faults affect areas that are 

substantially smaller than the area of a PE. The least justifiable assumption concerns the 

existence of a perfect fault-detection and location mechanism. The task of testing VLSI 

circuits is already recognised as very complex. Testing an array of PEs, where each PE 

may be as complex as present day VLSI chips, is bound to be a difficult problem. 

True failure-tolerance implies the provision of on-chip mechanisms for fault-detection 

(self-test) and fault-correction (self-repair). Many reconfiguration algorithms require that 

each PE be able to report its status (good/bad). The self-test problem will have to be 

solved at the VLSI level before moving to higher levels of integration. Self-repair, on the 

other hand, seems unlikely given the complexity of current reconfiguration algorithms. 

However, neat solutions are always possible, as exemplified by the self-organising 2-D 

array proposed by Evans and McCanny [154]. 

2.6 YIELD AND RELIABILITY 

It is clear from the discussion in the previous two sections that, whatever techniques are 

adopted for fault-detection and/or fault-correction, their on-chip implementation requires 

additional area, which itself increases the susceptibility to manufacturing defects and 

operational failures. Fault-tolerance would be beneficial only if the faults that can be 

tolerated outnumber the faults that may occur as a result of the additional circuitry. 

This way of assessing the effectiveness of fault-tolerance is impractical, because of the 

difficulties involved in enumerating the possible faults and establishing whether they 

can be tolerated. The usual approach is to compare the yield and/or reliability of the 

fault-tolerant and non-fault-tolerant designs. Chapter 5 is devoted to this subject. A 

brief introduction of the topic follows. 

43 



Yield is defined as the fraction of chips that pass the manufacturers' final test. 

A yield model allows the prediction of a yield figure based on characteristics of the 

processing line before actually manufacturing the chips. The importance of yield mod­

elling, even for non-fault-tolerant ICs, is illustrated by the extensive coverage it has 

received in the literature even since the early days of microelectronics [155]. 

The development of yield models for non-fault-tolerant ICs concentrated on the 

determination of probability distribution functions that describe the random distribution 

of defects across wafers. This involves, among other things, the classification of the 

manufacturing defects according to some criteria [2], and the determination of the 

frequency of occurrence of the different classes of defects. The early yield models were 

simply dependent on the chip area and the average defect density of the processing 

line. More sophisticated models were later developed to take into account other factors, 

such as the different types of defects, their random sizes, clustering, ... etc [156]. 

These developments resulted in very complex yield models which, in recent years, have 

prompted a shift away from analytical models towards simulation methods [157, 158]. 

Developing yield models for fault-tolerant ICs is somewhat different, since the 

main objectives are the comparison between fault-tolerance strategies and the selection 

of design decisions that maximise the yield improvement, such as the amount and 

distribution of redundancy. Chapter 5 is more appropriate for discussing these issues. 

The reliability of a system determines the likelihood that the system will continue to 

operate satisfactorily. It is a statistical parameter derived by the methods of probability 

theory that evaluate success or failure [159]. The reliability of a system at time t is 

defined as the conditional probability that the system is working at time t given that 

it was working at time t = 0. It is measurable by observing No identical systems, 

operating under specified conditions, and noting their times of failure. The reliability 

at time t is the fraction of systems still working at time t. An estimate of the failure 

rate at time t is given by 

, ) 1 Number of failed systems at t 
A(i = -----------­

i Number of working systems at t 

A common graphical representation of the failure rate, called the 'bathtub' curve is 

shown in Fig 2.9. Failures occurring in region 1 are termed infant mortality and they are 

attributed to components of poor quality resulting from variations in the manufacturing 

process. Region 2 represents the useful life of components. Failures in this region 

are considered random. They are caused by long term failure mechanisms or by the 

operating environment. Failures in region 3 are known as wear-out failures [15]. 

44 



Region l Region 2 Region 3 

Time 

Figure 2.9 The bathtub curve. 

The failure rate of an IC is usually expressed in FIT (1 FIT= 1 failure/109 hours). 

Current ICs have failure rates in the range of 100 to 1000 FIT. It is predicted that by 

the end of the century, ICs will have a failure rate of the order of 10 FIT [160]. The 

difficulties involved in measuring such low failure rates are illustrated in the following 

example. Assume an experiment is carried out to estimate the failure rate using No 

identical devices. The measurement continues until timeT where there are NJ =uNo 

failed devices, 0 < u < 1. The failure rate is,.\= (NJfT)j(N0 - Nf) and the time 

required for such measurement is 

It is clear from Fig. 2.10 that such measurements are virtually impossible. In practice, 

accelerated life testing, where the devices are operated at high temperatures, is used 

to shorten the observation times. This will have the effect of lowering the curves 

in Fig 2.10. However, with a 10 FIT failure rate, even accelerated testing becomes 

obsolete [160]. For this reason, there is currently a change in the methodologies used 

to ensure product reliability. As Crook put it [160], "In the future, there will be less 

focus on developing precise measurements of failure rate by sampling the output of a 

manufacturing line, and more focus on understanding and controlling the many input 

variables of a manufacturing line which ultimately affect product reliability". This 

concept is called building-in-reliability [161]. It is based on the fact that failure patterns 

in ICs are determined uniquely by the process used to create them and by their basic 

physical structure. 

An interesting point about the concept of building-in-reliability is that if the input 

parameters of a process can be controlled so that failures are eliminated or reduced then 

this same control can be used to eliminate or reduce manufacturing defects. Hence, 

there is a clear convergence of the methods used for yield improvement and reliability 

45 



10' 

101 

101 

··· .. 
-... ··-.. 

............ 
..... '-........ 

.............. 
........... ....__ '·· ··----- .. , ·· ... · ... 

................... 

.. .. _r=0.9 

........ _ 
................ 

·---.....____ '•, ···-~.r=0.1 
"""-....., .......... .. 

........ _ ------
................... r=0.01 

. ..... .. .. ·-.. r=o.s 

10' 

10° ........ _ 
'---~ 

10'' -+----..,.-----,------..----....., .... 
10 100 1000 

Failure rate (FIT) 
10000 100000 

Figure 2.10 Time required for measuring the failure rate of an IC. 

impression that the concept of building-in-reliability aims at a perfect manufacturing 

process. When Shaft was asked whether he believed that this was possible, his reply 

was "Is it possible to reach infinity?". Hence, building-in-reliability is an ideal, but, 

as put by Amerasekera [15], if that ideal is aimed at then the reliability is bound to 

improve. 

Another important application of accelerated life testing is in screening procedures. 

Screening is the process by which defective devices are detected and eliminated from a 

production batch. Screening, sometimes referred to as burn-in, consist of testing devices 

under environmental or electrical stress in order to accelerate their lifetime such that 

the devices begin operational life with a failure rate corresponding to that beyond the 

infant mortality region [15]. 

The discussion of reliability in the context of fault-tolerance is left to Chapter 5. 

2.7 CHAPTER SUMMARY 

This Chapter has reviewed the present extensive knowledge of faults, fault modelling, 

fault detection and correction and related matters, with emphasis on those parts of the 

subject that are particularly relevant to the original contributions described in Chapters 

3-6. The main conclusions are as follows. 

Faults in integrated circuits may be due to: (i) manufacturing process defects or 

(ii) external disturbances. Given the current status of the semiconductor industry, the 

prospect of a perfect manufacturing process seems extremely unlikely. Furthermore, 

the widespread use of electronics in a variety of environments, including hostile ones, 

46 



increases the susceptibility to external disturbances. Hence, the occurrence of faults 

should always be considered as a likely event, and in cases where faults may have 

dramatic consequences, the use of fault-tolerance is mandatory. 

Fault-tolerance can be described in terms of two factors: the detection of faults and 

the correction of faults, both of which require a thorough knowledge of the nature of 

faults and their effects on circuits. The effects of physical faults listed in Section 2.2 

ranged from short circuits and breaks in interconnections to threshold voltage variations 

and excessive leakage currents. These effects are difficult to detect, especially when 

the detection hardware has to be implemented on chip. Higher levels of abstraction 

are usually required. The discussion in Section 3.3 highlights the fact that too high 

an abstraction level, such as at functional or gate level, may not give an accurate 

representation of physical faults, although it greatly simplifies the treatment of faults, 

whereas a very low level of abstraction may be too complex for present day VLSI chips. 

For CMOS technology, switch level modelling seems the most appropriate. 

In Section 2.4, a clear distinction is made between on-line and off-line fault detection 

approaches. It is clear that on-line error detection is the 'ideal' approach if it can be 

implemented effectively. However, as discussed in Section 2.4, this does not seem to 

be the case: on-line error detection techniques suffer from high overhead requirements 

and low coverage of physical faults. The importance of fault detection, even outside 

the framework of fault-tolerance, is also stressed in Section 2.4. 

Another clear distinction is made in Section 2.5 between defect-tolerance and 

failure-tolerance, since the former deals primarily with manufacturing defects whereas 

the latter has the capability of dealing with both manufacturing defects and operational 

failures. In Section 2.6, a brief introduction to the main criteria for assessing the ef­

fectiveness of fault-tolerance strategies, namely, yield and reliability, is presented. This 

subject will be addressed again in Chapter 5. 

47 



Chapter 3 
Test Generation for CMOS Circuits 

3.1 INTRODUCTION 

Fault-detection was described as the cornerstone of fault-tolerance in Chapter 2. The 

knowledge of the presence/absence of faults can be as important as the continuous 

provision of correct output. 

An off-line fault-detection approach is adopted in this research because it achieves 

a higher fault coverage and requires less hardware than on-line error detection. A major 

aspect of off-line fault-detection is the generation of test patterns, which is a compu­

tationally intensive task. The first step in generating tests is to establish the list of 

faults that are to be considered. The simple line stuck-at fault model is inadequate for 

CMOS VLSI circuits. Transistor stuck-open faults, on the other hand, make test pattern 

generation even harder. However, this type of fault must be taken into consideration, 

especially as CMOS becomes the dominant technology for high density integrated cir­

cuits. The U.S. Department of Defense already requires a 75% coverage of stuck-open 

faults from its suppliers [162]. The arguments given in [53, 52] for dismissing stuck­

open faults are believed to be invalid. If there is a need to ascertain the importance, in 

terms of frequency of occurrence, of stuck-open faults then investigations as reported 

in [163] are more appropriate. 

In this Chapter, we attempt to derive some simple but complete test generation 

procedures for CMOS combinational circuits. In Section 3.2 tests are derived for a 

small combinational circuit by considering each possible physical fault and its effect on 

circuit operation. This will show that, indeed, a large proportion of physical faults do 

48 



result in CMOS stuck-open faults. In addition, the difficulties in detecting certain faults 

and the limitations of the derived tests are also discussed. 

The complete test sequence obtained from the exercise of Section 3.2 has a a very 

useful characteristic: The fault free response is a trivial signal that can be generated 

by simple on-chip circuits. 

In Section 3.3, it is shown that tests derived for stuck-open faults are also able to 

detect all other detectable faults. This result is used in Section 3.4 to develop efficient 

test generation procedures for stuck-open faults that will also detect all other detectable 

faults. The distinguishing features of these procedures are: 

• Fault enumeration is not required. 

• The input to the procedures consists of a relatively high level description of the 

circuit. 

The main aim in deriving the test generation procedures, is that the area overhead 

associated with the on-chip implementation of test sequence generation and test response 

analysis should be kept as small as possible. On the test generation side, this requirement 

implies that the test sequences should be as short as possible. On the response analysis 

side, it implies that the fault-free response should be trivial, since we do not want to 

loose the benefit of having a complete test sequence throught the compression of the 

response into a signature. 

3.2 TESTING A CMOS CELL FOR ALL FAULTS 

In this section, tests are derived for all faults that may be caused by manufacturing 

defects and operational failures in a circuit consisting of a 1-bit full adder which is 

used as example. This is done by considering every fault individually and analysing 

its effect on the operation of the circuit. This is clearly far from being an efficient 

method for generating tests, especially as in practice more complex circuits have to be 

considered. This exercise is carried out solely in order to get some understanding of the 

requirements for the detection of faults, and to highlight some general observations and 

conclusions which can be used subsequently to derive more efficient test procedures. 

3.2.1 The Fault List 

Manufacturing defects can be described, in general terms, as consisting of missing and 

extra patterns on all layers of an IC. An examination of Tables 2.1 and 2.2 shows that 

wherever the missing or extra pattern occurs, the finished chip will exhibit either a break 

49 



in a planned continuous pattern, or an unwanted short between patterns. Breaks can 

happen only on the same layer, although a missing contact window can be considered as 

a break between two different layers. Shorts, on the other hand, can happen in a same 

layer between close patterns, or between different layers when these layers overlap. 

Many operational failures also result in open and short circuits. 

Another type of fault, called parametric faults, may also occur as a result of varia­

tions in process parameters or operational failures. Threshold voltage shifts, excessive 

leakage currents, variations in the resistance of different conductors, are examples of 

parametric faults. These faults are difficult to consider individually, since the threshold 

voltage of a transistor, or any of the other parameters, may vary by any amount. In 

practice, parametric faults are tested by exercising the chip with a subset of the complete 

test sequence at or near the maximum operating frequency. In a BIST environment, the 

whole test sequence is applied at the operating frequency. Hence, there is no need for 

the explicit consideration of these faults. The faults of interest are therefore: 

1. Open circuits in diffusion layer. 

2. Shorts between neighbouring diffusion regions. 

3. Open circuits in polysilicon. 

4. Shorts between physically close polysilicon tracks. 

5. Open circuits in the metallayer(s). 

6. Shorts between close metal tracks. 

7. Shorts between overlapping metal and polysilicon. 

8. Shorts between overlapping metal and diffusion. 

9. Shorts between overlapping metal 1 and 2. 

A short between poly and diffusion is~~* in a standard CMOS process 

because polysilicon and diffusion never overlap, except in the gate regions where the 

polysilicon layer is used as a mask when diffusing the active regions. Pinholes in the 

gate oxide, which result in shorts between the gate polysilicon and the channel regions, 

have been shown to be a reliability hazard [164], and will be discussed later. 

In order to derive tests for any of the above faults, it is necessary to consider their 

effect on circuit operation. The 1-bit full adder is implemented as two complex gates, 

one for generating the sum output and the other for generating the carry output, together 

with inverters at the inputs, as shown in Fig. 3.1. 

A circuit schematic, as in Fig. 3.1, does not allow the determination of the effects 

of the physical faults listed previously, because it does not indicate what conducting 

layers are used for the different interconnections, and it does not show the spatial 

distribution of the different regions. Hence, a layout of the circuit is required. It should 

50 



SUM 

Figure 3.1 A one bit full adder cell. 

be pointed out that the number, location and nature of the faults to be considered are 

strongly dependent on the layout style adopted. Figure 3.2 shows a possible layout of 

the circuit in Fig. 3.1. This is not the most area-efficient layout, but is nevertheless used 

here primarily to get some insight into the effects of the physical faults upon circuit 

operation. 

3.2.2 Test Generation for Specific Faults 

The complete test derivation for the full-adder cell, although a small circuit, is a very 

lengthy and repetitive process. It is described in Appendix A. In this section, we consider 

only a sample of the possible faults in order to explain the test derivation process, and 

also to state some problems and limitations of the derived test vectors. Subsequent 

sections elaborate on these problems and limitations. The faults to be considered are 

illustrated in Fig. 3.3. 

Open bdpl: Break 1 in the diffusion layer of the pull-up network causes the source 

of transistor P1 in the input inverter to be disconnected from VDD, which makes 

it impossible to drive node A to logic 1. Therefore, the output of the inverter is 

effectively stuck-at zero. The only input combinations that may detect this fault are 

those that set input A to zero, and an analysis of the circuit response to these inputs 

gives the following: 

51 



A 

B 

c 

R.i Polysilicon ~Metal 

Figure 3.2 Layout of a one bit full adder cell. 

52 



Figure 3.3 Locations and nature of the sample faults. 

A B c s Co 

0 0 0 1 * 0 

0 0 1 * 

0 0 1 * 

0 1 1 * 

(* indicates a faulty output) 

An examination of this table reveals that input vectors ABC= 001 and ABC= 011 

produce an incorrect value at the sum output, and that input vectors ABC= 001 and 

ABC= 010 produce an incorrect value at the carry output, when the fault is present. 

Therefore, any of the four input combinations can be used as a test vector. The 

four possible test vectors are denoted as ABC = OOO(S), ABC = OOl(C), ABC = 
OlO(C), ABC= Oll(S) where the symbol in brackets refers to the output at which the 

fault is detected. 

53 



Open bdp5: Break 5 in the diffusion layer of the 

pull-up network causes the source of transistor P4 to A B c 8 
be disconnected from VDD, making it impossible to 

0 0 0 0 
charge the sum output through the path {P4 P5 P6}. 

Since there are other paths from VDD to the sum 0 0 1 z * 
output, this will not result in a stuck-at zero fault, 0 1 0 1 

as in the previous case. The response of the circuit 0 1 1 0 
under this fault is shown on the right. Z denotes a 

high impedance state. This occurs when both pull-up 1 0 0 1 

and pull-down networks are off, isolating the output 1 0 1 0 

node from both VDD and GND. In this case, the 1 1 0 0 
output holds its previous logic state, in the form of 

a charge on the output node capacitance. 
1 1 1 1 

This fault prevents the output from being charged through the path consisting of 

transistors P4, P5 and P6, as said before. Hence, the first requirement to test for the 

presence of this fault is to attempt to charge the output through the path {P4 P5 P6}. 

However, if the output is already charged to logic 1, then when attempting to charge 

it again through the path {P4 P5 P6}, it will not be possible to state whether the fault 

is present or not, since if the fault is present the output will be high (retaining its 

previous value) which is the same as when the fault is not present. Therefore, the 

second requirement is that before we attempt to charge the output through the path 

containing the fault, we must make sure that the output is discharged first, so that if the 

fault is present, the output will be low when attempting to charge it through path {P4 

P5 P6}. In other words, this type of fault requires a pair of vectors for its detection, 

the first vector being an initialisation one and the second, the test vector. 

For the fault under consideration, the initialisation vector can be any input combina­

tion that sets the output to logic 0, and the test vector must activate the path {P4 P5 P6}. 

The only vector that activates this path is ABC = 001. The pair of vectors is denoted 

ABC = (d, 001)(8) where the d stands for any input combination that discharges the 

output. 

The notation (d, 001)(8) represents four possible test pairs (since there are four ways 

to discharge the sum output). These test pairs are (000, 001), (011, 001), (101, 001), 

and (110, 001). Consider the last test pair. The initialisation input 110 sets 8 to zero, 

and then the test input 001 is applied to the circuit. In a fault-free circuit, the output 

should go to 1. However, if the fault is present, there is no way to charge the output, 

since input 001 activates path {P4 P5 P6} only, and hence, the output will retain its 

previous low value, which is different from the fault-free response. 

54 



Now suppose that when changing the inputs from ABC = 110 to ABC = 001 

some circuit delays cause input signals A and B to be slow to fall. This will result 

in the transition ABC = 110 ----t 111 ----t 001 (assuming that A and B are delayed by 

the same amount). If the transient state ABC = 111 persists long enough to charge 

the output, then when ABC= 001 the output would already be at logic one, violating 

the requirement that, for the detection of the fault, the output must be low before the 

application of the test input. Therefore, the fault would go undetected. 

This problem of test invalidation by circuit delays has received a wide attention in 

the literature in recent years. Similar invalidation of tests for stuck-open faults is also 

caused by charge sharing. This topic is discussed in more detail in a later section. Note 

that if any of the other possible test pair is selected, then the problem does not occur. 

This is primarily because for all three test pairs, only a single input is chang~d in the 

transition from the initialisation input to the test input, and hence, no other input vector 

can appear in the transition, regardless of circuit delays. 

Short sdp3: Short 3 in the diffusion layer of the pull-up network causes nodes A and S1 

of the sum circuit to be shorted. In general, to detect a short between two nodes, they 

must be driven to different values. If we set A to zero, A would be at logic one, and 

node S 1 would also be at logic one. Hence, we must set A to one. Since this setting 

will cause transistor P4 to be off, node S1 will have the value of node A, namely 0 

(which it never gets in a fault-free circuit). Therefore, one way to detect this fault is 

to propagate this erroneous state of node S 1 to the sum output. To do this, we must 

set inputs B and C to 0 and 1, respectively, resulting in the input vector ABC= 101. 

However, with this input the sum output will be low anyway, masking the fault-effect. 

Hence this fault is not detectable since it does not affect circuit operation. 

In a gate level representation of a combinational circuit, if a stuck-at 1 or 0 fault is 

undetectable, the circuit is said to be redundant, i.e., some of its gates or signals can be 

eliminated without changing the function implemented by the circuit. In our case, the 

undetectability of the fault under consideration can also be related to circuit redundancy. 

The fault is undetectable because nodes A and S 1 are 'equivalent'. By equivalent, it is 

meant that if A is at logic 1, then S 1 is also at logic 1. On the other hand, if A is at 

logic 0 then the value of S 1 can be anything, and more importantly, this value does not 

affect the circuit output. Another way to relate redundancy to the undetectability of the 

fault is by noticing that transistors P1 and P4 have common gate and source signals, and 

hence they can be merged, which means that one of the two transistors is redundant. In 

fact, considering all the faults of this type that are undetectable (Tables A.3 and A.4 of 

Appendix A) will reveal more transistors that can be merged. After merging all these 

transistors, the resulting circuit would be as shown in Fig. 3.4. 

55 



i\1 
81 
c1 

SUM 

ci 
Bi 
Ai 

Figure 3.4 Sum circuit resulting from the merging of transistors. 

This way of reducing the number of transistors, by sharing or merging, is suggested 

in at least one of the textbooks on CMOS circuits [165]. However, it is question­

able whether such a minimisation would result in any gains in silicon area, since the 

interconnections are more complicated and they overlap a lot in the reduced circuit. 

Short sdp4: Short 4 between the two active regions of the pull-up network connects 

node S1, the drain of transistor P4, to VDD making S1 stuck-at 1. If A is set to 0, 

node S 1 will be at logic 1 regardless of the presence of the fault. We must therefore 

set A to 1, and in order to propagate the state of node S 1 to the sum output, B and 

C must be set to 0 and 1 respectively, resulting in the input ABC = 101. With such 

an input combination, the output is discharged through path {Nll NlO N9}. However, 

because node S 1 is at VDD and the pull-up sub-path {P5 P6} is conducting, we are in 

the situation where both pull-up and pull-down networks are conducting, which violates 

one of the principles governing the operation of static CMOS gates, that is, only one 

of the two networks must be conducting in steady state. 

This general situation is common to many other faults. A later section considers 

the subject in more detail. For now, it is sufficient to say that for the fault under 

consideration, and with input ABC = 101, the sum output will have a voltage that is 

somewhere between 5V and OV, which will be referred to as an intermediate voltage. 

Since the fault-free response to input ABC = 101 is zero, if the intermediate voltage 

is high enough to be interpreted as logic one, the fault is detected. If the intermediate 

voltage happens to be so close to the fault-free output voltage such that any circuit 

seeing it-as-its input would consider it as the same as the fault-free response, then the 

fault is undetectable. 

Note that inducing an intermediate voltage at the gate output is the only way to 

56 



detect a fault that causes the pull-up and pull-down networks to be conducting at the 

same t\me for some input combinations, and that these input combinations are the only 
'---, 

possible test vectors for the fault. The detection, or otherwise, of the fault is dependent 

on many other parameters, as discussed in a later section. 

Short sdp5: Short 5 between the two active regions of the pull-up connects node S3, 

the drain of P7, and node S 1, the drain of P4. An easy way to analyse this type of 

fault is to consider that the additional connection between nodes S 1 and S3 adds extra 

paths from VDD to the sum output. In this case, there are two extra paths created 

by this fault: {P7 P5 P6} and {P4 P8 P6}. These paths do not exist in the fault-free 

circuit, and if they are activated (by setting the gate input of each transistor to zero) the 

pull-up will be ON. Therefore, the test vectors for such a fault are searched among those 

input combinations that turn one or more of these extra paths ON while also creating a 

legal path through the pull-down. In this case, activating either of the two extraneous 

paths would induce an intermediate voltage at the sum output. This achieved by either 

ABC= lOl(S) or ABC= Oll(S). 

Short spp3: Short 3 between the two polysilicon tracks of the pull-up causes nodes A 

and A to be shorted. Input A is a primary input in our case. However, in a practical 

situation, input A would be the output of another CMOS gate. Therefore, any input 

combination would result in nodes A and A having an intermediate voltage. Whether 

this intermediate voltage can be propagated through the sum and/or carry circuit is 

impossible to say by a simple circuit or layout inspection. Even a circuit simulation 

(SPICE) can not be relied upon to state whether or not an intermediate voltage at a gate 

input is propagated to the circuit output, since the outcome is dependent on so many 

parameters (device size, parasitic capacitances and resistances, ... ) that it is not wise to 

rely on them. 

In Appendix A, similar test derivations are carried out for all possible physical 

faults. A summary is presented in tabular form at the end of the Appendix. Among all 

physical faults considered, 30% result in stuck-open faults. 

3.2.3 Test Invalidation by Circuit Delays 

In the previous section, we saw that two-pattern tests may be invalidated by circuit 

delays, as well as charge sharing. In this section we will consider this problem in more 

detail, first by studying the example given in Section 3.2.1 and then by reviewing the 

main publications on the subject. 

In the case presented in Section 3.2.1, it was said that if the test pair ABC=(llO, 

OOl)(S) was chosen for the detection of break bdp5, and if some circuit delays caused 

57 



input signals A and B to be delayed (by the same amount of time), then the fault will not 

be detected. This was clearly a very special case. Table 3.1 presents a complete analysis 

of applying the test-pair ABC=(110, 001)(S) to the sum circuit under all possible circuit 

delay conditions. The symbols d A, dB and de represent the delays associated with 

signals A, B and C, respectively. 

Table 3.1 Circuit analysis under all possible delay conditions. 

1 delayed signal: 

A delayed 110--+ 101--+001 No invalidation 

B delayed 110--+011--+001 No invalidation 

C delayed 110--+000--+00 1 No invalidation 

2 delayed signals: 

A and B dA = dn 110---t 1 01--+001 Invalidation 

dA < dn 110--+ 111--+011--+001 No invalidation 

dA > dn 110--+111--+101--+001 No invalidation 

A andC dA =de 110---t 100--+001 Invalidation 

dA <de 110---t 1 00--+000--+00 1 No invalidation 

dA >de 110--+100--+101--+001 No invalidation 

Band C dn =de 110--+010--+001 Invalidation 

dn <de 110--+0 10--+000--+00 1 No invalidation 

dn >de 110--+010--+011--+001 No invalidation 

3 delayed signals 

dA = bn =de 110--+001 No invalidation 

dA > dn >de 110--+111--+101--+001 " 

dA >de> dn 110--+ lOO-t 101--+001 " 

dn > dA >de 110--+111--+011--+001 " 

dn >de> dA 110--+010--+011--+001 " 

de> dA > dn 110---t 1 00--+000--+00 1 " 

de> dn > dA 110--+010--+000--+001 " 

Althought the two-pattern test (110, 001) is invalidated for only three out of the 

58 



19 possible delay conditions, this problem cannot be dismissed since circuit delays are 

generally difficult to avoid. An examination of Table 3.1 indicates that even a single 

gate delay on any two of the three inputs will cause test invalidation. Ensuring that all 

inputs change values at nearly the same time is difficult to achieve, particularly when 

the test stimuli is applied from outside the chip. 

A two-pattern test that remains valid under arbitrary circuit delays is called a robust 

test [166]. It is shown in [166] that for a stuck-open fault to have a robust test, there 

must exist two vectors To and T1 that differ in a single bit position and such that the pair 

(To, Tt) detects the fault. Note that this does not imply that all robust tests must have 

two adjacent vectors. For example, considering the carry circuit, the pair (111, 001) is 

a robust test for the faults N17 and N18 stuck-open even though 111 and 001 differ 

in two positions. The only vectors that may appear in the transition 111 ---+ 001, as a 

result of circuit delays, are 011 and 101 which are both valid initialisations for the faults 

considered. A simple way to check for the robustness of a two-pattern test (T0 , T1) is to 

replace the bit positions where To and T1 differ by dashes. If the two vectors differ in 

n positions, then there are 2n - 2 vectors that may appear in the transition To-+ T1• The 

transition cube (To, T1) is defined as the set of vectors that may appear in the transition 

To---+Tt [167]. If any of these 2n- 2 vectors is a vertex of the same type as Tt. then 

under certain delay conditions, the two-pattern test (To, Tl) is invalidated. 

It was shown in [166, 167] that there exists boolean functions for which many 

CMOS implementations do not have robust tests for every stuck-open fault. A proce­

dure is presented in [167] to transform a two-level NAND-NAND realisation of such 

functions into an implementation that has robust tests. The procedure relies on the 

addition of a control input and some FETs to the original circuit. Figure 3.5(a) shows a 

circuit where the stuck-open fault on the pFET driven by X3 does not have a robust test. 

Reddy et. al. [167] transform this circuit into the one shown in Fig. 3.5(b). A more 

economical circuit transformation is suggested in [168] and is illustrated in Fig. 3.5(c). 

It is more economical in that the number of extra transistors is fixed at two, whereas 

in the approach of Reddy et. al. [167], the number of extra transistors depends on the 

number of faults that do not have robust tests. 

A new circuit transformation, that actually reduces the number of transistors of the 

original circuit, and for which robust tests exist is proposed in Fig. 3.5(d). The pFET 

driven by X3 is simply eliminated by combining the first level NAND gate that generates 

X3 with another first level NAND gate resulting in a complex gate that'produces X13. 

For single level circuits, i.e., complex gates, Jha and Abraham [169] use the fact 

that a Boolean function can have four different implementations as a complex gate, to 

59 



a 

b 

a 
b 

a K 
c 

c 
d 

c x5 
d 

(a) (b) 

a1 
:=[}-x1 a1 

a~ 
~Dx2 

b~ 

:n-x3 
~=D-x4 c 

d 

~:[)-xs c x5 
d 

(c) (d) 

Figure 3.5 Circuit transfonnations for robust testability. (a) Original circuit, (b) Reddy et. al., (c) Gupta 
et. al., (d) New approach. 

show that for one of the four implementations, called hybrid realisation, there always 

exist robust tests for all stuck-open faults. 

In recent publications, another problem associated with circuit delays, namely the 

appearance of a glitch on the inputs while test input Tt is applied, has been introduced 

[170, 171]. The problem raised in these publications is different from the previous 

one, and it cannot be solved by appropriate choices of the initialisation vectors. It is a 

direct consequence of extreme logic sharing and intuitive circuit design. The solution 

presented in [171] is to convert the static CMOS circuit into a pseudo-nMOS/pMOS 

circuit during testing. This requires the addition of two transistors to every gate in 

the circuit. One bonus in doing so is that stuck-open faults are now detected by a 

single test pattern, as in nMOS circuits. However, contrary to the claims of the authors, 

this will not result in a 50% reduction in test time: the fact that a single stuck -open 

fault is detected by a pair of vectors does not imply that the detection of n stuck-open 

faults requires 2n test vectors as an appropriate sequence of n + 1 vectors can detect n 

60 



stuck-open faults in many cases. 

3.2.4 Faults that Induce Intermediate Voltages 

In this section we look in more detail at those faults that give rise to intermediate 

voltages. Most short circuits fall in this category. Intermediate voltages are induced at 

the output of a gate when both the pull-up and the pull-down networks are conducting. 

The magnitude of the intermediate voltage is a function of the ratio of the impedances 

of the networks. This ratio is dependent on the structure of the network, the device 

dimensions and the voltage on the gates of the transistors. In order to get some insight 

onto how these parameters determine the magnitude of the intermediate voltage, SPICE 

simulations were run on circuits where the pull-up and the pull-down networks consist 

of a series connection of a variable number of transistors with the input conditions set 

so that both networks are conducting, as shown in Fig. 3.6. 

Np Nn Output Voltage (V) 

Wp=Wn Wp=2.5Wn 

3 3 0.76 2.28 

3 2 0.48 1.36 

3 1 < 0.5 0.59 

2 3 1.27 3.3 

Output 2 2 0.77 2.24 

2 1 0.35 0.94 

1 1 0.80 2.14 

1 2 1.87 3.76 

1 3 2.90 4.27 

Figure 3.6 Simulation of intermediate voltages. 

By inspection of the above results, we may conclude that the network containing 

the smaller number of transistors dominates the other network. In this case, a stuck-on 

fault in the network with fewer transistors would induce an intermediate voltage that 

is far enough from the fault-free values so that subsequent circuitry will view it as a 

faulty output. But the intermediate voltage induced as a result of a stuck-on fault in 

61 



the network containing the larger number of transistors will be too close to the fault­

free value, and hence the fault is not detectable. An intermediate voltage cannot be 

propagated through a CMOS gate because the sharp, inverter-like, transfer characteristic 

restores a strong logic value. 

An important consequence of having both pFET and nFET networks conducting is 

that it violates one of the most sought after characteristic of CMOS circuits: no static 

current in steady state. This led many researchers to suggest monitoring the steady 

state current as a way of testing stuck-on faults [172, 173, 174, 175, 176, 177]. The 

method consists of applying input vectors that induce intermediate voltages in a faulty 

chip and measuring the current through the chip's VDD or GND pads. The approach is 

also effective in detecting bridging faults as well as other manufacturing defects, such 

as pinholes in the gate oxide [164]. 

The major problem in current monitoring is that the increased quiescent current due 

to a fault is very small in comparison to the transient currents. The transient currents 

can be orders of magnitude higher than the steady state current, even in the presence of 

faults, and it is difficult to supply such high currents through a circuit that can measure 

very low currents [173, 175]. In addition, most current ATEs do not have the ability to 

perform current monitoring at clock rates higher than 1MHz [173]. 

Built-In Current-Testing [176, 177] is a promising approach to alleviate the above 

problems. In this approach, current sensors are inserted between functional units and 

their power supplies to monitor the current consumption and provide a pass/fail flag 

when the current exceeds a certain limit. The current sensors presented in [176] requires 

a BiCMOS process and the circuitry is of analog type (external voltage reference and 

a sense amplifier) making the approach slightly ahead of its time (BiCMOS and the 

mixing of analog and digital circuitry is not yet as widespread as it should be). 

Gupta et. al. [168] are the only researchers to propose a method for detecting stuck­

on faults by observing logic levels, instead of monitoring current or voltage levels. They 

propose to augment every gate in the circuit with two control inputs and two transistors 

as shown in Fig. 3.7. A two-pattern test is required to detect a stuck-on fault in the 

circuit of Fig. 3.7. Assuming that the fault is in the pull-down network, the first vector 

sets the gate output to logic 1 by applying an input combination that would induce an 

intermediate voltage at the output of the original circuit, but sets C1 and C2 to 0, to 

prevent the appearance of the intermediate voltage in the augmented circuit. The second 

vector simply sets C1 and C2 to 1. In this case, if the fault is present the output would 

be low, whereas in the fault-free circuit, the output assumes a high impedance state, 

62 



I Pull-Up 

Pull-Up 

I 
I 

Pull-Down 

Pull-Down 

I 

Figure 3.7 Circuit transformation for the detection of stuck-on faults as logical faults. 

retaining its previous value, i.e., a logic 1. In a two level circuit, the detection of a 

stuck-on fault may require as many as four test vectors. 

3.2.5 Complete Test Sequence 

The test vectors derived in the previous section, and summarised at the end of Ap­

pendix A, are now concatenated into a single sequence that covers all the detectable 

faults and is as short as possible. Because of the large number of faults, and the fact 

that many of the faults have more than one possible test vector(s), we will take some 

short-cuts in constructing the test sequence. 

First, let us consider the set of faults that require one vector for their detection, as 

opposed to those requiring a pair of vectors. Among these faults, consider the ones 

that have only a single possible test vector, as opposed to the those having a number of 

possible test vectors. The test vectors for these faults must appear in the test sequence 

since there is no other way to detect these faults. In addition, these vectors do not have 

to appear in any particular order; their presence in the test sequence is sufficient for the 

detection of the faults. If we construct the set of such vectors, we will notice that it 

comprises all possible input combinations for the circuit under consideration, therefore, 

we can ignore all faults that do not require a sequence of two vectors in this case, as 

long as the final test sequence contains all input combinations. 

Next consider the faults that require a pair of vectors for their detection. Among 

these faults, consider the ones for which there is only one possible pair of vectors neces­

sary for their detection. These test vectors must appear in the test sequence preceded by 

the proper initialisation. The sum circuit requires that all possible input combinations 

63 



appear in the test sequence preceded by the appropriate initialisation vector, whereas 

the carry circuit requires only six, out of the eight possible, input vectors (vectors 111 

and 000 are not necessary for detecting faults in the carry wircuit). These vectors must 

be preceded by the appropriate initialisation, that is, if the test input vector discharges 

the output then it must be preceded by an input vector that charges the output, and vice 

versa. 

In order to make the test sequence as short as possible, it would be beneficial if we 

could use the initialisation vector of a particular fault as the test vector for another fault. 

That is, if fault /i and fi require the test pairs (Toi, Tli) and (Toj, Ttj). respectively, 

for their detection, and if Tti = Toj then the sequence (Toi, Tli, Ttj) detects both faults. 

If circuit delays are ignored, the initialisation vector is only constrained by the fact that 

it must charge or discharge the particular output. Hence, this optimisation is used for 

all faults. Under these requirements, we obtain the test sequence shown below. 

A B c SUM CARRY 

1 0 0 1 1 0 

2 0 1 1 0 1 

3 0 1 0 1 0 

4 1 1 0 0 1 

5 1 0 0 1 0 

6 1 0 1 0 1 

7 0 0 1 1 0 

8 0 0 0 0 0 

9 1 1 1 1 1 

Note that input vector 001 appears twice in the test sequence since we assume that 

the outputs at the start of the test sequence can have any value. If it was not repeated, 

and it happens that at the start of the test sequence SUM = 1 and CARRY = 0, then all 

faults that require input ABC= 001 as the second vector of a pair would go undetected. 

If we want the test sequence to remain valid under any circuit delay condition, then 

the choice of the initialisation input is more constrained than in the above case. A 

single bit change between consecutive vectors is necessary for the robustness of tests 

in the case of the sum circuit. However, for the carry circuit, the single bit change is 

not always necessary. Taking this into account yields the test sequence shown ~i'e, 

64 



Vectors 001 and 011 are repeated to satisfy the single bit change condition in the 

transition from 111 to 000. The repetition of vector 001 is also necessary for the same 

reason as in the previous test sequence. 

A B c SUM CARRY 

1 0 0 1 1 0 

2 0 1 1 0 1 

3 0 1 0 1 0 

4 1 1 0 0 1 

5 1 0 0 1 0 

6 1 0 1 0 1 

7 1 1 1 1 1 

8 0 1 1 0 1 

9 0 0 1 1 0 

10 0 0 0 0 0 

An important attribute of the previous complete test sequences is that the fault-free 

response of the sum circuit is an alternating signal. Any physical fault would result in 

at least one of the 1 --t 0 or 0 --t 1 transitions at the output being absent. This is a 

direct consequence of minimising the length of the test sequence. 

This suggests an interesting new solution to the problem of test response analysis 

in a BIST environment, namely, the complete test sequence should be derived such 

that the response of the fault-free circuit is trivial, i.e., the fault-free response can be 

generated by simple on-chip circuitry. The suggested approach does not suffer from 

any loss in fault coverage, unlike signature analysis, and all other methods that rely on 

data compression. Furthermore, toggling circuit nodes has been suggested in a number 

of publications as a way to increase the coverage of many types of faults [33, 27]. The 

test sequences presented toggle circuit nodes as often as it is possible. 

3.3 STUCK-OPEN FAULTS AS A REPRESENTATIVE OF 
ALL OTHER FAULTS 

In this section, it is shown that a complete test set for stuck-open faults detects all other 

detectable faults and that the converse is not true. This will be used in Section 3.4 to 

derive test sequences for stuck-open faults that will also detect all other faults. 

65 



3.3.1 Stuck-at Faults 

Only a fraction of stuck-open and stuck-on faults manifest themselves as stuck-at faults. 

Specifically, only some of the stuck-open faults in the class of CMOS gates shown in 

Fig. 3.8 result in the gate output being stuck-at 1 or 0. In Fig. 3.8(a) a stuck-open fault 

in any of Pt, P2, ... , Pn would result in the gate output being disconnected from VDD, 

therefore, the gate output will never be high. It is stuck-at zero, assuming that the gate 

inputs are sufficiently exercised. Similarly, any of Nt, N2, ... , Nn stuck-open faults in 

Fig. 3.8(b) would result in a stuck-at 1 fault on the gate output. Transistor stuck-on 

faults on N1, N2, ... , Nn in Fig. 3.8(a) are likely to result in a stuck-at 0 fault, whereas 

P1, P2, ... , Pn stuck-on, in Fig. 3.8(b), are likely to result in a stuck-at 1 fault. 

Figure 3.8 CMOS gates where stuck-open faults result in stuck-at faults. 

However, the generic CMOS gate presented in Fig. 3.8 is only a special case. A 

more general CMOS gate is shown in Fig. 3.9, where blocks n1, n2 and n3 can be any 

network of zero or more transistors, and ni, ni and n3 are their respective duals. In 

the case where a network contains no transistors then it represents either a connection 

or no connection. For example, if n3 in Fig. 3. 9 is an empty network, then this means 

that there is nothing in parallel with transistors Pt, P2, ... , P n• whereas if n 1 is empty, 

then the source of P1 is connected to VDD. Note that Fig. 3.9 reduces to Fig. 3.8 when 

network n3 is empty. 

Figure 3.9 shows that, unless n3 is empty, a stuck-open fault on any of the transistors 

of interest does not result in a stuck-at fault. Therefore, a complete test set for stuck­

at faults may detect only a fraction of the stuck-open faults. A complete test set for 

stuck-open faults, on the other hand, detects all stuck-at faults, as discussed below. 

66 



Figure 3.9 General CMOS gate when the focus is on Pi, i = 1 ... n. 

A stuck-at 1 fault on the output of a gate is detected by a test for a stuck-open 

fault on any of the nFET transistors of the gate. Similarly, a stuck-at 0 on the gate 

output is -detected by-a-test-for a- stuck-open-fault-on-any of the pFE~ transistors -of the 

gate. A stuck-at 1 on an input to a gate is detected by a test for a stuck-open fault on 

a pFET driven by that input. A stuck-at zero fault on an input is detected by a test for 

a stuck-open on a nFET transistor driven by that input. 

3.3.2 Stuck-on Faults 

In this section, it is shown that stuck-on faults are detected by tests for stuck-open 

faults. The second vector of a pair that detects a stuck-open fault is referred to as the 

test vector in what follows. 

sk<J,- o-f""' 
Considering Fig. 3.9, the test vector for Pif1 ~ i ~ n, requires that networks 

nt and n2 be on while n3 must be off and the gate of Pi must be at 0. A test for 

Ni, 1 ~ i ~ n, stuck-on requires that networks ni and ni be off while nj must be 

on and the gate of Ni must be at 0. Since Pi and Ni have the same gate signal and 

ni on {:::=:} ni off, ni off{:::=:} ni on, it is clear that the test vector for Pi stuck-open 

is the same as the test for Ni stuck-on. Similarly, the test vector for Ni stuck-open is 

the same as the test for Pi stuck -on. 

67 



3.3.3 Bridging Faults 

When considering CMOS circuits at the transistor level, there are two possible types of 

bridging fault: intra-gate and inter-gate shorts. First, let us consider intra-gate bridging 

faults (shorts between the internai nodes of a gate) using the general CMO~ gate of 

Fig. 3.9. Table 3.2 is a list of these faults and the corresponding stuck-on faults which 

have the same tests. Since stuck-on faults are detected by tests for stuck-open faults, it 

follows that intra-gate bridging faults are also detected by tests for stuck-open faults. 

Table 3.2 Intra-gate bridging faults and their corresponding stuck-on faults. 

Node 1 Node 2 Corresponding stuck-on faults 

VDD X1 stuck-on faults in nt 

VDD X2 stuck-on faults in nt, n3, Pt, ... , Pn 

X1 X2 stuck-on faults in n3, Pt, ... , Pn 

X1 Out stuck-on faults in n2, n3, Pt, ... , Pn 

X1 Source of Pi stuck -on faults in Pj 

1 < i ~ n 1 ~ j < i 

-GND X3 stuck-on faults in Nt, N2, ... , Nn 

X3 Out stuck -on faults in n3 

Note that the bridging faults are more likely to be detected than their corresponding 

stuck-on faults, since they tend to reduce the effective number of transistors in the 

affected network, making it the dominant one, as discussed in Section 3.2.3. 

Inter-gate bridging faults are more difficult to consider in a general way. However, 

the nature of the test sequences generated by the procedures to be described in the 

following sections responds to the usual requirement for the detection of this type of 

fault, which is to toggle the circuit nodes as often as possible. 

3.4 TEST SEQUENCE GENERATION PROCEDURES 

The aim in this section is the derivation of procedures that yield test sequences capable 

of detecting all detectable faults. It was shown in the previous section that a complete 

test set for stuck-open faults detects all other faults. Therefore, the procedures proposed 

in this section are derived by considering stuck-open faults only. In addition, it was 

68 



observed in Section 3.2 that many stuck-open faults are detected by the same two-pattern 

tests. Hence, a further aim is to avoid the enumeration of faults, since their number 

may be very large. 

3.4.1 Exhaustive Stuck-Open Fault Testing 

The test pattern generation procedure presented in this section is based on the observa­

tion, in 3.2.4, that all possible input combinations appear in the test sequence, but in a 

particular order. 

Consider a complex gate implementing a Boolean function F = f(xi, x2, ... , Xn) 

where F is the gate output and x 1, x2, ... , Xn its inputs. Let C and D be the sets of true 

and false vertices of function f, and nc and nd their respective number of elements. 

If we apply every 1-vertex of f to the complex gate, preceded by a 0-vertex, then all 

stuck-open faults in the pull-up network would be detected. In the. same way, applying 

every 0-vertex off, preceded by a 1-vertex, would detect all stuck-open faults in the 

pull-down network. We can obtain a single test sequence that detects all faults in the 

complex gate by combining the sub-sequences for pull-up and pull-down, in such a 

way that every 1-vertex (0-vertex) is used as a test input for some stuck-open faults in 

the pull-up (pull-down) and also as an initialisation input for some other faults in the 

pull-down (pull-up). The following proceClure constnicts such a test sequence, when 

nc ~ nd. 

Procedure 1: 

1) Add an element of C to the test sequence 

2) Add an element of D to the test sequence and delete it from D 

3) Add an element of C to the test sequence and, if it is not the last one, delete it 

from C 

4) Add an element of D to the test sequence and delete from D 

5) Repeat steps 3) and 4) until D = 0. 

The procedure for the case nc > nd is the same as above except that every instance 

of Cis replaced by D, and every instance of D is replaced by C. The length of a test 

sequence produced by procedure 1 is 2 max(nc, nd) when nc 1 nd and 2 max(nc, nd) + 1 

otherwise. For and n-input function, the 1est sequence length L is such that 2n ~ L ~ 

2n+ 1 - 2. The procedure presented in the next section generates shorter test sequences. 

69 



3.4.2 Minimum Length Test Sequences 

Ann-variable NAND function has a single false-vertex. Among the 2n -1 true-vertices, 

only a set of n special true-vertices are useful for the detection of stuck-open faults in 

the pull-up network, namely, the ones consisting of a single 0 and n- 1 1 's. The other 

2n - 1 - n true-vertices should not be used because they activate more than one path 

in the pull-up. This fact is used in this section to derive test sequences that are shorter 

than in the previous section. 

The procedure described in this section is the same as procedure 1 except that sets 

C and D are replaced by C8 and D8 , the sets of special true and false vertices of 

a function. The reduction in test sequence length is due to the fact that sets Cs and 

D 8 have fewer elements than C and D in most cases. The remaining of this section 

describes how to obtain sets C8 and D 8 • 

Sets C8 and Ds depend on the particular implementation of a function and, usually, 

they are not unique. Starting with the minimum sum-of-product form of a function, 

there are four possible implementations as a single level complex gate and two possible 

implementations as a two-level NAND-NAND or NOR-NOR gate. The four implemen­

tations as a complex gate are described below [169, 167]. 

1) SP-PS: The transfer function of the pull:up network is the sum-of-product_(SP) form 

of the function whereas the pull-down network implements the product-of-sum (PS) 

form of]. 

2) PS-SP: The pull-up network implements the PS form off and the pull-down network 

is the SP form of ]. 

3) SP-SP: The SP forms off and] are used for the pull-up and pull-down networks, 

respectively. 

4) PS-PS: The PS forms off and ] are used in the pull-up and pull-down networks, 

respectively. 

If a network (pull-up or pull-down) is implemented according to the SP form of a 

function (for ]) then the corresponding set of special vertices (Cs or D8 ) can be easily 

identified from the Karnaugh map of f or ]. Every grouping of 1 's in the K -map, or a 

loop, corresponds to a prime implicant of the function. The essential prime implicants 

are those that correspond to !-groupings which contain at least one minterm that is not 

contained in any other prime implicant loop. The special vertices of the network under 

consideration are obtained by considering each loop used in the SP form and selecting 

one minterm that is not included in any other loop. For example, if the K-map shown 

70 



in Fig. 3.10 is that off, then the set of special 1-vertices in the SP implementation of 

the pull-up network is derived as follows. 

1 wx 
{)() 01 11 10 

1 wx 
{)() 01 11 10 yz yz 

00 1 1 0 1 {)() 0 0 1 0 

01 0 0 1 0 01 1 1 0 1 

11 0 0 0 0 1I 
I I I I 

10 I 1 0 1 10 0 0 I 0 

Figure 3.10 Kamaugh map of the example function. 

The function has 3 product terms, and hence, C8 will contain three elements. The 

first element is clearly wxyz = 1101. In the loop containing the four comer 1 's, we 

can select either wxyz = 1000 or 1010, but not 0000 or 0010, since these are contained 

in another loop. In the remaining loop, we can select either wxyz = 0100 or 0110. 

Therefore, we have four possible ways to choose the elements of C8 • These are listed 

below. 

C81 = {1101, 1000,0100} 

Cs3 = {1101, 1000, 0110} 

Cs2 = {1101, 1010, 0100} 

Cs4 = {1101, 1010,0101} 

When a network is implemented according to the PS form of a function, the con­

struction of the set of special vertices is not as simple. The PS implementation of a 

network consists of a series of parallel branches of transistors. An input combination 

that makes the network conducting is a special vertex if, and only if, for at least one 

of the parallel branches, a single transistor is on and all other transistors of the parallel 

branch are off. The procedure to select a set of special vertices in this case is illustrated 

with the example function of Fig. 3.10. The pull-down network is assumed to imple­

ment the PS form of ]. The set of special 0-vertices D s is determined by constructing 

Table 3.3. 

The first column of Table 3.3 is a list of all 0-vertices of the function. Each of 

the remaining major columns corresponds to a sum term in the PS form of ]. The 

subcolumns of a major column correspond to the literals of the sum term. The table 

entries are marked by considering each 0-vertex and applying the following rules: 

71 



Table 3.3 Procedure to select the special vertices of a PS network. 

wxyz iiJ x y z w z X z 

1 0001 v' v' v' v' 
2 0011 v' v' v' v' v' 
3 0101 v' v' v' v' 
4 0111 v' v' v' v' v' 
5 1100 v' v' v' 
6 1110 v' v' v' v' 
7 1111 v' v' v' v' v' 
8 1001 v' v' v' v' 
9 1011 v' v' v' v' v' 

Rule 1 If input variable a is 1 then all entries at the intersection of a subcolumn labelled a 

and the row of the current 0-vertex are marked. 

Rule2 If input variable a is 0 then all entries at the intersection of a subcolurnn labelled a 
and the current 0-venex- are marked. 

Rule3 If the network under consideration is a pull-up, then the 1 's are changed into O's 

and the O's into 1 's in rules 1 and 2. 

Once the table entries have been marked, the special vertices are obtained by con­

sidering each subcolumn and selecting a 0-vertex that marks a single entry in the cor­

responding major column. If the selected 0-vertex also marks a single entry in another 

major subcolumn, then the corresponding subcolumn is marked as covered. This will 

reduce the number of elements in D s. 

The selection of special 0-vertices from Table 3.3 is now illustrated. Considering 

subcolurnn w, vector 3 is selected since it marks no other subcolumn in the first major 

column. Subcolumn z in the second major column is also covered by vector 3, so it 

will not be considered later. 

Considering subcolumn x, vector 8 is selected. Subcolumn z of the third major 

column is also covered by vector 8. Considering subcolumn y, vector 7 is selected. 

No other subcolumn is covered by vector 7. Considering subcolumn z, vector 5 is 

selected. The remaining subcolumns, wand x are also covered by vector 5, and hence 

72 



the selection process stops. The resulting minimum set of special 0-vertices is 

Ds = {3,8, 7,5} = {0101, 1100,1111, 1001} 

In general, the above selection procedure yields more than one possible set. The 

number of elements is an obvious criterion to choose between different sets. A less 

obvious criterion is illustrated in Fig. 3.11. The two possible sets of speciat;e'rtices are 

D81 = {7,3} = {1001,0110} Ds2 = {9, 1} = {1010,0101} 

abed a b c d 

1 0101 ..; ..; 
2 0111 ..; ..; ..; 
3 0110 ..; ..; 
4 1101 ..; ..; ..; 
5 1111 ..; ..; ..; ..; 
6 1110 ..; ..; ..; 
7 1001 ..; ..; 

9 
- -8 1011 -J ..; ..; 

9 1010 ..; ..; 

Figure 3.11 Selection of special vertices for the PS form. 

The paths activated by the different vectors are indicated on the pull-down of 

Fig. 3.11. It can be seen that set D s2 does not detect the break indicated by x, whereas 

D81 does. Note that a change in the labelling of the gates of the transistors reverses the 

situation. In a large circuit, taking this effect into account will complicate the selection 

process. It may even be necessary to choose a non-minimal set of special vertices in 

order to detect breaks similar to the one considered above. 

The above procedure for selecting special vertices can also be used with the SP 

form. The literals in the subcolumns are replaced by product terms and the rules are 

modified so that a product term is marked only if all its literals are marked. This 

extension may be necessary when the number of input variables exceeds five or six. 

Once the sets of special vertices Cs and Ds have been selected, procedure 1 can 

be used with Cs and D s as input, instead of C and D, to yield a shorter test sequence. 
73 



Using the example function of Fig. 3.10 and selecting set C.~p procedure 1 yields the 

test sequence shown below. 

W X y z 

1 1 1 0 1 

2 0 1 0 1 

3 1 0 0 0 

4 1 0 0 1 

5 0 1 0 0 

6 1 1 1 1 

7 1 1 0 1 

8 1 1 0 0 

Test sequences obtained from the procedure presented in this section may be invali­

dated by circuit delays. In the next section, a procedure that yields robust test sequences 

is presented. 

3.4.3 Robust Test Sequences 

The procedure described in this section yields a complete test sequence that remains 

valid under all delay conditions. The definitions of special vertices and sets C8 and Ds 

are as in the previous section. The procedure is as follows: 

Procedure 2 

1) Select any special a-vertex (a E {0, I}). 

2) Move to an a-vertex that is adjacent to the previous one. 

3) Repeat step 2 until all special vertices are traversed at least once. 

An additional requirement is that the starting vector must appear twice in the se­

quence. Figure 3.I2 illustrates procedure 2. The special true and false vertices are 

highlighted. The directed lines indicate the traversal process. The resulting test se­

quence is shown on the right. 

Another way to state the procedure is as follows: To obtain a robust complete test 

sequence, construct a path that passes through all selected true and false special vertices 

at least once, and such that the path is alternatively on 0 and I vertices of the function. 

Ideally, to get the shortest possible test sequence, the path should traverse every vertex 

74 



wx 
w X y Z 

yz 00 01 11 10 
1 1 1 0 1 

00 1 1 0 1 2 1 0 0 1 

3 1 0 0 0 

01 0 0~ 1-r-o 
4 1 1 0 0 

5 0 1 0 0 

11 0 0 0 0 
6 0 1 0 1 

7 1 1 0 1 
10 1 1 0 1 

8 1 1 1 1 

Figure 3.12 Illustration of procedure 2. 

no more than once. However, this is not always possible (as in the case where the first 

vector of the sequence has to be reapplied, for example). 

The problem of constructing such paths is very similar to the notoriously complex 

problem of the Travelling Salesman. This agrees with [178] where it was shown that 

the problem of detecting stuck-open faults is NP-complete. 

The underlying assumption in procedure 2 is that there should be adjacency between 

consecutive vectors to guarantee test sequence robustness. As mentioned earlier, this is 

not always necessary. A better procedure, which is more amenable to automation then 

the previous one, and that does not require adjacency between consecutive vectors, is 

now presented. 

Definition: Two vectors To and T1 are said to be compatible if /(To)= /(TI). and the 

transition cube (To, T1) does not contain any vertex of the same type as T1. 

In other words, To and T1 are called compatible if they form a robust two-pattern 

test for some stuck-open fault 

75 



Procedure 3 

1) For each element c1 of 0 8 , construct the set D(c1) consisting of the elements of Ds 

that are compatible with c1• 

2) For each element d1 of D 8 , construct the set 0(d1) consisting of the elements of 0 8 

thaf',fompatible with d1• 

3) Add element c1 to the test sequence, 

4) Add an element d1 from D(c1) to the test sequence, 

5) Add an element ci+1 from 0(d1) to the test sequence, 

6) Add an element d1+1 from D(cJ+l) to the test sequence, 

until every special vertex has been used at least once. 

The procedure is now illustrated using the example function of Fig. 3.10. Sets 0 8 

and Ds are as follows: 0 8 = {1101, 1000,0100}, Ds = {0101, 1001,1111, 1100} 

First, we construct the sets of compatible vectors for every special vertex. 

D(1101) = {0101, 1001,1111, 1100} 

D(lOOO) = {1001, 1100} 

D(0100) = {0101, 1100} 

0(0101) = {1101, 0100} 

0(1001) = {1101, 1000} 

0(1111) = {1101} 

0(1100) = {1101, 1000, 0100} 

Next, the sequence is constructed. 

Select an element from Os:--d 101 

Select an element from D(1101 ): --t0101 

Select an element from 0(0101): --t0100 

Select an element from D(01 00): ___. 1100 

Select an element from 0(1100): --t1000 

Select an element from D(lOOO): ___. 1001 

Select an element from 0(1001): ___. 1101 

Select an element from D(ll01): ___. 1111 

76 



Note that at every step, if the choices were arbitrary then the resulting test sequence 

may not be the shortest possible one. The following longer test sequence is obtained 

using the same procedure, but making different choices after stepl. 

Select an element from 0 8: --t 1101 

Select an element from D(1101 ): --t 1111 

Select an element from 0(1111): --t 1101 

Select an element from D(ll01): --t 1100 

Select an element from 0(11 00): --t 1000 

Select an element from D(lOOO): --t 1001 

Select an element from 0(1001): --t 1101 

Select an element from D(ll01): --t0101 

Select an element from 0(0101): --t0100 

No algorithm has been found so far to direct the choice to obtain test sequence of 

minimal length. However, some helpful observations follow: 

Observation 1 : The shortest possible test sequence, obtained from procedure 1 with 

sets 0 8 and D s as input has a length of 2 max( nc, nd). This can be regarded as a 

lower bound of the length of robust test sequences, i.e., if the length of a test sequence 

obtained from the procedure ofthis section is 2 max(nc, nd), then it is the optimal robust 

and-complete test sequence. 

Observation 2: If every special vertex has more than one compatible vector, than it is 

usually possible to obtain an optimal robust test sequence. 

Observation 3: If there exists a special vertex that has no compatible vector, then the 

implementation of the function cannot be robustly tested. Section 3.2.2 discussed this 

case. 

An alternative, graph-oriented, approach to obtain the complete robust test sequence 

is illustrated in Fig. 3.13. The vertices of the graph are the elements of 0 8 and D8 • There 

is an edge between two vertices if they form a compatible pair. The test sequence is 

obtained by constructing the shortest path that traverses all vertices following the edges 

of the graph. The bold line in Fig. 3.13 represents the resulting path. 

3.4.4 Test Generation for Multi-Level Circuits 

Complex gate implementations of combinational circuits become impractical when the 

number of input variables exceeds five or six. In such cases multi-level circuits have 

to be used. However, with the exception of two-level NAND-NAND and two-level 

77 



Figure 3.13 Graph-oriented approach for the obtention of a complete, robust test sequence. 

NOR-NOR, there is no systematic method for the implementation of a combinational 

circuit as a multilevel network of primitive and/or complex gates. Furthermore, if a 

complex gate implementation exceeds some fan-in limit then the corresponding two­

level implementation also exceeds this limit. However, it is much easier, and more 

systematic, to accomodate the fan-in limit in a two-level circuit (by simply relacing 

some gates with trees of NAND-and/or NOR gates) than in a complex gate. 

In the following, we will consider the extension of the test generation procedures 

to two-level NAND-NAND circuits. The discussion of two-level NOR-NOR circuits 

is omitted since it is analogous to two-level NAND-NAND. Unstructured multi-level 

circuits will then be discuused. 

The simplest way to extend the procedures described previously is to apply them to 

each individual gate and then concatenate the resulting test sequences. In cases where 

the inputs to the gate under consideration are a subset of the inputs to the circuit, the 

remaining inputs are left unspecified until the concatenation of the sequence where they 

are set in such a way that the fault effect is propagated to the circuit output. 

Indeed, applying this simple procedure to a two-level NAND-NAND circuit reveals 

that only the first level NAND gates need considering and that the resulting complete 

test sequence is of minimal length in some cases, whereas in other cases it is possible 

to further reduce the length of the test sequence, as illustrated in the following example 

(Fig. 3.14). 

Setting the unspecified inputs so that the fault is propagated to the output is straight­

forward. Note that the initialisation vector for stuck-open faults in the pFETs of first 

78 



W X y Z f1 f2 f3 f Faults 

1 0-- 0 0 - 1 1 

2 1 1 - 0 1 1 1 0 P1 

3 0 1 - 0 0 1 1 1 P9 

4 0-- 1 1 1 1 0 P2 

5 -0-0 - 0 - 1 

6 1 1 - 0 1 1 1 0 P3 
f 

7 10-0 1 0 1 1 PIO 

8 - 0 - 1 1 1 1 0 P4 

9 1 1 0 1 1 1 0 1 

10 0 1 0 1 1 1 1 0 P5 

11 1 1 0 1 1 1 0 1 Pll 
f3 

12 1 0 0 1 1 1 1 0 P6 

13 1 1 0 1 1 1 0 1 

14 1 1 1 1 1 1 1 0 P7 

15 11 0 1 1 1 0 1 

16 1 1 0 0 1 1 1 0 P8 

Figure 3.14 Two-level NAND-NAND implementation of the example circuit. 

level gate i is also a test vector for the stuck-open fault on the pFET of the output gate 

that is driven by the output of gate i. Hence, there is no need for considering the output 

NAND gate. If gate i has ni inputs then the initialisation vector is applied ni times. 

The reduction in test sequence length comes from the fact that it is possible to 

simultaneously test two or more pFETs belonging to different first level gates. This is 

possible if 

• The prime implicant loops corresponding to these gates have a non-empty inter-

section (the common initialisation vector belongs to the intersection of the loops), 

and 

• the specified inputs of the 0-vertices that detect these faults do not conflict. 

Considering the previous example, an examination of the test sequence reveals that 

vectors 2 and 6 can be combined to test for P1 and P3 simultaneously, and vectors 

79 



4 and 8 can be combined to test for stuck-open faults on P2 and P4 simultaneously. 

However, because the initialisation vector for P2 stuck-open is the test vector for P9 

stuck-open, and the initialisation vector for P4 stuck-open is the test vector for P10 

stuck-open, testing stuck-open faults on P2 and P4 simultaneously will result in either 

P9 or P10 not being tested. Therefore, only vectors 2 an 6 can be combined. (The 

initial test sequence can be reordered so that vectors 4 and 8 can be combined, but then 

combining vectors 2 and 6 will result in either P9 or P10 not being tested). The resulting 

test sequence is two vectors shorter. In a larger circuit, with more prime implicants 

and more literals per prime implicant, the reduction in the length of the test sequence 

through the simultaneous testing of different pFETs belonging to different first level 

gates may be more substantial than in this case. 

An important attribute of the previous test sequences is that if a two-level circuit 

is transformed into a multi-level circuit, to accomodate some fan-in limit throught the 

replacement of single gates with trees of gates, then the resulting multi-level circuit is 

also completely tested by the same test sequence. Furthermore, and as shown in [167], 

if the test sequence is robust in the two-level realisation then it remains robust in the 

multilevel circuit. As an illustration, consider the circuit of the previous example where 

the 4-input first level NAND gate is replaced by a tree of two 2-input NOR gates and 

a NAND gate, as shown in Fig. 3.15. 

f3 

Figure 3.15 Transfonnation of a two-level NAND-NAND circuit into a multilevel circuit. 

Stuck-open faults on transistors N1, N2, N3 and N4 of the two NOR gates are 

detected by vectors 10, 12, 14 and 16, respectively, of the test sequence for the corre­

sponding two-level NAND-NAND realisation. 

80 



For unstructured multi-level circuits, obtained throught factorisation and/or logic 

sharing, the test sequence derived for the corresponding two-level realisation is generally 

not complete. The following procedure generates a complete test sequence for multi­

level circuits. 

Let n be the number of gates in the circuit. Each gate i has its associated sets Csi 

and Dsi• the sets of special 1 and 0 vertices, as defined in Section 3.4.2. The procedure 

is as follows: 

Procedure 4 

1. Derive a test sequence for gate i by combining the elements of Csi and D si· 

2. Sensitise path(s) from the gate output to the circuit output. 

3. Set all the node values implied by the settings in 1. and 2. 

4. Optimisation 1: 

For each gate j,j =I i, 

• if an element of Csj follows an element of Dsj in the test sub-sequence 

for gate i, then mark this element and sensitise path(s) from the output 

of gate--j to the ciruit output. 

• if an element of D sj follows an element of Csj in the test sub-sequence 

for gate i, then mark this element and sensitise path(s) from the output of gate j to 

the ciruit output. 

5. Repeat steps 1. 2. 3. and 4. until all elements of all 0 8 /s and D 8 /s are marked. 

6. Optimisation 2: Reorder the test subsequences so that: 

• the output is alternating, and 

• if the last input vector of a subsequence is also the first vector of 

another subsequence, then these vectors can be merged. 

Unspecified values of some nodes may be set at step 4. in order to further optimise 

the test sequence. 

The procedure is illustrated with the circuit of Fig. 3.16 which is a multi-level 

realisation of the circuit of the previous example. Table 3.4 shows the test derivation 

process. The node values in bold are obtained at step 1.. The other node values are 

obtained by application of steps 2. to 5. The complete test sequence obtained from 

81 



step 6. consists of the subsequences for gate 4, gate 3, gate 2 and then gate 1, noting 

that vectors 1 and 8 of Table 3.4 can be merged. This results in a 11-vector long test 

sequence. 

w 

X 

y 

z 

z ___ -t 
x1 

x2 

Figure 3.16 Unstructured multi-level realisation of the previous example ciruit. 

Table 3.4 lllustration of Procedure 4. 

W X y Z x1 x2 x3 x4 f Special Vertices 

1 1 1 0 0 1 1 0 

2 0 1 -0 1 0 0 1 1 (01)1, (11)3, (01)s 

3 1 1 -0 0 0 1 1 0 Ol)t, (10)3, (11)s 

4 1 0 -0 1 0 0 1 1 (10)1 

5 1 1 0 1 0 1 0 0 1 

6 1 1 1 1 0 0 1 1 0 (10)2, (10)4 

7 1 1 0 1 0 1 1 0 1 (OOh, (10)s, (11)4 

8 1 1 0 0 0 0 1 1 0 (Olh 

9 - - - 0 1 0 0 1 1 

10 - - 0 1 1 1 1 1 0 (Olh 

11 1 1 0 1 0 1 1 0 1 

12 -- 0 1 1 1 1 1 0 (01)4 

The test sequences for multi-level circuits are always longer than the sequences for 

the corresponding complex gates. For example, a two-level NAND-NAND implemen­

tation of the SUM circuit requires a 24-vector long test sequence, compared with just 

9 vectors in the test sequence of the complex gate. 

82 



The circuit transformation suggested for robust testability, Fig. 3.5(d) yields shorter 

test sequences than other multi-level realisations. 

3.4.5 Testing Multi-Output Circuits 

The major aspect of the test sequence generation procedures presented so far is that they 

produce a trivial alternating output, thus greatly simplifying the test response analysis, 

while detecting all detectable faults. The notion of 'alternating output' has no meaning 

when the circuit has more than one output. It is possible to have an input sequence that 

toggles all outputs at every cycle but such a sequence will detect only a small fraction 

of the faults, if any. 

On the other hand, an input sequence that detects all possible faults but produces 

an output response that does not follow any regular pattern is of little use in a BIST 

environment, since this leaves only two alternatives for response analysis: (i) store the 

circuit response on-chip, or (ii) compress the test response. 

Storing the test response on-chip would require a large area overhead, while the 

compression of the test response may give rise to alia sing errors, negating the benefits 

of having a complete test sequence. 

One way to restrict the circuit response to a regular pattern would be to test one 

output at a time. All the faults that can be tested at output i are tested with an input 

sequence, derived by one of the procedures of the previous sections, i.e., i is an alter­

nating output, then all faults that can be detected at output i + 1 are tested in a similar 

manner, and so on. The circuitry required for analysing such a test response is simpler 

than in the previous two alternatives. The drawback is a much longer testing time. 

The testing time can be reduced if the test sequences corresponding to each output 

are dervied such that they overlap, as illustrated in Fig. 3.17 for a three output circuit. 

Output 02 

' 
OutputOl ' 0utput03 

tO tl t2 t3 t4 t5 

Figure 3.17 Reduction of test sequence length through overlapping. 

83 



01 is an alternating signal between to and t2. 02 is alternating between t1 and t4, 

while 03 is alternating from t3 to ts. The input vectors that detect faults at output 01 

only are applied between to and t1. Similarly, the input vectors that detect faults at 

output 02 only appear between t2 and t3. Input vectors that detect faults at both 01 and 

02 appear between t1 and t2, where both outputs are alternating. Examples illustrating 

this approach are presented in the poster section of [179]. 

The circuitry for test response analysis will have to perform the following functions: 

• Enable the monitoring of output 01 at to 

• Enable the monitoring of output 02 at t1 

• Disable the monitoring of output 01 at t2 

• Enable the monitoring of output 03 at t3 

e Disable the monitoring of output 02 at t4 

Therefore, the circuitry required for test response analysis is more complex than 

when no overlapping occurs, but the reduction in the length of the test sequence may 

offset the increased complexity. 

Another way to_ tesLmulti,output circuits is to generalise the idea of a trivial output 

to the case when there is more than output, i.e., devise a multi-bit signal that can be 

generated on-chip by simple hardware, and then derive test sequences that would: 

1. detect all faults in the circuit, and 

2. give a fault-free response equal to this multi-bit signal. 

Such a multi-bit signal must have many 0 ___... 1 and 1 ___... 0 transitions since the 

detection of CMOS stuck-open faults requires inducing transitions at certain nodes of 

the circuit. The output of a binary counter may be appropriate. A further alternative 

approach for testing multi-output circuits is presented in Chapter 4, where the outputs 

are combined into a single output. 

3.5 CHAPTER SUMMARY 

The aim of the work presented in this chapter was to derive simple test generation 

procedures for the detection of all detectable faults. The laborious task of generating 

tests by considering every possible physical fault and its effect on circuit operation was 

undertaken in order to get insights into the requirements for the detection of the different 

84 



faults. An important result of this task was the derivation of a complete test sequence 

that produces a toggling fault-free response. 

The idea of generating complete test sequences in such a way that the fault-free 

response of the circuit under test is easily generated by simple on-chip circuitry is 

proposed in this thesis as a novel and effective solution to the problem of test response 

analysis, especially for BIST implementations. Currently, signature analysis is the most 

widely used technique. The proposed approach is superior to signature analysis because 

it does not suffer from any error alia sing oV'fault masking effects. The only requirement 

is the deterministic derivation of test sequences, as opposed to pseudo-random or pseudo­

exhaustive sequences. However, this requirement is necessary for achieving high levels 

of coverage of stuck-at and stuck-open faults. This approach is used in the next chapter 

to implement built-in self-test with a hardware overhead comparable with current BIST 

approaches, while achieving a much higher fault coverage. 

Tests for stuck-open faults were shown to detect all other detectable faults, thereby 

obviating the need to consider them for test generation. Simple test sequence generation 

procedures were derived. Test sequence generation, as opposed to test pattern genera­

tion, does not require fault enumeration. This is another advantage of the procedures 

presented in this chapter. An additional advantage offered by these procedures is that 

test sequences are derived from a truth table specification of the circuit. 

85 



Chapter 4 
Built-In Self-Test for CMOS Circuits 

4.1 INTRODUCTION 

This chapter addresses the problem of designing chips that are able to provide informa­

tion concerning their internal status (operational/faulty) using an off-line fault detection 

approach. This is commonly termed Built-In Self-Test (BIST). 

The benefits of BIST, even outside the framework of fault-tolerance, are numerous. 

Most of these benefits stem from the following two factors: 

• Unlimited access to internal nodes, at least in theory, and 

• the ability to test circuits at their operating frequency. 

The limited access to internal nodes of a chip, in external testing, is proving to be 

a major problem in exploiting the advantages offered by VLSI. The ever decreasing 

pin-to-gate ratios are limiting the ability of an external tester to control and observe the 

internal nodes. It was in anticipation of these forthcoming difficulties that the concept of 

Design For Testability (DFT) appeared in the early seventies, and subsequently evolved 

to the concept of BIST. BIST is considered as the ultimate DFT technique [109]. It 

is also seen as the only solution, in conjunction with boundary scan, for the testing of 

state of the art PCBs populated with surface mounted ICs [78]. 

The increasing clock frequencies of today's VLSI circuits are also causing problems 

in testing. The connections between the test fixture and the pins of an IC start behaving 

as transmission lines above certain frequencies. Taking these effects into account in­

creases the complexity, and therefore the cost, of the Automatic Test Equipment (ATE). 

86 



BIST would make it possible to use simpler and less expensive ATE and still allows 

"at-speed" testing which is not only necessary for checking the chip performance at 

high clock rates, but also uncovers more faults. System testing and maintenance are 

also greatly simplified with the use of BIST chips. 

In Section 4.2, the design of a built-in self-testing circuit is presented. The principal 

objective is the detection of all possible faults in the functional circuit. This requires that 

the tests be derived in a deterministic manner. Furthermore, this requirement excludes 

signature analysis for test response analysis. These last three points represent significant 

departures from current BIST techniques for the following reasons: 

• The idea behind pseudo-random testing is to use a sequence of pseudo-random 

test patterns and then evaluate the stuck-at fault coverage. There is no attempt to 

detect all faults. If the stuck -at fault coverage proves too low, then additional steps 

are required to bring it up to an acceptable level, such as increasing the number of 

vectors, modulation of the pseudo-random patterns, or re-design of the circuit under 

test. 

• In pseudo-exhaustive testing all stuck-at faults are detected but there is no provision 

for the detection of other faults. Furthermore, the reduction of test lengths relies on 

'structural' rather than 'functional' partitioning of the circuit. 

• For both pseudo-random and pseudo-exhaustive testing, signature analysis is the 

only option for processing the test response. Alia sing errors effectively reduce the 

fault coverage. 

• One of the acclaimed advantages of pseudo-random and pseudo-exhaustive testing 

is the elimination of the task of test pattern derivation. However, the tasks of 

partitioning the CUT, simulating it for obtaining the fault-free signature, fault sim­

ulation for assessing the fault coverage, and the measures undertaken for improving 

it, are all nearly as complex as the task of deriving tests, which pseudo-random and 

pseudo-exhaustive testing were supposed to eliminate. 

The hardware simplicity of the Linear Feedback Shift Registers, LFSRs, used as 

test pattern generators and signature analyzers, is therefore the only real advantage of 

current BIST approaches. However, even with the requirement of detecting all faults, 

it is shown in Section 4.2 that the resulting hardware overhead is comparable to that 

associated with pseudo-random and pseudo-exhaustive testing. Other design issues, 

with an effect on the hardware overhead in particular, are also discussed in Section 4.2. 

These issues are not specific to the chosen example and they can be of relevance in any 

BIST design. 

87 



In Section 4.3, the problem of testing the test circuitry is addressed. Faults in the 

added hardware may render the whole chip unusable, hence, it is necessary for it to 

be tested as rigorously as the functional parts. Testing the extra hardware requires the 

addition of circuits which themselves need to be tested requiring a further addition of 

circuits that also need testing, ... , and so on. This seemingly endless process is similar 

to the situation encountered in self-checking circuits using coding techniques, where 

the only way to end this infinite loop is to assume that some parts of the chip must be 

working for checking the working status of the rest of the chip. 

For some parts of the test circuitry, it is shown in Section 4.3 that it is possible to 

avoid the above endless process. For the other parts, examples are given to illustrate the 

difficulties in achieving complete test coverage. These examples suggest that improved 

fault coverage may be achieved if separate chips were to cooperate in testing each others 

untested parts. 

It was mentioned in Chapter 1 that there might exist an optimum level for in­

troducing fault-tolerance. It is shown in Section 4.4 that the hardware overhead for 

fault-detection achieves a minimum for a particular partitioning of the circuit under 

test. This suggest that the size of the added circuitry can be further minimised by 

selecting an appropriate partitioning scheme. 

The results presented in Sections 4.2 and 4.4 assume that the test sequence generator 

is implemented as a ROM array and a ring counter. This is the simplest possible imple­

mentation. In Section 4.5, other implementations are investigated for lower overhead 

and for better testing of the test circuitry. 

In Section 4.6, a time redundancy method is investigated as a pseudo-on-line fault­

detection approach for CMOS circuits. Section 4.7 concludes the chapter. 

4.2 DETECTION OF ALL FAULTS IN A BUILT-IN SELF­
TEST IMPLEMENTATION 

The implementation of a self-testing circuit is considered in this section. The main 

goal of detecting all faults is achieved through the use of the test sequence generation 

procedures of Chapter 3. A ripple carry adder is selected as an example for this 

implementation. This is a circuit of manageable complexity and its modularity allows 

for the study of the effect of partitioning on the hardware overhead. The regularity of 

the adder also allows some insights into the implementation of BIST in a chip consisting 

of several units. 

88 



An n-bit ripple carry adder consists of n full adder cells. The one-bit full adder cell 

is the same as the one used for the fault analysis of Chapter 3. Each cell is completely 

tested with a sequence consisting of nine vectors. The simplest method for testing an 

n-bit adder takes advantage of the modularity of the circuit: The same 9-vector long 

test sequence is applied to every adder cell and the outputs are monitored. The extra 

hardware required to implement BIST is listed below. 

• Test pattern generator. 

• Input multiplexers. 

• Analyzer circuit 

As described in this section, the test pattern generator is implemented as a ring 

counter and a ROM array. In Section 4.5, alternative implementations are investigated. 

The input multiplexers are used to select between the normal inputs and the test inputs. 

The analyzer circuit monitors the output response and is responsible for reporting the 

faulty/operational status of the circuit. 

Considering the placement of the analyzer circuit, two strategies emerge. They 

are discussed in the next subsection. The subsequent sections give the implementation 

details of all the extra hardware and its placement relative to the adder circuit. 

4.2.1 Distributed vs Centralised Analyzer 

Since the ripple adder is an iterative circuit, we may either test all cells in parallel, or 

sequentially test one cell at a time. In the first case, every adder cell is associated with 

extra circuitry to monitor its outputs, as shown in Fig. 4.1. This case will be referred 

to as distributed. 

In the second case, a single analyzer circuit is provided for the whole n-bit adder, 

as shown in Fig. 4.2. The test sequence is applied to one adder cell at a time, the output 

of which is monitored by the analyzer. This case will be referred to as centralised. 

As far as test time is concerned, the distributed approach is clearly superior: it is 

n times faster than the centralised approach. However, the situation for the hardware 

requirements needs a more detailed analysis. The test pattern generator and the input 

multiplexers are the same for both cases. We can, therefore, make a comparison based 

on the response analysis circuitry alone. In the distributed case, an analyzer circuit is 

required for every bit of the n-bit adder. For the centralised case, only one analyzer 

circuit is used for the whole n-bit adder, but additional circuitry is also required to 

89 



....-

Test 
Pattern 
Generator 

~ ~ 

Test 
Pattern 
Generator 

;--

t ...- 6 _; -u 

l ~ 
q) 

V) -'---

ADl AD2 ADn 

Figure 4.1 Distributed approach to test response analysis. 

- -· 

a 
b 
c 

1H HI H+ 
Multiplexers Multiplexers Multiplexers 

+ + + + + + + + + 

I I 
I I 
' ' ADl AD2 ' ' ADn 

I r--.:--

Figure 4.2 Centralised analyzer. 

90 



select one-of-n adder cells to be analyzed. The details of such circuitry are given in 

Fig. 4.3, for n = 4. For an n-bit adder, we require: 

• A log2(n)-bit binary counter. 

• A log2(n)-to-n decoder, and n inverters. 

• 2n transmission gates. 

~:$~:$ 
s 

~:$~-=$ 
c 

Figure 4.3 The selector circuits for the centralised analyzer. 

Table 4.1 gives the size of the response analysis circuitry, as a number of transistors, 

for both cases and for different analyzer and adder sizes. 

Table 4.1 Comparison of the sizes of response analysis circuitry for distributed and 

centralised approaches. 

Analyzer 16 PETs 24 32 

Adder Distributed Centralised Distributed Centralised Distributed Centralised 

1 16 16 24 24 32 32 

2 32 34 48 42 64 50 

4 64 84 96 92 128 100 

8 128 164 192 172 256 180 

16 256 318 384 326 512 334 

32 512 646 768 654 1024 662 

91 



If the analyzer circuit contains fewer than 24 transistors, the hardware overhead 

figure makes the distributed case preferable to the centralised case. Even when the 

analyzer has 24 transistors or more, the difference between the two cases does not 

justify the use of the centralised analyzer. The distributed case has another important 

advantage over centralised testing in that it preserves the regularity of the n-bit adder 

circuit. The placement of the analyzer circuit is unambiguous, whereas the centralised 

nature of the analyzer in the alternative approach is bound to cause problems because 

of the necessity to route many signals through long distances. The strongest argument 

for preferring a distributed analyzer however is that a faulty analyzer circuit does not 

necessarily render the whole chip faulty. 

4.2.2 Design and Placement of the Test Pattern Generator 

As mentioned earlier, the test pattern generator is realised as a ROM array and a ring 

counter. For an m-vector long test sequence, an m-bit ring counter is preferred to 

the combination of a log2(m)-bit counter and a log2(m)-to-m decoder circuit, for two 

reasons: (1) Faults in the decoder circuit would be difficult to test, and (2) the size 

of the binary counter + decoder combination increases rapidly with the test sequence 

length. 

Figure 4.4 gives a block diagram of the test sequence generator. Details of the 

ring counter cells are given in Fig. 4.5. Dynamic latches are used since there they are 

simpler; the function of the ring counter being simply to circulate a single logic one 

through the m cells. Furthermore, testing is performed at the normal operating speed, 

so that none of the usual problems associated with dynamic circuits are of concern here. 

The first cell of the ring counter is designed such that, at the start of the test 

sequence, the RESET signal sets its output to logic one and sets all other cells to logic 

zero. In this way, each clock cycle will shift the one to the next stage, and the end of 

the test sequence is indicated by the return to logic one of the first stage. The output 

of every stage drives a word line in the ROM array. 

The cells of the ring counter should be designed so that they are as narrow as 

possible in the direction of the propagation of the logic one. The separation between 

the word lines of the ROM array can be very small. Therefore, in order to reduce the 

wasted area, the width of the cells should match the separation between the word lines 

as closely as possible. It is clearly impossible to fit the ring counter cell of Fig. 4.5 into 

the smallest separation between the word lines allowed by the design rules, so there 

will always be some wasted area that we can only try to minimise. A possible layout 

92 



Clocks 

' 

' 

9-bit ' 
' 

Ring Counter ' 9x3 bit 
' ROM array 
' 
' 

t t t 

Figure 4.4 Block diagram of the test sequence generator. 

In 

In 

(a) (b) 

Figure 4.5 Implementation of the cells of the ring counter. 

for the ring counter cell and the ROM array is shown in Fig. 4.6. The order of the 

different layers is modified in Fig. 4.6 for clarity. 

If nine cells of the ring counter are stacked to form the test sequence generator for 

the full adder, then the resulting circuit will have an area of 432 x 160J.Lm2, for 3J.Lm 

design rules. A floor plan of the n-bit adder and the test sequence generator is shown 

in Fig. 4.7. Even if the area marked AO can be used for the input multiplexers and the 

93 



Figure 4.6 Layout of the test pattern generator. 

output analyzers, the area overhead associated with BIST will be 

Ov = Test area = 432(160 + 136n)- 221 x 136n 
Total area 432(160 + 136n) 

For n = 8, Ov = 55.4%, whereas for n = 32, Ov = 50.6%. 

A better solution may be to lay down the ring counter and the ROM array as shown 

in Fig. 4.8, where the word lines are in the order 1, m, 2, m - I, ... m /2, m/2 + 1. In 

this case the area of the test sequence generator is approximately 240 x 287 Jlm2. This 

not only reduces the total area of the test sequence generator, but it also offers better 

placement options of the test sequence generator in relation to the adder circuit 

94 



We 

Wr 

We 

Test AreaAO 

432 Pattern 
Generator n-bit Adder 

• 160 •• 136n 

Figure 4.7 Floor plan of then-bit adder and the test sequence generator. 

Lc=240 

Celll H Cell2 -- Cell3 
~ 

Cell4 -- Cell5 

28 

Ce119 ~ CellS f-- Cell7 ~ Ce116 ,.. 
7 

}
Bit 
Lines 

Figure 4.8 An alternative placement of the ring counter relative to the ROM array. 

In Figs. 4.6 to 4.8, the ROM array is considered to have three bit lines corresponding 

to the three inputs of a full-adder cell. The sequence used to test this circuit is derived 

using the procedures of the previous chapter. Such test sequences produce a toggling 

output, obviating the need to provide the fault-free circuit response. However, because 

the full-adder has two outputs, SUM and CARRY, the definition of the toggling property 

needs to be considered. The approach suggested in Chapter 3, in such cases, was to test 

the outputs one at a time. The complete test sequence for the SUM circuit is 9-vectors 

long, and the CARRY circuit is completely tested by a 6-vectors long sequence (the 

last vector in the SUM sequence is used as an initialisation for the CARRY circuit). 

This would result in a 15-vector long test sequence for the full adder cell, shown in 

Table 4.2. 

If this concatenated test sequence is used to test the full adder cell, then we would 

require a 15-bit ring counter. The output from the lOth stage, when set to logic one, 

triggers a flip-flop controlling the analyzer to switch the monitoring process from the 

95 



Table 4.2 Test sequence of a 1-bit adder. 

SUM CARRY Full adder 

1 000 0 0 1 000 

2 0 0 1 0 1 1 0 0 1 

3 0 1 1 010 0 1 1 

4 0 1 0 1 1 0 010 

5 1 1 0 1 0 0 1 1 0 

6 1 1 1 1 0 1 1 1 1 

7 1 0 1 1 0 1 

8 1 0 0 1 0 0 

9 000 000 

10 001 

11 0 1 1 

12 010 

13 1 1 0 

14 100 

15 1 0 1 

SUM output to the CARRY output. 

It was also said in the previous chapter that it is possible to overlap the testing 

of more than one output in order to reduce the test sequence length and the testing 

time. Looking at the previous test sequences, it can be seen that if it was not for input 

vectors 000 and 111, the test sequences for the SUM and CARRY circuits can overlap 

completely. To make use of this observation, we should try to construct a test sequence 

such that these two vectors appear late in the list, as in Table 4.3. 

With such a test sequence, the output of the 8th stage of the ring counter will be 

used to switch off the monitoring of the CARRY output. Vectors 9 and 10 have been 

inserted between 000 and 111 to maintain the robustness of the test sequence, in case 

of circuit delays. In the built-in self-test environment, there is a better control over the 

circuit delays than when the test inputs are applied from the periphery of the chip, i.e., 

the robustness of the test sequence can be ensured by proper circuit design rather than 

by a proper choice of test vectors. Therefore, vectors 9 and 10 can be safely omitted 

96 



Table 4.3 Shorter test sequence for a 1-bit adder using overlapping. 

ABC SUM CARRY 

1 0 0 1 1 0 

2 0 1 1 0 1 

3 0 1 0 1 0 

4 1 1 0 0 1 

5 100 1 0 

6 1 0 1 0 1 

7 001 1 0 

8 000 0 0 

9 0 0 1 1 0 

10 0 1 1 0 1 

11 1 1 1 1 1 

from the previous test sequence to reduce the length to 9-vectors. 

4.2.3 Design and Placement of the Analyzer Circuit 

The function of the analyzer circuit is to monitor the SUM and CARRY outputs. Accord­

ing to the previous section, the SUM output should be an alternating signal throughout 

the test sequence, but the CARRY output is toggled only up to the seventh vector of 

the sequence. Therefore, the inputs to analyzer are as follows. 

• The SUM and CARRY outputs of a full-adder cell. 

• A toggling signal, T, which is simply a clock signal of half the frequency of the 

main clock. 

• A signal that switches OFF the monitoring of the CARRY output 

The resulting logic circuit is shown in Fig. 4.9(a), where Sw=1 disables the mon­

itoring of the CARRY output, and Oa=O indicates the presence of a fault in the SUM 

or CARRY circuit. 

A static CMOS implementation of the above circuit consists of 24 transistors. This 

figure makes the distributed analyzer approach less attractive than the centralised an­

alyzer approach, in terms of hardware requirements. Therefore, the above circuit is 

97 



Oa 

Sw'-------' 
(a) 

(b) 

Figure 4.9 Analyzer circuit (a) and its complex gate implementation (b). 

designed as a single CMOS complex gate, shown in Fig. 4.9(b), to reduce the num­

ber of transistors to 16, which is the minimum possible numbers. Both the SUM and 

CARRY inputs need complementing. 

The layout of the full-adder cell was given in Chapter 3. To form an n-bit adder, 
--- ---- - --· 

n cells are cascaded horizontally. The inputs and outputs of every cell run vertically, 

in metal 2, either from the top or bottom of the cell. This fact is used to split the input 

multiplexers into two halves, each consisting of three transmission gates. The first half, 

at the top, selects the data inputs. The second half is used to select the test inputs 

and can be shared by all n adder cells if it is moved to the output of the ROM array. 

The output inverters are placed close to the top half of the input multiplexers and the 

analyzer circuits are at the bottom of every full adder cell as shown in Fig. 4.10. 

4.2.4 Area Overhead Figures 

The floor plan of the n-bit adder and the test circuitry is shown in Fig. 4.11, together 

with the dimensions of the different blocks. The area overhead Ov is given by 

Ov = Test Area = Total Area - Adder Area = 1 _ Adder Area 
Total Area Total Area Total Area 

which is 

0 
= 

1 
_ 221 x 136n 

v (136n + 287)318 

98 



Output inverters 

Analyser 
r---, 
1 1 Metal2 

D Via 

T 
Carry 

Figure 4.10 Layout of the input multiplexers, output inverters, and analyzer circuit. 

99 



Output Inverters ~ 40 
Test + Input Multiplexers !t 

240 Pattern I' 
Generator n-bit adder 221 

Analysers A=57 

... 287 )lo ... 136n 

Figure 4.11 Floor plan of the adder circuit and the test circuitry. 

The area overhead is plotted against the adder size in Fig. 4.12. Note that with a 

floor plan as shown in Fig. 4.11, the depth of the analyzer circuit has a crucial influence 

on the area overhead. For a 32-bit adder, the area overhead varies from 21% to 43% 

as the depth of the analyzer circuit is varied from 0 to 1 OOJLm. The layout of Fig. 4.10 

corresponds to an analyzer depth of 57 JLm. 

1.0 

0.8 . 

- - ~-
1 \\.. t o.a ,.,:.._ 
li \\, ..... 
I \ \_, · .. ·.. . A~100 < \ ----., • ................................. .. 

0.4 \ ~--·-·-· Ac57 
~ -··-·-·- ........... ~-- ........... _ .. ,, ........ _,, ... . 

---- A~ 
0.2 --·-·-·-·-··· 

0 10 20 30 40 50 80 
Add• Blza (n) 

Figure 4.12 Area Overhead for different adder sizes. 

4.3 TESTING THE EXTRA HARDWARE: IS COMPLETE 
TEST COVERAGE POSSIBLE? 

Faults in the extra hardware introduced for BIST may result in the situation where a 

faulty unit is flagged as fault-free or vise versa. Therefore, it is important to test the 

extra hardware as rigorously as the functional circuits. 

100 



In this section, the testing of the added test circuitry is investigated. This circuitry 

falls into three categories: response analysis circuitry, test pattern generator, and the 

input multiplexers and output inverters. 

4.3.1 Testing the Analyzer Circuit 

The output of the analyzer considered in the previous section assumes a constant logic 

1 value if the circuit under test is fault-free. Hence, a stuck-at 1 fault on this output 

would not be detected, in addition to most of transistor stuck faults. The detection of 

the stuck-at 1 fault requires that the output of the analyzer be driven to logic 0 at least 

once during the test sequence. Furthermore, the detection of stuck-open faults requires 

that 0 ~ 1 and 1 ~ 0 transitions be induced at the analyzer output. 

Considering Fig. 4.9(b), it is clear that if SUM is an alternating signal and if when 

Sw=O, CARRY is also an alternating signal, then none of the paths in the pull-down 

network of the analyzer are activated. Therefore, the test sequence for the 1-bit adder 

needs to be augmented by some test vectors such that the resulting sequence does not 

always toggle SUM and CARRY (when Sw=O), in order to activate these paths. 

Let us derive a complete test sequence and see how it can be applied to the circuit of 

Fig. 4.9(b). The set of special1-vertices is Cs = Sw T S C = {0001,0110, 1000, 1111} 

and one-possible set-of-special 0-vertices is Ds = {0000, 0111, 1010,- HOO}. Combining 

C8 and D8 yields the test sequence shown in Table 4.4. 

A major problem with this test sequence is that signals T and Sw are considered 

as controllable inputs, i.e, they need to be produced by the test pattern generator. 

Furthermore, the role of signal Sw, as defined in Section 4.2, was to switch off the 

monitoring of the CARRY output, once all faults in the CARRY circuit have been 

tested. With the above test sequence this definition becomes ambiguous: some of the 

faults in the CARRY circuit are tested by vector 2, while the remaining are tested by 

the sequence following vector 9. 

An alternative approach that does not assume that T is a controllable input is now 

presented. Set Cs is divided into two sets Cs0 and C8 t according to whether input 

T is 0 or 1, respectively. This gives Cso = {1000, 0001 }, C8 1 = {0110, 1111 }. A 

similar operation is performed on set D8 resulting in D8o = {0000, 1010}, Dsl = 
{0111' 1100}. 

The complete test sequence consists of two parts. The first part is obtained by 

combining C8o and Dst and the second part is obtained by combining sets Cst and 

D sO• as shown in Table 4.5. 



Table 4.4 Complete test sequence for the analyzer circuit. 

A B c Sw T s Co Oa 

1 1 1 1 0 1 1 1 0 

2 0 0 1 0 1 1 0 1 

3 0 0 1 1 0 1 0 0 

4 0 0 0 1 0 0 0 1 

5 0 0 0 1 1 0 0 0 

6 1 1 1 1 1 1 1 1 

7 1 1 1 0 1 1 1 0 

8 0 1 1 0 0 0 1 1 

9 0 0 0 0 0 0 0 0 

10 0 0 1 0 1 1 0 1 

11 1 0 1 1 1 0 1 0 

12 0 1 0 0 1 1 0 1 

13 1 1 0 1 1 0 1 0 

. 14 1 0 0 0 1 1 0 1 

The disadvantage of the above test sequence is that the analyzer output is not 

toggled throughout the test sequence. In fact, it is not possible to toggle signal T and 

the output of the analyzer at the same time, since this would require that Oa=T or Oa=T 

for all special vertices. Although the initial definition of signal T is preserved in the 

test sequence of Table 4.5, signal Sw is still considered as a controllable input, making 

its function unclear. Furthermore, the fault-free response of the analyzer also needs to 

be provided by the test pattern generator. 

In both of the above test sequences for the analyzer, two extra signals need to be 

produced by the test pattern generator, in addition to the three inputs of the 1-bit adder 

(T and Sw in the first case, the fault-free analyzer's response and Sw, in the second 

case). It would have been simpler to generate the fault-free response of the 1-bit adder 

in the first place without taking advantage of the toggling property. A better approach, 

which makes an effective use of the toggling property is described below. 

In the new method, the SUM and CARRY outputs are combined into a single 

output by a combinational circuit that is designed so that all the faults can be detected 

102 



Table 4.5 Alternative complete test sequence for the analyzer. 

Sw T s c Oa 

1 1 0 0 0 1 

2 0 1 1 1 0 

3 0 0 1 0 1 

4 1 1 0 0 0 

5 1 0 0 0 1 

6 0 1 1 0 1 

7 0 0 0 0 0 

8 1 1 1 1 1 

9 1 0 1 0 0 

10 0 1 1 0 1 

by observing the combined output only. This two-input combinational circuit is chosen 

from the ten non-trivial functions of two-variables. Among these functions, only the 

XOR and XNOR functions can be used. For all other functions, there are some faults 

that cannot be detected. The implementations of these functions require only half the 

number of transistors of the initial analyzer circuit. The drawback, however, is that a 

longer test sequence is required to test for all faults and toggle the combined output. 

The test sequence, when a XOR gate is selected, is shown in Table 4.6. 

A 24-bit ring counter is required in this method, making the floor-plan of Fig. 4.11 

unsuitable, since a large area would be wasted. The problem is solved by simply 

rotating the test pattern generator by 90° relative to its orientation in Fig. 4.11. The 

area overhead becomes 

0 
= 

1 
_ Adder Area = 

1 
_ 221 x 136n 

v Total Area 287 x (576 + 136n) 

which is slightly less than the figures of Section 4.2 for n ~ 16. 

It should be noted that after vector 5, all faults in the XOR gate have been tested, 

and it is not necessary to continue toggling the XOR gate output in order to test the 

remaining faults in the SUM and ·CARRY circuits. It is therefore possible to maintain 

the output of the XOR gate at a constant logic value while testing the SUM and CARRY 

circuits, as shown in Table 4.7. However, the hardware required to monitor the output 

of the XOR gate in this case may offset any gains from a shorter test sequence. 

103 



Table 4.6 Test sequence of the SUM, CARRY and XOR gate. 

ABC S Co Out Detected stuck-open faults 

1 1 1 1 1 1 0 

2 0 1 1 0 1 1 P19, P22, N9, N12 , N13 

3 000 00 0 N21, N22 

4 0 0 1 1 0 1 P20,P21, P4, PS,P6 

s 1 1 1 1 1 0 N19, N21 

6 1 0 1 0 1 1 N9, NIO, Nll 

7 1 1 1 1 1 0 P6,P7,P8 

8 1 1 0 0 1 1 N4, NS, N6 

9 000 00 0 

10 1 0 0 1 0 1 Pl1, P12, PI3 

11 000 00 0 N4, N7, N8 

I2 0 1 0 1 0 I P9, PlO, P13 

13 000 00 0 

14 0 1 1 0 1 1 PIS, PI6 

I5 000 00 0 

16 1 0 1 0 1 1 P14, PIS 

I7 000 00 0 

18 1 1 0 0 I 1 P17, P18 

I9 1 1 1 1 1 0 

20 0 0 1 1 0 1 N17, N18 

21 I 1 1 1 1 0 

22 010 1 0 1 NI4, NlS 

23 1 1 1 1 1 0 

24 1 0 0 1 0 I NI4, N16 

The idea of combining the outputs of a circuit into a single signal for response 

analysis purposes can be generalised as an alternative solution to the problem of testing 

multi-output circuits, instead of sequentially testing one output at a time. 

Even when using the test sequence of Table 4.6, we still need a toggle detector to 

monitor the output of the XOR _gate. This can be a simple circuit that compares the 

XOR-gate output with signal T, as defined in Section 4.2. However, this simple circuit 

would also need testing, and therefore, another circuit is required to monitor its output, 

104 



Table 4.7 A shorter test sequence for the SUM, CARRY and XOR gate. 

A B c s Co Out 

1 1 1 1 1 1 0 

2 0 0 1 1 0 1 

3 0 0 0 0 0 0 

4 0 1 1 0 1 1 

5 1 1 1 1 1 0 

6 0 1 1 0 1 1 

7 0 0 1 1 0 1 

8 1 0 1 0 1 1 

9 0 1 0 1 0 1 

10 1 1 0 0 1 1 

11 1 0 0 1 0 1 

which also needs testing, and so on. This is similar to the problem of self-checking 

circuits discussed in Chapter 2. However, ill the p~sent case, there is~ ~iiiJQle method 

to stop this endless process. 

Analyzing a signal by comparing it to a reference signal requires a continuous 

monitoring of the outcome of the comparison. This is the reason for the above endless 

process. When analyzing an alternating signal, the focus should be on the 0 --+ 1 and 

1 --+ 0 transitions. The absence of any transition ends the monitoring process, regardless 

of subsequent values of the signal. A possible circuit implementation that achieves this 

goal is shown in Fig. 4.13. 

Input Tis as defined previously. Input A is the alternating signal to be monitored. 

Input SET sets the FLAG output to logic 1 at the start of the test sequence. When A 

follows T, a logic 1 is stored in the latch. Whenever, A is different from T, a logic 0 

is stored in the latch. This will tum transistor N off, trapping the faulty state until the 

next SET. 

In a fault-tolerant design, each 'unit' would have its own toggle detector. The 

FLAG signals control the switches that enable/disable the corresponding unit Ideally, 

all toggle detectors should be included in a scan-chain so that they are accessible from 

outside the chip. This would also help their testing. 

105 



A 

T 

-
T 

A 
(a) 

T 

-
T 

(b) 

Figure 4.13 Toggle detector. 

Assuming that we have access to the FLAG signals, the following procedure tests 

for faults in the toggle detector. All flags are set to logic 1 initially, and all units receive 

their normal test sequences. However, input T is complemented during the first two 
-- -

vectors. At the end of the test sequence, all fault-free toggle detectors should have their 

output at logic 0. This will detect stuck-open faults in all transistors of the circuit with 

the exception of the pFETs of the NAND gate. A stuck-on fault on nFET N is also 

detected. Asserting the SET input at this stage will test for the stuck-open on the pFET 

driven by SET. A stuck-open fault on the other pFET of the NAND gate is undetectable. 

It turns the static latch into a dynamic one. 

4.3.2 Testing the Test Pattern Generator 

The test pattern generator consists of a ring counter and a ROM array. The problem of 

testing the ring counter is similar to the problem of testing the latches in a scan-path 

arrangement. A complete structural test of an m-bit counter should be constructed by 

considering the circuit as having 3 inputs (CKl, CK2, and the input to the first stage 

(after breaking the feedback)), and m outputs. However, because of the simplicity of 

the adopted implementation, a better approach is proposed, The feedback line !rom the 

last to the first stage is broken with a multiplexer, and an alternating signal is applied 

to the first stage. After m clock cycles, the alternating signal should appear at the 

output of the last stage, if no faults are present. In this way, the number of outputs to 

106 



be monitored is reduced from rn to just one. This simple approach can be shown to 

detect all detectable faults in the ring counter, with the exception of stuck-open fault 

on the transistors driven by RESET. Stuck-open faults on these transistors are detected 

by setting the first stage to 0 an the remaining stages to 1, and then asserting RESET. 

After 1n clock cycles, a logic 1 should then appear at the output of the last stage if there 

are no faults. 

The ROM array is similar to the OR-plane of a PLA. The cross-point fault model 

is the most appropriate for testing such structures [45, 180]. In this fault model, all 

physical faults are assumed to result in a missing or an extra device. 

Considering the ROM as having rn inputs (word lines), it is possible to convert 

the pull-ups into a shift register in order to have access to every cross-point of the 

ROM. However, given the small size of the ROM used so far, a testing procedure that 

addresses every cross-point would require even more hardware than simple duplication 

of the ROM array. 

It was not possible to find a testing method for the ROM that requires less hardware 

overhead than duplication. However, since the test sequence stored in the ROM has 

a very precise ordering, any fault in the ROM is bound to disturb this ordering. For 

example, any single cross-point fault would result in a test sequence that does not 

toggle the SUM output. But a double cross-point fault results in a test sequence that 

still foggles the SUM output, while soine ofthe transitions at the CARRY output may 

be missing. Therefore, if at the end of the test sequence all adder cells are reported as 

faulty, it is very likely that the ROM itself is faulty. A faulty adder cannot be reported 

as fault-free, unless there is a double cross-point fault. In a fault-tolerant design, it is 

not relevant to distinguish between the case where all or most adder cells are faulty and 

the case when the ROM array is faulty: in both cases the chip is discarded. 

Note that duplicating the ROM would result in a only a small increase in the area 

overhead (from 34.8% to 35.2% for a 32-bit adder) because of the small size of the 

ROM. 

4.3.3 Testing the Remaining Test Circuitry 

For the input multiplexers, Fig. 4.14 presents a design approach that would make stuck­

open faults detectable. Stuck-on faults are also detectable if the intermediate voltages 

that they induce are far enough from their fault-free values. The output inverters are 

tested without any extra effort, since a transition at the input of the inverter is all what 

is needed to induce an erroneous output if a fault is present. 

107 



Test 
Data 

Data input 

input 
To CUT To CUT 

Test Test 
input 

inpu 

Test 

(a) (b) 

Figure 4.14 Input multiplexers (a) and a testable realisation (b). 

4.3.4 Is Complete Test Coverage Possible? 

The proposed BIST approach aims at detecting all detectable faults in the functional 

circuit. This was shown to be achievable at a moderate hardware overhead. However, to 

achieve complete test coverage, the test circuitry should also be tested for all detectable 

faults. This requires more test circuitry that also needs testing. This may be conceptually 

represented as in Fig. 4.15, where teste..O tests the functional circuit, testerl tests teste..O, 

and so on. 

,.. - - -

Circuit under test 

' - - - - - - - - - - - - - - - - - - -· 
Figure 4.15 Hierarchy of testers. 

For this to be effective, tester i needs to be smaller than tester i - 1 so that the 

108 



untested part is reduced to tester n, and it can be made small and simple enough to be 

easily tested from outside the chip, or incorporated in the boundary scan test. Note that 

even if this was realisable, it would not strictly give complete test coverage, since there 

is still a need for some external testing, but it would be an acceptable option. However, 

as seen in the previous subsections (especially the testing of the ROM array), it does 

not seem possible to have tester i smaller than tester i - 1. 

Figure 4.16 depicts another problematic situation. Tester Tl fully tests module M1 

but does not test the interconnections between modules Ml and M2. It is conceivable 

to have a third tester T3 that tests both the interconnections and the testers Tl and T2. 

However, there is still some other interconnections that are not tested. In a multi-chip 

system, we may have a single extra chip that tests the untested parts of the other chips. 

For complete test coverage, this extra chip also needs testing. However, in practice it 

should be simple enough for it to be tested externally. Alternatively, it is possible for 

the chips of a system to 'cooperate' in testing each others untested parts. 

Chip I 

T3 

T7 

Figure 4.16 Chip cooperation to test each others untested parts. 

We may conclude that a chip cannot completely test itself: it needs external assis­

tance. For the same reasons, a single-chip system cannot be completely self-testing. In 

a multi-chip system, it seems feasible to achieve complete test coverage by making chip 

i test the untested parts of chip i+ 1. Merlino et. al. [181] arrive at a similar conclusion 

by showing that, under certain conditions, the package-related faults become dominant 

and therefore, BIST implementations must exercise the chip through its package pins. 

109 



An effective approach towards complete test coverage would be to detect all faults 

in the test circuitry while it is performing its function. For example, the XOR gate 

used in Section 4.3.1 to combine the outputs into a single signal is completely tested 

while performing its function. No further extra hardware is needed if all test circuits 

are tested in this manner. However, faults in the test hardware will be indistinguishable 

from faults in the functional hardware. This does not present any problems if only BIST 

is considered. In a fault-tolerant chip, a further requirement is that the test circuitry be 

as distributed as possible, i.e., each functional unit should have its own test hardware, 

and there should be very little or, preferably, no global test circuits that are shared by 

many units. In this case, there is no need to distinguish faults in the test hardware from 

faults in the functional hardware. 

Finally, and as noted in Chapter 2, the benefits of BIST are recognised in many 

publications but it is still only timidly used in commercial products. The reluctance 

towards the use of BIST is due to two reasons: 

• The extra design effort required. 

• The extra hardware introduced by BIST. 

The second reason is probably the most relevant, especially in mass-produced, state 

of the art chips. BIST can be achieved with a hardware overhead ranging from 20% to 

50% [ 104, ·182, 183]; depending on·the·fault coverage aimed at. Complete tesccoverage, 

as discussed in this section, would require higher hardware overheads. Therefore, it will 

be a long time before it is considered for real-life applications. 

4.4 EFFECT OF PARTITIONING 

The area overhead figures of Section 4.2 show that the implementation of BIST in a 

1-bit adder results in a very large overhead(~ 80%). The overhead for a 32-bit adder 

was 35%. However, this overhead would have been much larger if the 32-bit adder 

was considered as a single unit having 65 inputs and 33 outputs. The lower overhead 

figure was obtained only because the 32-bit adder was considered as 32 separate 1-bit 

adder units. 

In this section, we investigate the effect of using different unit sizes. An n-bit 

adder is considered as a set of n/no units of no-bit adders. The hardware overhead 

associated with the introduction of self-test is evaluated for different adder sizes (n) and 

different unit sizes (no). However, since it is not practical to do a layout for all possible 

combinations, the hardware overhead figures are expressed in terms of the number of 

transistors. 

110 



In an no-bit adder, we have access to the two input words A and B, the carry input 

to the first stage the carry output from the last stage, and the sum word. It is assumed 

that there is no access to the internal carry signals. The size of the test pattern generator 

depends on the test sequence length. This is the subject of the next subsection. 

4.4.1 Test Sequence Derivation for an no-Bit Adder Block 

The modularity of the adder circuit allows for a simple test generation procedure. All 

no sum outputs must be toggled at the same time so that only a single T signal is used 

to analyze them. The test generation procedure is as follows: 

1- Apply a complete test sequence to the first adder cell. This will result in the sum 

output being toggled and the carry output having certain values. 

2- Append to the resulting carry the inputs A and B of the next stage so that a complete 

test sequence is applied to this next stage. 

3- Repeat step 2 for the remaining adder cells. 

The test sequences applied to each cell do not need to be exactly the same. The 

fact that the adder cell can be completely tested by many different test sequences is 

used Ln step 2 in order to obtain the shortest possi~le test sequence for an no-bit adder. 

The procedure is illustrated in Table 4.8. 

The sequence length ism= 7 + 2no. This test sequence has the advantage that, for 

any no-bit adder, the output of the (m- 2)th stage of the ring counter is used to stop the 

monitoring of the carry output. The disadvantage is that, as no increases, the number of 

redundant vectors (marked with a star), that are used just to maintain a toggling output, 

also increases. 

4.4.2 Hardware Requirements 

The length of the test sequence determines the 'length' of the ROM array and the ring 

counter. The width of the ROM is determined by the number of test inputs to be 

generated. For an no-bit adder, this number is simply 2no + 1, corresponding to the two 

no-bit input words and the carry-in of the first stage. 

Expressing the 'size' of the ROM array in terms of its number of transistors presents 

some problems, since the physical size of a ROM is in no way related to its transistor 

content. Let Ac and Ar be the areas of the ring counter and the ROM, respectively. 

The transistor count of the ring counter is simply Nc = 10(7 + 2no). Assuming that 

111 



Table 4.8 illustration of the test procedure for an n0 -bit adder. 

Cl AI Bl Sl C2 A2 B2 S2 C3 A3 B3 S3 C4 A4 B4 S4 cs 

0 0 1 1 001 1 0 0 1 1 001 1 0 

0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 

1 0 0 1 0 0 1 1 001 1 0 0 1 1 0 

1 0 1 0 1 0 1 * 0 1 0 1 * 0 1 0 1 * 0 1 

0 0 1 1 001* 1 0 0 1 * 1 0 0 1 * 1 0 

000 0 0 1 1 0 1 0 1 * 0 1 0 1 * 0 1 

1 1 1 1 100 1 0 0 1 * 1 0 0 1 * 1 0 

0 000 0 0 1 1 0 1 0 1 * 0 1 

1 1 1 1 1 100 1 001* 1 0 

0 0 000 0 0 1 1 0 1 

1 1 1 1 1 1 1 0 0 1 0 

0 0 0 000 0 0 

the transistor count and the area are such that A = aN, a = const, we can define an 

equivalent transistor count Nr for the ROM array as follows (refer to Fig. 4.8). 

Ac = 2Lc X lVc, Ar = Lc X l¥r = 2~" lVr = aNc 2~c =aN, .. Therefore, !V,. = 

~c Nc, and since the width of the ROM is lVr = (2no + 1)lVo, where Wo is the 

width required for a single bit, then Nr = ~~ <2nrl) Nc. The constant ration TVo/Wc is 

determined from Fig. 4.6. 

The size of the test pattern generator, expressed as a number of transistors, is 

TPG=10(7 2 )(1 Wo 2no+l) + no + lVc 2 (4.1) 

Figure 4.17 is a block diagram of the no-bit adder together with the remaining test 

circuitry. 

The carry-out analyser circuit implements the function .f = Sw + Cout T + Cout T 

112 



Test 
Pattern 
Genenalor 

ADO ADI 

Figure 4.17 Block diagram of an no-bit adder and test circuitry. 

where- signals-Sw and r-a:re as- defined -in section 4.2. It is jJriplemented as- a coniplex 

gate consisting of 10 transistors. 

4.4.3 Hardware Overhead Figures 

Table 4.9 summarises the sizes of the different circuits required for BIST. 

Table 4.9 Size of the different circuits required for BIST. 

no 1 2 4 8 16 32 

Input MUX:s 12 20 36 68 132 260 Nt = 4(2no +I) 

Output INVs 4 6 10 18 34 66 N2 = 2(no + 1) 

EXNOR gates 8 16 32 64 128 256 JV3 = 8no 

Carry analyzer 10 10 10 10 10 10 N4 = 10 

Output NAND 4 6 10 18 34 66 IVs = 2(no + 1) 

TPG 101 133 208 399 947 2708 (4.1) 

113 



For simplicity, it is assumed that there are no restrictions on the fan-in of the output 

NAND gate. 

For an n-bit adder implemented as n/no units of n.0 -bit adders, the total size of the 

test circuitry is given by 

n 
TPG + - ( N1 + Nz + N3 + N4 + N s) 

//.0 

Table 4.10 gives the overhead as a percentage of the total size for different values of n 

and no. Figure 4.18 shows that in all practical cases, there is always an optimum unit 

size for which the introduction of BIST yields the smallest overhead. 

Table 4.10 Percentage overhead. 

11-0 1 2 4 8 16 32 

n 

1 79 - - - - -

2 71 72 - - - -

4 64 63 68 - - -

8 58 56 58 67 - -

16 55 51 51 57 69 -

32 53 48 46 49 58 74 

64 52 46 44 44 50 63 

4.5 TEST SEQUENCE GENERATORS 

The detection of transistor stuck-open faults requires a precise ordering of the input 

test vectors. Furthermore, if we want to take advantage of the toggling property, then 

the sequencing of the input test patterns becomes crucial. In the previous sections 

we considered the generation of such test sequences by means of a ring counter and a 

ROM array configuration, which is the simplest approach. In this section, we investigate 

other approaches in order to see whether they yield a smaller hardware overhead, and 

whether the resulting circuitry is easier/harder to test. First, we look at previously 

proposed implementations of test sequence generators for CMOS faults. 

114 



0.7 

0.65 

0.6 

~ 
a! 
G> 0.55 
t 

6 
0.5 

0.45 

2 4 6 8 

... ----·········· 

___ ... -----···· 

10 12 14 

Block size (nO) 

Figure 4.18 Effect of partitioning on hardware ovedtead. 

4.5.1 Review of Proposed Techniques 

16 

The techniques to be described are analogous to the pseudo-exhaustive testing of stuck­

at faults, in that they do not attempt to generate a predefined test sequence. Instead, a 

much longer sequence, which should completely test the circuit is g~nerated by a Linear 
-· - - - - - -

or Non-linear Feedback Shift Registers (LFSR or NFSR). 

The first technique, called Pseudo-Exhaustive Transition Testing (PETT) [184] uses 

a 2n-bit feedback shift register to test an n-input combinational circuit, where the inputs 

are taken from every other stage of the register. If the feedback is such that the FSR 

generates a maximum-length sequence, then all possible transitions are applied to the 

CUT, i.e., every n-bit input combination appears 211 times preceded by every other 

211 
- 1 input combinations, and preceded once by itself. 

The (2211 - 1)-vector long sequence generated by a maximum length 2n-bit LFSR, 

therefore, contains all the transitions necessary to the detection of all stuck-open faults 

in an n-input circuit. However, it also contains many transitions that are not needed. 

A procedure is presented in [ 184] to design the feedback circuit in such a way that the 

number of extra transitions is reduced. In the example given in [184], a test sequence 

consisting of 16 4-bit vectors is generated by an 8-bit NFSR. The design procedure 

yields a sequence of 28 vectors, nearly doubling the length of the initial test sequence. 

The drawback with PETT is that, because the circuit response does not follow any 

particular pattern and the test sequence length is much longer than a deterministic one, 

115 



the only option for response analysis is signature analysis. This negates the benefit of 

having an input test sequence that detects all possible stuck-open faults. 

Pseudo-Exhaustive Adjacency Testing (PEAT) is proposed in [185] as an alternative 

to PETT to alleviate the problem of test sequence length. An adjacency test is defined 

as a two-pattern test for which the two vectors differ in a single bit position. This is 

inspired from the condition of robustness of a two-pattern test. In PEAT all adjacency 

tests are generated. It is implemented using an n-bit NFSR and an n-bit flip control 

register. The procedure for PEAT is as follows: 

1. Clock the NFSR. 

2. Sequentially flip each register bit in the NFSR in a fixed (but arbitrary) order. 

This produces a new adjacency test for every flip. 

3. Repeat 1 and 2 for the NFSR exhaustive cycle. 

The test sequence length is (n + 1)2n. PEAT does not generally provide 100% 

detection of stuck-open faults. In addition, the problem of test sequence length is not 

much alleviated, and signature analysis is the only option for response evaluation. A 

more systematic technique to generate all adjacency tests is presented in [186]. However, 

the hardware required to generate such a sequence is much larger than in the more 

intuitive PEAT approach. 

4.5.2 Test Sequence Generation Using Shift Registers 

Most publicised BIST approaches use a feedback shift register, in one form or another, 

because of their small size, compared to an equivalent binary counter for example. 

Another advantage of an FSR is that it can easily be included in a scan path chain. 

Furthermore, in the case of LFSRs, no design effort is involved since the feedback 

functions are tabulated in most text books [92, 1 02], and even the conversion of an 

LFSR into an NFSR to obtain an exhaustive sequence is quite simple. In this subsection, 

we investigate the use of FSRs in generating test sequences for CMOS circuits. 

A technique that has nearly the same fault detection capability as PEAT is proposed 

as follows: The test sequence generated by an FSR is repeated twice; the first time, 

every output from the FSR is preceded by a fixed arbitrary 1-vertex of the function under 

test, and the second time, it is preceded by a fixed arbitrary 0-vertex of the function. 

In a single level combinational circuit, all stuck-open faults in the pull-down network 

are detected in the first cycle, while the second cycle is used to detect all stuck-open 

faults in the pull-up network. In multi-level circuits, this technique does not detect 

116 



all stuck-open faults. However, if the multi-level circuit is testable with McCluskey's 

simplified two-pattern tests [107] then the proposed technique detects all stuck-open 

faults. 

The length of the sequence 2n+l for an n-input circuit, which is shorter than the 

lengths of 22n and (n + 1)2n corresponding to PETT and PEAT, respectively. Fur­

thermore, the size of the hardware required for the sequence generator is of the same 

order as that required by PEAT and PETT (approximately, 2n-bit latches) as shown in 

Fig. 4.19. 

feedback 

Cell I Cell2 Cell 3 Cell n 

Circuit under test 

LFSR 
From 
LFSR 

Details of a cell 

System clock~ 

Figure 4.19 Alternative to PEAT and PETT: 

VDD 
arGND 

VDD 
orGND 

All the techniques that use FSRs, discussed so far, generate a given sequence as 

a subset of a much longer sequence. For example, a 9-vector long, 3-bit wide test 

sequence for a one bit adder is generated as a subset of a 16-vector sequence in the 

approach of Fig. 4.19, and as a subset of a 24 and 64 vector sequences in the case of 

PEAT and PETI, respectively. 

In the following, we consider a procedure presented in [ 187] that finds the shortest 

possible FSR that generates a given 1-bit wide sequence. Hence, for a circuit with n 

inputs, each input is generated by a separate FSR. 

Let m be the length of the 1-bit sequence to be generated and k the length of the 

shortest possible FSR that generates it. Initially, the first k bits of the sequence are in 

the register, as shown in Fig. 4.20 (a). The feedback network must generate bk+l to 

be fed to the last stage on the next clock cycle, as shown in Fig. 4.20 (b), then the 

117 



bk+ I bk+2 ... bm 

(a) 

(b) bk+2 bk+J bkt4 

(c) bk+J bkt4 bk+5 ... 

Figure 4.20 Illustration of the specification of the feedback function. 

feedback must generate bk+2 which is fed to the last stage of the FSR as in Fig. 4.20(c), 

and so on. 

The procedure is illustrated with the design of a test sequence generator for a 1-bit 

adder. The required test sequence is shown below. Inputs A, B, and C are generated by 

three separate shift registers. Input A cannot be generated from a single shift register 

since it is not an alternating or constant signal. A two-stage FSR also cannot generate 

input A since the truth table of the feedback function contains inconsistencies because 

the sub-sequence 00 is followed by 0 at vector 4 and then it is followed by a 1 at vector 

9. With a three stage FSR, it is possible to generate input A. The truth table of the 

feedback circuit is shown below. 

Applying the same procedure to the other inputs results in the test sequence generator 

shown in Fig. 4.21. The total number of transistors for this realisation is 126 compared 

with 101 for a ring counter+ ROM implementation. The difference is not substantial. 

The drawback with this approach is that the number of latches required to generate 

a given sequence is dependent on the pattern of 1 's and O's. It can be shown that 

for arbitrary sequences of length m, the average length of the FSR tends to m/2. The 

testing of a 4-bit adder requires 15 9-bit vectors. This requires approximately 63 latches 

and some combinational logic, compared with 15 latches and a ROM array. 

The generation of each input with a separate FSR results in a large sequence gener­

ator. Daehn et. al. [188] present a similar procedure for generating a predefined set of 

vectors as a subset of a larger set, but from a single FSR. The input vectors are ordered 

in such a way that they can be generated by a shift register. This requires the insertion 

118 



A 

Test Sequence 

A B c 
1 0 0 1 Truth table of the feedback circuit 
2 0 1 1 b1 b2 b3 Out 

3 0 1 0 1 0 0 0 1 

4 1 1 0 2 0 0 1 1 

5 1 0 0 3 0 1 1 1 

6 1 0 1 4 1 1 1 0 

7 0 0 1 5 1 1 0 0 

8 0 0 0 6 1 0 0 1 

9 1 1 1 1 0 0 1 X 

B~ c 

Figure 4.21 Feedback shift register implementation of the test sequence generator. 

of redundant link vectors to make the shift operation possible. The feedback circuit is 

determined as in the previous procedure. 

Note that the initial ordering of test vectors is not preserved. The initial sequence 

is further deteriorated with the insertion of link vectors. In addition successive states 

of the FSR do not always represent valid tests for stuck-open faults. For example, 

considering a 1-bit adder, the input vector ABC=Oll can be obtained from only two 

possible right-shift operation: 

(1) 111 ~ 011 or (2) 110 ~ 011 

In (1), the carry circuit is not tested, whereas in (2) both the carry and sum circuits 

are not tested. If inputs A, B, and C were generated by non-contiguous stages of a 

shift register, the above problem does not occur. Therefore, as an adaptation to CMOS 

stuck-open faults, the procedure of Daehn ·et. al. [188] is extended by requiring that 

dummy stages be inserted in the shift register so that each vector has the appropriate 

initialisation. Table 4.11 illustrates the application of this method to the testing of a 

1-bit adder cell. 

119 



Table 4.11 Illustration of the generation of sequences by a single FSR. 

d1 A dO 8 c F 

1 0 0 1 0 0 1 

2 1 0 0 1 0 1 

3 1 1 0 0 1 0 

4 0 1 1 0 0 0 

5 0 0 1 1 0 0 

6 0 0 0 1 1 0 

7 0 0 0 0 1 1 

8 1 0 0 0 0 1 

9 1 1 0 0 0 1 

10 1 1 1 0 0 1 

11 1 1 1 1 0 0 

12 0 1 1 1 1 1 

13 1 0 1 1 1 1 

14 1 1 0 1 1 0 

15 0 1 1 0 1 X 

16 X 0 1 1 0 X 

dO and d1 are the two dummy stages and F is the output of the feedback function. 

The size of such a test sequence generator is 78 transistors which is less than the 101 

transistors required for a ring counter+ ROM implementation. However, the number of 

redundant vectors and dummy stages is again very dependent on the pattern of O's and 

1 's in the initial sequence. Furthermore, this approach suffers from the same problem 

as PETT and PEAT, as far as response analysis is concerned, but it is better, in terms of 

hardware overhead and test sequence length. The only advantage of PEAT and PETT 

over this method is that no design is required. However, the design procedure can easily 

be programmed. 

4.5.3 Finite State Machine Implementation of the Test Sequence 
Generator 

An FSM that generates a 9-vector long test sequence that would completely test a 1-bit 

120 



full adder cell can be implemented as a PLA and four bistables as shown in Fig. 4.22. 

Without going into the details of the implementation, it can be seen that the part of the 

OR-plane of the PLA that generates signals A, B, and C has the same size as the ROM 

array in the ring counter + ROM implementation. Therefore the FSM implementation 

does not seem to offer any advantages over the initial implementation in terms of 

hardware overhead. Furthermore, the problem of testing the tester is worse than in the 

case of a ROM array. Testing a structure as in Fig. 4.22 was the subject of a whole 

PhD thesis [189]. 

Figure 4.22 Finite state machine implementation of the test sequence generator. 

A more i_!ltuitive design of a circuit that generates a_ ~redefin!d sequence of m 

vectors is shown in Fig. 4.23. It uses a rlog2(m)l LFSR (or NFSR if m = 2n) and some 

combinational logic to modulate the output of the FSR in order to obtain the required 

sequence. 

----..j feedback t--

- ~ LFSR 

1 2 1og2 (n ) 

Filter 

1 2 n 

Circuit under test 

Figure 4.23 Another FSR implementation of the test sequence generator. 

121 



One of the advantages of the above structure is that the testing of multiple circuits 

does not require another LFSR, i.e., the same LFSR can be used to test all of them. In 

this case the length of the LFSR is determined by the longest test sequence required. 

Each circuit under test requires its own 'filter'. This is believed to be a promising 

approach towards the implementation of distributed BIST, especially if the filters could 

be designed so that they are tested while performing their function. 

The idea of using a central LFSR in conjunction with distributed filters to test 

multiple CUTs is easily extended to the initial implementation of the test sequence 

generator. It is conceivable to have a single ring counter for the whole chip and a 

ROM array for each CUT. However, the requirement to route all the outputs of the ring 

counter to all CUTs is very likely to be an expensive proposition. With a centralised 

LFSR, the number of signals to be routed is much smaller. 

4.6 TIME REDUNDANCY FOR FAULT DETECTION 

The difficulty in testing CMOS stuck-open faults, compared to stuck-at faults, lies in 

the detection of high impedance states. The work presented in Chapter 3 and the 

previous sections of the present chapter is based on the standard approach of using 

two-pattern tests for detecting stuck-open faults. A different method, based on the work 

of McCluskey et. al. [81], is investigated in this section. 

The C/D testing approach for detecting stuck-open faults [81] is illustrated in 

Fig. 4.24. The technique consists of charging and discharging the gate outputs after 

the application of each test pattern using inputs TEST and C/D. If the output line is not 

in a high impedance state, the output logic value will return to its correct value after 

the charging or discharging is ceased. If the line is at a high impedance state, it will 

remain charged or discharged. 

An improved version of the C/D technique is proposed in Fig. 4.25. The number 

of extra transistors is doubled but the number of extra input is the same as in Fig. 4.24. 

Two successive and non-overlapping pulses are applied to the pFETS and nFETS after 
-~ 

the application of any input to the circuit. The fact that a node thaVifi a high impedance 

state is charged or discharged much more quickly than a node that is driven to the same 

logic value may be used to set the width of the pulses so that it is large enough to 

charge or discharge a high impedance node and so that it is too short for perturbing the 

logic value of a driven node. In this way the presence of a stuck-open fault is indicated 

by any change in the logic value of the node under observation, but stuck-at faults are 

not detected. 

122 



Figure 4.24 C/D testing approach. 

VDD 

OND 

Figure 4.25 Improved version of the C/D testing approach. 

If the output node is at logic 0 then it is not necessary to attempt to discharge it. 

Similarly, it is not necessary to charge a node that is already at logic 1. This observation 

leads to the new method proposed in Fig. 4.26. Depending on the value of the output at 

time i, a 1-vertex or a 0-vertex is applied to the CUT to charge or discharge the output 

at time i + 1. At time i + 2 the normal input to the CUT is re-applied. If the CUT 

is fault-free, its output will be 1 - 0 - 1 or 0 - 1 - 0. Any other output pattern 

indicates the presence of a fault. 

In single-level combinational circuits, all stuck-open faults can be detected, whereas 

in multi-level circuits, the detection of all stuck-open faults requires that the circuit be 

testable with McCluskey simplified two-pattern tests. If the CUT has a single output 

that a multiplexer is used to select between the 0 or 1 vertex, but for a multi-output 

circuit, the multiplexer need to be replaced by a larger combinational circuit that select 

123 



CUT 
Output ~Systemclock 

CT 

Figure 4.26 Time redundancy approach. 

the appropriate vertex for time i + 1 according to the output pattern at time i. For single­

level circuits, the multiplexers can be integrated into the gate as shown in Fig. 4.27. 

Pull-up 

PUll-down D~ 

cr 

c 

D 

Figure 4.27 Time redundancy approach for a single level circuit. 

The inputs to the CUT in Fig. 4.26 do not have to be test inputs. Therefore, the 

method can also be used for on-line fault-detection if the normal clock cycle is extended. 

4.7 CHAPTER SUMMARY 

This chapter has considered the possibility of using BIST for the detection of all faults 

in CMOS circuits. BIST offers many advantages, even outside the framework of fault­

tolerance. BIST may also become mandatory in highly integrated circuits of the near 

future, as evidenced by the limited use of BIST features in current state of the art chips. 

Most current BIST approaches are based on pseudo-random or pseudo-exhaustive 

testing. They do not aim at detecting all faults either because of the test patterns used 

124 



and/or because of the compression of the test response into a signature. Furthermore, the 

detection of non-classical faults is not addressed. The principal objective of the BIST 

design presented in Section 4.2 was the detection of all faults in the functional circuit. 

Yet, the hardware overhead is comparable to that associated with pseudo-random and 

pseudo-exhaustive testing. 

In Section 4.3, the major issue of testing the test circuitry was addressed. It was 

concluded that improved test coverage may be achieved through the cooperation of 

different chips in testing each other's untested parts. An effective approach towards 

complete test coverage would be to design the test circuitry so that it is tested while 

performing its function. Faults·in the functional hardware will be indistinguishable from 

faults in the test hardware, but this does not present any problems if the test hardware 

is distributed so that each functional unit has its own test circuitry. 

Considering the issue of partitioning the circuit into functional units, it is shown in 

Section 4.4 that there exists an optimum size of the units for which the introduction of 

BIST yields the minimum hardware overhead. This issue will be addressed again in 

Chapter 5. 

The test sequences used for the detection of all faults in the functional circuits have 

been shown to require a precise ordering. They are generated by a combination of a 

ring counter and a ROM array. Although this is the simplest possible implementation, 

it creates problems in testing the ROM array. Alternative implementations are mvesii­

gated in Section 4.5. Some implementations proposed in the literature are adapted for 

the detection of CMOS stuck-open faults. In addition, new implementations are also 

proposed in Section 4.5. 

A completely different approach to detect stuck-open faults was presented in Sec­

tion 4.6. The method relies on the use of extra time in order to exercise the circuit 

in such a way that the presence of faults becomes evident. This method could also be 

used for on-line fault detection. 

125 



Chapter 5 
Yield and Reliability Modelling 
for Fault-Tolerant VLSI Circuits 

5.1 INTRODUCTION 

Fault-tolerance is achieved by including redundancy in an integrated circuit. One obvi­

ous disadvantage is that the addition of redundant units to an integrated circuit increases 

its area, making it more susceptible to manufacturing defects. The susceptibility to op­

erational failures-is also increased-since there are more devices that might possibly fail. 

On the other hand, the addition of redundant units also enables the chip to survive some 

of the manufacturing defects and operational failures. The question of whether the intro­

duction of redundancy can lead to the manufacture of more working integrated circuits 

and/or whether these ICs have a longer life time can only be answered by comparing 

the yield and the reliability of the fault-tolerant and non-fault-tolerant ICs. This chapter 

is devoted to the development of new yield and reliability models for performing such 

comparisons. 

Yield models for fault-tolerant ICs are based on similar models for non-fault-tolerant 

ICs, whereas the reliability models seem to be based on those developed for large fault­

tolerant systems. This will become apparent in the discussion of Section 5.2 which 

contains a brief review of modelling techniques. 

The best method for adding redundancy into a chip depends on the architecture of 

the chip. Completely different redundancy schemes may be cost-effective for different 

architectures. Section 5.3 presents a simple fault-tolerance strategy for the detailed 

development of the yield and reliability models in Section 5.4. This strategy makes the 

least assumptions on the architecture of the initial design. Other assumptions necessary 

for the development of the models are also listed in Section 5.3. 

126 



In a fault-tolerant IC, the dependence of reliability on manufacturing yield is much 

stronger than in the non-fault-tolerant case, since some of the redundancy may have to be 

used to tolerate processing defects so that less is available for substituting for operational 

failures. The reliability model developed in Section 5.4 takes this dependence into 

account. It also allows for the important effect of off-line periodic testing. 

Section 5.5 illustrates the application of the models and presents some interesting 

results concerning, among other things, the requirements for the size of the reconfigu­

ration logic and the effect of periodic testing on reliability. Section 5.6 concludes the 

Chapter. 

5.2 REVIEW OF MODELLING TECHNIQUES 

Integrated circuit yield modelling, because of its crucial role in the profitability of a 

manufacturing process, has received wide attention since the early sixties. In contrast, 

reliability models have been confined largely to the study of system level reliability. 

The numerous yield modelling techniques are best classified into models for fault­

tolerant and non-fault-tolerant ICs for the following reason. Yield models for non­

fault-tolerant ICs are developed using statistical methods where the main concern is the 

determination of probability distribution functions and their parameters to give the best 

fit to the observed yield data. Yield models for fault-tolerant ICs, on the other hand, 

are developed by chip designers whose main concern is the analysis of the effect of a 

particular fault-tolerance scheme on yield and the selection of the design decisions that 

maximise yield. 

The two classes of yield models are discussed in the next two sections. This is 

followed by a review of reliability modelling techniques. 

5.2.1 Yield Modelling for Non-Fault-Tolerant Integrated Circuits 

Yield (or yield loss) is defined as the fraction of chips that pass (or fail) the final test. 

In many cases, it is important to have a formula to predict the expected yield before 

actually manufacturing the chips, as when a new product is designed. All research on 

yield modelling has been directed towards finding such formulas. 

Yield losses are caused by randomly occurring manufacturing defects. In the earliest 

yield models, the random defects were assumed to be uniformly distributed over the 

chip or wafer areas. A uniform distribution of random defects can be described by a 

Poisson process, where the probability of having k defects in an area A is given by 

127 



P 
- -AD(AD)k 

k- e k! 

and the yield is 

y =Po= e-AD (5.1) 

where D is the mean defect density per unit area and the quantity AD is the average 

number of defects per chip. 

The early use of (5.1) revealed that the projected yields were always lower than the 

observed yields. Furthermore, the average defect density was found to vary from chip 

to chip and from wafer to wafer, suggesting that the random distribution of defects is 

not uniform across a wafer or a batch of wafers. 

The effect of non-uniform defect distributions was introduced into the yield models 

by Murphy [155]. He proposed that the average defect density Din (5.1) be considered 

a random variable that is characterised by a probability density function /(D) (The 

prob,ability density function is referred to as simply distribution function in the literature 
\M 

and .. this chapter). The yield formula becomes the average, or expected value, of the 

quantity e-AD, given by 
roo 

y = Jo e-AD f(D)d[) 

In the following years, most work on yield modelling was concentrated on inves­

tigating different defect distribution functions. There was a much heated debate in the 

seventies over which distribution is the most appropriate [ 190, 191, 192, 193, 194, 195, 

196]. The different distribution functions and the corresponding yield expressions are 

listed in Table 5.1 

Table 5.1 Defect distribution function and corresponding yield expressions. 

Distribution Function Yield Expression 

Delta e-ADo 

Triangular ( 1-e-ADp )2 
liDo 

Rectangular 
l-e-2ADp 

2AD0 

Exponential 1 
'f+'ii1);;' 

Gamma (1 + ADo)-a 
a 

128 



This debate seems to have been silenced by the persistence shown by Stapper 

[193, 197, 195, 156] in proposing the Gamma distribution as the most appropriate; his 

justification being that, with a proper choice of the distribution parameters, it can fit any 

yield data. He illustrated the parameter fitting procedure using yield data from different 

ffiM processing plants. 

The Gamma distribution is undoubtedly the most flexible defect distribution func­

tion: by varying its two parameters, it can be made to coincide with any other distri­

bution function used in yield models [198]. However, the assertion that it is the most 

physical distribution [198] is questionable if we bear in mind thatlhe Gamma distribution 

was initially developed for the study of infectious diseases. 

As a further justification of the appropriateness of the Gamma distribution, Stapper 

[156] also developed a physical interpretation of the distribution parameter a: it is a 

coefficient that reflects the severity of the defect clustering phenomenon. 

It should be noted that the clustering of defects is implicitly taken into account 

by any non-uniform defect distribution. The non-uniformity of defect distributions 

means that some regions, or some wafers, receive more defects than others, i.e., the 

defects cluster in these areas. The Gamma distribution accounts for defect clustering 

in an explicit manner, through the parameter a. Other explicit methods have been 

proposed _[199]. The quasi-:_universality of the Gamma distribution in accounting for the 

clustering of defects is even challenged by Ferris-Prabhu [200] who is also from ffiM 

and, presumably, has access to the same yield data as Stapper. 

Numerous types of defects can be introduced during the manufacturing process, as 

discussed in Chapter 2. This is taken into account by assuming that the defects are in­

dependent so that the yield can be expressed as a product of partial yields corresponding 

to different defect types. That is, 

n 

Y = ITYi, (5.2) 
i=l 

where Di and /(Di) are the defect density and its distribution function, respectively, 

and Ai the area susceptible to defect type i. Expression (5.2) is usually multiplied by 

the gross yield Yo which represents the losses due to global defects. 

The notion of susceptible area, and its relation to chip area, was not clarified until the 

early seventies [197]. Prior to that it had the meaning of 'the area where a manufacturing 

defect would cause a fault' and it was clear that it should be smaller than the chip area. 

For example, the area susceptible to oxide pinholes is the area where different conductors 

overlap. Gupta et.al. [20 1] assumed that susceptible area is proportional to the chip 

129 



area. Stapper [197] prefers to call it critical area. He shows how it depends on the 

defect size, the circuit dimensions and the type of defects. The size of defects is also a 

random variable. Ferris-Prabhu [202, 203] gives analytical methods for computing the 

critical area. 

Computing the critical area of a VLSI chip requires a complete layout of the circuits 

and it is a complex problem. This gave rise to the latest development in yield modelling. 

It is the emergence of a number of simulation tools that, given a circuit layout and 

information on the processing line (defect sizes, distribution, locations ... ) as input, 

would give an estimate of the yield [204, 205, 157, 206, 158, 207]. These simulation 

tools can also pinpoint areas of the chip where defects are most likely to cause a fault. 

This move from analytical methods to simulation [207, 158] illustrates the complexity 

of the yield modelling problem. 

5.2.2 Yield Modelling for Fault-Tolerant Integrated Circuits 

As mentioned earlier, yield models for fault-tolerant ICs are usually developed by IC 

designers who are interested in comparing different fault-tolerance strategies, selecting 

the optimum amount of redundancy, and identifying the design decisions that influ­

ence yield. Given that yield modelling for non-fault-tolerant ICs is already a complex 

problem, systematic simplifying assumptions must be used in developing models for 

fault-tolerant ICs. 

The fundamental expression to all yield models is the probability of having exactly 

M -out-of-N units defect-free. This is usually assumed to be 

p 1 = yM(l -y)N-M (JV) 
M,A JV! . 

where y is the probability that' a single unit is defect free and ( ~) = M t(ff ~ M)! . In a chip 

containing N identical units where 111 are required to be defect-free (i.e., R = N- M 

are spare units), the yield would be 

N 

Y= L PM,N 
M=N-R 

The problem in the above expression for PM,N is that it is assumed that the proba­

bility of having n defect-free units is Yn = y 11 which is true only if the defects affecting 

different units are independent. Note that, except for the Gamma distribution, there is 

no reason to invalidate the above assumption for any uniform or non-uniform defect 

130 



distributions, except when the defects are very large. For the Gamma distribution, the 

underlying assumption is that a particular region of a chip or a wafer is more likely 

to be affected by defects if it already has defects in it Therefore, defects affecting 

different units cannot be assumed to be independent when using the Gamma function. 

An alternative expression for PM,N is given by 

+oo 

PM,N = L P{x}Pl:n 
x=O 

where P { x} is the probability of having x defects in N units and P;' R is the probability 
' 

that these defects are distributed exactly in R = N - M units. This way of computing 

PM,N has been used in [208, 209, 210]. Although P{ x} is usually calculated 

according to some defect distribution functions to account for clustering or interdepen­

dence of defects, the probability P~ R is calculated using combinatorial methods that 
' 

assume that the x defects are uniformly distributed among the N units, as pointed out in 

[211]. Furthermore, the question of whether manufacturing defects are distinguishable 

or not has to be addressed in calculating P;r,R. This was one of the debatable questions 

of the early seventies [190, 191]. Koren et. al. [212] show that the two methods of 

evaluating PM,N are equivalent when using the Poisson or the Gamma distributions. 

The derivation of yield models for fault-tolerant ICs should not be too involved 

with statistical manipulations as in the case of non-fault-tolerant models (although IC 

designers have rarely access to yield data to do so, because of the commercial sensi­

tivity of such data [2]) because this may distract from the main goals of these models. 

However, a minimum knowledge of the methods used to derive yield models for non­

fault-tolerant ICs is required in order to extend them to fault-tolerant ICs. This is not 

always the case: the fundamental expression of PM,N is sometimes misused [213, 214]. 

The probability y of having a defect-free unit is taken to be given by one of the 

expressions of the second column of Table 5 .I in the expression (~) yM (1 - y )N-M. 

This assumes a non-uniform distribution of defects within a unit only, and not among 

different units. This might be valid when the units are very large, but not when they 

are very small as in [214]. Ramacher [213] used the Gamma distribution to calculate y 

and then goes on studying the effect of defect clustering on her fault-tolerance scheme. 

One of the most important .goals of yield modelling for fault-tolerant ICs is the 

determination of the optimum amount of redundancy. In memory chips, it was observed 

that most defects affect a single bit or a single column [215], therefore, the addition 

of a few spare columns and/or rows was enough to reclaim a large proportion of the 

defective chips. The situation is likely to be the same in non-memory fault-tolerant 

131 



chips so that only those chips having few manufacturing defects may be reclaimed and 

those with a large number of random defects are likely to defeat any fault-tolerance 

scheme. Therefore, only a small number of redundant units should be added. More 

redundancy may actually decrease the yield, because more redundancy implies more 

hardcore. The situation where all this redundancy is required rarely occurs, and if it 

does occur it is unlikely that bypassing faulty units would be possible. Hence, the yield 

would be expected to decrease beyond a certain amount of redundancy, and not saturate 

at a constant value as in [208, 214]. 

Another important issue is the determination of the optimum size of the unit that 

is to be replicated. Thibeault et. al. [216] show that, when the reconfiguration logic 

is neglected, the optimum size of the replaceable unit is zero. They then show that the 

size of the reconfiguration logic can be minimised by choosing an appropriate size of 

the replaceable unit. This suggests that the yield can also be maximised by choosing 

the unit size that minimises the size of the reconfiguration logic. 

5.2.3 Reliability Modelling 

Reliability is defined as the conditional probability that a system is working at time 

t, given that it was working at time t = 0. It is measured by observing N identical 

systems and noting the times at which they fail. The reliability at time t is the fraction of 

systems still working at t. As mentioned in Chapter 2, such measurements are virtually 

impossible. Furthermore, and as for yield, it is important to have estimates of reliability 

at design time, especially for safety critical applications. Reliability prediction at design 

time is even more important than yield prediction: yield losses have an impact on the 

cost of chips and the profitability of a production line, whereas the costs incurred as 

a result of reliability problems can be orders of magnitude higher (maintenance costs, 

human lives, environmental disasters, . . . etc). 

Another reason for the importance of reliability modelling of integrated circuits 

is the ever increasing levels of integration. The reliability of an electronic system 

comprising from a few tens to few hundreds of ICs is determined by the reliability of 

the solder joints and the interconnections between ICs [217]. However, when such a 

system is re-designed so that it comprises just one or two larger and denser chips, which 

is the current trend in the electronic industry, the system's reliability would certainly 

be improved, but at the same time it becomes strongly dependent on the reliability 

of the integrated circuit itself. Many papers on yield modelling for fault-tolerant ICs 

emphasize that fault-tolerance also improves the reliability since the larger area chips, 

made possible by fault-tolerance, reduce the chip count. Hence, reliability improvement 

is seen as a by-product of yield improvement. 

132 



The time at which a system or component fails is a random variable. It is usually 

assumed that the time between successive failures, in a sample of identical systems, 

follows an exponential distribution. That is, the probability that a system will have 

failed by time I is given by F(t) = 1 - e-,\t where _\ is the failure rate. The reliability, 

or the probability that the system is still working at timet is R(t) = 1- F'(t) = e->-1• The 

underlying assumptions of the exponential distribution of times to failures are [218]: 

• The likelihood of a single failure in a small interval of time [t, t+h] is proportional 

to the length of the interval (and is independent oft). 

• The likelihood of two or more failures during a given small interval is negligible. 

In a system consisting of N units where all units have to be working the reliability 

of the system is the probability that all units are working. If unit i has failure rate _\i, 

the reliability of the system is 
.N 

R(t) = JI e->.;t (5.3) 
i=l 

Such a system is called a series system. If the units themselves consist of sub-units then 

their reliabilities are also expressed as a function of the reliabilities of the sub-units. 

This decomposition process ends when individual components are reached. The failure 

rates of individual components are normally provided by the manufacturers. The MIL­

HDBK-217 [219] is a widely used alternative method for estimating the failure rate of 

components. 

A parallel system consists of N identical units where only a single unit is required 

to be working. The reliability of such a system is given by 

(5.4) 

where _\is the failure rate of a single unit. Alternatively, we may compute the probability 

of failure F(t) = 1 - R(t) which is the probability that all units have failed 

N 
F(t) = JI(l- e->.;t) = (1 - e->.t)N 

i=l 

and the reliability is R(t) = 1 - (1 - e->.t)N. 

These expressions are used extensively in modelling the reliability of fault-tolerant 

systems [220, 218]. In large systems consisting of series and parallel subsystems that 

are themselves in series or in parallel, the above expressions become very complex. 

Markov models [221] are used in these cases. 

133 



In the case where all units are part of a single chip, there are some problems in 

evaluating expressions (5.3) and (5.4). The first problem is the non-existence of any 

method for the estimation of the failure rate of a section of a chip. A simple and 

practical solution to this problem is presented in Section 5.4.3. 

Another problem in the evaluation of expression (5.4), when all units are on a single 

chip, is that some of the N units may not be working as a result of manufacturing 

defects, transforming an N -unit parallel system into an (N - k)-unit parallel system, 

where k is the number of defective units. This clearly establishes the dependence of the 

reliability of a fault-tolerant chip on the manufacturing yield. In system-level reliability 

modelling, this dependency does not exist since the components are assumed to be 

defect-free, hence all the redundancy is initially available for tolerating field failures. 

The reliability model developed in Section 5.4 takes this dependency into account. 

Publications on reliability modelling for fault-tolerant ICs are very scarce, as com­

pared to the abundant literature on yield modelling. The subject has been touched upon 

in [222] and [223]. Koren et al. [224, 225] present the only comprehensive study of 

the subject using Markov modelling techniques. A chip consisting of N units where 

N - R units are required to be working can be represented by the Markov chain of 

Fig. 5.1 [224]. 

--+~---· a• ~ _.R 
•-1 a; u.R-1 

Figure 5.1 Markov model for an (N- R)-out-of-N system. 

State i represents the case where the chip is operational with i failed units, 0 ~ i ~ 

R. State F represents the failure of the chip either after the exhaustion of the spare 

units, or because of the impossibility of reconfiguring it after the ith failure, i < R. 

The transition rate ai from state i to state j is clearly a function of the failure rate of 

unit i which in tum is a function of the complexity of unit i. It is shown in [224] that 

transition rates ai are also functions of the reconfiguration scheme. 

State 0 in the Markov model of Fig. 5.1 is the initial state of the chip if all R spare 

units were defect free. The dependence of reliability on yield is introduced into the 

134 



model by letting any state i, 0 ~ i ~ R, be the initial state. The problem of estimating 

the failure rate of a unit is addressed by assuming a linear relationship between the 

failure rate of a unit and its area [224]. 

The work presented in this Chapter is basically an extension of the work by Koren 

et.al. [224, 225]. The main differences are as follows: 

• The presented models are more tractable. This is achieved by avoiding Markov 

modelling which tend to become very complex when important parameters, dis­

cussed below, have to be taken into account. 

• A concise method is used to estimate the failure rate of a section of a chip. 

• The important question of 'What constitutes the best replaceable unit?' is easily 

addressed in the model presented. 

• The effect of periodic testing on reliability, mentioned by Koren et. al. in [226] 

but not included in their models, is incorporated in our model in a simple way. 

• The results that can be obtained from the models presented in this chapter are more 

practical since the areas of the units and the average defect density are used as 

inputs to the model, instead of the average number of faults per unit or per chip 

used by Koren. Working with average num~r of f~ults requires ~ further, and very 

complex processing step [ 197, 227] to get the areas of the units. 

5.3 CHIP MODEL AND ASSUMPTIONS 

There are numerous approaches for introducing redundancy into a design. As discussed 

in Chapter 2, these approaches belong to two classes. In the first class are those 

approaches that rely on hard-reconfiguration (or physical restructuring) and which are 

aimed principally at tolerating manufacturing defects. In addition to the requirement of 

a non-standard process, these approaches have very limited capabilities of dealing with 

operational failures. 

The approaches belonging to the second class rely on soft-reconfiguration where the 

switching mechanism consists of ordinary MOS transistors. These approaches have the 

advantages of using a standard manufacturing process and of being capable of dealing 

with operational failures. The focus of this chapter is on the second class of approaches. 

Among the various methods that rely on soft-reconfiguration for introducing re­

dundancy, the most appropriate method is clearly dependent on the architecture of the 

non-fault-tolerant chip. In memory arrays, the introduction of redundancy in the form 

135 



of spare rows and columns has proved cost-effective (although this is also due to the 

use physical restructuring). The same form of redundancy is being investigated for 

2-D arrays of identical PEs, but the replaceable unit is a single PE in this case, as 

opposed to whole rows and columns in memory arrays, because even the simplest PE 

is substantially larger than a memory cell. 

5.3.1 Redundancy Strategy 

Any integrated circuit can be considered as a set of interconnected functional units. 

The IC design process itself starts by dividing the function of the chip into a number of 

smaller functional units. This fact can be used to propose a simple redundancy strategy, 

for the purpose of this Chapter, that makes the least assumptions about the architecture 

of the non-redundant chip, namely a chip of area Ao is considered as consisting of n 

units of areas At, A2, ... , An. Redundancy is introduced by replicating each unit, i, 

mi times and adding some circuitry of area Si for test and reconfiguration as shown 

in Fig. 5.2. The set of mi units and their test/switch circuits will be referred to as a 

redundant unit or a redundant module. 

A3 

Ai 

(a) 

(b) 

Figure 5.2 Non-redundant (a) and redundant (b) chips. 

Each section, and its replicates, are assumed to be associated with a flag register. 

At power-up or at predefined time points, the chip enters a test mode where all sections 

are tested and their flags set according to the test outcome (faulty/working). These flag 

registers will drive the switches to connect working units and disconnect faulty ones. 

5.3.2 Reconfiguration Logic Area 

Figure 5.3 shows that the area Si of the test/switch circuits is proportional to the repli­

cation factor mi. The area of the block labelled 'switches' depends only on the number 

of terminals of unit i. Another observation from Fig. 5.3 is that if the faults that may 

136 



affect the switches and/or flags of unit Aii do not affect the switches and flags of the 

other units, then the replaceable items become the whole of a unit arid its test/switch 

circuits. This would have interesting consequences if it could be implemented, since the 

redundant unit can still be working even with faults in the test/switch circuits, i.e., the 

test/switch circuitry is not a hardcore any more. However, this would require that these 

circuits be designed so that they are fail-safe for all possible faults, which is not an easy 

task. Furthermore, a redundant unit also requires some global circuitry for selecting a 

single unit when there is more than one working unit. 

Si 
-------------------------------------, 

Ai'i Ai2-- .. ... .. 

2 mi 

Figure 5.3 Relation between the number of spares and the size of the test/switching circuits. 

An estimate of the area required for the test/switch circuits is derived from Fig. 5.3. 

We have si = S9i +Sit + S.i2 + ... +Simi where sgi is the area of the global portion of the 

test/switch circuits. The area sgi can be expressed as sgi = a:i(At + A2 + ... +Am)= 

aimiAi. Similarly, we can express Sii as Sii = f3iAii' Hence, 

5.3.3 Defect Distribution 

The discussion over which defect density distribution is the most appropriate is well 

beyond the scope of any PhD thesis, and it could only be the subject of a strictly internal 

report for one of the large semiconductor manufacturers. 

For the purpose of this Chapter, we assume that the defect distribution follows 

the triangular distribution suggested by Murphy [155] as an approximation to the bell­

shaped curve followed by his yield data. Although the triangular distribution has not 

been used as extensively as the Gamma distribution in the literature, recent data from 

137 



manufacturing lines at Plessey [228] do follow this distribution. Furthermore, Stapper 

[156] considers that the triangular distribution is likely to predict yields that are lower 

than observed yields. Therefore, the yield figures presented in the results sections of 

this Chapter can be regarded as lower bounds. 

The other assumptions used in developing the yield model are as follows: 

• The defect densities used are assumed to be the densities of fault-producing defects. 

It is clear that not all defects result in faults, and this depends on the type, size, 

and location of the defects and also on the precise layout of the circuits considered. 

The process of going from a defect density to a fault density is quite complex, 

as illustrated by Stapper [197, 227], and it requires precise information on the 

processing line in addition to a full layout 

• The defects are assumed to be small compared to the size of the replaceable units. 

• The gross yield is assumed to be 100%. 

• A single type of defects is considered. 

5.4 NEW MODELS 

In this section, yield and reliability models are developed under the assumptions of 

Section 5.3. 

5.4.1 The Yield Model 

The yield model for a fault-tolerant chip as shown in Fig. 5.2 is derived by computing 

the probability of having a working chip. Let 

P Ai: Probability of having no defects in a unit of area Ai. 

Psi: Probability of having no defects in the reconfiguration logic of area Si. 

Pi: Probability that the redundant unit consisting of mi units and their reconfiguration 

logic is working. 

Redundant unit i is working if at least one out of the mi units is defect-free and if 

the reconfiguration logic is defect-free. Therefore, 

138 



The probability that the chip is working is given by the probability that all n 

redundant units are working, that is, 

n n 

Pr =IT Pi= II ( Ps,O - (1 - PA,)m")) (5.6) 
i=l i=l 

Probabilities PAi and Psi are given bye-AiD and e-SiD, respectively, where Dis 

the defect density. Hence, 

n 
Pr(D) = II ( eSiD (1 _ (1 _ eA'D)m')) (5.7) 

i=l 

Since D is a random variable, it follows that Pr(D), and also PA,, Ps,. and Pi 

are random variables [221]. A random variable is completely characterised by its 

distribution or probability density function [221]. However, because it is not always 

possible to obtain accurate distributions, especially for functions of a random variable, 

other characteristics are usually employed. The characteristic that is used most is the 

expectation, also known as the mean or average, of a random variable. If Z = cp(X) 

where X is a random variable with probability density function f(X), the expected 

value of Z is given by roo 
Z = lo cp(x)f(x)dx 

This averaging process needs to be done only once. For example, if we compute the 

averages of P Ai and Ps, and use them in expression (5.5), then Pi is no longer a random 

variable. Similarly, if we compute the average of Pi and use it in expression (5.6) then 

Pr is not a random variable any more. 

Selecting the appropriate stage at which the averaging process needs to be carried 

out is a subtle question that is rarely addressed in the literature. Section 5.4.1 discusses 

this question. 

5.4.2 The Expectation of What? 

The basic random variable is the defect density D. PAi' Ps •• Pi. and Pr are random 

variables because they are expressed as a function of D. We may derive three different 

yield formulas for fault-tolerant chips depending on which average is considered. 

139 



Casel 

The average of P Ai is given by 

where /(D) is the triangular distribution function of D and Do is the average defect 

density. Similarly, the average of Psi is 

The probability that redundant unit i is working is 

and the first yield expression is 
n 

yrl = ITPf 
i=l 

Case 2 

The probability that redundant unit i is working is Pi with PAi = e-AiD and 

Psi = e-SiD. The average of Pi is 

and the second yield expression is given by 

Case 3 

n 

Yr2 = IJPi 
i=l 

The third yield expression is obtained by taking the average of Pr. that is, 

140 



The complete calculations of the three yield expressions are given in Appendix B. 

The question that arises is 'which of the three expressions is the most appropriate?'. 

The following discussion is an attempt to answer this question. 

First, it is clear that the three yield expressions do not represent the same quantity, 

i.e., Yr 1 =I Yr2, Yr 1 =I Yr3 and Yr2 =I Yr3. A general proof of this is as follows. Let X be 

a random variable with distribution f x(X). Then W = ~(X) and Z = lli(W) are both 

random variables. The average of Z can be calculated as 

Z = j lli(x)fw(x)dx 

if the distribution fw(x) is known. Alternatively, 

Z = j lli(~x))fx(x)dx 

The average of W is 

W = j ~(x)fx(x)dx 

Proving that the three yield expressions are different is the same as proving that 

Z =flli(W), i.e., 

j lli(~(x))fx(x)dx =llli(j ~(x)fx(x)dx) 

which is always true, except when lli is a linear function. 

Case 1 is clearly the simplest. Furthermore, any distribution can be used with very 

little change. These are the reasons for its widespread use in yield models for fault­

tolerant ICs. However, there are some problems in using Case 1. Taking the average 

of PAi and Psi assumes that the defects are randomly distributed within areas Ai and 

Si only. Expressing Pi as a function of PAi and Psi does not take account of the fact 

that the defects are also randomly distributed, according to f(D), among the mi units 

and their test/switch circuits. A further disadvantage of the method of Case 1 is that it 

leads to the following contradiction. The yield of a non-fault-tolerant chip of area Ao 
is given by Yo = ( l-Ji0:5ovo )2. If the chip is considered as a set of n sections of areas 

Aofn, then the probability that a section is defect-free is Ps = e-4fn. According to the 

method of Case 1, the yield is 

-~ 
1 _ n [ ( 1 - e n ) 2] n 

Yo= <Ps) = AoDo/n (5.8) 

which is clearly different from Yo. If the method of Case 3 is used instead, then the 

probability that the chip is defect-free is 

141 



and the yield is Pc which is Yo. 

The same argument can be used against Case 2: expressing Yr2 = Tii Pi assumes 

that the distribution of defects follows f(D) within the redundant units. This does 

not take into account the fact that the defects are also distributed over the entire chip 

according to f(D). 

Another way to argue against Cases 1 and 2 is to note that expressions P Ai, Psi 

and Pi are just intermediate steps in obtaining the expression for Pr. The yield is the 

expected value of Pr. Hence, it is the expression for Pr that should be averaged. This 

makes Case 3 the most valid. 

Figure 5.4 shows that the divergence between Yo and Y0 increases as the area of a 

section gets smaller (i.e., as n increases). It can be shown that 

~ 

1o1o• 

,.,o-• 

lolo-• 

lolo-• 

1o1o-• 

lim Yti = e-AoDo 
n-+oo 

00=1.0 
......... 
~,~ 

···=t~:~~?::~--~---
....... ·-... ---- 'f 0 

•. ::. ··:.:_:·~--~--- •..•..•. -----
·· .. ··. ... ..... 

··. .. ••·····•• YIY(n•2) ·· •.. 
· .. _ 

·... .. 
·· .. 

··· ... YO'(n=5) 

·axp( -AO.OO) 

,. 1 o-• +--.----r-r---r---.----.-..--......---.----, 
0 2 3 4 5 6 7 8 9 10 

Area (em') 

Figure 5.4 Comparison of Yo and YJ. 

However, the difference between Yo and Y0 is not very substantial. Figure 5.5 

shows how the difference Lly =Yo- Yti varies with the chip area in the limiting case 

(as n --+ oo). The upper bound on the absolute error is around -0.05. Although the 

error Lly tends to 0 as the area Ao becomes large, the curve of the ratio Yo/Yo shows 

that Yo is many orders of magnitude higher than Y0, but in this case both Yo and Y0 
are approximately zero. Hence, Y0 is a good approximation for Yo for practical values 

of Ao and Do. 

Figure 5.6 shows that Yrt and Yr2 are also good approximations for Yr3 for practical 

values of the area of the non-redundant chip. 

142 



0.06 

0.05 

C)0.04 
9 
~ 
~0.03 

f 
~0.02 

0.01 

00=1.0 

Absolute Error 

Ratio 

1.~10 4 

1.2•10 4 

1.0•10 4 0' 
9 
0 

8.0•10 3 1 
~ 

6.0•10 3 ~ 
0 
>-

4.0•10 3 

2.0•10 3 

O.O-f----r--r----~---t""-==i:;,;_-.,-----,---'-0.0•10° 

"'0 

~ 

0 

1.0 

0.5 

0.1 

0.05 

0.01 

0.005 

2 

0 1 

4 6 8 10 12 14 

Figure 5.5 Maximum absolute error. 

n=3, c' =0.01 

· ... 
·· ....... . 

·-··········· ..... :'fr3 

Yr2 

2 3 4 5 6 7 8 9 10 

Area (cm 2
) 

Figure 5.6 Comparison of the three cases. 

143 



5.4.3 Failure Rate of a Section of a Chip 

The failure rate of a section of a chip is expressed as a fraction of the failure rate of 

the entire chip. The justification of this approach is given next. 

The reliability of an IC is given by i1{) = e->.ot. If the same chip is considered as a 

partition of n sections each comprising No/n gates, then we may compute the reliability 

of the chip as the product of the probabilities that each section is working, i.e., if we 

call .X~ the failure rate of a section containing No/n gates, then the reliability of the 

chip is 

Since~ and RQ must be the same, we have .Xo = n.Xb. If we let L = No/n then 

' L .Xo= -.Xo 
No 

which is the failure rate of a piece of silicon containing L gates that is part of an IC 

containing No gates. This justifies the assumption made in [224]. 

An estimate of the failure rate .X0 can be obtained from the MIL-HDBK-217 [219], 

where .XO is expressed as a function of many parameters, including the number of gates 

in the chip. The details of the estimation of the failure rate are given in Section B.3 of 

Appendix B. 

5.4.4 The Reliability Model 

The failure rate of a non-fault-tolerant chip is .Xo = /(No). where No is the number of 

gates, and the reliability is i1{)(t) = e->.ot. Similarly, and according to MIL-HDBK-217, 

the failure rate Ar of the fault-tolerant chip can also be expressed as a function of the 

number of gates Nr. and we have Ar > .Xo since Nr > No. However, the reliability of 

the fault:-tolerant chip is different from e->.rt since the chip may survive some failures. 

In other words, Ar is the rate at which failures occur but these failures do not necessarily 

lead to complete chip failure. 

Let RAi be the probability that a unit of area Ai is working, and Rs, the probability 

that the reconfiguration logic of area Si is working. With the result of Section 5.4.3, 

we can express RA, as e->.A,t where AA; is a function of the number gates in area Ai 

and tis the time. Similarly, Rs, = e->.s,t. 

The probability that redundant unit i is working is the probability of having at least 

1-out-of-mi units working multiplied by the probability that the reconfiguration logic is 

working, that is 

144 



This would be the case if the units were continuously checked and upon the detection 

of a failure a reconfiguration process instantly replaces the faile<t unit by a spare one. 

Also, expression (5.9) assumes that all mi units are operational at time f = 0. Processing 

defects may cause some of the units to be faulty at t = 0. Furthermore, the redundancy 

strategy introduced in Section 5.3 relies on periodic off-line testing. In the following, 

we derive a reliability expression, which incorporates the effect of processing defects, 

for the case of dynamic checking. Subsequently, this expression is extended to the case 

of periodic testing. 

If there were k defective units after processing, then (5.9) becomes 

Rs;O - (1 - RA;)m;-k) x Pr{k units were defective}, 

and since there can be up to mi - 1 defective units, the probability that the redundant 

module is working is 

m;-1 

Ri = L Rs;O - (1 - RA)m;-k) x Pr{ k units were defective} 
k=O 

Let P A; = Pr{ unit of areaAi is defect free}, 

Ps; = Pr{ reconfiguration logic of areaSi is defect free}, then Q A; = 1 - P A; is the 

probability of having at least one defect in area Ai. The probability of having k out mi 

units that are defective is 

(mi) Qk (1 _ Q )m;-k k A; A; 

Furthermore, the reconfiguration logic must be defect free at t = 0. Hence 

and the expression for Ri becomes 

D.= '~l R .(1 - (1 - R .)m;-k)P . (mi) (1 - p .)k pm;-k 
-' '-1 ~ S, A, S, k A, A; 

k=O 

The probability that the chip is working is the probability that all redundant modules 

are working, i.e., 

145 



P Ai and Psi are functions of areas Ai and Si and the defect density D. Since 

D is a random variable, it is necessary to use averaging to get expected values of the 

quantities considered. As for yield, we can distinguish three different ways of computing 

the average of Rr These are presented in Appendix B. 

Reliability is defined as the conditional probability that a system is working at time 

t > 0 given that the system was working at t = 0. 

R(t) = Pr{system working at t > 01 system working at t = 0} 

Pr{system working at t > 0, system working at t = 0} 
=--~------~~--------~----~~~----~ 

Pr{ system working at t = 0} 

Given that if a chip is working at t > 0 then it must have been working at t = 0, we 

have 
R(t) = Pr{ system working at t > 0} 

Pr{system working at t = 0} 

The probability that a chip is working at t = 0 is the yield and the probability that 

the chip is working at t > 0 is Rr. Hence, the reliability of a dynamically checked chip 

is 

R(t) = i (5-.10) 

In periodic testing, the operation of the chip is interrupted at regular intervals for 

the application of a test, the results of which are used to select working units. Between 

tests, the chip is unchecked: if it fails, it produces an incorrect output until the next 

test/repair cycle. Let T be the time between test/repair cycles. 

Between tests, i.e., between times kT and (k + 1)T, where k is an integer, the chip 

is working if the units that were selected at the last test are still working and, since 

part of the reconfiguration logic is used to steer the input/output signals from a unit to 

the input/output ports of a the redundant module, the reconfiguration logic must also be 

working. Therefore, 

n 
Pr{Chip working at t E]kT, (k + l)T[} = Il e-.\Ai(t-kT)e-..Xsi(t-kT) (5.11) 

i=l 

The probability in (5.11) must be multiplied by the probability that at the last test, 

i.e. at t = kT, there were at least 1-out-of-mi unit working in every redundant module 

i and that all reconfiguration logic circuitry was working. This is exactly the reliability 

146 



of the chip in the case of dynamic checking. Hence, the reliability of the chip in the 

case of periodic testing is 

n 
Rp(t) = R(kT) IJ e-(~A;+~s,)(t-kT) 

i=l 

where k = Lt/TJ: the largest integer such that k ~ t/T and R(kT) is given by (5.10). 

Figure 5.7 gives a graphical interpretation of the above result. 

A 

0 T 

Reliability of a single unit 
+ reconfiguration logic 

' ' To : 
~ 

kT (k+l)T 

testing 

Dynamic 
checking 

/-

Figure 5.7 Graphical representation of the reliability of a chip in the case of periodic testing. 

To is the duration of the test/repair process and will be neglected. The chords 

AB, A' B' and A" B" are parallel to each other. It can be seen from Fig. 5.7 that the 

reliability in the case of dynamic checking constitutes an upper bound of the reliability 

of the chip in the case of periodic testing. Similarly, the curve that connects points 

BB' B" ... is a lower bound for Rp(t). The equation for this curve is given by 

n 
RpL(t) = R,.(t>(IJ e-<~A,+As,>T) 

i=l 

The curve that lies halfway between the upper and lower bounds represents the median 
reliability. Its equation is given by 

n 
RpM(t) = Rr(t)(IJ e-(.\A,+.\s,>T/2) 

i=l 

RpM is a good and practical approximation of Rp. 

147 



5.5 A CASE STUDY 

In this section, we consider the application of the models developed in Section 5.4. The 

area of the non-redundant chip is assumed to be A0 = 3cm2 so that the yield }'0 = 10% 

for an average defect density Do= l.Ocm-2 . These values of A0 and Do correspond to 

the profitable region of Fig. 5.12.1 (p. 154). For the purpose of reliability calculations, 

it is also assumed that 200,000 gates can be put on such a chip. The chip is partitioned 

into n units of equal areas A = A0 jn, the units are replicated by the same factor m, 

and the area of the reconfiguration logic is assumed to be the same for all n redundant 

units. The yield and reliability expressions is this case are presented in Section B .2 of 

Appendix B. 

The models can be used when the units have different areas, replication factors, and 

requirements for the reconfiguration logic. However, the number of input parameters 

to the models might then become too large to allow any analysis of their effects. 

The yield and reliability figures presented in the following subsections are dependent 

on some parameters that have been given fixed, and somewhat arbitrary values (e.g., 

number of pins, junction temperature, in the case of failure rate estimation). The focus 

should therefore be on comparing these figures to the non-redundant case, rather than 

on their absolute values. 

5.5.1 The Effect of the Size of the Reconflguratlon Logic 

The effect of the reconfiguration logic is studied first because it determines whether there 

is any improvement in yield and reliability. Furthermore, the assumptions concerning 

the size of the reconfiguration logic have a great impact on how these improvements 

vary with the other parameters of the model. 

The size of the reconfiguration logic for a redundant unit is S = m(a + (3)A0 jn = 

rncA0 jn (refer to Section 5.3.2), where a is the ratio of the size of the local reconfigu­

ration logic to the size of one replicated unit, and (3 is the ratio of the size of the global 

reconfiguration logic to the size of the m replicated units. Let Sr be the total area of 

the reconfiguration logic, i.e., S'r = nS = mcAo. 

If the ratios a, !3, and hence c, are assumed to remain constant when n varies, then 

S decreases as n increases, but Sr remains constant. This is referred to as the optimistic 

case. On the other hand, if c is assumed to vary linearly with n, then S remains constant 

as n varies, but Sr increases as n increases. This is referred to as the pessimistic case. 

148 



if c = const => S '\. as n / but Sr = const 

S /as n '\. 

if c = c'n, c' = const => S = const but Sr /as n / 

Sr '\. as n '\. 

or in terms of the area of a unit A, 

if c = const => S '\. as A '\. but Sr = const 

S /as A/ 

if c = c' n, c' = const => S = const but Sr / as A '\. 

Sr '\.as A/ 

Taking c as a constant therefore has consequences that are hard, or impossible, to 

justify. A summary of the analysis of the yield results for this case is:-

• The optimum size of the replaceable unit is zero, i.e., the smaller the unit the better 

the yield and reliability. 

• The yield figures are always higher than in the pessimistic case, Yr = 75% when 

n = 10, m = 4 and c = 0.03, for example. 

• The optimum values of the replication factor m tend to be large, 4 :::; m :::; 8. 

• There is no yield degradation when the size of reconfiguration logic is such that 

0.006 :::; c :::; 0.15. 

In particular, the first result is the same as when the size of the reconfiguration logic 

is zero [216]. The reliability results follow the same pattern. Note that this case may 

occur for some chip architectures, as shown in [229]. 

Alternatively, taking c = c'n also has consequences that are hard to justify. For 

example, the consequence that Sr '\. as the size of a unit increases is hard to accept. 

In fact, it was shown in Chapter 4 that the size of the BIST logic alone is minimum 

for a particular size of the unit. However, the yield and reliability figures obtained 

in the pessimistic cases are more consistent with intuitive expectations. Therefore, in 

the absence of a precise method of estimating the size of the reconfiguration logic, the 

results that have been selected for presentation are those corresponding to the pessimistic 

case. 

Figure 5.8 illustrates the range of values of parameter d for which there is any yield 

improvement. When the chip consist of five units, it can be seen that if d > 0.07, then 

149 



there is no yield improvement for any value of m. For a given value of m and n the 

value of <! above which \bert ts no ylcld improvement t1Ct0mttfiell tt\@ tflttetll 5lZ6 af 
the reconfiguration logic. Table 5.2 gives these values for different m and n. The main 

observation from Table 5.2 is that the critical sizes are very low: If the reconfiguration 

logic occupies more than about 9% of the total chip area, the yield of the fault-tolerant 

chip is always lower than the non-redundant yield, for all values of m and n. This is 

a very stringent requirement, given that, as seen in Chapter 4, the implementation of 

BIST alone requires between 30% and 50% of the total chip area. Similar results can 

be obtained for reliability but there would be different tables for different mission times. 

n=5 
0.6 . -., 

' ... k 

··:r-: ... 

m=3 
0.5 

................ 
·""·y.: .. x 

0.4 ~-:., 
..... .... _ 

.... 
· .... 

O.J 
·-:-~ .. 

~ 02 ·-~"" - - .~:·~~::t;, 
· .. '>: -<':-*"'~ 

·····-...: . -~~~ 
o.1 H!!·-&i!ie&················l!t········m·····i!i···-&·-e'~i!~iil~·i 

x .•. 

~o~ .. ~n------.--.--.-.,-~~ o.o....~...oo...-----..,....-~--~-.---.----. 

6E-QJ 1E-Q2 JE-Q2 6E-Q2 1E-Q1 6E-03 tE-02 JE-02 6E-Q2 1E-01 
Relative size of the reconfi!Jiallon bglc (c') Relative size of the riiCC!nf9ratlon logic (c') 

Figure 5.8 Effect of the size of the reconfiguration logic on yield. 

Rounding errors make the result meaningless for the entries marked with (*). Also, 

no two distinct entries should be exactly equal, but the calculations were done at discrete 

points. 

5.5.2 Optimum Replication Factor and Unit Size 

The natural tendency is to keep the replication factor as small as possible, while achiev­

ing acceptable yield and reliability improvements. Hence, given that Yo = 10%, if 

Yr = 48.2% form= 6 and Yr = 45.9% form= 4, it is preferable to choose m = 4. 

Figure 5.9 shows the variations of yield with the replication factor and the number 

of units. It clearly establishes that for a given number of sections n, there exists an 

optimum value of the replication factor m that maximizes the yield. Similarly, for a 

given value of m, there exists a best way to partition the chip into n units so that the 

yield is maximum. 

150 



Table 5.2 Critical values of the size of the reconfiguration logic. 

Relative size c' % of total chip area 

1n 2 3 4 5 6 7 8 11t 2 3 4 5 6 7 8 

n n 

1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 1 9.09 9.09 9.09 9.09 9.09 9.09 8.26 

2 0.1 0.1 0.1 0.08 0.07 0.06 0.05 2 9.09 9.09 9.09 7.41 6.54 5.56 4.76 

3 0.09 0.08 0.07 0.06 0.05 0.04 0.04 3 8.26 7.41 6.54 5.66 4.76 3.85 3.85 

4 0.08 0.07 0.05 0.04 0.04 0.03 0.03 4 7.41 6.54 4.76 3.85 3.85 2.91 2.91 

5 0.07 0.05 0.04 0.03 0.03 0.02 0.02 5 6.54 4.76 3.85 2.91 2.91 1.96 1.96 

6 0.06 0.05 0.04 0.03 0.02 0.02 (*) 6 5.66 4.76 3.85 2.91 1.96 1.96 (*) 

7 0.05 0.04 0.03 0.02 0.02 0.02 (*) 7 4.76 3.85 2.91 1.96 1.92 1.96 (*) 

8 0.04 0.03 0.03 0.02 (*) (*) (*) 8 3.85 2.91 2.91 1.96 (*) (*) (*) 

9 0.04 0.03 0.02 0.02 (*) (*) (*) 9 3.85 3.85 1.96 1.96 (*) (*) (*) 

10 0.04 0.03 0.02 (*) (*) (*) (*) 10 3.85 2.91 1.96 (*) (*) (*) (*) 

c'=0.01 
o.5 

c'=0.01 
0.5 

0.4 
.. , .. ~;.:_;.Y~; ':: '; ;~;::::::··•c:···· : :: 

0.4 

•, ... ·.: ;·: ... ~~---... -·····: :·:.:~··:·.······:::;:·.:_;:.·.·.·.·· .... 
. ...... ;:--··· ······ 

/,/· .... .-:-.- -· ··=·-·:f.··::····::.:::.·:.:·· .-.... ··--·-~: 
_ .. · 

.· ~~:~·"·1~---:::·,~-, 
_.- ....... · </' :-~--

··-. ····x 

l;::~_-<</~_,_A•"'" . . .. . .. ---: ... · __ ... ·· -. 

::~·./:.. ,,.,.· '')_ ...... -~~-----·~ .... -- .. ~~---:>1~ 
__ ...... -··· ,~_.,...,.--:: 

O.J O.J 

~ 
0.2 ./: .... ,../ .t/ ..fll' 
0.1 t,··· e e e 1!1 e 1!1 l!l eJ 

0.2 ,' 
.,.. .. r;.._.'fl'r"' .. 

1-I!I·'ID ·-1>·-1 ... :, .. ....., .. ::· ..... 
.... -............ 

0.0-t----.---,r---.----,----,r-------, 
2 J 4 5 6 7 8 

Replication factor (m) 
9 

1 2 J 4 5 
Nlmler of lftta (n) 

Figure 5.9 Effects of the replication factor and partitioning on yield. 

6 

If there are no constraints in choosing the values of m and n, then results as 

presented in Table 5.3 could be used for the selection of an optimum partitioning of the 

chip and an optimum replication factor. 

The results for reliability follow the same pattern, as shown in Fig. 5.1 0. The 

expression used was the median reliability corresponding to Case 1 in Appendix B, in 

order to avoid rounding errors for values of m and n such that m x n ~ 45. Note 

151 

7 



Table 5.3 Maximum yield for different m and n. 

m 1 2 3 4 5 6 7 8 

n 

I 10.03 16.69 21.78 25.72 28.83 31.31 33.29 34.88 

2 10.03 21.83 31.22 37.87 42.31 45.08 46.58 47.17 

3 10.03 25.58 37.41 44.32 47.53 48.28 47.49 45.82 

4 10.03 28.27 40.93 46.46 47.36 45.77 43.00 39.80 

5 10.03 30.96 42.49 45.94 44.58 41.22 37.29 33.43 

6 10.03 31.41 42.70 43.96 40.79 36.35 31.92 (*) 

7 10.03 32.18 42.02 41.27 36.83 31.82 (*) (*) 

8 10.03 32.56 40.75 38.33 33.05 (*) (*) (*) 

9 10.03 32.64 39.14 35.37 28.82 (*) (*) (*) 

10 10.03 32.48 37.34 32.52 (*) (*) (*) (*) 

that the values of m and n that give the best improvement in reliability do not coincide 

with the values of m and n that give the best improvement in yield, suggesting some 

trade-offs between the two mea~q_res. 

~ 

Tlme=t15 Yecrs, Perlod=100 Hcus, c'=0.01 Time=t15 Yecrs, Period=100 Hows, c'=0.01 
I~ I~ 

0.95 

0.9 

0.85 

m=3 _ .. -······· 

. .....-···"" ··-····-­........ --·-· 
J 0.8 

................. 

FTF2 .............. ---·-
·.;··"" .......... .. 

0.75 

0.7 

0.65 0.65 1--------------
0.6+----.---,r-.----.----,r-.---r-.---, 

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 6 9 10 
Replication Factor (m) IUrilar of aectlons (n) 

Figure 5.10 Reliability as a function of the replication factor and the number of units. 

Another observation from Fig. 5.10 is that the curves do not have sharp maximums. 

This is due to the weak dependence of reliability on the number of gates in a chip. 

152 



5.5.3 Figures of Merit 

It was shown in the previous sections that the yield can be improved if the size of the 

reconfiguration logic is small enough. However, the increased area of a redundant chip 

reduces the number of chips that can be placed on a wafer, assuming a constant wafer 

area. But since the yield is increased, it might still be possible to get a higher number 

of chips that are working from a wafer. In this section, the conditions for which a 

higher number of chips can be obtained from a wafer through the use of redundancy 

are considered. 

Let Aw be the usable area of a wafer. We assume that the number of possible chip 

locations on a wafer is the ratio of the usable wafer area to the area of a chip. In the 

non-redundant case, the number of chips per wafer is is given by 

Aw 
No=-Yo 

Ao 

In the redundant case, this number is 

Nr >No if 
Yr Ao 

FMy=Nr/No=-- > 1 
Ar Yo 

The ratio F My is called Figure of Merit in [208, 214]. Note that a redundancy 

strategy that improves the yield by a factor X= Yr/Yo would not result in F My > 1, 

unless the area increase is less than X. Also, in cases where Yo is extremely small, 

Yo = 0.01% say, large values of F My can be obtained even if Yr is unacceptably small. 

If Yr = 1%, then even if the area is increased by a factor of ten, we still get F lv!y = 10. 

Hence, the value of F My alone is not an accurate indicator of the benefits gained from 

a particular redundancy strategy. 

Figure 5.11 shows the variations of the figure of merit with the relative size of the 

reconfiguration logic, calculated from the model of Section 5.4. The critical values of 

d are lower than in the case of yield. 

Figure 5.12 shows the variations of the figure of merit with the replication factor 

and the number of sections, i.e., the size of the units. 

5.5.4 Effects of Periodic Testing on Reliability 

Figure 5.13 illustrates the effect of periodic testing on reliability calculated from the 

model of Section 5.4. 

153 



2.0 n=5 

1.5 

0 1.0 

"' .~ 
LL. 

0.5 

0.0-+---------..,.-----"T------.P"-""~ 

1E-03 5E-03 1E-02 5E-02 1E-01 

Raative size of the reconfigu"ation logic ( c") 

.._ 
0 

2.5 

2.0 

; 
"'1.0 

[;:: 

0.5 

m=3 

····:·-.. 

·<!f-····&··$·,?:}~'"'Y.~,.,:~:.:L 

~~ 
·:--:: ... · ...... : .... :~.:-:-: 

o.o+-----.....--~.--------.-__:.:c::;; 

lE-03 5E-03 lE-02 5E--Q2 lE--<J 1 

Raative size of the reconfi<}Jl'ation logic (c") 

Figure 5.11 Relative size of the reconfiguration logic for which F M 1, > 1. 

1.6 

2 

0.5 

0.4 

c=0.01 

J 4 5 6 

Repi'IC<rtion factor (m) 

1.6 

1.4 

c=0.01 

---
m=2 -----

/"/ -------··----------........... _ ............ m=J 

1i E 1.2 
'/".// 

.'/· ... ······· . ······ .... 
I 

! 
/ .· 

/> 
0.8 / ... ·· 

i .... 

···. · ... 
···· ...... m=4 

0.6+---.----,.--..--..... --.-----..,,-----, 
2 3 4 5 6 

N\mber of 16lits (n) 
7 8 

Figure 5.12 Optimum replication factor and unit size for F M1•• 

n=4, c:c0.01 

m=4,Qo0.01 

Profitable Region 

0
.5- -·---__;Pro'-""fitab=:::le:.:.R:::"'I'll!·:::on.!..._.. ___ _ 

o.o+-----.--....----.---.----.--.,----.-----, 0.0-l--~--~---~--.---~---~ 

0 2 3 4 5 6 7 8 0 2 3 5 6 8 

Average Number of Defects (AO"DO) Average Number of Defects (AO"DO) 

Figure 5.12.1 Effect of the average number of defects per chip on yield improvment. 

154 



>. ... 
I 
ct: 

0.9995 

0.999 

0.9985 

0 5 10 15 20 25 30 35 40 
Time {hours) 

Figure 5.13 Effect of periodic testing on reliability. 

Figure 5.14 shows that the reliability in the case of periodic testing remains very 

close to the reliability in the case of dynamic checking over a large range of values 

of the time interval between tests. Testing the chip every hour or every 100 hours 

is virtually the same as continuous checking. Only when the T is greater than few 

thousand hours does the reliability in the case of periodic testing bec?me significantly 

lower than in the case of dynamic checking. 

m=J, n=J, c'=0.01 

0.6-t---.,.----r----r-----.-----, 

0•10° 2•10 3 4•10 3 6•10 3 8•10' h10 4 

Time (hours) 

Figure 5.14 Comparison of dynamic checking and periodic testing. 

However, before time t = T, the reliability of the fault-tolerant chip is lower than 

155 



the reliability of the non-redundant chip since the reconfiguration logic must be working, 

in addition to one unit in every redundant module. Hence, it is preferable to have T of 

the order of few hours. Alternatively, it is possible to have shorter intervals between 

tests just after system startup and then increase the time interval between tests later. 

5.6 CHAPTER SUMMARY 

The models developed in this Chapter are simpler, more practical and more trackable 

than Koren's approach [225], and yet, they take into account important parameters such 

as the size of a unit, the replication factor and the time between tests. The models could 

also be adapted to other redundancy strategies, as shown in the Poster section of [229]. 

The main results from this Chapter are as follows:-

The simple redundancy strategy used to develop the yield and reliability models 

requires a large amount of redundancy: the optimum values of the replication factor 

m are in the range 2 to 5. Nevertheless, it improves yield and reliability substantially. 

Even the figure of merit becomes greater than one if the size of the reconfiguration logic 

is small enough. Therefore, it is not the amount of redundancy that is important, but 

rather the way in which the redundancy is used (distributed vs centralised, partitioning). 

The drastic effect of the reconfiguration logic was illustrated is Section 5.5 .1. If 

it occupies more than about 10% of the chip area, then no yield improvement can 

be achieved. This is probably the reason behind the use of hard reconfiguration in 

commercial DRAMs. If the size of the reconfiguration logic is small enough then it is 

shown in Section 5.5 .2 that there exist optimum values of the replication factor and the 

number of units to maximise yield and reliability. 

A chip that is periodically tested may fail to give the correct output between tests. 

However, it is shown in Section 5.5.4 that the probability of this happening is nearly 

the same as for the complete failure of a dynamically checked chip. Furthermore, it 

was surprising to find that the time between tests can be as long as a thousand hours 

without having a significant effect on the reliability. 

156 



Chapter 6 
Summary and Conclusions 

The subject of fault-tolerance is very extensive even when restricted to integrated 

circuits. The review and discussion of Chapter 2 centred around the following sub­

subjects. 

• Sources of faults. 

• Effects of faults on circuits. 

• Fault detection. 

• Fault correction. 

• Yield and reliability modelling. 

It was made clear that each of these sub-subjects is itself very wide and that none 

of them can be addressed individually. For example, fault-detection requires a thorough 

knowledge of the effects of faults on circuits which in turn requires an identification of 

the possible sources of the faults. 

At the structural level, faults can be described in terms of breaks, short circuits, 

variations in the resistances of the different interconnects, and so on. The consideration 

of faults at this level is useful only for improving the manufacturing process or for 

determining the best design rules of the process. For the purpose of fault detection 

and/or correction, it is necessary to consider faults at higher levels of abstraction. The 

higher the level, the easier it is to deal with faults. However, since higher levels of 

abstraction are obtained by hiding the structure of lower levels, they also hide the 

physical faults. 

157 



Switch level modelling seems to be the most appropriate for CMOS technology, 

since it can allow for transistor stuck -open and stuck -on faults. The dismissal of these 

types of fault by Shen et. al. [53, 52] is challenged in this thesis on three grounds: 

• Their arguments are invalid. 

• Their approach is inappropriate. If there is a need to assess the frequency of 

occurrence of stuck-open faults, then the approach of Woodhall et. al. [163] 

is much more appropriate. 

• Even if their approach was correct, the dismissal of faults because of their low 

probability of occurrence is not justifiable. 

Fault-detection mechanisms can be classified as either on-line or off-line. The 

concept of on-line error detection (using codes) appeared at the same time as the first 

large scale application of digital systems. A considerable research effort has been 

devoted to find effective methods for on-line error-detection. However, there is still 

no method that achieves high coverage of physical faults with acceptable hardware 

overheads. Hence, this work considered the use of off-line fault detection. 

A distinction must also be made between fault-correction mechanisms that rely 

on physical restructuring and those employing soft-reconfiguration, as in this work. 

Defect-tolerance techniques have very linlited capabilities for dealing with faults in field 

use. Failure-tolerance techniques, on the other hand, can deal with both manufacturing 

defects and field failures, and therefore they are more appropriate. 

6.1 THE MAIN ACHIEVEMENTS OF THE RESEARCH 

The aim of the work presented in this thesis was the investigation of techniques for the 

design of fault-tolerant ICs for improved yield and reliability (p.2). A large part of this 

work, was devoted to the problem of fault-detection while the other part consisted of 

the development of a mathematical model for assessing the effects of fault-tolerance on 

yield and reliability. Off-line testing was selected because it achieves a better coverage 

of physical faults and it requires less hardware than on-line error-detection. The physical 

repair of faults is impractical or impossible, therefore, the fault-correction mechanism 

consists of a reconfiguration process whereby the part of the IC that contains a fault 

is disabled and replaced with a spare part initially included in the design. Decisions 

must be made at the design stage on what is the size of the part of the IC that must 

be discarded when faulty. The yield and reliability model can be used in making such 

decisions. 

158 



6.1.1 Fault Detection 

The first objective of the research (p.2), a method for detecting all possible faults, 

was successfully achieved. The approach adopted in Chapter 3 to address the problem 

proved to be effective. It consisted of a detailed analysis of fault effects, not for the sake 

of deriving tests, but rather for the determination of some high level requirements for 

the detection of faults. This approach allowed the derivation of simple test generation 

procedures. The test sequences generated by these procedures detect all stuck-open 

faults and, hence, all other detectable faults, since these have been shown in Chapter 3 

to be detectable by tests for stuck -open faults. 

The test generation procedures of Chapter 3 have two novel characteristics: 

• The fault-free response of the circuit under test is trivial. 

• Faults are not considered individually. 

In particular, the use of the first property is proposed in this thesis as an effective 

solution to the problem of test response analysis. The second property is also very 

useful since it eliminates the need for enumerating the faults. The number of possible 

faults in a VLSI circuit can be extremely large. Therefore, the only faults that may 

be enumerated are the ones that are not detected. A further advantage of the proposed 

test generation procedures is that they require_ a relatively high level description of the 

circuit under test while detecting faults that belong to the switch level. 

The problem of test invalidation by circuit delays is also considered in Chapter 3. A 

procedure that generates robust tests, when they exist, was derived here. When robust 

tests do not exist, a circuit transformation technique is proposed. This transformation re­

duces the number of devices of the original circuit, whereas current proposed techniques 

increase the device count and introduce extra test inputs. 

6.1.2 Built-In Self-Test 

The second objective of the research (p.2), the implementation of BIST using the meth­

ods of Chapter 3, together with the consideration of the problem of testing the BIST 

circuits and the determination of the effect of partitioning on the size of the BIST 

hardware, were addressed in Chapter 4. 

The implementation of BIST for the detection of all faults in the functional circuits 

represents a significant departure from current BIST approaches where even the detection 

of all stuck-at faults is not guaranteed, either because of the test patterns that are used 

and/or because of the compression of the test response into a signature. The test 

159 



sequences used in Chapter 4 are derived using the procedures of Chapter 3, hence, they 

detect all detectable faults. Furthermore, because they produce a trivial output, test 

response compression is eliminated with no loss in the fault coverage. This allows the 

implementation of all-fault BIST with a hardware overhead comparable to that usually 

associated with current BIST techniques. 

'The testing of the extra hardware required for BIST itself was also considered in 

Chapter 4. The detection of faults in the test circuitry requires the addition of further 

hardware that also needs testing through the addition of further hardware that also must 

be tested, and so on. For the parts of the test circuitry used for response analysis, it 

is shown that this infinite loop can be stopped. For the multiplexers, used to select 

between data and test inputs, a simple re-design is suggested to make these circuits 

testable while they are performing their function. However, no acceptable method was 

found to test for faults in the ROM array of the test sequence generator. This led to the 

investigation of LFSR-based test sequence generators, discussed below. 

Examples are given in Chapter 4 to illustrate the difficulties in achieving complete 

test coverage, i.e., the detection of all faults in both the functional and the test hardware. 

The examples considered lead us to conclude that improved test coverage may be 

achieved if different chips were to cooperate in testing each other's untested parts. 

From the observation that the test response circuitry and the input multiplexers are 

distributed, as opposed to the centralised nature of the test sequence generator, we also 

conclude that the test circuits should be as distributed as possible and that the best way 

towards complete test coverage would be to design these circuits so that they are tested 

while performing their functions. 

Another issue addressed in Chapter 4 concerns the determination of the optimum 

size of the unit for BIST. It is shown that the hardware overhead achieves a minimum 

for a particular partitioning scheme. Alternative implementations of the test sequence 

generator have been investigated and the use of a central LFSR in conjunction with 

distributed filters is proposed as a promising method towards distributed BIST and 

hence complete test coverage. The time redundancy technique studied in Chapter 4 was 

shown to have some potential for on-line fault-detection. 

6.1.3 Evaluation of Yield and Reliability Improvements 

The fourth objective of the research (p.3) was to consider how to evaluate the likely 

improvement in yield and reliability that might be achieved using the fault-tolerance 

technique described in Chapter 5. The main features of the proposed yield and reliability 

models are: 

160 



• They are simple, compared with the only published models of Koren et. al. [225]. 

• They incorporate the effects of important parameters: size of the reconfiguration 

logic, amount of redundancy, unit size, defect density, dependence of reliability on 

yield, and periodic testing. 

• They can be extended to other fault -tolerance strategies. 

The consideration of the stage at which the averaging process is carried out, sec­

tion 5.4.2, is believed to be the first treatment of this question. 

The illustration of the application of the models gave two interesting results. The 

first concerns the stringent requirements on the size of the reconfiguration logic. For 

the example considered, if the size of the reconfiguration logic exceeds about 10% of 

the total area of the chip, then no amount of redundancy will improve the yield. 

The second interesting and surprising result concerns the effect of periodic testing. 

It was found that the time interval between tests can be as long as many hundred hours 

without significantly degrading the reliability of the chip as compared to a dynamically 

checked chip, provided that the time between tests is less than the critical down-time 

of the system using the chip. 

6.2 GENERAL CONCLUSIONS OF THE RESEARCH 

The contributions of the work, described in section 6.1, lead to the following general 

conclusions: 

• The derivation of test patterns by considering the effect of faults on circuit op­

eration individually is a time consuming task, as illustrated in Appendix A. The 

procedures presented in Chapter 3 generate complete test sequences without enu­

merating the faults. Therefore, the derivation of test sequences using some high 

level requirements for the detection of faults is much more effective. 

• The highest levels of fault coverage can only be attained through the use of determin­

istically derived test sequences, as opposed to pseudo-random or pseudo-exhaustive 

test sequences. The benefit of a guaranteed high level fault coverage will be negated 

if the test response analysis uses data compression techniques. On the other hand, 

the procedures for test sequence derivation can be adapted so that the fault-free 

response of circuits follows a trivial pattern that can be generated by simple on­

chip circuitry. Therefore, there is no need for compromising on the quality of 

testing through the use of pseudo-random or exhaustive sequences and/or signature 

analysis. 

161 



• The BIST circuitry should not be considered as a hardcore: the aim should be to 

test as much of the test circuits as possible. The best way to achieve this aim 

would be to design the circuits in such a way that they are tested while performing 

their function. However, this would make it impossible to distinguish between 

faults in the BIST hardware and faults in the functional hardware. Hence, a further 

conclusion is that the BIST circuits should be as distributed as possible. 

• The implementation of BIST at the level of very small units would result in large 

area overheads, because each unit requires some test circuits. Similarly, implement­

ing BIST at the level of very large units also has disadvantages: the test sequences 

would be difficult to derive and their lengths would be excessive. Therefore, dif­

ferent partitioning schemes should be investigated in order to minimise the size of 

the BIST circuitry. 

• It was shown that there exists a critical size of the reconfiguration logic beyond 

which there is no improvement in yield or reliability. Therefore, the size of the 

reconfiguration logic has a significant role in determining whether there is any 

improvement in yield and reliability. 

• For the redundancy strategy considered and under the 'pessimistic' assumptions on 

the variations of the size of the reconfiguration logic with the size of the units, there 

is an optimum replication factor and an optimum unit size that maximise yield and 

reliability. These optima are different for yield and reliability, suggesting some 

trade-offs between the two measures. 

• The way in which redundancy is used has more influence on yield and reliability 

improvements than the amount of redundancy. 

• Periodic testing can achieve reliability levels comparable to those achieved in dy­

namically checked systems. 

Currently, system testing and maintenance activities are more of an art than an 

exact science. This is due to imperfect testing at lower levels. BIST at the chip level, 

coupled with very high levels of fault coverage will not only make these activities more 

systematic, but will also result in savings, at least because of the fact that the field­

replaceable units become chips rather than whole PCBs. Product quality will also be 

improved since there will be a reduction in the number of faulty items that pass the 

final manufacturing tests. 

162 



6.3 SUGGESTIONS FOR FURTHER RESEARCH 

6.3.1 Reconfiguration 

As mentioned in the previous sections, the requirements on the size of the reconfiguration 

logic are very stringent. Furthermore, the reconfiguration logic is ignored in many 

proposed fault-tolerance strategies. As far as the number of publications is concerned, 

this sub-subject of fault-tolerance is the one that received the least attention. 

Designing the reconfiguration logic so that it is fully distributed is a challenging 

task. The principal requirement in this case, in addition to the requirement on size, is 

that the faults m the reconfiguration logic of one unit should not·affect another unit. 

This requires a kind of fail-safe design; this needs to be investigated further. 

6.3.2 Testing 

Combining the outputs of a circuit into a single signal for test response analysis, using 

a circuit that is tested while performing its function would greatly simplify the imple­

mentation of BIST. The method used in Chapter 4 was possible only because there were 

just two outputs to combine, and an exhaustive search was feasible. A more systematic 

method for determining the appropriate circuit would be very useful. 

On the test generation side, the use of a central LFSR with distributed filters is 

also promising. The minimum length of the LFSR is determined ·by the longest test 

sequence required by the Curs. The inputs to each filter are a subset of the outputs of 

the LFSR. It would be interesting to investigate procedures for selecting the inputs to 

each filter so that it is testable while performing its function and its size is minimised. 

Increasing the length of the LFSR increases the choices of the inputs to the filters. In 

addition, there are many different complete test sequences for a given Cur. Hence, the 

search space is very large. 

Fault simulation, used to asses the effectiveness of test sequences is a computation­

ally intensive task. Given that the requirements for the detection of any fault can be 

established, it is believed that an analysis of the results of a fault-free simulation can 

be used as an alternative to fault simulation. The analysis consists simply of verifying 

that the requirements are met. This may be less expensive than fault simulation since 

the enumeration of very large numbers of faults can be avoided. 

The time redundancy technique also needs further investigation, especially as a 

possible low-cost on-line fault detection approach. 

With further improvements on these lines, there are prospects for the production of 

VLSI circuits that are at least able to report on their faulty/operational status. 

162.1 



Appendix A 
Fault Analysis 

A.1 Breaks in Diffusion Layer 

A.2 Short Circuits in the Diffusion Layer 

A.3 Open Circuits in the Polysilicon Layer 

A.4 Short Circuits in the Polysilicon Layer 

A.S Open Circuits in the Metal Layer 

A.6 Short Circuits in the Metal Layer 

A.7 Shorts between Metal and Polysilicon 

A.8 Shorts between Metal and Diffusion 

A. 9 Open Contacts 

A.IO Summary 

163 

164 

170 

177 

183 

184 

187 

189 

192 

192 

193 



Aa1 BREAKS IN DIFFUSION LAYER 

Figure 3.3 shows the possible breaks in the diffusion layer. For clarity, only the breaks 

in the pull-up network are shown. With the adopted layout style, it .can be seen that 

all open circuits in the diffusion layer result in a source or drain of a transistor being 

disconnected from the rest of the circuit, making the transistor stuck-open. 

Figure A.l Location of breaks in diffusion layer in the pull-up network. 

Break bdpl: This break disconnects the source of transistor PI from VDD. Hence, the 

output of the inverter cannot be driven to logic one. It is effectively stuck-at zero. The 

only possible test vectors are those that set A to zero, and an analysis of the response 

of the circuit for these vectors gives the following: 

A B C SUM CARRY 

0 0 0 

0 0 

0 

0 

0 

* 0 

* 

* 
• 

From the above table, we note that the input vectors ABC= 000 and ABC= 011 

produce incorrect values at the sum output and that the input vectors ABC = 001 

164 



and ABC = 010 produce incorrect values at the carry output. Therefore, there are 

four possible test vectors for the fault under consideration. These will be noted as 

000(8), 011(8), 001(0), 010(0) where the symbol between brackets refers to the output 

where the fault is detected. 

Break bdp2: This break has exactly the same effect as the previous one, and hence is 

detected by the same test vectors. In the following, breaks like bdpl and bdp2 will be 

treated as a single one. 

Break bdp3: Break bpd3 disconnects the source of transistor P2 from VDD, making 

the output of the inverter B stuck-at zero. The response of the circuit to the four likely 

test vectors is: 
A B C SUM CARRY 

0 0 0 * 0 

0 0 1 1 * 
0 0 * 
0 * 

The possible test vectors are 000(8), 101(8), 001(0), 100(0). 

Break bdp4: This makes 0 stuck-at zero. The circuit response to the four likely test 

vectors is: 
A B c SUM CARRY 

0 0 0 * 0 

0 0 * 
1 0 0 * 

1 0 * 1 

Any of 000(8), 110(8),010(0), 100(0) can be selected as a test vector. 

Break bdp5: Break bpd5 disconnects the source of transistor P4 from VDD, making it 

impossible to charge the sum output through the path {P4 P5 P6}, but since there are 

other paths from VDD to the output, this does not result in a stuck-at zero fault as in 

the previous cases. The response of the circuit under such a fault is : 

165 



A B c SUM 

0 0 0 0 

0 0 1 z * 
0 0 

0 1 0 

0 0 

1 0 1 0 

1 1 0 0 

1 1 

Z denotes a high impedance state. This occurs when both pull-up and pull-down 

networks are off, isolating the output node from both VDD and GND. In this case, the 

output holds its previous logic state, in the form of a charge on the capacitance of the 

output node. 

This fault prevents the output from being charged through the path comprising 

transistors P4, PS and P6, as said before. Hence, to test for the presence of this fault we 

must attempt to charge the output through the path {P4 PS P6}. However, if the output 

is already charged to logic 1, then when attempting to charge it again through the path 

{P4 PS P6}, it will not be possible to say whether the fault is present or not, since if 

the fault is present the output will be high (retaining its previous value) which is the 

same as when the fault is not present. Therefore, another requirement to test such a 

fault is that before we attempt to charge the output, we must make sure that the output 

is discharged first, so that if the fault is present, the output will be; low when attempting 

to charge it through path {P4 PS P6}. In other words, this type of faults require a pair 

of vectors for their detection. The first vector being an initialisation one and the second 

is the test vector. 

For the fault under consideration, the initialisation vector can be any input combina­

tion that sets the output to logic 0, and the test vector must activate the path {P4 PS P6}. 

The only vector that activates this path is ABC = 001. The pair of vectors is denoted 

ABC = (d, OOI)(S) where the d stands for any input combination that discharges the 

output. 

Break bdp6: Break bdp6 disconnects the source of PS from the drain of P4. It is 

detected by the same pair of vectors as bpd5. 

Break bdp7: Break bdp7 disconnects the source of transistor P6 from the drain of 

transistors P5 and P8 making it impossible to charge the output through neither path 

{P4 PS P6} nor {P7 P8 P6}. We can test for this fault by attempting to charge the output 

166 



through either paths. So we have the two possible pairs of vectors: ABC= (d, 001)(8) 

or ABC= (d, 111)(8). 

Break bdp8: Break bdp8 disconnects the source of transistor P7 from VDD, making 

it impossible to charge the output through path {P7 P8 P6}. A test for this fault is 

ABC= (d, 111)(8). 

Break bdp9: Break bdp9 results in the source of transistor P8 being disconnected from 

the drain of transistor P7 resulting in a break in the path {P7 P8 P6}. Hence, this fault 

is detected by the same pair of vectors as for bdp8. 

Break bdplO: Break bdplO disconnects the source of transistor P9 from VDD. To test 

for this fault, path {P9 PlO P13} must be activated, therefore, ABC = ( d, 010)(8). 

Break bdpll: Disconnects the source of PlO from the drain of P9. It is detected by the 

same pair of vectors as for bdplO. 

Break bdpl2: Disconnects source of P11 from VDD. Path {P11 P12 Pl3} must be 

activated. ABC = (d, 100)(8). 

Break bdpl3: Disconnects the source of P12 from the drain of P11. It is detected by 

the same pair of vectors as bdpl2. 

Break bdpl4: Disconnects the source of P13 from the drains of PlO and Pl2. Either 

paths {P9 PlO P13} or {Pll P12 P13} can be activated to test this fault, so ABC = 

(d,010)(8) or ABC= (d, 100)(8). 

Break bdpl5: Causes the source of transistor P14 to be disconnected from VDD. The 

initialisation vector can be any vector that discharges the carry output. The test vector 

must activate the path {P14 P15} only (making sure that P16 is off). Therefore, the 

pair of vectors required is ABC= (d, 101)(C). 

Break bdp16: Disconnects the source of transistor P15 from the drains of transistor P14 

and Pl6. The possible test pairs are ABC= (d, lOl)(C), or ABC= (d, Oll)(C). 

Break bdp17: Disconnects the source of P16 from VDD. ABC= (d,Oll)(C). 

Break bdpl8: Disconnects the source of P17 from VDD. ABC= (d, 110)(C). 

Break bdpl9: Disconnects the source of P18 from the drain of P17. It is detected by 

the same test pair of vectors as bdpl8. 

Figure 3.4 shows the locations of breaks in diffusion layer of the pull-down net­

works. 

167 



Figure A.2 Breaks in the diffusion layer of the pull-down network. 

Break bdnl: Causes the source of transistor N1 to be disconnected from GND, making 

it impossible to discharge the output. The output of the inverter is therefore stuck-at 1. 

The four possible test vectors are those that set A to 1. The response of the circuit for 

these vectors is as follows: 
A B c SUM CARRY 

0 0 0 * 0 

1 0 0 0 * 
1 0 0 0 * 

0 * 

The possible test vectors are: ABC= 100(8), ABC= 111(8), ABC= 101(C) and 

ABC= 110(C). 

Break bdn2: Causes the source of the transistor N2 to be disconnected from GND 

resulting in the output of the inverter being stuck-at 1. The response of the circuit to 

the four possible test vectors is: 

168 



A B C SUM 

0 

0 

0 

0 

0 * 
0 

0 

1 1 1 0 * 

CARRY 

0 

0 

0 

* 
* 

Any of the following can be selected as a test vector: ABC = 010(8), ABC = 
111(8), ABC= Oll(C) and ABC= 110(C). 

Break bdn3: Causes the source of transistor N3 to be disconnected from GND, resulting 

in node C being stuck -at 1. The circuit response to the four candidate test vectors is: 

A B C SUM CARRY 

0 0 

0 1 1 

0 

0 * 
0 

0 

0 * 

0 

0 

0 

* 
* 

Any of the following can be chosen as a test vector: ABC = 001(8), ABC = 
111(8), ABC= 011(C) or ABC= 101(C). 

Break bdn4: Causes the source of N6 to be disconnected from GND making it im­

possible to discharge the output through the path {N6 N5 N4 }. The input vector that 

activates this path is ABC = 110, which must be preceded by an initialisation vector 

that can be any input vector that sets the output to logic 1. Therefore, the fault is 

detected by the pair of vectors denoted ABC= (c, 110)(8) where c stands for any input 

combination that charges the output in question, in this case 8. 

Break bdn5: Disconnects the source of N5 from the drain of N6. It has the same effect 

as bdn4 and it is detected by the same pair of vectors. 

Break bdn6: Disconnects the source of N4 from the drains of N6 and N7. The possible 

pairs of vectors that detect this fault are ABC= (c, 110)(8) or ABC= (c, 000)(8). 

Break bdn7: Disconnects the source of N8 from GND. Path {N8 N7 N4} needs to be 

activated to detect such a fault, which requires ABC = 000 and the pair of vectors is 

ABC= (c,000)(8). 

Break bdn8: Disconnects the source of N7 from the drain of N8. It has the same effect 

as bdn7 and it is detected by the same test pair. 

169 



Break bdn9: Disconnects the source of Nll from GND. It is detected by the two-pattern 

test ABC = (c, 101)(8). 

Break bdnlO: Disconnects the source of NlO form the drain of N11. It has the same 

effect as bdn9 and is detected by the same pair of vectors. 

Break bdnll: Disconnects the source of N13 from GND. ABC= (c, 011)(8). 

Break bdnl2: Disconnects the source of N12 form the drain of N13. It has the same 

effect as bdnll and is detected by the same pair of vectors. 

Break bdnl3 Disconnects the source of N9 from the drains of N10 and N12. The two 

possible test pairs are ABC= (c, 101)(8) or ABC= (c, 011)(8). 

Break bdnl4: Disconnects the source of N15 from GND. ABC= (c,OlO)(C). 

Break bdnl5: Disconnects the source of N14 from the drains of N15 and N16. The 

possible test pairs are ABC= (c,OlO)(C) or ABC= (c, 100)(C). 

Break bdnl6: Disconnects the source of N16 from GND. ABC= (c, 100)(C). 

Break bdnl7: Disconnects the source of N18 from GND. ABC= (c,001)(C). 

Break bdnl8: Disconnects the source of N17 from the drain of N18. It has the same 

effect as bdnl7 and is detected by the same test pair. 

A.2 SHORT CIRCUITS IN THE DIFFUSION LAYER 

Shorts in the diffusion layer may be caused by extra patterns. The nature of the short 

circuit is dependent on the size and shape of the extra pattern. It is assumed that these 

extra patterns are small enough so that they affect only physically close regions. To 

study their effects it is helpful to extract the resulting faulty circuit, analyze its operation 

and compare it to the fault-free circuit. 

Figure 3.5 shows the possible shorts in the pull-up networks. Shorts between two 

diffusion regions that are always at the same potential will have no effect, and will not 

be considered. Examples of such shorts ate sdpl, sdp2, sdpl4, and sdpl9. When two 

nodes are shorted and the input combination is such that the two nodes are at the same 

potential, the short will not affect the logical value of the circuit output. Therefore, a 

test for such a fault is derived by searching the set of input combinations that set the 

two nodes to different potentials. In addition, the test must also propagate the fault to 

an observable output. 

170 



Figure A.3 Location of short circuits in the diffusion layer of the pull-up network. 

Short sdp3: Short sdp3 causes the output of the inverter A to be shorted to node S l. 

If we set A to zero, A would be at logic one and so would node S 1. Hence A must 

be set to 1. This will cause node S1 to take on the value 0, which it never gets in a 

fault free circuit. To propagate the value of node S1 to the sum output we must set B 

to 0 and C to 1. However, with an input ABC= 101, the output will be low, masking 

the effect of the fault. Therefore, the fault is undetectable since it does not affect the 

operation of the circuit. 

Short sdp4: Short sdp4 connects the drain of P4 to VDD, making it stuck-at 1. If A 

is set to zero, node S1 will be at logic 1, regardless of the presence of the fault. We 

must therefore set A to 1, and in order to propagate the state of node S 1 to the output 

SUM, B and C must be set to 0 and 1 respectively. With input ABC = 101, the 

output is discharged through path {Nll NlO N9}. However, because path {P6 P5} is 

conducting and node Sl is at VDD, we are in the general situation where both pull-up 

and pull-down networks are conducting. The output will be somewhere between VDD 

and GND, the exact voltage being a strong function of the ratio of the impedances of the 

paths that are conducting, which itself is a function of devices dimensions and shapes. 

171 



If another gate is driven by an output node at such an intermediate voltage, this 

gate may see it as either logic 1 or 0. If the signal is seen as the same as the fault-free 

value, we say that the fault is not detected. Otherwise it is detected. For all subsequent 

faults that result in a similar situation as above, we will derive an input vector that will 

propagate the fault effect to the output, but fault detection is not guaranteed in this case. 

For short sdp4, the input vector that propagates the fault effect to the output is 

ABC = 101 (S). 

Short sdp5: Short sdp5 causes the drains of P7 and P4 to be shorted, creating new 

paths in the pull-up. The two new additional paths created by this fault are {P7 PS 

P6} and {P4 P8 P6}. Activating either of these paths will lead to both pull-up and 

pull-down networks being conducting. This is achieved by either ABC = 101(S) or 

ABC= Oll(S). 

Short sdp6: Short sdp6 cause the drain of PS and P7 to be shorted, creating new paths 

in the pull-up. The additional paths are {P7 P6}, and {P4 PS P8 P6}. However, path 

{P4 PS P8 P6} cannot be activated since it requires B and B to be zero. To activate 

{P7 P6} we need A = 1 and C = 1. The value of B must then be chosen so that the 

sum output is low. Therefore, the input ABC= 101(S) will propagate the fault effect 

to the sum output. 

Short sdp7: Causes node S4 to be stuck-at 1. This can also be seen as the addition 

of the extra path {P10 P13}. To activate this path, we need BC = 10 and A must be 

selected so that the output is low in a fault-free circuit. Therefore, the test vector is 

ABC= 110(S). 

Short sdp8: Causes nodes S4 and S3 to be shorted. The additional paths are {P7 P10 

P13} and {P9 P8 P6} which are activated by ABC= 110 and ABC= 011, respectively. 

The two possible test vectors are therefore, ABC= 110(S) or ABC= 011(S). 

Short sdp9: Causes nodes S2 and S6 to be shorted, creating the extra paths {P4 PS 

P13}, {P7 P8 P13}, {P9 P10 P6} and {P11 P12 P6}. These paths are activated by 

ABC = 000, 110,011 and 101, respectively. Therefore, any input combination that 

discharges the output would detect this fault. This is noted as ABC= d(S). 

Short sdplO: Causes node S2 and the sum output to be shorted. The additional paths 

are {P4 PS} and {P7 P8}. The first path is activated by setting A and B to zero, 

while C must be chosen so that the sum output is low, resulting in the first vector 

ABC = OOO(S). A second test vector can be obtained by activating the second path 

(AB = 11) and choosing C so that the output is low, giving ABC= 110(S) as another 

possible test vector. 

172 



Short sdpll: Causes node 54 to stuck-at I. Same as sdp7. 

Short sdp12: Causes nodes 53 and 55 to be shorted. The extra paths created are {PII 

P8 P6} and {P7 PI2 P13}. The first path is activated by ABC= 11I and the second 

by ABC= IOO. However, when either path is activated, a legitimate path in the pull­

up network is also activated, masking the fault. Therefore, the fault is not detectable. 

Transistors PII and P7 can be merged into a single one. 

Short sdp13: Causes nodes 56 and 54 to be shorted. The additional paths in the pull-up 

are {P9 P13} and {PII PI2 P10 P13}. However, path {PII PI2 P10 P13} cannot be 

activate since it requires B and B to be set to zero. Therefore, the test for this short is 

ABC = 000(5). 

Short sdp14: No effect. Both nodes are at VDD. 

Short sdpl5: Causes node 55 of the sum circuit to be shorted to node 5I3 of the carry 

circuit, creating extra paths in both circuits. The paths created in the sum circuit are 

{PI4 PI2 PI3} and {PI6 PI2 P13}. When the first path is activated, another legitimate 

path in the sum circuit is also activated. The second path cannot be activated. 

The path created in the carry circuit is {Pll PIS} which is activated by an input 

combination that also activates a legitimate path in the circuit. Hence, this fault is not 

detectable since it does not affect the operation orthe circuit. 

Short sdp16: Causes node 56 in the sum circuit to be stuck-at 1. Hence, setting C to 

0 will drive the sum output to logic I, regardless of the other inputs. The possible test 

vectors are ABC= 000(5) or ABC= 110(5). 

Short sdpl7: Causes node 56 in the sum circuit and node 513 in the carry circuit to 

be shorted. The extra paths created in the sum circuit are {PI4 P13} and {P16 P13}. 

The first one is activated by AC = 10 which yields the test vector ABC = 110(5). 

Activating the second path with BC = 10 yielding the same test vector. The extra 

paths in the carry circuit are {PII PI2 PIS} and {P9 P10 PIS} which are activated 

by ABC = IOI and ABC= 01I, respectively. However, since this will set the carry 

output to logic I in both the faulty and fault-free circuits, these inputs do not constitute 

test vectors for this fault. 

Short sdpl8: Causes node 513 in the carry circuit to be shorted to the sum output. 

Two new paths are added to the sum circuit: {PI4} and {P16}. Therefore, setting A, 

B or both, to 1 will drive the sum output to I, regardless of the other values. The other 

values should be chosen so that the output is low in a fault-free situation, giving the 

three possible test vectors: ABC= 011(5), ABC= 101(8}, ABC= 110(8). 

173 



Additional paths are also created in the carry circuit; {P4 PS P6 PIS} and {P7 P8 

P6 PIS} being the activable ones. The second path is activated by ABC = 11I, but 

this will result in a carry output being high, i.e., the same as the fault-free response. 

Activating the first path requires ABC = 001, which will set the carry output to zero 

in a fault-free circuit, but if the fault is present there will also be a path from carry to 

VDD, so ABC= 001(C) is another test vector. Vectors ABC= 01I and ABC= 101 

may also detect the fault at the carry output since in this case the sum output is low, 

inducing an intermediate voltage at node 5I3. 

Short sdp19: No effect. Both nodes are at VDD. 

Short sdp20: Causes nodes 5I4 and 513 of the carry circuit to be shorted. This will 

create three new paths in the circuit. The first {PI4 P18} when activated results in a 

legitimate path in the pull-up being also activated. The second, {PI7 PIS} also leads 

to the same situation. However, the third path {P16 P18} can be activated by simply 

setting B to I. To produce a fault at the output, the other inputs must be set so that the 

fault-free response is low. Therefore, the test vector for this fault is ABC= OIO(C). 

Short sdp21: Causes node SI4 to be stuck-at 1. Setting B to I will cause the carry 

output to be at logic I, regardless of the other inputs. Therefore, the test vector for this 

fault is ABC = 01 0( C). 

Short sdp22: Cause node 513 and the carry output to be shorted. Setting A or B to logic 

I will set the output to logic 1. ABC= OOI(C), ABC= IOO(C) and ABC= OIO(C) 

are all possible test vectors. 

Short sdp23: Causes the sum and the carry outputs to be shorted. Since both nodes are 

observable outputs, any input combination that sets sum and carry to opposite values is 

a test vector. ABC= 001(5C), ABC= 010(5C), ABC= 100(5C), ABC= 011(5C), 

ABC= 101(5C), ABC= 110(5C). 

Figure 3. 7 shows the possible shorts in the diffusion layer of the pull-down networks. 

Short sdnl: Short sdnl causes the output of the inverter A to be shorted to node 58. 

This fault does not affect circuit operation and thus is undetectable. 

Short sdn2: Causes node 58 to be stuck-at 0, creating the new path {NS N4} in the 

pull-down, which can be activated by setting BC = 10. Hence, A must be set so that 

the output is high in a fault-free circuit. The test vector ABC= 010(5) achieves this, 

and if the fault is present, both paths {P9 PIO P13} and {N6 N4} are conducting. 

Short sdn3: Causes nodes 58 and 59 to be shorted. The paths created by this short are 

{N6 N7 N4} and {N8 NS N4 }. They are activated by ABC= IOO and ABC= 010, 

174 



Figure A.4 Location of short circuits in the diffusion layer of the pull-down network. 

respectively. Both input combinations would set the sum output to logic 1 in a fault-free 

circuit, and so either ABC = 100(5) or ABC = 010(5) can be used to test for this 

fault. 

Short sdn4: Causes nodes 57 and 59 to be shorted, adding the path {N8 N4 }, which 

is activated by AC = 00, so that ABC= 010(5) is a test vector for this fault. 

Short sdn5: Causes node 510 to be stuck-at 0 adding the extra path {NlO N9} which 

is activated by BC = 01 and hence ABC= 001(5) is a test vector. 

Short sdn6: Causes nodes 512 and 510 to be shorted creating the paths {N11 Nl2 

N9} and {N13 N10 N9} which can be activated with ABC = 111 and ABC = 001, 

respectively, and the test vectors are ABC= 111(5) or ABC= 001(5). 

Short sdn7: Causes nodes 510 and 59 to be shorted adding the paths {N8 N10 N9} and 

{N11 N7 N4} which are activated by ABC = 001 and ABC = 100, respectively. Both 

input combinations set the sum output to logic 1 in a fault-free circuit and therefore, 

constitute possible test vectors for this fault. ABC= 001(5) or ABC= 100(5). 

Short sdn8: Causes a short between nodes 511 and 57 creating the extra paths {N6 

N5 N9}, {N8 N7 N9}, {Nll N10 N4}, and {N13 N12 N4} which are activated by 

175 



ABC = 111,001, 100, and 010, respectively, i.e., any input combination that charges 

the sum output is a test vector. This is denoted as ABC= c(8). 

Short sdn9: Causes the sum output to be shorted to node 87, creating the new paths 

{N6 N5} and {N8 N7} which are activated by AB = 11 and AB = 00. Input C must 

be set to 1 in order to detect the fault. ABC = 111(8) and ABC = 001(8) are both 

test vectors for this fault. 

Short sdnlO: Causes node 810 to be stuck-at 0. Detected by ABC= 001(8). 

Short sdnll: Causes nodes 811 and 810 to be shorted creating the path {Nll N9} 

activated by AC = 11. Input B must be set to 1 in order to detect this fault. The test 

vector is ABC = 111(8). 

Short sdn12: No effect. The shorted nodes are at GND. 

Short sdn13: Causes nodes S 12 in the sum circuit and S 15 in the carry circuit to be 

shorted. The extra paths created in the sum circuit are {N15 N12 N9} and {N16 

N12 N9}. When the first path is activated a legitimate path in the pull-down is also 

activated. The second path cannot be activated since it requires B and B to be set 

to 1. The extra path created in the carry circuit is {N13 N14} which is activated by 

AC = 00. Whatever value we choose for input B, the carry output will always be low 

when AC = 00. Therefore, this fault is not detectable. 

Short sdn14: Causes node S11 to be stuck-at 0. In this case setting input C to 1 

will result in the sum output being at logic 0. Therefore, the possible test vectors are 

ABC= 001(8) and ABC= 111(8). 

Short sdn15: Causes nodes S 15 and S 11 to be shorted. The extra paths in the sum 

circuit are {N15 N9} and {N16 N9} activated by AC = 01 and BC = 01, respectively, 

yielding the same test vector ABC = 001(8). The extra paths in the carry circuit 

are {N13 N12 N14} and {Nll NlO N14} which are activated by ABC = 010 and 

ABC = 100. Both input vectors would produce a low output in a fault-free carry 

circuit, and therefore, do not constitute test vectors. 

Short sdn16: Causes the sum output and node SIS to be shorted. Two extra paths 

are added to the sum circuit: {N15} and {N16}. Hence, setting A, B, or both to 

0 will force the sum output to 0. Therefore, ABC = 001(8), ABC = 010(8) and 

ABC = 100(8) are all possible test vectors for this fault. In addition, input vectors 

ABC = 110, ABC= 010 and ABC = 100 also produces an intermediate voltage on 

the carry output giving the other possible test vector ABC= llO(C), ABC= OIO(C) 

or ABC= IOO(C). 

176 



Short sdnl7: Causes the sum and the carry outputs to be shorted. Any input combination 

that sets the two output to different values is likely to detect this fault. The possible test 

vectors are ABC = OOl(SC), ABC = OlO(SC), ABC = Oll(SC), ABC = 100(SC), 

ABC= lOl(SC), ABC= llO(SC). 

Short sdn18: No effect. The shorted nodes are at GND. 

Short sdn19: Causes nodes S16 and S15 to be shorted, creating the extra paths {N15 

N17} and {Nl6 N17}. Activating the first path would result in a legitimate path in 

the pull-down network being activated. The second path is activated by setting B to 0 

yielding the test vector ABC= lOl(C). 

Short sdn20: Causes node S16 to be stuck-at 0. Setting B to 0 will force the carry 

output to 0. Therefore the test vector is ABC= lOl(C). 

Short sdn21: Causes the carry output to be shorted to node SIS adding the two extra 

paths {N15} and {N16}. Hence setting A, B, or both to 0 will force the CARRY output 

to 0, yielding the test vectors ABC= OOl(C), ABC= OlO(C), and ABC= lOO(C). 

A.3 OPEN CIRCUITS IN THE POLYSILICON LAYER 

Open circuits in the polysilicon layer result in the gates of transistors being floating. 

The state of a transistor (ON or OFF) with a floating gate is difficult to determine. The 

transistor state depends on the charge present on the gate (although this charge may 

leak away after a while). In addition, the charge on the floating gate is very sensitive to 

coupling from neighbouring or overlapping lines. Therefore, the transistor may be ON 

or OFF, but in both cases it will be a 'weak' ON or OFF state, that is, if the transistor is 

ON then its resistance would be much higher than a normally ON transistor. Similarly, 

if the transistor is OFF, the current from source to drain is far from being negligible. 

Because polysilicon is used as a mask when diffusing the source and drain regions, 

an open circuit may also result in a transistor being stuck-closed, but in this case it will 

have its drain and source shorted. In the following, we will consider that a transistor 

that has a floating gate is either stuck-on or stuck-open and derive test vectors for both 

cases. Figure 3.8 shows the possible locations of breaks in the polysilicon layer of the 

pull-up network. 

In the first part of this section, we will assume that any transistor with a floating 

gate is stuck-closed. The second part of this section will consider the case where it is 

stuck-open. Transistor stuck-on faults behave in the same way as many of the diffusion 

shorts of the previous section in that they give rise to intermediate voltages. Hence, 

177 



Figure A.S Locations of the possible breaks in the polysilicon layer of the pull-up network. 

depending on how far is the intermediate voltage from the fault-free value, the fault 

may or may not be detected. In deriving tests for such faults we will try to induce an 

intermediate voltage at the fault location and then propagate it to an observable output. 

The delectability of the fault will depend on whether any subsequent gate, driven by 

the observable output, sees the output as the same or not as the fault-free one. 

Break bppl: Break bppl affects Pl, P4 and P9. Since these transistors are in the pull-up 

networks, the test vectors are selected from the set of input combinations that tum the 

pull-down on and activate the path containing an affected transistor. For Pl, any input 

combination with A = 1 will produce an intermediate voltage on output A. However, 

whether this intermediate voltage is propagated to the sum and/or carry outputs, and 

whether it is far enough from the fault-free value, can only be determined by a circuit 

simulation. It is also possible to test for this fault by activating the paths containing P4 

and P9. The possible test vectors for this fault are ABC= lOO(SC), ABC= lOl(SC), 

ABC= llO(SC), and ABC= lll(SC). 

Break bpp2: Transistors P4 and P9 are stuck-closed. The possible test vectors are 

ABC= lOl(S) and ABC= llO(S). 

Break bpp3: P9 stuck-closed. Detected by ABC= llO(S). 

178 



Break bpp4: P1, P11, P14 and PI7 are stuck-on. The fault is detected by ABC = 
000(8), ABC= 001(C), ABC= 010(C) or ABC= 01I(8). 

Break bpp5: Pll, PI4 and PI7 are stuck-on. The test vectors are ABC = 000(8), 

ABC= OOI(C) and ABC= 010(C). 

Break bpp6: PI4 and PI7 are stuck-on. Test vectors: ABC = 001(C) or ABC = 
010(C). 

Break bpp7: P17 is stuck-on. Test vector: ABC= 010(C). 

Break bpp8: P2, P5 and P12 are stuck-on. Test vectors: ABC = 010(8C), ABC = 
OI1(8C), ABC= I10(8C) and ABC= I11(8C). 

Break bpp9: P5 and PI2 are stuck-on. Test vectors: ABC = 011(8) and ABC = 
I10(8). 

Break bpplO: PI2 is stuck-on. Test vector: ABC= 110(8). 

Break bppll: PS, P10, PI6 and P1S are stuck-on. Test vectors are ABC = 000(8), 

ABC= 001(C), ABC= IOO(C), and ABC= 10I(8). 

Break bpp12: P10, PI6 and PIS are stuck-on. Test vectors: ABC= 000(8), ABC= 

OOI(C), and ABC= IOO(C). 

Break bpp13: PI6 and PIS are stuck-on. Test vectors: ABC = OOI(C) and ABC= 

100(C). 

Break bpp14: PIS stuck-on. Test vector: ABC= lOO(C). 

Break bpp15: P3 and PI3 stuck-on. Test vectors ABC= OOI(8C), ABC= 011(8C), 

ABC= 101(8C), and ABC= 1II(8C). 

Break bpp16: Pl3 stuck-on. Test vectors ABC= 011(8) and ABC= 10I(8). 

Break bpp17: P6 and Pl5 stuck-on. Test vectors ABC = 000(8), ABC = 010(C), 

ABC= 100(C), and ABC= I10(8). 

Break bpp18: P15 stuck-on. Test vector ABC= 010(C) or ABC= 100(C). 

Figure 3.9 shows the locations of possible open circuits in the polysilicon layer of 

the pull-down networks. 

Break bpnl: Transistors N1, N6 and Nll are stuck-closed. The possible test vectors 

are ABC= 000(8C), ABC= 001(8C), ABC= 010(8C), or ABC= 01I(8C). 

179 



Figure A.6 Breaks in the polysilicon layer of the pull-down network. 

Break bpn2: N6 and Nll stuck-closed. Test vectors ABC = 001(8) or ABC = 010(8). 

Break bpn3: N11 stuck-on. Test vector ABC= 001(8). 

Break bpn4: N8, N13, N15 and N18 stuck-closed. Test vector ABC= 100(8), ABC= 

lOl(C), ABC= llO(C), or ABC= 111(8). 

Break bpn5: Nl3, N15 and N18 stuck-closed. Test vector ABC = 101(C), ABC = 
110(C), or ABC= 111(8). 

Break bpn6: N15 and N18 stuck-on. Test vector ABC= 101(C) or ABC= 110(C). 

Break bpn7: N18 stuck-on. Test vector ABC= 10l(C). 

Break bpn8: N2, N5 and N12 stuck-on. Test vector ABC= 000(8C), ABC= 001(8C), 

ABC= 100(8C) or ABC= 101(8C). 

Break bnp9: N5 and N12 stuck-on. Test vector ABC= 001(8) or ABC= 100(8). 

Break bnplO: N12 stuck-on. Test vector ABC= 001(8). 

Break bnpll: N1, NlO, N16 and N17 stuck-closed. Test vector ABC = 010(8), 

ABC= Oll(C), ABC= ItO( C) or ABC= 111(8). 

180 



Break bnp12: N10, Nl6 and Nl7 stuck-closed. Test vector ABC= 011(C), ABC= 

110(C) or ABC= 111(8). 

Break bnpl3: N16 and N17 stuck-closed. Test vector ABC = Oll(C) or ABC = 
110(C). 

Break bnpl4: N17 stuck-on. Test vector ABC= 011(C). 

Break bnpl5: N3 and N9 stuck-closed. Test vector ABC= 000(8C), ABC= 010(8C), 

ABC = 100(8C) or ABC = 110(8C). 

Break bnpl6: N9 stuck-on. Test vector ABC= 010(8) or ABC= 100(8). 

Break bnpl7: N4 and N14 stuck-closed. Test vector ABC= 001(8), ABC= 011(C), 

ABC= 101(C) or ABC= 111(8). 

Break bnpl8: N14 stuck-on. Test vector ABC= 011(C) or ABC= 101(C). 

Next, the case where a transistor with a floating gate is permanently off is considered. 

Break bppl: Transistors P1, P4 and P9 are stuck-open. P1 stuck-open causes A to be 

stuck-at 0. This yields the test vector ABC= 000(8), ABC= 001(C), ABC= 010(C) 

or ABC= 011(8). It is also possible to test for this break with a pair of vectors. 

Break bpp2: P4 and P9 stuck-open. The test pair is ABC= (d,001)(8) or ABC= 

(d, 010)(8). 

Break bpp3: P9 stuck-open. Test pair ABC= (d,010)(8). 

Break bpp4: P?, P11, P14 and P17 stuck-open. Test pair ABC= (d, 100)(8), ABC= 

(d, 101)(C), ABC= (d, 110)(C) or ABC= (d, 111)(8). 

Break bpp5: P11, P14 and PI? stuck-open. Test pair ABC = (d, 100)(8), ABC = 
(d, 10I)(C) or ABC= (d, I10)(C). 

Break bpp6: PI4 and PI? stuck-open. Test pair ABC = (d, 10I)(C) or ABC = 
(d, 110)(C). 

Break bpp7: PI? stuck-open. Test pair ABC= (d, 110)(C). 

Break bpp8: P2, P5 and P12 stuck-open. B is stuck-at 0 as a result. Test vector 

ABC= 000(8), ABC= OOl(C), ABC= lOO(C) or ABC= 101(8). 

Break bpp9: P5 and P12 stuck-open. Test pair ABC = (d, 001)(8) or ABC = 
(d, 100)(8). 

181 



Break bpplO: P12 stuck-open. Test pair ABC= (d, 100)(8). 

Break bppll: P8, P10, P16 and p18 stuck-open. Test pair ABC= (d,010)(8), ABC= 

(d, 011)(C), ABC= (d, 110)(C) or ABC= (d, 111)(8). 

Break bppl2: P10, P16 and P18 stuck-open. Test pair ABC= (d,010)(8), ABC= 

(d, 011)(C) or ABC= (d, 110)(C). 

Break bppl3: P16 and P18 stuck-open. Test pair ABC = (d, Oll)(C) or ABC = 
(d, 110)(C). 

Break bppl4: P18 stuck-open. Test pair ABC= (d, 110)(C). 

Break bppl5: P3 and P13 stuck-open. Cis stuck-at 0 as a result. Test vector ABC= 

000(8), ABC= 010(C), ABC= 100(C) or ABC= 110(8). 

Break bppl6: P13 stuck-open. Test pair ABC= (d,010)(8) or ABC= (d, 100)(8). 

Break bppl7: P6 and PIS stuck-open. Test pair ABC= (d, 001)(8), ABC= (d, 011)(C), 

ABC= (d, 101)(C) or ABC= (d, 111)(8). 

Break bppl8: P15 stuck-open. Test pair ABC= (d, Oll)(C) or ABC= (d, lOl)(C). 

Break bpnl: Transistors N1, N6 and N11 are stuck-open. A is stuck-at 1. Test vector 

ABC= 100(8), ABC= 101(C), ABC= 110(C), or ABC= 111(8). 

Break bpn2: N6 and N11 stuck-open. Test pair ABC = (c, 101)(8) or ABC = 
(c, 110)(8). 

Break bpn3: Nll stuck-open. Test pair ABC= (c, 101)(8). 

Break bpn4: N8, N13, N15 and N18 stuck-open. Test pair ABC= (c,000)(8), ABC= 

(c, 001)(C), ABC= (c, OlO)(C) or ABC= (c, 011)(8). 

Break bpn5: N13, N15 and N18 stuck-open. Test pair ABC= (c,001)(C), ABC= 

(c, 010)(C) or ABC= (c, Oll)(S). 

Break bpn6: N15 and N18 stuck-open. Test pair ABC = (c,OOl)(C) or ABC = 
(c,010)(C). 

Break bpn7: N18 stuck-open. Test pair ABC= (c, 001)(C). 

Break bpn8: N2, NS and N12 stuck-open. B is stuck-at 1. Test vector ABC= 010(8), 

ABC= 011(C), ABC= 110(C) or ABC= 111(8). 

182 



Break bnp9: N5 and N12 stuck-open. Test pair ABC = (c, 011)(8) or ABC = 

(c, 110)(8). 

Break bnplO: N12 stuck-open. Test pair ABC= (c, 011)(8). 

Break bnpll: N?, N10, N16 and N17 stuck-open. Test pair ABC = (c,000)(8), 

ABC= (c,001)(C), ABC= (c, lOO)(C) or ABC= (c, 101)(8). 

Break bnp12: N10, N16 and N17 stuck-open. Test pair ABC= (c,OOl)(C), ABC= 

(c, lOO)(C) or ABC= (c, 101)(8). 

Break bnp13: N16 and N17 stuck-open. Test pair ABC = (c,001)(C) or ABC = 
(c, 100)(C). 

Break bnp14: N17 stuck-open. Test pair ABC= (c,OOl)(C) 

Break bnpl5: N3 and N9 stuck-open. C is stuck-at 1. Test vector ABC = 001(8), 

ABC= Oll(C), ABC= 10l(C) or ABC= 111(8). 

Break bnpl6: N9 stuck-open. Test pair ABC= (c,011)(8) or ABC= (c, 101)(8). 

Break bnp17: N4 and N14 stuck-open. Test pair ABC = (c, 000)(8), ABC = (c, 010)( C), 

ABC= (c, lOO)(C) or ABC= (c, 110)(8). 

Break bnp18: N14 stuck-open. Test pair ABC= (c, OlO)(C) or ABC= (c, tOO)( C). 

A.4 SHORT CIRCUITS IN THE POLYSILICON LAYER 

Figure A.7 shows the locations of shorts in the polysilicon layer for the pull-up network. 

Short sppl: Causes A and B to be shorted. The test vectors should be searched among 

the input combinations for which A and B have different values. In fact, any such input 

combination is a test vector: ABC = 010(8C), ABC = 011(8C), ABC = 100(8C) 

and ABC= 101(8C). 

Short spp2: Causes B and C to be shorted. Any input combination for which B =I C is a 

test vector. ABC= 001(8C), ABC= 101(8C), ABC= 010(8C) or ABC= 110(8C). 

Short spp3: Causes A and A to be shorted. Any input combination will induce an 

intermediate voltage on nodes A and A that may be propagated to the sum and carry 

outputs. 

Short spp4: Causes A and B to be shorted. A and B should be set to different 

values, i.e., any input combination with A = B is a test vector: ABC = 110(8C), 

ABC= 111(8C), ABC= 001(8C) or ABC= 000(8C). 

183 



Figure A.7 Locations of short circuits in the polysilicon layer for the pull-up network. 

Short spp5: Band Bare shorted. Detected by any input vector. 

Short spp6: Band C shorted. We need B =C. Therefore, ABC= Oll(SC), ABC= 

lll(SC), ABC= lOO(SC) or ABC= OOO(SC) can be used as test vector. 

Short spp7: C and Care shorted. Any input combination is a test vector. 

Shorts in the polysilicon tracks in the pull-down are covered by the above ones. 

A.5 OPEN CIRCUITS IN THE METAL LAYER 

This type of fault has similar effects to open circuits in the diffusion layer, i.e., most 

of the breaks in the metal layer result in transistors being stuck-open. This section 

considers only faults that are not covered by the faults encountered in the previous 

sections. Figure A.8 shows the locations of the breaks in the pull-up network. 

Break bmpl: Disconnects all the pull-up of the sum circuit from the output. The sum 

output is effectively stuck-at 0. Any input combination that attempts to charge the 

output is a test vector: ABC= c(S). 

Break bmp2: Does the same for the carry circuit. ABC= c(C). 

184 



3 4 5 6 7 8 9 10 11 12 

Figure A.8 Breaks in the metal layer of the pull-up network. 

Break bmp3: We assume that V DD is supplied from the left of the circuit A, B, 

and C are stuck-at 0. The sum and the carry outputs are floating. It is not possible to 

charge these outputs because of the break in the V D D line and it is also impossible to 

discharge them because of the stuck-at 0 lines. If the value held on the floating outputs 

is logic one, then any input combination that sets them to 0, in a fault-free circuit, will 

detect the fault. Similarly, if the value held at these nodes is low, any charging input 

vector will detect the fault. Therefore, to detect this fault, we just need to make sure 

that the test sequence contains at least one vector that charges the output and another 

that discharges it. 

Break bmp4: A and B are stuck-at zero. In addition it is impossible to discharge the 

carry output. Therefore, this fault can be detected at the carry output by ensuring that 

the test sequence contains at least one vector that discharges the output of a fault-free 

circuit and one vector that would charge it. Alternatively, this fault can be detected 

using the test pair ABC = (110, c)(S). After the vector ABC = 110 is applied to the 

circuit, the sum will be stuck-at 0. 

185 



Break bmp5: A is stuck-at 0. Input combinations ABC= 110 and ABC= 101 will 

discharge the sum output, and since it is not possible charge it again, it will be stuck­

at 0. Similarly, inputs ABC = 100 and ABC = 000 will discharge the carry output 

and subsequently, it will be stuck-at 0. If we assume that these vectors have already 

appeared as inputs to the circuit, then we may use any of the following as a test vector: 

ABC= 001(3), ABC = 010(S), ABC = 100(S), ABC = 111(SC), ABC = 011(C), 

ABC = 101 (C), ABC = 110( C). If these vectors have not appeared previously as 

inputs to the circuit, then it is necessary to use a pair of vectors to detect this fault. The 

possible test pairs are ABC = (110, c)(S), ABC = (101, c)(S), ABC = (100, c)( C) and 

ABC = (000, c)( C). 

Break bmp6: The sum and the carry outputs are stuck-at 0. ABC= 001(S), ABC = 
010(S), ABC = 100(S), ABC= 111(SC), ABC= Oll(C), ABC= 101(C), ABC= 

11 0( C) are all possible test vectors. 

Break bmp7: Only the carry output is stuck-at 0 since now it is possible to charge the 

sum output through path {P4 P5 P6}. The possible test vectors are ABC= c(C). 

Break bmp8: Same as bmp7. Can also be detected as carry stuck-at 0. 

Break bmp9: Same as bmp7. 

Break bmplO: Same as bmp7. 

Break bmpll: Test pair: ABC= (d, Oil)( C) or ABC= (d, llO)(C). 

Break bmpl2: Test pair: ABC= (d, 110)(C). 

Figure A.9 shows the locations of the open circuits in the metal layer for the pull­

down network. 

Break bmnl: The sum output is stuck-at 1. ABC= d(S). 

Break bmn2: The carry output is stuck-at 1. ABC= d(C). 

Break bmn3: A, B and Care stuck-at 1. The sum and carry outputs will be floating. 

This can be detected in the same way as bmp3. 

Break bmn4: A and B stuck-at 1. CARRY is floating. Can be detected in the same 

way as bmn3. 

Break bmn5: A is stuck-at 1. Test pair ABC = (001, d)(S), ABC = (010, d)(S), 

ABC= (111, d)( C) or ABC= (011, d)(C). 

Break bmn6: The sum and carry outputs are stuck-at 1. ABC= d(S) or ABC= d(C). 

186 



Figure A.9 Bre_aks in the metal layer of the pull-down network. 

Break bmn7: The carry output is stuck-at 1. ABC= d(C). 

Break bmn8: Same as bmn7. 

Break bmn9: Same as bmn7. 

Break bmnlO: same as bmn7. 

Break bmnll: Test pair: ABC= (c, lOO)(C) or ABC= (c,OOl)(C). 

Break bmn12: Test pair ABC= (c,OOl)(C). 

A.6 SHORT CIRCUITS IN THE METAL LAYER 

Many of the short circuits in the metal layer have the same effect as short circuits in 

the diffusion layer. In the following, we will consider only the shorts that were not 

covered previously~ Figure A.l 0 shows the location of these shorts. 

Short smpl: Cause nodes B and C to be shorted. Any input vector for which B =I C 

induces an intermediate voltage at both nodes. The possible test vectors are ABC = 

187 



Figure A.lO Short circuits in the metal layer. 

188 



001(8C), ABC= 101(8C), ABC= 010(8C), ABC= 110(8C). 

Short smp2: A and B shorted. ABC= 010(8C), ABC= 011(8C), ABC= 100(8C), 

ABC= 101(8C). 

Short smp3: A, B and C are shorted. ABC = 001(8C), ABC = 010(8C), ABC = 
011(8C), ABC= 100(8C), ABC= 101(8C), ABC= 110(8C). 

Short smp4: A and the sum output are shorted. ABC = 111(8), ABC = 100(8), 

ABC= 011(8) or ABC= 000(8). 

Short smp5: A and S2 are shorted. The extra path in the sum circuit is {Pl P6}. 

Setting A = 0 and C = 1 will set the sum output to logic 1. B must be chosen so that 

the sum output is low in the fault-free circuit. Therefore, ABC = 011(8) produces an 

intermediate voltage at the sum output. 

Short smp6: S4 and S13 are shorted. The extra paths in the sum circuit are {P14 PlO 

P13} and {P16 PlO P13}. The extra path in the carry circuit is {P9 P15}. ABC = 
110(8) or ABC= 001(C). 

The possible short circuits in the metal layer of the pull-down network are also 

shown in Fig. A.1 0. 

Short smn5: Nodes S7 and A are shorted. Extra path {N1 N4}. ABC= 100(8). 

Short smn6: SlO and SIS are shorted. Extra paths in the sum circuit {N15 NlO N9} 

and {N16 NlO N9}. Extra path in the carry circuit {Nil N14}. ABC= 001(8) or 

ABC= llO(C). 

A.7 SHORTS BETWEEN METAL AND POLYSILICON 

Only shorts not covered by the previously considered faults are treated. Figure A.ll 

shows the locations of these shorts for the pull-up network. 

Short smpl: A and S4 are shorted. Undetectable. 

Short smp2: A and B are shorted. ABC = 000(8C), ABC = 001(8C), ABC = 
110(8C) or ABC= 111(8C). 

Short smp3: B and S3 are shorted. ABC = 011(8), ABC = 100(8C) or ABC = 
101(8C). 

Short smp4: B and S4 are shorted. ABC = 000(8C), ABC = 001(8C) or ABC = 
110(8). 

189 



Figure A.ll Short circuits between metal and polysilicon layers in the pull-up network. 

Short smp5: Band S13 shorted. ABC= 101(0). 

Short smp6: B and S14 shorted. ABC = OlO(C), ABC = lOO(SC) or ABC = 
lOl(SC). 

Short smp7: Band S2 shorted. ABC= lll(S) or ABC= lOl(S). 

Short smp8: B and S6 shorted. ABC = lOO(S) or ABC= OlO(S). 

Short smp9: B and S13 shorted. ABC= OOl(C) or ABC= Oll(C). 

Short smplO: C and B shorted. ABC= OOO(SC), ABC= Oll(SC), ABC= lOO(SC) 

or ABC= lll(SC). 

Short smpll: C and A shorted. ABC= OOO(SC), ABC= OlO(SC), ABC= lOl(SC) 

or ABC= lll(SC). 

Short smpl2: C and S2 shorted. ABC= OOO(SC), ABC= Oll(S), ABC= lOl(S) or 

ABC = llO(SC). 

Short smpl3: C and S13 shorted. ABC= OOI(C), ABC= OlO(SC), ABC= lOO(SC) 

or ABC = llO(SC). 

190 



Short smp/4: C and the carry output are shorted. ABC= OOl(C) or ABC= llO(C). 

Short smpl5: C and SUM shorted. ABC= OOO(S), ABC= 001(3), ABC= 110(3), 

or ABC= lll(S). 

Short smp16: C and the carry output are shorted. ABC = OOO(C), ABC = 010(C), 

ABC= Oll(C), ABC= 100(C), ABC= 101(C), or ABC= 111(C). 

Figure A.12 shows the locations of shorts between metal and polysilicon in the 

pull-down network. 

Figure A.12 Short circuits between metal and polysilicon in the pull-down network. 

Short smnl: A and S10 shorted. Undetectable. 

Short smn2: Band S9 shorted. ABC= 010(SC), ABC= Oll(SC) or ABC= 100(3). 

Short smn3: B and S10 shorted. ABC = OOl(S), ABC = llO(SC) or ABC = 

111(SC). 

Short smn4: Band S15 shorted. ABC= 010(C). 

Short smn5: B and S16 shorted. ABC = 010(SC), ABC = 011(SC) or ABC = 

101(C). 

191 



Short smn6: Band S7 shorted. ABC= 010(8), or ABC= 000(8). 

Short smn7: Band Sll shorted ABC= 111(8) or ABC= 101(8). 

Short smn8: B and Sl5 shorted. ABC= IOO(C), ABC= OOl(C), or ABC= OOO(C). 

Short smn9: C and S7 shorted. ABC= OOl(SC), ABC= OlO(S), ABC= lOO(S) or 
( 

ABC= lll(SC). 

Short smnlO: C and S15 shorted. ABC = OOl(SC), ABC = Oll(SC), ABC = 
101(8C) or ABC= llO(C). 

A.8 SHORTS BETWEEN METAL AND DIFFUSION 

Non-existant in this layout 

A.9 OPEN CONTACTS 

All possible open contact faults are covered by open circuits in the diffusion, metal and 

polysilicon layers. 

192 



A.10 SUMMARY 

Table A.l Breaks in the diffusion layer (pull-up). 

Open Effect Test(s) 

bdpl A stuck-at 0 OOO(S), Oll(S), OOI(C), OIO(C) 

bdp3 B stuck-at 0 OOO(S), lOl(S), OOI(C), IOO(C) 

bdp4 C stuck-at 0 OOO(S), 110(S), OlO(C), 100(C) 

bdp5 P4 stuck-open (d, 001)(S) 

bdp6 P5 stuck -open (d, 001)(S) 

bdp7 P6 stuck -open (d, OOl)(S), (d, lll)(S) 

bdp8 P7 stuck -open (d, lll)(S) 

bdp9 P8 stuck -open (d, lll)(S) 

bdplO P9 stuck -open (d, OlO)(S) 

bdpll P 10 stuck -open (d, OlO)(S) 
~ . ~ 

bdp12 P 11 stuck -open (d, 100)(S) 

bdp13 P12 stuck-open (d, OlO)(S) 

bdpl4 P13 stuck-open (d, OlO)(S), (d, IOO)(S) 

bdp15 P14 stuck-open (d, lOl)(C) 

bdp16 P 15 stuck -open (d, lOl)(C), (d, 011)(C) 

bdp17 P 16 stuck -open (d, Oll)(C) 

bdp18 P17 stuck-open (d, 110)(C) 

bdp19 P18 stuck-open (d, 110)(C) 

193 



Table A.2 Breaks in the diffusion layer (pull-down). 

Open Effect Test(s) 

bdnl A stuck-at 1 lOO(S), lll(S), lOl(C), llO(C) 

bdn2 B stuck-at 1 OIO(S), lll(S), Oll(C), llO(C) 

bdn3 C stuck-at 1 OOI(S), lll(S), Oll(C), lOl(C) 

bdn4 N6 stuck-open (c, llO)(S) 

bdn5 N 5 stuck -open (c, llO)(S) 

bdn6 N4 stuck-open (c, llO)(S), (c, OOO)(S) 

bdn7 N8 stuck-open (c, OOO)(S) 

bdn8 N7 stuck-open (c, OOO)(S) 

bdn9 Nll stuck-open (c, lOl)(S) 

bdnlO NlO stuck-open (c, lOl)(S) 

bdnll N13 stuck-open (c, Oll)(S) 

bdn12 N12 stuck-open (c, Oll)(S) 

bdn13 . N9 stuck-open (c, lOl)(S), (c, Oll)(S) 

bdn14 Nl5 stuck-open (c, OlO)(C) 

bdn15 N14 stuck-open (c, OlO)(C), (c, lOO)(C) 

bdn16 N16 stuck-open (c, 100)(C) 

bdn17 N18 stuck-open (c, OOI)(C) 

bdn18 Nl7 stuck-open (c, OOI)(C) 

194 



Table A.3 Shorts in the p-type diffusion layer. 

Open Effect Test(s) 

sdp3 A and S 1 shorted Undetectable 

sdp4 S 1 stuck -at 1 101(S) 

sdp5 S 1 and S3 shorted 101(S), 011(S) 

sdp6 S2 and S3 shorted 101(S) 

sdp7 S4 stuck -at 1 110(S) 

sdp8 S4 and S3 shorted 110(S), 011(S) 

sdp9 S2 and S6 shorted d(S) 

sdplO S2 and SUM shorted OOO(S), 110(S) 

sdpll S4 stuck -at 1 110(S) 

sdp12 S3 and S5 shorted Undetectable 

sdp13 S6 and S4 shorted OOO(S) 

sdp15 S5 and S 13 shorted Undetectable 

sdp16 S6 stuck -at 1 OOO(S), 110(S) 

sdp17 S6 and S 13 shorted 110(S) 

sdpl8 S 13 and SUM shorted Oll(SC), 101(S), llO(S) 

sdp20 S13 and S14 shorted OlO(C) 

sdp21 S14 stuck-at 1 OlO(C) 

sdp22 S 13 and CARRY shorted 001(C), lOO(C), OlO(C) 

sdp23 SUM and CARRY shorted 001(SC), OlO(SC), 100(SC), 

011(SC), lOl(SC), 110(SC) 

195 



Table A.4 Shorts in the n-type diffusion layer. 

Open Effect Test(s) 

sdnl A and S8 shorted Undetectable 

sdn2 S8 stuck-at 0 010(S) 

sdn3 S8 and S9 shorted IOO(S), 010(S) 

sdn4 S7 and S9 shorted 010(S) 

sdn5 SIO stuck-at 0 OOI(S) 

sdn6 S I2 and S 10 shorted III(S), OOI(S) 

sdn7 S 10 and S9 shorted OOI(S), IOO(S) 

sdn8 S 11 and S7 shorted c(S) 

sdn9 SUM and S7 shorted Ill(S), OOI(S) 

sdnlO S 10 stuck -at 0 OOI(S) 

sdnll S 11 and S 10 shorted Ill(S) 

sdnl3 SI2 and SIS shorted Undetectable 

sdnl4 SJ I stuck -at 0 OOI (S), III (S) 

sdnl5 SIS and S 11 shorted OOI(S) 

sdnl6 SIS and SUM shorted OOI(S), 010(S), IOO(S), I10(C) 

sdnl7 SUM and CARRY shorted OOI(SC), OIO(SC), OII(SC), 

IOO(SC), 10I(SC), llO(SC) 

sdn19 SI6 and SIS shorted 10I(C) 

sdn20 S16 stuck-at 0 lOI(C) 

sdn21 CARRY and SIS shorted OOI(C), 010(C), IOO(C) 

1% 



Table A.S Open circuits in the polysilicon layer (stuck-closed case, pull-up). 

Open Effect Test(s) 

bppl Pl, P4 and P9 stuck-closed lOO(SC), lOl(SC), llO(SC), lll(SC) 

bpp2 P4 and P9 stuck-closed lOl(S), llO(S) 

bpp3 P9 stuck -closed llO(S) 

bpp4 P7, Pll, P14 and Pl7 stuck-closed OOO(S), Oll(C), OlO(C), Oll(S) 

bpp5 Pll, P14 and P17 stuck-closed OOO(S), OOl(C), OlO(C) 

bpp6 P14 and P17 stuck-closed OOl(C), OlO(C) 

bpp7 P17 stuck-closed OlO(C) 

bpp8 P2, P5 and P12 stuck-closed OlO(SC), Oll(SC), llO(SC), lll(SC) 

bpp9 P5 and P12 stuck -closed Oll(S), llO(S) 

bpplO P12 stuck-closed llO(S) 

bppll P8, PlO, P16 and P18 stuck-closed OOO(S), OOl(C), lOO(C), lOl(S) 

bppl2 PlO, P16 and P18 stuck-closed OOO(S), OOl(C), lOO(C) 

_bppl3 Pl6 and P18 stuck-closed QOl(C), lOO(C) 

bppl4 P18 stuck-closed lOO(C) 

bppl5 P3 and P13 stuck-closed OOl(SC), Oll(SC), lOl(SC), lll(SC) 

bppl6 P13 stuck-closed Oll(S), lOl(S) 

bppl7 P6 and P15 stuck-closed OOO(S), OlO(C), lOO(C), llO(S) 

bppl8 P15 stuck-closed OlO(C), lOO(C) 

197 



Table A.6 Open circuits in the polysilicon layer (stuck-closed case, pull-down). 

Open Effect Test(s) 

bpnl N1, N6 and Nll stuck-closed OOO(SC), OOI(SC), OlO(SC), 011(SC) 

bpn2 N6 and Nll stuck-closed 001 (S), OlO(S) 

bpn3 N11 stuck-closed 001(S) 

bpn4 N8, N13, N15 and N18 stuck-closed 100(S), 101(C), llO(C), 111(S) 

bpn5 N13, N15 and N18 stuck-closed 101(C), 110(C), 111(C) 

bpn6 N15 and N18 stuck-closed 101(C), llO(C) 

bpn7 N18 stuck-closed 101(C) 

bpn8 N2, N5 and N12 stuck-closed OOO(SC), 001(SC), 100(SC), 101(SC) 

bpn9 N5 and N12 stuck-closed 001(S), 100(S) 

bpnlO N12 stuck-closed 001(S) 

bpnll N7, N10, N16 and N17 stuck-closed OlO(S), 011(C), 110(C), 111(S) 

bpn12 NlO, N16 and N17 stuck-closed 011(C), 110(C), 111(S) 

bpn13 N16 and N17 stuck-closed 011({:;}, 110(C) 
-

bpn14 N17 stuck-closed 011(C) 

bpn15 N3 and N9 stuck-closed OOO(SC), OlO(SC), 100(SC), 110(SC) 

bpn16 N9 stuck-closed OlO(S), IOO(S) 

bpn17 N4 and N14 stuck-closed OOI(S), Oll(C), 101(C), 111(S) 

bpn18 N14 stuck-closed Oll(C), lOl(C) 

198 



Table A.7 Open circuits in the polysilicon layer (stuck-open case, pull-up). 

Open Effect Test(s) 

bppl Pl, P4 and P9 stuck-open, A stuck-at 0 OOO(S), OOl(C), OlO(C), Oll(S) 

bpp2 P4 and P9 stuck-open (d, OOl)(S), (d, OlO)(S) 

bpp3 P9 stuck -open (d, OlO)(S) 

bpp4 P7, Pll, P14 and P17 stuck-open (d, lOO)(S), (d, lOl)(C), 

(d, llO)(C), (d, lll)(S) 

bpp5 Pll, P14 and P17 stuck-open (d, lOO)(S), (d, lOl)(C), (d, llO)(C) 

bpp6 P14 and P17 stuck-open (d, lOl)(C), (d, llO)(C) 

bpp7 P17 stuck-open (d, llO)(C) 

bpp8 P2, P5 and P12 stuck-open, B stuck-at 0 OOO(S), OOl(C), lOO(C), lOl(S) 

bpp9 P5 and P12 stuck-open (d, OOl)(S), (d, lOO)(S) 

bpplO P12 stuck-open (d, lOO)(S) 

bppll P8, PlO, P16 and P18 stuck-open (d, OlO)(S), (d, Oll)(C), 

(d, 110)(<;), (d, lll)(S) 

bpp12 PlO, P16 and P18 stuck-open (d, OlO)(S), (d, Oll)(C), (d, llO)(C) 

bpp13 P16 and P18 stuck-open (d, Oll)(C), (d, llO)(C) 

bpp14 P18 stuck-open (d, llO)(C) 

bpp15 P3 and P13 stuck-open, C stuck-at 0 OOO(S), OlO(C), lOO(C), llO(S) 

bpp16 P13 stuck-open (d, OlO)(S), (d, lOO)(S) 

bpp17 P6 and P15 stuck-open (d, OOl)(S), (d, Oll)(C), 

(d, lOl)(C), (d, lll)(S) 

bpp18 P15 stuck-open (d, Oll)(C), (d, lOl)(C) 

199 



Table A.8 Open circuits in the polysilicon layer (stuck-open case, pull-down). 

Open Effect Test(s) 

bpnl N1, N6 and Nll stuck-open, A stuck-at 1 100(S), 101(C), 110(C), 111(S) 

bpn2 N 6 and N 11 stuck -open (c, 101)(S), (c, 110)(S) 

bpn3 N 11 stuck -open (c, 101)(S) 

bpn4 N8, N13, N15 and N18 stuck-open (c, OOO)(S), (c, OOl)(C), 

(c, OlO)(C), (c, 011)(S) 

bpn5 N13, N15 and N18 stuck-open (c, OOl)(C), (c, OlO)(C), (c, 011)(S) 

bpn6 N15 and N18 stuck-open (c, 001)(C), (c, 010)(C) 

bpn7 N18 stuck-open (c, OOl)(C) 

bpn8 N2, N5 and N12 stuck-open, B stuck-at 1 OlO(S), Oll(C), llO(C), 111(S) 

bpn9 N5'and N12 stuck-open (c, 011)(S), (c, 110)(S) 

bpnlO N12 stuck-open (c, Oll)(S) 

bpnll N7, NlO, N16 and N17 stuck-open (c, OOO)(S), (c, 001)(C), 

fc, 1()())(C), (c, 101)(S) 

bpn12 NlO, N16 and N17 stuck-open (c, OOl)(C), (c, 100)(C), (c, 101)(S) 

bpnl3 N16 and N17 stuck-open (c, OOl)(C), (c, 100)(C) 

bpnl4 N17 stuck-open (c, 001)(C) 

bpnl5 N3 and N9 stuck-open, C stuck-at 1 001(S), Oll(C), lOl(C), 111(S) 

bpnl6 N9 stuck-open (c, 011)(S), (c, 101)(S) 

bpn17 N4 and N14 stuck-open (c, OOO)(S), (c, OlO)(C), 

(c, 100)(C), (c, 110)(S) 

bpnl8 N 14 stuck -open (c, 010)(C), (c, 100)(C) 

200 



Table A.9 Short circuits in the polysilicon layer. 

Open Effect Test(s) 

sppl A and B shorted OlO(SC), Oll(SC), IOO(SC), 10l(SC) 

spp2 B and C shorted 001(SC), 101(SC), OlO(SC), 110(SC) 

spp3 B and A shorted Any 

spp4 A and B shorted 110(SC), Ill (SC), 001 (SC), OOO(SC) 

spp5 B and B shorted Any 

spp6 B and C shorted 011(SC), 111(SC), 100(SC), OOO(SC) 

spp7 C and C shorted Any 

Table A.lO Open circuits in the metal layer (pull-up). 

Open Effect Test(s) 

bmpl Disconnects SUM from pull-up c(S) 

bmp2 Disconnects CARRY from pull-up c(C) 

bmp3 Disconnects VDD from the circuit A true and a false vertex 

bmp4 A, B stuck-at 0 Same as bmp3 

CARRY ftoating 

bmp5 A stuck-at 0, (100, c)(S), (101, c)(S), 

SUM and CARRY ftoating (100, c)(C), (000, c)(C) 

bmp6 SUM and CARRY stuck-at 0 c(S), c(C) 

bmp7 CARRY stuck-at 0 c(C) 

bmpB-10 CARRY stuck-at 0 c(C) 

bmpll Part of pull-up of carry disconnected (d, 01l)(C), (d, llO)(C) 

bmpl2 Part of pull-up of carry disconnected (d, 110)(C) 

201 



Table A.ll Open circuits in the metal layer (pull-down). 

Open Effect Test(s) 

bmnl Disconnects SUM from pull-down d(S) 

bmn2 Disconnects CARRY from pull-down d(C) 

bmn3 Disconnects GND from the circuit A true and a false vertex 

bmn4 A , B stuck-at 1 Same as bmn3 

CARRY floating 

bmn5 A stuck-at 0, (001, d)(S), (010, d)(S), 

SUM and CARRY floating (111, d)(C), (011, d)(C) 

bmn6 SUM and CARRY stuck-at 1 d(S), d(C) 

bmn7 CARRY stuck-at 1 d(C) 

bmnB-10 CARRY stuck-at 1 d(C) 

bmnll Part of pull-down of carry disconnected (c, 100)(C), (c, OOI)(C) 

bmn12 Part of pull-down of carry disconnected (c, OOI)(C) 

Table A.12 Shorts between metal tracks. 

Open Effect Test(s) 

smpl B and C shorted OOI(SC), 101(SC), 010(SC), 110(SC) 

smp2 A and B shorted 010(SC), Oll(SC), IOO(SC), IOI(SC) 

smp3 A , B and C shorted OOI(SC), OIO(SC), Oll(SC), 

IOO(SC), 101(SC), 110(SC) 

smp4 A and SUM shorted lll(S), IOO(S), Oll(S), OOO(S) 

smp5 A and S2 shorted Oll(S) 

smp6 S4 and S 13 shorted 110(S), OOI(C) 

smn5 S7 and A shorted IOO(S) 

smn6 S 10 and S 15 shorted OOl(S), 110(C) 

202 



Table A.13 Shorts between metal and polysilicon layers (pull-up). 

Open Effect Test(s) 

smpl A and S4 shorted Undetectable 

smp2 A and B shorted OOO(SC), 001(SC), 110(SC), 111(SC) 

smp3 Band S3 shorted 011(S), 100(SC), 101(SC) 

smp4 B and S4 shorted OOO(SC), 001(SC), llO(SC) 

smp5 Band S3 shorted lOl(C) 

smp6 B and S 14 shorted OlO(C), lOO(SC), 101(SC) 

smp7 Band S2 shorted 111(S), 101(S) 

smp8 B and S6 shorted 100(S), OlO(S) 

smp9 B and S 13 shorted 001(C), 011(C) 

smpJO C and B shorted OOO(SC), 011(SC), 100(SC), 111(SC) 

smpll C and A shorted OOO(SC), OlO(SC), 101(SC), 111(SC) 

smpl2 C and S2 shorted OOO(SC), 011(S), 101(S), 110(SC) 

smp13 C and _s 13 shorted 001(C), 010(SC), IOO(SC), llO(SC) 

smpl4 C and CARRY shorted 001 (C), llO(C) 

smpl5 C and SUM shorted OOO(S), 001(S), llO(S), 111(S) 

smp16 C and CARRY shorted OOO(C), OlO(C), Oll(C), IOO(C), lOl(C), 111(C) 

203 



Table A.14 Shorts between metal and polysilicon layers (pull-down). 

Open Effect Test(s) 

smnl A and S 10 shorted Undetectable 

smn2 B and S9 shorted 010(SC), 011(SC), 100(SC) 

smn3 B and S 10 shorted 001(S), lOO(SC), 111(SC) 

smn4 B and S 15 shorted 010(C) 

smn5 B and S 11 shorted OlO(SC), 011(SC), 101(C) 

smn6 B and S7 shorted OlO(S), OOO(S) 

smn7 B and S 11 shorted 111(S), 101(S) 

smn8 B and S 15 shorted 100(C)j 001(C), OOO(C) 

smn9 C and S7 shorted 001(SC), OlO(S), 100(S), 111(SC) 

smnlO C and S 15 shorted 001(SC), 011(SC), 101(SC), 110(SC) 

204 



Appendix B 
Yield and Reliability Calculations 

B.1 General Case 206 

B.l.1 Yield . 206 

B.1.2 Reliability 208 

B.2 Special Case 209 

B.2.1 Yield . 210 

B.2.2 Reliability 211 

B.3 Failure Rate of a Section of a Chip 212 

205 



9.1 GENERAL CASE 

The non-redundant chip of area Ao is assumed to consist of n units. Each unit i has an 

area Ai and it is replicated mi times. The area of the test/reconfiguration logic is Si. 

Let 

PAi: Probability of having no defects in a unit of area Ai. 

Psi: Probability of having no defects in the reconfiguration logic of area Si. 

Pi: Probability that the redundant unit consisting of mi units and their reconfiguration 

logic is working. 

8.1.1 Yield 

Case 1 

The averages of P Ai and Psi are given by 

and the probability that redundant unit i is working can be expressed as 

and the yield is 
n 

Yr1 = IlPf 
i=l 

Case 2 

The probability that redundant unit i is working is 

roo 
Pi = Jo Pi/(D)dD 

Pi= e-SiD j(D)dD- Ps.(l - PA-)mi j(D)dD lo
+oo lo+oo 

0 0 • • 

206 



and the second yield expression is 

n 

Y1"2 =II Pi 
i=l 

Case 3 

The probability of having a working chip is 

m(l) m(l)-j(l) m(2) m(2)-j(2) m(n) m(n)-j(n) 

Pr = L L L L .. · L L (-l)E~=lk(i) 
j(l)=l k(l)=O j(2)=1 k(2)=0 j(n)=l k(n)=O 

(IT (rr:<.i)) (m(i) ~ j(i)))e-<E:, S;+(j(i)+k(i))A;)D 

i=l J(z) k(z) 

and the third expression for the yield is the average of Pr which is Yr3 = JtXJ Prf(D)dD 

207 



m(l) m(l)-j(l) m(2) m(2)-j(2) m(n) m(n)-j(n) 

Yr3 = L L L L ··· L L (-l)E:,k(i) 
j(l)=l k(l)=O j(2)=1 k(2)=0 j(n)=l k(n)=O 

8.1.2 Reliability 

Case 1 

- AD 1 -A·Do 2 - 1 -S·Do 2 
PA; = f e- i j(D)dD = ( -A;D~ ) , and Ps; = ( -lD~ ) . The probability that 

redundant unit i is working is 

R~ = mf:-1 p . (m;) (1 - P.)kp_(m;-k) R .(1 - (1 - R .)m;-k) 
z ~ S, k A, A, S, A, 

k=O 

and the probability that the chip is working is 

n 

Rr, = IJ(Ps;Rs,(l- (1- PA;RA)m;)) 
i=1 

Case 2 

P A; = e-A;D, Ps; = e-s,D and the probability that redundant unit i is working is 

D.= mf:.l p . (mi)(1 - p .)k pm;-k R .(1- (1 - R .)m;-k) 
.1. ~ ~ S, k A, A; S, A, 

k=O 

R; = Ps;Rs,O - (1 - PA;RA,)m') = Ps;Rs,- Ps,Rs;O - PA,RA)m; 

The average of R; is Ri = fctX! R;j(D)dD 

Ri = roo Ps.Rs.f(D)dD- roo Ps.Rs. ~ (~i)(-l)i pAi .R3A . ./(D)dD lo • • lo • • ~ J • • )=0 

208 



and the probability that the chip is working is 

n 

Rr2 =IT 14 
i=l 

Case3 

PA; = e-A,D, Ps, = e-S;D and the probability that redundant unit i is working is 

The probability that the chip is working is 

n m ·-1 k ( ) (k) Rr =IT( t L :i . (-l)je-(S;+(m;-k+j)A;)D Rs;O- (1- RA)m;-k)) 
i=1 k=O j=O J 

m(l)-1 k(l) m(2)-1 k(2) m(n)-1 k(n) 

Rr= L L L L ··· L L 
k(l)=O j(1)=0 k(2)=0 j(2)=0 k(n)=O j(n)=O 

(
m(1)) (k(l)) (m(2)) (k(2)) (m(n)) (k(n)) _ }:~1 .• 
k(l) j(l) k(2) j(2) · · · k(n) j(n) ( 1) J(z) 

n (IT Rs,O _ (1 _ RA)m(i)-k(i))) e -(}:~1 S;+(m(i)-k(i)+j(i))A;)D 

i=1 

The average of Rr is R,.3 = f Rrf(D)dD 

m(l)-1 k(l) m(2)-l k(2) m(n)-1 k(n) n ( (')) (k( ')) 
Rr3 = L: L: L: E ... E E (IT m ~ . ~ )<-l)E~=lj(i) 

k(l)=O j(l)=O k(2)=0 j(2)=0 k(n)=O j(n)=O i=1 k(z) J(Z) 

n 1 e-<"'.~-l S;+(m(i)-k(i)+J'(i))A;)Do 2 
( 

m(i)-k(i) ) ( - L.... - ) g Rs,(l - (1 - RA) ) (L:f=
1 

Si + (m(i) - k(i) + j(i))Ai)Do 

8.2 SPECIAL CASE 

All sections are supposed to have the same size and are replicated the same number of 

time: Ai = Ao/n =A, Si = S, mi = m, fori= 1, 2, ... n. 

209 



8.2.1 Yield 

easel 

Case 2 

and the average of P is P = J P f(D)dD which is 

r+oo r+oo 
P = Jo Psf(D)dD- Jo Ps(l- PA)m f(D)dD 

P = c -S~:Do)2 - {ooPs~ (7)<-J)'P1J(D)dD 

P= C -s~:Do)2 - ~ (7)<-l)'C ~s::::;;)2 

Case3 

n mi ( ) ( ') Pr = Ps 'L'L ~ ~z C-I)i+i P~ 
'={) '={) 'l J t- }-

210 



and Yr3 = Pr = f Prf(D)dD which gives 

Yr
3 
= L L ~ ~~ ( -1)i+j f e-(nS+jA)D j(D)dD n mi ( ) ( ·) +oo 

i=O i=O ~ J lo 

_ n mi (n) (mi) i+j 1 _ e-(nS+jA)Do 2 
Yr3- LL . . (-1) ( ( S "A)D ) 

·=0 ·=0 z J n + J o t- J 

8.2.2 Reliability 

Case 1 

- 1 -ADo 2 - 1 -SDo 2 ' t ' t PA = ( -e ) · Ps = ( -e ) · RA = e-"A · Rs = e-"s . ADo • SDo • • 

Case 2 

R = PsRs(l - (1 - PARA)m) and the average of R is R = f r f(D)dD which is 

R = roo Rse-SD j(D)dD- roo PsRs f (rr:) ( -1)i P~R~j(D)dD 
lo lo i=O z 

- 1 - e-SDo 2 m (m) . . 1 - e-(S+iA)Do 2 

R= Rs( SDo ) - ~ i (-1)'RsRA( (S+iA)Do ) 

and ~ is given by ~ =It. 

Case3 

211 



Rr = Rn = Ps RsO - (1 - PARA)m)n 

Rr = PsRs f. (~)(-1)i(l- PARA)mi 
i=O ~ 

Rr = ff (~) (rn:i)(-1)i+iRsR~e-(nS+jA)D 
'=() '=() ~ J 
~ J-

Rr3 = Rr =I Rrf(D)dD which is 

Rr3 = L L ~ "':'t (-l)i+j RsR~ij ( - e . ) 
n mi ( ) ( ·) 1 -(nS+jA)Do 2 

i=O i=O ~ J (nS + J A)Do 

8.3 FAILURE RATE OF A SECTION OF A CHIP 

In the MIL-HDBK-217 model of chip failure [219], the reliability function is assumed 

to be e-At where ..X is the failure rate and takes the form: 

(3) 

where 

1r L: learning factor= 10 for new devices or a new process, otherwise= 1.0. 

7rQ: quality factor, function of device screening. It is equal to 35 for commercial parts. 

1rr: temperature acceleration factor, function of device technology, package, case tem­

perature and power dissipation. It is assumed that 7rT = 5.0. 

1ry: voltage stress factor=1 for CMOS at Vvv = 5V. 

1rpr: PROM programming technique factor, 7rPT = 1.0 for all devices except PROM's. 

7rE: application environment factor=1 for a ground, benign environment. 

C1, C2: functions of device complexity. For MOS LSI 

where N G is the number of gates. 

212 



C3: function of package complexity. For nonhermetic packages, 

where N p is the number of pins and it is given the value of 200. 

213 



Appendix C 
Publications 

214 



ON THE ELIMINATION OF DATA COMPRESSION 
IN RESPONSE ANALYSIS FOR BIST 

A. Bensouiah, S. Johnson and M. J. Morant 
School of Engineering and Applied Science 

University of Durham, UK 

Abstract-High levels of coverage of classical and non-classical faults require determin­
istic test sequences. It is suggested, in this paper, that the deterministic test sequences 
be ordered in such a way that the fault-free output response is a trivial one that can 
be generated by simple on-chip circuitry, thereby obviating the need for test response 
compression. 

The Built-In Self-Test property is defined as the provision of on-chip test pattern gener­
ation (TPG) and/or on-chip response analysis (RA). On the TPG side, besides the use 
of deterministic test patterns, pseudo-random testing has gained wide acceptance. I'or 
test response analysis, and besides the obvious bit-by-bit comparison, signature analysis 
is the technique most commonly used. The following table summarises the disadvantages 
of different combinations of TPG and RA approaches. 

TPG Pseudo-random Deterministic 

RA 

Signature Test sequence may not detect The deterministic nature of the 
analysis all faults. test sequence is lost because of 

Even if all faults are detected, aliaising in signature analysis. 
signature analysis introduces 
aliaising. 

Bit-by-Bit Test sequence may not detect On-chip implementation not 
Comparison all faults. feasible 

On-chip implementation is not 
feasible. 

Pseudo-random test sequences have excessive lengths and they do not cover all stuck­
at faults (the so-called 'random-resistant faults'). This prompted some researchers to 
'modulate' the pseudo-random sequences in order to increase their fault coverage 1•2. 

Others have suggested that the circuit under test should be re-designed so that all random­
resistant faults are eliminated 3 . The deficiencies of pseudo-random test sequences arc 
further aggravated when non-cla.~sical faults, such a.~ CMOS stuck·opcn, are taken into 
consideration. 

For test response evaluation, signature analysis uses an n-bit register to compress an 
m-bit output sequence, where m is usually much larger than n. In this case there are 
2'" possible output sequences, only one of which is the correct one. Therefore, there 
are approximately 2'"-" output sequences that get compressed into the same signature, 
including the correct signature, i.e., there arc 2m-n - 1 faulty output responses that get 
compressed into the correct signature (if n = 16 and m = 1024, then 21008 - 1 faulty 
responses would escape detection if they occured). This is clearly unacceptable. 

To achieve high levels of fault detection, deterministic test pattern generation has to be 
used, especially for non-classical faults. The deterministic nature of the TPG will be 
wasted if signature analysis is used to compress the output response. On the other hand, 

215 



~96 

simple bit-by-bit comparison cannot be considered for on-chip implementation because of 
the large amount of data required. 

It i~ ··:ggested in this paper, that test patterns be generated deterministically, but to 
av . signature analysis, and bit-by-bit comparison, the test patterns should be ordered 
in such a way that the output response is a trivial one (i.e., easily generated by on-chip 
circuitry). The most trivial signal is a toggling one. Therefore, it is suggested that the 
test patterns be ordered in such a way that the output of the circuit under test is toggled 
from one clock cycle to the next one. A similar idea has been suggested in a recent 
publication 4

, where the the quotient output from a signature analyser is made periodic 
to ease its monitoring in order to reduce aliaising errors. 

In the next section, we consider the testing of CMOS combinational circuits to show the 
motivation of the suggested approach, and following this, we address some of its practical 
issues. 

TESTING A CMOS CIRCUIT 

A transistor stuck-open fault in a CMOS circuit usually requires a pair of vectors for its 
detection. For a pFET (nFET) stuck-open fault, the first, or initialisation, vector must 
set the output of the gate containing the pFET (nFET) to 0 (1 ), and then the second, 
or test, vector must charge (discharge} the output throught a path containing the pFET 
(nFET) under test. If the fault is present, the gate output will remain unchanged, whereas 
the output of a fault-free circuit will toggle. 

If stuck-open faults f,. and /6 are detected by the two-pattern tests (T,. 0 , T,.1 ) and 
(Tbo, T&1 ), respectively, and if T,. 1 = Tbo then the sequence (T,. 0 , Tap T&1 ) detects both 
faults. This optimisation, which is possible when the initialisation vector of some stuck­
open fault is a test vector for another fault, will be much easier if some care is taken at the 
test pattern generation ·stage, since in ·most cases a stuck-open fault can have a number 
of initialisation vectors. 

Making use of the above observation repeatedly would yield a complete test sequence that 
produces a toggling fault-free output. Moreover, the presence of any stuck-open fault (or 
any other detectable fault, for that matter) would prevent, at least, one transition at the 
output. As an example, consider the testing of the circuit shown in Fig. 1. 

A1 Faults Initialisation vector(s) Test veclor(s) 

pl 011, 110, (101), (lll) 010 
• 

c1 p2 110, 101, 011' ( 111) 010, 100, (000) 

Cout p3 110, 101, (011), (lll) 100 

c~ 
p4, p5 011, 101, (110), (Ill) 001 

ol 001, 100, (010), (000) 101 

n2 001, 010, 100, (000), 011, 101. (111) 

n3 001, 010, (100), (000) 011 

n4,n5 010, 100, (001), (000) 110 

Figure 1. Example circuit and tests for all its stuck-open faults. 

The possible initialisation and test vectors for all stuck-open faults are also shown in Fig. 
1. The input vectors that are between brackets should be ignored if the tests are to remain 
valid under arbitrary circuit delays. The complete test sequence for this circuit is ABC={ 
Oll, 010, 110, 100, 101, 001, 011}. Note that the repetition of vector 011 is necessary 

216 



597 

since the initial state of the output node is assumed to be unknown. 

PRACTICAL CONSIDERATIONS 

The first criticism that one might find to the suggested approach is that an ordered de­
terministic test sequence requires a large area for the test pattern generator, as compared 
to an LFSR or a counter, for example. However, this may be offset by the simplicity of 
test response analysis. In a BIST environment, the analysis of the circuit response to a 
test sequence that toggles the output cannot be made any easier. Simple on-chip circuitry 
can be used on all nodes that need monitoring to perform bit-by-bit comparison with the 
fault-free response which, in this case, can be generated by simple on-chip hardware. 'this 
fault-free test response is the same for all circuits on the chip. It can be consider!"d as 
simply an auxiliary clock signal, of half the frequency of the chip's clock, that is broadcast 
to all nodes that need monitoring. Furthermore, the problems of aliaising and information 
losses in methods that rely on data compression (signature analysis, one's count, etc.) do 
no exist for the approach suggested in this paper, which makes it particularily suitable in 
situations where high levels of fault coverage are mandat.ory. 

Another problem arises when considering multiple output circuits: It is impos~ible for 
two distinct outputs of the same circuit to be toggled by the same input test scqut'nce 
(unless they are complements of each other). A solution would be to sequentially test 
the outputs of a same circuit and, in order to reduce test time, test as many circuits 
as possible in parallel. In addition, the testing of two, or more, outputs may overlap in 
time for the portions of the test sequence where these outputs an~ toggled simultaneously. 
In the most complex case, when the outputs have some logic in common, the principles 
of circuit segmentation, as ust'd for pseudo·exhausti\'e testing 5 can be of great lll'lp in 
reducing the test time. 

REFERENCES 

1. E. Lindbloom, E. R Eichelberger. and 0. P. Fiorenza "A Method for Gl'nr.rating 
Weighted Ranclom Test Paltt'rns" 18.\f J. Res. nnd Dri'Clop .. Vol. :n, :'\o. :-!, ~larch 
1989, pp 1-19-161 

2. F. Brglez, G. Gloster and G. h:edem ·'Hardware·Dasr.d \Vcightcd Random l'a:trrn 
Generation for Boundary Scan" Pror. IEEE lnlernntionnl Tr.<l Cnnfacnf'[, I !J~~. pp 
264·2i4 

3. V. S. Iyengar and D. Brand "Synthesis of Pseudo-Random Testable Designs" /'r·oc. 
IEEE lnlemational Tc.sl Conference, 1989, pp 501-.508 

4. S. Gupta, D. Pradhan and S. M. Reddy "Zero Aliaising Compression~ Fault Tnhmnl 
Computing Symposium, 19!)0, pp 2-l.j-263 

5 .. J. G. Udell, Jr. and E. J. McCluskey "Pseudo-Exhaustive Test and Segmcutaliun: 
Formal Definitions and Extendr.d Faull Coverage Results" Ft1rtll Tolcrnnl C'nrr'lruling 

Symposium, 1989, pp 292-298 

ACKNOWLEDGMENTS 

One of the authors (A. B) is sponsort'd hy a grant from the ministry or higher education 
of Algeria. 

217 

0 

I 



N ·-00 

ON THE ELIMINATION OF DATA COMPRESSION 

IN RESPONSE ANALYSIS FOR BIST 

A. Bensouiah, S. Johnson, and M. J. Morant 

School of Engineering & Applied Science 

University of Durham, UK 

Purpose: Achieving high levels of fault ·coverage requires deterministic test sequences. It is suggested 

that the deterministic test sequences be ordered in such a way as to produce a trivial fault­

free output response in order to simplify test response analysis and avoid fault masking 

effects that are common to all test data compression methods. · 



Consider the testing of the example circuit below by a test sequence produced by the LFSR shown. 

iiO rDTDi ro ro Pseudo-random sequence fault coverage 

100l XXXXXXXXXXXXXXXXXXXXXXX) 
a b c d e X Stuck-at 

1 1 0 0 0 0 X 2 0 I 0 0 0 
3 0 0 1 0 0 80 .. 1 o . 0 1 0 
5 0 I 0 0 I I X 

• 1 0 I 0 0 
7 1 1 0 1 0 

• 0 I 1 0 I 
CD 

9 0 0 1 I 0 ~ 60 
10 1 0 

.... 
0 I 1 CD 

t1 I 1 0 0 > X 
1 0 X ·-~~ 12 1 1 1 0 0 0 

13 1 1 1 1 0 - ******** 14 1 1 1 I 1 ~ 40 X Stuck-open 
t5 0 1 1 1 I u. ********* 18 0 0 1 1 I **** 17 0 0 0 I 1 X ** 18 1 0 0 0 1 
19 1 I 0 0 0 ** 20 0 1 I 0 0 20 
21 1 0 I I 0 
22 1 I 0 1 1 

'·*** 23 I I 1 0 1 
24 0 I 1 1 0 
25 1 0 I 1 I 0 
26 0 1 0 I I 
27 1 0 I 0 1 0 5 10 15 20 25 30 
28 0 I 0 1 0 Cycle m.mber 29 0 0 1 0 1 
30 0 0 0 I 0 
31 0 0 0 0 

• 10 out of the 35 detected stuck-open faults are in the input inverters . 

• 18 out of the 31 input vectors do not detect any stuck-open faults . 



............... ,.,.u.u.t.A ... .av.u. v.a. ..a..~., ... LI'lll.i1 ~Ulllprt:~~UUII 

All faults that affect more than one bit in the output response may be masked negating the benefits 

of having a complete test sequence. 

Considering the example circuit and the pseudo~random test sequence, we have 

• All stuck-at faults affect more than one cycle. 

~ • 50% of stuck -at faults affect both outputs at the same cycle. 

• 15 of the 35 stuck-open faults that are detected by the test sequence affect more than one cycle. 

This leaves only 10 out of 60 stuck-open faults that are guaranteed to be detected by the combination 

of a pseudo-random test sequence and signature analysis, for example. 



The sets of test vectors for all ·stuck-open faults in the 

pFET and nFET networks, respectively, of complex abc de f1 

gate f1 are 1 0 0 0 1 1 0 

c St. = { 00001 ' 00010' 00100' 11011' Ill 00} 2 00001 1 

D 81 = { 00011, 01001 , 0 Ill 0, 10100} 3 01001 0 

4 000101 
If we use the elements of D 81 as initialisation vectors 

for the elements of C 81 , and vise versa, the resulting 5 01110 0 
.,J 
.,J -

test sequence will be the shortest possible sequence 6 001001 

that detects all stuck -open faults in the complex gate 7 1 0 1 0 0 0 

generating f 1 . 
8 1 1 0 1 1 1 

Note that the output f1 is an alternating signal and that 9 000110 

any fault (stuck-at or stuck-open) will prevent at least 
10 1 1 1 0 1 1 

one of the transitions. 



It is clear that is not possible to toggle more than abc de f1 f2 

one circuit output with the same input test sequence 1 00100 10 

(for this to be possible, the outputs must be equal 2 01110 00 

or complement of each others for all the elements 3 00100 10 

of their respective sets Csi and D si). 4 01001 01 

5 11011 10 
A first solution would be to test one output at a 

> f1 time. The dra whack is a longer test time and the 
6 10100 01 

~ need for separate test sequences for different out-
71110010 

N· 

8 00011 01 
puts. 

9 00010 10 

It is possible to order the test sequences for dif- 101111101 
I ~ f2 

ferent outputs such that their testing overlap, as . 11 00001 10 

shown in the complete test sequence on the right. 12 1 1 0 1 0 1 1 

13 1 0 1 1 1 0 0 
Some control logic is required to disable the moni-

toring of f1 after vector 11 and to enable the mon-
14 1 1 0 1 0 1 1 

itoring of f2 after cycle 3. 
15 0 1 1 1 0 0 0 



>.,) 

V L.OllCIUSllOD 

• High levels of fault coverage of classical and non-classical faults require deterministic tesr se­

quences. 

• The deterministic nature of a test sequence would be waisted if data compression is used for 

response analysis. 

• The derivation of a test sequence that produces a trivial output response offers the following 

~ advantages: 

• Guaranteed high level fault, coverage 

• Short test times 

• Simple and effective test response analysis 



lal 

TTT 
lal .CI Cll 

--

I.CI 

TT 
I Cll u 

Ill 

224 



RELIABILITY OF FAULT-TOLERANT VLSI CIRCUITS 

A. Bensouiah, S. Johnson and M. J. ~lorant 
School of Engineering and Applied Science 

University of Durham, UK 

Abstract-Fault-tolerance at the level of an integrated circuit would have a tremen­
dous impact on the electronics industry. The dependence of system reliability on IC 
reliability becomes stronger as higher levels of integrations are achieved. Yet, there 
is no practical method for evaluating the reliability of a fault-tolerant IC. This paper 
presents such an evaluation method which consists of expressing the failure rate of a 
section of an IC as a function of its size and a combinatorial model to describe the 
dependence of the reliability of a fault-tolerant IC on the manufacturing yield. 

Designing larger and denser integrated circuits has always been the driving force behind 
the development of the microelectronics industry. If one looks at dynamic random 
access memories, the flagship of the industry, increasing densities have bPen achieved 
by decreasing feature sizes and improving the control of the manufacturing process. But 
the reason that made 64K, and subsequently 2-56K and I Mbit, DRAMs commercially 
available is the usc of redundancy, in the form of spare rows and/or columns. 

The successful use of redundancy in DRAMs has led to numerous investigations of 
fault-tolerant strategies in other types of ICs 1• In most of the published literature, 
yield is used as the figure of merit to assess the suitability, or otherwise, of fault­
tolerant strategies. However, it is always emphasised that the usc of redundancy also 
enhances the reliability because larger chips, made possible by higher yields, imply 
smaller system's chip counts; in other words, the reliability impro,·ment is a by-product 
of th_e yield improvment. 

The reliability of an electronic system, comprising from a few lens to a few hundreds 
of ICs, is dominated by the reliability of the solder joints and the interconnections 
between chips 2• However, when such a system is re-designed so that it comprises 
just one or two larger and denser chips, which is the current trend in the electronics 
industry, the system's reliability would certainly be improved. but at the same time. it 
becomes strongly dependent on the rcliahility of the intcgrillf'd cirruit. 

There is a notable lack of publications on reliabilt.y modelling of [aull-tnlf'rant ICs, a~ 
compared to the abundant literature on yield modelling. In fact, t.lw suhjcd ha~ bl't'll 

addressed in only one publication ~. The reason for this lack has lw(•n identified as 
being due to the following two problems: 

1) The lack of any method to estimate the failure rate of a section of il chip. and 
2) the dependence of reliability on the initial manufacturing yield. 

Solutions to both problems are presented in this paper. In the next section, an cxpres· 
sion for the evaluation of the failure rate of a section of an IC, as a function of the 
section's size, is derived. In the following section, the problem of n~liahility dependence 
on manufacturing yield is solved using a combinatorial model. 

FAILURE RATE OF A SECTION OF AN IC 

r\n expression that is commonly encountered in reliability modelling is the probability 
that at least one unit out-of-m units is working at time I. This expression is given by 

(I) 

225 



126 

where Pis the probability that a single unit is working at timet. Under the assumption 
of exponenetial distribution of limes to failures, P = e->.t where ~ is he failure of a 
unit. If the units were single chips or assemblies of chips, th<'n the failure rate ~ can 
be estimated using the ~IIL-HDBK-21 i 4 . However, in the case where all m units are 
parts of a single chip, expression (1) cannot be evaluat.<'d, because there is no method 
to estimate the failure rate~ of a single unit. In the propos<'d method, the failure rate 
of a ~<'clion of a chip is expressed as a fraction of the failure rate of the entire chip. 
The justification of this approach is given next. 

The reliabilty of an IC is given by Ro = e-.\ol. If the same chip is considered as a 
partition of n sections each comprising No/n gates, then we may compute the reliability 
of the chip as the product of the probabilities that each section is working, i.e., if we 
call .\~ the failure rate of a section containing .\'0 /n gates, th<'n the chip reliability is 

nJ - ( -~~~)" - -n~~~ n 0 - c - c 

Since Ro and R'0 must be the same, we have .\o = n.\~. If we l<'t L = No/n then 

I L 
~o = -.\o 

No 

(2) 

(3) 

which is the failure rate of a piece of silicon containing L gates that is part of an lC 
containing No gates. This justifies the assumption made in 3. 

DEPENDENCE OF RELIABILITY ON YIELD 

The reliability of a non-redundant IC is given by Ro = e-.\ol where ~o = f(N0 ) as 
given in 4• In the case of a redundant chip, the failure rate is ~. = f( N. ), where N. 
is the number of gates in the chip. According to 4, .\r > .\o since N. > No. However, 
the reliability of the fault-tolerant chip Rr :f. c.\• 1 since r<'dundancy enables the chip 
to survive failures. 

The reliability R, of the redundant chip can be expressed as a function of the reliabil­
ities of the different units in the chip. This function is clearly dependent on the way 
redundancy is introduced and on the topology of the resultant redundant chip. If we 
assume, for instance, that each functional unit of the chip is replicated m times, so that 
it can tolerate up to m - 1 failures, then the probability that the redundant functional 
unit is working at time t is given by ' 

R = f (~)P'(1- P)m-i = 1- (1- l')m 
i=l I 

(4) 

with P = ,-~I and ~ is the failure rate of a unit as given by Eq. (3). 

The dependence of the reliability of a fault-toler11nt chip on the m11nufacturing yield is 
due to the fact that processing defects may render some of the redundant units unusable 
for tolerating operational failures. This effect can b!' tilk<'n into account hy expressing 
Eq. (4) as 

(5) 

where k is the number of units containing manufacturing defects. The above expression 
is then multiplied by the probability of ha,·ing k defective units out-of-m units, and 
since then· can he up tom - 1 dl'f<'cti,·e units. Eq. (.5) h<'comes 

226 



127 

m-1 

R = L (1- (1- P)m-A:) x Pr{k sect.ions were defective} (6) 
l:=O . 

The last te.rm in this expression is clearly a function of the yield. If we call Y the 
probability lhat a unit is defect free, then 

Pr{k sections were defective}= (7)(1- Y)"ym-l: 

and Eq. (6) becomes 

(8) 

(9) 

The reliability is defined as the conditional probabilty that a system is working at time 
t > 0, given that the system was working at timet= 0: 

R(t) = Pr{System working at t > OISystem working at t = 0} (10) 

By definition of a conditional probability, we have 

R(t) = Pr{System working at t > O,System working at t = 0} (II) 
Pr{System working at t = 0} 

If the system is working at t > 0 then it must have been working at t = 0, therefore 

R(t) = Pr{System working at t > 0} 
Pr{System working at t = 0} 

( 12) 

The probability that a redundant functional unit is in a working state at t = 0 is the 
probability of having, at least, one unit out-of·m units defect frC'e, i.e., the yield of the 
functinal unit, given by 

Y, = f (rr:)Y;(l- Y)m-i =I- (I- }'t' 
i=l I 

(11) 

The probability that the redundant functional unit is working at t > 0 is simply Eq. 
(9). Therefore, the reliability of the redundant functional unit is 

(1·1) 

The reliability of the entire chip is a product of expressions similar to Eq. ( 14). 

CASE STUDY 

In this section, we illustrate the application of the previous expressions in a simple 
example. We consider a chip containing 102-l identical processing elements and the usc 
of replication as a means of providing fault-tolerance. It is apparent that replication 
can be done at different levels: we may either replicate the entire chip, every PE, or 

227 



12& 
e,·ery group of PEs. The evaluation method presented in this paper allows the selection 
of the appropriate level for replication, and also the replication factor, in order to attain 
a certain level of defect-tolerance and/or operational failure tolerance. 

The first <:olumn of the following table gi,·cs the ~ize of till' group that is replicated. 
The first row gives the replication factor. 

Yidd Heliability 

m 2 3 4 5 6 7 ~ 2 3 -I :) 6 j 8 

PEs 

I 0.931 0.914 0.887 0.861 0.835 0.811 0.787 0.988 0.990 0.!190 O.!l89 0.989 0.989 0.988 

2 0.925 0.914 0.8117 0.861 0.83!) 0.!!11 0.7117 O.!li<6 0.990 0.!190 0.989 0.9~9 0.989 0.988 

-I 0.910 0.91-1 0.887 0.861 O.l\:15 0.811 0.787 0.980 0.990 0.9\10 0.\189 IUJ~9 0.98!1 0.!188 

~ O.S79 0.912 0.1187 0.861 0.835 0.1111 0.7[\j 0.970 0.990 0.!190 0.9!<9 0.!189 0.!189 0.!188 

16 O.t\2~ 0.908 0.88i 0.861 0.835 0.811 O.i8i O.!lfJI 0.9~8 O.!ltlO 0.989 0.989 U.!IS!J 0.988 

:12 O.i31 0.894 0.88!i 0.861 0.835 0.811 o.7~; U.91i 0.9!<3 0.!1:'9 0.989 O.!J8!J 0.989 0.91'~ 

6-1 0.5!14 0.8·16 0.8i6 0.859 0.83.1 0.811 O.it!i o.~li~ O.!JGG O.!IS~ 0.(18!1 O.!J8!J 0.91\9 0.!188 

12S 0:432 O.i2i 0.828 0.843 0.830 0.809 O.i87 O.i96 0.921 0.%8 0.982 0.987 0.988 0.988 

2~6 0.290 0.526 0.6i8 0.753 0.782 0.78·1 O.ii4 0.726 0.85!) 0.91!1 o.9a:! 0.970 0.9i8 0.983 

512 0.203 0.338 0.451 0.538 0.599 0.6·10 O.GIH O.Gi3 O.i83 OSI7 0.888 0.915 0.9:15 0.9-19 

1024 0.180 0.249 0.306 0.354 0.393 0.425 o..tr.l 0.64& 0.739 O.i9·1 0.831 0.8!i8 0.878 0.894 

An important obsen·alion from these result~ is that rcpliciltion of the entire chip, or 
large sections of it, is not as benefical as replication at lower levels. As for the amount 
of redundancy, it can be seen that even for the lowest values of m (2 and 3), there 
is still a substantial improvment in yield and reliability m-er the non-redundant case, 
where Yo = 10% and R0 = 48%. 

CONCLUSION 

In this paper, we presented a practical met hod for estimating I he failure rate of a section 
of an IC. This was then used to develop a model clcscrihing the dependence of the 
reliability of a fault-tolerant IC on the manufacturing yield. This allows a quantitative 
Msessment o£ the effects of redundancy and partitioning on yield and reliability. 

REFERENCES 

lo. G. \V. Summerling, G. E. Dixon and A. K J. S1ewart "Assessment of a Non-Regular 
Cell Based Architecture for ULSI and \VSI~ IE£ Colloquium on Fault Tolerant 
Integrated Circuits, 1986 

2. R. 1\lckirdy and M. Lea "WSI: A Technology for Reliability'' International \Vorkshop 
on Designing for Yield, Orford, 1986, pp 4i-;jfi 

3. I. !\oren and D. K. Pradhan "1\lodeling the Effect of Redundancy on Yield and 
Performance of \'LSI" IEEE Trans. an Computers, 36, l'\o 3, 198i, pp 3-1-1-355 

4. li .S. Department of Defense Military Standari=ation 1/rwdbook: Rdialoilit y Pndiclion 
of Electronic Equipment, MIL-IIDDI\-21iC, 1980 

ACKNOWLEDGMENTS 

One of the authors (A. B) is sponsored hy the ministry o£ higher Pducat ion of Algeria. 

228 



('...) 

~ 

RELIABILITY OF FAULT-TOLERANT VLSI CIRCUITS 

A. Bensouiah, S. Johnson, and M. J. Morant 

School of Engineering & Applied Science 

U ni_:versity of Durham, UK 

Purpose: Development of reliability models for fault-tolerant integrated circuits that take into account 

the effect of manufacturing defects on the initial redundancy. 

• 



J.<ELlAHlLl'J'Y EXPRESSIONS 

FAILURE RATE OF A SECTION OF A CIDP: 

No: Number of gates in the chip. 

Ao: Failure rate of the chip. 

A~: Failure rate of a section of L gates. 

Ao is as given in MIL-HDBK-217. 

L ,, _ -Ao 
Ao- No 

For this work, fault-tolerance is implemented by module redundancy. Twq forms of redundancy are 

considered: (1) module replication and (2) the provision of spare modules. 



.J 
lo) 
~ 

~a~-e ~: A moou1e ts repucatea m umes. 

R = Pr{l -out- of-m modules working} = ~ ( 7) RhO - Ro)m-i 

where R0 = Pr{ a single module is working} 

Since manufacturing defects may affect some of them modules, Eq. (1) becomes 

R = L L m ~ Rb(l- Ro)m-k-i x Pr{k modules were defective} 
m-lm-k ( k) 
k=O i=l 'l 

and 

Pr{k modules were defective}= (;)o- Yo)ky0m-k 

where Yo is the yield of a single module. 

Hence, the probability that at least one-out-of-m modules is working is 

m-1 ( ) m-k ( k) · R = L 7 (1 - Yo)kyom-k ?= m ~ Rb(l - Ro)m-k-i 
k=O t=l 

(1) 



1'-.l 
Y.l 
1'-.l 

\...a~e "": u spart;s are prov1oeo ror 1v moautes. 

N+S(N +S) . . 
R = Pr{ N -out- of-(N + S) modules working} = L . R0(I - Ro)N+S-t 

. N 'l 
t= 

Because of manufacturing. defects, Eq. (2) becomes 

S N+S-k (N + S _ k) . . 
R = £; ;~ i RQ(l - Ro)N+S-k-• x Pr{k modules were defective} 

R = t (N; S) (1 - Yo)kyf+S-k N~-k (N + 7- k) Rb(I- Ro)N+S-k-i 

k=O -z=N 

(2) 



ftC C L.l \...1\. .11 U 1''1 

We consider the introduction of redundancy in a chip of area 3 cm2 and consisting of 128 identical 

PEs. The mean defect density is 1 cm-2 and the reliability is computed fort= 0.1 million hours. 

Replication: Each block of n = 1, 2, 4, 8, 16, 32, 64, or 128 PEs is replicated m times and the 

corresponding chip reliability is evaluated. The maximum reliability is attained when small blocks 

are replicated as opposed to large blocks. 

2 m 

2 

21 m 

N/n 

2 m 

0.8 

>. -i 0.7 
'i 
a: 

0.6 

0.5 

Replication at different levels 

------o::-:::::::::-....::::::::_.:..:·---..-....... ~, ··-·•·u~--...--·---._,'-.. . ~...... ~ 

'"'····-- ........ , --.. ....... , '"-, m=6 

'-..... "' "'"'-, "-,,_ ., "'"'-
"'··.,__ .,............_ m=4 

.... , "'---. 

'-, ""'· 
'"--.., m=3 

... , ......... , ........... 

Non-redundant reliability 

0.4 • 

1 2 4 7 10 20 40 70 100 
Block size (NPEs) 



~ 

Global vs Local Spares: S spare PEs are provided for a block of n = 1, 2, 4, 8, 16, 32, 64, or 128 PEs 

and the resulting chip reliability is evaluated. If spares are provided to every PE then their number 

would be large. If spares are provided to the whole chip then the reconfiguration logic, whcih is a 

hardcore, would be very large. 

Global 

I N modules J [ S spares l 
I N/2 module:=J Is spares I I N/2 modules II S spares! 

Local 

N/4 lsl 1Ni4lr;l 
modules L.:J ~L.:.J 

11 PEl IS spar311 PE lis spare~ 

N/4 lsl 
modules L.:J N/4 lsl 

modules L.:J 

11 PE II S spare~ 

0.9 

>-
5 
.g 0.6 
=ai 
a: 

Global vs local spares 

8=8 
~d-~--...... --~ ~~-.. .,.,..,.? ............ /'.,.., ./ J., .,, 

~- / _,.r ., 

--;-/";? / '"- "' ... f / ' .,.~ // ./ ·' .. 
/ / ./ ··. 

/ .. / ······.S=2 , .. -·· // / ·· •... 
/ ./ ' ........ - // // S=1 

/ / // 
__ .,.. ..• 

' / Non-redlndanl reliability 
./ 

0.3-1---r-----r----r----,r-----r---r---r---,--
1 2 4 7 10 20 40 70 100 

&lock size (#PEs) 



ld vs Reliability Optimisation: 

optimum yield and reliability values are attained for different number of spares and fot different 

itioning. 

aclusion: 

Yield vs reliability optimisation 

ReDabiDty -------

3 4 6 8 7 
Number of aparea (S) 

8 9 10 

to 

0.8 

f 0.8 

~ 
'Jl 
~0.4 

0.2 

4 8 8 10 20 40 80 80 100 
Block size (tPEa) 

'he fact that manufacturing defects may reduce the amount of redundancy available for tolerating 

ield failures implies that the reliability of fault-tolerant ICs is dependent on the yield. 

rhe optimum partitioning (block size) and the optimum amount of redundancy depend not only 

1n the process parameters and the characteristics of the non-redundant IC, but also depend on the 

ault-tolerant scheme. 

235 



References 
[1] C. Mead and L. Conway lrdn,rfuct.ion aux Syst.cmes Vf.SI, InterEDitions, 1983 

[2] W. Maly, W. Moore and A Strojwas "Yield Loss Mechanisms and Defect Tolerance" International 
Workshop on Designing for )'ield, Oxfi.m/, 1986, pp 3-30 

[3] J. M. Pimbley and J. D. Meindl "MOSFET Scaling Limits Determined by Subthreshold Conduction" 
IEEE Trans. on r'lcdron De1•ices, Vol. 36, No. 9, September 1989, pp 1711-1721 

[4] J.D. Meindl "Ultra-Large Scale Integration" IEE.'E Trans. 011 Eleci.mn De1·ices, Vol. ED-31, No. 11, 
November 1984, pp 1555-1561 

[5] J. R. Pfiester, J.D. Shott and J.D. Meindl "Performance Limits of CMOS ULSJ" fEEl'.' J. S'o/id .S'tau' 
Circuits, Vol. SC-20, No. 1, February 1985, pp 253-263 

[6] B. Eitan and D. Fraham-Benlchk:owski "Surface Conduction in Short-Channel MOS Devices as a Linl­
itation to VLSI Scaling" IEEE Tra11s. on Elect.ron De1·ices, Vol. ED-29, No. 2, February 1982, pp 
254-266 

[7] D. C. Dorrough "A Methodical Approach to Analyzing and Synthesizing a Self-Repairing Computer" 
TEE£ Tra11s. on Compul;ers, Vol. C-18, No. 1, January 1969, pp 22-42 

[8] T. L. Faulkner, C. W. Bartlett and M. Small "Hardware Design Faults: A Classification and some 
Measurements" JCL Technical Jour., November 1982, pp 218-228 

[9] H. G. Borrow "Proving the Correctness of Digital Hardware Designs" VLSI Design, Vol. 5, No. 7, July 
1984, pp 64-77 

[10] Round Table "Formal Verification-Is it Practical for Real World Design?" IEEE D('si_gn ,\; Test. of 
Comput.ers, December 1989, pp 50-58 

[11] M.P. Halbert "Self-Checking Computer Module Based on the VIPER Microprocessor" Microprocessors 
and Microsyst;ems, Vol. 12, No. 5, June 1988, pp 264-270 

[12] D. Pountain "Fast Track vs Failsafe" BITE, July 1988, pp 305-309 

[13] D. Lewin Design uf Logic Syst.ems, Van Nostrand Reinhold (UK) Co. Ltd. 1985 

[14] T. E. Mangir "Sources of Failures and Yield Improvement for VLSI and Restructurable Intercqnnects for 
RVLSI and WSI: Part 1-Souces of Failures and Yield Improvements" Proc. IEEE, Vol. 72, No. 6, June 
1984, pp 690-708 

[15] E. A. Amerasekera and D. S. Campbell Failure Mechanisms in S'emicondudor Devices, John Wiley & 
Sons, Inc. 1987 

[16] J. R. Srous and J. M. McGarrity "Radiation Effects on Microelectronics in Space" Proc. IEEE, Vol. 76, 
No. 11, November 1988, pp 1443-1469 

[17] R. L. Pease, A. H. Johnston, and J. L. Azarewicz "Radiation Testing of Semiconductor Devices for Space 
Electronics" Proc. IEEE, Vol. 76, No. 11, November 1988, pp 1510-1526 

[18] E. A. Doyle, Jr. "How Parts Fail" IEEE Spectrum, Vol. 18, No. 10, October 1981, pp 36-43 

[19] M. R. Woods "MOS VLSI Reliability and Yield Trends" Proc. IEEE, Vol. 74, 1986, pp 1715-1728 

[20] J. P. Hayes "Fault Modeling" IEEE Design & Test. o[ Computers, April 1985, pp 8895 

[21] W. Maly "Realistic Fault Modeling for VLSI Testing" 24th ACMIIEEE Design Automation Conference, 
1987, pp 173-180 

[22] J. A. Abraham and W. K. Fuchs "Fault and Error Models for VLSI" Proc. IEEE, Vol. 74, No. 5, May 
1986, pp 639-654 

[23] N. Burges, R. I. Damper, S. J. Shaw and D. R. J. Wilkins "Faults and Fault Effects in NMOS-Impact on 
Testability" fEE Proc. G, Vol. 132, No. 3, June 1985, pp 82-89 

[24] K. C. Y. Mei "Bridging and Stuck-At Faults" IEEE Trans. on Computers, Vol C-23, No. 7, July 
1974, pp 720-727 

[25] P. Banerjee and J. A. Abraham "Characterizing and Testing of Physical Failures in MOS" IEEE Design 
&: Test of Comput.ers, August 1984, pp 76-86 

236 



[26] J. Galiay, Y. Crouzet and M. Vergniault "Physical versus Logical Fault Models in MOS LSI Circuits: 
Impact on their Testability" IEL'E Tmus. 011 Compul.ers, Vol. C-29, No. 6, June 1980, pp 527-531 

[27] N. Burges, R. I. Damper, K. A. Totton and S. T. Shaw "Physical Faults in MOS Circuits and their 
Coverage by Different Fault Models" lEI~ Pror. E, Vol. 135, No. 1, January 1988, pp 1-9 

[28] N. Burges and R. I. Damper "Inadequacy of the Stuck-At Fault Models for Testing MOS LSI Circuits: 
A Review of MOS Failure Mechanisms and some Implications for Computer-Aided Design and Test of 
MOS LSI Circuits" Software & Microsystems, Vol. 3, No. 2, April 1984, pp 30-36 

[29] S. Gai, M. Mezzalma and P. Prinetto "A Review of Fault Models for LSINLSI Devices" Software & 
Microsystems, Vol. 2, No.2, April 1983, pp 44-53 

[30] K. L. Kadandapani and D. K. Pradhan "Undetectability of Bridging Faults and Validity of Stuck-At Fault 
Test Sets" IEEE Ttaus. on ComJiltters, Vol. C-29, No. 1, January 1980, pp 55-59 

[31] M. Karpovski and S. Y. H. Su "Detection and Location of Input and Feedback Bridging Faults in 
Combinational Networks" IEEE Trans. on C:omput;ers, Vol. C-29, No. 6, June 1980, pp 523-527 

[32] T. W. Williams and K. P. Parker "Design for Testability-A Survey" Proc. IEEE, Vol. 71, No. 1, 
January 1983, pp 441-455 

[33J S. D. Millman and E. J. McCluskey "Detecting Bridging Faults with Stuck-at Test Sets" Proc. IEEE 
Jnt.enwt.ional Test Conference, 1988, pp 773-783 

[34] D. R. Shertz and G. Metze "A New Representation for Faults in Combinational Digital Circuits" IEEE 
Trans. on Cornpul;ers, Vol. C-21, August 1972, pp 858-866 

[35] E. J. McOuskey and F. W. Clegg "Fault Equivalence in Combinational Logic Networks" IEEE Trans. 
on Computers, Vol. C-20, No. 11, November 1971, pp 1286-1293 

[36] D. R. Schertz and G. Metze "On the Design of Multiple Fault Diagnosable Networks" IEEE Trans. on 
Comput.ers, Vol. C-20, No. 11, November 1971, pp 1361-1364 

[37] J. Jacob and N. N. Biswas "GTBD Faults and Lower Bounds on Multiple Fault Coverage of Single Fault 
Test Sets" Proc. IEEE Intemational Test. Conference, 1987, pp 849-855 

[38] V. K. Agarwal and A. S. F. Fung "Multiple Fault Testing of Large Circuits by Single Fault Test Sets" 
IEEE Trans. on Comput.ers, Vol. C-31, No. 11, November 1981, pp 855-865 

[39] J. L. A. Huges "Multiple Fault Detection Using Single Stuck-at Test Sets" IEEE Trans. on Computer 
Aided Design of Integrated Circuit.s and Systems, Vol. 7, No. 1, January 1988, pp 100-108 

[40] R. L. Wadsack "Fault Modeling and Logic Simulation of CMOS and MOS Circuits" The Bell Syst. Tech. 
Journal, Vol. 75, No. 5, May-June 1978, pp 1449-1474 

[41] S. K. Jain and V. D. Agrawal "Modeling and Test Generation Algorithms for MOS Circuits" lEEE 
Trans. on Computers, Vol. C-34, No. 5, May 1985, pp 426-433 

[42] Z. Brazilai et. al. "Efficient Fault Simulation of CMOS Circuits with Accurate Models" Proc. IEEE 
lnternat.ional Test Conference, 1986, pp 520-529 

[43] A. Miczo Digital Logic Testing and Simufaf;ion, John WJJ.ey & Sons, Inc. 1987 

[44] R. Dekker, F. Beenker and L. Thijssen "Fault Modeling and Test Algorithm Development for Static 
Random Access Memories" Proc. IEEE International Test Conference, 1988, pp 343-352 

[45] S. Somenzi and S. Gai "Fault Detection in Programmable Arrays" Proc. IEEE, Vol. 74, No. 5, May 
1986, pp 655-668 

[46] J.P. Hayes "An Introduction to Switch Level Modeling" IEEE Design & Test of Computers, August 
1987, pp 18-25 

[47] R. E. Bryant "A Survey of Switch Level Algorithms" IEEE Design ,t; Test of Computers, August 1987, 
pp 26-40 

[ 48] R. Rajsuman, Y. K. Malaiya and A. P. Jayasumana "On Accuracy of Switch-Level Modeling of Bridging 
Faults in Complex Gates" 24th ACM/IEEE Design Automation Conference, 1987, pp 244-250 

237 



[49] R. Rajusman, Y. K. Malaiya <md A. P. Jayasumana "Limitations of Switch Level Analysis for Bridging 
Faults" IEEE Trans. on ("ui/Jf>lll.er _,\I tied Design of Int.egrat.er/ Cirruit.s and S.l·st.rJns, Vol. 8, No. 
7, July 1989, pp 807-811 

[50] W. Maly, F. J. Ferguson and J. P. Shen "Systematic Fault Characterisation of Physical Defects for Fault 
Analysis in MOS IC Cells" I'm!'. IEEE lnternatiollal Test Conference, 1984, pp 390-399 

[51] J. P. Shen, W. Maly and F. J. Ferguson "Inductive Fault Analysis of MOS Integrated Circuits" UTE 
Design ,(- Icsl of Ccnllfil/l.er . ..;, December 1985, pp 13-26 

[52] F. J. Ferguson and J.P. Shen "Extraction and Simulation of Realistic CMOS Faults Using Inductive Fault 
Simulation" 1-'roc. /ELL lnt(TniJI.ional Test C:ollference, 1988, pp 475-484 

[53] J.P. Shen and S. Hirschhorn "Switch-Level Techniques" IEEE' Design & Test of ConJf!l/l.crs, August 
1987' pp 15-16 

[54] M.A. Breuer and A. D. Friedman Diap;nosis and R.eliahle Design of Digit.a/ Sysrems, Computer Science 
Press, Inc. 1976 

[55] P. K. Lala Fault Tr->lerant aut! Fault Test.able Hardware Design, Prentice-Hall International, 1985 

[56] I. L. Sayers and D. J. Kinniment "Low Cost Residue Codes and their Application to Self-Checking VLSI 
Systems" lEE Proc. E, Vol. 132, No. 4, July 1985, pp 197-202 

[57] I. L. Sayers, D. J. Kinnin1ent and E. G. Chester "Design of Reliable and Self-Checking VLSI Data Path 
Using Residue Coding" lEE Proc. E, Vol. 133, No. 3, May 1986, pp 169-179 

[58] G. G. Langdon, Jr. and C. K. Tang "Concurrent Error Detection for Group Look Ahead Adders" IBM 
J. Res. aiHI lJe,·elop., September 1970, pp 563-573 

[59] I. D. Elliott and I. L. Sayers "Implementation of a 32-Bit RISC Processor Incorporating Hanlware 
Concurrent Error Detection and Correction" lEE Proc. E, Vol. 137, No. 1, January 1990, pp 88-102 

[60] Y. Crouzet and C. Landrault "Design of Self-Checking MOS-LSI Circuits: Application to a Four-Bit 
Microprocessor" IEEE Trans. on Computers, Vol. C-29, No. 6, June 1980, pp 532-537 

[61] M. M. Yen, W. K. Fuchs and J. A. Abrallam "Designing for Concurrent Error Detection in VLSI: 
Application to a Microprogram Control Unit" IEEE J. Solid State Circuits, Vol. SC-22, No. 4, August 
1987, pp 595-605 

[62] A. J. Goode "Design Considerations of a Single Chip Fault-Tolerant Microprocessor" Software & Mi­
crosystems, Vol. 4, No. 3, June 1985, pp 53-58 

[63] J. H. Patel and L. Y. Fung "Concurrent Error Detection in ALU's by Recomputing with Shifted Operands" 
IEEE Trans. on Computers, Vol. C-31, No. 7, July 1982, pp 589-595 

[64] W. Tung and J. H. Patel "Concurrent Error Detection in Iterative Logic Arrays" Fault Tolerant Com­
puting Symposium, 1984, pp 10-

[65] J. H. Patel and L. Y. Fung "Concurrent Error Detection in Multiply and Divide Arrays" IEEE Trans. 
on Computers, Vol. C-32, No. 4, April 1983, pp 417-422 

[66] B. W. Johnson, J. H. Aylor and H. H. Hana "Efficient Use of Tune and Hanlware Redundancy for 
Concurrent Error Detection in a 32-Bit Adder" IEEE .J. Solid State Circuits, Vol. 23, No. 1, February 
1988, pp 208-215 

[67] D. A Reynolds and G. Metze "Fault Detection Capabilities of Alternating Logic" IEEE Trans. on 
Computers, Vol. C-27, No. 12, December 1978, pp 1093-1098 

[68] A. Lam, S. Chau and H. Luong "Design of a Oass of Self Exercising Combinational Circuits" Proc. 
IEEE International Test. Conference, 1985, pp 589-600 

[69] L. J. Sigal and C. R. Kirne "Concurrent Off-Phase Built-In Self-Test of Dormant Logic" Proc. IEEE 
Int.ernational Test. Conferencr, 1988, pp 934-941 

[70] S. Chau and D. Rennels "Design Techniques for a Self-Checking Self-Exercising Processor" Defect. and 
Fault. Tolenwce in VLSI, 1988, pp 191-202 

[71] M. Kameyama and T. Higuchi "Design of Dependent Failure Tolerant Microcomputer System Using 
TMR" IEEE Trans. on Comput.ers, Vol. C-29, No. 2, February 1980, pp 202-206 

238 



[72] P. K. Lala "An On-Chip Fault Tolerant Scheme" Compwcr Design, August 1982, pp 143-146 

[73] T. Krikland and M. R. Mercer "Algorithms for Automatic Test Pattern Generation" IEEE IJesi_!!,'ll & Test. 
of C:ompul.c,·rs, June 1988, pp 43-55 

[74] J. P. Roth "Diagnosis of Automata Failures: A Calculus and a Method" I U:\1 J. l?es. nnd DeveiOJI., 

Vol. 10, No. 4, July 1966, pp 278-291 

[75] P. Goel "An Implicit Enumeration Algorithm to Generate Tests for Combinational Circuits" TEEE Trans. 
on Compur.ers, Vol. C-30, No. 3, March 1981, pp 215-222 

[76] 0. H. Ibarra and S. K. Sahni "Polynomially Complete Fault Detection Problems" IEEE Trar1s. 011 

Computers, Vol. C-24, No. 3, March 1975, pp 242-249 

(77] S. T. Chakradhar, V. D. Agrawal and M. L. Bushnell "Polynomial Time Solvable Fault Detection Prob­
lems" Fau}l; Tolerant: Comput.ing Symposium, 1990, pp 56-63 

[78] K. Totton and S. Shaw "Self-Test: The Solution to the VLSI Test Problem" lEE Proc. E, Vol. 135, No. 
4, July 1988, pp 190-195 

[79] M. J. Bending "Hitest: A Knowledge Based Test Generation System" IEEE Design ,\: Test. of Com­
pur.crs, May 1984, pp 83-92 

[80] M. J. Schofield "Knowledge Based Test Generation" lEE Pwc. G, Vol. 132, No. 3, June 1985, pp 
108-110 

[81] E. J. McOuskey and S. Bozorgui-Nesbat "Design for Autonomous Testing" JE'EE Trans. on Computers, 
Vol. C-30, No. 11, September 1981, pp 866-875 

[82] K. D. Wagner, C. K. Chin and E. J. McCluskey "Pseudo-Random Testing" IEEE Trans. on Comp11t.ers, 
Vol. C-36, No. 3, March 1987, pp 332-343 

[83] I. Shperling and E. J. McCluskey "Circuit Segmentation for Pseudo-Exhaustive Testing via Simulated 
Annealing" Proc. IEEE Int.emational Test Conference, 1987, pp 58-65 

[84] W. Song, K. C. Smith and W. M Snelgrove "Partitioning for Pseudo-Exhaustive Testing is NP-Complete" 
Electronics Letters, 24th September 1987, Vol. 23, No. 20, pp 1060-1062 

[85] J. Savir, G. S. Ditlow and P. H. Bardell "Random Pattern Testability" IEEE Trans. on Comput.ers, Vol. 
C-33, No. 1, January 1984, pp 79-90 

[86] E. B. Eichelberger and E. Lindbloom "Random-Pattern Coverage Enhancement and Diagnosis for LSSD 
Logic Self-Test" IBM J. Res. and Develop., Vol. 27, No. 3, May 1983, pp 265-272 

[87] R. Lisanke, F. Brglez, A J. de Gauss and D. Gregoy "Testability Driven Random Test Pattern Generation" 
IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. CAD-6, No. 11, 
November 1987, pp 1082-1087 

[88] E. Lindbloom, E. B. Eichelberger and 0. P. Fiorenza "A Method for Generating Weighted Random Test 
Patterns" IBM J. Res. and De\'elop., Vol. 33, No. 2, March 1989, pp 149-161 

[89] P. Thorel, R. David, J. Pulou and J. L. Rainard "Design for Random Testability" Proc. IEEE Jnterna­
t.ional Test Conference, 1987, pp 923-930 

[90] V. S. Iyengar and D. Brand "Synthesis of Pseudo-Random Testable Designs" Proc. IEEE Tntemat.ional 
Test Conference, 1989, pp 501-508 

[91] P. Olivo, M Damiani and B. Ricco "On the Design of Multiple Input Shift-Registers for Signature 
Analysis" Proc. IEEE IntemaUonal Test Conference, 1989, pp 936-936 

[92] P. Bardell, W. H. McCanney and J. Savir Built-In Test. for FLSI: Pseudorandom Techniques, John 
WLley & Sons, Inc. 1987 

[93] R. G. Bennetts Design of Testable Logic Circuit.s, Addison-Wesley Publishers Ltd. 1984 

[94] R. G. Bennetts Introduct.ion to Digital Board Test.ing, Crane, Russak & Company, Inc. 1982 

[95] P. Goel and P. R. Moorby "Fault Simulation Techniques for VLSI Circuits" VLSI Design, Vol. 5, No. 7, 
July 1984, pp 22-26 

[96] E. I. Muehdorf and A. D. Savkar "LSI Logic Testing-An Overview" IEEE Trans. on Computers, Vol. 
C-30, No. 1, January 1981, pp 1-17 

239 



[97] W. J. Dally and R. E. Bryant "Hardware Architecture for Switch Level Simulation" I EET "//-;, n . ..: on 
C:ornput.er Aided Desip;n of lute.u;raled (.'ircuits iiJJd .s·_,·sl,enJs, Vol. CAD-4, No. 3, July 1985, pp 
239-250 

[98] J.P. Hayes "Generation of Optimal Transition Count Tests" IEEE Trans. on CouJputer', Vol. C-27, 
No. 1, January 1978, pp 36-41 

[99] J. E. Smith "Measure of the Effectiveness of Fault Signature Analysis" IEEE Trans. ou ("outf!!tlcrs, 
Vol. C-29, No. 6, June 1980, pp 510-514 

[100] T. W. Williams, W. Daehn, M. Gruetzner and C. W. Starke "Aliasing Errors in Signature Analysis" 
IEEE Desi,e,n k Test of CoiJJpulers, April 1987, pp 39-45 

[101] W. C. Carter, H. C. Montgomery, R. J. Preiss and H. J. Reinheimer "Design of Serviceability Features 
for the IBM System /360" IBM .I. Hcs. and Del'c/op., Vol. 8, NO. 2, 1964, pp 115-126 

[102] F. F. Tsui LS'l/VLSI Testability DeBign, McGraw-Hill, Inc. 1987 

[103] S. Funatsu, M. Kawai and A. Yamada "Scan Design at NBC" IEEE Design k Test. of Contputers, June 
1989, pp 50-57 

[104] M. J. Ohletz, T. W. Williams and J. P. Mucha "Overhead in Scan and Self-Thsting Designs" Proc. I L'EE. 
lntemat.ional Tesl; Conference, 1987, pp 460-470 

[105] S. Bhawmick, M.S. Khaira, P. P. Mishra, A. Das and A. Dasgupta ''Threading Multiple Scan Paths in 
a VLSI Circuit" Proc. lEEE lnf;crna.t.ional Test. Conference, 1988, pp 735-743 

[106] V. D. Agrawal, K. T. Cheng, D. D. Johnson and T. Lin "Designing Circuits Using Partial Scan" IEEE 
Design & Test of Computers, April 1988, pp 8-15 

[107] D. L. Liu and E. J. McCluskey "CMOS Scan-Path IC Design for Stuck-Open Fault Thstability" 1 EEE .7. 
Solid State Circuit..s, Vol. SC-22, No. 5, October 1987, pp 880-885 

[108] R. P. van Riessn, H. G. Kerkhoff and A. Kloppenburg "Designing and Implementing an Architecture 
with Boundary Scan" IEEE Design & Test. of Computers, February 1990, pp 9-19 

[109] R. G. Bennetts "Integration of Design and Test: A Management Perspective" IMS!Jnstrumatic/ Valid 
Seminar on 'Design for Test', October 1989 

[110] J. J. LeBlanc "LOCST- A Built-In Self~Test Thchnique" IEEEDesij!;n & Test of Computers, November 
1984, pp 45-52 

[111] F. P. Beuder and M. J. Manner "HILDO: The Highly Integrated Logic Device Observer (modified 
BILBO)" VLSJ Design, Vol. 5, No. 7, June 1984, pp 88-96 

[112] M. M. Pmdhan, E. J. O'Brien, S. L. Lam and J. Beausang "Circular BIST with Partial Scan" Proc. 
IEEE Int.ernational Test Conference, 1988, pp 719-729 

[113] L. T. Wang and E. J. McCluskey "Circuits for Pseudo-Exhaustive Test Pattern Generation" ll<JEE Trans. 
on Computer Aided Design of lnt.egrat.ed Circuits and Systems, Vol. 7, No. 10, October 1988, pp 
1068-1080 

[114] H. Fujiwara "Design for High Speed Testability" Proc. IEEE International Test Conference, 1987, pp 
1132-1133 

[115] J. Kuban and J. Salick "Thstability Features of the MC68020" Proc. IEEE Internat.ional Test Confer­
ence, 1984, pp 821-826 

[116] L.A. Basto and J. R. Kuban ''Test Features of the MC68881 Floating Point Coprocessor" Proc. IIEEE 
International Test Conference, 1985, pp 752-757 

[117] G. Giles and K. Sheuer "Thstability Features of the MC68851 PMMU" Proc. IEEE Internat.ional Test 
Conference, 1986, pp 408-411 

[118] F. W. Shih, H. H. Chao, S. Ong, J. Y. F. Hang, C. Trempel and A. L. Diamond "Thstability Design for 
Micro/370. A System/370 Single Chip Microprocessor" Pmc. IEEE Int.ernat.ional Test, Conference, 
1986, pp 412 

[119] P. P. Gelseinger "Design and Test of the 80386" IEEE Design & Test of' Comp111.crs, June 1987, pp 
42-50 

240 



[120] W. R. Moore "A Critical Review of Fault-Tolerant Chips and WSI" 1-'roc. or·'' \Forkshop flelt! at 

S(lutluunpwn, 1985, pp 1-8 

[121] D. S. Gardner, J. D. Meindl and K. C. Saraswat "Interconnection and Electromigration Scaling Theory" 
/LLT Trilns. on Eled.ron IJcl·iccs, VoL ED-34, 1987, pp 633-643 

[122] K. A. Sack et.aL "Evolution of the Concept of a Computer on a Slice" Proc. I /:JJ.·, VoL 52, No. 12, 
December 1964, pp 1713-1720 

[123] R.I. Pctritz "Current Status of LSI Technology" //'.'EE .J. Solid State ('ir•·tJit.s, SC-2, No.4, December 
1967, pp 130-147 

[124] J. W. Lathrop, R. S. Clark, J. E. Hull and R. M. Jennings "A Discretionary Wiring System at the Interface 
between Design Automation and Semiconductor Array Manufacture" /'roc. IEEE, VoL 55, 1967, pp 
1988-1997 

[1251 E. Tmnmaru and J. B. Angell "Redundancy for LSI Yield Enhancement" /ETC J. Solid S'tat.e Circuits, 
VoL SC-2, 1967, pp 172-182 

[126] D. F. Calhoun and L. P. McNamee "A Means of Reducing LSI Interconnection Requirements" TEEE J. 
Solid '1'ialt· Cirruits, Vol. SC-7, No. 5, October 1972, pp 395-404 

[127] I. M. McK.intosh and D. Green "Programed Interconnections-A Release from 'JYranny" Proc. IEEE, 
VoL 52, December 1964, pp 1648-1651 

[128] J. L Rafe1 "The RVLSI Approach to Wafer Scale Integration" /-'roc. of a H'orkslwp Held at Sout:lwmp­
ton, 1985, pp 199-203 

[129] K. Yamashita, A. Kanasugi, S. Hijiya, G. Goto, N. Matsumura and T. Shirnto "Wafer Scale 170000 Gate 
FFf Processor with Built-In Test" IEEE .J. Solid St.ate Circuits, Vol. 23, No. 2, April1988, pp 336-342 

[130] B. J. Donlan, G. F. Taylor, R. H. Steinvorth, A. S. Bergendahl and J. F. McDonal "Wafer Scale Inte­
gration Using Discretionary Microtransmission Line Interconnections" Proc. of a Workshop Held at 
Soul luti11Jilon, 1985, pp 31-45 

[131] G. Chevalier and G. Saucier "A Programmable Switch Matrix for the Wafer Scale Integration of a 
Processor Array" Proc. of a Workshop Held at. Soutlwmpton, 1985, pp 92-100 

[132] D. W. Greve "Programming Mechanisms of Polysilicon Resistor Fuses" JL'EE .J. Solid State Circuits, 
Vol. SC-17, No. 2, April 1982, pp 349-354 

[133] T. Mano, M. Wada, N Ieda and M Tanimoto "A Redundancy Circuit for Fault-Tolerant 256K MOS 
RAM" IEEE .J. Solid State Circuits, Vol. SC-1, No. 4, August 1982, pp 726-731 

[134] D. C. Shaver, R. W. Mountain and D. J. Silversmith "Electron-Beam Programmable 128K Bit Wafer 
Scale EEPROM" TEEE Electron De1·ice Let.ler, Vol. EDL-4, No. 5, May 1983, pp 153-155 

[135] Y. lkawa, K. Urui, M. Wada, T. Takada, M. Kawamura, M. Miyata, N. Amano and T. Shibata "A 
One-Day Chip: An Innovative IC Construction Approach Using Electrically Reconfigurable Logic VLSI 
with On-Chip Programmable Interconnections" IEEE .J. Solid State Circuits, Vol. SC-21, No. 2, April 
1986, pp 223-227 

[136] C. R. Jesshope and L. Bentley "Low-Cost Restructuring Technique for WSI" Electronics Lct.ters, lOth 
April 1986, Vol. 22, No. 8, pp 439-441 

[137] R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout "A Fault Tolerant 
64K Dynamic Random Access Memory" IEEE Trans. on Electron De1•ices, Vol. ED-26, No. 6, June 
1979, pp 853-860 

[138] B. F. Fitzgerald and E. P. Thoma "Circuit Implementation of Fusible Redundant Addresses on Random 
Access Memories for Productivity Enhancement" TBM .J. Res. and De1·elop., Vol. 24, No. 3, May 
1980, pp 291-298 

[139] F. J. Aichelmann "Fault Tolerant Design Techniques for Semiconductor Memory Applications" IBM .J. 
Res. and De1·elop., Vol. 28, No. 2, March 1984, pp 177-183 

[140] W. R. Moore "A Review of Fault Tolerant Techniques for the Enhancement of Integrated Circuit Yield" 
Proc. IEEE, Vol. 74, No. 5, May 1986, pp 684-689 

241 



[141] W. R. Moore, A. P. H. McCabe and V. Bawa "Fault Tolerance in a Large Bit-Level Systolic Array" 
Proc. of il Workshop 1/c/d af. Sout.hampioJJ, 1985, pp 259-272 

[142] D. P. Siewiorek and R. S. Swarz The Theory and l'racticc of Uelial>lc Systeu1 Vesi,::;n, Digital Press, 
1982 

[143] K. Swada, T. Sakurai, Y. Uchino and K. Yamad "Built-In Self-Repair Circuit for High Density ASMIC" 
IEEE 1989 Custom Integrated Circuits Conference, (see 1.51) 1989 

[144] R. M. Sedmack and H. L. Licbergot "Fault Tolerance of a General Purpose Computer Implemented in 
VLSI" IEEE Tnws. on Comp11ters, Vol. C-29, No. 6, June 1980, pp 492-500 

[145] S. T. Temksbury and L. A Hornak "Wafer Level System Integration: A Review" IEEE Circuits and 
Dc1·ice Ma.ga?.ine, Vol. 5, No. 5, September 1989, pp 22-30 

[146] W. H. Pierce Failllre-'/hlerant. Colllputer /Jcsi.gn, Academic Press, 1965 

[147] A. E. Barbour and S. S. Wojcik "A General, Constructive Approach to Fault Tolerant Design Using 
Redundancy" IEEE Trans. on Computers, Vol. 38, No. 1, January 1989, pp 15-29 

[148] T. F. Shwab and S. S. Yau "An Algebraic Model for Fault-Masking Logic Circuits" IEEE Trans. on 
Comptit.ers, Vol. C-32, No.9, September 1983, pp 809-825 

[149] T. Leighton and C. E. Leiserson "Wafer Scale Integration of Systolic Arrays" IEEE Trans. on Com­
puters, Vol. C-34, No. 5, May 1985, pp 448-461 

[150] J. N. Coleman and R. M. Lea "Clock Distribution Techniques for Wafer Scale Integration" Pruc. of a 
H'orkshop Tleld at. Southampton, 1985, pp 46-53 

[151] K. D. Warren, M. B. E. Abdelrazik:, R. M. Kirdy and R. M. Lea "A Power Distribution Strategy for 
WSI" Pror. of a ·workshop Held at Southampton, 1985, pp 54-61 

[152] W. Chen, J. Mavor, P. B. Denyer and D. Renshaw "Superchip Architecture for Implementing Large 
Integrated Circuits" lEE Proc. E, Vol. 135, No. 3, May 1988, pp 137-150 

[153] W. K. Fuchs and M. F. Chang "Diagnosis and Repair of Large Memories: A Critical Review and Recent 
Results" Defect <wd Fault Tolerance in FLSI, 1988, pp 213-225 

[154] R. A Evans and J. V. McCanny "A Fault Tolerant Algorithm for High Availability and Wafer Scale 
Systems" lEE Colloquium on Fault Tolerant Integrated Circuits, 1986 

[155] B. T. Mwphy "Cost-Size Optima for Monolithic Integrated Circuits" Proc. IEEE, December 1964, pp 
1537-1545 

[156] C. H. Stapper, F. M. Armstrong and K. Saji "Integrated Circuit Yield Statistics" Proc. IEEE, Vol. 71, 
No. 4, April 1983, pp 453-470 

[157] I. Chen and A. J. Strojwas "RYE: A Realistic Yield Simulator for VLSIC Structural Failures" Proc. 
IEEE lntemat.ional Test Conference, 1987, pp 31-42 

[158] C. H. Stapper "Fault Simulation Programs for Integrated Circuit Yield EIDroation" IBM J. R.es. and 
De\'elop., Vol. 33, No. 6, November 1989, pp 647-652 

[159] J. L. Gallace "Reliability" VLSI Handbook, J. Di Giacomo (ed.), McGraw-Hill Publishing Company, 
1989, pp 27.3-27.40 

[160] D. L. Crook "Evolution of VLSI Reliability Engineering" ESREF 91, October 1991, Bordeaux, France, 
pp 293-312 

[161] H. A. Shaft, D. A. Baglee and P. E. Kennedy "Building-In-Reliability: Making it Worlc" ESREF 91, 
October 1991, Bonleaux, France, pp 19-32 

[162] S.D. Millman and E. J. McCluskey "Detecting Stuck-Open Faults with Stuck-At Test Sets" IEEE 1989 
Custom Integrated Circuits Conference, 1989 

[163] B. W. Woodhall, B. D. Newman and A, G. Sammuli "Empirical Results on Undetected CMOS Stuck­
Open Faults" Proc. IEEE International Test, Conference, 1987, pp 166-170 

[164] C. F. Hawkins and J. M. Soden "Electrical Characteristics and Test Considerations of Gate Oxide Shorts 
in CMOS Integrated Circuits" Proc. IEEE lntermdional Test Conference, 1985, pp 544-555 

[165] M. Shoji CMOS Digit.ill Circtiit Tcclwolo,gy, Prentice-Hall, Inc., New-Jersey 1988 

242 



[166] S.M. Reddy, M. K. Reddy and V. D. Agrawal "Robust Tests for Stuck-Open Faults in CMOS Combi­
national Logic Circuits" Fault. Tolerant Compulin,t; S'.I·Inposiurn, 1984, pp 44-49 

[167] S.M. Reddy and M. K. Reddy "Testable Realization of FET Stuck-Open Faults in CMOS Combinational 
Logic" I EEL Trans. on C'omputers, Vol. C-35, No. 8, August 1986, pp 742-754 

[168] B. Gupta, V. K. Malaiya and R. Rajsuman "On Designing Robust Testable CMOS Combinational Circuits" 
lEE Proc. f, Vol. 136, No. 4, July 1989, pp 329-338 

[169] N. K. Jha and J. A. Abraham "Design of Testable CMOS Logic Circuits under Arbitrary Delays" I EE £' 
Trans. on ('omput<>r '\idee/ Design of lnte.t;Tated Circuits and Sy.sl.t·Jus, Vol. CAD-4, No. 3, July 
1985, pp 264-269 

[170] R. Rajsuman, V. K. Malaiya and A. P. Jayasumana "CMOS Stuck-Open Fault Testability" IEEE .J. Solid 
State Circuits, Vol. 24, No. 1, February 1989, pp 193-194 

[171] R. Rajsuman, A. P. Jayasumana and Y. K. Malaiya "CMOS Open-Fault Detection in the Presence of 
Glitches and Timing Skews" IEEE .J .. Solid SU1te Cin·uit..", Vol. 24, No. 4, August 1989, pp 1055-1061 

[172] J. M. Soden and C. F. Hawkins "Thst Considemtion for Gate Oxide Shorts in CMOS Circuits" IEEE 
Design & ·n·sl of Computers, August 1986, pp 56-64 

[173] C. Cmpuchettes "Testing CMOS IDD on Large Devices" Proc. TF:EE lntcmational Test Conference, 
1987, pp 310-315 

[174] L. K. Horming, J. M. Soden, R. R. Fritzmeier and C. F. Hawkins "Measurement of Quiescent Power 
Supply Current for CMOS ICs in Production Thsting" Proc. lEEE fnlenullional Test Conference, 
1987, pp 300-309 

[175] M. Keating and D. Meyer "A New Approach to Dynamic Idd Testing" Proc. IEEE int.crnat.iowtl Test 
Conference, 1987, pp 316-321 

[176] P. Nigh and W. Maly "A Self-Thsting ALU Using Built-In Current Sensing" IEEE 1989 Custom Integrated 
Circuits Conference, 1989 

[177] P. Nigh and W. Maly "Thst Generation for Current Thsting" IEEE Desip;n & Tesl of Computers, 
February 1990, pp 26-38 

[178] S. K. Chakravarty "On the Complexity of Computing Tests for CMOS Gates" iEEE ihns. on Computer 
Aided Design of Integrated Circuits and Systems, Vol. Vol. 8, No. 9 September 1989, Pi> 9973-980 

[179] A Bensouiah, S. Johnson and M. J. Morant "On the Elimination of Data Compression in Response 
Analysis for BIST" 2nd European Symposium on Reliability of Electron Devices, Failure Physics and 
Analysis, Bordeaux, France, 1991, pp 595-597 

[180] B. F. Cockburn and J. A. Brzozanski "Switch Level Thstability of CMOS PLA" lnt,egration, the FLSI 
Journal, Vol. 9, No. 1, February 1990, pp 49-80 

[181] D. H. Merlino and J. Hadjilogiou "Built-In Thst Strategy for the next Generation Military Avionic Hard­
ware" Proc. IEEE Intemational Test Conference, 1988, pp 969-975 

[182] C. R. Kime, H. H. Kwan, J. K. Lemke, and G. B. Wtlliams "Built-In Self-Test Methodology for VLSI 
Data Paths" Proc. IEEE International Test Conference, 1984, pp 327-337 

[183] J.P. Mucha, W. Daehn and J. Gross "Self-Thst in Standard Cell Environment" IEEJ<; Design & Test of 
Computers, December 1986, pp 35-41 

[184] C. W. Stalke "Built in Test for CMOS Circuits" Proc. IEEE lntemational Test. Conference, 1984, pp 
309-314 

[185] G. L. Craig and C. R. Kime "Pseudo-Exhaustive Adjacency Thsting: A Built in Self Thst Approach for 
Stuck-Open" Proc. IEEE International Test Conference, 1985, pp 126-137 

[186] J. A. Bate and D. M. Miller "Exhaustive Thsting of Stuck-Open Faults in CMOS Combinational Circuits" 
lEE Proc. E, Vol. 135, No.I, January 1988, pp 10-16 

[187] M. Cohn and S. Even "Design of Shift Register Generators for Finite Sequences" IEEE Trans. on 
Computers, Vol. C-18, No. 7, July 1969, pp 660-662 

[188] W. Daehn and J. Mucha "A Hardware Approach of Self Testing Large Progmrnmable Armys" iEEE 
Trans. ou Comp11ters, Vol. C-30, No. 11, November 1981, pp 829-833 

243 



[189] M. Katoozi "Built-In Test of CMOS Structured Logic with Realistic Fault Models" PhD Thesis, Univer­
sity of Washington, 1989 

[190] J. E. Price "A New Look at Yields of Integrated Ci.rcuits" Pmc. IEEE, August 1970, pp 1290-1291 

[191] B. T. Mmphy "Comment on 'A New Look at Yields oflnteg.rated Ci.rcuits'" J'nH·. IELE, July 1971, 
pp 1128-1128 

[192] R. M. Warner "Applying a Composite Model to the IC Yield Problem" IEEE J. Solid S't.;t/.c C'irc11its, 
SC-9(3), June 1974, pp 86-95 

[193] C. H. Stapper "On a Composite Model to the IC Yield Problem" IEEE J. Solid State Cncuits, SC-10, 
December 1975, pp 537-339 

[194] S.M. Hu "Some Consideration in the Fommlation of the IC Yield Statistics" Solid State Electronics, Vol. 
22, 1979, pp 205-211 

[195] C. H. Stapper "Comments on 'Some Consideration in the Formulation of IC Yield'" Solid State Elec­
tronics, 24, 1981, pp 127-132 

[196] R. M. Warner "A Note on IC Yield Statistics" Solid State Electronics, 24(11), 1981, pp 1045-1047 

[197] C. H. Stapper "lSI Yield Modeling and Process Monitoring" IBM .1. R.cs. and Del'clop., May 1976, 
pp 228-234 

[198] S.M. Sze \!LSI Technology, McGraw-Hill Book Company, 1988 

[199] E. I. Muehldof "Fault Clustering: Modeling and Observation on Experimental Chips" IEEE .J. Solid 
Stare Circuits, Vol. SC-10, August 1975, pp 237-244 

[200] A. V. Ferris-Brabhu "Defects, Faults and Semiconductor Device Yield" Defect. and Fault. Tolerance in 
\'LSI, 1988, pp 33-46 

[201] A. Gupta and J. W. Lathrop "Yield Analysis of Large Integrated Circuit Chips" IEEE .1. S'olid State 
Cirwif;s, Vol. SC-7, No. 5, October 1972, pp 389-395 

[202] A. V. Ferris-Prabhu "Modeling Critical Area in Yield Forecasts" IEEE .J. Solid State Circuits, Vol. 
SC-20(4), August 1985, pp 874-878 

[203] A. V. Ferris-Prabhu "Defect-Size Variations and Thei.r Effect on the Critical· Area of Vl.SI Devices" 
IEEE .1. Solid St.ate Circuits, Vol. SC-20(4), August 1985, pp 878-882 

[204] H. Walker and S. W. Director "VLASIC: A Catastrophic Fault Yield Simulator for Integrated Circuits" 
IEEE Trans. on Computer Aided Design of Jnf;e,l!;rat.ed Circuits and Systems, Vol. CAD-5, No. 4, 
October 1986, pp 541-556 

[205] W. Maly, A. J. Strojwas and S. Director "Vl.SI Yield Prediction and Estimation: A Unified Frameworlc" 
IEEE Trans. on Computer A.ided Design of Int.egrat.ed Circuits and Systems, Vol. CAD-5, No. 1, 
January 1986, pp 114-130 

[206] I. Chen and A. Strojwas "Realistic Yield Simulation for Vl.SI Structural Failures" JEE'E Trans. on 
Comput.er .4.ided Design of Integrated Circuits and Systems, Vol. CAD-6, No. 6, November 1987, 
pp 965-980 

[207] C. H. Stapper "Simulation of Spacial Fault Distribution for Integrated Circuit Yield Estimation" IEEE 
Trans. on Computer .4.ided Design of Integrated Circuits and Systems, Vol. 8, No. 12, December 
1989, pp 1314-1318 

[208] T. E. Mangir and A. Avizienis "Fault Tolerant Design for Vl.SI: Effect of Interconnect on Yield" IEEE 
Trans. on Computers, Vol. C-31, No. 7, July 1982, pp 487-493 

[209] I. Koren and D. K. Pradhan "Introducing Redundancy into Vl.SI Design for Yield and Performance 
Enhancement" Fault Tolerant Computing Symposium, 1985, pp 330-335 

[210] C. Thibeault, Y. Savaria and J. L. Houle "A New Yield Formula for Fault-Tolerant Large-Area Devices" 
Defect. and Fault. Tolerance in VL.S'J, 1988, pp 53-64 

[211] H. Bolouri and M. Lea "Ul.SI and WSI Yield Estimation: An Empirical Approach" lntcrnirf.ional 
Workshop on Designing for Yield. Oxford, 1986, pp 205-212 

244 



[212] I. Koren and C. H. Stapper "Yield Models for Defect-Tolerant VLSI Circuits: A Review" Ueh·ct ,,nd 
Faull Tolcrr~llet' in VLS'I, 1988, pp 1-21 

[213] U. Ramacher "A Cost Orientated Redundancy Model for Defect-Tolerant VLSI/WSI Systems" lntem<t­
l.iomd Workshop on Desi.g·ninp; for held. Oxford, 1986, pp 233-245 

[214] W. Chen, J. Mavor and D. Renshaw "Yield Estimation for Serial Superchip" lEt Prw L, Vol. 136, 
No. 3, May 1989, pp 187-196 

[215] C. H. Stapper "Productivity Optimization of VLSI DRAM Chips with Redundant Circuits" fnt.ernat.ional 
\Vorkshop 011 Desi,g;ning for Yield. OxfimJ, 1986, pp 41-45 

[216] C. Thibeault, Y. Savaria and J. L. Houle "Impact of Reconfiguration Logic on the Optimization of 
Defect-Tolerant Integrated Circuits" Fault. Toleraut. Computing Symrwsiun1, 1990, pp 158-165 

[217] R. Mckinly and M. Lea "WSI: A Technology for Reliability" lntcl'llat.ioni.J \VorksiHJ/> on Desi,l,!;nin,g 
fin· }'ieH Ox/im/, 1986, pp 47-56 

[218] D.l. Heinmann, N. Mittal and K. S. Trivedi "Availability and Reliability Modeling for Computer Systems" 
Advances in Computers, Vol. 31, M. C. Yovits (ed.), Academic Press, 1990, pp 176-231 

[219] U.S. Department ofDefense M'ilit.ary St.amlardizat.ion Handbook: U.eliai,ility Prc,Jirtion of Electronic 
Equipment., MIL-HDBK-217C, 1980 

[220] V. W. Ng and A. Avizienis "A Unified Reliability Model for Fault Tolerant Computers" IEEE Trans. 
on Comput.crs, Vol. C-29, No. 11, November 1980, pp 1002-1011 

[221] K. S. Trivedi Probability and Stat.istic with Reliability, Queuin,g· and Cornpul.er S'ciencc Applica­
tious, Prentice-Hall Inc., Englewood Cliffs, N. J. 07632 

[222] R. A. Cliff "Acceptable Testing of VLSI Components which Contain Error Corrector" IEEE Trans. on 
Computers, Vol. C-29, No. 2, February 1980, pp 125-134 

[223] T. Haifley and A. Bhatt "Fault-Tolerant ICs: The Reliability ofTMR Yield-Enhanced ICs" IEEE Trans. 
on Reliability, Vol. R-36, No. 2, June 1987, pp 224-226 

[224] I. Koren and M. A. Breuer "On Area and Yield Consideration for Fault Tolerant Processor Arrays" IEEE 
Trans. on Computers, Vol. C-33, No. 1, January 1984, pp 21-27 

[225] I. Koren and D. K. Pradhan ''Mo<!eling the Effect of Redundancy on Yield and Performance of VLSI" 
IEEE Trans. on Computers, Vol. C-36, No 3, March 1987, pp 344-355 

[226] I. Koren and D. K. Pradhan "Yield and Performance Enhancement through Redundancy in VLSI and 
WSI Multiprocessor Systems" Proc. IEEE, Vol. 74, No. 5, May 1986, pp 699-711 

[227] C. H. Stapper "Modeling of Defects in Integrated Circuits Photolithographic Patterns" IBM .J. Res. and 
Develop., Vol. 28, No. 4, July 1984, pp 461-475 

[228] G. W. Sumerling "Processing Towanls WSf' Journal ofSemicustom ICs, Vol. 6, No. 1, 1988, pp 5-17 

[229] A Bensouiah, S. Johnson and M. J. Morant "Reliability of Fault-Tolerant VLSI Circuits" 2nd European 
Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Bordeaux, France, 1991, pp 
125-128 

[230] T. Nakayama, Y. Miyawaki, K. Kobayashi, Y. Terada, H. Arima, T. Matsuk:awa and T. Yishikara "A 
5-V One-Transistor 256K EEPROM with Page-Mode Erase" IEEE .J. Solid State Cirwils, Vol. 24, 
No. 4, August 1989, pp 911-915 

245 




