
Durham E-Theses

Software maintenance: redocumentation of existing

Cobol systems using hypertext technology

Freeman, Robert Marriott

How to cite:

Freeman, Robert Marriott (1992) Software maintenance: redocumentation of existing Cobol systems

using hypertext technology, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5980/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5980/
 http://etheses.dur.ac.uk/5980/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Software Maintenance:

Redocumentation of Existing Cobol

Systems using Hypertext Technology

Robert Marriott Freeman

Master of Science Thesis

University of Durham

England

April1992

2 1 JUL1992

Abstract

One of the major problems associated with the maintenance of existing software

systems is their lack of documentation. This can make very large, poorly

structured programs very difficult to maintain. Nearly all traditional

documentation tools are either designed for use in the development stage of the

software lifecycle or are report generators such as cross reference generators. The

problems of lack of documentation are compounded when applied to third party

software maintenance as the staff are often initially unfamiliar with the code they

are maintaining. This thesis describes these problems in detail and evaluates the

feasibility of a tool to help with redocumentation based on current hypertext

technology.

2

The copyright© of this thesis rests with the author. No quotation from it should be

published without prior written consent and information derived from it should be

acknowledged.

3

Acknowledgements

The author would like to thank Mr J.Kane, Mr M.Walters and Mrs J.Hawkins of

AGS Information Services Ltd. for their help in supplying data and financial

support which has enabled this thesis to be written. Thanks are also due to Mr

S.Connolly and Mr B.Eliasson of RANK XEROX UK Ltd. for their help and the

donation of a 6085 documenter system on which this thesis has been written.

I also wish to thank my friends especially Malcolm Munro, Simon Cooper, Barry

Cornelius, Rick Morgan and Richard Turver who have contributed to the research

and given up many hours of their time.

Finally I would like to thank my parents for their support during my continued

education.

4

This thesis is dedicated to my wife Judith, who has provided a great deal of

support and motivation during the past year.

/

Software Maintenance:

Why does it happen?

Because it happens.

Roll the bones.

Neil Peart 1991

5

Contents

1. Introduction . 11

2. Software Maintenance . 13

2.1 Introduction . 13

2.2 The Maintenance Problem . 13

2.3 Third Party Software Maintenance 16

2.4 Preventative Maintenance . 18

2.4.1 Code Renovation . 20

2.4.2 Design Extraction . 21

2.4.3 Inverse Engineering 23

2.5 Summary . 25

3. Software Documentation . 26

3.1 Introduction . 26

3.2 Categories of Documentation . 26

3.3 Documentation and Maintenance . 31

3.4 Measuring the Quality of Documentation . 34

6

3.4.1 Accuracy . 35

3.4.2 Completeness 36

3.4.3 Usability . 36

3.4.4 Expandability . 37

3.5 Existing Documentation Tools . 38

3.5.1 Automatic Documentation Tools . 38

3.5.2 Documentation Environments . 40

3.5.3 Other Documentation Tools . 45

3.6 Surrunary . 48

4. Requirements for a Redocumentation Tool . 50

4.1 Introduction . 50

4.2 Required Facilities for a Redocumentation Tool 50

4.2.1 Support of Four Documentation Activities

4.2.2 Configuration Control ofDocuments

51

52

4.2.3 QA Procedures . 53

4.2.4 Enforceable Standardisation of Document Layouts 53

4.2.5 Facilities to Incorporate Any Existing Documentation 54

7

4.2.6 Automated Parallel Viewing of Documents 55

4.2. 7 Creation of a Hierarchical Document Structure 56

4.2.8 Casual Updating of the Documentation 56

4.2.9 Easy And Interesting To Use . 57

4.2.10 Selected Viewing of Areas of the Code

4.3 Operational Environment

4.3.1 Site Environment

4.3.2 Head Office

57

57

58

60

4.4 Summary . 60

5.Hypertext . 61

5.1 Introduction . 61

5.2 The Origins of Hypertext . 61

5.3 Uses and Facilities of Hypertext Systems 62

5.3.1 General Hypertext Systems . 66

5.3.2 Problem Exploration Systems 68

5.3.3 Macro Literary Systems . 68

5.3.4 Documentation Browsing Systems . 69

5.4 Hypertext and Redocumentation for Software Maintenance 69

8

5.5 Summary 71

6. Documentation Structure For Use in Redocumentation 72

6.1 Introduction . 72

6.2 Document Structure 73

6.3 Site Information . 74

6.4 Management Documentation . 75

6.5 Overview Documentation 77

6.6 Technical Documentation . 78

6.7 Existing Documentation 79

6.8 Summary . 80

7. The Redocumentation Aid for the Maintenance of Software (RAMS) 81

7.1 Introduction 81

7.2 SIBOH- Site Information Based On Hypertext 82

7.3 Overview Documenter . 85

7.4 Management Documen ter . 86

7.5 SYSDOC- System Documentation Tool 89

· 7.5.1. Information Extraction . 89

9

7 .5.2. Document generation. 90

7 .5.3. Hypertext Initialisation. 92

7.5.4. Sysdoc User Facilities. 92

7.6 Summary . 98

8. Conclusions . 99

8.1 Introduction . 99

8.2 Evaluation and Fulfilment of Requirements . 99

8.3 Benefits and Drawback of the Approach 101

8.4 Further Research and Development 104

A. Example Test Files and Output from SYSDOC Slice Operations 106

A.1 Primes COBOL Program . 106

A.2 Slice on PRIME (Data Name Option) . 108

A.3 Slice on PRIME (Inclusive Option) . 109

A.4 Slice on PERFORM 111

A.5 Additional Slice . 111

A.6 Extended Slice . 112

10

Chapter 1

Introduction

Since the initial survey by Lientz and Swanson[41] showing the vast amount of

money being spent in software maintenance activities, a considerable amount of

research has been done to try to reduce this expenditure. The topic of documenting

software has also received a great deal of attention. However little research work

has been undertaken combining the topics of maintenance and documentation.

In recent years some companies have been subcontracting the maintenance of

their systems to specialist companies. For the subcontracted company, special

problems exist, especially with the initial analysis of the systems.

The research described in this thesis has been concerned with these three aspects.

There are three main aims of this research :

• Investigate the use of documentation in a software maintenance

environment, with special reference to systems written in Cobol.

• Investigate the appropriateness of hypertext for software redocumentation.

• Build a prototype tool to assist the maintenance programmer with the

analysis of code and the production of documentation.

11

Chapter 2 of this thesis gives the reader an overview of the software maintenance

process, and then describes the idea of third party software maintenance. The last

part of this chapter gives an overview of the four main reverse engineering

disciplines with special emphasis on preventative maintenance and research done

in this field. Software documentation and the need for redocumentation is

described in Chapter 3, while Chapter 4 gives the requirements for a complete

redocumentation tool. An evaluation of Hypertext for use in software

redocumentation is presented in Chapter 5. The next chapter describes a

documentation model for use in third party software maintenance, and Chapter 7

discusses the implementation of a Redocumentation Aid for the Maintenance of

Software developed from the documentation model. Finally, Chapter 8 gives the

conclusions of this research, and describes areas for future research.

12

Chapter2

Software Maintenance·

2.1 Introduction

The first part of this chapter gives an overview of software maintenance from a

management perspective showing the economic importance of research in this

area. A description of third party software maintenance is then given,

highlighting AGS Information Services' operation. Finally the chapter describes

the activities that are currently used in preventative maintenance, and the

research being carried out in this area.

2.2 The Maintenance Problem

uSoftware Maintenance" is a widely used term within the IT industry, and it is

now a well accepted fact, both within academia and industry, that software

maintenance does constitute between 50 - 80% of the IT budget[40,46l· The cost of

maintenance therefore can pose a serious problem to IT management, and can

cause the development of new systems to be dramatically curtailed. At the same

time, reducing these costs presents them with an opportunity for reducing their

budget or increasing output substantially.

13

Different organisations use the term "software maintenance" to refer to a whole

series of tasks, for example bug fixing, enhancements etc, and thus a clear

definition is required. In this paper we shall assume the definition given by the

IEEE [351

Modification of a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the product to a

changed environment.

In keeping with the above definition, Swanson[59] divided the maintenance

activities up into four distinct areas:

• Perfective Maintenance

The addition of extra functionality to a software product.

• Adaptive Maintenance

A change in the environment in which the software product is used.

• Corrective Maintenance

The removal of errors from a software product. ·

• Preventative Maintenance

The change of a software product to improve its maintainability.

Turner[62] gives figures of 60%, 18%, 17% and 5% respectively for the relative

maintenance effort between the various activities. Swanson, in later work with

LientZ[41), expanded the definitions of the maintenance activities, with perfective

maintenance changing the requirements, design and source code, adaptive

maintenance changing the design and source code, corrective maintenance

14

changing the source code only, while preventative maintenance changes the

source code but can also change the design. From the above we can conclude that

the most common maintenance activity, perfective maintenance, affects the

greatest number of stages of the software life cycle.

Lientz and Swanson's results on the effects of the maintenance activities also have

implications as far as documentation is concerned, and the extent of

documentation that has to be changed with the different maintenance activities.

This will be dealt with further in Chapter 3.

Software maintenance is still often approached in a fairly ad-hoc manner with no

formal procedures in place to deal with enhancements or bug fixing. This position

is the responsibility of management to correct, but as Cooper [20] points out, there

is a lack of effective communication between the managers of the maintenance

teams and senior managers running the business. If more information were

available for senior managers, then perhaps a more structured and efficient use of

maintenance staff would take place. Here is an opportunity for. documentation to

help with the feedback of information to managers showing the magnitude of the

maintenance problem.

The cost of software is becoming more expensive with respect to the cost of

hardware, a phenomena first predicted by Boehm[6]· The cost of Software

maintenance is reaching serious proportions and the greater the maintenance

problem the greater the problems throughout the IT industry.

Recently it has been reported that staff turn-over is getting so high that the

average employment time is 6 monthS[33]· This is partly due to the unreasonable

maintenance loads put upon some new staff. Inexperienced staff are not always

the best people to do the maintenance. They do not have a deep understanding or

15

familiarity with the system unlike some of the more experienced programmers. It

is also often discouraging for a young programmer to be given some other person's

code and given instructions to maintain it. ·

Often maintenance staff have little or no appropriate tools, unlike the design staff

who find it easier to acquire new equipment and tools. It is important to design

good and useful tools to make the job of maintenance more attractive, and

decrease the staff turn-over.

2.3 Third Party Software Maintenance

Third party software maintenance is at present prevalent in two distinct guises.

The first, of greater interest to this research, is where a company with an internal

data processing section contracts out to a third party the maintenance of software,

which has often been specifically written for the company to control jobs such as

their payroll system[49]· The second type of third party software maintenance is

described by Tang[60]· This is where a third party takes over the maintenance of a

commercially available product. This takes place because, within the example

company, Hewlett Packard, new products are released two and a halftimes faster

than old software becomes obsolete leading to an accumulation of software which

needs support. Therefore, after a product has become stable, the maintenance of

the product is often given to a subcontractor to reduce the number of products

which have to be maintained in house, thus freeing staff for future software

development.

This thesis concentrates on the third party software maintenance carried out by

AGS Information Services. An example of their operation will now be given.

16

When a proposal for maintenance has been agreed between a client and AGS, a

team leader will produce a document describing the site of the client. This initial

proposal is paid for by AGS, but all work after this is budgeted and paid for by the

client. This document is then made available to the members of the team who will

move to the site of the client.

At present this document is paper based. Because this document has to be

maintained for the lifetime of the client, an on-line form of documentation would

be more suitable. This document, as well as being read by the staff at the

initialisation of the project, will also be read by new staff members recruited to

work on the site of the client during later years. It also forms a basis for the

contract between AGS and the client, and so its correctness, and continued

correctness, is imperative.

The third party software maintenance approach has been shown to reduce the

staff turnover in a company[!] as well as reduce the capital expenditure on

maintenance. This is partly done by motivating staff using a software house

environment with a full career path and fringe benefits. This is at least due to the

exclusive use of experienced maintenance staff by the subcontractors, with

trainees never being sent out to a client site. The system of using a separate

company to carry out the maintenance overcomes the problem of junior

programmers having maintenance imposed upon them.

There are several senous problems associated with third party software

maintenance. Firstly, the maintenance staff entering the site of a client follow the

client's guidelines for employees, and thus considerable readjustment has to take

place. The site profile document can be very useful at this point. Secondly, and

more significantly, because the chances of the maintenance staff ever having

worked on any of the client's systems before are remote, a familiarisation period is

17

required. Again the site profile document can be of significant use. This underlies

the necessity for the maintenance of this document.

Technical documents giving low level details of the systems are also found

invaluable. The use of the other forms of do cum entation required by maintenance

staff and especially third party maintenance staff are found in Chapter 3. The

problem of taking over the maintenance of the client's software systems is partly

handled by taking over a client site in stages. This stops the maintenance

productivity level falling too low, though there are invariably teething problems

when the substitution of staff takes place.

2.4 Preventative Maintenance

P!eventative maintenance can be categorized into four different types:

• Inverse Engineering

The process of discovering the requirements specification for a software

system or component, and then re-implementing using modern software

engineering methods.

• Design Extraction

The process of redesigning parts or all of a software system, to improve its

quality, and then re-implementing the design.

• Code Renovation

The modification of source code items based on modern software

engineering principles to improve the maintainability of the software.

18

• Redocumentation

. The process of extracting information from the source code or associated

materials to assist in the analysis of a· system.

The term Preventative Maintenance is being used in this thesis to describe

activities which are sometimes referred to as reverse engineering because the

definitions of reverse engineering are varied and often confusing. One definition

by Bennett et al[5J describes reverse engineering as:

The process of redesigning parts or all of a software system, to improve quality,

and then re-implementing the design.

This definition of reverse engineering implies a forward engineering process

which is also implied by Bush'S[ll] definition ofre-engineering. In contrast to this

Chikofsky and CroSS(lSJ state that:

Reverse engineering is the process of analysing a subject system to identify the

system's components and their inter-relationships, and to create

representations of the system in another form or at higher levels of abstraction.

This definition is similar to Bush'S[ll] definition of reverse engineering except

that it does not contain any forward engineering element but is just concerned

with obtaining greater information of the system by recreating the specification,

design or documentation. This definition of reverse engineering has elements

which also appear in the Bennett et al[s] definition of preventative maintenance

(i.e. inverse engineering, reverse engineering andre-engineering) but without the

forward engineering content.

19

In short the terms are confused, and used interchangeably by different authors.

Thus in this thesis the term preventative maintenance is being used to describe

processes which are often grouped under the reverse engineering banner. The

term reverse engineering used by Bennett et al in the definition of preventative

maintenance can be replaced with the more descriptive term design extraction,

while code renovation can replace re-engineering. This definition leaves one major

omission- Redocumentation. Redocumentation should certainly appear in this list

as the definition of preventative maintenance, described earlier in this thesis, is to

increase the maintainability of a system. By recreating documentation or by

verifying the correctness of available documentation, the maintainability of a

system will be improved, and therefore must be included in a definition of

preventative maintenance.

The four preventative maintenance processes are in order of automation, and also

in order of the changes to the source code. For instance, a complete inverse

engineering process, having regenerated the specification from the code, will then

reconstruct the code using modern software engineering techniques. This,

however, is a very expensive process. At the other end of the scale,

redocumentation has no effect on the source code, but also can prove to be far more

costly than code renovation as often documentation has to be updated from the

specification stage through to the test and maintenance manuals. It is this process

ofredocumentation that is detailed in Chapter 3, while a brief introduction to the

other three research techniques appears below.

2.4.1 Code Renovation

This is the simplest of the three techniques described here, and involves only

making simple changes to the source code while leaving in place any errors that

20

may be present from the design stage or any previous stage of the software

lifecycle[48]· This technique is therefore simply present to make the code more

readable. Code analysis is often suggested to be the most expensive phase of the

software lifecycle[56] and as much as 40% of the software maintenance effort is

spent trying to comprehend the code.

As CalliSS[13] points out, the use of code renovation tools can also make the

documentation within the code in the form of comments redundant or even

misleading. This is a serious problem and can lead to the code analysis being far

more difficult than with the original code. Therefore great care has to be exercised

when code renovation is carried out. In particular strict guidelines have to be

enforced to ensure that any code added is written to the original standards, and

that any documentation accompanying the system is updated. In general this

takes considerable manual supervision as opposed to the desirable totally

automated process. However the RED0[38] project hopes to achieve this by the

production of a tool kit to help with code renovation. These tools will also help

form the basis of a system to help with design extraction and inverse engineering.

2.4.2 Design Extraction

Design extraction is the first of the techniques to refer to a higher level of

abstraction of the lifecycle, as opposed to the implementation section. The

technique is similar to code renovation except that instead of simply unravelling

what could be regarded as confusing code, the system is often totally restructured

using modern design and modularization techniques. An approach for design

extraction and then re-implementation has been developed by Sneed[57]· With the

tests Sneed has carried out the design extraction and re-implementation in a

language not necessarily the same as the first (this is sometimes referred to as

21

reverse engineering or recycling) has lead to an average of more than 33% saving

of time and effort due to the drop in complexity and increase in maintainability.

These results are also supported by a study conducted by Gibson and Sennr2s1

showing reduced error rates and maintenance efforts due tore-engineering.

Sneed's approach to carrying out the design extraction and re-implementation

were detailed by him and JandrasicS[55], and briefly consists of the following:

• Static analysis of the existing program and creation of the necessary data

and data command tables.

• Modularization of the program using the data and command tables together

with some modularization criteria.

• Internal restructuring of the new modules in the design language.

• Manual optimization and adjustment of the new modules in the design

language.

• Generation of structured target language modules from the design

language modules.

As Sneed points all but one of the steps are now fully automated.

There are three main problems with this technique. One of these also occurs with

code renovation, the loss of documentation within the code when the process is

carried out. In addition, when the design of the system is being altered, the design

documentation can be rendered useless. Procedures must be in place to make sure

that the documentation is updated with this process- in short the documentation

22

has to have design recovery implemented on it as well as the code. One final

problem is proving that the program produced is equivalent to the original system.

Design extraction methods to date do not· show whether the code produced is

logically the same as the previous system, and thus it is conceivable that any

system produced from these tools could be different from the original.

2.4.3 Inverse Engineering

A great deal of software, which is still in regular use today, was originally

designed before the development of modern structured design techniques such as

SSADM[211· The source code of a lot of this software therefore has little or no

structure. As the original specification is probably not present, and if it is present

the credibility of it is likely to be low, it is sometimes desirable to recreate the

specifications from the code. When the specification has been fully obtained, then

a forward engineering process can take place to bring the product into line with

modern design standards. As with code renovation and design extraction, care has

to be taken that no internal documentation is deleted or invalidated through the

change.

As stated earlier in this thesis the major activity of software maintenance is

perfective maintenance: the enhancing of a system by adding additional

functionality. When an addition has been made, inevitably the specification of the

system will have changed. Again obtaining a specification of this additional code

is desirable so that the system is fully documented.

23

Yang[70] proposes the following system to implement the recovery of the

specification:

• Understand the software.

• Identify the modification objective and the modification approach.

• Implement the modification.

• Verify the modification.

• Abstract the specification.

To perform the abstraction to a specification, a formal method has been developed

using the transformations of Ward[66l· A major advantage of using formal

transformations is that it overcomes any problems with program equivalence, as

the transformations have been mathematically proven. This technique therefore

provides an immediate advantage over the technique of code renovation described

earlier.

The transformations are now being automated to be used in a tool known as the

Maintainers Assistant[67]· Problems still exist with full specification recovery, the

major one being the difficulty in regaining information lost in the forward

engineering process which occurred at the initialisation of the project. To recreate

the intended specification which may have been lost or corrupted during the

design and implementation processes is near impossible. This project however

brings us closer to retrieving the actual specification. At present, a considerable

amount of manual input is still required, though work is in progress to increase

the automation of the tool.

24

2.5 Summary

Software maintenance is partly responsible· for the current high cost of software.

The use of specialist teams to maintain the software can help reduce costs, but still

there is a large expenditure involved in keeping the software operational. There

have been claims in advertisements that modern fourth generation languages will

not need maintaining. To date this has not been the case. Even if a language that

did not need maintaining was developed, there would still be a vast number of

systems written in other languages which would continue to need maintaining for

many decades to come. Therefore the need for continued research into

preventative maintenance that helps to make the present code more reliable and

maintainable is essential. Although research into inverse engineering which can

help greatly with systems presenting very serious maintainability problems,

there is still comparatively little work being done in the area ofredocumentation.

This subject is discussed in detail in the next chapter.

25

Chapter3

Software Documentation

3.1 Introduction

Documentation is essential for the communication of information which is not

contained in the code alone. The area documentation can cover is great and in the

first part of this chapter the various types of documentation that are typically

produced during a system's lifecycle are detailed. The particular uses of

documentation with respect to maintenance are then described. Finally

techniques for measuring the quality of the documentation are discussed along

with an overview of tools available for documentation.

3.2 Categories of Documentation

In an ideal situation, documentation should be produced throughout a system's

life-cycle, though unfortunately this is rarely the case. Even though documents

may well be produced in all the required phases, the completeness and usefulness

of these documents is often called into question. The reason for the lack of good

documentation is mainly due to two factors. Firstly, most programmers regard

documentation as mundane, and as they can understand their code, so should any

other programmer. The second reason, as stated by Boehm[7], is the huge financial

26

cost of preparing documentation compared with the costs of the other activities of

the software lifecycle. This is illustrated in the Figure 1.

Coding

Documentation

Management

Figure 1
Percentage Costs During the Software Lifecycle

Because of this enormous proportion of the total expenditure attributed to

documentation, and the fact that documentation is often perceived not to add to

the functionality of a product, it is often one of the first areas of software

production to be cut.

Nevertheless some good and relatively complete documentation guidelines exist.

One example is the U .8. Department of Commerce's standards for

documentation[63l· These standards require the production of the following

documents:

• Functional Requirements Document

To provide a basis for the mutual understanding between users and

27

designers of the initial definition of the software, including the

requirements, operating environment, and development plan.

• Data Requirements Document

To provide, during the definition stage of software development, a data

description and technical information about data collection requirements.

• System/Subsystem Specification

To specify for analysts and programmers the requirements, operating

environment, design characteristics, and program specification (if desired)

for a system or subsystem.

• Program Specification

To specify, for programmers, the requirements, operating environment, and

design characteristics of a computer program.

• Data Base Specification

. To specify the identification, logical characteristics, and physical

characteristics of a particular data base.

• Users Manual

To describe the functions performed by the software in non-ADP

terminology, so that the user organization can determine its applicability

and when and how to use it. The users manual should serve as a reference

document for preparation of input data and parameters, and for

interpretation of results.

28

• Operations Manual

To provide computer operation personnel with a description of the software

and of the operational environment so that the software can be run.

• Program Maintenance Manual

To provide the maintenance programmer with the information necessary to

understand the programs, their operating environment, and their

maintenance procedures.

• TestPlan

To provide a plan for the testing of software; detailed specifications,

descriptions, and procedures for all tests; and test data reduction and

evaluation criteria.

• Test Analysis Report

To document the test analysis results and findings, present the

demonstrated capabilities and deficiencies for review, and provide a basis

for preparing a statement of the software's readiness for implementation.

The U.S. Department of Commerce's standards also relate the preparation of the

documents to various points of a system's lifecycle, as shown in Table 1.

Each section of the Department of Commerce's standards is complemented by

other publications, for instance the IEEE 830 Software Requirements

Document[34] which is a good example for a Functional and Data Requirements

document and could be used to replace the Functional Requirements and Data

Requirements documents in the Department of Commerce's guide.

29

Development Phase
Initiation Operation

Phase Definition Design Programming Test Phase
Phase Stage Stage Stage

Functional System/Sub Users
Requirements system Manual

Documents Specification

Program Operations
Specification Manual

Data Data Base Program
Requirements Specification Maintenance

Documents Manual

Test Plan Test Plan Test
Analysis
Report

Table 1

Though the Department of Commerce lists maintenance documentation, it only

appears in the programming stage. Within their structure there is no facility for

any documents to be produced detailing updates or changes to the system, and no

facility for updating any of the previously produced documents to make sure they

are still valid after any changes have been made during the operational phase.

This is a serious omission in an otherwise well-structured approach to

documentation. To partly overcome this omission; a System Maintenance Journal

as described by Martin and McClure[43] could be used in the operation phase. The

contents are described below:

System Maintenance Journal:

• Change philosophy

• Quality preservation I improvement strategies

• Problems

30

• Trouble spots

• Change I Error history

Using a journal system still does not address the problem of updating or

maintaining the documentation.

As has been stated earlier, the costs of producing the documentation to these

standards is immense. This is not the only problem. As the size of programs has

increased exponentially with the plummeting hardware costs, so has the size of

the documents produced. As stated by Singleton[53], NASA scientists measure the

test output of one run on the Space Shuttles software by the ton. Not only does this

give enormous problems trying to store the documentation, but it also produces

major access problems. The documentation becomes so large that finding the

relevant piece of information within it without an exceptional automated index is

very time consuming. The problem is compounded by trying to maintain

consistency between all sections of the documentation.

3.3 Documentation and Maintenance

A survey has shown that the two major problems in understanding a system[16]

are the lack of documentation and incorrect documentation. This is disturbing as

one of the main activities of maintenance staff is that of understanding a system

and its associated code. Documentation has always been given a low priority

status compared to other activities in software development. Documentation is

nearly always left to the end of a project, and as projects invariably run late, the

documentation produced is often reduced from the amount that was originally

31

intended, or even completely cancelled. It is not unusual for the only

documentation concerning the design of the system to be contained in comments

within the code itself. If restructuring takes place, this information can be lost or

can become inappropriate.

Some information is useful as comments within the code itself, especially when it

describes a complex piece of coding, however, design information should not

appear within the code itself, but should be within attached documents. It is the

lack of this design information that can make the maintainer's job of

understanding the system more difficult. This information can be even more vital

when third party maintenance is being carried out on a system, where

maintenance staff will not have been previously exposed to the code.

A possibly greater problem in maintenance than the simple lack of documentation

is the presence of incorrect or unreliable documentation which is often found to be

the case in older systemS[391· Finding a small section of the documentation to be

misleading can result in the whole set of documentation being discarded as

useless. One of the more recent ideas is that of self documenting languages, as

claimed by some 4GLs. Though this may help the maintainer understand the code

itself, it will not give them an insight into why a certain procedure was written in

a particular way, or why a design decision was made. It is often the information

contained within these last two classes which is most valuable to the maintenance

staff.

Even if a truly self documenting programming language were developed, then it

would still be of no use for the maintenance of old code, the majority of which is

written in COBOL or Fortran. Neither of these languages can be described as self­

documenting. Unfortunately the momentum of these languages will ensure their

continued use for many years to come[71]· The language C, along with the UNIX

32

operating system, is now _becoming more popular especially within financial

institutions. It is envisaged that the maintenance of this software will cause great

problems within the next decade due to the features of the language which can

make the code very difficult to understand if the programmer so desires.

Even within maintenance, documentation is often not produced despite the

maintainer's view that it is useful. Thus the documentation produced after a

maintenance task has been completed is often inadequate in relation to the

magnitude of the system change[4]· A reason that the documentation is

incomplete is that it is often regarded as laborious, and there are very few good

tools to assist with it. A documentation tool allowing the user to record any ideas

about the system, and for someone else to be able to retrieve this knowledge would

certainly be useful.

It is not always possible or cost-effective to completely reproduce the design

documentation or specification from the source code, and it has not yet been

established whether this is the most suitable form of documentation for software

maintenance. To attempt to reproduce complete documentation is expensive. It is

therefore important to try and identify a method that will allow redocumentation

to take place gradually during the maintenance activity while the maintenance

programmer is extracting information. A system for incrementally redocumenting

old systems in this way has already been described by Foster and Munr0[25l and by

Fletton and Munr0[24]· Adopting this approach should also allow for the

maintenance staff to enter what details they feel are important for the

maintenance of a particular system.

33

3.4 Measuring the Quality of Documentation

As described earlier in this thesis, the quality of documentation can be crucial to

its use by maintenance staff. The problem comes when trying to define what is

meant by the ((quality of documentation". It is often more suitable to try and

define what is meant by uadequate documentation", i.e. documentation that is

satisfactory in quality.

Arther and Todd[4] have formulated a general taxonomy for the evaluation of

computer documentation represented in a tree model, see Figure 2. The tree's leaf

adequate documentation

accuracy completeness usability expandabili ty

Figure 2. Decomposition into Qualities

nodes display the various qualities of the documents. This tree representation of

documerit adequacy therefore fits in with our definition of adequacy - the

satisfaction of quality. Below, a description of each of the quality indicators is

given.

34

3.4.1 Accuracy

Accuracy in a document is probably one of the most important attributes. As

stated earlier in this thesis, if one part of the documentation is found to be in error,

then this calls into question the rest of the documentation associated with the

system. As well as not containing straight factual errors, the documentation, to be

accurate, must reflect the current state of the system, and not that of a previous

release. In this case the documentation is strictly correct, but inconsistent with

the code. Other inconsistencies, such as differences between requirements and

design documents are also frequently present.

Presence of the latter form of inconsistencies can often explain why a system has

not met user expectations and also has serious implications for the system in the

form of the ripple effect. An inconsistency at the junction of the specification and

the design can lead to non-intended features in the code, test manuals, and

maintenance manuals, in short throughout the system's life. An inconsistency

between the implementation manual and test manual is therefore less serious, but

still a problem.

Along with inconsistency, traceability is often a problem, with the route between

the requirements and the implementation either non existent or obscured. The

lack of traceability within the system can make the analysis of code with respect

to other areas of the system lifecycle difficult. This lack of traceability implies

either inaccuracy in the design of the system, or at least in the design of associated

documentation.

35

3.4.2 Completeness

Completeness is the percentage coverage of the documentation with respect to the

whole system.

Maintenance work is normally exhausted on a small area of the code. As

Fletton[23] states, 80% of the maintenance effort is expended on 20% of the code.

Therefore do you need 100% completeness of documentation? However it is

difficult to establish beforehand which sections of a system will require

maintenance. If the implementers knew this then these areas would probably be

corrected before release.

We must conclude, not knowing which areas will produce trouble in the future,

that 100% completeness is ideal at release. If the system documentation, when

reaching the maintenance phase, does not have 100% completeness, and problem

areas are beginning to be identified, then the documentation can be updated

incrementally. This is discussed in Chapter 4.

3.4.3 Usability

Usability, in documentation terms, is the ease with which the reader can obtain

the necessary information from the documents. This therefore covers several

areas: readability, suitability and accessibility.

The areas of readability and suitability are covered in great depth by

Guillemette[29], and these attributes have a great effect on the reader. If the

reader is not appropriately addressed by the author, then the documentation can

be rendered useless. For instance it is imperative that user documentation is not

36

too technical, and technical information should not describe features of the

language the system is written in but the system itself. These may sound obvious,

but such errors are present in a large amount of documentation.

Within usability comes accessibility. This term covers two areas. Firstly

documentation must be obtainable by the user and must be in a form that they can

readily access. If the user cannot get the documentation when it is needed because

the form of storage was not suitable, then the vast cost in producing the

documentation has been wasted. Accessibility also identifies the problem of

accessing information within a document itself. As James stateS[36], a vital article

buried in a stack of irrelevant papers is almost as unavailable as if it had never

been written. As discussed earlier, the size of documentation can be enormous, and

therefore it is essential that an adequate indexing and retrieval system is

available to the reader.

3.4.4 Expandability

Expandability is defined as increasing either the volume, extent or scope of a

document. This attribute is vital for the maintenance of documentation. If

facilities for updating the documentation along with the code are not present, then

the documentation can be rendered useless by a new second release. Great care

has to be exercised when updating documentation so that useful information is not

discarded or deleted. Clear procedures for making these updates have to be in

place to stop useful documents being ruined by incorrect or inconsistent

information.

37

3.5 Existing Documentation Tools

Documentation tools are available, but are less common than many other tools to

help with software production.

There are at present three main types of documentation tool, automatic

documentation tools, documentation environments, and specialist documentation

tools. The tools listed here are mainly those for use with COBOL, but others with

particular merit are also listed.

3.5.1 Automatic Documentation Tools

Automatic documentation tools are mainly available for use in COBOL

environments. Most take the form of static analysis tools producing a series of

reports.

Cross referencers

Nearly all standard COBOL compilers can produce a cross reference listing. Such

listings give information on the declaration and usage of working storage and

functions. More complex cross referencers can be purchased, some of which give

additional information on the type of statement involved at each reference.

Typical examples of these cross reference generators are Autoref, CICS-OLFU and

SELLA, though the latter comes as part of a reformatter and complete

documentation package. The use of these tools can help in navigating around

unfamiliar code, though the form in which the output is produced is invariably a

report. This information makes more sense when viewed in parallel with the

source code. The online viewing of source code on a windowed display would

38

certainly be an improvement, as it would be the automation of a process typically

done by maintenance staff.

SOFTDOC

SOFTDOC[37] is a typical documentation tool based on the static analysis of

COBOL or PL/1 code. It produces module tree graphs, HIPO diagrams, internal

and external interfaces, control flow graphs, data reference tables, test paths, and

symbolic constants to help the maintainer with the analysis of a system. The

information produced is usually in the form of paper based listings, possibly not

the ideal form for code analysis.

C Information Extractor

As with SOFTDOC, the C Information Extractof[I7] obtains information on a

system, written inC, but provides the information within a relational database as

opposed to a listing. This allows the maintainer to ask questions as to the calling

and use of variables within the system. This is a major step forward, as it

implements information hiding, allowing the user to see only the data which is of

immediate concern and not allowing irrelevant data to confuse their train of

thought.

SIRE

SIRE is a full text retrieval system to help locate and manage a huge amount of

text. As source code and associated documentation are all in the form of text, it

seems natural to consider such a system for use in software maintenance[15]· Full­

text retrieval works by taking every word in a file and putting them into an

inverted table to enable the quick retrieval of the file's contents. Often within

software maintenance it is necessary to find the definition, setting and use of

variables, and here the use of an inverted table is extremely effective. SIRE works

39

only on a single file present on an IBM PC or DEC VAX using a negative

dictionary, either a default system version, or one provided by the user.

ZyiNDEX

Like SIRE, ZyiNDEX is a full-text retrieval system, although it differs in the fact

that it can use multiple files present on an IBM PC and can use phrase query

keywords based on Boolean and adjacency operators.

3.5.2 Documentation Environments

Over the past few years a number of documentation environments have been

written enabling the user to produce and manage textual and graphical

documents for all phases of the software lifecycle. Most of these environments

support traceability, central storage of all documentation relating to a project, and

the enforcement of a standard layout to the documents produced. A selection of

these tools is discussed in this section.

Modular documentation

Though not strictly an environment, modular documentation proposes a method of

having a family of documents based on the decomposition of any system into

specific levels of abstraction[2], namely:

• System

One or more maJor components - subsystems that fulfill the user

requirements.

• Subsystem

One or more programs that represent a major system component.

40

• Program

A collection of modules that fulfill a logical function.

• Module

One or more logically related procedures that may be compiled and

controlled separately as a unit.

• Procedure

An identified portion of a module consisting of language statements that

can be activated on demand.

• Statement

A collection of data elements declarations and language statements.

This top down approach is then split into documents to be produced during the

design stage (system, subsystem, program and module level) and then the

implementation stage (module, procedure and statement level). This approach

presents a method for completely documenting a system during the development

stage, though unfortunately lacks any information with respect to the

maintenance phase, though it could easily be extended. This could be done by

splitting the documents to be produced into three, rather than two, sections:

design, implementation and maintenance. The amount of maintenance carried

out on the source code would determine which sections of the documents would

have to be changed.

FORTUNE

The FORTUNE[44] documentation system helps to produce and manage

documentation for a system, based on the software lifecycle. Documents from

requirements, design implementation and testing stages are stored. It is then

41

possible for hypertext style links to be added so that traceability between the

documents can be seen. This is of great use to the maintenance staff if the

documentation has been prepared using this method. It is also easier to know

which sections of the documentation will need to be changed if a section of the

source is changed. It can also give details on other areas of the code that may be

affected by a change. If a complete redocumentation is required, then this system

would be of use, but for incremental documentation it would be oflimited use.

SO DOS

SODOS (Software Documentation Support)[32] is a tool based on data abstraction

mechanisms to help with the definition and manipulation of software during the

definition stage. SODOS is used on top of a data base management system and an

object based model of the software life cycle consisting of requirements definition,

functional requirements, architectural design, implementation, integration and

test, maintenance, and configuration management. In the construction of

documents, all information is put into the structural database so that it can be

referred to at a later point in the development or maintenance. By use of a

structured model within SODOS, the traceability of information should be

apparent. This has great use in the maintenance phase, as requirements can be

traced through to the implementation and testing.

DIF

The Documentation Integration Facility (DIF)[27] is a hypertext based system to

manage and integrate the documents produced throughout the system lifecycle.

Not only does it integrate documents from within one project, but it also integrates

the documents from several projects. The eight point lifecycle used is traditional,

only relating to the design, implementation, and testing stages, and not the

maintenance stage of the software though it does have facilities for a maintenance

42

manual. DIF provides facilities for the parallel development of documents, and the

reuse of documents already constructed.

Also of greater interest are the facilities for browsing the documents with the use

of hypertext links. During the development, information on the software is stored

in textual objects or hypertext nodes. The user may navigate between the various

nodes of information by way of hypertext links. As Fletton[23] points out, the

effectiveness of this system is dependent on the skills of the author in splitting the

documentation into nodes, which in the case of software documentation is not

always obvious.

SOFTLIB

SOFTLIB[58] is not a tool to help with the preparation of documentation, but a

documentation library based under UNIX. Documentation is split into sections

relating to software components, defined as an area of code that has a

specification. This is a very different approach to the lifecycle approach used by

DIF, Fortune and SO DOS. The authors of the system claim that increased reuse of

the software is obtained if this method is used. However this approach makes

gaining an overview of the system difficult and can also make it difficult to see

how the overall requirements of the system relate to the implementation. It does

however provide useful facilities to help with the checking of consistency between

terms in a set of documents produced for any one system. Completeness of the

documentation is also checked as each part of the software has a pre-defined

document that is required to be completed.

Concordia

Concordia[65] is a development environment for technical writers, acting as an

extension to Genera, the software development environment provided on

43

Symbolics computers. The central component of the system is a document

database of independently accessible records maintained and written using

Concordia. Retrieval and reading of the documents from the database may be

made using the Document Examiner[64], a window based utility. Concordia itself

provides the framework, organizing the tasks and activities in the document

lifecycle using the three sub-activities of text editing, graph editing and

previewing, of which the former is the most used. With a typical WYSIWYG

editor, the appearance of the final document is presented as the issue of greatest

importance, leaving the user to concentrate on the structure and content to a

lesser extent. Concordia moves the emphasis to categorise the information for

display- text, headings, tables, and lists, using a generic markup language so as to

make the author concentrate on content rather than form. This is an important

issue, and a system such as Concordia capable of maintaining the configuration of

a large number of documents could prove useful in a maintenance situation

ensuring that documents of quality information rather than quality presentation

are produced.

Documents written using Concordia are stored in a hypertext database. This

documentation is then viewed using the Document Examiner. This a hypertext

based system allowing the user to move around the documentation stored within

the database by going from one hypertext node to another. The user can also be

presented with a graphical view of their current position in relation to other

documents present and the part of the system they are currently examining.

44

3.5.3 Other Documentation Tools

Several tools also exist which don't fit into the previous two categories. These are

discussed in this section.

DOCMAN

The Documentation Based on Cross Referencing Tool (DOCMAN) ha's been

developed by BT in collaboration with the University of Durham. The tool uses

three main componentS[25]:

• UXREF

A mixed language, multiple file cross-referencer.

• TEXTREF

A tool for adding documentation information to the cross reference.

• IXREF

Interactive interface to UXREF and TEXTREF.

Thus the user may display textual information on selected variables and enhance

the present documentation. The authors suggest the use of three distinct types of

documentation:

• Encyclopredia Documentation

Detailed information containing information to help with the analysis of

the code, providing information on the exact nature and use of variables,

function return results, etc.

45

• Glossary Documentation

Reference information on the definition of terms and phrases with special

reference to a specific system. For instance, the term quality assurance can

refer to a general statement when used within certain projects, and to a

specific set of goals which have to be achieved in other instances. In the case

of the latter the glossary should contain information on the exact goals to be

achieved leaving the reader in no doubt to the standards that have to be

met.

• Overview Documentation

General information on the system giving information that would be

particularly useful to the new maintainer of the system. This

documentation is designed to give a general overview of the whole system,

describing, for instance, how the system fits together and a high level view

ofhow the various programs interface with each other.

Since the original work by Foster and Munro described above, Fletton[23,24] has

developed the ideas by adding a hypertext based front end onto DOCMAN. This

interface allows the user to view the code, and documentation in parallel. The

system takes the information from TEXTREF and sets up the hypertext links

between the code and documentation. The user can then highlight one of the

referenced items and automatically find other occurrences of the variable in the

code, or any reference to it in the documentation. This therefore allows for rapid

viewing and analysis of the source code enabling far quicker understanding of the

system.

SEE LA

As part of a full reverse engineering tool, SEELA[31] provides a tool to help with

the maintenance of structured programs written in a variety of third generation

46

languages including COBOL. This is done with the use of four productivity tools: a

structure editor, a program browser, a program formatter, and a program

documenter. The system analyzes the source code and displays it so that it is

represented in a program design language (PDL). The reader is then made to focus

their attention in the form of program blocks, each block appearing in a window.

As well as providing an environment for documentation, module cross reference

listings and other similar reports could also be produced.

One of the disadvantages of the system is the possible loss of code documentation

as code is displayed in the PDL. Also by allowing users to move program blocks

easily around using cut and paste techniques, care has to ~e observed that code is

not "hacked" by the user and that proper design methods are maintained. Though

a great deal of facilities exist for automatically generated documentation, no

facilities exist for maintenance or production of any traditional textual

information.

PAID

The Partially Automated In-line Documentation tool[33] uses software metrics to

determine where comments should be present within the source code of a program.

The guidelines for where comments should be inserted are as followed:

• At the beginning of the program to give the name of the author, title of the

program, object of the program and methods used by the program.

• In the declaration section to explain variables, data types, record

structures, etc. used in the program.

• At the beginning and end of each block.

47

• Within the program and/or block body as deemed necessary (particularly in

sections of code that are notoriously difficult to maintain, such as recursive

routines).

Although the first three guidelines are implemented easily, problems occur trying

to implement the fourth guideline. PAID uses a textual complexity measure to

determine the need for documentation. This fourth guideline is going to be

different for different languages, for instance, pointers in C can cause particular

problems. Having determined where comments are required, and if no such

comments exist, the user is asked to add appropriate documentation. As stated

previously, only a relatively small area of the code needs maintenance, and

therefore the need to go through the whole program and comment it is

questionable. Also this tool only makes sure documentation is present at critical

points, but it does not concentrate·on the quality of the information provided. This

could be a serious omission.

3.6 Summary

At present the documentation tools that exist are mainly for use in the

development stage of the software lifecycle, where the documentation initially is

formed from user requirements and refined through the design process to

eventually produce code. This is especially true of documentation environment

tools. In software maintenance the emphasis is more on analysis of the code, and

producing documentation from this analysis. The tools for producing

documentation in the maintenance phase are, in the main, cross reference or

structure chart generators, though there are now tools to help with the production

of traditional text for use in the maintenance phase, though these are aimed at

code level documentation.

48

All the documentation tools reviewed are, however, incomplete for use in third

party software maintenance, for generally they have no facilities for providing an

overview of a system or site on which the systems reside. This overview is

essential during the initial take-over of the maintenance of a system described in

section 2.3. Also none of the documentation tools produce documentation to help

with the management of maintenance. Finally the documentation tools in

production are also incapable of dealing with previously produced paper-based

text. A solution to overcome these problems is discussed in the remainder of the

thesis.

49

Chapter4

Requirements for a
Redocumentation Tool

4.1 Introduction

This chapter describes the requirements for a redocumentation tool. First the

facilities which have been identified as necessary for use in a third party situation

are discussed. Secondly the environment in which the author anticipates that the

tool will be used is described.

The information collected is based on that supplied by AGS Information Services,

one of the largest international third party software maintainers, and for whom

the research has been conducted. The requirements for a redocumentation tool,

outlined below, are derived from the requirements identified from the analysis of

their operation at AGS's head office, in London, and the Rank Xerox UK Ltd. site

in Uxbridge, Middlesex.

4.2 Required Facilities for a Redocumentation
Tool

In an ideal situation a complete documentation tool should allow the user to write

a full set of documents for any given system. When dealing with redocumentation

50

it is important to consider any documentation that might already be in existence.

Within a third party maintenance environment, these documents may be of vastly

different formats. As stated in Chapter 3, in many cases up to 80% of the

maintenance effort is expended on only 20% of the code and thus it may not always

be necessary to produce a complete set of documentation. A tool therefore, to be

used in redocumentation, should not force the maintainer into completely

redocumenting a system, but should allow for the documentation of only the part

of the system causing the greatest maintenance effort.

At this point it should be noted that the author does not condone partial

documentation of a software system at the time of production as this negligent

attitude has contributed to the maintenance problem. As far as is possible,

documentation should be 100% complete on delivery to the users. It is also

essential to remember that a document may have several different versions for

different versions of the software, all of which have to be catered for. With

reference to these points, an eight point overview of facilities was constructed by

Freeman and Munr0[26]· This has since been refined and expanded and now forms

the basis of the requirements for a redocumentation tool. These ten requirements

will now be described.

4.2.1 Support of Four Documentation Activities

Documents which are useful must undergo changes in parallel with the system to

prevent them loosing their applicability. Changes will come under four headings:

• Corrections to the documentation.

51

• Updates to the documentation so that it remains relevant to the updated

system.

• Additions to the documentation to give the reader added information.

• Changes to the documentation to increase its maintainability.

The first requires replacement to parts of the existing documents to increase the

accuracy of the text. The second requires changes to part or all of the

documentation so that the additional functionality of the system, or the new

environment is represented in the documentation, thus making sure consistency

is maintained between the code and text. The third requires that an additional set

of documentation is prepared so that the documentation covers all parts of the

system, while the fourth may improve the readability or layout of the text, but not

the contents. A documentation system must be able to cope with these four

maintenance documentation activities, which are directly equivalent to the four

maintenance activities listed in Chapter 2.

4.2.2 Configuration Control of Documents

During a system's life time code is frequently changed, and as stated above, the

documentation should also be altered. Often several versions of the code will exist

running on different systems, or with different functionality. It is essential for a

documentation tool to be able to cater for these different versions, making sure

consistency is maintained between the code and documentation.

52

4.2.3 QA Procedures

It is often necessary for the quality of a document to be assessed so as to assertain

whether it is being updated properly. By applying built-in procedures which show

details of how the document is being updated, a manager can easily acquire the

information to determine the success of the documentation policy, in use during a

particular project. The quality assurance aspect can also apply to the code. By

analysing the documentation being produced, it is possible to see which areas of

the code are producing most problems. As discussed earlier, only a small part of

the code seems to cause most problems, thus, if the documentation can show which

parts of the code are causing the greatest maintenance effort, procedures to carry

out preventative maintenance on these areas can be set in motion. This is only

possible if documentation is being prod_uced by the_maintenance staff.

4.2.4 Enforceable Standardisation of Document Layouts

Often, documents are written in a very ad-hoc manner, to the author's own

design. This can lead to frequent omissions and make it difficult for other users to

read the documentation. If documentation is written to a high quality standard

initially, the need for redocumentation would be vastly reduced. It would not,

however, be completely removed as document maintenance is required, in parallel

with software maintenance.

Having an enforceable standard partly overcomes the problem of omissions in the

text. As stated earlier in this thesis, a third party software maintenance

environment can cause problems with trying to gain uniform standards for

documentation across all the client sites. This is due to different sites having their

own in-house standards, and in this case it would not be appropriate for a contract

53

company to enforce new standards, unless requested. There is however a

possibility for documentation to refer to existing standards of code and

documentation. The third party maintainer should attempt to bring the

previously produced documentation up to the standard set by the parent company,

and therefore any tool should help with this. It is however acknowledged that the

maintainer's priorities lie in improving the documentation relating to the code

taking the greatest maintenance effort, and that this is brought up to the pre­

defined standard.

4.2.5 Facilities to Incorporate Any Existing Documentation

It is essential to be able to incorporate any existing documents, in the suite of

documents for a system, without having to retype them. This is due to several

factors. Firstly the cost of retyping the documentation for a complete system, so

that it is in machine readable form, would be immense, both in manpower and

processor time. Also, as stated earlier, a lot of the documentation is out of date

and/or oflittle use to the maintenance programmer. If this is the case it would be

pointless retyping documents whose use will be, at best, minimal. It is therefore

desirable for a documentation tool to be able to incorporate details of this external

documentation so that it can be traced from within the tool. This should help to

alleviate needless expenditure.

If, at a later date, a piece of information is found to be in regular use, and found to

be accurate, then a procedure should exist for making the information available,

on line, through the documentation tool. At this point the documentation should

be brought up to the latest desired standards resident within the company.lt is for

this reason that the comparatively simple use of a scanner to read in the text is

54

not advised. Instead a rigorous procedure making sure that any inaccuracies or

inconsistencies within the currently existing data should be enforced.

4.2.6 Automated Parallel Viewing of Documents

As stated in Chapter 3, most COBOL compilers are capable of producing a cross

reference listing. It would be ideal for the maintenance personnel to be able to

view the code at the same time as the cross reference information, which has

frequently been found to be beneficial when analysing how the code uses areas of

working storage or functions. By using a windows based system, this is possible. It

is also desirable to be able to present the documentation on screen at the same

time, so as to increase the speed of analysis even more by increasing the

parallelism of the viewing.

Having the three types of textual information on screen as described above,

though making systems analysis more efficient, does not have as higher a

productivity gain as can be achieved when the documents are linked. This gain is

due to all the information present on the area of immediate interest being

presented to the reader; this removes the need for the searching of documents to

retrieve required information. Being able to scan the code, and at the touch of a

button, being able to read any relevant documentation and cross reference listing

relating to the chosen area, decreases the effort in code analysis by reducing the

effort taken to retrieve information.

55

4.2. 7 Creation of a Hierarchical Document Structure

Documentation should be at various levels of detail, ranging from a broad

overview of the client site which would help to act as an introduction to new

members of the maintenance team, to very detailed descriptions of certain areas of

the code. The documentation could be envisaged as a tree-like structure, the user

starting at the root node, and then working through the appropriate number of

levels by traversing links, and possibly to a leaf node if that level of information is

required. By incorporating such a method, which also embeds a high level form of

information hiding, or more strictly a method where the user only receives

information on a restricted area, the new maintainer is not swamped by

information, and the seasoned maintainer not distracted by introductory

information which is of no concern to him.

4.2.8 Casual Updating of the Documentation

Documentation, as well as being viewed casually, should also be capable of being

updated casually; thus a maintenance programmer can add information on the .

system at various points through the system's life. This allows for a more complete

set of documentation in the long run. The problems which can occur with this

method are making sure that the accuracy and completeness of the documentation

is maintained. Regular checks have to be made to make sure that the authors of

any documentation are, firstly, making any necessary corrections to documents

that are found to be in error or lacking information, and secondly that what they

write is correct and of a pre-defined quality.

56

4.2.9 Easy And Interesting To Use

One of the major problems with documentation is that it has not been updated, or

not completed in the first place. A good tool will encourage the users to produce

documentation for their system eliminating this problem. If the system is too

complicated to use then time, and therefore money, will be wasted by the operators

learning to use it. A very complicated system will also discourage the·casual user.

A system based upon the mouse paradigm of point and click, providing a simple

user interface, such as Windows 3.0, is therefore appropriate.

4.2.10 Selected Viewing of Areas of the Code

When viewing a large program, it is often easy to become distracted by code which

is of no immediate relevance. For instance when working on the analysis of the

use of a variable, the analyst often only requires details of the setting, use, and

change of that variable without having other areas of code to confuse the issue. It

would therefore be desirable to be able to view selected areas of the code, for

instance only viewing the areas concerning a single variable. By using a

windowing system as described in Section 4.2.5, it is possible to display a

restricted view of the program listing in parallel with code and documentation to

help with code analysis, and make the understanding of certain areas of the code

easier. Again this is implementing the principle of information hiding.

4.3 Operational Environment

For a redocumentation system to be of any use it will have to be tailored for the

environment in which the documentation will be needed. In a general

57

maintenance environment, documentation, whether existing or newly written, is

only needed on the site where the system is resident. With third party software

maintenance the situation is not as clear: Details on a site and the working

environment present at the site have to be accessible at the head office of the

company doing the software maintenance. This is so that any new staff of a

maintenance team can become familiar with their working environment. Some of

this information may also be required at the site, though in an abridged form so

that information which could be regarded as sensitive to the client is not

available.

Therefore there are two distinct environments for the use of the documentation,

the maintenance site, and the contracted company's head office. We shall deal

with these two issues separately.

4.3.1 Site Environment

The major data processing facilities owned by the vast majority of AGS's

customers use IBM mainframes running systems written in various dialects of

COBOL. Other languages which are used are in the main PUl and Fortran. We

are initially only going to concentrate on the redocumentation of COBOL

programs as they are by far the most common.

The redocumentation system has to be able to communicate with these IBM

mainframes, though for future implementations it must also be flexible enough to

be able to cope with the now increasingly diverse hardware set-ups.

In an ideal world it would be desirable to have the redocumentation tool resident

on the mainframes. There are, however, several arguments against this. Most of

58

the computers do not have the graphical support necessary to display windows

based WYSIWYG editors already identified as useful. Secondly processing time is

at a premium on most of these machines,- and is charged. Most windows and

hypertext based programs are extremely memory intensive, and thus, having a

documentation tool running could seriously damage the performance of other jobs.

Finally, space is often extremely limited on these machines and also charged for.

Therefore the tool will have to be resident on a host which has connections to the

mainframe so that it is not resident in chargeable space.

Most sites now have a selection ofiBM Personal Computers (or clones) which are

often connected to the mainframe using an X25 link or similar. It is therefore

possible for one to download software or text from the mainframe to the P.C.

Several machines, including the P.C., Apple Macintosh, and Xerox 6085 system,

were considered for the role of running the documentation tool. Even though the

latter two are probably better machines in terms of the facilities for text

processing, the P.C. was thought to be the optimum environment due to their

presence within most of the large data processing sites. COBOL listing files and

any documentation can be down-loaded to the P.C. from the mainframe and the

user does then not have to be concerned with incurring large bills or the

degradation of other users' jobs because of the excessive use of the mainframe.

Having established the hardware for such an environment, the issues of software

must be considered. At the requirements stage this cannot, and should not, be

finalised as this is more of a design and implementation priority. It is, however,

reasonable to assume that the software will reside on a windows based

environment with facilities to enable the implementation of links enabling the

automated parallel viewing of documents detailed earlier in this chapter.

59

4.3.2 Head Offjce

Documentation will also need to be stored at AGS's headquarters where

documents from the top of a hierarchical structure are of most use. Current

documentation giving a high level overview of the client sites already exists on a

Xerox 6085 machine running the Viewpoint operating system. Though there are

obvious problems associated with having documents in different environments,

the documents that exist and are required at head office are different from those

used on site. The problems of moving the documentation from one environment to

another therefore outweigh the difficulties in retyping the documentation on a

P.C. based system. Therefore the parts of the system to be used at the head office

will be required to run on the Xerox 6085 running the Viewpoint operating

system.

4.4Summary

The redocumentation aid will be resident in two separate environments, P.C.

based for the information to be used on site, and Xerox based for that residing at

the head office. Ten major requirements regarding the facilities that have to be

present for a redocumentation system for use in third party software maintenance

have been identified. Two of the requirements listed specify the need to generate

links between or within documents. It is this area that is discussed in Chapter 5.

The remaining requirements form the basis of the documentation tool described in

subsequent chapters of this thesis.

60

Chapter 5

Hypertext

5.1 Introduction

This chapter describes the basic principles of hypertext, a system based on nodes

of information with traversable links connecting each node. An overview of

hypertext origins from non-computerized card storage systems to present day

systems is given. The facilities and typical uses of hypertext system is then

discussed. The use of links within a redocumentation and third party software

maintenance tool has already been identified. The use of hypertext for setting up

links used in software maintenance is evaluated and is discussed in this chapter.

5.2 The Origins of Hypertext

Hypertext is an approach to information management in which data is stored in a

network of nodes connected by links, with each of these nodes containing, for

example, text, graphics, audio or video information, as well as source code[54]· The

idea of a hypertext system was first conceived by Bush[I2] in 1945 with his

description of "Memex". This system enabled the storing of books, records, and

communications while allowing increased efficiency in the viewing of the

documents. This was done by modelling the storage system so that it was similar

in structure to that of the human memory, operating by association. When the

61

mind focuses on an area, it can snap instantaneously to the next area suggested by

the association of thoughts.

This concept of a complex web of associations being implemented using software

was first put forward by one of the pioneers of hypertext, Nelson[47], and was first

demonstrated in 1968 by Engelbart[22]· The basic concept applied to computers, as

described by Conklin[19], is quite simple:

Windows on the screen are associated with objects in a database, and links are

provided between these objects, both graphically (as labelled tokens) and in the

database (as pointers).

An example of the correspondence between the two is shown in Figure 3. In

window A, a word b, also a link, has been highlighted. The pointer in the database

corresponding to link word b causes window B to be opened with the text from

node Bin the database, displayed.

In a standard Hypertext application, hundreds of these links can be expected. The

generation ofindividuallinks is often relatively simple with the use of a graphical

window based environments allowing the user to create the links by specifying the

connections between two nodes using a mouse[69l· However it requires skill to

structure a document to make the greatest use of hypertext's flexibility and

structure.

5.3 Uses and Facilities of Hypertext Systems

One of the most basic forms of hypertext system is the set of3" X 5" cards that are

often used for note taking. The cards typically have two fields, the first a keyword

62

A

~
" B

\

\ 0 I
I
I --[!]- I -G--
I I

\ I I

\ I I
\ I I
\ I I
\ I I
\ I I

r--------------~--+---~---------------,
\ I I
\ I I

I I
I I
'h I

Hypertext Database Representation

Figure 3
Hypertext Representation

on which the card will be indexed, and the second the detailed text relating to the

first field. These cards are then stored in a box either in alphabetical order, or to

some predefined sorting scheme. Dictionaries with cross references to other

sections, and Bibles with references to other books, chapters and verses, are

examples of other forms of hypertext system, as to some extent is this thesis with

cross references to other papers. These basic forms of hypertext have been in

63

existence long before Bush formalised the ideas of a system working on links. The

ideas behind hypertext have therefore shown its use and applicability due to its

continued use over several centuries though· in a somewhat primitive form.

More modern hypertext systems, and the type which are of interest to the

computer scientist, are non-manual, computer-based systems. Such systems

normally contain the following facilities:

• Link and Node Database

There is a link node database that contains the information which the

system uses to allow navigation through the hypertext system. The nodes

can be textual, graphical, audio or even executable code which is run when

the node is accessed.

• Multiple Window Interface

Each window that is displayed only holds the information held in one node

of the database. A hypertext system does not fulfill its potential if the user

can only display one node, or window of information. By being able to view

several pieces of related information at one time the speed of

comprehension can be increased, as the reader can cross reference between

the related documents without having to flick between nodes of

information. It should be noted, however, that allowing too many pieces of

information to be displayed at once· can also lead to confusion because of the

quantity of information present on the screen at any one time .

. • Multiple Links Within a Document

As can be seen in Figure 3 each node can have more than one link. If each

node has only one link, then the nodes become ordered in the form of a list

and therefore form a sequential document.

64

• Multiple Browsing Options

As well as being able to scan forward from node to node, most hypertext

systems allow the user to navigate by using an index of terms, and also by

reviewing the route that has been taken to get to the present information.

The latter is important as it is often easy to get lost within the complex web

of a hypertext system. The ability to backtrack is also widely used and thus

saves the reader from having to repeat the traversal of some or most of the

links to reach a piece of information that had been viewed only a few steps

previously.

The use of computer based hypertext systems has not been as great as could have

been expected with the prevalence of cross referencing in manual text based

systems, as described at the beginning of this section. Although with computerised

documents, cross reference information often exists, it is still rare for this to be

automated. This could be due to the difficulties and time required to set up

accurate links. Also when a change is made that, either expands or decreases the

amount of text, a considerable amount of effort has to be expended to update the

links unless an automated process is present.

Despite these problems there are a great number of successful on-line hypertext

implementations of which a detailed survey has been completed by Conklin[I9]·

The implementations can be divided into four main types: general hypertext

systems, problem exploration systems, macro literary systems, and

documentation browsing systems. Details about each of these will now be given.

65

5.3.1 General Hypertext Systems

General hypertext systems are mainly designed to allow a user to develop their

own hypertext systems for a number of different applications rather than being

applications in their own right. These were of particular interest to this research

because of the possibilities of using one of the systems to help with the production

oflinks within the documentation tool.

The most well known version of a full hypertext system is NoteCardS[30, 61]

produced by Xerox PARC, the original home of the present WIMP environments.

The system runs on the Xerox LISP machine and is highly regarded. It is not

always a simple process to construct a complete system, because NoteCards has a

complex LISP based programmer interface. This interface is the reason that the

system did not meet one of its explicit design goals: that minor changes to

NoteCards should be achievable with a small amount of work by casual, non­

programming users. Despite this, the system is probably the best of its generation

with excellent use of text and graphics, and a highly usable browser option

showing the links present in either a part or the whole system.

ViewCardS[69] was developed from NoteCards to run on the Xerox 6085

Documenter System. It was designed to be used by the non-programmer, with no

coding experience required. Unfortunately the setting up of links cannot be

automated and only very basic commands are available in an attempt to make its

use more widely spread. This has had the effect of making the system less

desirable for the serious hypertext developer. It has however retained the

excellent use of graphics and text along with the browser option.

One of the more recent, and very popular systems, is HyperCard[3] developed by

Apple and shipped with all new Macintosh computers. The system is similar to

66

N oteCards, with a complete programming language HyperTalk, allowing the user

to make a customised browser. Using the Apple's WIMP interface, complex

systems can be constructed relatively easily~ One problem with HyperCard exists,

namely that link destinations are only allowed to be cards and not points within

cardS[3)·

Guide[9) was initially a research project at the University of Kent and was first

available running under UNIX, but has since been developed by Office

Workstations Ltd. to run also on the IBM P.C. and the Apple Macintosh. As

Brown[lo) describes, Guide isolates the user from the underlying structure of the

data by displaying the text as a single scroll, rather than in separate windows

around the screen. The major mechanism within Guide is the Replacement

Button. This button is replaced by material linked with that button, thus

expanding an area of a document to give greater detail. A second method for

expanding the information present is with the use of Note Buttons. These are

present on the Macintosh and P.C. versions of Guide. A Note Button causes a pop

up window to display the replacement text while the mouse button is held down.

Glossary Buttons, present in the UNIX version of Guide, are similar to Note

Buttons. However, they display the replacement text in the bottom section of the

screen. The final linking mechanism found in the Macintosh and P.C. versions is

the Reference Button. This link is a more typical hypertext link causing a jump to

a different point in the document, or either to a different document. In section

4.2.6 the need for parallel viewing of documents was discussed. The Guide system

would not be suitable for this due to the use of a single scroll.

67

5.3.2 Problem Exploration Systems

Problem exploration systems aim to help with the initial understanding of a tool

or problem area where traditional sequential texts may not be as useful as a

hypertext system. Their usefulness derives from the fact that at the early stages of

the thought process on a certain topic, various unconnected ideas may form and

therefore a less restrictive form of guide is often found useful. These systems also

have the advantage of normally presenting the reader with small chunks of

relevant information so that their thought process is enhanced, rather than

swamping them with large chunks of information which can occur with

traditional texts. One of the best known systems of this type is the research project

IBIS (Issue Based Information System)[51] which is used to help solve problems

that have no clear problem space. As well as custom designed hypertext

developments to implement problem solving systems, Marshall[42] describes a

system implemented using NoteCards to help with policy making decisions and

for capturing the structure of a political organisation. The success of this project

shows the wide range of uses that general hypertext systems can have in other

specialized hypertext fields.

5.3.3 Macro Literary Systems

Typically macro literary systems help to support and create large on-line libraries

where there may be connections or links between the various documents in the

collection. One system called Xanadu[45] was created by Nelson, founder of the

term Hypertext. This system saves the initial version of each document and any

changes made to the document, and thus does not have to save a full copy of each

version of the document.

68

5.3.4 Documentation Browsing Systems

Document browsing systems have a variety of uses to help with gaining the

maximum amount of information from blocks of documentation within the

smallest amount of time. Typical applications include teaching, public

information, and on-line help facilities, for instance the HELP facility used within

Microsoft Windows 3.0[501· Such a system allows a user to arrive at the

information they require quickly by traversing a few links rather than having to

scan several pages of text to find the relevant information. As described earlier,

hypertext allows non-linear thinking, and this is put to great use in the

Storyspace system described by Bolter and Joyce[8]· The system allows the user to

interact with fiction, and help make up a story as they choose by the way they

navigate through the text.

The uses of hypertext and documentation can also be applied to the software

lifecycle, and it is this, with special reference to the maintenance section, that is

described in the next section.

5.4 Hypertext and Redocumentation for
Software Maintenance

There have been a number of hypertext tools developed to help with the

construction or displaying of documentation. As has been stressed before,

hypertext is particularly apt at displaying text which has a great number of

references either to other documents, or to other sections within a document. Also,

and of particular interest, hypertext can be used to help with the documentation of

areas of the software lifecycle. Because of the references between, for instance, the

69

specification and design, that should exist in a well developed system, there will

be a great number of cross references both between and within documents.

Therefore implementation under hypertext can help to ensure consistency

between the various stages of the lifecycle ..

The arguments for using hypertext in the development stage extend equally to

software maintenance. As in the development stage, documents created within the

maintenance phase often refer to previously produced texts, and therefore there is

a considerable argument for using a hypertext system in software maintenance.

One very major problem that arises is that it is very rare for system

documentation to be present in a hypertext form, and thus an uneconomic amount

of work would be required to redocument the system using hypertext. It is for this

reason that, unless a system has already been written using FORTUNE or

SODOS, redocumentation using either of these tools would be uneconomic.

In contrast, the documentation system proposed by Fletton[24] and discussed with

reference to redocumentation in Chapter 3 describes a wider use of hypertext

within software maintenance, that of helping to redocument code and providing a

hypertext based analysis and documentation system. As described in Chapter 4

the redocumenting of systems within third party software maintenance requires a

document hierarchy. Fletton's system concentrates on documentation for the code

at a high level of detail and is ideal for code analysis. For third party software

maintenance, a more comprehensive documentation approach has to be adopted.

As detailed in Section 4.3, the environments in which the documentation will

reside are different, and as no common hypertext system can be used across the

range of hardware and operating systems, different development systems will

have to be used. For development ofthe systems developed for use at the AGS head

office, the Xerox NoteCard system running on the 6085 Documenter is the only

70

package available. For the systems to be developed for use on a P.C., the choice is

less clear. As one of the requirements for the redocumentation system is to enable

full parallel viewing of the documents, a hypertext system running under

Microsoft Windows would be ideal, as the programming environment available

under the Windows package would allow for implementation of the other facilities

listed in Chapter 4. At the time of investigation just after the release of Windows

3.0, no hypertext system had been made available and therefore the hypertext

links were implemented using the Microsoft Software Development Kit. The

author acknowledges that this situation has changed with the release of several

products such as Asymetrix's Tool Book.

5.5 Summary

The applicability of the use of hypertext in software maintenance has already

been investigated by Fletton[7], and found to be beneficial. The use of hypertext in

documentation tools, albeit for use within the development stage, has also been

described and found to be useful. However, no single hypertext based

documentation system fulfils all the requirements detailed in Chapter 4. The

design and implementation of a system to meet these requirements are described

later in this thesis.

71

Chapter6

Documentation Structure For Use in
Redocumentation

6.1 Introduction

Having established a basic set of requirements for a redocumentation tool and

facilities for accessing the documentation, a documentation structure has been

drawn up for use in the tool. The tool is called the Redocumentation Aid for the

Maintenance of Software (RAMS).

The documentation structure consists of a set of five documentation types, as

follows:

• Site Information.

• Management Documentation.

• Overview Documentation.

• System Documentation.

• Existing Documentation.

72

A detailed description of the information that appears m each of these

documentation types appears later in this chapter.

The reason for this choice of documentation types within the RAMS system grew

out of the requirements for a documentation aid to be used by a third party

maintenance team within a client organisation, detailed previously, as well as

AGS's internal standards for the production of documentation for use in such an

environment. The RAMS system, however, has been designed so that each

documentation type can be tailored to a particular client company's requests.

This chapter gives a detailed description of the design of the documentation types

and their structure.

6.2 Document Structure

The five types of documentation listed above can be represented in a hierarchical

structure, with the documentation types in increasing levels of abstraction with

respect to the code as progression is made up the hierarchy. The site information

can be regarded as being at the highest level giving an overview of a complete site

and the systems present in that site. The management documentation gives an

overview of the performance of all the systems, with facilities to focus on

particular systems. The Overview documentation is more detailed, giving

information on a particular system. At the bottom of the hierarchy is the system

documentation which will provide the documentation for a module of a system in

great detail. With this will be incorporated the existing documentation. A

graphical representation of the hierarchy is shown in Figure 4.

A detailed description of each of the levels will now be given.

73

I Site Information I

I Management documentation I ---- ------------I Overview II I Overview 21 Overview 31

./"' System~ ----_

System Doc. I/ System Doc.
System Doc. ~

Module 1 Module 1 Module 1 Module 3

System Doc. System Doc. System Doc.
Module 2 Module 2 Module2

Figure4
Documentation Hierarchy within RAMS

6.3 Site Information

Site information is at the top of the hierarchical documentation structure,

providing a general introduction. It is compiled from information obtained in an

initial third party maintenance proposal on the client site and information

gathered after the acceptance of the proposal, such as office hours, commuting

options, system hardware, operating systems present, languages supported, and

systems to be maintained. This document fulfils a twofold purpose. Firstly to

provide an introduction to new members of staff to a client site, and secondly to act

as a point of reference. The information is already held by AGS on a Xerox 6085

documenter in the form of a standard report[l]·

74

This document is divided into a number of distinct sections. Because the text is

designed so that it does not have to read sequentially, it is ideal for

implementation under a hypertext environment, with each section being

displayed on an individual card, with links to related cards.

The contents of the document are being maintained without change as the

document has already been frequently used and proved to be more than adequate

in providing an overview.

Because the document is an overview, as well as acting as a point of reference,

some details appear in more than one section. One typical example of this is some

of the information that appears within the initial maintenance proposal section,

also appears in later sections on site location. Again a hypertext solution to the

structure can overcome this duplication which is some times necessary within a

traditional text. Having a piece of data present in only one place helps to increase

the maintainability of the documentation. This is because an update to a section

can be made in a traditional document, while the person making the change is

unaware of any further occurrences of the topic. This then leads to inconsistencies

with the rest of the information contained within the document.

6.4 Management Documentation

As has been discussed, it is important to have as much information as possible to

give back to the line managers, and in doing this it may help them understand

some of the problems associated with maintenance. Information such as problem

logs, containing details of problems and the time and action taken to fix them,

would be kept along with change details, giving details of the extent of the

75

change, the exact modifications made, and any other documents that were

updated.

Documents such as procedures for change should be accessible in this section, thus

setting standards for the maintenance of a system. This is valuable for third party

maintainers, as a client company may have methods of change particular only to

themselves, and it is vital that the maintenance staff have the information to

follow these procedures. These documents often refer, not only to the change

procedures for the code, but also to the in-house standards for changing the

documentation. This information is also often found invaluable when gaining an

overview of the site, and it is worth duplicating this information and having it

present within the site information.

Because the documentation gives exact details on where maintenance is being

carried out, it can show which particular areas of the system are causing

problems. By highlighting these specific areas, it can show which areas of the

system could be in need of restructuring. By being able to pinpoint problem areas

in the system, and only having to restructure those causing an increase in

maintenance effort, a great deal of expenditure can be saved by not restructuring

or rewriting the whole system. This also has the advantage of leaving working

code alone, and not replacing it with a, possibly, less reliable replacement. The

author acknowledges the problems of interfacing the new code with this method of

selective replacement of code which, in general, is not a trivial task. Ways of

identifying links between areas of code have been the subject of a great deal of

research, and are described at length by CallisS[l4l·

The management documentation will initially contain information generated

from the production of lower level documentation. Information will also be

obtained showing where the greatest amount of code analysis is being done. The

76

data stored will give the system, program, and module name where the work is

being carried out. The line and variable name which is being investigated and/or

documented, and the amount of textual information produced will also be stored,

to allow review at a later point. This information will be presented in the form of a

table, allowing easy analysis of the data by management personnel to help in the

definition of future maintenance directions for a system.

6.5 Overview Documentation

The overview documentation will provide a pictorial view of the structure of the

system. This documentation will provide a tree-like representation of the

structure of the system at various levels of refinement. For simple systems, it is

easy to show the whole structure, but for systems of a typical size, the displaying of

the complete system initially would only heighten the confusion of the analyst. By

being able to traverse the structure gradually, expanding only the sections which

they perceive to be of immediate use, the user becomes gradually familiar with the

system.

For instance the top level may show separately compilable modules, the next level

may show the sub modules of one particular module, and the lowest level may

show the procedures within a module. Showing the actual links between the

various modules and the way they interconnect as opposed to the procedures

contained within a module, or procedures within a sub-module, is a far more

difficult problem which is discussed at length by CalliSS[14]· It is not expected to

try to show these links in initial implementations.

Again an information hiding approach, or more strictly, an approach where the

user will only be presented with information immediately relevant to them, has

77

been maintained. The user will navigate hypertext links through a tree-like

representation of the system. By choosing their route, and only seeing the part of

the system they are requesting to see, they are not distracted by areas of the

system with which they are not presently concerned. This set up is appropriate for

two purposes, which are similar to the site information but on a system level. The

first purpose is to give the beginner an introduction to a system without swamping

them with information, and secondly the experienced user can select part of the

diagrammatic representation of the system to refresh their memory.

6.6 Technical Documentation

The technical documentation could probably be described as the most useful form

of documentation for code analysis, with the greatest potential for improving

productivity. Within this section there are four types of documentation: source

code, cross reference information, any related textual documentation, and a slice

of the program. It will be possible to cross reference between all four documents,

thus helping to increase the speed of code analysis and decrease the time taken to

obtain a detailed understanding of the system.

One major feature of the system documentation tool is that of slicing the code,

where lines of code will be displayed containing information relating to a search

term given by the user. This approach to slicing has been simple with the slice

based only on textual information as opposed to the cognitive psychological view

proposed by Weiser[68]· Although a slice of code is not usually regarded as

documentation, this form of interactive documentation is as useful as a lot of

written text. This is partly due to the accuracy and directness of a slice, and

therefore should pay a greater part in the analysis of a system.

78

Hypertext style links between all the documents will be set up to enable quicker

viewing of the documents in parallel. Initially links between the variables listed

within the cross reference information and the code will be enabled, and then links

to the documents will be set up. The user, on selection of a variable will be able to

view the code where the variable appears, and at the same time be able to view

any relevant documentation in a separate window. The use of a window based

mechanism with the hypertext links will incorporate the ideas of parallel viewing.

The textual documentation will be produced partly automatically, and partly by

the maintainer. Information should be given for each variable and procedure

within a piece of code. Information from the cross reference and any slices done on

that variable will be able to be kept along with any comments which the

maintainer feels appropriate.

6.7 Existing Documentation

As discussed previously, it is important to be able to incorporate existing

documentation within the documentation tool. This saves a large effort in

retyping existing papers, possibly with a great number of errors contained within

them. Using a database with entries on the details of various sections, and their

place in the already existing literature, or within the documentation written

within RAMS, a maintenance query system is available. This will help the user

track down information if they have a problem with maintaining any part of the

system. The use of a knowledge base will help with the information search and

give details on where to find the information, and contain a field to comment on

the credibility of the documentation in question. If a piece of existing

documentation is frequently used, the information should be typed into RAMS

where it could be accessed more quickly and easily than if it were paper based.

79

There will always be problems maintaining this database because maintenance

personnel are usually overworked, and in common with most software

professionals, behind schedule. Thus the front end to such a database is of utmost

importance, so that it provides hints to update the database at suitable points, but

not to the extent that the user does not wish to use the system.

It is partly up to management to make sure this database is maintained, otherwise

it will suffer the same lack of credibility that a great deal of paper based systems

suffer. To help management keep a track on the use of this database, information

on the extent of its use will be used within the management documention.

6.8 Summary

This chapter has presented five types of documentation that are required for use in

third party software maintenance. Instances of these documentation types can be

viewed as forming a hierarchy with the information ranging from a general

overview of a client site to a detailed description of the source code for a particular

component of a system. The implementation of a system containing all aspects of

these documentation types is given in the next chapter.

80

Chapter7

The Redocumentation Aid for the
Maintenance of Software (RAMS)

7.1 Introduction

This section gives details of the design and, where appropriate, implementation

of the four tools which implement the documentation structure described in

Chapter 6. The four tools are called Site Information based on Hypertext (SIBOH),

Overview Documenter, Management Documenter, and System Documentation

Tool (SYSDOC). These tools form the Redocumentation Aid for the Maintenance

ofSoftware (RAMS).

The first tool to be implemented was the Site Information Based on Hypertext (see

Section 7.2). The tool was developed first because it has been adapted from the site

documentation, and a text based system was already available. Currently the

System Documentation tool (see Section 7 .5), developed from the technical

documentation and existing documentation, is being tested on site. It was

implemented second as it was this part of the tool that there was the greatest need

for at the time of implementation. The Overview Documenter (see Section 7.3),

based on the overview documentation, has also been prototyped. The

Management Documenter (see Section 7.4), developed from the management

documentation, will be the last to be coded as it will take information from the

81

System Documentation tool which therefore needs to be fully tested and

operational.

7.2 SIBOH- Site Information Based On Hypertext

The SIBOH documenter was the first to be designed and implemented. This was

due to the recent completion of the non-sequential site information document by

AGS. The information had already been collected and was therefore available for

incorporation into the new system; thus the transfer to hypertext was not going to

be expensive in terms of man-hours. At the time of implementation, this form of

document had only been used to store the information on one client site. It was

therefore felt prudent to complete the implementation before further information

had been entered into the traditional document.

As the information was already present on a Xerox 6085 documenter and, due to

other relevant documents being stored on the system, it was felt that the

hypertext system must also remain on this machine. As described in Chapter 5,

the only hypertext system available for the 6085 documenter is Viewcards. This

system is actually ideal for the simple implementation of a paper based document

such as this, where links between sections of documents, rather than links

between the contents of the documents are required. The document, which cannot

be reproduced due to commercial confidentiality, has already been well

structured, and therefore no major alterations to the basic form had to be made

before implementation. There were several occasions where the same information

was stored in different sub-sections, and by using hypertext this was eliminated,

making updating of the information easier.

82

Viewcards has three types of node, card boxes, cards, and browser screens. The

original document containing the site information was split into 7 distinct

sections, and each of these has been implemented as a box. All seven were

themselves contained within a box to represent the complete documentation for

one site. Each of the sub-sections has been implemented as a card within the

appropriate box, with links between related items in the cards. In a few cases, two

levels of boxes have been used so as to maintain the structure of the original

document. A browser option is available so that the total structure of the

document, and the links between the cards can be seen.

Figure 5 shows an example of a SIBOH screen, where the user has opened the

profiles box from the root box, and then in turn opened the feasibility study box

and the physical environment card. Finally they have opened the link to display

the site location and commuting options card. As can be seen, ViewCards allows

excellent use of the full graphics environment present within the 6085

Documenter, and, as shown in this example, allows for links to other cards to be

present within graphics.

The use of hypertext in this environment fulfils the principles of information

hiding, described previously, with the user only seeing the details of the company

or system which they require at a set point in time. It may be that some company

details are confidential and that only certain cards are available for viewing by

less senior company members. In this case, passwords can be added to cards or

boxes allowing selective viewing of the information within a card, or the cards

within a box. Also with the structure implemented using ViewCards, a hierarchy

of documentation has been kept and extended, with the user obtaining more

detailed information on a topic the deeper they explore the links between nodes.

83

Root Box

It should be noted that information contained
within this manual is confidential and is not to
be given to, or copied by client staff.

!Introduction I
If prior knm·vledge of this viewcard system and
of the preparation of profiles has already been

obtained, then access to the profiles can be
select below·.

Please select one of the following sections

I Client Profile I
I Site Profile I

Feasability Study

IQ] Site location and commuting options

South
Road

D 0

To .A.167 South

D D D

Science Site

Figure5

I Site location and commuting

I Working hours - earliest lat

CarPark

A177 to

An example of Site information implemented using
Viewcards.

84

7.3 Overview Documenter

The overview documenter is designed to help to introduce a new employee to a

specific system, as opposed to a complete site as in the SIBOH documenter. Again

the aim was to use information hiding so that the user would not be swamped with

information on first entering the system. In general, most computer systems have

some form ofhi'erarchy, i.e. system, module, function, and instruction level, and it

is the aim of the overview documenter to give a graphical representation of the top

three of these levels.

The initial requirements were for the tool to be implemented on the Xerox 6085

and thus be present with the site information tool. This would allow connections

between the two. A major problem apparent with this is that the ViewCards

hypertext system has no low level programming language and thus an automated

version of the viewer cannot be implemented on this system. In an ideal situation,

the name of the system would be entered, and the tool would display the program

structure without a user initially having to provide the input.

A prototype browser has been implemented using ViewCards. At the start of a

session a system name has to be entered into the hypertext system so that the

overview documenter will initially display the high level overview of the system

in question, and then, when the user selects part of this overview, a more detailed

view of that part of the system will be shown. An advantage of using ViewCards is

the browser option. Instead of initially representing the system by physically

placing boxes and cards within boxes and setting up links between cards, the user

may use browser cards to show the graphical connections between the boxes,

cards, and browsers. A browser is ideal for displaying levels of abstraction where

little or no text appears, for instance showing system hierarchy.

85

In the example in Figure 6, a process has been displayed, and following that

"Generate Report" and "Database Check" were selected, and thus a lower level of

abstraction was shown relating to the aforementioned modules. If the user had

then selected the .. Main Heading" link in the ((Generate Report" browser, a card

with either the code for this operation or details on the action would be displayed.

Alternatively another browser may have been displayed, if the operation was

going to involve more than a few steps. This is a representation of a very simple

system but shows the basic principles involved.

7.4 Management Documenter

It has already been stated that the pnmary a1m of the management

documentation is to report back information on the extent of the maintenance

activity and give details about the tasks to be completed and those recently

finished. The reporting procedure must neither make the users of the system feel

that they are being spied upon, nor make the maintenance process slower due to

the collection of results. Two approaches are available. The first is the collection of

problem logs and lists of tasks to be completed, which is already carried out at

most sites. The second is an automated system that is invisible to the maintainers.

Information, such as the last update to the documentation or which data name or

function was being examined, can be taken from the system documentation tool as

this will give the most reliable record of the systems, and parts of the systems,

being examined.

There are therefore two distinct parts to the management documenter. Firstly the

collection of data, and the second the displaying of data in a form which will

enable managers to easily see where the maintenance effort is being expanded.

The information will be stored in an Omnis 5 database resident on a P.C. This will

86

-~----~-~· ·----~ ~ I Generate report II Database check II Print error I

/

~~~~=-~/--, ~ 
I Main Heading I I Report Body I 

. --­.- · 
I Group Heading I 

) 

l 
~ 

I Group I ·- ., 

I Group Body I 
'! 

~ 
I Rep Line I 
. ,....- · "'-

I Type 1 I 

FigureS 

IV2 Ol< I 

Site information example implemented using 
Viewcards 

87 

Clos 



provide compatibility with the System Documentation tool discussed in section 

Section 7 .5. At present the information is available in a variety of formats and 

there is no guarantee that the same type of information will be in a similar format 

at different sites. An example of this is that problem logs are hand written at one 

site and are available on line on an IBM mainframe on another site. The contents 

of the reports are also often different. 

The requirements for the exact content of the documents have yet to be agreed 

with the users, and thus as yet implementation of either a method for collecting 

the data, or displaying the data, has been impossible. The data that will be 

collected included: 

• Currently collected: 

• Current schedule of jobs for all systems 

• Jobs awaiting priority 

• Jobs awaiting priority great than three months 

• Fault reports 

• Change reports (including time for change and extent of change) 

• To be automatically collected (from the use ofSYSDOC): 

• Amount of analysis of the system 

• Amount of analysis of data names and functions within a system 

• Amount of documentation being produced for a system 

As can be seen, data for all the applications being maintained on a site will be 

collected. The data base will hold data at two levels, site level, giving an overview 

of all the systems, and systems level, giving an overview of the work being carried 

out in a specific system. The currently collected data will be entered into the data 

base. Procedures must be in place to make sure that not too much time is spent on 

88 



file for the redocumentation is the actual code and the cross reference listing, 

containing both the references for data names (or variables) and procedure names. 

The information is obtained by a simple search of the listing file to produce a file 

containing the source code and a second file containing the cross reference 

information. 

7.5.2. Document generation 

To convey information to the user, a standard form for each data name and 

function is created. An example is given in Figure 7. Using a Windows-based 

database (Omnis 5), information can be stored on each variable and function that 

is present within the cross reference listing. The database will be created when a 

COBOL file is viewed for the first time. The name of the variable (data name or 

function name) will be entered in the "name" field, the line of code in which the 

variable is declared is made will appear in the "definition" field, and the lines of 

code where the variable is used will appear in the "used" field. The user when 

viewing the file will be able to automatically access the relevant documentation 

by means of a hypertext link (see Section 7 .5.3). 

Information can then be entered if required in the remaining fields. The "extended 

name" field is present for the user to enter a more meaningful data or function 

name, the "function" field is for information relating to the use, or non obvious 

function, of the variable. The "further reference" field provides links to other 

information that may be on-line or in external text, while the "relevant code 

slices" field is an area in which the user can copy information obtained from 

slicing the code (see Section 7.5.4). 

90 



Name: 

Extended Name: 

Function: 

Definition: 

Used: 

Further Reference: 

Relevant Code Slices: 

Figure 7 
Blank Documentation Form 

When the file is viewed for a second or latter time, the information previously 

entered is retained, though new variables may now be present, in which case an 

entry in the database will be made for these. The fields that are automatically 

filled in by the system will also be updated if the information has changed with 

relation to any of the information previously stored. Only the fields entered by the 

user will not be updated. 

91 



7.5.3. Hypertext Initialisation 

Within the source code file, all occurrences of the data names and function names. 

within the source code are marked as links to the cross reference database. The 

cross reference file already contains the information on the line number of further 

occurrences of all the data and function names. Nodes containing the 

documentation for each entry in the cross reference file already exist and are 

managed by the Omnis 5 database, and thus a specific link from all the references 

in the cross reference file to all the corresponding entries in the database is not 

required. 

7.5.4. Sysdoc User Facilities 

As stated earlier, the user interface has been developed using Microsoft Windows 

and thus most commands to the system are from menus using a mouse. The menus 

available are File, Slice, Window and Edit. The prototype version initially 

displays three windows containing, the COBOL source code, cross reference 

listing, and documentation. As stated earlier the documentation is kept in forms 

stored in an Omnis 5 database. To facilitate this, two applications are executing at 

once, one controlling the Omnis 5 database, and the second controlling the 

remaining windows and the user interface. This is possible by using the dynamic 

data exchange facilities within Windows 3.0 and Omnis 5. 

An example of the user interface is shown in Figure 8 where the COBOL source 

code is in the front window. While viewing the code the user can activate the 

hypertext facilities either to scan to the next occurrence of a data or function name 

within the code, or to bring up the appropriate documentation form. This is stored 

92 



00001 IDENTIFICATION DIVISION. 
00002 PROGRAM-ID. PRIMES. ::::;:·:;:::: Definition: Vl 

3 00003 ENVIRONMENT DIVISION. 
IE 

0 
Used: " TIME-AREA Is used 

c 00004 CONFIGURATION SECTION. ·-;:~~~~~~; Further R 3 00005 SOURCE-COMPUTER. IBM-PC. ~~· to hold data on the L) 

OBJECT-COMPUTER. IBM-PC. Relevant 0 00006 
·>: =·~ · :· hours. mlns. seconds. 0 

~~~ 
(/) (""\

00007 DATA DIVISION. and hundreths of >- "' (/)

OOOOB WORKING-STORAGE SECTION. :~:;::-~~:- seconds (record
77 TOTAL-PRIME-COUNT PIC S9(4) COMP. ;R~S- ';:

J
co 00009

;~~~H{. ·=: type)
77 PRIME PIC S9(4) COMP. Q) 00010

ii~t L.
:::l 00011 77 PRIME-MULTIPLE PIC S9(4) COMP. en

~~i~E- ·-
01 PRIME-FLAGS-GROUP. LL. 00012

00013 05 PRIME-FLAG PIC X OCCURS B191 TIMES
00014 INDEXED BY PRIME-INDEX.
00015 01 FILLER. 1..:'':: .. ·:·:

00016 05 TIME-AREA.
00017 10 HH PIC99.
00018 10 MM PIC99. liD.· <. , .•. ·.· 00019 10 ss PIC99. ..
00020 10 HUN PIC99.

as a hypertext-style node within the database, to be displayed in the

documentation window. It is then possible to write any relevant text in the

appropriate fields of the documentation form, which will be saved at the end of the

viewing session. Cut and paste options will be available to help speed up this

documentation; thus the user will be able to copy text from any window into the

documentation window with simple mouse actions. Full control over the sizing,

and positioning of the windows are also available to the user.

The user has the option to slice the source code by choosing the slice menu (see

Figure 9). Slicing involves selecting lines of the source code that fulfil particular

criteria. For example these criteria may be all lines that contain a GOTO, or a

particular data name. Once a slice has been performed, the system documentation

tool will open a fourth window that shows only the lines of code selected by the

previously entered search criteria. The search can be on either COBOL reserved

words (PERFORM, IF, GOTO, CALL, or all of them), or on a typed variable. If the

user types a string to be searched upon, the tool can look for occurrences of the

string as a variable name, or as part of a variable name, thus increasing the

system's flexibility.

Appendix A.l shows the contents of a small COBOL program which can been

loaded into the source code window. To carry out a slice on the data name PRIME,

the user would choose the slice menu type PRIME in the "Variable Box" (see

Figure 10) and press the Data Name button. The results output to the slice

window are shown in Appendix A.2. The slice file contains the lines in which the

variable is present and the number of lines between each occurrence. Appendix

A.3 displays the output from the slice file if the user again picked the data name

PRIME, but requested the system to search for the variable as part of a word as

well as whole words by pressing the Inclusive button instead of the Data N arne

Button. Finally Appendix A.4 shows an example of the slice file after the COBOL

94

~ <·:·:~ l) .i .·J<· ::-.=·

::-.\:::~<~ ·; :'\

' ': ':·' NTIFICATION DIVISION.
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00010
00019
00020
00021

II 00022

PROGRAM-ID. PRIMES.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-PC.
OBJECT-COMPUTER. IBM-PC.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 TOTAL-PRIME-COUNT PIC S9(4) COMP.
77 PRIME PIC S9(4) COMP.
77 PRIME-MULTIPLE PIC S9(4) COMP.
01 PRIME-FLAGS-GROUP.

05 PRIME-FLAG PIC X OCCURS 8191 TIMES
INDEXED BY PRIME-INDEX.

01 FILLER.
05 TIME-AREA.

10 HH PIC99.
10 MM PIC99.
10 SS PIC99.
10 HUN PIC 99.

05 MILLI-SECONDS PIC S9(B) COMP.
05 BGN-MILLI-SECONDS

VI
c
0

VI ·-- 3
0 0.
-o 0
c
·- t1)
3 u
<(~

(./) Lf\

Ol
O" C ·-
tl) 3
I- 0
;:J.C
Oll.n ·-u.. ::J

c
t1)

~

0"

reserved word PERFORM has been selected and the Perform button pressed

followed by that of the Keyword button. The buttons Suffix, Prefix, and Exclusive

work in a similar way to Inclusive, but only produce the lines containing the

suffix, prefix etc. of the variable that has been input.

After a slice has been completed, the user may choose to replace the present slice,

or increase it in one of two ways. The first is to select another variable to be used in

the slice, in which case the lines in which the previously selected variable and the

presently selected variable are displayed in the slice window. Appendix A.5 shows

a slice where a new slice was created using the variable name PRIME, followed by

the user choosing the "add to slice" option in the slice menu, typing in MILLI­

SECONDS and pressing the Data N arne button. Secondly the user can select to

add additional lines to the slice whereupon the system adds the number of lines

selected to the slice after the given line number. First the "extend slice" option is

selected in the slice menu. Appendix A.6 shows an example of where PRIME has

been entere~ as the variable, the Data N arne button has been selected and finally

the user has chosen the "extend slice" option and requested the slice to be

extended by five lines forward from line 43.

By using the slicing option, the user can build up a picture of a certain area of the

code, without being distracted by information which does not concern them. In

short, this option provides information hiding for the analysis stage of software

maintenance. The use of slicing in combination within hypertext-style links to a

documentation database is considered to be one of the most useful facilities of the

complete documentation system.

96

.iR:I System Documentation Tool

file Slice Window .Edit

Documentation

Keywords

Enter Variable to Slice:

1 PRlMEr- 1

. . ·.•'11

tJ:£~~s~ll:!iJ· f
OOOil
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022

01 PRIME-FLAGS-GROUP.
05 PRIME-FLAG PIC X OCCURS 0191 TIMES

INDEXED BY PRIME-INDEX.
01 FILLER.

05 TIME-AREA.
10 HH PIC99.
10 MM PIC99.
10 SS PIC 99.
10 HUN PIC 99.

05 MILLI-SECONDS PIC S9(8) COMP.
05 BGN-MILLI-SECONDS

><
0

a:l

CJ)(l.l

0 u

·CU ~
·- l/)
Cl

CJ)

_Vl c
3: ·- Vl 0 L.. ~

-o <1) · ­
c ~ ru

·- c ~
:J:W<l)

Cl
<(L..

0
I 4--

0 -o
. ~ <1)

Vl
(1.1::::>
L..
::::J
CJ)

·-l.L

r--
0"

7.6 Summary

This chapter described the design of four tools based on the five documentation

types described in Chapter 6. Both the Site Information based on Hypertext tool,

and the System Documentation tool have been implemented. A prototype for the

overview documenter has also been implemented. The design of the prototype

management documenter has also been described.

98

Chapter eight

Conclusions

8.1 Introduction

This chapter gives a brief evaluation of the Redocumentation Aid for the

Maintenance of Software (RAMS). The benefits and drawbacks of using the

system are discussed, along with work which would enhance future systems.

8.2 Evaluation and Fulfilment of Requirements

The research described in this thesis has met the initial objectives outlined in

Chapter 1. Chapter 4 gives a detailed outline of the requirements for a

documentation system to be used within a third party software maintenance

environment. When evaluated against these requirements, the Redocumentation

Aid for the Maintenance of Software has fulfilled the the aims detailed in this

section. These include:

• It is possible to make the additions and corrections to support the four

documentation activities.

• Quality assurance 1s maintained with the use of the management

documen ter.

99

• A standard document layout is enforced by the SYSDOC and SIBOH

systems.

• Casual updating is maintained throughout the tools with the user able to

document as required.

• A hierarchy of documents, as described in Section 6.2, has been created.

• The SYSDOC system allows the user to view the code and documentation in

parallel by using the hypertext-style links.

• This system incorporates the facility to include existing documentation,

and selected viewing of areas of the code through the use of the simple

slicing facility.

• By the use of the Microsoft Windows environment, a common interface to

the tools is provided for the user.

The RAMS system is being developed for use by AGS Information Services Ltd., .

and the requirements for the tool have been developed from their needs. This has

the disadvantage of occasionally restricting the scope of the research. The use of

certain technology was restricted. Also the research was more directed than would

often be the case. However it enabled approval for the requirements, listed in

Chapter 4, to be obtained at a relatively early stage of the research.

To date, one of the original site information documents has been transferred to the

SIBOH tool. This conversion was achieved using cut and paste facilities on the

Xerox 6085. The use of hypertext has removed the duplication in the document

and it is now more maintainable. Initial response from users of the system find

100

obtaining information on a subject less time consuming than with the previous

traditional text. This is partly due to the use oflinks between related topics.

The System Documentation tool is currently undergoing preliminary on-site

· testing. The slice option has been frequently used and regarded as a: considerable

help in code analysis. This facility mimics the way AGS programmers work when

trying to understand the code of a new system. Feedback from AGS has meant the

addition of a number of pre-defined slicing options such as "slice exclusively" and

"keyword slice".

The RAMS prototype has met most of its main requirements and is in the process

of being completed before full on-site trials begin. Section 8.4 details those parts of

the system that have not been implemented. The success of RAMS cannot be

judged yet but the enthusiasm of the initial feedback has helped greatly in

showing the viability of such a system.

8.3 Benefits and Drawback of the Approach

The major benefits of the approach adopted in the development of the RAMS

system can be sumarized as follows:

• Increased speed of code analysis

With the use of slicing and hypertext links between code and

documentation, the speed of obtaining information on a particular area of a

system is increased.

• Document hierarchy for third party maintenance

By adopting a hierarchical approach the third party maintainer will not be

101

swamped or starved of information. A hierarchy is more essential in third

party maintenance due to the greater range of information, from details on

maintenance sites to complex information on code usage.

• Incremental documentation

It is possible, and encouraged, for the user to only document the parts of the

system they are currently working on and thus reduce expended

documentation effort. The use of a standard database form, relating to a

specific area, will also help target the documentation effort to the problem

area.

• Simple user interface

The interface used for the tools is based on the WIMP style of interface; thus

complex sequences of commands are not required. The Microsoft Windows

interface used in SYSDOC is rapidly becoming a standard user interface

and, therefore, an ideal operational environment

• Slicing

·The slicing of the COBOL to show only small sections of the code helps the

user to concentrate on a single area without distraction from other parts of

the implementation. This has helped with code analysis by focusing the

user's thoughts.

• Saving of knowledge during analysis

By being able to save any slices of the documentation created during the

analysis of the code, the information, which is often regarded as highly

valuable, can be viewed by future analysts.

102

A number of drawbacks have also been identified. Most of these are regarded as

minor in relation to the advantages gained using the RAMS system. The

drawbacks are summarised below:

• Downloading of code to P.C.

For the use of the SYSDOC system, the source code has to be downloaded to

a P.C. This has had to be the case as a great number of mainframe systems

do not provide the windowing capabilities required and the mainframe is

unsuitable for such applications.

• Multiple environments

The four systems available within RAMS run on two types of hardware:

SYSDOC and the Management Documenter on an IBM P.C., and SIBOH

and the Overview Documenter on the Xerox 6085. This is due to the user

requirements. The data however can easily be transferred due to a P.C.

interface present on the 6085.

• Initial increase in workload

To use the SIBOH an increase in the time taken to enter the document

initially has been noted. This is offset by the increase in readability and

speed of analysis. A great deal of work has to be done to set up each

overview for use in the Overview Documenter. Therefore, until this can be

automated (see Section 8.4), only a system which is requiring a large

amount of analysis should be entered into the Overview Documenter

103

8.4 Further Research and Development

The research carried out has developed a complete system for the redocumentation

in a third party software maintenance environment. The prototype, already being

preliminarily tested on-site, has opened up many other areas of research which

would enhance the present system. These areas, which time has not permitted the

exploration of, are described below.

The research has shown the requirements for the Overview Documenter and the

Management Documenter. In the case of the former, a method for the automation

of the setting up of an overview of a system to reduce the amount of time required

to complete this action is needed. The author recognizes the work required to

extract information from the code and represent it in this form. Such tools are

already available, though not based on hypertext. These systems, such as Battle

Map and EDSA, are reviewed by Simon[52] and are expensive. It would be

advisable, instead of completely writing one of these tools, to take the output of

one of the currently available systems and enter this into a hypertext system.

The Management Documenter needs to be implemented. Considerable work has

already been done on the collection and display of data by Cooper[20], and it would

be ideal to combine the system proposed by him into the RAMS system. Also a

system has to be set up to allow for easy viewing of the maintenance standards,

change control procedures, and other in-house standards detailed in Section 6.4.

One of the requirements of the redocumentation aid for the maintenance of

software was to provide configuration control of the documents and of the source

code, and this should appear in future implementations. Again complete

configuration control is not trivial and has been the focus of a great deal of

104

research by Kenning[39] . It would be ideal to use such a system in combination

with the documentation aid as opposed to re-inventing the wheel.

At present the RAMS system has been developed for use on COBOL source code.

Though within large institutions COBOL is still widely used, more systems are

being developed with languages such as C. Therefore for maximum use of the

RAMS system, it must become generic. This would only require the change of the

module containing the code which initially formats the COBOL listing file, and

the module which creates the slice information (both of these modules are present

within the SYSDOC system). This enhancement would also affect any automation

of the Overview Documenter.

105

Appendix A

Example Test Files and Output from
SYSDOC Slice Operations

A. I Primes COBOL Program

00001 IDENTIFICATION DIVISION.

00002 PROGRAM-ID. PRIMES.

00003 ENVIRONMENT DIVISION.

00004 CONFIGURATION SECTION.

00005 SOURCE-COMPUTER. IBM-PC.

00006 OBJECT-COMPUTER. IBM-PC.

00007 DATA DIVISION.

00008 WORKING-STORAGE SECTION.

00009 77 TOTAL-PRIME-COUNT PIC S9(4) COMP.

00010 77 PRIME PIC S9(4) COMP.

00011 77 PRIME-MULTIPLE PIC S9(4) COMP.

00012 01 PRIME-FLAGS-GROUP.

00013 05 PRIME-FLAG PIC X OCCURS 8191 TIMES

00014 INDEXED BY PRIME-INDEX.

00015 01 FILLER.

00016 05 TIME-AREA.

00017

00018

00019

00020

10 HH

10 MM

10 ss
10 HUN

PIC 99.

PIC 99.

PIC 99.

PIC 99.

106

00021

00022

00023

00024

00025

00026

00027

00028

00029

00030

00031

00032

00033

00034

00035

00036

00037

00038

ZERO

00039

00040

00041

PRIME

00042

00043

00044

05 MILLI-SECONDS PIC S9(8) COMP.

05 BGN-MILLI-SECONDS PIC S9(8) COMP.

05 DISPLAY-MILLI-SECONDS PIC Z(8).

PROCEDURE DIVISION.

PRIME-COUNT-ROUTINE.

PERFORM CALC-MILLI-SECONDS

MOVE MILLI-SECONDS TO BGN-MILLI-SECONDS.

PERFORM CALC-PRIMES 10 TIMES

DISPLAY 'COUNT:' TOTAL-PRIME-COUNT

PERFORM CALC-MILLI-SECONDS.

SUBTRACT BGN-MILLI-SECONDS FROM MILLI-SECONDS

GIVING DISPLAY-MILLI-SECONDS.

DISPLAY 'Elapsed time was' DISPLAY -MILLI-SECONDS

' milliseconds'

STOP RUN.

COUNT-PRIMES.

SEARCH PRIME-FLAG VARYING PRIME-INDEX

WHEN PRIME-FLAG (PRIME-INDEX) IS NOT EQUAL TO

ADD 1 TO TOTAL-PRIME-COUNT

SET PRIME-MULTIPLE TO PRIME-INDEX

ADD PRIME-MULTIPLE PRIME-MULTIPLE 1 GIVING

ADD PRIME TO PRIME-MULTIPLE

SET PRIME-INDEX UP BY 1

PERFORM 1-C UNTIL PRIME-MULTIPLE IS GREATER

THAN 8191

00045 GO TO COUNT-PRIMES.

00046 CALC-MILLI-SECONDS.

107

0004 7 MULTIPLY HH BY 60 GIVING MILLI-SECONDS.

00048 ADD MM TO MILLI-SECONDS.

00049 MULTIPLY 60 BY MILLI-SECONDS.

00050 ADD SS TO MILLI-SECONDS.

00051 MULTIPLY 100 BY MILLI-SECONDS.

00052 ADD HUN TO MILLI-SECONDS.

00053 MULTIPLY 10 BY MILLI-SECONDS.

00054 CALC-PRIMES.

00055 MOVE ALL '1' TO PRIME-FLAGS-GROUP.

00056 MOVE ZERO TO TOTAL-PRIME-COUNT.

00057 SET PRIME-INDEX TO 1.

00058 PERFORM COUNT-PRIMES.

00059 I-C.

00060 MOVE ZERO TO PRIME-FLAG (PRIME-MULTIPLE).

00061 ADD PRIME TO PRIME-MULTIPLE.

A.2 Slice on PRIME (Data Name Option)

--

= 25 lines missing

00026 PERFORM CALC-MILLI-SECONDS

=====================================
= 1line missing

00028 PERFORM CALC-PRIMES 10 TIMES

=====================================
= 1line missing

00030 PERFORM CALC-MILLI-SECONDS.

108

=====================================
= 13 lines missing

00044 PERFORM I-C UNTIL PRIME-MULTIPLE IS GREATER

THAN 8191
I

--
-- 13 lines missing

00058 PERFORM COUNT-PRIMES.

--

31
. . . = 1nes m1ss1ng

A.3 Slice on PRIME (Inclusive Option)

--
1 line missing

00002 PROGRAM-ID. PRIMES.

--
61

. . . = 1nes m1ss1ng

00009

00010

00011

77 TOTAL-PRIME-COUNT PIC S9(4) COMP.

77 PRIME PIC S9(4) COMP.

77 PRIME-MULTIPLE PIC S9(4) COMP.

00012 01 PRIME-FLAGS-GROUP.

00013 05 PRIME-FLAG PIC X OCCURS 8191 TIMES

00014 INDEXED BY PRIME-INDEX.

=====================================
-- 10 lines missing

00025 PRIME-COUNT-ROUTINE.

=====================================
21

. . .
= 1nes miSSing

109

00028 PERFORM CALC-PRIMES 10 TIMES

00029 DISPLAY 'COUNT:' TOTAL-PRIME-COUNT

--

-- 6 lines missing

00036 COUNT-PRIMES.

00037 SEARCH PRIME-FLAG VARYING PRIME-INDEX

00038 WHEN PRIME-FLAG (PRIME-INDEX) IS NOT EQUAL TO

ZERO

00039 ADD 1 TO TOTAL-PRIME-COUNT

00040 SET PRIME-MULTIPLE TO PRIME-INDEX

00041 ADD PRIME-MULTIPLE PRIME-MULTIPLE 1 GIVING

PRIME

00042 ADD PRIME TO PRIME-MULTIPLE

00043 SET PRIME-INDEX UP BY 1

00044 PERFORMI-C UNTIL PRIME-MULTIPLE IS GREATER

THAN 8191

00045 GO TO COUNT-PRIMES.

--
-- 8 lines missing

00054 CALC-PRIMES.

00055 MOVE ALL '1' TO PRIME-FLAGS-GROUP.

00056 MOVE ZERO TO TOTAL-PRIME-COUNT.

00057 SET PRIME-INDEX TO 1.

00058 PERFORM COUNT-PRIMES.

--

11
. . .

= Ine miSSing

00060 MOVE ZERO TO PRI:ME-FLAG (PRI:ME-MULTIPLE).

00061 ADD PRIME TO PRI:ME-MULTIPLE.

110

A.4 Slice on PERFORM

--

91
. . . = Ines miSSing

00010 77 PRIME PIC S9(4) COMP.

= 30 lines missing

00041 ADD PRIME-MULTIPLE PRIME-MULTIPLE 1 GIVING

PRIME

00042 ADD PRIME TO PRIME-MULTIPLE

--

= 18 lines missing

00061 ADD PRIME TO PRIME-MULTIPLE.

A.5 Additional Slice

91
. . . = Ines miSSing

00010 77 PRIME PIC S9(4) COMP.

= 10 lines missing

00021 05 MILLI-SECONDS PIC S9(8) COMP.

--
51

. . . = Ines miSSing

00027 MOVE MILLI-SECONDS TO BGN-MILLI-SECONDS.

--
31

. . . = 1nes miSSing

111

00031 SUBTRACT BGN-MILLI-SECONDS FROM MILLI-SECONDS

=====================================
91

. . .
= Ines missing

00041 ADD PRIME-MULTIPLE PRIME-MULTIPLE 1 GIVING

PRIME

00042 ADD PRIME TO PRIME-MULTIPLE

--

41
. . . = Ines miSSing

0004 7 MULTIPLY HH BY 60 GIVING MILLI-SECONDS.

00048 ADD MM TO MILLI-SECONDS.

00049 MULTIPLY 60 BY MILLI-SECONDS.

00050 ADD SS TO MILLI-SECONDS.

00051 MULTIPLY 100 BY MILLI-SECONDS.

00052 ADD HUN TO MILLI-SECONDS.

00053 MULTIPLY 10 BY MILLI-SECONDS.

71
. . .

= Ines miSSing

00061 ADD PRIME TO PRIME-MULTIPLE.

A.6 Extended Slice

= = = = = = = = = = = = = -:- = = = = =::: = = 9 lines missing

00010 77 PRIME PIC S9(4) COMP.

--

= 30 lines missing

00041 ADD PRIME-MULTIPLE PRIME-MULTIPLE 1 GIVING

PRIME

112

00042 ADD PRIME TO PRIME-MULTIPLE

00043 SET PRIME-INDEX UP BY 1

00044 PERFORM I-C UNTIL PRIME-MULTIPLE IS GREATER

THAN 8191

00045 GO TO COUNT-PRIMES.

00046 CALC-MILLI-SECONDS.

0004 7 MULTIPLY HH BY 60 GIVING MILLI-SECONDS.

00048 ADD MM TO MILLI-SECONDS.

--

= 12 lines missing

00061 ADD PRIME TO PRIME-MULTIPLE.

113

Bibliography

[1] AGS Information Service Ltd., uAGS Team Maintenance Standards",

Release 1.0, December 1988

[2] Anderson, R.E., «<Modular Documentation: a Software Development

Tool", Proceedings of the National Computer Conference, 1981, pp 401-

405

[3] Apple Computers Inc, .. HyperCard User Guide", 1989

[4] Arthur, J.D., and Stevens, K.T., .. Assessing the adequacy of

documentation through document quality indicators", Conference on

Software Maintenance - 1989 proceedings, IEEE Comp. Sci Press,

Washington, pp 40 - 49

[5] Bennett, K.H., Cornelius, B.J., Munro, M., and Robson, D.J., «<Software

Maintenance", Software Engineering Reference Book, Edited by

McDermid, 1991, pp 20.1 - 20.18

[6] Boehm, B.W., .. Software and its Impact: a Quantative Assessment",

Datamation, May 1973, pp 48-59

[7] Boehm, B.W., .. Software Engineering Economics", Prentice Hall, 1981

[8] Bolter, J.D., and Joyce, M., .. Hypertext and Creative Writing",

Proceedings of Hypertext 1987, pp 41-50

[9] Brown, P.J., '1nteractive Documentation", Software: Practice and

Experience, March 1986, pp 291-299

114

[10] Brown, P.J., "Turning Ideas into Products: The Guide System",

Proceedings ofHypertext 1987, pp 33-40

[11] Bush, E., "Reverse Engineering: What and Why", Proceedings of the

Forth European Software Maintenance Workshop, Centre for Software

Maintenance, Durham- September 1990

[12] Bush, V., "As We May Think", Atlantic Monthly, 176, 1, July 1945, pp

101- 108

[13] Calliss, F.W., "Problems with Automatic Restucturers", ACM

SIGPLAN Notices, 23, 1987, pp 13- 21

[14] Calliss, F.W, "Inter-Module Code Analysis Techniques for Software

Maintenance", PhD. Thesis, University of Durham, 1989

[15] Chang, S., and McGowan, C., "Full-text Retrival in Software

Maintenance", Proceedings ofCOMSAC 87, 1987, pp 53- 57

[16] Chapin, N., "Software maintenance: a different view", AFIPS Conf.

Proc. 54 National Computer Conference, 1985, pp 509-513

[17] Chen, Y., and Ramamoorthy, C.V., "The C Information Abstractor",

COMP86, October 1986, pp 291- 298

[18] Chikofsky, E.J., and Cross, J.H., "Reverse Engineering and Design

Recovery: A Taxonomy", IEEE Software, vol 7, no1, Jan 1990, pp 13-18

115

[19] Conklin, J., "Hypertext: An Introduction and Survey", IEEE Computer,

September 1987, pp 17- 41

[20] Cooper, S.D., and Munro, M., "Software change information for

maintenance management", Conference on Software Maintenance -

1989 proceedings, IEEE Comp. Sci Press, Washington, pp 279-287

[21] Downs, E., Clare, P., and Coe, I., "Structured Systems Analysis and

Design Method", Prentice Hall, 1988

[22] Englebert, D.C., and English, W.K., "A Research Centre for

Augmenting Human Interlect", Proceddings. of the 1968 Fall Computer

Conference, Montvale, N.J., 1968, AFIPS Press, pp 395- 410

[23] Fletton, N.T., "Documentation for software maintenance and the

documentation of existing systems", M.Sc. Thesis, University of

Durham, 1988

[24] Fletton, N.T., and Munro, M., "Redocumenting software systems using

Hypertext technology", Conference on Software Maintenance - 1988

proceedings, IEEE Comp. Sci Press, Washington, pp 54 - 59

[25] Foster, J., and Munro, M., ''A documentation method based on cross­

referencing", Proceedings of the Conference on Software Maintenance,

Austin, Texas- September 1987, IEEE Comp. Sci. Press, Washington

[26] Freeman, R.M., and Munro, M., "Xebra- Xerox Based Redocumentation

Aid", Proceedings of the Software Maintenance Association Conference.

1990, Vancouver, pp 4.35-4.47

116

[27] Garg, P.K., and Scacchi, W., "A Hypertext System to Manage Software

Life Cycle Documents", Proceedings of 21st Annual Hawaii

International Conference on System Sciences, 1988, pp 337-346

[28] Gibson, V.R., and Senn, J.A., "System Structure and Software

Maintenance Performance", Communications of the ACM, Vol. 32, 3,

March1989, pp 34 7- 358

[29] Guillemette, R.A., ((Application Software Documentation: a Reader

Measure", PhD. Thesis, University of Houston, May 1986

[30] Halasz, F.G., "Reflections on NoteCards, Seven Issues for the Next

Generation of Hypermedia Systems", Communications of the ACM,

Volume 31, Number 7, July 1988, pp 836-852

[31] Harband, J., "SEELA: Maintenance and Documentation by Reverse

Engineering", Conference on Software Maintenance- 1990 proceedings,

IEEE Comp. Sci Press, Washington, pp 466- 466

[32] Horowitz, E., and Williamson, R.C., ((SODOS: A Software

Documentation Support Environment - Its Definition", IEEE

Transactions on Software Engineering, Vol SE-12, No.8, August 1986,

pp 849-859

[33] Huffman, J.E., and Burgess, C.G., "Partially automated in-line

documentation (PAID): Design and implementation of a software

maintenance tool", Conference on Software Maintenance - 1988

proceedings, IEEE Comp. Sci Press, Washington, pp 60 - 65

117

[34] IEEE 830 Software Requirement Document

[35] IEEE Software engineering standards, 1984, pp 31-32

[36] James, G., ««Document Databases", Van Nostrand Reinhold, New York,

1985

[37] Jandrasics, G., «<Static Analysis of Commercial Programs with the

SOFTDOC system", Technical Reports, SES Software Engineering

Services, Pappelstr. 6, D-8014 Munich, Germany, 1981

[38] Katsoulakos, T., "Overview of the ESPRIT project REDO", Proceedings

of the Third European Software Maintenance Workshop, Centre for

Software Maintenance, Durham- September 1989

[39] Kenning, R.J., and Munro, M., "Towards Configuring Operational

Systems", Software Tools Notes, Software Tools Conference, Wembly,

June 1990

[40] Lientz, B.P., and Swanson, E.B., "Software maintenance: A

user/management tug-of-war", Data Management, April1979

[41] Lientz, B.P., and Swanson,E.B., ««Software Maintenance Management",

1980, Addison Wesley

[42] Marshall, C.C., "Exploring Representation Problems using Hypertext",

Proceedings of Hypertext 1987, pp 253-268

118

[43] Martin, J., and McClue, C., ((Software Maintenance: The Problem and

its Solutions", Prentice Hall, 1983

[44] McGowan, S., ((FORTUNE - an ipse Documentation Tool", Technical

Report, CAP (UK) Ltd., 1987

[45] Miller, J.C., Strauss, B.M., ((Implementations of Automatic

Restructuring of COBOL", ACM SIGPLAN Notices, 22, 1987, pp 41-49

[46] Morissey, J.H. and Wu, L.S.Y., ((Software engineering: An economic

perspective", Proceedings of the 4th international conference on

software engineering, Munich, September 1979, pp 17-19

[47] Nelson, T.D., ((Getting it Out of Our System", Information Retrieval: A

Critical Review, G. Schechter, ed. Thompson Books, Washington, 1967,

pp 191-210

[48] Nelson, T.H., "Replacing the Printed Word: A Complete Literary

System", IFIP Proceedings, October 1980, pp 1013 -1023

[49] Pawson, S., "Maintenance in a commercial D.P. environment",

Proceedings of the First Software Maintenance Workshop, Centre for

Software Maintenance, Durham- September 1987

[50] Petzold, C., ((Programming Windows : the Microsoft Guide to Writing

Applications for Windows 3", Microsoft Press, Redmond, Washington,

1990

119

[51] Rittel, H., and Webber, M., "Dilemmas in a General Theory of

Planning", Policy Sciences, Vol4, 1973

[52] Simon, A., "Requirements for a Software Maintenance Support

Environment", MSc Thesis, University of Durham, 1991, pp 14 7- 149

[53] Singleton, M.E., "Automating Code and Documentation Management",

Prentice Hall, 1987

[54] Smith, J.B., and Weiss, S.F., "Hypertext", Communications of the ACM,

Vol31, No.7, July 1988, pp 816-819

[55] Sneed, H., and Jandrasics, G., "Software Recycling", Conference on

Software Maintenance - 1987 proceedings, IEEE Comp. Sci Press,

Washington, pp 82 - 90

[56] Sneed, H., "Software Renewal: a Case Study", IEEE Software 1(3), 1988,

pp 56-63

[57] Sneed, H., "Ecconomics of Software Re-engineering", Proceedings of the

Forth European Software Maintenance Workshop, Centre for Software

Maintenance, Durham- September 1990

[58] Sommerville, I., Weiland, R., Bennett, I., and Thomson, R., "SOFTLIB­

a Documentation Management System", Software - Practice and

Experience, Vol16, No.2, Febrary 1986, pp 131-143

120

[59] Swanson, E.B., "The dimension of Maintenance", Proceedings of the 2nd

International Conference on Software Maintenance, October 1976,

IEEE/ACM, pp 492-497

[60] Tang, R., "Third Party Software Maintenance", Proceedings of the Third

European Software Maintenance Workshop, Centre for Software

Maintenance, Durham- September 1989

[61] Trigg, R.H., and Irish, P.M., "Hypertext Habitats: Experience ofWriters

in NoteCards", Proceedings of Hypertext 1987, pp 89- 108

[62] Turner, R.J., "Software Maintenance: Generating Front Ends for Cross

Referencer Tools", M.Sc. Thesis, University of Durham, 1989

[63] U.S. Department of Commerce, "Guidlines for Documentation of

Computer Programs and Automated Data Systems", Federal

Information Processing Standards Publication 30, June 1984

[64] Walker, J.H., "Documnet Examiner: Delivery Interface for Hypertext

Documents", Proceedings of Hypertext '8 7, U ni versi ty of North Carolina

at Chapel Hill, 307 - 324

[65] Walker, J.H., "Supporting Document Development with Concordia",

Proceedings of21stAnnual Hawaii International Conference on System

Sciences, 1988, pp 355- 364

[66] Ward, M., "Proving Program Refinements and Transformations", PhD.

Thesis, University of Oxford, 1989

121

[67] Ward, M., Calliss, F.W., and Munro, M., "The Use ofTransformations in

the Maintainers Assistant", Conference on Software Maintenance -1989

proceedings, IEEE Comp. Sci Press, Washington, pp 307-315

[68] Weiser, M. D., "Program Slices: Formal Psychological and Practical

Investigations of an Automatic Program Abstraction Method", Ph.D.

Thesis, University of Michigan, Ann Arbour, 1979.

[69] Xerox, "Xerox ViewCards: User Handbook", VP Series Reference

Library, Version 2.0,1989

[70] Yang, H., "How Does the "Maintainers Assistant" Start?", Centre for

Software Maintenance, University of Durham, March 1991

[71] Zvegintzov, N., "Nanotrends", Datamation, August 1983, pp 106-116

122

