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Abstract 

An important application area of modem computer systems is that of digital signal 

processing. This discipline is concerned with the analysis or modification of digitally 

represented signals, through tiie use of simple matiiematical operations. A primary 

need of such systems is that of high data throughput. Although optimised 

programmable processors are available, system designers are now looking towards 

parallel processing to gain further performance increases. 

Such parallel systems may be easily constructed using the transputer family of 

processors. However, although these devices are comparatively easy to program, they 

possess a general von Neumann core and so are relatively inefficient at implementing 

digital signal processing algorithms. The power of the transputer lies in its ability to 

communicate effectively, not in its computational capability. 

The converse is true of specialised digital signal processors. These devices 

have been designed specifically to implement the type of small data intensive 

operations required by digital signal processing algorithms, but have not been designed 

to operate efficiendy in a multiprocessor environment 

This thesis examines the performance of both types of processors witii 

reference to a common signal processing application, multichannel filtering. The 

transputer is examined in both uniprocessor and multiprocessor configurations, and its 

performance analysed. A theoretical model of program behaviour is developed, in 

order to assess the performance benefits of particular code structures and the effects 

of such parameters as data block size. The transputer implementation is contrasted 

witii that of the Motorola DSP56001 digital signal processor. This device is found to 

be much more efficient at implementing such algorithms on a single device, but 

provides limited multiprocessor support. 

Using tiie conclusions of tiiis assessment, a hybrid multiprocessor has been 

designed. This consists of a transputer controlling a number of signal processors, 

communicating through shared memory, separating the tasks of computation and 

communication. Forcing tiie transputer to communicate tiirough shared memory causes 

problems, and these have been addressed. A theoretical performance model of the 

system has been produced. A small system has been constmcted, and is currentiy 

running performance test software. 

vu 



Chapter 1 

Introduction 

From the inception of the first microprocessor based systems in the early 1970s, their 

range of application has steadily increased. This has been aided by the ongoing 

development of integrated circuit fabrication technology, which has resulted in the 

production of relatively inexpensive, powerful processors, and by continuing software 

development, which has produced compilers, operating systems and development tools 

used to ease the programming task. 

One particular area which has benefitted significantiy from tiiese developments 

is that of digital signal processing (DSP), which is concerned with the modification 

or synthesis of signals represented in the digital domain. Although some DSP 

operations mimic their analogue counterparts, many may be realised only in the digital 

domain. This versatility, the ease by which the characteristics of a digital processing 

system may be altered and the simplicity with which many of the basic building block 

operations may be implemented has led to the widespread popularity of such systems. 

Although once only a spin-off from general purpose microprocessor 

technology, digital signal processing systems arc now very sophisticated, and may be 

said to constimte a major branch of modem computing systems. The range of 

applications is wide, recent developments having made a significant impact in the area 
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of consumer audio products with the advent of compact disc and digital audio tape 

(DAT) systems. Other application areas include sound synthesis, medical imaging, 

seismic signal processing, speech recognition, graphics rendering and image 

processing. The continuing alliance of digital signal processing with the area of 

parallel computing promises the development of systems orders of magnitude more 

powerful than those of today. 

This chapter continues by giving a brief overview of microprocessors and 

parallel computing. Digital signal processing is introduced, and an appraisal of modem 

digital signal processing devices is presented, with a discussion of the application of 

parallel computing techniques to digital signal processing. The chapter concludes by 

describing the subject matter of this thesis. 

1.1 A Brief History of Microprocessors 

Modem microprocessors are tiie products of continually advancing semiconductor 

technology, which began with the invention of the transistor in 1947. These advances 

have allowed the dimensions of devices to decrease, increasing both the amount of 

circuitry per unit silicon area and the operational speed. 

The first microprocessor, the Intel 4004, was launched in 1971. This was a 

slow 4bit device, with a limited addressing capability. This device was followed up 

by the 8bit 8008 in 1972. As part of its efforts to convince engineers to use tiieir 

microprocessors, Intel also developed a range of programming tools. 

By 1976, when Intel launched tiie 5V supply 8085, a number of 8bit 

microprocessors were available, including the Zilog Z80 and the Motorola 6800. These 

devices were produced in large quantities, reducing tiieir cost which made them more 



attractive for use in consumer products. Some of tiiese microprocessors were made 

available with on-chip memory and termed "microcomputers". 

Altiiough tiie first 16bit microprocessor was introduced in 1977, it was not 

until die launch of the Intel 8086 in 1978 that any significant performance increase 

was attained. These processors offer more advanced architectures than their 8bit 

counterparts, many incorporating internal 32bit architectures, various memory modes, 

large address spaces and high clock speeds. 

1983 saw the introduction of the first truly 32bit microprocessor, the National 

Semiconductors NS32032. Otiier 32 bit devices include the Intel 80386, die Motorola 

68020/30 and the Inmos transputer [1], [2]. As a result of decreased feature size 

and an increase in die size, modem processors are capable of operating at higher clock 

speeds (50MHz) and incorporate many features such as memory, cache, peripherals 

and specialised execution units (ie floating point uruts) on-chip. Included in this new 

generation are the Intel 80486 and the Motorola 68040, both of which are instruction 

compatible with their predecessors but offer significandy higher performance. The 

Intel 1860 utilises a 64bit architecture and incorporates a 3D graphics processing unit 

on-chip, in addition to a floating point unit and multiple caches. The new generation 

transputer, the T9000, should significantiy increase the performance of transputer 

based systems, when it is finally released. This device operates at a higher clock rate 

and uses faster links (lOOMbits *). Performance is enhanced by the provision of an on-

chip cache, a communications co-processor and an enlarged instruction set 

The performance of processors is often described in terms of MIPS (millions 

of instructions per second), MOPS (millions of operations per second) or MFLOPS 

(millions of floating point operations per second). However, die architecture of 



processors is now so diverse that these ratings should be used only as a rough guide 

when comparing the performance of different processors. An operation that is executed 

in a single instruction cycle on one processor may take several cycles to execute on 

another. Manufacturers always quote the maximum possible attainable performance 

of their processors, which generally corresponds to the use of on-chip resources and 

a permanentiy full instmction pipeline. Fig 1.1 shows the increase in processor 

performance with time. 

1.2 Issues in Processor Design 

In 1945, while working as a consultant with the Moore School group, von Neumann 

issued a memo concerning the design of a new computer (EDVAC). This report, 

reputedly for the first time, referred to a memory organ, used to hold all the different 

types of data required by the computer. 

This memo contained the first reference to what has become to be known as 

the "von Neumann Architecture" [3], which was used as the basis for processor 

architectures for well over 30 years. This type of architecture, shown in Fig 1.2, has 

four main characteristics: 

i A single computing element consisting of a processor, memory and an 
input/output device. 

ii A linear organisation of fixed size memory cells. 

iii A low level machine language with instructions performing simple 
operations on elementary operands. 

iv Sequential, centralised control of computation. 

Data and instructions are stored in the sanK memory and are accessed via a single 

bus. If the performance of the processor exceeds tiiat of tiie memory, then die 



processor is forced to wait and the simation known as "bus bottienecking" occurs. 

Botdenecking represents the major limitation of von Neumann architectures, and is 

most apparent in high speed systems. 

In order to increase die performance of such processors, various architecniral 

and implementational modifications have been made to diis basic structure [4]. 

1.2.1 Pipelining 

The processor must fetch an instruction, decode it and then act upon it The idea of 

pipelining is to use dedicated execution uruts for each of these functions, allowing 

them to operate simultaneously [4], [5]. This divides up the work required of the 

processor and increases performance. The basic form is the fetch, decode and execute 

pipeline which allows an instruction to be fetched (pre-fetched) while another is being 

decoded and another executed Fig 1.3 demonstrates die action of such a pipeline 

when executing three consecutive instmctions, A , B and c. The pipeline may be 

lengthened to increase the amount of operational parallelism, perhaps by including 

units to compute the address of operands. 

Pipelining works most efficientiy whenever consecutive instmctions are 

accessed. Jump, call and context switching instructions render some portions of the 

pipeline invalid. In such instances, the whole pipeline must be refilled. This obviously 

reduces performance, and the advanced microprocessors incorporate mechanisms used 

to reduce the impact of this pipeline "flushing". 

1.2.2 The Harvard Architecture 

The performance limitations imposed by storing data and instractions in a single 



addressable memory area may be alleviated somewhat by providing separate memories 

for data and instructions. The Harvard architecture, shown in Fig 1.4, allows the 

processor to fetch instructions and operands simultaneously, significantly increasing 

performance. This basic architecture may be extended, allowing multiple operand 

fetches to occur simultaneously. Fig 1.5. Due to its high data bandwidth capability, 

the Harvard architecture gas been utilised in a number of digital signal processing 

(DSP) devices [6]. 

1.2.3 Caches Memories 

Modem processors operate at high clock speeds, requiring fast memory access. 

Dynamic RAM is unable to cope with the access speed requirements of the fastest 

processors, and the size of static RAM allows only a small amount of memory to be 

located on the processor board. Connecting a memory extension board slows down 

access times. The consequence of this is that fast systems may only access small 

memory areas at full speed. 

The solution is to use a small, fast, memory to act as a storage buffer between 

main memory and the processor. Such a memory is called a "cache", and is sometimes 

incorporated on-chip for really fast access [7]. 

The effectiveness of a cache depends upon its access time and its "hit ratio" 

— how often the processor finds useful information in the cache. 

Caches may be used to store data or instructions, requiring sophisticated 

control algorithms to maintain a high hit ratio. 

The main motivation for using a cache based architecture is to decrease system 

cost. Fig 1.6 shows the breakeven points between caches and various memory speeds. 



1.2.4 Extended Processing Units 

Adding more instructions to a processor's instruction set in order to increase its 

performance also increases its complexity and die size. One method of increasing 

functionality without incurring this complexity is to use extended processing units 

(EPUs), or "coprocessors" [2]. Common EPUs include floating point coprocessors, 

DMA processors, memory management units and vector coprocessors. 

1.2.5 RISC 

Continued development of microprocessors resulted in devices utilising many complex 

instructions, requiring a large microprogrammed ROM and several cycles to execute 

— the so-called complex instruction set computers (CISC). Although this does ease 

the task of writing a compiler, it does tend to limit the performance of a processor 

By using a smaller, simpler and more regular instruction set, instruction cycle times 

may be reduced. This is the approach taken by the reduced instruction set computer 

(RISC) philosophy [8]. 

Although the definition of RISC is far from standardised, any RISC should 

exhibit at least some of the following properties: 

i Single cycle instructions. 

i i Only LOAD and STORE instructions access memory, all other instructions 
access intemal registers. 

i i i Simple instruction formats. 

iv Hardwired, rather than microcoded, control units. 

V A small, efficient instruction set. 

Complex instructions are broken down into a series of shorter instructions. As the 

memory bandwidth requirement of RlSCs is high, they must use high speed memory 
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in order to maintain a performance advantage. As the control unit is small, this 

releases space which may be used to provide a fast on-chip memory area. Example 

RISC processors include the Acorn Rise Machine (ARM), the MIPS 2200 and the 

Inmos Transputer. 

1.3 Multiprocessors 

When the performance requirement of a particular application cannot be met by a 

single processor, then a multiprocessor system must be used [9], [10]. Many 

types of multiprocessor are available, ranging from highly specialised to general 

purpose systems. Multiprocessors are commonly described in terms of Flynn's 

Taxonomy [11], which'classifies architectures according to the presence of single 

or multiple instruction and data streams, below. 

SISD (single instruction, single data) — serial computers. 

MISD (multiple instruction, single data) — a generally impractical approach. 

SIMD (single instruction, multiple data) — the same instruction is 

simultaneously executed on different data. 

MIMD (multiple instruction, multiple data) — multiple processors 

autonomously operate on diverse data. 

Not all multiprocessor architectures fit neatly into these categories, some may possess 

properties attributed to more than one taxon. Multiprocessors may be thought to 

consist of a number of processing elements (PEs) connected to memory units (MUs) 

through an interconnection network (IN). The size and nature of these three elements 

varies enormously among different multiprocessors [12], [13], [14], [15], 

[16]. 
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A task may be broken down into processes which may operate in parallel. The 

size of these processes is termed the "grainsize". A program running smalPprocesses 

is said to exhibit fine grain parallelism, whereas one running large processes is said 

to exhibit coarse grain parallelism [6]. 

1.3.1 Interconnection Networks 

The variation of IN topologies is considerable, a sample of the most popular is shown 

in Fig 1.7. Some, such as the FFT butterfly, have been designed to implement a 

particular class of algorithm, whereas others, such as the hypercube, have been 

designed to implement a large number of algorithms with optimum efficiency. Some 

multiprocessors utilise reconfigurable IN topologies, which considerably increases their 

versatility, but also their complexity. The extent to which a multiprocessor suppons 

additional processors is termed its "scalability", and is heavily influenced by the 

interconnection network topology. 

1.3.2 SIMD 

Fig 1.8 presents a representation of the standard SIMD model. Processor and systolic 

arrays are the two most common forms of SIMD architecture. Processor arrays are 

used for numerically intensive applications which require regular, synchronous, 

computation. The most popular IN schemes used in such architectures are the mesh 

and crossbar. 

Some array processors, such as llliac IV [2], incorporate processors utilising 

wordlengths of up to 64bits. A number of systems utilise simple, Ibit, processing 

elements. These processors use planes of memory, and are panicularly efficient at 



implementing image processing algorithms. Example systems include the ICL 

Distributed Array Processor (DAP) and Thinking Machines Connection Machine, 

which utilises up to 65,536 processors. 

Systolic architectures were first proposed by H.T. Kung in the early 1980s 

[17], [18]. The term "systolic" arises from the manner in which data is 

"pulsed" through the system. The processors are tighdy synchronised and connected 

by a regular IN. Although the IN topology of these processors is highly optimised to 

implement particular applications, reconfigurable arrays are available which are 

significantly more versatile. Systolic arrays are particularly efficient at implementing 

certain signal processing algorithms. 

1.3.3 MIMD 

MIMD systems generally make use of more sophisticated processors than SIMD 

systems, and lend themselves to coarse grain parallelism. The processors operate 

asynchronously and often possess their own memory area. Whereas each processor in 

a SIMD system is controlled by a centralised controller, the processors in an MIMD 

system operate autonomously. MIMD systems may be broadly categorised as either 

shared memory or distributed memory architectures [6], [14]. 

1.3.3.1 Shared Memory 

The processors in this type of architecture communicate through an area of shared 

memory. It is important to ensure that the data in this area is not corrupted by 

uncontrolled access. This is usually carried out by using a "semaphore" protocol [6], 

[19], [20]. A semaphore consists of a word in memory and controls access to 
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an area, or domain, of memory. The state of the semaphore determines whether or not 

the domain is in use by a processor, and so determines whether or not other processors 

may access it. The processors test the semaphore, and act appropriately. Whenever a 

process gains access to a domain, it "locks" it by setting the semaphore, and "unlocks" 

it when finished by resetting the semaphore. In order for a semaphore protocol to 

work, the processors must use so-called "atomic" instructions to test the semaphore 

and set it, i f appropriate, in a single bus cycle. This eliminates the possibility of 

semaphore ambiguity when two processors interleave their memory accesses. 

Repeatedly testing and failing a semaphore, "spin locking", can degrade 

performance by increasing the memory traffic [21]. The simple shared memory 

architecture shown in Fig 1.9 is especially susceptible to this problem as the von 

Neumann botdenecking problem is increased due to the additional processors. More 

sophisticated semaphore protocols do not allow spin locking, which helps to reduce 

the amount of bus traffic [22]. 

Various interconnection networks have been introduced in order to reduce the 

bus saturation problem, including the crossbar network and hierarchical bus structures. 

Fig 1.10 and Fig 1.11. These may be either "static", as in the hierarchical bus, or 

"dynamic", as in the crossbar switch. Dynamic interconnection networks allow 

communications paths to be made "on the fly" and are able to offer higher 

communication bandwidths and lower latencies. However, they are complex and hence 

expensive to implement,[6],[13],[20]. 

Addition of local memory and caches increases the performance of any of the 

above configurations. I f shared data is held in a cache, it must be updated whenever 

other processors change any related variables in other caches or main memory. This 
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"cache coherency" requires the addition of extra hardware or software, which increases 

complexity and may reduce performance [23],[24],[25],[26], . 

1.3.3.2 Distributed Memory 

Distributed memory systems consist of nodes comprising a processor and memory pair 

which are connected via an interconnection network, and may take on any of the 

forms oudined in Section 1.3.1. Data is transferred by passing messages across the IN. 

The development of distributed memory systems has been motivated by the 

desire to produce large, scalable systems capable of providing a high performance for 

a variety of applications. 

The hypercube', in particular, is a popular interconnection network 

configuration, possessing a high degree of interconnectivity and relatively low 

communications diameter. Commercially available hypercube distributed memory 

systems include the Cosmic Cube [27], the AMTEK 2010 and the Intel iPSC2 

[28]. The new generation of hypercube machines will utilise specialised 

communications processors to provide efficient routing through the use of 

"wormholing" [29], which reduces the communications latency whenever a message 

is routed through intermediate processors. 

The transputer, in particular, has been designed witii large scale distributed 

memory systems in mind [29]. The provision of four bidirectional serial 

communication "links" allows very large systems to be easily constructed with these 

devices. 

Modules are available which connect a transputer to other processors, which 

are used as slaves. These companion processors include the Motorola DSP56001 
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programmable digital signal processor, the Motorola DSP56200 FIR chip (both from 

Perimos), the Intel 1860 and Zoran vector processors [30]. These processors 

certainly boost the apparent performance of the transputer, but often the interprocessor 

communication bandwidth is low, and scalability is not supported. 

1.3.4 Multiprocessor Performance 

The maximum speedup that may be attained by a multiprocessor comprising n 

processors is n times that of a single processor. This ideal performance is only 

attainable i f the interconnection network is capable of sustaining the total 

communications bandwidth required by the processors. The communication bandwidth 

of the interconnection network is the limiting factor in the performance and scalability 

of a multiprocessor. Hence the choice of interconnection network must be carefully 

considered when designing a multiprocessor system [6], [20], [31]. 

Transputer systems offer a high communications bandwidth which is 

proportional to the number of processors. Thus, the scalability of such systems is 

large. However, performance will suffer whenever a message issued by a transputer 

must be routed through intermediate transputers in order to reach its destination, as 

the intermediate transputers must devote time to through-routing the message [29]. 

Due to the vast variety of multiprocessor architectures, it is difficult to apply 

benchmark programs as a means of comparing the performance of different systems. 

The development of multiprocessor benchmarking programs is a growing area of 

research [32] [33]. 
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1.4 Digital Processing of Signals 

Although the mathematical theories and tools forming die basis of the eclectic field 

of digital signal processing had been brought together by die middle of this century, 

practical implementation was severely limited by the available technology. 

The development of digital filter theory [34] and the Fast Fourier 

Transform algorithms [35] coupled with the development of integrated circuit 

technology resulted in the emergence of feasible digital signal processing systems in 

the mid 1960s. Digital signal processing has now grown into an established and ever 

expanding discipline. Application areas include audio and video processing, 

communications, seismology and tomography [36]. 

Digital processing of signals offers more control, and higher predictability, than 

its analogue counterpart. Some applications may only be implemented using digital 

techniques. Some applications may be too expensive, or be too slow, to implement 

digitally, however, and must use analogue technology. 

1.4.1 Sampling Theory 

A digital signal consists of a series of values defined at discrete intervals of time. 

When an analogue signal is modulated by a set of pulses (delta functions), the 

resultant output is a quantised form of the input. This process is known as "sampling" 

[37], and the frequency at which the pulses are applied is termed the "sampling 

frequency". Sampling theory maintains that the maximum useful frequency content of 

a digital signal is limited to half the sampling frequency (the Nyquist frequency). Any 

frequency component higher than the Nyquist frequency is "aliased", or folded around 

the Nyquist frequency, into the sub-Nyquist range, resulting in signal distortions. 
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Furthermore, the frequency spectrum of the sampled signal exhibits a periodicity. 

Whenever an analogue signal is sampled, it must first be band limited by a low 

pass analogue filter, to half the sampling rate, which eliminates aliasing. When a 

sampled signal is to be converted back to the analogue domain, it must be passed 

through a similar filter in order to properly reconstitute the signal. The entire process 

is outlined in Fig 1.12. 

1.4.2 Filter Structures 

Digital filters utilise multiplication and addition operations to modify a signal's 

frequency and phase spectra. The most widely used digital filtering types are the finite 

impulse response filter <FIR) and the infinite impulse response filter (IIR), example 

architectures of which are shown in Fig 1.13 and Fig 1.14. Although IIR filters are 

more economical, their inherent feedback properties render them liable to unstable 

behaviour. FIR filters are stable and offer linear phase characteristics, but tend to 

require more operations than IIR filters [38]. 

1.4.3 Quantisation Effects 

Due to the finite length of their registers, digital devices can represent information 

with only a finite precision. An 8bit device is capable of half the precision of a 16bit 

device, and so on. This has consequences relating to dynamic range, signal to noise 

ratio (SNR) and filter response approximations. The limited precision with which filter 

coefficients may be represented forces the possible frequency responses to be 

quantised. In addition, the truncation caused by transferring data from a long 

accumulator to a shorter memory location introduces noise into the system. Noise is 
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also introduced by the analogue to digital converter. As a rough measure, Ibit of noise 

reduces the SNR by 6dB. Noise considerations are an important design aspect of 

digital hardware systems [ 3 7 ] . 

1.4.4 Programmable Signal Processors 

Advances in processor design methods, coupled with the desire to make signal 

processing hardware more compact and manageable resulted in the production of the 

first programmable digital signal processor, the NEC | JPD7720 in 1980. The main 

difference between digital signal microprocessors and their general purpose 

counterparts is in the provision of a fast hardware multiplier [ 7 ] , [ 3 9 ] . 

In order to provide maximum data throughput, these processors incorporate 

dedicated registers which act as multiplier input buffers. This allows operands to be 

fetched while the multiplier is operating. Arithmetic precision is maintained through 

the use of double length multiplier output registers (accumulators), which are often 

extended to accommodate overflows. 

As the speed of multipliers increased, so did the need to supply them with 

data. Some form of the Harvard architecture is used in every recent processor, 

including areas of on-chip memory which may be simultaneously accessed at full bus 

bandwidth. 

The use of register indirect addressing modes helps to speed up memory 

accessing by removing the need to explicitly calculate addresses. The more recent 

signal processors incorporate a number of address registers which may be modified 

in parallel with memory and multiplier operations. A summary of presentiy available 

signal processors is given in Table 1.1. More detailed descriptions may be found in 
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[40],[41],[42],[43].[44],[45],[46]. 

The most recently introduced signal processor from Texas Instruments, the 

TMS320C40, incorporates six byte wide communication interfaces, each capable of 

transferring data at 20Mbytes '. This is the first processor to have been designed to 

interface, at high speed, with other similar devices, allowing point to point 

interconnection network topologies such as the 3D mesh and 6D hypercube to be 

direcdy implemented. The TMS320C40 points to the convergence of two areas of high 

performance computing — digital signal processing and parallel computing. 

1.5 Concurrent Digital Signal Processing 

Parallel signal processing systems based on SIMD architectures have been in existence 

for a number of years [47]. These tend to be highly synchronous and are capable 

of implementing only a small class of algorithms efficiently. The application of MIMD 

architectures to digital signal processing applications is an area of active research. 

Transputer arrays have proved popular, as they are easily constructed and programmed 

[48], [49]. However, the development of architectures designed specifically 

to cater for the requirements of specialised digital signal processing elements has not 

yet reached maturity [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61]. 

The problems of utilising signal processors in MIMD architectures are 

three-fold. Firstly, their data requirement is very high, often requiring up to three 

memory accesses per instruction cycle, which puts considerable strain on the 

interconnection network and limits scalability. Secondly, although performance models 

of multiprocessor systems do exist [32], they tend to be stochastic rather than 

deterministic and so are not applicable to real-time digital signal processing 
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applications, which are generally deterministic. Thirdly, signal processors have been 

optimised to pass data through their multipliers as quickly as possible, not to interact 

in a multiprocessor environment. Hence, any overheads attached to interprocessor 

communication management may significantiy affect the performance of the processor. 

Conversely, these properties also aid the system designer. Digital signal 

processing algorithms generally require large amounts of data, and very little (if any) 

conti-ol information. This allows data to be transferred efficiently to the processors in 

large buffered packets (vectors). As the execution of the signal processing algoriUims 

tends to be fixed, then the intervals at which the processors require data is also fixed. 

This allows the data transfers to be staggered, reducing communications resource 

contention. 

Multiprocessor architectures need to be found that allow fast data transfer, to 

keep the signal processors fed, without incurring excessive communications 

management overheads, which would slow down the processors. 

1.6 Summary 

This introduction has provided an overview of the growth areas of high performance 

multiprocessing and digital signal processing. Although the architecture of the earlier 

digital signal processors differed markedly from their general purpose counterparts, 

more recent devices have started to incorporate a blend of architectural strategies. For 

example, digital signal processors are accessing larger memory spaces, and may be 

programmed with high level languages, whereas general purpose processor are 

breaking away from the von Neumann architecture by using multiple bus memory 

architectures. 
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Digital signal multiprocessor systems tend to suffer from low performance or 

reduced scalability as a consequence of relatively low bandwidth interprocessor 

communication mechanisms. This is changing as more research is aimed at the 

communications requirements of these systems. 

The interprocessor communication problem has been acknowledged by Texas 

Instruments, in their new "parallel" signal processor, the TMS320C40, which uses 

autonomous DMA ports in a similar manner to the transputer. This device incorporates 

six byte wide ports, capable of a total transfer rate of 120 Mbytes '. This is a high 

transfer rate (over twelve times faster than the transputer), and the six ports allow 3D 

meshes or 6D hypercubes to be directly implemented. But it is important not to get 

carried away with this specification. The DMA ports will only operate at full speed 

when accessing internal memory; external accesses are multiplexed onto a single 

interface which must be shared with other DMA transfers and cpu instruction /data 

fetches. This device is best suited to a point to point communications scheme, which 

are prone to through-routing latencies and a coiresponding performance decrease. 

Finally, these devices possess a high pin count (which increases pcb costs), relatively 

high power consumption and are expensive. 

Some applications may not require 32bit floating point operations, or such a 

high degree of interconnectivity, but would nevertheless benefit from a multiprocessor 

implementation. The problem here is that the lower range signal processors provide 

limited multiprocessor communications support, which results in an inefficient system. 

Developing an optimally efficient interprocessor communication mechanism for such 

systems would allow more data processing to take place, increasing the effective 

number of MIPs per processor and reducing overall cost. The resultant multiprocessor 
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need not be homogeneous (consisting of identical processors), a heterogeneous system 

(consisting of different type of processor) could be used to maximise efficiency. Such 

a system could be used either as an inexpensive stand-alone signal processor, or as an 

add-on accelerator. It would be important in the design of such a system to ensure that 

the operation of the processors was fully understood, especially the mechanisms 

involved in computation and communication. 

The assessment of two different types of microprocessor in terms of signal 

processing and interprocessor communications, with a view to combining them to form 

an efficient and inexpensive digital signal multiprocessor forms the subject matter of 

this thesis. Chapters 2 to 4 introduce the Inmos transputer, assessing its applicability 

to signal processing. Chapters 5 and 6 outline the architecture and operation of the 

Motorola DSP56001 digital signal processor. Both processors are compared by their 

ability to implement a multichannel digital filtering application. The conclusions drawn 

from these chapters are used in die design of a hybrid (heterogeneous) multiprocessor 

(Hymips) in chapters 7 and 8. Although this multiprocessor was developed as a 

general purpose digital signal processing platform, the research involved in its 

development was closely aligned to a particular high performance audio bandwidth 

application. The reader is referred to the list of conference papers presented in 

Appendix F for further information. Chapter 9 offers a theoretical analysis of system 

performance, together with empirical verification of the performance equations. 

Finally, chapter 10 provides a conclusion and suggestions for further work. 
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Finn Model Date Descriptioo Mac Time 

AMI S2811 1978 The fint DSP designed; 12/I6^t fixed point; not 
released until 1982 because of technology proUenii 

300 

S28211/2 1983 Aniipdaieofthe2811 -

Analog 
Device! 

ADSP-2100 1986 16/40bit fixed point 125 

ADSP-2100A 1988 An update of the 2100 80 or 100 

ADSP-2101/2 1988 A2100A with intenul RAM and peripherals; 2102 
has mask programmaide piogram ROM 

-

ADSP-2111 1990 2101 with host port -

AT&T DSPl 1979 Early 16/20bit device, maikeied inienially 800 

DSP32/32C 1984/88 32tHt floating point 160/80 

DSP16/16A 1987/88 16bit fixed point 55/25 

DSP16C 1990 DSP16A with voice band Codec -

Motorola DSP56001 1987 24lat fixed point, on-chip peripheral ports 97 J/75/50 

DSP56000 1987 56001 with mask programmable ROM -

DSP96001 1990 32lBt IEEE floating poinL 75 

DSP96002 1990 96001 with additional memory port -

NEC HPD7720 1980 A popular eariy DSP. 250 

HPD7720A - Update of 7 7 ^ 244 

HPDT7230 1985 32fait floating point 150 

J1PD77220 1986 24/48bit fixed point 100 

fiPD77C25 1988 7720A upgrade 122 

|JPDT7240 1990 Update of 77230 90 

Texai 
Instnimenu 

TMS32010 1982 Popular 16bit fixed point DSP 390 

TMS32020 1985 Update U 32010 195 

TMS320C25 1987 CMOS update <^ 32020, with additional instiuctions 100 

TMS320C30 1988 32lBt floating point 60 

TMS320C50 1990 16fait fixed point 35 

TMS320C40 1992 32tBt floating point with 6 byte wide D M A ports. 
Designed for multiprocessing 

60 

Sharp LH9124 1991 24bit fixed point frequency and time doiruin 
processor. 

-

U19320 1991 Address generator for the LH9124 -

Table 1.1 A Summary of Popular Programmable Digital Signal Processors 

21 



i860 • 

10.0 -i 
80486 • MC68040 

T414 • • 
T800 

1.0 H 

Z80000 

MC68020 • • 80386 

80286 • 

68000 

• 8086 

0.1 H 

MC6800 • 

8080 • 

8085 

• 8008 
• 4004 

1970 1975 1980 1985 1990 

Release Date 

Fig 1.1 The Increase of Processor Performance with Time 

22 



Processor 

bus 
1 1 

Memory Input/Output 

Fig 1.2 The von Neumann Architecture 

Fetch Decode Execute 

B 

Time 

Fig 1.3 The Execution of an Instruction Pipeline 

23 



Data 
Memory 

Program 
Memory Processor 

Fig 1.4 The Harvard Architecture 

Memory 2 
Data 

Memory 1 
Program 
Memory Processor 

Fig 1.5 A Modified Harvard Architecture 

Cache 

Fig 1.6 Cache / Main Memory Breakeven Points 

24 



O O '<D 
Pipe 

Binary Tree 

o o o 
Bus 

O 0 Q 

6—0—0 

—6 
Mesh 

Fig 1.7 Example Interconnection Network Topologies 

25 



PE MU PE MU 

Control PE IN MU Control PE IN MU 

PE MU PE MU 

Fig 1.8 The SIMD Model 

PE PE PE 

MU MU MU 

Fig 1.9 The Simple Shared Memory Architecture 

26 



PE 
SW SW 

PE 
SW SW 

MU MU 

Fig 1.10 The Crossbar Interconnection Scheme 

MU MU PE PE MU 

MU MU PE 

CA 

PE 

MU 

CA 

MU PE PE 

Fig 1.11 An Example of a Hierarchical Bus Struoure 

27 



I 
CO 

o> 
a 

E 
•g I 

I 
tafi c 

C / 3 
0) 

(S 

00 

O 0> 

28 



input 
,-1 ,-1 ,-1 

k>i 4>i >̂̂  4>n 
output ^ — 0 — ^ 

Fig 1.13 An FIR Structure 

input 
,-1 

H>n k>i Lc>. L{>^ 

,-1 

H>-® © © J k output 

.-1 

KH ^ KH rO^ 
® © © 

Fig 1.14 An nR Structure 

29 



Chapter 2 

The Transputer 

2.1 Introduction 

The term "transputer" refers to a family of RISC - like microcomputers manufactured 

by Inmos (now a subsidiary of SGS Thomson Microelectronics Group) [9], [30]. The 

major differences between the devices are the wordlength (16 bit or 32 bit), the size 

of the internal memory (2kbyte or 4kbyte) and the incorporation of a floating point 

unit (^u - T80x transputers only), the core architecture remaining similar. The generic 

term "transputer" will be used to refer to the family as a whole in this thesis, any 

particular architectural difference being pointed out when necessary. As the transputer 

was designed with embedded systems applications in mind, it requires only an 

additional bootstrap ROM for stand-alone operation. 

The key feature of the transputer architecture lies in the inclusion of "Unk 

engines". These are essentially DMA controllers which transfer data between memory 

and an external, bidirectional, serial interface. The link engines operate concurrently 

and asynchronously both with themselves and the central processing unit (cpu). These 

links allow any transputer to be directiy connected with up to four other transputers, 

allowing asynchronous communication to occur concurrently with cpu operation. This 

ability to overlap conomunication and computation is the main feature distinguishing 
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the transputer from other commercially available processors'. It is these links that 

allow a network of an arbitrary number of transputers to be easily implemented. Fig 

2.1. 

The links provide for a point to point message passing communication 

paradigm to be implemented. The advantages of point to point links over multi­

processor buses are [30]: 

i . There is no contention for the communications mechanism, regardless 
of the number of transputers in the system. 

i i . There is no capacitive load penalty as transputers are added to the 
system. 

i i i . The communications bandwidth does not saturate as the size of the 
system increases. Rather, the larger the number of transputers in the 
system, the higher the total communications bandwidth of the system. 
However large the system, all the connections between transputers can 
be short and local. 

It must be considered, however, that the communications bandwidth across a 

link is lower than may be obtained over a bus. Furthermore, only four links are 

provided, which limits the topologies which may be realised using direct connections. 

Whenever messages must be routed through intermediate processors, not only is there 

a possibility of link communication contention, but the routing software must be 

explicitly programmed, which further adds to the communications overhead and 

detracts from overall performance. 

The point to point message passing paradigm is efficiently implemented by the 

' An exception to this is the TMS320C40 programmable digital signal processor from 
Texas Instruments, which has been recently released. 
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transputer's "native" language, Occam (now Occam2) [62]. The transputer was 

designed around the ideas embodied in Occam, which itself is based upon the theory 

of Communicating Sequential Processes (CSP) [63]. 

Occam allows any number of parallel processes to be incorporated into a 

program. The processes communicate over Occam "channels", and may run either on 

a single transputer or be mapped onto several transputers for true concurrency and 

increased performance. Parallel processes running on a single transputer communicate 

through "soft" or "internal" channels, whereas those running on different transputers 

communicate over "hard" or "external" charuiels, implemented by the link interfaces. 

Parallel processes running on a single transputer are managed by a microcoded 

scheduler. The scheduler ensures that no process monopolises the cpu by periodically 

"timeslicing" processes, deschedules processes when they are no longer able to 

proceed, and reschedules them again when they are. The operation of the scheduler 

is normally transparent to the programmer. 

Section 2 introduces the architecmre of the transputer, and its main execution 

units. The instruction set is covered in section 3. Section 4 goes on to discuss the 

effect which the manner in which the transputer deals with instmctions has on 

performance. The construction of sequential and parallel processes are described in 

Sections 5 and 6 respectively. The communication mechanisms are covered in Section 

7, followed by the memory map, events and bootstrap procedures. Section 11 

introduces methods of optimising performance, and finally section 12 offers a 

sunmiary. 
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2.2 Transputer Architecture 

The architecture of each processor in the transputer family is similar. A schematic 

representation of the major blocks is shown in Fig 2.2. for integer and floating point 

transputers. The individual blocks will now be discussed separately. 

2.2,1 The Central Processing Unit 

The microcoded central processing unit (cpu) contains six registers which arc used 

when implementing sequential processes. These are: 

i . Wptr The workspace pointer, which pomts to an area of memory 
where local variables and process parameters are stored. 

i i . Iptr The instruction pointer, which contains the address of the next 
instruction to be executed. 

i i i . Oreg The operand register, used to store instruction operands. 

iv. Areg The top of the evaluation stack. 

V. Breg The intermediate evaluation stack register, 

vi. Creg The bottom of the evaluation stack. 

The evaluation stack is used for integer and address arithmetic. Loading a value onto 

the stack pushes Areg into Breg, and Breg into Creg, before loading Areg. Storing a 

value from the stack pops Breg into Areg, and Creg into Breg, after Areg is stored. The 

floating point unit contains three similar, floating point, registers that behave in the 

same way. 

The microcoded scheduler also resides in the cpu. Using a microcoded 

scheduler removes the need for a software kernel and so allows efficient management 

of concurrent processes. 
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The cpu also allows for real-time programming by incorporating two timer 

registers, one operating at a resolution of l|is for use by high priority processes, the 

other at 64 |i,s for use by low priority processes. 

2.2.2 Internal Memory 

The transputer incorporates either 2 or 4kbytes of static memory on chip (device 

dependent), which occupies the lowest area of the memory map. In accordance with 

the RISC philosophy, this memory is accessed in a single processor cycle. Any 

frequentiy used variables should reside here, in preference to the slower external 

memory area. 

2.23 External Memory Interface 

The external memory interface (EMI) provides access to up to 4Gbyte of memory. 

Most transputers incorporate a versatile EMI, which is able to interface to most types 

of dynamic as well as static RAM. This feamrc greatly simplifies hardware designs 

that use dynamic RAM. 

The address and data buses are multiplexed. The full 32-bit data bus is used, 

but only the 30 most significant address lines are brought out to the EMI, which 

corresponds to a word aligned external addressing scheme. Individual bytes are 

accessed using individual byte strobes. One of the seventeen possible EMI 

configurations is selected after processor reset. 

Since the data and address lines are multiplexed, external memory access is 

significantly slower than internal memory access, even when no wait states are used. 

Using this EMI, external memory access is three times slower than internal memory 
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access. If faster external memory access is required, then the T801 transputer may be 

used. This floating point transputer uses non-multiplexed data and address buses, 

resulting in an external access time of two processor cycles. However, due to the extra 

bus pins, most of the EMI's control and strobe lines have been lost. The EMI of the 

T801 is very simple, and is only suitable for direct connection to static RAM. 

2.2.4 Links 

Most transputers support four bidirectional link interfaces (the exceptions being the 

budget T400 and the M212 Disk Controller), which are used to connect either to other 

transputers or to other types of device, through a link adapter. Each link consists of 

an input and an output channel. A single byte is sent at a time, and for each byte sent 

an acknowledge packet is received on the input of the same link. Data and 

acknowledge packets may be multiplexed on the same Imk. The acknowledge packet 

is transmitted as soon as an input packet begins, allowing for continuous 

communication (except on the early revA T414s, which did not implement this 

overlapping protocol). The structure of the data and acknowledge packet is shown in 

Fig 2.3. 

Links may operate at 5,10 or 20 Mbits *. regardless of the internal clock speed, 

allowing transputers of different clock speeds to be linked together. Links can carry 

information at a maximum of 1.74Mbytes * in unidirectional mode, and 2.35Mbytes ' 

in bidirectional mode [30]. 
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2.2.5 The Floating Point Unit 

Some transputers (the T80x series) incorporate an on chip floating point unit (fpu), 

conforming to ANSI-IEEE 754-1985 standard [30]. This operates on operands, the 

addresses of which are supplied by the cpu, and executes concurrently with the cpu. 

The fpu is capable of sustaining 2MFLOPS (for a 20MHz processor). 

2.3 The Transputer Instruction Set 

The transputer instruction set is byte orientated, and so is independent of processor 

wordlength. Thus, all the transputer family may use the same compiler. Each 

instruction has a similar format [64], 

An instruction consists of a single byte, divided into two four bit "nibbles". 

The most significant nibble represents a function code, the least significant represents 

the operand of the function. The least significant nibble is loaded into the lowest 

nibble of the operand register. Fig 2.4, 

2.3.1 Direct Instructions 

The four bit representation allows sixteen instructions to be directly implemented, each 

with an operand value ranging from zero to fifteen. According to the RISC design 

philosophy, Iimios have implemented the most common instructions in this manner. 

Among these are the local load and store instructions, which according to Inmos, arc 

most commonly used with small operands (ie values less than sixteen) [30]. 

2.3.2 Prefixing 

Of course, the transputer uses more than sixteen instructions, and uses operands of up 
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to 32 bits. These other instructions and larger operands must be "built" using the 

prefixing instructions, which are included in the set of direct functions. The prefix 

(pf ix) instruction first loads its operand into the operand register, then left shifts this 

value four places. The negative prefix (nf ix) instruction operates in a similar manner, 

except that the operand register is complemented before the operand is loaded. 

Operands of up to 32 bits may be loaded in this way, using additional prefixing 

instructions. The number of prefix operations used to load an operand will be termed 

the level of prefixing. 

2.3.3 Indirect Instructions 

The operate (opr) function has been included in the set of direct functions. The 

operand of this instruction is interpreted as another instruction, which operates on the 

evaluation stack. Sixteen indirect functions may be encoded in a single byte. Other 

indirect instructions may be invoked by extending the operand register, using the 

prefix function. Examples of instruction encoding are given in Table 1. 

Occam Program Assembler Mnemonics 

X : = 0 LDC 0 
STL X 

X := -256 NFIX 1 
PFIX 0 
LDC 0 
STL X 

Areg + Breg OPR 5 

Areg AND Breg PFIX 4 Areg AND Breg 
OPR 6 

Table 2.1 Examples of direct, prefix and indirect instructions 
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2.4 Performance Implications of the Instruction Set 

Inmos claim [30] that "about 70% of executed instructions are encoded in a single 

byte..Many of these, such as LDC and ADD require just one processor cycle". It 

would certainly seem that coding is efficient, although the user would be able to make 

a more objective judgement if the source code for these programs were made 

available. The byte wide instruction format does have consequences relating to overall 

performance. 

Although many instructions require only a single processor cycle to execute, 

they often require prefixing to load in their operands, which adds to the overall 

execution time of the instruction. It must be remembered that the timing information 

that Inmos publishes relates only to the cycle tiroes of the instractions, and does not 

include any time taken to extend the operand. 

The cpu reads in a word of program memory at a time, allowing up to four 

instructions to be loaded in one processor cycle, providing that on-chip memory is 

used. This decreases the bus bandwidth required by the cpu, increases the efficiency 

of instruction prefetch and reduces the overlieads attached to jumping. The reduced 

bus bandwidth requirement is one of the reasons why link operation only minimally 

degrades cpu performance. 

2.5 The Implementation of Sequential Processes 

Sequential processes are executed using the six registers contained within the cpu. 

Every sequential process uses two areas of memory. The first is the program area, 

which is referenced by the instruction pointer (Iptr) and provides the instructions. The 

second is the workspace, which is referenced by the workspace pointer (Wptr) and is 
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used to store local variables and values associated with timers and alternatives. 

Expressions are evaluated on the evaluation stack. Local variables arc addressed 

relative to the workspace pointer, non-local variables are addressed relative to the 

address held in Areg. A schematic representation is given in Fig 2.5. 

2.6 The Implementation of Concurrent Processes 

The instruction set, together with the scheduler, allows for the efficient implementation 

of logically concurrent programs on the transputer. A parallel program consists of a 

set of sequential processes, which usually communicate with each other. The scheduler 

ensures that these processes are all given an equal share of processing time, although 

it naay interrupt or deschedule a process imder certain circumstances. Whenever it is 

interrupted, a process completes the instruction that it is executing before the contents 

of the registers are saved in the auxiliary registers (reserved locations in internal 

memory). The process may be resumed at a later time by restoring these register 

values. Whenever a process is descheduled, however, the registers are not saved. It is 

thus important that no important information is held in the evaluation stack when a 

descheduling instruction is executing, as tiiis information wil l be lost i f descheduling 

occurs. 

A parallel program running on the transputer, then, may be thought of as a set 

of sequential processes that arc scheduled, interrupted and descheduled under the 

control of a run time management kernel — the scheduler. 

What follows is a description of die software and hardware mechanisms used 

by the transputer to implement parallel programs, priority and the structure of both 

non-prioritised and prioritised programs. The description is fairly detailed, as an 
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appreciation of the construction of, and the overheads associated with, single processor 

concurrent programming is important i f the effects on performance are to be fully 

understood. 

2.6.1 Workspace 

Each process uses its own workspace (WS) in a similar manner to the way workspace 

is used in purely sequential programs. The cpu registers are also used in the same 

way. Whenever a process begins execution, its workspace and instruction pointers are 

loaded into the appropriate registers in the cpu. In addition to storing variables, timer 

and alternative information, the workspace is also used to store the process instruction 

pointer, values associated with communication and scheduling information. Al l tiiese 

non-variable values are stored in negative workspace locations. 

2.6.2 The Process Descriptor 

The descriptor of a process is the sum of its workspace address (which is word 

aligned — ie its byte selector is zero) and its priority (eiUier 1 or 0), which occupies 

the Isb. The process may be completely identified in a program by its descriptor. 

2.63 Scheduling Lists 

A process may be eitiier active (scheduled) — being executed or waiting to be 

executed — or inactive (descheduled) — waiting for communication or until a specific 

time. Inactive processes consume no cpu time. The scheduler manages the processes 

by maintaining two linked lists (or queues) of processes, one for each priority level. 

The scheduler uses two registers for each list, one pointing to the fiont, the other to 
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the back. Fig 2.6. Whenever a process is descheduled, then its instruction pointer is 

saved in workspace location - 1 , it is taken off the queue and the next process on the 

queue is executed. It takes about 18 processor cycles to reschedule a process. 

2.6.4 Priority 

The transputer supports two levels of priority, high (0) and low (1). High priority 

processes run in preference to low priority processes. 

A low priority process wil l run until either 

i . it has been executing for two "timeslice" periods (2048 high priority 
timer "ticks", about 2 ^ ) , in which case it is put to the back of the 
queue at the earliest opportunity. 

i i . i t has to wait for communication or timer input, in which case it is 
descheduled. 

i i i . a high priority process becomes active, in which case the low priority 
is interrupted and execution switched to the high priority process at the 
earliest opportunity. 

A high priority process will run until it is unable to proceed as it is waiting for 

a communication or timer input, in which case it is descheduled. 

The scheduler wil l normally interrupt a low priority process in order to execute 

a high priority process at the end of the current instruction. However, there arc six 

"interruptible" instructions, concerned either with communication or timer input [65]. 

It is important that no additional information is contained in the stack when these 

instructions are executing. Once one of these instructions is interrupted, then the 

instruction pointer of the low priority process is saved in its workspace, and the high 

priority process allowed to begin. Typical process switching latency is 18 processor 

cycles. 
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Similarly, any process may be descheduled only when it is executing one of 

the twelve "descheduling" instructions [30]), which are concerned with 

communication, timers, jumps, errors or concurrent process initialisation and 

termination. 

2.6.5 The Construction of Parallel Programs 

This section describes the way in which the transputer instruction set is used to 

implement parallel programs from processes of equal priority. Consider the processes, 

p,Q and R, which are to be executed in "parallel". The Occam construct for this is 

PAR 
P 
Q 
R 

The transputer instruction sequence to implement this is 

Instructions Comments 

LDC 3 Number of concurrent processes 
STL 1 stored i n WS location 1 
LDC (L5-L6) Pointer to f i r s t instruction of 
LDP I 

(L5-L6) 
successor process stored in WS 

LS: STL 0 location 0. 
LDC (L1-L2) Load instruction offset and WS 
LDLP WP address of P and put i t in the 

L2: STARTP queue. 
LDC (L3-L4) Similarly for Q. 
LDLP WQ 

L4: STARTP R continues from i n i t i a l process R R continues from i n i t i a l process 
LDLP 0 End R, pointing to successor 
ENDP process WS, (R - parent). 

L I : P Code for P. 
LDLP -WP End P, pointing to successor 
ENDP process WS, (R - parent). 

L3: Q Code for Q. 
LDLP -WQ End Q, pointing to successor 
ENDP process wor)cspace. 

L5: The program continues. 
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Where wp is the offset from the workspace of R to that of P, and WQ is the offset from 

the workspace of R to that of Q. 

There are only two startp instructions, as the process used to set up the 

concurrent processes in fact continues as process R. Hence, a PAR construct may be 

though of as a "parent" or "main" process which generates one or more "child" or 

"sub" processes. 

The main process stores the number of subprocesses that it generates in its 

workspace, which the scheduler uses as a count down counter to determine how many 

subprocesses have yet to complete. Whenever a subprocess executes an endp 

instruction (relinquishing its workspace by using -ws), this counter value is 

decremented by one. When this value reaches zero, the main process may continue, 

or execute an endp itself. 

Parallel processes of equal priority may be nested to any level, and so P,Q or 

R may themselves define further parallel processes. A schematic representation of the 

above parallel construct is represented in Fig 2.7. 

2.6.6 The Construction of Prioritised Parallel Programs 

Prioritised parallelism is implemented in Occam using the PRI PAR construct. This 

construct runs a high priority (priority 0) and a low priority (priority 1) process in 

parallel. The Occam representation is 

PRI PAR 
P 
Q 

where P is the high priority process, Q the low priority process. 
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The transputer instruction sequence used to implement this is 

Instruction Comments 

L4; 

L2; 

LI; 

L3: 

L5; 

LDC 2 
STL 1 
LDC (L3 -L4) 
LDP I 
STL 0 
LDC (LI -L2) 
LDP I 
LDLP (WP -1) 
STNL 0 
LDLP WP 
RUNP 
Q 
LDLP 0 
ENDP 
P 
LDLP -WP 
ENDP 
LDLP 0 
LDC 1 
OR 
RUNP 
STOPP 

Number of p a r a l l e l processes 
stored i n WS location 1. 
Pointer to f i r s t instruction of 
successor process (deprioritising 
code) stored i n WS location 0. 
Load pointer to f i r s t instruction 
of P. .. 
... and store i t i n location -1 of 
P's WS. 
Load pointer to WS of P, and place 
P on the high p r i o r i t y queue. 
Code for Q. 
End Q. 
Code for P. 
End P, pointing to i t s successor 
(Q - the parent). 
Define a " n u l l " process, using the 
present WS. E x p l i c i t l y set to low 
pr i o r i t y , run i t then immediately 
stop i t (take i t off the queue). 

The program continues. 

Table 2.3 Implementing a Prioritised Parallel Program 

Here, p is explicitiy set to run at high priority by runp. Areg should contain the 

process descriptor when runp is executed. In this case, the process descriptor points 

to p and has an Isb equal to zero, and so P is placed in the high priority queue. 

The PRi PAR construct is continued as process Q. The code appearing at L 3 is 

the successor to the prioritised construct - ie this code will be executed whenever the 

processes inside the PRI PAR have both completed. This code runs a second version 

of the prioritising code, explicitiy starting it at low priority. This is necessary, since 

die priority of the process starting at L3 would otherwise be determined by the priority 

of the process in die PRI PAR that finished last, and so would be indeterminate. 

PRI PAR constructs may not be nested, altiiough the two processes may 
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tiiemselves contain further PAR constructs. Prioritised processes are useful whenever 

external communication is used. I f the cortununicating process is run at high priority, 

then the link wil l be serviced as soon as possible. The link transfer may then take 

place while the cpu is executing the low priority code, making ful l use of the 

autonomous nature of the link interface. A representation of a PRI PAR construct is 

shown in Fig 2.8. 

2.7 Communication 

2.7.1 Overview 

Concurrent processes communicate through channels. Communication is point 

to point, synchronised and unbuffered. A channel between two processes on the same 

processor ("soft" channel) is implemented with a word in memory, whereas a channel 

between two processes on different processors ("hard" channel) is implemented with 

a link. 

Communication is carried out by first loading the stack with a pointer to the 

message, the channel address and the size of die message in bytes, then by executing 

one of the channel ti:ansfer instructions. The instruction sequence is the same for both 

hard and soft channels as the processor uses the channel address to determine the 

appropriate action to take — external channels use special reserved internal memory 

locations. 

As corrmiunication is unbuffered, the transfer takes place only when both 

processes are ready. The process that becomes ready first must wait for the second 

process to become ready. 
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In order to estimate the performance of a transputer program, it is important 

to understand the mechanisms by which messages are passed. Hard and soft chaiuiels 

are implemented differendy, and so they will be considered separately. 

2.7.2 Internal Communication 

Soft channels are implemented by using a single word in memory, which contains 

eitiier a pointer to a workspace or die special value "empty". A soft channel must first 

be initialised to die value "empty" before it is used 

When a process wishes to use a channel, the value stored in the channel word 

is first checked. I f the value is "empty" then the workspace pointer of the process is 

stored in the chaimel (the workspace contains the address of the message to be 

transferred), and die process is descheduled. When die second process becomes ready, 

it also checks the value of the channel word. This time, the value of the channel is not 

"empty", and the message is copied. The second process continues execution, the first 

process is rescheduled and die channel is reset This is shown in Fig 2.9, where a 

process P outputs a message to a process Q over channel c. 

Note that only one process is descheduled, and the actual transfer is carried out 

by the cpu. 

2.12 External Communication 

Hard channels are implemented through a link by using a link interface, which 

manages message synchronisation and transfer. The link engines are able to work 

concurrentiy with the cpu. 

Whenever a transfer instruction is executed by a process, and found to be 
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external, the information held in the stack is transferred to the link interface registers 

and the process is then descheduled. The corresponding recipient process does likewise 

on another processor. When both link interfaces have been initialised, the transfer 

takes place. Botii processes are rescheduled after tiie tiansfer has been completed. This 

is shown in Fig 2.10. 

Note that both processes are descheduled, and that communication is 

overlapped with computation by an amount dependent on the size of the message. 

Because the overheads associated with setting up the link transfer are independent of 

the message size, it is more efficient to transfer larger rather than smaller messages. 

2.8 Memory Map 

The transputer uses a byte orientated addressing scheme, in that an address word 

points to a byte in memory, not to a word. Each address word may be decomposed 

into two portions — a word address and a byte selector. For 32-bit processors, the 

byte selector occupies the two least significant bits of the address word. 

A signed address space is used, with the bottom of die address space being 

represented by the most negative number (#80000000). The total addressable space for 

a 32 bit processor is 4Gbyte. Internal memory extends fi-om #80000000 to #80000FFF 

(for a 32 bit processor). The locations up to #8000006F are used as an extended 

register set by the processor, to store information concerning links, events, timers and 

interrupted processes. 

Although the transputer uses a byte orientated addressing scheme, Occam uses 

a word orientated scheme, Fig 2.11. The byte selector is not brought out on the 

external memory interface (EMI). Individual bytes of external memory are accessed 
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using the byte strobes of the EMI. 

The EMI also provides facilities for DMA of the external memory space, and 

for external wait state generation. 

2.9 Event Pins 

The event pin, and its associated event acknowledge and event request pins, allows 

for an asynchronous handshaking interface between the transputer and an external 

device. These pins allow an external event to interrupt an Occam program. 

2.10 Booting 

The transputer may be booted either fi-om a link or from an external ROM. Link 

booting is used exclusively for the work presented in this thesis. 

2.11 Optimising Performance 

This section presents a brief overview of the various techniques available to optimise 

die performance of a transputer system The reader is referred to [65] for a more 

complete treatment. 

The section is divided into two parts. The first deals widi optimising 

performance on a single transputer, the second discusses how performance may be 

increased in a multi-transputer system. 

2.11.1 Uni-Processor Optimisation 

Performance optimisation on a single transputer is compiler dependent In this case, 

the con^iler was die D700D version of Occam (Occam2). As internal memory may 
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be accessed at least twice as quickly as external memory, most of the methods 

presented here are concerned with making as much use of internal memory as 

possible. 

The Occam compiler assigns the process workspaces to the lowest area of 

memory, then the program code and finally a section optionally reserved for vectors. 

Hence, the program space will be forced off chip in preference to the workspaces. 

This is sensible, as the transputer is able to load in four instructions, but only one data 

item, in a single cycle, and so the additional external memory access time makes less 

impact on the program space than the data space. 

The compiler allocates workspaces for procedures and parallel processes as a 

falling stack, ie the last procedure/process to be declared has its workspace placed at 

the lowest location. Similarly, for each process, the variables are allocated as a falling 

stack within the workspace. So, i f a process uses time critical data, then it should be 

declared last, and the data within the process should also be declared last. This keeps 

the critical variable within internal memory space, and keeps its access rime as low 

as possible. The exception to this is large vectors, which may force other areas off 

chip. 

Variables should be declared locally to a process whenever possible, as this 

allows the use of local load and store instructions, which are more efficient than their 

non-local counterparts. 

Abbreviations may be used to bring non-local variables into local scope (The 

scope of a process refers to those variables which may be accessed locally). In 

particular, sections of non-local vectors may be abbreviated by sub-vectors using 

constant index terms, which speeds up vector access. 
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Vectors should not be assigned using a loop, but by the block move facility, 

which is far more efficient. 

Whenever vectors are used inside a replicated SEQ loop, it is always advisable 

to explicitiy access a number of consecutive vector elements inside the loop. This is 

known as "opening out" the loop, and reduces the overall overhead associated with 

performing the loop. 

For time critical sections of code, tiien die GUY construct may be used. This 

feature allows the programmer to incorporate sections of transputer assembly code into 

an Occam program. Care must be taken with this option, however, as only a limited 

compile time checking facility is available. 

Finally, certain compiler options should be turned off once die program has 

been tested and verified. An example is range checking, which inserts extra run time 

code in order to test for subscript overflows, which obviously decreases performance. 

Once the program has been tested, however, there is no need for this code, and the 

program may be re-compiled widiout this option. 

2.11.2 Multi-Processor Optimisation 

Optimising code to run on a multi-transputer system essentially involves optimising 

the operation of external communication. Multi-processor optimisation is much more 

sensitive to die particular application than uni-processor optimisation, and is not so 

well defined. 

Link performance must be optimised. Communication on the links must be 

allowed to overlap with cpu operation, and the overhead per word of transferred data 

must be reduced as much as possible. 
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In order to allow this cpu/link overlap, link communication and cpu operation 

must be decoupled. This involves placing all link communication statements in one 

process (which may itself contain parallel sub-processes), all the computation 

statements in another, and running them in parallel. Whenever an extemal 

communication statement is executed, then that process is descheduled, leaving the 

computation process to continue while information is being transferred on the link. 

I f the two processes have the same priority, then the communication process 

may have to wait, for at least a timeslice period, for the computation process to be 

interrupted before it can transfer data. This delay may cause the computation process 

to be starved of data, or funher communication delays on other transputers, both of 

which will degrade system performance. The solution is to run the communication 

process at high priority, which then allows data to be transferred with the minimum 

of delay. 

In order to remove any soft channel communication associated with buffering 

data between the communication and computation process, Inmos [65] recommend the 

use of a looped three stage pipeline. Each pipeline element has the same structure — 

a PRI PAR with parallel extemal input and output processes at high priority, and a 

computation process at low priority. There are no inter-process soft channels, as data 

is passed by reference within the pipeline. This is indeed an efficient structure, but is 

not always the optimal solution, as the overheads associated with setting up each 

PRI PAR construct are quite considerable. 

The overheads associated with transferring data may be reduced by transferring 

vectors rather than words. This spreads the overheads associated with the setup over 

many more words. However, i f the message is too long, then the transfer time may 
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impede performance. 

2.12 Summary 

This chapter has introduced the transputer as a powerful element from which large 

multi-processor systems may be constructed. The major points of the architecture have 

been outiined, in particular the link engines which allow the transputer to overlap 

communication and computation. The nature of the instruction set has been described, 

together with the performance implications of the non-standard method of constructing 

instructions. The structure of both the sequential and the parallel Occam structures 

have been discussed, and their implementation shown to be particularly efficient due 

to the run-time scheduler. The inter-process communication mechanisms for hard and 

soft channels have been shown to be similar. Finally, a treatment of performance 

optimisation techniques has been given. 

Due to its RISC-like design, internal n^moiy and concuirent communication 

and computation capability, the transputer is a powerful processor. Its run time 

microcoded scheduler and uniform communication instructions, in conjunction with 

the links, allow multi-transputer networks of arbitrary size to be easily implemented. 

Although die transputer is indeed a powerful general purpose processor, die 

constraints imposed by real-time signal processing applications often force it to 

operate at its performance limit. These constraints, and their performance implications, 

are covered in the following chapters. 
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Fig 2.1 An Arbitrary Transputer System Topology 
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Fig 2.2 Schematic of Transputer Architecture 
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Fig 2.6 Implementing Concurrent Processes on the Transputer 
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Channel C 
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Process P checks channel C, finds that it is empty, 
executes an output instniction and is descheduled. 
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Channel C now contains a pointCT to the woricspace of P, 
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Process Q executes an input on channel C and finds that it has been initialised. 
The transfer takes place (memory to memory block, copy), C is reset and P rescheduled. 

Fig 2.9 Internal Communication 
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Fig 2.11 Comparison of Transputer and Occam Memory Map 
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Chapter 3 

Digital Filtering on the 
Transputer 

3.1 Introduction 

With its concurrent communication and computation capability, and its relatively high 

clock rate, the transputer has potential for use in high performance signal processing 

applications [66]. This chapter investigates the implementation of one such 

application — a digital filter — on the transputer. 

The code was mapped onto one, two and three transputers in order to 

investigate the impact of concurrency on performance. Furthermore, two intra-

processor communication structures (or harnesses) were utilised for each mapping, and 

their effect on performance investigated. 

The computation code runniiig on the transputers is shown to be relatively 

short. Because of this, the performance of each implementation is sensitive to any 

unnecessary overheads. The full optimisation of the code is described. 

The application requires that many data streams (or channels) are processed. 

It is shown that once a fully optimised single channel filter is implemented, it is a 

straightforward step to modify the code in order to produce a multichannel filter. 

The working environment for this application is such that power consumption 
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and occupied space are at a premiiun. The implementation of the filter on the 

transputer is assessed, then, in terms of the dual criteria of overall performance (total 

throughput) and the performance per processor (total throughput per processor, or per 

unit silicon area). 

3.2 The Filter 

The filter possesses a three pole bandpass Butterworth response, the characteristics of 

which are given in Appendix A. The filter comprises single pole high and low pass 

sections, connected as in Fig 3.1. The single pole sections are constructed as shown 

in Fig 3.2. 

The structure of the single pole sections is notable in that it does not include 

a multiplier, the multiplication (division) function is effectively carried out by a shift 

operation. This renders the filter suitable for implementation on processors, such as 

the transputer, that do not possess a fast multiplier. The structure of this filter, then, 

departs from the more usual filter architectures that use fast (fractional) multipliers 

[37]. 

3.3 Implementation on the Transputer 

The implementation of the filter on the transputer may be divided into two areas. The 

first deals with the mapping of the processes onto the processors, and the second deals 

with the structure of the processes themselves. These will now be considered in turn. 
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3.3.1 Mapping the Processes onto the Processors 

From Fig 3.1, the overall structure of the filter may be mapped into three sections. 

This partitioning provides a natural mapping onto one, two and three processors, Fig 

3.3a to Fig 3.3c. 

Other partitioning schemes arc possible, of course, but these would involve 

decomposing the single pole computation sections. The computation times of these 

sections arc very small aheady, the total execution time being dominated by tiie 

communication bandwidtii, and so further partitioning would provide littie, if any, 

performance increase. Furthermore, this would increase the number of processors, 

which would in turn increase the power and space requirement of the system. 

3.3.2 The Structure of the Processes 

The structure of the processes consists of a computation section, running at low 

priority, embedded in a larger structure, termed the harness, that defines the 

communication structure of the process and includes the extemal communication 

statements, which run at high priority. 

Two harness structures, Type I and Type n were implemented. The same 

computation section was used in both harnesses, for a given mapping. Minor 

modifications were made to the harnesses and the computation section for the different 

mappmgs. The harnesses and the computation section are considered separately, 

below. 

3.3.2.1 The Harnesses 

The structure of the two harnesses is shown in Fig 3.4 and Fig 3.5, together with their 
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"hedgehog" diagrams. Type I uses a pair of P R I PAR statements inside a WHILE TRUE 

loop. Inside each P R I PAR , the communications are held at high priority, and the 

computation at low priority. There is no communication between the communication 

and computation processes within the P R I PAR . While the communication processes 

are dealing with data set A, the computation process is dealing with data set B, and 

vice versa in the next P R I PAR statement. Hence communication and computation are 

decoupled, and the data sets are passed "by reference" between the two P R I PAR 

statements, which is the approach recommended in [65]. This structure is inherendy 

multi-chaimel, and may be extended to an arbitrary number of channels simply by 

adding more P R I PAR statements. 

However, the P R I PAR statement does take many cycles to set up, depending 

on the number of parallel processes it contains (Section 4.5.2) — roughly 65 cycles 

for these applications. No "useful" work can be carried out during this set up period, 

and as this happens for every invocation of the P R I PAR , then it could represent a 

considerable overhead. 

This overhead is eliminated in type n by implementing a single P R I PAR, 

within which are placed W H I L E T R U E loops for the communication and computation. 

The communication loops are configured in parallel in order to maximise the external 

communication overlap. A consequence of this structiu-e, however, is that the 

communications and computation processes must communicate through internal 

channels (ie they are coupled). Internal communication is carried out by the cpu and 

so detracts from the overall performance of the process. 

Thus both harness types possess their own peculiar overheads; for instance, 

type I requires roughly twice as much memory as type H. The relative merits of each 
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are discussed in Section 4.5.2. 

The harnesses for the processes used in the one and two processor partitionings 

are similar, as these use the same single output, single input structure. The three 

processor partitioning, however, requires a third link between the second and third 

processors. The requirement for a third extemal commurucations channel adds to the 

overheads experienced by the three processor mapping. 

3.3.2.2 The Computation Section 

The filter is constructed from a combination of single pole high and low pass sections. 

Fig 3.1, which possess a similar architecture, differing only in the point at which the 

output is taken, Fig 3.2. 

The single pole structure contains a shift right (by fifteen places), effectively 

a division by 2". Multiplication and division on the transputer are expensive. An 

integer multiply requires 39 cycles to complete, an integer division 40 cycles 

(including prefix overheads), a floating point multiply 11 cycles and a floating point 

division 17 cycles (not including setup, but carried out concurrentiy with cpu operation 

— for floating point transputers only). This structure requires a division operation, 

which is expensive. 

A more efficient method is to directiy use a shift right instruction. The 

transputer is able to right shift a single length integer in 15 + 2 + 1 (18) cycles, and 

a double length integer in 15 + 1 (16) cycles. There is a complication here, however, 

in that the shifts are not arithmetic, but logical, and so the leading vacated bit 

positions of tiie word arc zero filled. The transputer operates witii a two's complement 

data format, and so for a negative number not only is polarity lost upon shifting, but 
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tile value of the variable is distorted. It is thus very important that the post shifted 

value is sign extended, which unfortunately requires extra instructions. 

3.3.2.3 The Occam2 Version 

The most straightforward method of coding tiie filter is to use a high level language, 

in this case Occam2. The computation code for the high pass and low pass sections, 

together witii the disassembled form of die highpass section, is given in Fig 3.6, die 

code for all the computation sections is given in Appendix B. Sign extension is 

catered for by an I F statement here. The I F is placed after the shift, and tests to see 

whether the pre-shifted sign bit was set, and if so sets the msbs with a bit-wise OR 

instruction, thus restoring aritiunetic validity. The code uses 30 bytes of program 

memory space and executes in 48 cycles for a positive pre-shifted value, and 56 cycles 

for a negative pre-shifted value, the differing times being a consequence of the 

conditional branch. This is a hard real-time application, however, and so worst case 

times must always be assumed. Hence, the execution time of this piece of code must 

be given as 56 cycles. 

The section of code used for sign extension uses 12 cycles and 9 bytes of 

program memory. More efficient routines, in terms of execution speed and memory 

requirement, may be implemented by directiy using transputer instructions. 

One such metiiod makes use of die XWORD instruction, which sign extends a 

part-word value to a single length value, [65]. The code for tiiis metiiod of sign 

extension is shown in Fig 3.7. This section of code is also placed after die shift 

operation, but is unconditional in its operation. It uses 6 bytes of program memory and 

takes 12 cycles to complete. This metiiod, tiien, is only marginally preferable to the 
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Occam2 version, as it uses less memory space but completes in the same number of 

cycles. 

A more efficient method uses the X D B L E and L S H R instructions, [65]. The XDBLE 

instruction converts a single length value held in Areg into a double length value in 

Areg and Breg. The L S H R instruction logically right shifts a double length value. The 

code to implement a sign extended shift using this method is given in Fig 3.8. The 

action here is that the sign extension bits, held in the most significant word, are 

shifted into the msbs of the least significant word (the actual data word). Thus, the 

sign bits are preserved and the value held in Areg is arithmetically shifted. 

This code operates on the pre-shifted value, and incorporates the right shift 

operation. As the double length shift is executed in two cycles less than the single 

length shift, this routine effectively adds a sign extension overhead of a single cycle, 

compared to the other versions, making it by far the most suitable method. 

Furthermore, this method is not at all affected by data prefixing. 

3.3.2.4 The Assembly Version 

The Occam2 compiler does not allow data to be passed from one statement (line of 

code) to another through the stack. This is essential if the code is to be secure, but 

does not optimise performance as additional S T L and L D L instructions must be used. 

Information may be passed through the stack, providing a higher performance, if 

statements are compounded onto a single line. 

For example, as shown in Fig 3.9, the code assigning c:=a+b then e:=c-d is 

compiled down to a sequence lasting twelve cycles, as the variable c is stored at the 

end of the first assignment and loaded again at the beginning of the second 
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assignment. However the compounded code of e: = (a+b) -d is compiled down to a 

sequence lasting only nine cycles, as the variable c is kept on the stack. 

This is also an example of what may be achieved by hand coding critical 

sections in transputer assembly language. Although the Occam2 compiler is highly 

optimised, often the number of instructions may be cut down to the bare minimum, 

and optimum use made of the stack, only by fine tuning sections of code by hand. 

This is what has been done in the fully assembly language versions of die computation 

code. One S T L and one L D L may be eliminated fi-om the high pass section, saving 3 

(5, with prefix) cycles. Two S T L and L D L instructions may be eliminated from the 

lowpass section, saving 6 (10) cycles. Of course, all the optimisation methods outlined 

in Section 2.11.1 were used for the code. 

3.3.2.5 Compounding Filter Sections 

From Fig 3.3a and Fig 3.3b, the one and two processor mappings require that a 

combination of single pole sections be placed on a single processor. The single pole 

sections, written in transputer assembly, are combined sequentially, witii any 

supplementary code, such as addition, being inserted where required. The stack is used 

to pass values between sections. 

It would be possible to configure the processes in parallel, passing data either 

through intemal channels or by reference. The code sections are very small, however, 

and so their throughput would be greatiy affected by the overiieads incurred by setting 

up both the parallelism and the intemal communication. Maximum performance on a 

single processor is attained by running a sequential computation process in parallel 

with a communications process. 
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3.3.2.6 The Use of Vectors 

It has already been mentioned that efficient inter-processor communication can only 

be carried out by passing vectors, rather than single words, of data. It follows, tiien, 

' that for a given optimised computation section, maximum performance will only be 

attained if data is passed in vectors. This approach has also been used in non-

transputer based digital signal processing systems [62]. 

Consider a data vector as in Fig 3.10. For every element of the input vector, 

therc exists both a corresponding element in the output vector and a logical 

computation section. Now, if the output of the ith element is allowed to form the input 

of the i+lth element (by using non-vectored variables to pass data between sections 

— "intemal" variables), then any given value of an element in the output vector 

depends upon the previous elements in both the prcsent input and output vectors. As 

the data elements arc processed in a logically sequential and dependent manner, the 

input vector may be considered to contain a number of samples firom the same data 

source — the filter is processing a single channel of data. 

Consider, now. Fig 3.11. If the intemal variables of each filter section are 

vectorised and are not passed from one section to another, then any given value of an 

element in the output vector depends upon the values of the same element in the 

preceding input and output vectors. The data is processed in a logically parallel and 

independent (orthogonal) manner. The input vector may be thought to contain a single 

sample from a number of data soiu-ces — the filter is processing a number of channels 

of data. 

For a given vectorised structure, then, the multiplicity of data channels being 

processed is determined by the amount by which individual computation sections share 
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tiieir intemal variables. This n^thod may be developed to provide a combination of 

logically sequential and parallel data channels. Fig 3.12. 

For a given vector size, the overall sample rate is constant If, for instance, the 

overall sample rate is 80kHz, and a four element vector is used, then either a single 

filter with 80kHz sampling frequency, or two filters with 40kHz sampling frequency, 

or four filters with 20kHz sampling frequency, or any combination, may be 

implemented. Thus, not only multi-channel, but also multi-rate filters may be 

implemented using this method, i f suitable input/output buffering is utilised. Fig 3.13. 

3.3.2.7 Structuring the Computation Code 

For the single channel case, the most obvious way of structuring the code is to embed 

the computation section inside a replicated SEQ . An example section of code is shown 

in Fig 3.14, in which tiie input and output data are defined as vectors, whereas die 

intemal variables are defined as simple variables. 

There are two drawbacks with tfus structure, however. Firstiy, diere is an 

overhead of approximately l^is (20 cycles) attached to the looping operation [30], 

[65]. The length of tiie computation code ranges from about 40 cycles to about 120 

cycles in this application, and so this overhead is far from negligible. 

Secondly, die elements of the input and output vectors are not accessed 

direcdy, their addresses are calculated in runtime by use of the WSUB instruction. The 

instruction sequence required to access an element is L D L i , L D L input .base, WSUB, 

L D N L which introduces an additional overhead of at least six cycles per element [65]. 

The overhead attached to the looping operation may be reduced by "opening 

out" die loop, effectively increasing die amount of computation carried out in each 
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pass of the loop. The overhead concerned with accessing the vector elements may be 

reduced by opening out the loop in sections of sixteen and using abbreviations to 

directly access the elements, with zero prefixing, [66]. However, opening out the loop 

in this way requires additional run time calculations, and the looping overhead is never 

totally eliminated. This type of loop optimisation is suitable only for larger 

computation sections, or for many more iterations than are required here. 

As the memory space required by a computation section is small, and the 

number of loop iterations is relatively low, then it becomes feasible to dispense with 

the loop structure altogether and explicidy define each computation section, which 

eliminates the loop overhead. The overheads associated with addressing the vector 

elements are also removed, as tiiey may now be explicitiy addressed as local variables. 

An opened out version of Fig 3.14 is given in Fig 3.15. The memory requirement for 

this structure is obviously greater than that of the replicated SEQ structiue, but as the 

code sections are small, large vectors may still be used before the effects of external 

memory access are seen (the actual threshold vector size depends on the size of the 

computation section and which harness is being used). 

The most obvious way of dealing with the multi-channel case is to use a 

replicated PAR structure. Fig 3.16. In addition to the overheads associated with looping 

and non-local indirect element access in the replicated SEQ structure, there is also an 

additional overhead caused by setting up a number of parallel processes on each 

iteration. This overhead is proportional to the number of parallel processes and is in 

any case considerable. Furthermore, this structure does not allow different length 

computation sections, and so multi-rate filters may not be implemented. There is no 

performance gain in implementing parallel processes on a single transputer. The code 
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may equally be structured as a replicated SEQ, which would reduce the overheads 

related to parallelism. But it has already been shown that the most efficient way, in 

this case, of structuring the sequential code is to fully open the loop. The best solution 

for the multi-channel case, then, as for the single channel case, is to use a linear code 

structure. In order to maintain orthogonality, the internal variables must be defined as 

vectors. This also allows computation sections of different lengths to be implemented. 

3.33 Measuring Performance 

The filter was implemented and tested using an in-house transputer system with an 

Inmos B004 board acting as host. The in-house system comprises 3U boards 

containing an IMST800C-20 transputer and 128kbytes of zero wait state static RAM, 

interconnected via cables connected to the front of the boards [67]. 

The filter configuration was placed between a "source" transputer, which 

supplied data to the filter, and a "receiver" transputer, which acted as a data sink and 

a stopwatch. The "host" transputer, running on tiie B004, collected the timing data 

from the stopwatch, post processed it and displayed the results. 

The source process outputted vectors to the filter in batches of a thousand. The 

stopwatch process measured the time, taken for the filter to output a thousand vectors 

and output the elapsed time to the host. The host collected the elapsed time in batches 

of a hundred and calculated the mean time. 

Both the source and the stopwatch processes. Figs 3.15 and 3.16, utilised all 

the performance maximisation techniques mentioned in Section 2.11.1. In particular, 

vector output and input was accomplished by using linear code — a thousand transfers 

in a row, which eliminated die possibility of mistimings due to excessive transfer set 

72 



up overheads. 

Results were taken for all three processor mappings, using both harnesses, for 

a number of vector lengths using the configuration shown in Fig 3.19. The results are 

presented in the next chapter. 

The filter response could not be measured directiy, as ADC and DAC systems 

were not available. Instead, input files were created with Hypersignal Workstation* 

and fed to the filter through the host filing system. The result files produced were also 

analysed using Hypersignal. The response of this filter is very severe, making the use 

of a multiple frequency test signal (noise) impracticable as the number of points 

required to generate a useful FFT is prohibitive. Individual sinusoids were produced, 

and their processed amplitudes and phases analysed in order to build up a picture of 

the filter's response. 

3.4 Summary 

This chapter has outiined the implementation of a multi-channel digital filter on the 

transputer. The particular constraints imposed on multi-processor systems have been 

addressed by this implementation. The structure of the filter has been given, and its 

partitioning onto one, two and three transputers described. Two program structures, 

or harnesses, have been implemented, and their relative merits discussed. 

Although ADC and DAC hardware was not available, the performance of the 

transputer system and the response of the filter were tested in software. 

This chapter has provided a means of investigating the optimum method of 

implementing small scale digital signal processing algorithms on multi-transputer 

networks. The results produced, and their analysis, provide an insight into the 
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applicability of the transputer to DSP applications, and are discussed fiilly in the 

following chapter. 
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PROC high.pass.A(CHAN OF ANY input,output) 

... D e c l a r a t i o n s 

... I n i t i a l i s a t i o n 

WHILE TRUE 
SEQ 

PRI PAR 
PAR 

... communicate s e t A 
SEQ 

... compute s e t B 
PRI PAR 

PAR 

SEQ 
communicate s e t B 

compute s e t A 

Communication 

Input 
[A/Bl 

output 
[A/Bl 

[B/A] 

Fig 3.4 Harness Type I 
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PROC high.pass.B{CHAN OF ANY input,output) 

.. D e c l a r a t i o n s 

.. I n i t i a l i s a t i o n 

PRI PAR 
PAR 
WHILE TRUE 

SEQ 
... i n p u t . b u f f e r 

WHILE TRUE 
SEQ 

. . . output.buffer 

SEQ 
input.data.from b u f f e r 

... compute 

... output.data.to.buffer 

Coninunlcatlon 

output.buliei input.buffer 

Confutation 

Fig 3.5 Harness Type n 
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i n t e r n a l := ( { i n - Ip.out) » 15) 
I F 

i n t e r n a l >=ilOOOO 
i n t e r n a l := i n t e r n a l \/ #FFFF0OO0 

TRUE 
SKIP 

Ip.out := Ip.out + i n t e r n a l 
hp.out := i n - Ip.out 
i n t e r n a l := (hp.out » 15) 
I F 

i n t e r n a l >=#10000 
i n t e r n a l := i n t e r n a l \/ #FFFFOOO 

TRUE 
SKIP 

Ip.out := Ip.out + i n t e r n a l 

LDL i n 
LDL Ip.out 
SUB 
STL hp.out 
LDL hp.out 
LDC 15 
SHR 
STL i n t e r n a l 
LDC 65536 (#10000) 
LDL i n t e r n a l 
GT 
EQC 0 
CJ -9 
LDL i n t e r n a l 
LDC -65536 (ftFFFFOOOO) 
OR 
STL i n t e r n a l 
LDL Ip.out 
•LDL i n t e r n a l 
ADD 
STL Ip.out 

Fig 3.6 Occam2 Versions of ffigh and Low Pass FUter Sections and the Disassembly of 
the High Pass Section 

hp.out := i n - Ip.out 
i n t e r n a l := (hp.out » 15) 
GUY 

LDL i n t e r n a l 
LDC #10000 
XWORD 
STL i n t e r n a l 

Ip.out := Ip.out + i n t e r n a l 

LDL i n 
LDL Ip out 
SUB 
STL hp out 
LDL hp out 
XDBLE 
LDC #0F 
LSHR 
LDL IP out 
ADD 
STL Ip out 

Fig 3.7 Arithmetic Shifting Using ExpUcit 
Sign Extension 

Fig 3.8 Arithmetic Shifting Using 
Implicit Sign Extension 

a 
b 

LDL 
LDL 
ADD 
STL c 
LDL c 
LDL d 
SUB 
STL e 

c 
e :: 

a + b 
c - d 

LDL 
LDL 
ADD 
LDL 
SUB 
STL 

a 
b 

:= (a + b) - d 

Fig 3.9 Compounding Code onto a Single line 
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D[7] D[6] D[5] Dt4] D[3] D[2] D t l ] D[0] 

Comp[4 . .7 ] Con?) [ 0 . . 3 J 

Fig 3.12 Buffered Multiple Channel Processing Using Vectors 

D[7] D[6] D[5] D[4] D[3] D[2] D [ l ] D[0] 

Conp[0. .3] Comp [ 6. . 7 ] 1 { Con^ (4 

Fig 3.13 Multiple Channel, Multirate Processing Using Vectors 
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WHILE TRUE 
SEQ 

SEQ i = 0 FOR v e c t o r . s i z e 
SEQ 

i n t e r n a l . v a i l := i n [ i ) - o u t [ i ] 
i n t e r n a l . v a l 2 := i n t e r n a l . v a i l » 1 
o u t [ i ] := i n t e r n a l . v a l 2 + 1 

LDC 0 LDL 11 
STL 0 LDC 1 
LDC 4 SHR 
STL 1 STL 10 
LDL 0 LDL 10 
LDLP 6 ADC 1 
WSUB LDL 0 
LDNL 0 LDLP 2 
LDL 0 WSUB 
LDLP 2 STNL 0 
WSUB LDLP 0 
LDNL 0 LDC 30 
SUB LEND 
STL 11 
Fig 3.14 A Replicated SEQ Structure and its Disassembly 

WHILE TRUE 
SEQ 

i n t e r n a l 
i n t e r n a l 
o u t [ 0 ] : 
i n t e r n a l 
i n t e r n a l 
o u t [ l ] : 
i n t e r n a l 
i n t e r n a l 
o ut[2] : 
i n t e r n a l 
i n t e r n a l 
o u t [ 3 ] : 

. v a i l := i n [ 0 ] - out[0] 

.val2 := i n t e r n a l . v a i l » 
= i n t e r n a l . v a l 2 + 1 
. v a i l := i n [ l ] - o u t l l ] 
.val2 := i n t e r n a l . v a i l » 
= i n t e r n a l . v a l 2 + 1 
. v a i l := i n [ 2 ] - out[2] 
.val2 := i n t e r n a l . v a i l » 
= i n t e r n a l . v a l 2 + 1 
. v a i l := i n [ 3 ] - out [ 3 ] 
.val2 := i n t e r n a l . v a i l » 
= i n t e r n a l . v a l 2 + 1 

LDL i n [ 0 ] LDL i n t e r n a l v a i l LDL i n t e r n a l val2 
LDL o u t [ 0 ] LDC 1 ADC 1 
SUB 

o u t [ 0 ] 
SHR STL out[2] 

STL i n t e r n a l . v a i l STL i n t e r n a l val2 LDL i n [ 3 ] 
LDL i n t e r n a l . v a i l LDL i n t e r n a l val2 LDL o u t [ 3 ] 
LDC 1 ADC 1 SUB 

i n t e r n a l v a i l SHR STL o u t l l ] STL i n t e r n a l v a i l 
STL i n t e r n a l .val2 LDL i n [ 2 ] LDL i n t e r n a l . v a i l 
LDL i n t e r n a l .val2 LDL out[2] LDC 1 
ADC 1 SUB SHR 

i n t e r n a l .val2 STL o u t [ 0 ] STL i n t e r n a l . v a i l STL i n t e r n a l .val2 
LDL i n ( l ] LDL i n t e r n a l . v a i l LDL i n t e r n a l .val2 
LDL o u t l l ] LDC 1 ADC 1 
SUB 

o u t l l ] 
SHR STL o u t [ 3 ] 

STL i n t e r n a l . v a i l STL i n t e r n a l .val2 

Fig 3.15 "Opening Out" a Sequential Loop 
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PROC replicated.par(CHAN OF ANY in,out) 
VAL v e c t o r . s i z e I S 4 : 
[ v e c t o r . s i z e ] I N T i n , out, i n t e r n a l . v a i l , i n t e r n a l . v a l 2 
SEQ 

. . . I n i t i a l i s a t i o n 
WHILE TRUE 

PAR i = 0 FOR v e c t o r . s i z e 
SEQ 

i n t e r n a l . v a i l [ i ] := i n [ i ) - o u t [ i ] 
i n t e r n a l . v a l 2 [ i ] := i n t e r n a l . v a i l [ i ] « 1 
o u t [ i ] := i n t e r n a l . v a l 2 [ i ] + 1 

Fig 3.16 A Replicated PAR Structure 

PROC inputter{CHAN OF ANY t o . f i l t e r ) 
VAL v e c t o r . s i z e I S 1 : 
CHAN OF ANY from.host : 
PLACE from.host AT #05 : — l i n k l input 
{ { { d e c l a r a t i o n s 
INT l e n , e r r o r , v a l , c h a r , a n y : 
} } } 
SEQ 

{ { { 
WHILE TRUE 

[ v e c t o r . s i z e ] I N T output.val : 
SEQ 

SEQ i = 0 FOR v e c t o r . s i z e 
o u t p u t . v a l [ i ] := 1 

{ { { 100 outputs 
t o . f i l t e r ! output.val 

} } } 
} } } 

Fig 3.17 The FDter Source Process 

PROC watch(CHAN OF ANY i n ) 
VAL a r r a y . l e n I S 1 : 
INT i : 
WHILE TRUE 

SEQ 
SEQ i = 0 FOR 20 

PRI PAR 
{ { { DECS 
[20]INT start.time,end.time : 
CHAN OF ANY tohost,fromhost : 
TIMER c l o c k : 
[a r r a y . l e n ] I N T any : 
PLACE tohost AT tt02 : 
PLACE fromhost AT #06 : 
} } } 
SEQ 

c l o c k ? s t a r t . t i m e [ i ] 
{ { { 100 inputs 
i n ? any 

} } } 
c l o c k ? end.time[i] 
tohost ! s t a r t . t i m e [ i ] / a r r a y . l e n 
tohost ! end.time[i] / a r r a y . l e n 

SKIP 

Fig 3.18 The Filter Stopwatch Process. 
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Chapter 4 

Transputer Code: Performance 
Analysis and Results 

4.1 Introduction 

The code running on any particular transputer usually consists of two or more parallel 

processes. At which time each of these processes is executed, and for how long, is 

controlled by the transputer scheduler and depends upon the state of the 

communication channels, timers and the timeslice period. The scheduler schedules, 

deschedules, reschedules and executes the processes according to their state and their 

position in the active process queues. The operation of the scheduler is largely 

transparent to the programmer, and so very little information concerning the detailed 

execution of the program may be obtained by analysing only its Occam2 source code. 

In order to fully appreciate the effect of program structure upon performance, 

and to assess the impact of such parameters as vector length, it is necessary to break 

down the Occam2 source into transputer instructions, and to determine how the 

transputer executes this code. 

This approach has been used in this chapter to assess the impact of program 

structure and vector length upon the performance of the Occam2 filter programs. Not 

only does this allow the performance of the code to be predicted, but also the 
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overheads associated with each harness to be assessed. The latter enables the most 

appropriate harness to be chosen for similar applications, taking into account the 

number of communications channels, the vector length and the execution time of the 

low priority process. 

The theoretical results obtained using this method are presented, together with 

the corresponding empirical results, and a comparison made between the two. The 

accuracy of the theoretical predictions is used to assess the methods limitations, and 

its applicability in predicting the performance of similar programs. 

Section 2 outlines the manner in which an Occam2 program may be 

decomposed into machine instructions, and its operation determined using scheduling 

charts. Section 3 describes an operational model of the transputer, which is used to 

generate the scheduling charts. The operation of each harness, for a particular 

mapping, is described in Section 4. Section 5 presents the theoretical and empirical 

results, compares them and makes an assessment of the decomposition method. 

Finally, Section 6 provides a summary. 

4.2 Occam2 Programs — A Method of Decomposition 

This section describes a method of analysing Occam2 programs in order to produce 

an estimate of the time taken to execute the code. A flow chart showing the steps 

involved in this method is shown in Fig 4.1. 

The first step in decomposing a piece of Occam2 code is to convert the high 

level source code to solely transputer instructions. This disassembly was carried out 

using the TDS Debugger [68], which also provides a hex dump of the code. The 

disassembled instruction mnemonics, the hex representation of the instructions (used 
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as a double check for prefixing), their memory location and the number of processor 

cycles required were placed in a table. 

Using this table, the code was grouped into its main components — general 

process and channel initialisation, vector initialisation loops, concurrent process 

initialisation and the communication and computation code sections (the recognisable 

Occam2 processes). A representation of the location of the main components of the 

program is thus constructed, an example of which is shown in Fig 4.2, for harness 

type n, single processor mapping. 

This decomposition may be used to construct a more graphical representation 

of the structure of the program. Fig 4.3. This representation labels the major sections 

of the code, together with their execution cycles, and shows not only the parallel 

nature of the program but also the logical flow of execution of each process. 

This "graphical" representation of the program is used in conjunction with an 

operational model of the transputer to construct a further chart, the scheduling chart, 

which is used to determine the operation of the code. A section of the scheduling chart 

for the process depicted in Figs 4.2 and 4.3 is shown in Fig 4.4. It references the same 

blocks of code as the graphical representation, and uses the same labelling strategy, 

but also provides information concerning the currentiy executing process, the currentiy 

active and inactive processes at each priority level, and the state of the communication 

channels. This allows the time required to complete any section of code to be 

determined, in addition to providing information concerning when processes are 

descheduled, rescheduled or interrupted. 

For tills particular application, tiie sequence of instructions will settie down into 

a loop, and it is the length of the loop, in insoiiction cycles, that must be determined 
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in order to provide a performance estimate for the program. The scheduling chart 

allows the length of the loop to be easily determined. The scheduling chart, 

importantiy, also allows the overheads involved in executing the program to be 

quantitatively assessed. 

4.3 The Transputer — an Operational Model 

The scheduling chart is constructed by applying a set of rules concerning the operation 

of the transputer to the graphical representation of the program. These rules constitute 

an operational model, and are concerned primarily with the manner in which the 

transputer both allocates cpu time to parallel processes and performs channel 

communication. The operation of the transputer has been considered in some detail in 

Chapter 2, and wil l not be repeated here. However, three main rules associated with 

the operational model are listed below:-

i . A high priority process becomes active immediately upon inception by 
either a RUNP or a STARTP instruction. I f the process is initialised by a STARTP 
then, in the code presented here, a high priority process is already running, and 
the process will be placed at the end of the high priority queue. I f the process 
is initialised by a RUNP, however, then a low priority process is executing. In 
this case, the low priority process is interrupted, its state stored in internal 
memory, and the high priority process executed. 

i i . Interruption of a low priority process by a high priority process requires 
18 processor cycles. 

i i i . Descheduling requires 18 processor cycles. 

There are other factors affecting the overall timing of the program which are 

independent of the operation of the scheduler. The timing of some of these depends 

upon the vector size and determines the order of execution of the code. In order to 

alleviate the need for a different model for different vectors sizes, it has been assumed 

that the vector size is a particular value whenever such instances arise. These 
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additional rules are listed below:-

iv. Any external channel communications are immediately serviced, there 
is no communication latency. 

V. Internal memory is used exclusively. 

vi . Accessing local variables in the computation section may or may not 
require a single level of prefixing for small values vector sizes, depending on 
which harness is being used. However, the overall prefixing level rapidly 
approaches one for any reasonable vector size. Hence tiie level of prefixing in 
the computation section is assumed to be one. 

vi i . At some points in the execution of the code, the ordering of operations 
is dependent upon a threshold value of w. In such cases, the value of w is 
assumed to be 16, a "large" value. 

vi i i . Whenever a low priority process is interrupted, it is allowed to 
complete execution of its present instruction. The execution time of this 
instruction is taken to be the average instruction execution time of the low 
priority (computation) section, 4 cycles. 

ix. The link speed is fixed at 20Mbits"' 

In addition, for the multi-processor operation of the transputer, it is assumed that: 

ix. The performance of any multi-processor implementation is determined 
by the performance of the processor running the largest computation section. 
(This is assumed to be the case for any program using a single sequential low 
priority process). 

4.4 The Operation of the Harnesses 

This section outlines the sequence of operations involved in executing the single 

processor mapping in each harness. The single processor mapping has been chosen as 

it most readily demonstrates the difference in memory requirements of the two 

harnesses. For any given harness, the sequence of operations is similar for all 

processor mappings, the main difference occurring in the additional complication of 

the second and third processes of the three processor mapping due to the extra 

communication channel. The operation of each harness will be considered in turn. 
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4.4.1 Harness Type I 

This harness is described by Fig 4.5 in terms of its hedgehog diagram and Occam2 

code. 

After general process and vector initialisation is completed, the main loop 

begins. The high priority processes are first invoked in turn. These both initiate 

external communication transfers and so are descheduled. The low priority 

computation process is then allowed to proceed until the first external communications 

transfer completes and a high priority process rescheduled. The state of the low 

priority process is stored, and the high priority process allowed to proceed, continuing 

by ending itself. The low priority process is again allowed to continue until the second 

communications transfer completes, and the second high priority process becomes 

active. Once more, the state of the low priority process is saved and the high priority 

process allowed to proceed, which does so by ending itself. The completion of this 

final high priority process signals to the "parent" of the communications processes that 

all of its "children" have completed, and that it may call its successor process. The 

successor process in this case is the standard de-prioritising code, which also ends 

itself upon completion. The low priority process is tiien allowed to continue 

unhindered until it too ends itself. This signals to the process controlling the PRI PAR 

construct that all of its constituent processes have completed, and that it may invoke 

its successor, which is the next PRI PAR construct and operates in exactiy the same 

way as the first construct. 

There are no internal communication channels (the processes are decoupled, 

as depicted in the hedgehog diagram), as data is passed by reference between the 

communication and computation processes. For instance, inside one PRI PAR 
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construct, data set A may be communicated and data set B computed, whereas in 

anotiier PRI PAR construct data set B is communicated and data set A computed. 

Internal communication is avoided, then, but at the expense of memory space. The 

memory requirement of this type of harness is high, as the code is duplicated inside 

each PRI PAR construct. The code may well spill out into external RAM, which is 

accessed much more slowly than internal memory, thus affecting performance. The 

overall operation of the harness, then, is of a repeating sequence of PRI PAR 

constructs which are continually set up and closed down. Inside each PRI PAR, high 

and low priority processes are themselves initiated and terminated. The overheads 

associated with this harness are those incurred by this continual initiation and 

termination of processes and constructs. 

4.4.2 Harness Type n 

The hedgehog diagram and Occam2 code for tiiis harness are given in Fig 4.6. 

After general initialisation, the high priority communication processes are 

invoked. The first process enters its WHILE TRUE loop and tries to execute a transfer 

on an empty internal channel and so is descheduled in preference to the second 

process. This process enters its WHILE TRUE loop and executes an external 

communications transfer, also causing it to be descheduled. The low priority process 

continues by initialising its local vectors and enters its WHILE TRUE loop by trying to 

execute a transfer on an empty internal channel, whereupon it is descheduled. There 

is now a delay until the first communications process completes its transfer and is 

rescheduled. This process continues by executing an internal transfer, which also 

reschedules tiie low priority process. The high priority process continues by jumping 
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to the beginning of its loop and executing an external transfer, thus being descheduled. 

This allows the low priority process to continue by entering its computation section. 

The low priority process continues until it is interrupted by the newly rescheduled 

communications process. This high priority process continues by trying to execute a 

transfer on an empty internal channel, and so is descheduled. This allows the low 

priority process to complete its computation section. This process continues by 

executing an internal transfer, which also reschedules the second high priority process. 

This causes the low priority process to be interrupted by the second communication 

process, which continues by executing an external transfer, so being descheduled. This 

once again allows the low priority process to continue, by jumping to the top of its 

loop and executing an internal transfer, rescheduling the first communication process. 

The low priority process is interrupted by this communications process, which 

continues by jumping to the top of its loop. At this point, all processes have 

completed a single pass of their WHILE TRUE loops. Execution continues in a similar 

manner, although the delay incurred by waiting for an external transfer does not occur 

again. 

The operation of this type of hamess is more complex than that of the other 

harness. Each communication process is coupled to the computation process via an 

internal channel, as shown in the hedgehog diagram.The overall memory requirement 

is nearly half of that of Type I , allowing larger computation sections to be 

implemented in internal memory. The individual processes never terminate as they 

continually repeat inside local WHILE TRUE loops. The PRI PAR construct is initiated 

only once at the beginning of the program. Thus the overheads relating to process 

initiation and termination incurred by Type I do not occur here. The main source of 
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overheads for this harness is the internal communication, which takes the form of a 

cpu intensive memory to memory transfer. 

The relative effects of the overheads of die two harnesses are investigated in 

the next section. 

4.5 Results 

This section presents both the theoretical performance estimates and tiie results 

obtained from the transputer system for each harness and mapping. Initially, the 

theoretical performance of each harness and mapping is given, together with their 

associated overheads. The empirical results are then discussed, followed by a 

comparison of the theoretical and empirical results. 

4.5.1 Theoretical Performance Figures 

The procedure outiined in Sections 4.2 and 4.3 was applied to each of the mappings 

for both of the harnesses, and the performance of each derived as a function of vector 

length, w. These results are presented in Appendix C, and their graphical 

representations shown in Fig 4.10. From rule ix of the performance model outiined in 

section 4.3, only the program using tiie largest computation section was considered in 

the multiple processor mappings. 

4.5.2 Code Overheads 

The term "overhead" wil l be applied to any operation other than computation or 

external communication. Hence, internal communication and descheduling / 

rescheduling operations are considered overheads, since they do not involve operations 
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directiy related to the function of the filter. 

The overheads are derived fix>m the scheduling chart and are presented for each 

hamess and mapping in Tables 4.1 and 4.2, a breakdown of the overheads incurred 

by die single processor mapping of each hamess is presented in Tables 4.3 and 4.4. 

It may be seen from this table that for a given hamess, the overheads are the same for 

the one and two processor mapping, but are larger for the three processor mapping. 

This is to be expected, as the three processor mapping makes use of an additional 

communications process. Each communication process incurs an overhead of 64 cycles 

for hamess Type I , and 2w+53 cycles for Type H. Tables 4.5 and 4.6 provide a 

sunimary of the total number of cycles required to execute the code, and the total 

overheads incurred, for each hamess and mapping. 

4.5.2.1 The Impact of Overheads on Performance 

The overhead associated with type I is not dependent upon vector length, 

whereas that of Type 11 is, due to intemal communication transfers. This implies that 

the theoretical performance difference between types I and n varies with vector length. 

For short vectors, type H offers the highest performance. The changeover point occurs 

when 

No. cycles required by Typell > No. cycles required by Typel 

ie 241 124w > 295 120w 

4w > 54 

w > 13.5(14) 

So, type I I should offer the best performance for vector lengths below 14. 

The overhead associated with type IT is more sensitive to the number of high 
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priority (external communications) processes. For type I , each high communications 

process incurs an additional 64 cycles, whereas for type H, this becomes 2w+53. 

4.5.2.2 The Effect of Vector Length and Computation Code Size 

Harness type 11 offers the better performance i f small vectors are used. This harness, 

then, would be best suited to applications requiring a relatively large computation 

section, as low vector sizes must be used in order to constrain the program to internal 

memory. 

Harness type I is twice as sensitive to the required amount of computation code 

than type H. Code wil l tend to be forced into external memory for a lower vector size, 

and so type I wil l tend to favour smaller vector sizes than type n for large 

computation sections. 

4.5.2.3 Summary 

It is clear tiiat which harness provides the best performance depends upon tiie vector 

size, the computation code length and the number of external communications 

channels required. The exact boundaries of vector size and computation code length 

wil l be dictated by the particular program under scrutiny. However, the analysis of the 

single processor mappings of this particular application may be summarised as 

follows. 

Harness Type I I provides the best performance for w < 14. For w > 14, then 

providing that external memory is not used, harness Type I offers the best 

performance. Harness type I I will provide tiie best performance for values of 

computation code length and vector size outside tiiis region. Eventually, external 
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memory accesses and communications overheads of harness Type n decrease its 

performance, and type I once again provides the best performance. 

The performance of harness type 11 is more sensitive to external 

communications channels than Type I . I f any more than two external communication 

channels are to be used, tiien Type I offers tiie better performance overall. 

4.53 Empirical Results 

This section examines the measured performance of the multi-channel filter as 

implemented on the transputer system. The analysis of these results is divided into two 

main groups: 

i . Harnesses 

i i . Processor mappings 

Group i allows comparison of different processor mappings for a given harness, 

whereas group i i allows comparison of harnesses for a given processor mapping. The 

complete set of results is presented in Appendix C. Line plots of the time to compute 

one word of data against vector length are shown in Fig 4.10, for all mappings and 

harnesses. 

4.5.3.1 Group i 

Plots showing the performance of the mappings for each harness are given in Fig 4.8 

a&b. They will be considered in turn. 

Harness Type I — Observations:-

i A l l tiiree mappings exhibit tiie tt-end of higher performance for larger vector 
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size. 

i i The single processor mapping offers the lowest (absolute) performance. 

i i i For the single processor mapping, an increasing reduction in performance may 

be seen for vector sizes greater than 24. 

iv The three processor mapping offers lower performance than the two processor 

mapping up to vector sizes of 32. 

V The single processor mapping seems to experience a sharper decrease in 

performance than the two processor mapping. The three processor mapping does not 

seem to suffer any decrease in performance in the given range of vector size. 

vi The maximum absolute performance is provided by the two processor mapping 

up to a vector size of 32, when the three processor mapping becomes the fastest 

Hamess Type I - Explanations:-

i The general trend of increasing performance with vector size is due to the 

decrease in relative importance of the communications set up overheads. 

i i The single processor mapping uses the largest computation code section. The 

time required to compute a word of data (computation time) dominates the time 

required to communicate a word of data (communication time), and so the 
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computation time wil l dominate the overall performance. Hence, the single processor 

mapping offers the lowest performance. 

i i i This harness requires a relatively large amount of workspace and program 

memory space, dependent upon the vector size and the size of the computation code 

section. The single processor mapping uses the largest computation code section and 

so requires the largest amount of memory. As the vector length is increased, then, the 

amount of space required to contain the workspace and program areas increases. At 

some particular value of vector size, the total memory requirement will exceed that 

available in internal memory, and the program area will begin to use slower external 

memory, causing the decrease in performance. Using the debugger, it was seen that 

for this mapping and harness, external memory was first used at a vector size of 24, 

which matches the point at which performance begins to be degraded. As four 

instructions are read every memory cycle, the performance is not as impaired as it 

would be i f data areas where also placed off-chip, as in the case of very large 

workspace areas or by using the "separate vector space" option of the Occam 

compiler. 

iv Surprisingly, the three processor mapping does not provide the maximum 

performance for all vector sizes. The computation code section of this mapping is 

small, and requires fewer cycles to complete than a link transfer. Thus this mapping 

is dominated by communication, in contrast to the other mappings. More 

communication is required in tiiis mapping tiian in the otiiers, and so any additional 

communications overhead or delay will significandy affect performance. The effects 
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of external memory access cause the performance of the two processor mapping to fall 

below tiiat of the three processor mapping at w = 32. 

V Performance degradation at large values of vector size is due to an increased 

usage of extemal memory. The single processor mapping requires more workspace and 

program code space per word than the other mappings, and so wil l make more use of 

extemal memory for a given increase in vector size, causing a larger decrease in 

performance. For the given range of vector size, the memory requirements of the three 

processor mapping may be met solely by intemal memory, and so no performance 

degradation is exhibited. 

vi Although the maximum overall performance is provided by the two and three 

processor mappings, the single processor case offers the highest performance per 

processor. This is not surprising, perhaps, as i f this were not the case, it would imply 

tiiat die overall overheads associated witii this hamess are reduced in die multiple 

processor mappings, which surely cannot be the case. The best that could have been 

expected was a linear speed up with an increased number of processors. 

Hamess Type n — Observations:-

i The mappings of this hamess exhibit the same general trend of increasing 

performance with vector size. 

i i The performance of the single processor mapping begins to degrade at a vector 
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size of around 44, but not as rapidly as for harness type I . 

i i i The three processor mapping, surprisingly, offers the lowest performance. 

iv Maximum performance is attained by the two processor mapping. 

Harness Type U - Explanations:-

i As for harness type I , this increase in performance is due to the relative 

decrease in importance of overheads. 

i i The communication and computation processes are not duplicated in this 

harness, and so less memory per word is required. The single processor mapping uses 

more memory than the other mappings, and so it will require external memory at 

lower values of vector size, causing a corresponding decrease in performance. As less 

memory is required by this harness, however, then performance degradation will occur 

at higher vector sizes than for the other harness. 

ii i As outlined above, the performance of the three processor mapping is 

dominated by communication rather than by computation. This harness is experiences 

more communications' overhead than Type I , and so will experience more of a 

performance degradation as a result. 

iv It would be expected that the two processor mapping be faster than the single 

processor mapping, due to the smaller computation code size. 
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4.5.3.2 Group i i 

Plots showing the performance of both harnesses for each of the mappings are shown 

in Fig 4.9. 

Observations:-

i For the single processor mappings, the performance of each harness is similar, 

although harness type n performs marginally better for vector sizes below 12 and 

above 32. The minimum sampling period (maximum sampling frequency) of 6.41 

microseconds (156kHz) is attained by harness type I at a vector size of 24. 

i i The performances of both harnesses of the two processor mapping are also 

very similar. Harness type I performs slightly better than type 11 up to a vector size 

of 32. The performance of harness type I I is not degraded within the given range of 

vector sizes, providing the minimum sampling period of 4.624 microseconds 

(216.2kHz) at a vector size of 48. 

i i i In contrast to the two cases above, markedly different performances are 

provided by the harnesses for the three processor mapping. Harness type I performs 

much better than harness type 11, providing the minimum sampling period of 4.73 

microseconds (211.4kHz) at a vector size of 48. Neither harness experiences a 

performance degradation within the given range of vector size. 
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Explanations :-

i The better performance offered by harness type 11 below a vector size of 12 

is probably due to a lower proportion of operational overheads, although this does 

require theoretical confirmation. The better performance of harness type I between 

vector sizes of 12 and 32 is similarly caused by a difference in operational overheads. 

The performance of harness type I begins to degrade at a vector size of 24, due to 

external memory accesses. At a vector size of 32, the inherent overheads of harness 

type I , combined with the additional overhead incurred by external memory access 

become greater than those experienced by hamess type H, resulting in hamess type n 

providing the better performance. 

i i Hamess type I begins to feel the effects of external memory access at a lower 

value of vector size than hamess type H, hence the degradation at a vector size of 36. 

Hamess type 11 does not need to use external memory for the given range of vector 

size, and so experiences no performance degradation. 

i i i The computation code sections of the three processor mapping is small, its 

execution time being less than the time required to transfer data over a link. Thus, any 

additional overheads will have significant impact on performance. The soft 

communications' overheads experienced by hamess Type n will be particularly 

significant. 

4.5.3.3 Summary 

It may be seen that the performances of the two harnesses for the one and two 
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processor mappings are very similar. Harnesses type I and U provide the best 

performances for the one and two processor mappings respectively. The effects of 

external memory access may be seen in both mappings, especially for harness type I . 

The harnesses for the three processor mapping provide very different 

performances, however. Here, harness type I provides more than double the 

performance of type 11. This is probably because of the proportional increase in the 

overhead of type U, caused by the additional external / internal communication 

channel. It is interesting to note that for harness type n, the three processor mapping 

actually provides the poorest performance of all the mappings. In this case, 

parallelising the code actually causes a performance decrease. 

The maximum performance per processor is always attained by the single 

processor mapping. 

4.5.4 Comparison of Empirical and Theoretical Results 

The theoretical predictions of the performance of the mappings for both harnesses are 

derived from Appendix C. The performance equations are summarised in Tab 4.2, and 

shown in graphical form, together with the corresponding empirical performance curve 

in Fig 4.10a,b,c,d,e,f. Also included in these plots is a measure of the accuracy of the 

theoretical predictions — the percentage error — which is defined as 

PercentageError = (^rnpiricalvalue - Theoreticalvalue) ^ 
EmpiricalValue 

and the key is given by MappingLHamess Type, where Mapping = 1,2 or 3, 

Harness = I or II and Type = Emp (Empirical), Thy (Theoretical) or % (Percentage 

EiTor). 

These comparison curves all exhibit various similar properties that serve to 
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demonstrate the limitations, and the accuracies, of the performance models. These 

properties will be listed, and discussed. 

Observations:-

i It may be seen firom these plots that the theoretical curves all predict a lower 

performance for small vector sizes than is actually attained. 

i i This is more noticeable for hamess type I than for hamess type H. 

i i i For the single processor mappings, and to a lesser extent the two processor 

mapping of hamess type I , the theoretical curves diverge from the empirical curves 

at large values of vector size. This is most noticeable in the single processor mapping 

of hamess type I . 

Explanations:-

i The model assumes that the computation section variable accesses all incur a 

single prefixing overhead. However, very few, if any, prefixing instmctions will be 

required to access variables if the vector size is small. Hence, the models predict a 

longer computation cycle and hence lower performance. 

i i The additional internal communications overhead experienced by hamess type 

n could mask this difference in computation length to some extent, resulting in the 

decreased difference between theoretical and empirical peiformance. 
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i i i The theoretical models assume that only fast internal memory accesses are 

made, and so they do not take into account slower external memory usage. It has 

already been shown that for large vector sizes, tiie code will eventually spill out into 

external memory, causing a performance decrease. This is happening in the empirical 

curves for the single processor harnesses, and the two processor mapping of harness 

type I . 

4.6 Summary 

A systematic method of decomposing Occam2 programs was developed, in order to 

allow the performance of a program to be predicted and to investigate the effects of 

program structure upon performance. An operational model of the transputer was 

applied to a graphical representation of the program, producing a scheduling chart 

which gave information concerning the status of constituent processes and associated 

communications channels at any given time. Information such as the execution period 

of a program and additional overheads incurred may be derived from this chart. 

Theoretical performance figures were obtained for each harness and processor 

mapping using this method. The information obtained concerning the operational 

overheads of each harness allows the appropriate harness to be chosen for programs 

of a similar structure, for any given vector size. 

The empirically obtained performance data has also been presented in this 

chapter. Surprisingly, the three processor mappings did not offer significandy better 

performance than the other mappings. This was explained by the low execution time 

of the low priority processes and the increased communications requirement of this 

mapping. Maximum performance within the given range of vector size was offered by 
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quoted vector size of 48, and so would be expected to funher increase with larger 

vector sizes. The two processor mapping will experience decreased performance due 

to external memory access at a smaller vector size than the three processor case, and 

so the three processor mapping would be expected to out perform the two processor 

case above a particular value of vector size. The maximum vector size used 

experimentally was limited to 48 by the available compiler memory space. 

The predicted performance figures were compared with the empirical data and 

found to match to within less than 10% for the most part, any deviation being 

explained by the limitations imposed by the operational model. Exceptions to this were 

the three processor mappings, whose predicted execution periods were less than those 

obtained empirically. This highlighted a major limitation of the operational model 

when applied to multi-processor mappings making use of short low priority code 

sections, namely the inability to adequately take into account the effect of 

communications synchronisation. 

Nevertheless, this model performs very well for most of the programs analysed 

in this chapter. An increased sensitivity to external communication synchronisation 

could be incorporated as an extension to the present analysis method. 

The information gained by analysing the application filter programs in this way 

may be used to determine the most efficient form of implementation of similarly 

structured application programs. 
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Overheads incurred by Harness Type I 

Description Cycles Required 

Set up main parallel process 34 

Set up high priority parallel process 23 

High priority ENDPs 32 

De-prioritisation code E N D P 16 

Main process E N D P 16 

De-prioritisation code 25 

Context switching 126 

Total 272 

Table 4.1 

Overheads Incurred by Harness Type n 

Description Cycles Required 

Soft communication transfer C X (2w + 19) 

Soft communication transfer set up 2Cx6 

WHILE TRUE jumps 12 

Context switching 144 

Total C2w + 218 

Table 4.2 C - number of channels 
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Description Mapping Description 

1 2 3 

Set up main parallel process 34 34 34 

Set up high priority parallel 
process 

23 23 35 

Deprioritising code 32 32 48 

High priority endps 16 16 16 

Main process endp 16 16 16 

Deprioritising code endp 25 25 25 

Interrupt/scheduling 126 126 162 

Total 272 272 336 

Table 4.3 Breakdown of Overheads for Hamess Type I 

Description Mapping Description 

1 2 3 

Internal communications 
set up 

2(2w+19) 2(2w+19) 3(2w+19) 

Int^nal communications 
transfer 

12 12 18 

Loop jumps 12 12 16 

IntOTupt/scheduIing 144 144 180 

Total 4W+218 4W+218 6W+271 

Table 4.4 Breakdown of Overheads for Hamess Type 11 
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Mapping Harness 

I n 

1 120W+295 124W+241 

2 75W+295 79W+241 

3 46W+262 42W+298 

Table 4.5 Number of cycles required to execute code loop 

Mapping Harness 

I n 

1 272 4W+218 

2 2 7 2 4W+218 

3 336 6W+271 

Table 4.6 Summary of overheads 
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PROC high.pass.A{CHAN OF ANY input,output) 

D e c l a r a t i o n s 
I n i t i a l i s a t i o n 

WHILE TRUE 
SEQ 

PRI PAR 
PAR 

... communicate s e t A 
SEQ 

... compute s e t B 

PRI PAR 
PAR 

... communicate s e t B 
SEQ 

... compute s e t A 

Communication 

i n p u t 
[ A / B l 

Fig 4.5 Hamess Type I 
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PROC high.pass.B(CHAN OF ANY input,output) 

D e c l a r a t i o n s 
I n i t i a l i s a t i o n 

PRI PAR 
PAR 

WHILE TRUE 
SEQ 

... i n p u t . b u f f e r 
WHILE TRUE 

SEQ 
... output.buffer 

SEQ 
input.data.from b u f f e r 
compute 
output.data.to.buffer 

Communication 

out p u t . b u f f e r i n p u t . b u f f e r 

Computation 

Fig 4.6 Hamess Type n 
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Chapter 5 

The Motorola DSP56001 

5.1 Introduction 

This chapter describes the architecture and operation of the Motorola 

DSP56001 Digital Signal Processor (DSP) [42]. This device was the first 

programmable DSP marketed by Motorola, being released in 1987. The DSP56001 

incorporates many design features associated with high performance DSPs — a 

parallel memory and multiple bus architecture, single cycle fractional multiplier and 

a comprehensive set of address registers [7], [40], [69]. The power of this 

particular device is enhanced by the modification of some of these features, and by 

the addition of new ones. The register addressing scheme, for instance, was the most 

versatile available at the time, allowing circular buffers and Fast Fourier Transforms 

to be easily implemented. The device also incorporates two on-chip communications 

peripherals which allow straightforward connection to "host" microprocessor systems 

and to devices such as analogue to digital (ADC) and digital to analogue (DAC) 

converters. A small amount of memory is incorporated on chip, and so the device may 

be thought of as a specialised microcomputer rather than as a microprocessor. 

The architecture is based around three main parallel execution units — the 

Arithmetic and Logic Unit (ALU), the Address Generation Unit (AGU) and the 
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Program Controller (PC) — which are connected via multiple buses to parallel 

memory areas [70]. This results in a high degree of operational concurrency, 

which is reflected in the programming style. 

Although an optimised C compiler is available, the highest performance may 

be attained only by using hand coded assembly language [71]. The assembler uses 

a time stationary coding method [40], which allows the progrannmer to maintain a high 

level of control over the sequence of operations. This approach contrasts with that of 

the "interlocking" style, used by Texas Instruments in the TMS320 range [40], which 

allows the programmer little direct influence on the sequence of internal operations. 

The DSP56001, unlike the transputer, is not a general purpose processor, it has 

been designed specifically to process digital signals as efficiendy as possible. The 

device is programmed in a far more direct and straightforward manner than the 

transputer, primarily because it has no facilities for supporting software defined 

parallel processes. The programmer may exert far greater control on the operation of 

the main execution units of this processor, which results in a far more hardware 

orientated programming style than the transputer. However, as the language represents 

a specialised sequential processor, programming is quite straightforward, once the 

architecture of the processor and time static coding are understood. This chapter is 

concerned primarily with the main architectural features of the DSP56001, and how 

they are controlled, rather than programming technique. 

This particular device was chosen in preference to others for four main reasons. 

Firstly, it supports a 24 bit word format and so provides a larger dynamic range than 

16 bit processors. Secondly, the architecture provides a high degree of operational 

concurrency and a single cycle non-pipelined MAC unit, which aids computational 
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efficiency. Thirdly, a byte wide parallel interface and both asynchronous and 

synchronous serial interfaces are incorporated as on-chip peripherals, allowing 

straightforward connection of external devices such as analogue to digital to analogue 

converters. Finally, a device simulator and a hardware development system were easily 

available [72], [73]. Floating point processors were not considered, as the 

devices available at the time, notably the NEC ^iPD77230 [74] and the AT&T 

DSP32 [45], could not provide performance comparable to that of fixed point DSPs, 

and their cost proved to be an inhibiting factor. 

Section 2 provides an overview of the architecture of the device. The main 

functional elements are described more fully in Sections 3 to 8. The method of 

assembly programming is covered in Section 9, which also provides a gauge of 

processor performance. This chapter does not provide an exhaustive description of the 

DSP56001; the reader is referred to [70] and [71] for an in-depth treatment of the 

device. Diagrams labelled with t are taken from the Motorola literature. 

5.2 Architectural Overview 

The architecture of the DSP56001 is based around three main execution units — the 

data ALU, the address generator and the program controller — which operate 

concurrendy, the memory areas and the interconnecting bus structure, all of which are 

contained on-chip. Additional units include both internal and external bus switches, 

a bus controller and serial and parallel communications interfaces (treated as memory 

mapped peripherals). A schematic representation of the architecture is given in Fig 5.1. 

The memory sttiicture is based on a modified Harvard architecture [7] — one 

program area and two data areas, denoted "x" and "y". The execution units and the 
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memory are connected via three address and four data buses. In order to reduce pin 

out requirements, these have been multiplexed to one address and one data bus, with 

appropriate control lines, for external memory access. A 16bit address word is utilised, 

allowing an external addressing limit of 64kwords for each of the program, x-data and 

y-data address spaces. 

The ALU supports a 24bit fixed point fractional integer format. The 

accumulators impose no truncation errors after multiplication, and provide sufficient 

headroom for 256 consecutive overflow multiplications. Scaling and saturation 

arithmetic are supported. 

The address generation unit allows simultaneous modification of two address 

registers, thus complimenting the access of the two data memory areas. 

The peripherals may be configured either as general purpose i/o pins, or as a 

byte wide "host" interface and synchronous and/or asynchronous serial interfaces. 

5.3 Buses 

The DSP56001 contains three internal address and four internal data buses, see Fig 

5.1, which concurrently move data and instructions between the main execution units 

while they are operating. Other elements of the internal bus structure include the 

internal bus switch and bit manipulation unit, and the external address and data bus 

switches. These will now be considered in turn. 

5.3.1 The Data Buses 

Data is passed around the chip using four bidirectional 24bit wide buses — the x-data 

bus (XDB), the y-data bus (YDB), the program data bus (PDB) and the global data 
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bus (GDB). Certain instructions cause the XDB and YDB to be concatenated, in order 

to produce one 48bit wide bus. The XDB and YDB connect the ALU to the x and y 

data memory areas. The PDB connects the program controller to the program data 

areas. Other data transfers, such as i/o transfers with peripherals, are carried out over 

the GDB. 

This multiple bus structure, together with the extended Harvard architecture 

and execution pipelining, allow an instruction pre-fetch, two operand fetches and 

instruction execution to occur in parallel. 

5.3.2 The Address Buses 

Accesses to internal x and y data memory are addressed using the unidirectional 16 

bit wide x address bus (XAB) and y address bus (YAB). Accesses to program memory 

are addressed using the 16 bit wide bidirectional program address bus (PAB). 

5.3.3 The Internal Bus Switch 

The internal bus switch allows the connection of any two data buses, without incurring 

a pipeline delay. This switch also incorporates a bit manipulation unit, as all data must 

pass through it. Bit manipulation is carried out on memory operands on the XDB, 

YDB and GDB. 

5.3.4 The External Bus Switches 

Although the DSP56001 may address each of its three internal memory areas 

simultaneously, allowing the same degree of access to external memory would 

increase the pin count of the device, resulting in a more expensive package. For this 
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reason only one address bus and one data bus are brought off chip. The four data 

buses are multiplexed into one by the external data bus switch, the three address buses 

are similarly multiplexed by the external address bus switch, which form part of the 

external memory interface (EMI). I f only one bus requires access to external memory, 

then no performance penalty is incurred. If more than one bus requires external access, 

then bus arbitration must occur, and wait states inserted in the bus cycle by the bus 

controller. 

5.4 The Memory Spaces 

The DSP56001 utilises a modified Harvard architecture, accessing three separate 

memory spaces, the program space and the x-data and y-data spaces. These spaces 

may be forced into one of four configurations, controlled by the MA, MB and DE bits 

in the operating mode register (OMR), described in Section 5.7. The use of parallel 

memory areas is a typical feature of DSPs and aids performance by allowing more 

than one operand to be fetched in a single instruction cycle. A description of the 

individual memory configurations, shown in Fig 5.2, follows. 

5.4.1 x-Data Memory 

A maximum of 64kword of x data memory may be accessed, 256 words of which are 

contained on-chip. The on-chip x data static RAM area is 24 bits wide and occupies 

the lowest 256 locations of x memory space. An additional 256 words of internal 

preset ROM, containing A-Law and ^i-Law expansion tables, may be mapped into 

locations $ I O O - $ I F F by setting the DE (Data Enable) bit to one in the OMR. 

Whenever the ROM is disabled, addresses $ I O O - $ I F F access external RAM locations. 
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The on-chip peripherals are mapped into external locations $ F F C O - $ F F F F of the x 

memory space, and may be accessed using the MOVEC instruction [70]. 

5.4.2 Y Data Memory 

The y data memory is similar in size and operation to the x data memory. The ROM 

area contains a ful l sinewave look-up table, with off-chip peripherals being mapped 

into locations $ F F C O - $ F F F F . 

5.4.3 Program Memory 

The total addressable p-memory space is of similar size to the x- and y-data spaces, 

but differs significantly in its configuration .The on-chip program static RAM area is 

24 bits wide and occupies the lowest 512 locations in p memory space. The program 

memory may be configured in one of four ways, shown in Fig 5.2, corresponding to 

the four operating modes of the device. The configuration is determined by the state 

of the MA and MB bits in the OMR. 

Modes 0 and mode 2 utilise internal program RAM. These modes are similar, 

differing only in the location of the reset vector, which is placed at internal location 

$0 in mode 0, and at external location $EOOO in mode 2. 

In mode 3, the internal program memory is disabled and the processor 

exclusively accesses external program memory. Mode 1 is the special bootstrap mode 

that should be entered upon processor reset. In this mode, the special on-chip 

Bootstrap ROM is mapped into internal program memory space as read-only, and 

allows a program to be loaded either from the host interface or from a byte-wide 

ROM connected to the EMI. 
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5.5 The Address Generation Unit 

The provision of multiple memory units, and their corresponding buses, in a 

processor architecture may well facilitate a high instruction throughput, but it also 

presents a problem. An instruction must specify an address for each of the memory 

areas that it wishes to access. For this device, then, an instruction would need to 

include three 16bit address fields. This would require either a long instruction word, 

increasing the overall cost and size of the memories and buses, or more cycles to 

access the instruction which would tend to decrease instruction throughput. 

The solution, which is used by many processors, is to use "register indirect 

addressing". Special purpose address registers are used to hold the address of a word 

in memory. Instructions refer to a particular register, indirectly accessing a memory 

location. A dedicated arithmetic unit is usually incorporated to allow the address 

registers to be updated concurrently with bus and ALU operation. The number of 

registers used is comparatively small, requiring a shorter instrucdon. The DSP56001 

possesses eight address registers, each with their associated offset and modifier 

registers. These allow complicated addressing schemes, such as modulo addressing 

(circular buffering, used in filters) and reverse carry addressing (bit reversal, used in 

Fast Fourier Transforms) to be implemented without incurring addidonal overheads. 

The Address Generation Unit (AGU) is one of the main execution units on the 

DSP56001. This unit is used to calculate addresses used in register indirect addressing, 

and contains the registers used in this addressing mode. The unit is divided into two 

halves, and is capable of supplying two addresses every instruction cycle. This allows, 

for instance, two operands to be accessed, in x and y space, simultaneously. The unit 

consists of three main elements — the register files, the address ALU and the address 
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output multiplexer. Fig 5.3. These will now be considered in turn. 

5.5.1 The Register Files 

The AGU contains 24 registers, arranged as eight sets of register triplets. Each triplet 

consists of an address register, Rn, an offset register, Nn, and a modifier register, Mn. 

Each register is 16 bits wide and may be read or written by the GDB. When a register 

is read by the GDB, only the lowest two bytes are used, the most significant byte 

being zero extended. When the registers are written by the GDB, then only the two 

lowest bytes of the data word are used, the most significant byte being truncated.The 

eight register triplets are arranged as two banks of four. Each bank is controlled by 

its own address ALU. 

The address registers are usually used to hold addresses that are used as 

pointers to memory, although they may be used to hold general data. Each address 

register may be used either as an input or as an output for its respective address ALU. 

One address register from each half of the AGU may be accessed simultaneously, 

allowing parallel data moves. Hence, i f one half of the AGU is used to access x-data, 

and the other y-data, then two data operands, held in x and y data memories, may be 

accessed simultaneously. The manner in which any particular address register is 

changed depends upon the contents of its associated offset and modifier registers. 

The offset registers are used to alter the contents of their respective address 

registers by some particular value. The offset may be applied in an incremental or a 

decremental fashion, and either before or after the address register is used. 

The modifier register determines which of the three addressing modes the 

associated address register is subject to. The modes supported are linear, modulo and 
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reverse carry. 

5.5.2 The Address A L U 

The AGU incorporates two identical address ALUs, which operate on each group of 

register triplets. Each address ALU contains three ful l adders — an offset adder, a 

modulo adder and a reverse cany adder — each of which may act upon the contents 

of a specific address register and allow the three addressing modes to be implemented 

without additional operational overheads. 

The offset adder can add plus or minus one, the contents of the associated 

offset register or the two's complement of the offset register, to an address register. 

The modulo adder adds the output of the offset adder to a modulo value, M, 

or its complement, where M is the value stored in the associated modifier register. 

The reverse carry adder operates in a similar fashion to the offset adder, the 

difference being that the carry is propagated in the reverse direction, and operates in 

parallel with the offset adder. 

Each address ALU is capable of updating one address register in an instruction 

cycle. The combination of ful l adders allows linear, modulo or reverse carry arithmetic 

to be performed on the address register, depending on the contents of the associated 

modifier register. I f the modifier register contains the value $ F F F F , then linear 

arithmetic is used. I f the modifier register contains $0000 , then reverse cany 

arithmetic is utilised. I f the modifier register contains any other value, M, then modulo 

M-1 arithmetic is used. 
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5.5.3 The Address Output Multiplexer 

The two banks of address registers present two 16 bit address values every instruction 

cycle. The address output multiplexer determines which bank is to be used to drive 

the XAB, YAB or PAB. 

5.5.4 Address Register Indirect Modes 

All main types of indirect addressing modes are available on the DSP56001, including 

pre-/post-increment/decrement by one or the offset value, modulo and reverse carry 

(bit reversal). 

5.6 The Data Arithmetic and Logic Unit 

The arithmetic and logic unit (ALU) is one of the three main execution units of the 

processor. The operation of the ALU lies at the heart of the power of the DSP56001. 

Incorporating a fast 24bit by 24bit multiplier with 56bit accumulation allows 256 

consecutive overflows or underflows to occur with no degradation of accumulator 

accuracy. Furthermore, the two sets of input and output (accumulator) registers allow 

fast register to register or register to memory transfer, and a convenient local data 

store. The latter enables pipelining restrictions to be pre-empted. Section 5.11. The 

unit incorporates a non-pipelined multiply-accumulate (MAC) unit that is capable of 

operating with positive or negative accumulation, with or without convergent rounding, 

in a single instruction cycle. 

The ALU, shown in Fig 5.4, consists of four input registers, a multiplier, an 

accumulator, rounding and logic units, two accumulator registers and shifting/limiting 

circuits. These are treated separately below. 
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5.6.1 The Data A L U Input Registers 

The four general purpose 24 bit wide input registers, xO,x1 ,yO,y1 act as input buffers 

between the MAC unit and the data buses. They may be concatenated to form 48 bit 

registers, x1 :xO (x) and y1 :yO (y). The provision of these registers allows fresh data to 

be moved in over the data buses while the MAC unit operates on the previous data, 

allowing the MAC to operate continuously. 

5.6.2 The Multiply Accumulator and Logic Unit 

The MAC and logic unit, shown in detail in Fig 5.5, is the heart of the computational 

power of the DSP56001. It consists of a multiplier, an arithmetic and logic unit, 

convergent rounding circuitry and a data shifter. This unit operates in parallel with the 

bus circuitry, allowing continuous operation. 

The x and y registers form the input of the multiplier, which executes 24 x 24 

bit parallel fractional two's complement fixed point multiplications. The resulting full 

precision 48bit product is right justified and added to one of the accumulators. 

The logic unit performs bitwise logic type functions on the ALU registers. 

There is a direct path from the output of the accumulators to the input of the MAC 

accumulator, incorporating a 56bit shifter that is able to perform single bit arithmetic 

or logical shifts to the left or right. 

The convergent rounding circuitry is placed between the MAC accumulator and 

the accumulator registers. 

5.6.3 The Data A L U Accumulator Registers 

The ALU incorporates two 56 bit accumulator registers, a and b. These may 
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themselves be subdivided into component registers, a2:a1:aO, b2:b1:b0. The 48 bit 

product from the MAC unit may be stored in al :aO (b1 :bO), whilst the additional 8 bits 

of 82 (b2),(the accumulator extension register), which is sign extended, allows 256 

consecutive overflows or underflows to occur without loss of numerical accuracy. The 

individual register elements may also be accessed as unsigned registers. 

5.6.4 The Shifter/Limiter Circuitry 

The 56 bit accumulator registers are connected to the 24 bit data buses. Convening 

a 56 bit value to a 24 bit value obviously results in a loss of numerical accuracy. 

Usually, whenever the accumulator extension register is not in use, the 24 most 

significant accumulator bits (a1 or b1) are transferred to the bus. The 24 least 

significant bits are either truncated or rounded into the most significant portion before 

transfer. 

Whenever the extension registers are in use, then simply transferring the 

contents of a1 (b1) may result in serious inaccuracies. For this reason, limiting 

circuitry has been included on the output of each accumulator register. This circuitry 

substitutes the maximum or minimum value representable by 24 bits for the value held 

in the accumulator register. 

The individual constituent registers may be transferred as unsigned values by 

specifying them explicitiy as an instruction operand. 

Provision is also made for a shifting circuit on the output of each accumulator 

register. This is useful for applications involving scaling, such as digital filtering. 
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5.7 The Program Controller 

The program controller is the third of the main concurrent execution units of the 

DSP56001. It consists of three sub-units, the program decode controller, (PDC), the 

program address generator, (PAG), and the program interrupt controller (PIC). The 

unit contains the hardware used to control and execute both long and short interrupt 

routines, in addition to the main status and control registers, a system stack, and 

registers used in the implementation of the hardware DO loops. The controller is at the 

heart of the instruction pipeline, and incorporates several features which enable highly 

efficient program execution — in particular the implementation of interrupts and 

hardware DO loops. 

A l l registers are 16 bits wide, and may be read or written over the global data 

bus (GDB). As this bus is 24 bits wide, only the lowest 16 significant bits are valid. 

The 8 most significant bits of the bus are either forced to zero or are held in a "don't 

care" state. The sub-units and their operation are described below. 

5.7.1 The Program Decode Controller 

The PDC, Fig 5.6, contains the program logic airay decoders, the state machines, the 

instruction latch and the backup instruction latch. This unit decodes the instruction 

held in the instruction latch and generates all the required pipeline control signals. The 

backup instruction latch is used to implement the repeat (REP) and jump (JMP) 

instructions. 

5.7.2 The Program Address Generator 

This sub-unit contains the program counter (PC), the stack pointer (SP), die system 
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stack (SS), the operating mode register (OMR), the status register (SR), die loop 

counter (LC) and loop address (LA) registers. The program address controller is totally 

independent of the data AGU, thus allowing data and instruction addresses to be 

calculated simultaneously. 

The SS is a 15 X 32bit separate internal memory, divided into two banks of 15 

X 16bit registers (system stack high and low), referenced by the SP. The stack is used 

to hold the contents of the PC and SR during subroutine calls and long interrupts. The 

stack is also used to hold the contents of the LA and LC during execution of the DO and 

R E P instructions. 

The OMR defines the current operating mode of the processor. Hence, it 

determines the memory partitioning scheme, and whether or not the internal data ROM 

areas are mapped into internal memory. 

The SR is sub-divided into two 8bit registers, the mode register (MR) and the 

condition code register (CCR). The MR defines the state of the system, and is affected 

by reset, DO loop instructions, returns from interrupt and exception processing. The 

CCR defines the user state of the processor and is affected by data ALU operations 

and data limiting on the accumulator registers. 

The operation of hardware loops is also controlled by this sub-unit. The REP 

instruction loads the LC with the number of times that the next instruction is to be 

repeated. The instruction needs be fetched only once, hence reducing the bus 

requirement, which may be important for programs requiring multiple external bus 

accesses. This instruction is not interruptible. 

The DO instruction represents one of the most developed low overhead looping 

schemes available on any processor. The instruction loads the LC with the number of 
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times the loop is to be iterated and the LA with the address of the last instruction of 

the loop, and asserts the loop flag in the SR. These registers are also stacked, together 

with the address of the first instruction of the loop, prior to execution, allowing DO 

loops to be nested and repeated with no additional overhead. During execution, the 

contents of LA are compared with the contents of PC in order to determine whether 

the end of the loop has been reached. I f this is the case, then the contents of LC are 

tested for one. I f the test fails, then LC is decremented by one and the PC updated 

with the address of the start of the loop. I f the test succeeds, then the loop has 

finished. The stack is popped and used to write the LC, LA and loop flag in the SR; 

and the instruction fetches continue as normal. These loops are interruptible. 

5.7.3 The Program Interrupt Controller 

The PIC arbitrates among all interrupt requests and generates the appropriate interrupt 

vector address. Four external and sixteen internal interrupt sources are processed by 

this sub-unit. Each interrupt possesses an associated interrupt priority level, that may 

range from zero (the lowest level, maskable) to three (the highest level, non­

maskable). Most of the interrupt request sources may be assigned priority levels 

between zero and two, a few sources possess a priority level of three. An interrupt of 

higher priority level will be serviced in preference to one of lower priority level. The 

interrupt mask bits in the SR define the current processor priority. No interrupts with 

priority less than this level will be serviced. Level three interrupts are always serviced. 

Each interrupt is vectored to a two word service routine at one of 32 fixed 

locations occupying the lowest addresses of program memory. An interrupt begins as 

a short interrupt, but may develop into a long interrupt. For a short interrupt, the 
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instruction(s) to be executed are held in the two vectored address words. For a long 

interrupt, these instructions specify a jump to subroutine, which may be any length. 

Short and long interrupts are depicted in Fig 5.7. 

When an interrupt request is received and accepted, the exception processing 

state is entered. The instruction presently being decoded will be allowed to execute 

normally. The PC is then frozen as the PIC supplies the next two fetch addresses (the 

two interrupt vector program words), which form a short interrupt routine. No state 

information is saved during a short interrupt, which eliminates any overheads incurred 

by stack operations; the interrupt instructions are insened in the regular instruction 

stream. If the short interrupt vector contains a subroutine call, then the more standard 

context switching long interrupt occurs. The stack stores the system state and return 

address, and the instruction pipeline is flushed in order to implement the subroutine. 

This obviously incurs performance overheads. 

The provision of short interrupts, then, allows for short sections of code, such 

as those required to service the on-chip peripherals, to operate with no additional 

instruction pipeline delay. This is a very powerful feature, as data may be transferred 

to/from the on-chip peripherals without interrupting the instruction pipeline. Longer 

interrupt routines may still make use of the more traditional context switching long 

interrupt routines. 

Two external interrupt request pins are available on the DSP56001. These are 

used to indicate interrupt requests for /IRQA and /IRQB, which are maskable 

interrupts. The /IRQA pin is also used to signal the NMI interrupt, although this is 

indicated by a super-voltage of lOV, and so has not been designed for prolonged or 

ft"equent use. 
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5.8 The External Memory Interface (Port A) 

The external memory interface (EMI), or Port A, is used to connect die DSP56001 to 

external memory devices such as additional RAM, ROM or EPROM. The three 

internal address buses are multiplexed onto one external address bus. Similarly for the 

internal data buses, except that the global data bus is not brought out externally. The 

external bus switches determine which of the buses are passed externally at any one 

time. Although multiplexed, the bus operates at the same rate as the internal buses, 

an important consideration as it allows one of the internal data areas to be extended 

off-chip without incurring a performance degradation. 

The associated external bus control unit provides signals that indicate which 

of the data spaces are being accessed. This unit also provides read enable and write 

enable lines. 

Two bifunctional lines are available, their mode being selected by the operating 

mode register. These are the bus request/bus grant signals, used for external DMA 

access, and the bus wait/bus strobe signals, which insert wait states into the present 

bus cycle and may be used in shared memory systems. 

The external bus interface is capable of operating at full speed, and so incurs 

no performance penalty when only one external memory area is required per 

instruction. Whenever two or three external areas need to be addressed, the control 

logic arbitrates and orders the accesses accordingly, resulting in an overall decrease 

in performance. 

Up to fifteen wait states may be programmed into the EMI, enabling slower 

(and hence less expensive) memory devices to be used. Each address space may be 

programmed with a different number of wait states, defined by the bus control register 
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5.9 Port B 

Port B is implemented as one of the two on-chip peripheral communications units. It 

may be configured either as a general purpose input/output interface, in which the 

action of individual pins may be user defined, or as a byte wide "host" interface, 

which operates in a similar manner to a standard microprocessor interface. The port 

is accessed by the DSP56001 through memory mapped peripheral registers, allowing 

a rapid transfer of data by using short interrupts. Port B operates concurrentiy with the 

other main execution units, thus providing a powerful communications mechanism. 

The two operating modes will now be considered in some detail. 

5.9.1 The General Purpose I/O Interface 

The general purpose i/o interface consists of fifteen pins which may be individually 

configured to act as inputs or outputs. In this configuration, the port may be thought 

to consist of three memory mapped registers, residing in the internal peripheral 

memory area. These are the port B control register (PBC), which determines the 

configuration of the interface, the port B data direction register (PBDDR), which 

determines which pins are inputs and which outputs, and the port B data register 

(PBD). 

Port B is a memory mapped peripheral, and so the MOVEP instruction may be 

used to access its locations. This instruction is slower than the normal MOVE 

instruction, but as it allows memory to memory transfers, it is ideal for use within fast 

interrupt routines. 

A hardware strobe is not provided. Hence, i f an external strobe signal is 

required, it must be generated in software by toggling one of the output pins. 
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The i/o pins are latched. This has the consequence that the data is not actually 

placed onto the output pins until an instruction cycle after the instruction appears in 

the code. This is an important consideration i f port B is to be synchronised with port 

A activity. 

As the port may be written or read every instruction cycle, the maximum data 

transfer rate using this configuration is in excess of 150Mbits '. 

5.9.2 The Host Interface 

The host interface is an asynchronous, byte wide, full duplex, double buffered port, 

designed to be connected direcdy to a host microprocessor or DMA controller. It 

behaves, as far as the host is concerned, very much like static RAM. The 

configuration consists of two banks of registers, one which may be accessed by the 

DSP56001, the other by the host processor. The host registers are mapped into 

peripheral memory space. 

Not only does this interface allow data transfer between the DSP56001 and a 

host processor, but it also allows the host processor to force interrupt routines within 

the DSP56001. This latter option is very powerful and allows the host to control the 

operation of the DSP, or to inspect its state for debugging purposes. 

The interface may be configured to transfer 8, 16 or 24 bit words. The 

maximum burst data transfer rate is 8Mbytes ', with an interrupt driven transfer rate 

of 1.71Mwords'\ the maximum allowable with a 20.5Mhz processor. 

5.10 Port C 

Port C consists of nine pins. Three of these pins may be configured either as a general 
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purpose i/o interface, or as the serial communications interface (SCI). The remaining 

six pins may be configured either as a general purpose i/o interface or as the 

synchronous serial interface (SSI). This port is therefore very versatile. The 

configurations will now be considered separately. 

Port C is implemented by the second of the on-chip peripheral communications units, 

and like Port B operates independently of the main execution units and is accessed by 

memory mapped peripheral registers. This unit may be configured either as a general 

purpose input/output port or as both asynchronous and synchronous ports. Although 

the data transfer rate is not particularly high, this interface is useful for connection to 

devices such as analogue to digital converters. An additional feature of this port is that 

it is capable of operating in a time division multiplexed mode, allowing up to 32 

DSP56001S to be interconnected. 

5.10.1 The General Purpose I/O Interfaces 

The two groups of pins constituting port C may be separately configured as general 

purpose i/o pins in much the same way as the general purpose configuration of port 

B. The configuration mode of the pins is controlled by the port C control register 

(PCC), the port C data direction register (PCDDR) determines which pins act as input 

and which as output, and the port C data register (PCD) is used to hold the data. These 

registers are memory mapped into peripheral memory space, as in the case of port B. 

The MOVEP instruction may be used to transfer data in the same way as for port 

B. Similarly, all timing and strobe constraints applicable to the general purpose 

interface of port B also apply here. 
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5.10.2 The Serial Communications Interface 

The serial communications interface (SCI) consists of three pins — transmit data 

(TXD), receive data (RXD) and serial clock (SCLK). The transmit and receive 

sections are separate and may operate asynchronously. Many synchronous and 

asynchronous protocols, including RS232, are supported, including a wake up on idle 

and wake up on address bit multi-drop modes, for use in multi-processor 

configurations. The transmit and receive baud rate clocks are programmable, and may 

act as timers. 

The SCI is controlled and configured by seven registers, held in a contiguous 

area of peripheral memory space. These are the SCI control register (SCR), which 

controls all the operational features of the interface, the SCI status register (SSR) 

which indicates the present state of the interface, the SCI clock control register 

(SCCR), three data transmit and receive registers and the SCI transmit data address 

register. 

The interface may operate at up to 320 kbits ' in asynchronous mode, and up 

to 2.56Mbits"' in synchronous mode (20.5Mhz device) [70]. 

5.10.3 The Synchronous Serial Interface 

The synchronous serial interface (SSI) consists of six pins, and offers a means of high 

performance full-duplex serial communication. As in the SCI, the receive and transmit 

sections are separate and may operate asynchronously. This interface is very versatile, 

and many interface protocols are supported. Control is provided by means of four 

registers held in peripheral memory space. These are the SSI control registers (CRA 

and CRB), the SSI status/time slot register (SSISR/TSR) and the SSI receive/transmit 
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data register (RX/TX). Data wordlength is selectable as 8, 12, 16 or 24 bits. 

This interface may operate in one of three modes. The normal mode is used 

to periodically transfer data, at the rate of one word per period. The network mode 

also transfers data periodically, but allows for up to 32 time slots per period. This 

mode may be used to build time division multiplexed systems — a very useful feature. 

The on-demand mode may be used to transfer data whenever it is available, and is 

non-periodic in nature. 

The SSI is capable of transferring data at a rate of 5Mbits"', and is ideal for 

connection to devices such as analogue to digital to analogue conveners. 

5.11 Programming 

In common with most other currently available DSPs, the DSP56001 may be 

programmed using either a native assembly language, or a C compiler. Although the 

earlier versions of the C compiler produced lamentably inefficient coding, the more 

recent versions offer significant performance increases. Maximum operational 

performance may still be attained only by using assembly language, however. 

The Motorola DSPs use a time stationary coding method as the basis for their 

assembly language, compared to the interlocking method used by Texas Instruments, 

and data stationary method used by AT&T for their floating point DSPs, [7], [40]. In 

time stationary coding, a line of code specifies the operations that are to occur 

simultaneously in an instruction cycle. Time stationary coding highlights the 

concurrent operation of the main execution units of the DSP56001, as, in comparison 

to the other approaches, it emphasises parallelism rather than pipelining. In other 

methods, the effects of pipelining, in particular delays caused by resource contention, 
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are largely hidden from the programmer, and performance may well suffer as a 

consequence. Time stationary code, although it may appear complex at first sight, 

allows the programmer to manipulate the instruction pipeline and interleave memory 

accesses to provide the highest possible performance. Any pipeline hazards or resource 

contentions are flagged by the assembler, allowing the programmer the opportunity to 

restructure the programme, or to insert a delay (a NOP instruction) between the 

contentious lines of code. This latter approach is automatically applied by the 

processor m data stationary and interlocking code. 

The DSP56001 assembly code format consists of an instruction field and two 

parallel data move fields. An instruction pre-fetch, instruction execution and two data 

transfers may occur within a single instruction cycle. Furthermore, the provision of a 

dedicated address generation unit enables two address registers to be updated during 

any instruction. An example line of code is 

MACR x O , y O , a a , x : ( R O ) + N O y : ( R 4 ) + , y O 

which multiplies the values held in data registers xO and yO and stores the result in 

accumulator a, simultaneously transferring the previous value held in a to the x-data 

memory location specified by RO, post incrementing RO by the amount held in offset 

register NO, and transferring the value held in the y-data memory location specified 

by R4 into data register yO, post incrementing R4 by 1. 

A consequence of the number of registers contained in the ALU and the 

control offered by time stationary coding is that pipeline hazards or resource 

contention may be avoided by transferring values into an ALU register many 
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instructions before it is required. This is an example of both the potential complexity 

of time stationary coding and its potential performance benefits. 

In order to obtain maximum performance, it is important to ensure that most 

memory accesses are made to internal memory areas, and that only one external 

memory access is required in any one cycle. Providing that these criteria are met, then 

most of the instructions in the DSP56001 instruction set will operate in a single cycle. 

The parallel data move capability is especially useful for applications such as digital 

filtering and image convolution — the DSP56001 is capable of implementing a 

biquadratic filter section in only four cycles, which is the minimum possible for a 

single multiplier device. 

The devices used in this work were running at 20.5MHz. More recently, 

27MHz and 40MHz parts have become available. 

5.12 Summary 

This chapter has described the architecture of the DSP56001 and shown it to be a very 

powerful digital signal microcomputer. The structure of the architecture exhibits a high 

degree of operational concurrency, allowing the device to execute an instruction, 

perform an instruction pre-fetch, access two data areas and perform updates on two 

address registers in a single cycle. Such features enable the DSP56001 to implement 

stock DSP algorithms highly efficientiy. 

The device also incorporates a powerful address generation unit (AGU) 

containing eight sets of address registers and allowing circular buffering and bit 

reversed addressing schemes to be used with no additional loss in performance. 

Together with the arithmetic and logic unit (ALU), the AGU forms the computational 
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powerhouse of the processor. 

The two on-chip peripheral interfaces — port B and port C — add to the 

versatility of the device. These memory mapped interfaces may be configured in a 

variety of ways. Port B is suited to communication with an external host piX)cessor, 

allowing the host to execute predefined interrupt routines on the DSP in addition to 

the more usual bidirectional data transfer. The two serial interfaces of port C are 

versatile and capable of operating at high speeds. The SSI, in particular, is capable of 

operating in a network mode, allowing the processor to participate in a multi-processor 

based time division multiplexed serial communication scheme. The SSI is also easily 

connected to ADC/DAC systems. 

The device may be programmed either in C or in assembly language. The 

assembly language, which is based on time stationary coding methods, should be used 

i f maximum performance is required. The time stationary coding method, while 

perhaps less "user friendly" than interlocking or data stationary methods, does allow 

the programmer more control over the device, producing optimal code. Assembly 

language coding of the DSP56001 results in very efficient and compact code. 

Although the transputer is more of a general purpose processor than the 

DSP56001, both have been designed with efficient code execution in mind, although 

they incorporate different design methodologies. The transputer uses a relatively small 

and efficient instruction set, building up its instructions from individual bytes. Four 

bytes are accessed in a single bus cycle, reducing the overheads attached to instruction 

pre-fetching. Operations are performed on a small number of registers, rather than on 

elements of memory. This approach to increasing performance is typical of RISC-like 

architectures. An area of internal memory is provided, which may be accessed every 
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machine cycle. 

The DSP56001 also utilises internal memory, but in the form of a modified 

Harvard architecture. One program and two data memory areas, together with their 

associated buses, are provided on-chip. This allows up to three 24bit words to be 

transferred in a single instruction cycle. The DSP56001 also possesses a relatively 

small instruction set, but this is more a consequence of the specialist nature of the 

device rather than any RISC based performance enhancement. Due to its high memory 

bandwidth, the DSP56001 does not need to utiUse compound instructions to help 

improve operational efficiency. 

There are two major differences between the two devices. The transputer 

incorporates a microcoded process scheduler and autonomous link engines to provide 

efficient implementation of parallel programs and inter-processor communications. The 

DSP56001 utilises a highly optimised ALU which incorporates a non-pipelined MAC 

unit, allowing a 24bit by 24bit multiplication (with 56bit accumulation) to be carried 

out every instruction cycle. Evidently, then, the DSP56001 would easily outperform 

the transputer when executing multiplication intensive apphcations, as the DSP is 

capable of multiplying almost forty times faster than the transputer (for equivalent 

clock speeds). However, as the transputer was designed to form multi-processor 

networks, it is far more efficient than the DSP at inter-processor communication. 

The transputer may be programmed in a variety of languages, none of which, 

understandably, provides the performance offered by assembly programming. 

However, transputer assembly language is complex, as parallel processes must be 

defined, and performance is not easily predicted. The DSP56001 is also optimally 

programmed in assembly language. Although this is perhaps one of the more complex 

154 



forms of DSP assembly language, the programs produced are relatively straightforward 

compared to those of the transputer. Furthermore, the behaviour of the code is more 

straightforward, the performance of the code being easily determined by analytical 

means. 
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Chapter 6 

Digital Filtering on the 
DSP56001 

6.1 Introduction 

This chapter is concerned primarily with demonstrating how the features of the 

Motorola DSP56001 may be utilised to implement efficient digital signal processing 

applications. The architectural features outiined in the previous chapter — indirect 

register addressing, extended Harvard architecture and a fast multiplier — are used in 

the work presented, together with illustrations of time stationary coding, to construct 

highly efficient infinite impulse response (HR) filter routines. Issues relating to finite 

register length — quantisation noise, noise transfer functions, input scaling and node 

scaling — are considered only when they directiy relate to implementation issues, as 

extensive coverage of these effects is not considered relevant to the points being made 

and would serve as an unnecessary complication. 

Filtering is one of the most widely used digital signal processing functions. For 

this reason, the architecture of most digital signal processors is such that they are able 

to implement digital filtering algoritiims very efficientiy. Although there are many 

types of digital filtering stioictures and algorithms available, [37], [38], [39], [40], this 

chapter concentrates on tiie implementation of the canonic 11 form of tiie infinite 
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impulse response (IIR) filter since this may be optimally implemented on the 

DSP56001, and is suited to the implementation of the application filter oudined in 

Appendix A. The problems involved with the implementation of the canonic I I form 

of the application filter are described, and a satisfactory solution presented. 

The work described in this chapter was carried out using the Motorola ADS56 

Development System. This system comprises a DSP56001 development board 

interfaced to an IBM PC and a software package including a monitor program, an 

assembler and a linker. 

After describing the general IIR canonic n structure, together with an extension 

of the basic code for multi-channel filtering in section 2, section 3 goes on to 

investigate the implementation of the application filter on the DSP56001. It is shown 

in Section 4 that this filter possesses a non-standard structure, requiring a slight 

algorithmic modification. Furthermore, it is demonstrated why this particular filter may 

not be implemented in the form of a cascade of biquadratic sections on die DSP56001. 

Section 5 introduces an alternative structure, and extension to the multi - channel case, 

and provides a comparison with the more standard biquadratic approach. Section 6 

provides a summary. 

6.2 Realisation of the Canonic Biquadratic Filter Section on the DSP56001 

The canonic form of the biquadratic filter section is widely used as the basic element 

in many digital filter realisations, since it incm^ a minimal instruction cycle penalty. 

The basic biquadratic structure is shown in Fig 6.1 [75]. It may be seen fi-om the 

figure that this form requires five multiplication operations. The scaling factor, which 

includes a factor of 0.5, and coefficient b^, may be combined to give the structure 
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shown in Fig 6.2. This structure demonstrates the value of input scaling (division) and 

accumulator output scaling (multiplication) when coefficient values greater than those 

rcprcsentable by the processor registers (in the case of the DSP56001, 1-2'̂  and -1.0) 

are required, as the coefficient values used in this implementation are scaled versions 

of those in Fig 6 . 1 . Only processors incorporating this zero overhead accumulator 

scaling facility provide suitable platforms for this structure [76]. 

The transfer function for Fig 6.1 is given by 

l-fl ,z- '-a,z-^ 

with difference equations given by 

y,(/i) = ft„w,(/i) + 6,w,(n-l) + 6,w,(«-2) (2) 

w,(n) = c^(n)+fl ,H' ,( / i- l) + fl,w,(/i-2) (3) 

and that for Fig 6.2 is given by 

= a(l^^u"-^az-^) (4) 
0.5+Yz-' + |3z-̂  

with difference equations given by 

y{ri) = 2(0.5w,(/z)+0.5^vi'^(/i-l) + 0.5aw,(«-2)) (5) 

w,(/i) = 2(ou;(/i)-Yw,(/i-l)-pw,(/i-2)) (6) 

Now, multiplying top and bottom of (4) by 2 gives 

= 2 a ( U n z - U a z - ) 
1+2YZ- '+2PZ-^ 

and comparing like terms in ( I ) and (7) gives 

2a = la\i = b^ 2aa = b^ 

Y = fl, 2P = fl, , 

The code segment for the structures of Figs 6.1 and 6.2, which are similar, differing 

only in their coefficient values, are given in Fig 6.3, together with a representation of 

166 



their data memory requirements. Both forms hold their coefficients in on-chip y-data 

space and their intermediate values, vv.(rt-i), in on-chip x-data space. This allows both 

data areas to be accessed simultaneously, since both halves of the AGU may be used. 

The coefficients are accessed using a cyclic addressing mode, whereas the intermediate 

values require only a linear mode. These code segments assume that the input and 

output values are accessed via a particular word in memory — in this case a 

peripheral i/o location. It would be a simple matter, however, to use non-peripheral 

locations, or even buffers, using indirect addressing. An explanation of the operation 

of the code is shown in Table 6.1, using nomenclature relating to the second form. 

6.3 Expansion to Multiple Data Paths 

It would be possible to support multiple data paths by using a different set of address 

registers for each channel / data path. However, as the number of address registers is 

limited, the number of channels which may be implemented using this method is 

correspondingly small. A more efficient method is available, thanks to the versatility 

of the addressing modes and the provision of a zero overhead DO loop, which requires 

only one minor change to the filter code kernel. 

A possible memory structure of an Nf channel filter is shown in Fig 6.4 

{ j - 0 .. N f - 1 ). For the single channel case, the coefficients are accessed using a 

cyclic buffering scheme. If, in the multi-channel case, the response of each filter is to 

be independently controlled, then the same type of addressing scheme may be used 

providing that a larger buffer size is declared. The coefficient blocks would then be 

accessed in a cyclic sequential manner, Fig 6.4a. However, i f each filter is to possess 

the same response, then a single coefficient block, addressed as in the single channel 
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case, will suffice, Fig 6.4b. The latter case obviously requires less memory. 

The single channel case does not use cyclic addressing to access the 

intermediate values (w(/ i - i ) ) , as there is no need to do so [75]. In the multi-channel 

case, however, cyclic addressing may be used to allow the intermediate value blocks 

to be accessed in a cyclic sequential manner. This would force RO to point back to the 

first section whenever the last section had been completed. For this reason, then, MO 

must be initialised so as to provide a cyclic buffer of size Wf for RO. Furthermore, at 

the end of the end of the section RO is pointing to w.(n-l) . This must be modified 

such that RO is pointing to w. j («- l ) at the end of the section. This may be 

accomplished by using NO to post increment RO after the last reference in the section, 

ie by changing line 4 from 

MAC xO,yO,a a,x:(RO) y:(R4)+,yO 

to 

MAC xO,yO,a a , x : ( R O ) + ( N O ) y:(R4)+,yO 

For biquadratic filter sections, NO should contain the value 2. 

It should be noted that the data paths in this implementation are orthogonal — 

data input and output paths are not connected. A cascade filter stmcture may easily 

be implemented, however, by storing the output of one filter section in an ALU 

register and using it as the input to the next section. 

Simply by using a modified addressing scheme, tiien, and a computation 

section embedded in hardware DO-loop, a single channel filter may be expanded to a 

multiple channel implementation with no additional performance overheads. 

168 



6.4 Problems in the Implementation of the Application Filter on the DSP56001 

From Fig A.3, it may be seen that the application filter may be decomposed into a 

single pole highpass section in cascade with a biquadratic bandpass section. The single 

pole section may be simply implemented as half a biquadratic section, its output 

forming the input of the bandpass section. The transfer function of the bandpass 

section (Equation A. 11) does not contain a term in b^, indicating that the output of 

the section contains no proportion of the present input section. Furthermore, Appendix 

A shows that no input scaling is required, since the overall gain of the section is less 

than one. This results in the modified structure shown in Fig 6.5. 

The code shown in Fig 6.3 is unsuitable for this structure, however, as the 

output would always be zero. As 6̂  = 0, then a = 0. Now, consider the biquadratic 

section output as it takes its first few input values, from (9), 

H'(0) = 2ax(0) 
=0 

H'( l )=2cu : ( l ) + Y.O 

=0 
w(2)=2ax(2)+Y.O-p.O 

=0 

and therefore, 

w(/i) = 0, «=0..«> 

From Equation (6), as y(n) is a function of w{n),win-l) and w{n-2), then yin) will 

always take the value zero. Thus this particular implementation of the biquadratic filter 

section is useless when applied to those filters with b^ = 0. 

What is required is code that implements a filter section whose difference 

equation contains no proportion of w(n). In the code segments of Fig 6.3, w{n) is first 
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calculated (lines 1, 2 and 3). This value is then left in the accumulator while y(n) is 

calculated using w(n- l ) and w(n-2). The contribution of win), then, may be 

disregarded i f the accumulator is overwritten by those lines that calculate y(n). In this 

case, w(n) is used only to update the values of w(rt-l) and win-2). This may be 

implemented by replacing the MAC instruction of line 4 with an MPY instruction, which 

overwrites the accumulator. 

This modified code will implement the filter structure shown in Fig 6.5. 

However, from Equation A. 17, it may be seen that for the application filter, 6̂  

contains a term in 2 ". This value may not be represented within the 24bit registers of 

the DSP56001, and so the coefficient value is truncated. This truncation causes a shift 

in the location of the poles of the filter and hence changes its characteristic magnitude 

and phase response. In particular, the poles, previously a complex conjugate pair 

(Equation A.9) are forced onto the real axis at z = 1 - 2 " and z = 1. This problem may 

not be resolved by explicitly coding the direct feedback path of the structure, as the 

unmodified biquadratic section also contains coefficients with terms in 2'*. The 

problem may be met by either implementing a 48bitx24bit multiplication roudjie 

[76], or by decomposing the biquadratic into two single pole sections. This latter 

option wil l now be described, as the former is computationally expensive. 
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6.5 A Cascade of Single Pole Sections 

6.5.1 Structural Decomposition 

Forming two single pole sections from the modified biquadratic section would result 

in two cascaded single pole sections requiring complex coefficients, which would add 

considerably to the computational complexity [77]. For this reason, the unmodified 

biquadratic section was decomposed, and the feedback path implemented explicitly, 

resulting in a cascade of single pole sections. 

The general single pole canonic structure is shown in Fig 6.6a. However, 

substituting the coefficients given in Equations A.2 and A. 10 for the high and low 

pass sections results in the structures given in Figs 6.6b and 6.6c. The high pass 

section uses a coefficient of - 1 , which may be implemented either as a subtraction 

or as a multiplication operation. Although each require the same amount of time to 

perform, the multiplication operation may also incorporate a rounding operation, and 

so was used in the code. These filter sections use coefficients that may be represented 

with 24bits and so may be safely implemented on the DSP56001.The structure of the 

entire filter is shown in Fig 6.7, and its code presented in Fig 6.8. 

6.5.2 The Sequence of Operations 

Consider a flow of operations across the filter structure from left to right. It is clear 

that the single pole high pass section may be completed with no problems. The 

summation at point A, however, may not be evaluated until the filter output, yin), has 

been determined, and so execution must halt at this point. The output may be 

determined by continuing the calculation at point C, which is separated from the 
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previous signal path by a delay operator, and continuing through the final single pole 

high pass section. The summation at point A may then be completed, followed by the 

signal path up to point C. It is of no consequence whether stage one or stage two is 

calculated first. 

The DSP56001 incorporates two 56bit accumulators. Thus, the intermediate 

value stored at point A may be left in accumulator a, in full 56bit precision, while 

accumulator b is used for the second stage. The two accumulators may be added 

together, eliminating the rounding errors which would occur i f the value at point A 

was stored in an intermediate memory location. 

6.5 J The Code 

From Fig 6.7, and Appendix A, it may be seen that the single pole high pass section 

incorporates a term in w(n), whereas the single pole low pass section does not. The 

low pass section, then, needed to make use of the w(n) blocking properties of the 

code shown in Fig 8.5. From Appendix A, the single pole filter sections have gains 

of less than one, and so no external scaling is required. Consequentiy, the scaling 

factors may be assumed to be equal to one, and hence disregarded. The structure of 

the code may take two forms, depending upon whether the rounding operation is 

performed during or before the summation at point A of Fig 6.5. 

Both versions of the code are shown in Fig 6.9, together with the memory 

usage requirements. An explanation of the code is given in Table 6.2. Address register 

RO is used to point to the w'(n-l) values, which are stored in internal x memory and 

are accessed cyclically by setting MO. The offset register, NO, is used to allow a return 

172 



to the start of the block. The coefficients are held in internal y memory and are also 

accessed cyclically using R4 and M4. 

6.5.4 Expansion to Multiple Orthogonal Data Paths 

Expansion to the multi-channel case is straightforward, using methods similar to those 

outiined in Section 6.3. I f the response of each filter is to be independently controlled, 

then address mode register R4 must be used to define a cyclic address range equal to 

Nf . Number of coefficients per filter. Furthermore, the address modifier register RO 

must be used to define a cyclic address space equal to 3Nf, 

6.5 J Performance 

Version "a" requires 11 cycles to perform the filter computation, version "b" requires 

12. The overhead for setting up a hardware DO loop is three cycles, and the instruction 

cycle time is 97.5ns. Let the number of channels required be represented by C, the 

number of cycles required to perform the computation by Â_̂  and the required sample 

rate of each filter by R^, then the following relationship must hold true for a realisable 

implementation 

3 + iV X C < i (12) 
97.5 X 10 ' 

Using this equation, the maximum sampling frequency for a single channel filter is 

683.76kHz for type "a" and 732.6kHz for type "b". For a sampling frequency of 

28kHz, the maximum number of channels that may be supported is 30 for type "a" 

and 33 for type "b". 
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The original filter structure, used in the transputer implementation, was also 

investigated. However, the single pole section alone was found to require 10 cycles 

to execute, and so this form would offer significantiy less performance than the 

canonic form. 

The frequency and phase responses of this filter were tested by using 

Hypersignal Workstation®, and found to compare with those presented in Appendix 

A. 

6.6 Summary 

This chapter has demonstrated the implementation of an infinite impulse response 

(IIR) filter on the Motorola DSP56001. One of the basic elements of recursive 

filtering, the canonic 11 biquadratic section, has been described and the associated 

DSP56001 code presented. Various coding methods may be used, depending on the 

coefficient values and whether scaling is required. Three variations in filter structure 

— standard, coefficient scaling and w(n) blocking — have been presented and shown 

to represent modifications of the same basic code. The coefficient scaling form 

depends for its efficiency upon the use of accumulator output scaling, available on the 

DSP56001. 

The canonic form of the application filter has been described, with the view 

that tills would offer the most efficient implementation on tiie DSP56001. However, 

the coefficients of the biquadratic section of this filter require wordlengths greater than 

tiiose accommodated by die ALU registers of die DSP56001. For tiiis reason, it was 

necessary to form a filter structure based on single pole sections. Two forms of the 

filter were coded, and found to operate at maximum sample frequencies of 683.76kHz 
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and 732.6kHz respectively. 

This chapter concludes the investigation of the applicability of the Inmos 

Transputer and Motorola DSP56001 to digital signal processing (DSP) type algorithms 

(ie those requiring a high i/o bandwidth and using small, multiplication intense 

computation sections), in particular to the application filter. 

Albeit a general purpose processor, the transputer has been shown to be 

capable of effectively implementing DSP type algorithms. Although this is due in part 

to its RISC type architectiue, one of the main contributing factors to the transputer's 

operational efficiency is its ability to overlap communication and computation. This 

often enables the transputer to transfer data with minimal time penalty — the transfer 

appears "invisible" to the processor. However, as shown in Chapter 4, performance is 

likely to suffer whenever the computation execution time is short and the data transfer 

requirement is high (ie more links are required). Furthermore, the application filter 

code utilises a shifting operation in place ^ of a multiplication, which requires 

approximately half as many cycles to execute than the corresponding multiplication. 

The integer multiplier is the main performance limiting feature of the 

transputer, especially when implementing multiplication intensive algorithms. The 

inclusion of a concurrent floating point unit (FPU) on the T80x series does litde to 

alleviate this problem. Other limiting features include the available memory bandwidth 

— only one word may be accessed at any one time — and the link transfer 

bandwidth. The latter results in the requirement to maintain the computation execution 

period above a certain limit; the time required to compute one word of data should be 

greater than the time required to transfer a word over a link. 

The architecture of the DSP56001 has been designed around the need to ensure 
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tiiat its multiplier unit is fed with data as fast as it can use it. The arithmetic and logic 

unit (ALU) incorporates a single cycle, non-pipelined MAC unit together with several 

input and accumulator registers. Combining the ALU with a comprehensive register 

indirect addressing scheme and an extended Harvard architecture, the DSP56001 is 

extremely effective at implementing DSP algorithms. Of particular note is die ability 

to implement zero overhead modulo and bit reversed addressing schemes and hardware 

DO loops. 

The DSP56001 also incorporates two on-chip communication peripherals, 

designed to interface to "host" processors and serial devices such as modems and 

ADC/DACs. These perform byte wide parallel and synchronous / asynchronous serial 

communications, although at a slower rate than the transputer. Some facility has been 

given to multi-processor operation, namely DMA control lines and a "network" mode 

on one of the serial ports, but these are limited and involve low data transfer rates 

compared with the transputer. 

In summary, then, die DSP56001 is highly efficient at implementing DSP 

algoritiims due to its optimised architecture and fast multiplier. Aldiough it 

incorporates three additional communications ports, these offer slower transfer 

bandwidth than the transputer. Limited multi-processor support is provided. 

The transputer, in contrast, efficientiy implements inter-processor 

communication due to its microcoded scheduler and concurrent link engines, having 

the ability to make transfers seem almost "invisible". However, the available link and 

memory bandwidtiis, and the provision of a relatively slow multiplier, limit 

performance when implementing DSP type algoridims. 
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Description of Code Segment 2 

Line 
Number 

Comments 

1 The input value is scaled and placed in accumulator a.H'(rt-l)is placed in xO, 
RO is post incremented, to point to win-2). R4 is presently pointing at y, 
which is moved into yO. R4 is post incremented to point to p. 

2 xO and yO are multiplied and added to accumulator a, which now contains 
OUc(n)+yw(n-l). win-2) is moved into xl, this time there is no change in 
RO. P is moved into yO, which is post incremented to point to 0.5M.. 

3 xO and yO are multiplied and added to accumulator a, which now contains 
<xxin)+ywin-l). win-2) is moved into xl, this time there is no change in 
RO. P is moved into yO, which is post incremented to point to O.SjJ.. 

4 xl and yO are multiplied and added to the accumulator, which is rounded to 24 
bits and now contains axin)+ywin-l)+^win-2). xO (w(/i-l)) , is moved 
into win-2), and RO is post decremented to point at ^ ( ^ -1 ) . 0.5̂ 1 is moved 
into yO, which is post incremented to point at 0.5a. 

At this point, accumulator a holds 0.5 win), xl holds win-2), RO points to 
win-1) and R4 points to 0.5a. The previous section, then, has calculated a 
value for win). The next section will use this value to calculate a value for the 
output. 

5 xO and yO are multiplied and added to the accumulator, which now contains 
0.5iwin-l)+\iwin-l)). However, before the accumulation operation, the 
rounded contents of a are left shifted one bit (multiplied by two) and moved into 
win-l), ready for the next cycle. 0.5a is moved into yO. R4 is post 
incremented to point to a. 

6 xl and yO are multiplied, and added to accumulator a, which is rounded and now 
contains 0.5iwin)+\lwin-l)+awin-2)). a is moved into yO, ready for the 
next cycle. R4 is post incremented and forced to return to the beginning of the 
coefficient block by the cyclic addressing scheme. 

7 The accumulator now holds a rounded value of O.Syin), which is left shifted by 
one bit and moved to the output location in the final instruction of the loop. 

Table 6.1 Operation of the Filter Code 
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Description of Three Pole FiltCT Code 

Line No Comments 

1 Clear accumulator a and move the present input into y 1 . 

2 Move input into a, w\n-l) into xO and fl* into yO, post increment R4. 

3 8 = 8 + fl' X ^ ' ( n - l ) , rounded. Move 6' into yO, post increment R4. a now 

contains the new value of w'(«) . 

4 Move the rounded value of a, w\n), into ^ ' ( r t - l ) . a = 8 + i>* x w\n-l), post 
increment RO. Move b^ into yO, post increment 
At this point, a holds the output of the first stage and w\n-l) has been updated. yO 
contains b^, RO points to w\n-l) and R4 points to fl'. This is point A. 

5 Move w\n-l) into xO, post increment RO to point to w\n-l). 

6 ti = b + b^ X w\n-\). Move w\n-l) into xO. Move a ' into y1, post increment 

R4 to point to b^. 

7 b = b + a ' X w\n-l), rounded. Move 6' into yO, post increment R4 to point to 
a' using circular addressing. 

8 b = b + X w\n-l). Update w\n-l), post decrement RO to point to 
w\n-l). The ordw of op^tions now depends upon whether or not the 
multiplication includes a rounding operation. If so, then option 'a' is carried out, if not, 
then option 'b'. 

9a Add b (rounded) to 8. Move w\n-l) into xO, and b (rounded) into the output 
memory location. 

10a 8 = 8 + fl^ X w\n-l). Note that for the ^plication filter, a' = b^, which is 
ah-eady stored in y 1 , and so there is no need for a coefficient move at this point 

11a w\n-l) is updated. 

9b Add b to a, move w\n-l) into xO. 

10b Round b. 

lib 8 = 8 + X w\n-l). The rounded value in b is moved to the output memory 
location. 

12b w\n-l) is updated. RO is post incremented by NO, allowing it to point to the 
beginning of the block, using cyclic addressing. 

Table 6.2 Operation of die Three Pole Filter Code 
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x(n) wKn) 

, -1 

wl(n-2) 

Fig 6.1 Basic Biquadratic Structure 

x(n) w2(n) 

left shift 

^ > — ( ± ) 

w2(n-l) 

w2(n-2) 

Fig 6.2 Alternative Biquadratic Structure 
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1 MPY xO,yO,a x:(RO)+,xO y: (R4)+,y0 

2 MAC xO,yO,a x:(RO),xl y: (R4)+,y0 

3 MACR xl,yO,a xO,x:(RO)- y: (R4)+,y0 

4 MAC xO,yO,a a,x:(RO) y: (R4)+,y0 

5 MACR xl,yO,a y: (R4)+,y0 

6 MOVE a,x:$FFEF 

wfn-J) -al 7 
w(n-2) -a2 -P 

RO bl or 0.5\i 

b2 0.5a 

C a 

R4 R4 

Fig 6.3 Biquadratic Section Code and Memory Requirements 
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wO(n-l) Coefficients 
for FiltCT 0 

wO(n-2) 

Coefficients 
for FiltCT 0 

wl(n-l) Coefficients 
for Filter 1 

wl(n-2) 

Coefficients 
for Filter 1 

> ^ ^ < 
wj(n-l) Coefficients 

for Filter j 
wj(n-2) 

Coefficients 
for Filter j 

RO R4 

20+1) 

No.CoeffsO+l) 

NO 

MO 

M4 

Fig 6.4a Memory Requirements for Multiple Filter Responses 
and Multiple Data Paths 

wO(n-l) 

y^n-2) 

wl(n-l) 

wl(n-2) 

wj(n-l) 

wj(n-2) 

RO 

Coefficients 

R4 
20+1) 

No.Coeffs 

NO 

MO 

M4 

Fig 6.4b Memory Requirements for Multiple Data Paths 
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y(n). 

,-1 

Mn-1) 

Fig 6.5 Modified Filter Structure 

.-1 

Fig 6.6a General Single Pole Section 

,-1 

Mn-l) 

Fig 6.6b High Pass Section 

Mn) 
y(n) 

,-1 

Fig 6.6c Low Pass Section 
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1 CLR a 
2 MOVE y i , a x:(RO),xO 
3 MACR xO,yO,a 
4 MAC xO.yO.a a,x:(R0)+ 
5 MOVE x:(RO)+,xO 
6 MPY xO,yO,a x:(RO),xO 
7 MACR xO,yl,b -
8 MAC/R xO,yO,b b,x:(RO)-

9a ADD b, a x:(RO),xO 
10a MACR xO,yl,a 

a,x:(RO),xO 11a MOVE a,x:(RO),xO 

9b ADD b, a x:(RO),xO 
10b RND b 
l i b MACR xO,yl,a 

a,x:{RO)+NO 12b MOVE a,x:{RO)+NO 

y:(R4)+,y0 
y:(R4)+,yO 
y:(R4)+,y0 

y:(R4)+,yl 

b,y:$outpJt 

b,y:output 

Fig 6.8 Code for the Three Pole Single Stage Cascade Filter 
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Chapter 7 

Hybrid Multiprocessor: Design 
Concepts 

7.1 Introduction 

The computational power of contemporary processors is increasing, but the most 

recent devices are approaching the performance limits of silicon based fabrication 

technology. There wil l always be applications, however, that require computational 

performance greater than that which may be provided by any single processor. In this 

case, there is no alternative but to move to a multi-processor system [10]. The 

performance of many digital signal processing applications may be improved 

considerably by implementing them on a multi-processor system, due to the increased 

overall computational power. Furthermore, many digital signal processing algorithms 

lend themselves to parallel partitioning, and so they may be easily and profitably 

mapped onto a multi-processor system. 

However, although implementing an application on a number of concurrendy 

operating processing units greatiy increases the overall computational performance, 

these processing units must be supplied with data at a rate at least equal to their 

computation rate i f the system as a whole is not to suffer a performance degradation 

[77]. Thus, the bandwidth of the inter-processor communication mechanism must 
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not fall below that of the computation. For any given set of tasks, or processes, the 

requirement for maximum computational performance wil l tend to decompose the 

application into as many parallel sub-processes as possible, running each sub-process 

on a separate processor. However, the requirement to reduce the overall 

communications bandwidth tends to favour a sequential program, running on a single 

processor [6], [20]. In any multi-processor architectvu^ a compromise must be made 

between these two extremes. 

Another important aspect of a multi-processor design is that of scalability 

[78], [79]. The scalability of a system is a gauge of the number of processors 

that may be added before system performance is unacceptably degraded. The inter­

connection network greatly influences scalability. 

Many high performance multi-computers are available today [80], [81], 

[82]. They range from small systems using relatively inexpensive and low 

performance interconnection mechanisms to systems utilising high performance 

processors and very elaborate interconnection mechanisms using dedicated 

communications co-processors. Such systems are expensive, however, and are not 

generally optimised for digital signal processing applications. One of the aims of this 

project was to design a multi-processor system using relatively inexpensive off-the-

shelf parts and an inexpensive interconnection mechanism, which ruled out the use of 

complicated bus switching networks and communications co-processors. 

Presented in the following chapters is a description of the architecture and 

performance of a multi-processor system that isolates the majority of the workload 

associated with computation and interprocessor communication onto separate 

processors. This Hybrid Multiprocessor (Hymips) has been designed witii cost and 
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scalability in mind. 

This chapter offers an architectural overview of such a system. The general 

design issues, such as the choice of processor, the interprocessor connection 

mechanism and the control software methodology are discussed. The following chapter 

deals with more specific design issues, problems encountered and their solutions. 

A general specification of the requirements which the system must satisfy is 

given in Section 2. Section 3 discusses the processors and how they may be best 

utilised. The interprocessor communication mechanism is outlined in Section 4. 

Section 5 covers memory requirements, while Sections 6 and 7 cover system 

reconfiguration and reprogramming. Finally, Section 8 presents a summary of the 

proposed architecture. 

7.2 System Requirements 

The design of the multi-processor was to satisfy certain requirements. These did not 

constitute a technical specification as such, but did provide a guideline for the design 

process. The multi-processor was seen very much as a prototype system. A list of the 

major requirements follows. 

i . The system should interface with a host system (a PC), 
in order to provide access to a terminal, a monitor and 
a file system. 

i i . The system should also possess the ability to independentiy interface 
with additional peripherals such as disk storage units and graphics 
boards, as they provide higher performance than the host based 
peripherals. 

i i i . Digital signal processing algorithms should be efficientiy implemented. 

iv. The architecture should be scalable. 

V. The architecture should not be complex, and make use of relatively 
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inexpensive off-the-shelf components. 

vi . The interprocessor connection mechanism should allow high speed data 
transfers both into and out of the system whilst incurring minimal 
communications overhead. 

vi . The interprocessor connection mechanism should be independent of 
processor type. 

7.3 The Processors 

The system must implement somewhat specialised applications, but still be capable 

of interfacing to general purpose peripherals such as disc storage devices. Digital 

signal processing algorithms require few instructions other than arithmetic and basic 

logic functions. General purpose microprocessors, be they CISC or RISC, offer many 

instructions that would not be required by signal processing algorithms. As a 

consequence of this generality, such microprocessors are inefficient at implementing 

this class of algorithm. As has been shown in Chapter 6, digital signal 

microprocessors, due to their specialised architectures and instruction sets, are capable 

of executing such algorithms far more efficiendy than their general purpose 

counterparts. However, because they are specialised, then they are not suitable for 

managing the interfacing to external peripherals. Furthermore, managing interprocessor 

communication would incur a severe computation performance penalty for such 

devices. The Motorola DSP56001 offers a 24 bit wordlengtii, a high degree of 

operational concurrency and a number of internally based peripheral interfaces. 

Although the transputer is a general purpose RISC-type processor, and so is 

relatively inefficient at executing DSP algorithms, it has been designed to provide 

efficient inter-processor communication. The transputer is capable of communication 

with up to four other transputers using its serial links. Furthermore, this 
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communication proceeds with very littie cpu intervention - even when all four links 

are saturated, cpu performance is degraded by only 5%. The transputer may be 

programmed in many parallel languages and run inside a mature operating system, 

providing the usual peripheral interfaces. 

An architecture that allows the transputer to manage communications and the 

DSPs to perform the computation promises to be particularly efficient, as each type 

of processor is allowed to perform tasks for which it has been optimised. A system 

architecture, consisting of nodes connected by transputer links, each of which 

comprise a single transputer controlling the data flow around a number of DSPs, 

would allow scalability both in the number of DSPs supported within a node and the 

number of nodes supported, Fig 7.1. Furthermore, the transputer could be easily 

connected to disk storage units, graphics boards or host systems. Fig 7.2. 

7.4 The Interconnection Scheme 

In a multi-processor, it is vital that data is transferred to the processors as quickly as 

possible, in order to ensure that the overall performance of the system is not impaired. 

The design of the interconnection network, then, is of paramount importance in the 

design of any multi-processor, as it is this sub-system which determines the overall 

scalability of the system, and hence the maximum potential performance. This section 

deals with the design decisions used to select die interprocessor connection sub-system 

of the multi-processor. 

The external ports of the processors, and how they may be interfaced, are 

examined in this section, allowing the optimum interconnection scheme to be 

determined. 
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7.4.1 A Review of External Interfaces 

7.4.1.1 The DSP56001 

The DSP56001 incorporates three on-board peripheral mterfaces in addition to its 

external memory interface (EMI), namely the serial communications interface (SCI), 

the synchronous serial interface (SSI) and the host interface. The SCI is capable of 

transferring data at a maximum of 2.56Mbits * (20.5MHz), the SSI at a maximum of 

5.125Mbits"* (20.5MHz). Both of these interfaces offer multi-processing or network 

modes, allowing for interprocessor communication in a multiprocessor system. 

However, the communication bandwidth, and the inherent software management 

overhead associated with servicing these interfaces, makes these interfaces unsuitable 

for use as the main communication mechanism in this system. The host interface is 

a synchronous byte wide interface that is capable of transferring data at a burst rate 

of 8Mbytes"\ but more realistically at 1.71 Mwords ' in interrupt mode. This is a more 

attractive option, but again the bandwidth and software overhead do not make this a 

valid option in a system that requires high data throughput Al l three of the above 

options are suitable as a secondary communications interface, however. For instance, 

the host interface is suitable for receiving low bandwidth control information and the 

serial interfaces may be connected to an ADC/DAC or used as a debugging port. The 

EMI of die DSP56001 is able to transfer data at 10.25Mwords ' (20.5MHz), ie one 

word every instruction cycle. 

7.4.1.2 The Transputer 

The transputer offers its four serial bi-directional links and its External Memory 
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Interface (EMI). The links are capable of transferring data at 1.74Mbytes ' in uni­

directional mode or 2.35Mbytes ' in bi-directional mode. 

Most transputers use multiplexed data and address lines on the EMI, resulting 

in a transfer bandwidth of 6.66Mwords"* (20MHz), which is slower than a DSP56001 

of the equivalent clock speed. The IMST801 transputer, however, uses non-

multiplexed bus lines on its EMI, resulting in a transfer bandwidth comparable to that 

of the DSP56001. Furthermore, this part is available in a 25MHz version, providing 

a transfer bandwidth of 12.5Mwords \ 

7.4.2 Interfacing Possibilities 

The viable options for passing data between the processors would be to either 

utilise the transputer links to interface to the Host Port through an IMS CO 11 link 

adapter or to somehow connect the External Memory Interfaces of the processors. 

These options are considered in turn. 

7.4.2.1 Link to Host Port 

Each of the links may be connected to an IMSCOl 1 link adapter, which converts from 

the serial link format to a parallel byte wide format and vice versa. It would seem 

feasible to connect a link to the host interface of a DSP through an IMSCOl 1 and 

some glue logic. There would be three disadvantages to this method, however: 

i . Although die host interface of die DSP is able to transfer data at 1.71 Wwords ', 

the links can transfer at only 1.74Mbytes"' in uni-directional mode, or 2.35Mbytes ' 

in bi-directional mode, both of which fall well below the capabilities of the host 
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interface. The transfer bandwidth would be limited by the link bandwidth, which may 

provide a serious bottieneck for some DSP applications. 

i i . In the simplest form, the IMSCOll would be connected to only one DSP. I f 

multiple DSPs were to be connected to a single IMSCOll, then what would result 

would effectively be a (non-buffered) shared bus architecture. Communication fi-om 

the transputer to the DSP would occur in a broadcast fashion — each DSP would read 

and interpret a "destination" byte, and then only the designated recipient DSP would 

read in the following data. Communication fi-om the DSPs to the transputer would 

need to be arbitrated, probably by a token passing system which would be controlled 

by the transputer. A l l this would incur a significant communications management 

overhead on each of the DSPs. Some of the overhead could be alleviated by the use 

of additional hardware [57], although even in the ideal case (zero communications idle 

time) the data transfer bandwidth is still limited by the transputer link. This method 

severely restricts scalability — the link bandwidth must be shared between a number 

of DSPs, which would create a tight bottieneck. 

i i i . Each IMSCOl 1 would use up a link, which would limit the available inter-node 

connection topologies and overall inter-node communications bandwidth. This method 

would be more suitable for broadcasting low bandwidth control information to all of 

the DSP host ports simultaneously. 

7.4.2.2 EMI to EMI 

Both the DSP and the transputer are capable of transferring data at a rate in excess of 
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lOMwords"' over their respective EMls. Furthermore, both processors possess internal 

(on-chip) memory areas, allowing programs to be stored on-chip. Hence, the EMls 

may be used to access data whilst incurring minimal hindrance to instruction pre-fetch 

— the transputer is able to fetch four instructions in a single instruction cycle from 

its internal memory, and the DSP possesses a separate internal program memory area 

and bus, allowing instructions and data to be fetched simultaneously. 

It would seem, then, that the fastest way of transferring data between the 

processors would be to use their respective EMls.The problem now remains as to how 

to interconnect the processors both in terms of the connection mechanisms and the 

network topology. 

7.4.3 Interconnection Methods 

The most straightforward connection method would be to use a shared bus 

and/or shared memory architecture. Fig 7.3. The shared bus system is prone to bus 

bottlenecks and severe communications overhead penalties. Incorporating a block of 

shared memory helps to ease the amount of idle time experienced by the processors, 

but bus contention is still a problem — the data bandwidth requirements of the system 

may easily exceed the available bus/memory bandwidth. Furthermore, only one 

processor may access the memory at any one time, resulting in delays due to resource 

contention. Not only does the bus have to handle data traffic, but also the control and 

test traffic associated with shared bus/memory architectures ("you have the bus" 

tokens, semaphore test and retry), which in turn reduce the amount of time available 

to transfer data and increase the communications' management overhead on each 
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processor [22]. 

Another drawback of this architecture is that the bus bottienecking and memory 

access blocking problems restrict the scalability of the node architecture. The number 

of DSPs supported by this architecture will be low, since the communications cost is 

high and so the number of shared RAM accesses should be kept to a minimum. This 

may be achieved i f more code is placed onto individual DSPs, since their internal 

memory may then be used as intermediate storage areas rather than die shared 

memory (ie map two processes onto one processor, holding the communicated data 

in local memory). I f an additional DSP is added to a node that is already at or near 

to its communications bandwidth limit, then the new required communications 

bandwidth would exceed that available. The extra bus traffic and memory usage 

incurred by this extra DSP may well severely impede the performance of the node, so 

that rather than a performance increase, a performance decrease results. Furthermore, 

the individual processors do not possess any external local memory, restricting their 

code and data space to internal memory only. 

A variation of this architecture is to use dual-ported RAM (DPR) as the shared 

memory resource, with the addition of local memory blocks for the transputer and 

DSPs, Fig 7.4. This allows botii die DSPs and the transputer to access their own block 

of memory. Bus bottienecking is relieved somewhat as the transputer and one of the 

DSPs may simultaneously access die DPR. However, die DSPs still experience 

bottienecking and memory blocking. 

Expanding this architecture even fiirther results in the configuration shown in 

Fig 7.5. In tills metiiod, each DSP possesses its own physical block of DPR and a 

block of local RAM. The transputer is connected to all of tiie DPR blocks, and also 
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possesses its own block of local RAM. 

The effects of bus botdenecking are removed in this architecture. As each 

processor possesses its own bus, the bus access arbitration software may be removed. 

In fact, the communications control software may be reduced to a matter of checking 

whether or not a particular area of DPR contains valid data, which may be done 

quickly and easily. Thus more time is made available to the DSPs to compute data 

(rather than managing communications), allowing more computing to be carried out 

in unit time. It may also be seen that each processor may access an exclusive block 

of RAM, which it may access with no additional communications overhead. 

Interprocessor communication now becomes a matter of assigning variables on 

the transputer. Data pertaining to a particular DSP may be placed at the relevant DPR 

location using the occam P L A C E statement. 

Thus, all interprocessor communication is dealt with by the transputer. This 

allows a DSP to continue computing on a dataset whilst data is being transferred 

to/from its DPR by the transputer — truly parallel computation and communication. 

The communication strategy may be defined either statically, ie defined by the 

transputer program, or dynamically, by specifying the source or destination of a data 

vector in a header. The latter obviously incurs a larger overhead than die former.This 

final interconnection scheme was the one chosen for the hybrid multi-processor. 

7.5 Memory Requirements 

The amount of memory incorporated into the system, and how it is used, is another 

important design factor. Include too little memory, and die communications bandwiddi 
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could suffer in addition to the size and variety of code capable of being implemented 

by the processors; too much and money is wasted. It was considered that 8kword of 

local static RAM (SRAM) would be sufficient for each processor. As die intermediate 

data storage requirements of most DSP algorithms, and their code kernels, are quite 

small, then Skword provides sufficient additional storage space should larger programs 

or data sets be required. 

Dual ported memory is expensive. Furthermore, the DPR is used only to pass 

data, not to store intermediate data or code. For these reasons, it was considered that 

2kword of DPR per DSP would be sufficient memory to test the system viability. 

Although the memory size provided will be adequate for most applications, 

there are some applications that require more memory. Examples are image processing 

algorithms, which operate on a large data set, and reverberation algorithms, which 

require many large FIFO buffers. It would be impossible to successfully implement 

these algorithms with the memory available to the DSP alone. The dual domain DPR 

partitioning method mentioned above, however, allows the DSP to utilise a much 

larger memory area with no additional communications overiiead. The transputer is 

able to transfer data from its own local memory, the DPR of other DSPs or from other 

nodes (over its links). Hence, the DSP is able to access a much larger memory space 

than it can physically address, Fig 7.6 and Fig 7.7. This simple block move metiiod 

is suitable for transferring contiguous sections of memory, such as an image, but is 

unsuitable for algorithms requiring many buffers of different lengths, such as 

reverberation algorithms. There are two possible solutions to this problem, the first 

allows the transputer to compound piecewise contiguous areas of its local memory into 

a single contiguous block transferred to die DPR, Fig 7.8, die second allocates a 
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separate domain to each non-contiguous area, Fig 7.9. 

7.6 Reconfiguration 

The configuration, or network topology, of a multiprocessor system can gready affect 

its overall performance. Many processor configurations, and many connection 

mechanisms, are used in contemporary multiprocessor systems. Certain systems 

possess a topology that cannot be changed either at all or while the system is running 

— statically configured systems. Others may alter their configuration during run time 

— dynamically configured systems. Dynamic systems usually incur additional costs 

in complexity or communication delay. 

The physical configuration of the hybrid node is fixed, the only manner in 

which it may be changed is by adding or removing DSPs. Although this physical 

topology is fixed, however, the logical configuration is not The transputer controls 

the flow of data around the node, and the software running on the transputer 

determines the manner in which the data is routed. Hence, die logical configuration 

of the DSPs may be defined entirely in software, and so may be changed dynamically. 

Complex memory mapping techniques, ie aliasing, may be used to enhance the 

performance of some configurations. Example topologies are shown in Fig 7.10. 

7.7 Reprogramming 

One of the DSP memory mapping modes maps program space into the DPR. This has 

been implemented to allow the tiansputer to download programs to die DSP. DSP 

programs must first be assembled and linked using an appropriate assembler package. 

197 



The resulting object files need to be stripped of their headers before they can be 

handled by the transputer. 

The DSP programs to be downloaded by the transputer may either be stored 

in local transputer memory, or read in from a filing system, over a link. The transputer 

treats the block of object code as a data vector, and block moves it into DPR. 

Once the object code has been read into the DPR, and the semaphore reset, the 

DSP is able to make use of the code. It is not desirable for the code to remain in the 

DPR for two reasons. Firstly, an area of DPR, which is a valuable resource, is used 

as a static store. Secondly, keeping both program and data in external memory areas 

reduces the performance of the DSP as only one external memory access may be made 

in an instruction cycle — two external accesses results in a delay in instruction 

execution. For these reasons, the DSP must move the code from external DPR into its 

internal program memory, using the MOVEM instruction (move program memory). This 

move does take some time, but it does ensure that subsequent execution is not 

impeded by additional external memory accesses. 

Although the primary use of this downloading facility is expected to occur 

during system initialisation, this method does allow for dynamic downloading of code. 

Thus the code running on the DSP may be changed while the system is still in 

operation. The DSP will have to go "off line" while it moves the program to internal 

memory, but this will be a short time compared to the time taken to execute a 

reasonable size computation kernel. 

The local memory of the DSP may also be preloaded with sections of object 

code at initialisation time, via the DPR, allowing the DSP to access its own local 

"library" of code. 
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7.8 Summary (Architectural Overview) 

The proposed architecture of the Hymips multiprocessor consists of a node comprising 

a single IMST801 transputer and a number of Motorola DSP56001 devices. The 

transputer may communicate with other transputer based nodes via its four serial links. 

Data is transferred between the transputer and the DSPs through dual ported RAM. 

In this architecture, the transputer controls the flow of information around the 

network. The DSPs are not concerned with where their input data has come from, nor 

where their output data is going to. This reduces their communications' overhead and 

allows them more time to perform what they have been designed to do — 

computation. 

The overall communications bandwidth of the node is limited by the rate at 

which the controller processor, the transputer, is able to access external memory, ie 

the DPR blocks. The data transfer bandwidth of the node is now a function of how 

efficientiy the transputer is able to decide whether or not an area of a particular DPR 

block is valid and how quickly the transputer is able to transfer external data once the 

decision has been made. The most efficient manner in which to transfer data on the 

transputer is to use its block move facility. 

This architecture allows for a high degree of scalability within the node. The 

actual number of DSPs supported is governed by the data transfer bandwidth of the 

transputer. As this is not a shared bus system, the performance of each DSP is limited 

only by the rate at which data can be supplied to it, and is not affected by additional 

communication management overiieads. 

In summary, then, this architecture allows for efficient inter-processor 

communication, as the problems of bus botdenecking and the additional overheads 
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associated with control in shared bus/memoiy systems are alleviated. The scalability 

of each node is limited mainly by the external transfer bandwidth capability of the 

transputer. The maximum simultaneous data transfer bandwidth of the node is equal 

to the sum of the transfer bandwidths of all the processor. This compares with the sum 

of the bandwidths of the transputer and one DSP using the single block of DPR, and 

the transfer bandwidth of either the transputer or a DSP using SRAM. As the control 

software overhead is greatly diminished, more time is available to the DSPs to 

compute data rather than manage communications. 
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Transputer Plane 

DSP Plane 

Direction of Scalability 

Fig 7.1 Schematic Representation of System Scalability 
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Transputer 
Transputer/ Transputer 
DSP Hybrid Graphics 

Figure 7.2 An Example Configuration of Nodes 
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(a) 

(b) 

(c) 

(a) Orthogonal 
(b) Pipeline 
(c) Star (tetrahedral) 
(d) Binary Tree 

Fig 7.10 Example DSP Network Topologies 
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Chapter 8 

Hybrid Multiprocessor: 
Implementation 

8.1 Introduction 

The previous chapter presented the design rationale and an overview of the proposed 

architecture for Hymips, a hybrid multiprocessor. This chapter goes on to discuss the 

hardware and low level control software implementation of such an architecture. 

Although, in principle, the architecture promises to offer high performance and a high 

degree of scalability, the inherent differences of the constituent processors does cause 

problems which threaten to reduce the potential overall performance of the 

multiprocessor. These problems, their causes and their solutions are outiined in this 

chapter. 

Section 2 covers the memory map schemes used by the transputer and 

DSP56001. A DPR partitioning scheme that allows maximum data transfer rates to be 

attained is outlined in Section 3. Efficient processor synchronisation and data 

protection is vital to any shared memory multiprocessor architecture, the method used 

in Hymips being described in Section 4. Section 5 discusses possible synchronisation 

coding schemes. System initialisation is oudined in Section 6. Initial processor 

synchronisation, an important aspect of system initialisation, is covered in Section 7. 
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Section 8 outiines the construction of a Hymips node. Section 9 providing a Summary. 

8.2 Memory Space Partitioning 

It has been decided that the highest data transfer bandwidth between processors in this 

system may be attained through the use of a communication scheme involving blocks 

of dual ported (shared) memory. However, the manner in which these areas of 

memory are addressed by the processors, ie the processors' memory map, has 

significant bearing on the performance of this communication scheme. The memory 

mapping affects particularly the efficiency with which the transputer transfers data. 

Furthermore, the processors themselves are to possess an area of local memory, which 

must also be addressed. 

This section outiines the placement of these memory areas in the address space 

of the processors. 

8.2.1 The DSP56001 

The DSP56001, witii its modified Harvard architecture, may address three independent 

memory spaces — x-data, y-data and program. These address spaces begin in the on-

chip RAM areas, allowing simultaneous access, and arc continued externally, where 

only one space may be accessed at any given time. The processor is allowed access 

to Skword of local RAM and 2kword of shared dual ported RAM, each of which need 

to be placed within the address space of the memory areas. 

The dual ported memory is to be primarily used to transfer data. It would seem 

sensible to map the whole of this memory into the address space of one of the data 

areas. The only restriction on the placement of the memory should be that it is placed 
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sufficientiy high up to allow the modulo addressing mode to be utilised over the 

whole DPR. However, in order to aid dynamic programming of the DSP network, it 

would be useful i f a portion of the DPR was placed into the program memory address 

space. The DPR may thus be accessed in one of two address mapping modes, mode 

1 and mode 2. The first maps die whole of die DPR into x-data space, allowing large 

vectors to be transferred. The second maps half of the DPR into x-data space, and half 

into program space, reducing the size of data vectors that may be transferred, but 

allowing DSP programs to be placed directiy into program space by the transputer. 

The local memory, at Skword, is large enough to be partitioned between 

memory spaces. It is important that the addressable program area is contiguous witii 

the on-chip area, in order to allow large programs to overflow from on-chip into off-

chip memory. There need be no such restrictions placed on the positioning of the data 

spaces. In mode 1, then, the local memory is equally divided between y-data and 

program spaces. In mode 2, the program space addresses 4kword, with the x-data and 

y-data spaces addressing 2kword each. Fig 8.1. Both memory map maps are defined 

by the same PAL device. 

8.2.2 The Transputer 

The transputer may access a signed address space of IGword, with Ikword being 

placed on-chip. Unlike the DSP56001, the transputer stores its data and programs in 

a single memory space. Botii die Skword local memory and all die DPR areas must 

be mapped into this single address space. 

It is important tiiat die local memory is placed in an area contiguous widi the 

on-chip memory, in order to allow die program and workspace areas to "overflow" 
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from internal to external memory. 

There are a number of options for mapping the blocks of DPR into the address 

space, Fig 8.2. The most straightforward would be to map each block contiguously 

into the address space. Another option would be to allow double imaging (aliasing) 

of the same logical locations at two or more different physical DPR locations in the 

transputer address space. Two or more blocks may be aliased to the same address, 

allowing the transputer to write data to more than one DPR simultaneously, increasing 

the data transfer bandwidth from the transputer to the DSPs. Of course, non-aliased 

DPR areas must be used for the transfer from the DSPs to the transputer. Another 

option would be to place the input and the output sections of the DPRs at contiguous 

logical addresses. This would allow entire input or output vectors to be moved in a 

single block move. These are only three of the many possible memory map 

configurations, some of which are general, some of which would be specific to a 

particular application. Any particular memory map may be implemented by the use 

of a PAL. 

8.3 Dual Ported Ram Partitioning Schemes 

The efficient use of the DPR blocks is essential if a high communications bandwidth 

is to be attained throughout the node. This section examines the manner in which the 

individual blocks of DPR may be partitioned. Communication synchronisation occurs 

through the use of semaphores, which will be discussed in the next section. 

The simplest partitioning scheme is shown in Fig 8.3. The DPR contains one 

domain, controlled by a semaphore, which contains either input or output data. This 

partitioning scheme requires the use of an additional block of DSP local RAM, acting 
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as a buffer, Fig 8.4 [21]. Transferring data to and from this additional memory incurs 

unacceptable overheads. 

An alternative partitioning schenK is depicted in Fig 8.5. Here, the domain is 

split into two sections, one exclusively containing data passing from the transputer to 

the DSP, the other data from the DSP to the transputer. As both input and output data 

reside in the DPR, there is no need for the DSP to utilise local memory as a data 

store. 

Both of the above schemes use only a single semaphore, allowing only one 

processor to access the DPR at any given time. The DPR is thus being used in a 

similar way to shared single ported memory, very little dual ported capability is being 

used — the only manifestation being that no access arbitration is required to read the 

semaphore, so that the "blocked" processor's attempts to access the semaphore do not 

interfere with the operation of the "unblocked" processor. An important consequence 

of this is that the processors experience a large amount of idle time, when they are 

continually testing and failing the semaphore. 

A compromise solution would be to add a local data store to the second 

scheme outlined above. Fig 8.6. This would allow more efficient overlapped 

communication and computation than the first scheme. Once the DSP has moved the 

i/o data from the DPR into its local memory and begins its computation on that data, 

the transputer is free to access the DPR — thus overlapping computation and 

communication. However, this scheme still requires a lot of unnecessary transferring 

of data to and from the local store. 

The solution is to partition the DPR into two domains. Fig 8.7. This 

partitioning scheme allows concurrent access of the DPR by both processors. There 
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is no need for the DSP to transfer the data to a local store. Maximum transfer 

bandwidth is attained i f each domain is further divided into input and output areas, Fig 

8.8. When the DSP is operating on the first domain, the transputer is able to operate 

on the second, and vice versa. While the DSP is computing on data set n, the 

transputer is able to transfer the input for data set n+1, and the output from data set 

n-1, Fig 8.9. 

There may be some "idle time" experienced by the processors, depending on 

the number of DSPs, the length of the code segments that they are running and the 

size of the data vectors, but this may be reduced to a minimum by using relevant task 

allocation and scheduling algorithms. 

8.4 Communications Synchronisation 

Data is transferred through areas of shared memory in this system. In order to allow 

a high communications bandwidth to be attained, dual ported memory is utilised. It 

is important with shared memory systems, however, to ensure data integrity. This is 

often ensured by the use of semaphores, which control access to a particular area of 

memory [21], [83]. There are many semaphore protocols in use today; this system 

makes use of a protocol based on the test-and-set method [6], [20]. In order for these 

protocols to operate successfully the processor must be able to execute certain 

"atomic" instructions, and indeed the DSP56001 does so. However, the transputer was 

designed specifically to operate using a different communications mechanism, and 

does not support these uninterruptible instructions. The standard test-and-set protocol 

has been modified in order to allow the use of interruptible instructions and hence 

avoid data corruption. Semaphores and shared memory methods have been applied to 
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interprocessor communication for transputers [84], [85], [86], but these 

have conformed to the CSP communication model. 

This section first examines the operation of the dual ported memory. The 

standard test-and-set semaphore protocol is then described, and the problems 

encountered through using the transputer instruction set are highlighted. Finally, the 

modified protocol is described. 

8.4.1 Dual Ported Memory 

It is possible to allow more than one processor to access single port memory, but this 

method allows only one processor access at any given time, and requires additional 

arbitration logic. Multiple accessed single port memory offers no performance benefits. 

True dual ported memory allows two processors to access the memory at any 

given time. An exception to this is when both processors wish to access the same 

location: one of the processors is forced to wait until the other has completed its 

access cycle, eliminating the risk of data being spuriously overwritten. Such contention 

is normally flagged by a "busy" pin, which is driven by on-chip address sensing 

arbitration logic. 

8.4.2 The Test-and-Set Semaphore Protocol 

Let a semaphore value of zero indicate that the domain of the semaphore is unlocked, 

ie. is free to be accessed, and a value of 1 indicate that it is locked, ie. is in use. The 

test-and-set method is depicted in Fig 8.10. The value of the semaphore is read into 

a local variable ( L o c a i Dummy). The semaphore is then set to one, in order to lock the 

domain ( i f it is not already locked). The original value of the semaphore is tested. I f 
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the original value was zero, indicating that the domain is unlocked, then a section of 

critical code is executed, after which the semaphore is reset to zero, unlocking the 

domain. I f however, the original value was one, indicating that the domain is locked, 

the process may not access the domain. Two options for continued execution in this 

case are firstiy to retest the semaphore and secondly to enqueue the present process 

and dequeue another [22], [23]. For such a protocol to work correctly, it is essential 

that no other processor is allowed access to the semaphore between operations i and 

i i of Fig 8.11 — the read and set instructions must be compounded into a single 

uninterruptible instruction. 

Consider the situation when this is not the case and that the bus is released 

between operations i and i i , ie the read and set operations are interruptible. The 

following situation could arise, depicted in Fig 10. The original value of the 

semaphore is zero, which is duly read in by processor 1. Consider, now, that another 

processor, processor 2, is allowed access to the semaphore between the read and write 

operations of process 1. This second process will also read the semaphore as zero, 

indicating tiiat tiie domain is free. Thus, two processors are allowed to operate on the 

same domain simultaneously. Data corruption is almost a certainty in tiiis situation, 

and so using the semaphore as a means of both process synchronisation and data 

security breaks down. This situation would probably arise very seldomly in most 

systems using interruptible instructions. Hence run time testing of such systems is 

unreliable — data corruption may not occur for quite some time. The manner in which 

processors test semaphores is an important consideration when porting code from one 

system to another. 

The DSP56001 does support uninterruptible instructions, although not the test-
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and-set variety. The transputer, however, supports no such instructions. For this 

reason, a modified approach had to be developed. 

8.4.3 The Hybrid Semaphore Protocol 

The problems presented in the previous section arc manifest in any shared memory 

multiprocessor system using processors that do not possess uninterruptible read and 

set instructions. In the type of protocol already mentioned, the state of the semaphore 

indicates whether or not its particular domain is locked or unlocked. This is sensible, 

since many processes or processors may wish to access the domain in any given 

multiprocessor system. However, as any physical block of DPR is shared between only 

two processors in this system, a different type of protocol may be implemented. 

Rather than indicate whether or not the domain is locked or unlocked, the 

semaphore indicates which of the two processors may access the domain. Together 

with the on-chip arbitration of the DPR forcing wait states when required, this 

protocol ensures data and synchronisation validity. The pseudo-code of this protocol 

is depicted in Fig 8.12. It may be seen that the two main differences between this 

protocol and the test-and-set protocol are firstiy that the state of the semaphore 

determines which processor may access the domain, not whether the domain is locked 

or not (the domain is always "locked" in the test-and-set context) and secondly, as 

a consequence, there is no need to lock the domain by setting the semaphore. 

Using this protocol, there is no way that the two processors can access the 

domain at the same time. This protocol allows processors that do not possess 

uninterruptible instructions to efficientiy utilise dual ported memory. 
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8.5 Semaphore Implementation 

It is important that the code running on the transputer is written as efFicientiy as 

possible, incurring minimal performance overheads, i f the system is to operate at its 

maximum potential performance. The transputer will execute its semaphore test code 

Nj) or 2Nj) times for each of the DSPs' one or two, and so any additional cycles 

wil l add iVp or 2Np cycles to the whole of the test and transfer sequence. I f the extra 

cycles cause the execution time of the whole loop to exceed a particular critical value 

then the DSPs wil l experience idle times. 

Three possible versions of the semaphore test code are discussed below. The 

first is written in Occam2 and will be used as the base from which other versions may 

be compared. The second two versions are written in transputer assembly language. 

8.5.1 Occam2 Version 

This routine, shown below, uses an I F construct to test the value of semaphore si . 

The transputer use a 32bit word, whereas the DSP56001 uses a 24bit word. In order 

to preserve the parity (+ve or -ve) of the DSP data the three DSP data words are 

mapped into the upper three bytes of the transputer's data word. Hence a value of $i 

(Hex 1) on the DSP is equivalent to a value of #ioo (Hex 100) on the transputer (the 

$ prefix indicates a DSP hexadecimal value, the # prefix indicates a transputer 

hexadecimal value). This is the reason that si is tested for #ioo and not # i . I f the 

semaphore is set, the relevant i/o is performed and then si reset I f si is not set, then 

the program comes out of the I F construct and continues. 
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I F 
S i := #100 (256) 

SEQ 
... perform input 
... perform output 
s i := 0 

TRUE 
SKIP 

sl PLACEd at Occam2 word address #7FF. 

The input/output and semaphore reset code is identical in all three versions presented 

here, and so wil l not be discussed further. The critical part of this code is the 

conditional section, which wil l be considered in more detail. 

The assembled form of the Occam version is shown below: 

MINT 1 Load i n the value of s l 
LDNLP 2047(#7FF) 2+2 using i n d i r e c t i o n . 
LDNL 0 2 
EQC 256 (#100) 2+2 Compare t h i s value to 
CJ 23 2/4 +1 #100 and jump i f re q u i r e d 

This takes 14 or 16 cycles, depending on whether or not the jump is taken. The same 

level of prefixing for the other semaphore addresses will be experienced only i f their 

addresses lie between #100 and #7FF . For addresses above #7FF , which will normally 

be the case, an extra prefix will be used to read in the semaphores' addresses, which 

wil l add another instruction cycle. 

About 50% of the time taken to run this section of code is used to generate the 

address of the semaphore and to rcad it in. This method is the most general, and is of 

the type typically produced by the Occam compiler as it is does not assume that the 

addrcsses of variables are known at compilation time. 
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8.5.2 Assembler Version 1 

Whenever the address of a variable is known a priori, another method may be used. 

Occam2 provides no provision for this method and so ttansputer assembly language 

must be used. 

LDC -2147475457 (#80001FFF) 1+7 (byte address of s i ) 
LDNL 0 2 
EQC 256 2+2 
CJ 23 2/4+1 

The absolute (machine) byte address of the semaphore is loaded in direcUy 

using LDC. As the machine addressing scheme must be used, however, a small Occam 

address is translated into a large negative machine address. Many prefix instructions 

are needed to read in such a value, which is the reason that this version of the code 

takes more cycles to complete than the previous version. 

These additional prefix instructions may be avoided by placing the semaphore 

addresses higher up in the memory map. I f machine addresses between #o and #F are 

chosen, then no prefixing is necessary to produce the address. 

LDC #8 1 
LDNL 0 2 
EQC #100 2+2 
C J 23 2/4+1 

This section requires ten or twelve instruction cycles. Furthermore, using a 

value of between #o and #F as the operand of the LDNL instruction allows fifteen 

possible offsets for each of the sixteen possible values specified on the LDC instruction, 

allowing a total of 31 locations to be accessed with no prefixing overheads. 
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Although this implementation is quicker, it does requirc additional address 

mapping to map the semaphorcs into the DPRs. The semaphores occupy a single 

contiguous block of transputer memory starting at logical machine address #o. These 

must be mapped into individual words occupying physical DPR locations. 

8.53 Assembler Version 2 

The above method simply uses a different addressing technique to access the 

semaphore. The test section is essentially the same as that used in the Occam version. 

A different approach is used in the following code. 

LDC 0-15 1 
LB 5 
CJ 23 2/4+1 

This method requires nine or eleven instruction cycles. Again, the semaphores 

are seen to reside in a contiguous block occupying the first sixteen bytes of positive 

machine address space. Each semaphore occupies a single byte in address space, 

necessitating the use of the "load byte" instruction. As the semaphores are treated as 

bytes, ie as word subsections, then the transputer no longer needs to read in a shifted 

version of the DSP data word. The byte values may take on boolean values. Hence, 

a semaphore byte may be read in by the transputer and used as the operand to the 

"conditional jump" instruction, which eliminates the need for the "equivalence" 

instruction and so saves cycles. The number of semaphores that may be accessed with 

zero address prefixing is limited to only 15, however. To ensure a uniform execution 

time for a larger number of semaphores, the semaphores themselves may be placed 

between byte machine addresses #io and #ioo, which requires a single level of 
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prefixing. 

The address decode scheme is the most complex, as not only does the 

contiguous block of bytes need to be mapped over to discrete areas of DPR, but 

because the ttansputer uses a word orientated addressing scheme on its EMI, and the 

lack of additional strobes on the T801 EMI, then semaphores must be placed in 

particular byte locations in order to avoid "overlap" on die data bus and hence 

semaphore comiption. 

8.6 Initialisation 

The initialisation of any asynchronous multiprocessor system is far from 

straightforward. Care must be taken to ensure that each processor executes its 

initialisation routine in sequence with all the other processors in order to prevent the 

occurrence of spurious or erroneous events. In the system discussed here, each 

processor possesses its own local ports and memory in addition to an area of shared 

memory. Hence, a processor must both initialise its own local environment and 

synchronise with a global initialisation routine, which involves all the processors in 

the system. The transputer contt-ols die data flow around the system, and so it is 

logical that it should also contt-ol die global initialisation procedure. 

The method of synchronisation is non-trivial and is treated in the next section. 

This section describes the local initialisation procedures of the IMST801 and 

DSP56001, binding tiiem into a global initialisation procedure that takes die system 

from its boot state to a fully initialised and operational state. Firsdy, however, the 

bootstrap routines of the processors must be described. 
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8.6.1 DSP56001 Bootstrap Routine 

The DSP56001 possesses a special area of internal program ROM, which it maps into 

its memory space upon power up. This read-only routine begins to load in executable 

code from either the external memory interface or the host port, depending upon the 

state of data line D23. The code is read in byte wide sections and fills internal 

program memory from the lowest location upwards. When all the code has been 

loaded, the bootstrap ROM is mapped out of memory space, and execution jumps to 

the start of the loaded code. 

8.6.2 The IMST801 Bootstrap Routine 

When booting, the transputer may receive its code either over a link, or from a byte 

wide ROM placed on the external memory interface. As the transputer is to be 

connected to a host transputer, via a network of transputers, then the boot from link 

option is used. 

8.6.3 DSP56001 Initialisation Procedure 

The code for the DSP56001 could be stored in PROM, and loaded in during the 

bootstrap routine. However, i f this were the case then the code running on the DSPs 

would be fixed by the PROM. A more versatile approach would be to allow the DSP 

to transfer programs held in DPR to its internal program memory area. The programs 

could then be transferred by the transputer from, say, a DOS based file system to the 

DSPs. This is the approach used in the Hymips system, and effectively constitutes a 

secondary bootstrap routine. The code used to initialise the DSP and to safely transfer 

the code section from DPR to internal memory is held in EPROM, and is listed in 
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Appendix E. A flow chart representation of this code is shown in Fig 8.13. 

This code is placed at the bottom of the program memory space by the 

bootstrap program, its function being to initialise various registers within the DSP, to 

synchronise with the transputer, to load in code from DPR and to execute it. The code 

also initialises the interrupt vector space. The operating mode register is then set, and 

the bus control register set up to define zero wait states for all external memory 

accesses. The DSP synchronises with the transputer and tests a semaphore in order to 

determine whetiier or not it has access to the DPR. I f so, tiien address registers are 

initialised, and the incoming code moved from external x-data space (DPR) into 

internal p-space. Execution then jumps to the beginning of the incoming code, which 

signals to the transputer that it has been successfully loaded by setting a semaphore, 

and then enters its main loop. 

8.6.4 IMST801 Initialisation Procedure 

The local transputer initialisation procedure consists of initiahsing its memory space 

to zero. 

8.6 J Global Initialisation Procedure 

This procedure includes transferring DSP code segments to DPR and synchronising 

with the DSPs. The node transputer is connected to a host transputer, which supplies 

the DSP code segments and the input data. The main operations that the transputer 

must perform are :-

i . To initialise the DPR areas to zero. 

i i . To transfer die DSP code segments, together with tiieir associated 
placement information, to DPR. 
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i i i . To transfer the first set of input data to DPR. 

iv. To enter the main execution loop. 

The form of the code is shown in Fig 8.14, the code being given in Appendix E. The 

DSP code segments are stored as DOS files on hard disk. These consist of . LOD files 

produced by the DSP assembler which have been stripped of their header information. 

Each DSP program word, of 24 bits, occupies the most significant three bytes of a 

transputer word as only the upper 24 bits of the transputer data word are written to 

DPR. The size of the code segment, and the address to which it is to be loaded in 

DSP internal program memory, is also placed in DPR. 

Naturally, the transputer must synchronise with the DSPs at various points, in 

order to prevent data corruption. The transputer must prevent DPR access by the DSPs 

until the DPR has been fully initialised. Only when the code segments and associated 

information have been placed in the DPRs is it safe for the DSPs to access them. 

The first synchronisation point, then, is placed after the DPR initialisation 

section. This is a blocking point — all DSPs must synchronise before the remainder 

of the code is executed — and corresponds to the first synchronisation point in the 

DSP EPROM code. The action of the synchronisation code is discussed in the 

following section. 

The transputer then allows each DSP to access its DPR, and transfer its code 

segment, by resetting the appropriate semaphore. 

A DSP indicates that it has completed the load and is running the code by 

setting a semaphore on one of its DPR domains. The transputer is then able to transfer 

the first set of input data to the DPR. This operation may be treated as a blocking 

(data transfers wait until all semaphores are set) or a non-blocking (a ti-ansfer takes 
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place on a domain as soon as the semaphore is set) synchronisation point. The 

transputer enters its main execution loop. 

8.7 Synchronisation 

As mentioned above, processor synchronisation mechanisms may be implemented 

either in hardware or software. Both options are available on the Hymips system. 

The hardware mechanism connects one of the transputer links to the host port 

of each DSP through an IMSCOll. The DSPs continually sense die host port, and 

begin execution when the transputer broadcasts the correct byte value. This method 

allows all of die DSPs to begin execution at the same time, or allows staggering to be 

performed. The problem with this method is that it ties up a link that may be required 

for inter-node communications. 

A more general approach is to use a software routine to synchronise the 

processors, using the DPR to pass the synchronising "token". The most straightforward 

mediod would be to pass a token — particular value — to each DSP via die DPR. 

After they have booted up, the DSPs would continually monitor a particular location 

of DPR for this token value. Once this value was detected, the DSPs would begin 

execution of their main body of code. There is a problem widi diis mediod, however. 

The transputer initialises the relevant areas of memory as part of its initialisation 

routine, which it performs immediately after boot up, before it tries to synchronise the 

DSPs. The DSPs begin to test die DPR immediately after diey have booted up. Now, 

even i f the transputer is able to perform its initialisation routine before the DSPs have 

started to test die DPR, diere is no guarantee diat diis will always be die case. The 

transputer may experience a delay in booting up, eg its host takes time in booting 
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from the link, allowing the DSPs to read the DPR before the transputer has had time 

to initialise it Consider that this is indeed the case, and the DSPs are able to read the 

relevant DPR location before the transputer has had time to set it to a value other than 

the token value. As the DPR contains random data at this point, it is possible, 

although unlikely, that the synchronisation location does indeed contain the token 

value. I f this is the case, then one or more DSPs will begin to execute code out of 

sequence, causing erroneous system behaviour. Although the probability of this 

happening is low, 2"", it is still possible, and so cannot be tolerated. Thus, this 

synchronisation method is not secure. The method used in the hybrid system is 

outlined below and is shown in Fig 8.13 and 8.14. 

The transputer uses a WHILE loop to repeatedly change the value of the variable 

sync, which is used to synchronise with the DSP. The execution of the loop is 

governed by the value of the variable acknowledge, which has been reset earlier in 

the program. Both sync and acknowledge are placed in DPR. 

The DSP loads the initial value of sync into one of its accumulators. It then 

moves the same value into its xO register. The contents of the accumulator and xO are 

compared. I f they are equal, then the value is loaded into xO again and the process 

repeated. I f they are not equal, however, the value ackvai is written to the location 

acknowledge. The DSP then begins execution of its main section of code. 

When the transputer determines that the value of acknowledge is equal to 

a c k v a i , it ends the loop and continues with the rest of its code. 

The DSP detects a change in sync using this method, and so does not rely on 

its initial value. This method is secure. 
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8.8 Design and Construction 

The architecture oudined in this chapter has been implemented in hardware. In order 

to allow additional processors to be added easily, each processor occupies its own pcb. 

The boards arc connected via a backplane bus. 

The transputer card incorporates an IMSCOll link adapter, which may be 

connected to link 0, in addition to local memory and link circuitry. The links and the 

IMSCOll interface are accessed via connectors on the front of the board. In order to 

save space and to allow for as much addressing flexibility as possible, the transputer 

address decode PAL has been located on a separate board. 

The DSP56001 boards incorporate local memory, EPROM, DPR memory and 

an RS232/TTL level converter in addition to reset and support circuitry. The memory 

decode PAL is situated on the board, and may support both memory configurations. 

Ports B and C are accessed via connectors on the front of the board. The provision of 

a level converter on the board allows devices using an RS232 interface to access the 

serial port via anotiier connector on die front of the board. 

Circuit schematics, net lists and pcb plots were generated using proprietary 

software running on a PC/AT compatible. The boards themselves are 6 layer, the two 

innermost layers being used as die power and ground planes, die four outer layers 

being used to route signal lines. The backplane bus was constructed in-house using a 

two layer process. 
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8.9 Summary 

This chapter has dealt with the architecture and control software of the Hymips 

multiprocessor in detail. Memory partitioning schemes have been discussed in relation 

to the requirements of each type of processor. Shared dual ported RAM has been used 

as an interprocessor communication buffer, and a particularly efficient method of 

partitioning this memory in order to allow fully overlapping communication and 

computation has been described. 

Shared memory multiprocessor systems require some means of access 

arbitration, in order to protect data and allow processor synchronisation. In common 

with many other shared memory systems, Hymips arbitrates data access through a 

semaphore based protocol. However, the transputer has not been designed to 

communicated through shared memory, and does not support the type of instructions 

required to safely implement the more usual protocols. The nature of the 

interconnection network architecture has allowed a secure protocol to be developed. 

The correct initiaUsation of a multiprocessor system, upon boot up or reset, is 

very important, and may be far from straightforward. As there are no control or 

interrupt signals running between the processors, then Hymips must be initialised 

through its shared memory. The transputer controls the initialisation sequence, and 

begins by setting its memory to a predefined value (0). The DSP56(X)ls boot up from 

their respective EPROMs, which contain self overwriting code that synchronises with 

the transputer and loads in a program from the dual ported RAM, after it has been 

placed tiiere by the transputer. The synchronisation is independent of memory contents 

and is based on a handshake protocol. 

The system has been implemented using a number of 6 layer printed circuit 
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boards, connected over a backplane bus. 
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Fig 8.1 DSP Memory Partitioning Options 
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transputer 

Semaphore 

output MC56001 

Fig 8.3 Simplest DPR Partitioning 
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Fig 8.4 Utilisation of a Local Memory Store 
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Fig 8.5 Improved DPR Partitioning Scheme 
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Fig 8.6 More Efficient Utilisation of a Local Memory Store 
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1 

2 
3 

Local_Dummy := semaphore_value 

seniaphore_value := 1 

I F 

Local_Dumniy = 0 

perform a c t i o n on domain 

Local_Dummy = 1 

do not t a k e a c t i o n on domain 

Fig 8.10 Pseudo-Code for the Atomic Test-and-Set Method 

Processor 2 

bus 2 asserted 

r e a d semaphore 
bus 2 de-asserted 

bus 2 asserted 

w r i t e semaphore 
bus 2 de-asserted 

t a k e a c t i o n 

on domain 

Processor 1 

bus 1 asserted 
r e a d semaphore 

bus 1 de-asserted 

bus 1 asserted 
w r i t e semaphore 

bus 1 de-asserted 

t a k e a c t i o n 

on domain. 

time 

Fig 8.11 Potential Erroneous Behaviour when Non-Atomic Instructions are Used 
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1 Load semaphore_value 

2 I F 

semaphore_val = p r o c e s s o r l _ g o 

perform a c t i o n on domain 

semaphore_val := p r o c e s s o r 2 _ g o 

semaphore_val := p r o c e s s o r 2 _ g o 

do not t a k e a c t i o n on domain 

Fig 8.12 Pseudo-Code for the Hybrid Semaphore Protocol 
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Setup mr, omr, bar, RO 

I 
Move ack into a 

y e s ^ 
— ^ Move ack into xO 

I 
a - x O ? 

Move ack.val to x:acknowiedge 

I 
Set up R1 to point to Semaphore 

y e s ^ 
•^•Semaphore set ? 

^ n o 

Move tocation of p_base into R4 

Move p_size into xO 

"I 
Move prog.vec fomi x:space to p:space ; 

Move p_base into R1 

Jumptop:{R1) 

Set semaphore 

Set up RO , R1, R3, MO and M1 

I 
Enter main loop 

Fig 8.13 The DSP56001 Initialisation Routine 
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Synchronise with host transputer 

Set semaphores 

T 

Initialise memory to zero 

initialise p_base and p_size 

Transfer prog.vec from host 

Reset semaphores 
Acknowledge = aclcval ? • 

s y n o s y n c + 1 

y e s 
Spin on semaphore 1 ^ 

Spin on semaphore 2 

Transfer t.to.{ spl from host 

T 
Reset semaphore 

• 

Transfer to.to.dsp2 from host 

Reset semaphore 

Enter main loop 

Fig 8.14 The Transputer Initialisation Routine 
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Chapter 9 

Hybrid Multiprocessor: 
Performance 

9.1 Introduction 

The previous chapter described a hybrid multiprocessor system, which uses areas of 

shared dual ported RAM (DPR) to efficiendy transfer data between a transputer and 

several digital signal processors (DSPs). The transputer and the DSPs, which are 

arranged in a sub-network, constimte a node. Many nodes may be connected together 

using transputer links. Although the potential computational performance of such a 

system is a linear function of the number of DSPs, the overall performance is limited 

by the intra- and inter-node communications bandwidths. The inter-node bandwidth 

is fixed by the transputer links; the intra-node bandwidth (the rate at which the 

transputer is able to supply data to any particular DSP) is not constant and depends 

upon such factors as the number of DSPs in the node, the code they are running and 

the transputer overheads associated witii each transfer. 

This system has been designed primarily to implement real-time digital signal 

processing algorithms, which are characterised by high data throughput, small efficient 

computation sections and deterministic execution periods. The operation of the system 

is assumed to adhere to these properties. 
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I f the transputer communications bandwidth matches or exceeds that required 

by the DSP sub-network, then the overall performance of the node is proportional to 

the number of DSPs (linear scalability). If the transputer is unable to maintain this 

bandwidth, however, then the DSPs will be forced to wait for data, thus reducing the 

performance of the node somewhat. The point at which this happens is termed the 

latency threshold, and marks the point at which the transputer/DSP communications 

mechanism reaches saturation. 

This chapter is concerned with the performance of the data routing code 

implemented on the transputer, in order to give a measure of the attainable 

performance of the node, and to determine the latency threshold, for a given DSP 

configuration. 

The topology of the DSP network is defined by the data routing software, 

enabling arbitrary topologies to be implemented. Each different topology requires a 

different code structiu^;, which modifies the performance of the inter-processor 

communication mechanism. This chapter considers two topologies directiy appUcable 

to a wide variety of DSP applications — the orthogonal mapping and the pipeline. In 

the former, data is used exclusively by a single DSP, in the latter, the output of one 

DSP forms tiie input of the next. The approach used in tiiis chapter is aimed 

specifically at the Hymips architecture, and an effort has been made to provide a 

deterministic measure of performance. Hence die analysis may not be as general as 

tiiose offered in [32], [78], [87], [88], [89], [90], [91], [92], 

[93], but offers a more accurate description of die system. 

The performance of the routing software is parameterised in terms of the 

number of DSPs in the network, Uie execution period of the code running on the 
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DSPs, the data transfer rate of the transputer, the data vector length and semaphore 

test and set overheads. The expressions produced allow the latency threshold to be 

determined for any given set of conditions, thus giving a limit to the linear scalability 

properties of the particular configuration. 

The transputer communicates according to the principles of CSP, the provision 

of a microcoded scheduler ensuring that it is very efficient at doing so. However, the 

transputer is being forced to communicate with the DSPs through shared memory, 

using a semaphore protocol, which is a foreign environment and departs significantiy 

from previous methods of using either semaphores or shared memory to provide 

communications. The main problem arising from this different approach occurs when 

a number of parallel processes are created and enqueued (as is the case whenever link 

communications are utilised). The effect of program structure and the conditions 

required for valid operation are outiined in this chapter. 

An operational model of the routing code is presented in Section 2. Section 3 

discusses communications software using only memory to memory transfers (intra-

node case). Section 4 expands on die intra-node case by including external transfers 

in the analysis (inter-node case). An empirical verification of the analyses is presented 

in Section 5. Finally, Section 6 provides a summary. 

9.2 An Operational Model 

In addition to testing semaphores, transferring data and resetting semaphores, the data 

routing code is also required to initialise the shared memory areas and synchronise 

with the DSPs. This chapter, however, is concerned only with data transfer and not 

with initialisation. There are many ways in which tiiis may be carried out. One option 
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would be to test a semaphore, then transfer the data or go on to test another 

semaphore, depending upon whether or not the semaphore was set. This type of 

protocol is adequate for general puipose systems [22], but produces a non-

deterministic communication scheme which may produce communication latencies 

unacceptable in a real-time DSP application. This system has been designed to 

implement digital signal processing algorithms, which possess a fixed execution time. 

The DSPs thus require data, and set their semaphores, at periodic intervals. A 

deterministic semaphore protocol, such as the blocking protocol [22], is more suitable 

for such applications. Using this protocol, a processor repeatedly tests a semaphore 

until it is set, the processor is said to be "spin locked" [22]. 

It has been shown in Chapter 8 that a dual domain DPR partitioning scheme 

provides an efficient communication mechanism, and so is used in this model. Other 

conditions used in the development of the performance models are: 

i The code sections running on the DSPs are identical. 

i i The data vectors are of constant size, w. 

i i i The transputer initialises all shared data areas and performs 
synchronisation with all of the DSPs before transferring data. 

iv The domains are pre-loaded with data. 

9.3 Data Transfer Within the Node 

This section presents a performance characterisation of both the orthogonal and 

pipeline configurations for tiie case of data transfer witiiin the node. The structure of 

the code is inherentiy sequential, data transfer being achieved by memory to memory 

block moves. The minimum execution period that may be tolerated by the DSPs in 246 



order to ensure that they do not experience communication latency is 

^ ^ > ^ z , ( ' ^ ^ ' r „ ^ 2 r j (1) 

for the orthogonal configuration, and 

for the pipeline configuration, where 

The number of DSPs 

The time required for a DSP to successfully test a semaphore, perform 
computation upon the domain and reset the semaphore. 

T^^ The time required by the transputer to successfully test a semaphore. 

Tj.̂ ^ The time required by the transputer to reset a semaphore. 

tj^ The time required by the transputer to transfer a domain's input and 
output vectors. 

From these expressions, it may be seen that the data transfer bandwidth of the pipeline 

configuration is significantiy higher than that of the orthogonal case. 

These general parameters may be expressed in terms of vector length, w, and 

instruction cycles. The transputer, running at 25MHz, operates with a 40ns instruction 

cycle; the DSPs,running at 20.5MHz, operate with a 97.5ns instruction cycle. The 

transputer utilises external memory to memory block moves, and so the time required 

to set up and implement the transfer of a data vector of length w may be expressed 

as [30] 

= (4w + 6)40ns 

The semaphore test routine requires 10 cycles, and a semaphore may be reset in 6 

cycles. Now, the DSP requires 6 cycles to successfully test a semaphore and 2 cycles 

to set a semaphore. Using these execution times. Equation (1) may be re-arranged as 
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and Equation (2) as 

N < (3) 
40(28+ 8w) 

^ ^ 97.5(8 + H>iV,) ^ 40(6^-4w) 

40(28+ 4w) 

which give the maximum number of DSPs which may be supported before they begin 

to experience communication latency. 

A typical audio processing application will utilise about 200 DSP instruction 

cycles [94]. I f a vector length of 256 is used, then from Equation (3) 59 DSPs 

may be supported in an orthogonal configuration, and from Equation (4) 120 DSPs in 

a pipeline configuration. As the performance of these processors is not affected by 

communications latency, this corresponds to a node performance of 590 and 1200 

MIPs respectively. 

9.4 Data Transfer Outside the Node 

The transputer uses its links to transfer data off the node. In order to reduce 

communication latency, it is important that the links are allowed to operate 

concurrentiy with the cpu, which necessitates the use of parallel constructs within the 

routing code. As demonstrated in Chapter 4, the operation of parallel programs is not 

straightforward, and care must be taken with their design in order to ensure that 

performance does not suffer. 

9.4.1 Orthogonal Data Transfer 

In this configuration, the data input and output vectors for each DSP are transferred 
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over transputer links. The transputer possesses four bidirectional links, limiting the 

number of DSPs that may be serviced in any one communication cycle to four i f 

bidirectional link mode is used, or two i f unidirectional Unk mode is used. A program 

controlling three DSPs is shown in Fig 9.1. The flow diagram and scheduling chart 

for this code are presented in Appendix E, 

It may be seen from Appendix E that this program consists of three parallel 

processes — one for each DSP — which themselves contain two nested parallel 

processes, used to initialise the link transfers. The processes run at high priority, which 

eliminates the requirement of process timeslicing and makes the operation of the code 

more deterministic whenever excessive semaphore spinning occurs. Note that the 

process to be executed first is declared last, due to the manner in which the processes 

are scheduled. 

From the scheduling chart, it may be seen that the second communications 

process (Ra) of this process (R) is not executed until the first parallel process of the 

last process (Q) is executed. This may cause excessive communications latency, as a 

data transfer associated with the first DSP must wait until the last DSP has set its 

semaphore before it is allowed to proceed. 

From the appendix, for a network of one DSP, the minimum execution period 

that may be tolerated by the DSPs in order to ensure that they do not experience 

communications latency is given by 

177+Lvi' + L +X (5) 
Trs Ttp 

and the overhead associated with each additional DSP given by 

Hence, for a four DSP system, 
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t^>45U4it^^t^^X)^Lw (7) 

which, as at tiie limit X = tr,. may be rc-arranged as 

^ ^ 40(515 ^Lw)-780 (8) 
97.5W 

which gives a measure of the minimum DSP computation section execution period 

required to alleviate DSP communication delay. For a four DSP configuration, only 

the bidirectional link mode is available (L=85.1), as each link is mapped to one of the 

DSPs. From Equation (8), for a vector length of 256, the DSPs must run a 

computation code section of at least 35 instruction cycles per data word. 

An alternative program is shown in Fig 9.2. The structure of this program 

allows the conununication transfers associated with a particular DSP to be initialised, 

in turn, after the semaphore has been set. The communication latency of this program 

is lower than the previous program, but the behaviour is not so robust. It may be seen 

that the operations of testing and resetting a semaphore are spread across two parallel 

processes. In order to avoid data corruption using this structure, the process testing the 

semaphore must both begin its data ti-ansfer before its paired process begins its 

transfer, and end its transfer before its pair has finished its transfer. I f these 

precedence constraints are not met, then either data will be transferred before the 

semaphore has been set — causing the transputer to overwrite the DPR — or the 

semaphore wil l be prematurely reset — causing the DSP to overwrite the DPR. These 

precedence requirements are upheld i f each external transfer set up by tiie transputer 

is serviced immediately. Providing these conditions are met, then this structure offers 
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less latency between associated link transfers, reducing overheads and increasing 

performance. The flow diagram and scheduling chart for this program arc presented 

in Appendix E. For a network of one DSP, the minimum execution period that may 

be tolerated by the DSPs in order to ensure that they do not experience 

communications latency is given by 

t^> Lw + t^^+l66+X (9) 

and the overhead associated with each additional DSP given by 

56 + f,„+X (10) 

Hence, for a four DSP system, 

> 334 + 4f^„+Lw+4X (H) 

which may be rc-arranged to give 

N > ^Q(^^-382) (12) 
^ 97.5w 

For a vector length of 256, the DSPs must run a computation code section of at least 

32 cycles per data word i f they are not to experience communications delays. 

9.4.2 Pipeline Data transfer 

The program for a three stage pipeline is shown in Fig 9.3. The input of the first DSP 

in the pipe is taken fi-om a link, and the output of the last DSP is taken to a link. Al l 

other data transfers occur through internal Occam channels. In order to maximise the 

overlap of external and internal data transfer, the processes utilising the links are 

initialised first. The internal transfers will not be made until the final semaphore has 
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been set, but the delay incurred is outweighed by the advantage obtained through 

overlapping the external communications. 

Processes using internal communication set up their channels sequentially, as 

there is no benefit in using parallel constructs. Channel communication is used in 

preference to direct block move operations as the communication synchronisation 

capability of soft channels ensures that data is not output by a process until the 

semaphore of the input process has been set Any latency caused by the queuing of 

processes is outweighed by the relative efficiency of soft, compared to hard, transfers. 

The flow diagram and scheduling chart of tiiis program are given in Appendix E. 

From this analysis, for a network of two DSPs, die minimum execution period 

that may be tolerated by the DSPs in order to ensure that they do not experience 

communications latency is given by 

t^ > 169 + t^^+Lw+X (13) 

which may be re-arranged to give 

^ ^ 40(Lw-595) (14) 
97.5w 

which is a restriction applied to only the first and last DSPs in the pipeline, as only 

they utilise external transfers. In fact, this configuration is capable of transferring data 

between a number of DSPs while the external communications are taking place. These 

DSPs add to the computational performance of the node whilst incurring no additional 

communication overheads. From die appendix, the maximum number of DSPs 

supported is given by 
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N - (15) 
° " 4 ^ + 80 

For a vector size of 256, and unidirectional links, eleven additional DSPs may be 

supported, providing a total node performance of 130 MIPS. For the bidirectional link 

case, up to 17 DSPs may be supported, providing a total node performance of 190 

MIPS. 

9.5 Empirical Testing 

The Hymips system consists of a single node supporting two DSPs at the time of 

writing. Although this configuration does not allow an in-depth analysis of 

performance, the validity of the above performance equations may still be investigated. 

The purpose of the empirical testing is to determine the efficiency of the semaphore 

based shared memory communications method by verifying the theoretically derived 

performance equations. In particular, the testing reported in this section determines the 

amount of idle time Gatency) experienced by the DSPs, comparing the actual values 

to the predicted ones. This latency is a gauge to the efficiency of the communications 

scheme. 

9.5.1 The Test Code 

Transputer code was written for all of the configurations oudined in this chapter — 

orthogonal and pipeline intra-node, orthogonal types 1 and 2, and pipeline, inter-node. 

An additional transputer was used as the data source and sink for the inter-node 

configurations. 

The DSPs were loaded with code comprising a modified semaphore test loop 

and a simple computation section held in a nested DO loop. Attempting to measure 
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latency directiy on the DSP, using timer registers, would have significantiy interfered 

with the operation of the code, providing misleading results. The adopted method 

incremented the contents of an address register by one on every semaphore spin, 

requiring only an additional cycle. After a pre-determined number of cycles, the DSPs 

came out of their "semaphore test / compute" loops and stored the contents of the 

address register in the DPR. This value was then read by the transputer system, and 

output to the screen. 

9.5.2 Results 

The theoretical values of N, at which the latency threshold occurs were obtained from 

equations (1), (2), (4), (8) and (12) for each configuration. These values were used as 

the base for the empirical tests. Vector lengths of 4 and 256, both transputer link 

modes and Np = 2 were used for the empirical comparisons. Tables 9.1 to 9.4 

summarises the theoretical threshold values, and the corresponding empirically 

obtained latencies. 

9.6 Summary 

This chapter has been concerned with the performance of the Hymips multiprocessor 

node. The performance is determined by the intra-node communications bandwidth, 

which in turn is determined by the rate at which the transputer is able to transfer data 

over its EMI. 

An operational model has been developed and used to provide theoretical 

estimates of the performance of die node for two configurations — orthogonal and 

pipeline — for boUi die intra- and inter-node cases. Two variations of die code for die 
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inter-node orthogonal transfer have been presented. The second type offers a higher 

performance than the first, but requires that its external transfers arc always serviced 

in turn, with no delay. Such deterministic communications requirements are 

characteristic of many DSP applications. However, i f such conditions are not met, then 

the first type may be used, which offers lower performance but is more robust. Due 

to the ability of the transputer to overlap link communications and cpu operation, the 

inter-node pipeline configuration is able to support a number of "intermediate" DSPs 

with no additional overheads. 

An important characteristic of any DSP sub-network configuration is its latency 

threshold, which denotes the point at which the transputer communications mechanism 

becomes saturated and provides an upper limit to the linear scalability of the node. 

The theoretical predictions of the latency threshold, determined using a similar 

technique to that outiined in Chapter 4, have been compared with empirically obtained 

results and found to closely agree. 
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Theoretical Average No. Spins at 
Theoretical 

Orthogonal Gntra) 7 1 

Pipeline (Intra) 2 2 

Orthogonal 1 (Inter) 24 10 

Orthogonal 2 (Inter) 24 8 

Pipeline (Inter) 24 3 

Table 9.1 Threshold Values for L = 57 w = 256 No = 2 

Type Theoretical N^ Average No. Spins at 
Theoretical N^ 

Orthogonal (Intra) 7 1 

Pipeline (Intra) 2 2 

Orthogonal 1 (Inter) 36 12 

Orthogonal 2 (Inter) 36 9 

Pipeline (Inter) 34 2 

Table 9.2 Threshold Values for L = 55 w = 256 -= 2 

Type Theoretical N^ Average No. Spins at 
Theoretical N^ 

Orthogonal (Intra) 11 2 

Pipeline (Intra) 5 3 

Orthogonal 1 (Inter) 57 15 

Orthogonal 2 (Inter) 48 12 

Table 9.3 Threshold Values for L = 57 w = 4 Nj, = 2 
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Type Theoretical Average No. Spins at 
Theoretical N^ 

Orthogonal (Intra) 11 2 

Pipeline (Intra) 5 3 

Orthogonal 1 (Inter) 69 16 

Orthogonal 2 (Inter) 60 12 

Table 9.4 Threshold Values for L = 85 w = 4 NQ = 2 
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PRI PAR 
PAR 

SEQ — P 
. . . spin on sem2a 
PAR 

in2 ? in2a 
out2 ! out2a 

sem2a := sem.set 
SEQ — Q 

... spin on sem3a 
PAR 

in3 ? in3a 
outs ! outSa 

semSa := sem.set 
SEQ ~ R 

. . . spin on semla 
PAR 

i n l ? i n l a 
outl ! outla 

semla := sem.set 
Likewise for data set "b" 

Fig 9.1 Orthogonal Control Program Type I 
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PRI PAR 
PAR 

SEQ ~ P 
out ! outla 
semla := sem.set 

SEQ — Q 
... spin on sem2a 
in2 ? in2a 

SEQ — R 
out ! out2a 
sem2a := sem.set 

SEQ — s 
... spin on semSa 
in3 ? in3a 

SEQ — T 
out ! out3a 
sem3a := sem.set 

SEQ —• U 
. . . spin on semla 
i n l ? i n l a 

Likewise for data set "b" 

Fig 9.2 Ortiiogonal Control Program Type n 
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PRI PAR 
PAR 

SEQ ~ P 
... spin on sem3a 
PAR 

2.to.3 ? inSa 
out ! out3a 

sem3a := sem.set 
SEQ — Q 

. . . spin on sein2a 
PAR 

2.to.3 ! out2a 
l.to.2 ? in2a 

sem2a := sem.set 
SEQ ~ R 

... spin on semla 
PAR 

l.to.2 ! outla 
i n ! i n l a 

semla := sem.set 
... Likewise for data set "b" 

Fig 9.3 Pipeline Control Program 
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Chapter 10 

Conclusion 

The rapid growth of silicon device technology over the past two decades has resulted 

in the production of increasingly powerful processors. This growth has allowed the 

development of many varieties of high performance computer systems, such as 

multiprocessors which offer increased performance by executing tasks in parallel. The 

variety of multiprocessor architectures is wide, ranging from small SIMD systems 

employing parallel processing on a single silicon die, to large MIMD systems 

comprising many thousands of autonomous inter-communicating microprocessors. The 

corresponding increase in computer power has broadened die application area of such 

systems, including CAD, matiiematical modelling, image processing, database systems 

and real-time digital signal processing. 

Digital signal processing applications tend to require high data throughput and 

the ability to perform efficientiy a small set of arithmetic operations (primarily 

multiplication and addition). These requirements are especially acute i f die application 

is to be implemented in real time, when strict timing constraints must be met Early 

microprocessors, being general purpose, were not optimised for aritfimetic diroughput, 

and so had limited use widiin real time signal processing systems. The low 
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performance of general purpose microprocessors, together with the apparent 

advantages of using digital rather than analogue processing methods, resulted in the 

development of specialised high speed multiplier and associated support chips which 

were used in dedicated systems. Although these systems provided a much higher 

operating bandwidth, they required a large number of dedicated devices (requiring a 

large amount of board space and high power consumption) and were difficult to 

program. 

The continuing advances in microprocessor design and fabrication allowed the 

development of the first programmable digital signal processors, in the early 1980s. 

These devices incorporated a hardware multiplier within the datapath. Other 

architectural characteristics included a double woidlength accumulator (at least), 

multiple memory areas (Harvard architecture) and a number of input / output registers. 

These devices were relatively straightforward to program, whilst offering a high 

performance. Subsequent generations of signal processors have enhanced or added to 

these characteristics — contemporary devices incorporate larger multiple memory 

areas, instruction caches, hardware floating point multipliers and additional peripherals 

on chip. Many of these devices may be programmed using optimised C compilers in 

addition to their native assembly languages, and run inside manire operating systems. 

Altiiough these devices offer very high performance (33 MFLOPS is typical), the need 

for higher bandwidtiis, or increased overall processing power, is leading to the 

development of multiple signal processor systems. 

Large arrays of transputers have been successfully used in such application 

areas as radar processing , as even though their computing power is no higher than 

any other general purpose processor, they may be easily interconnected to provide 

262 



large parallel systems. Some digital signal processors do offer limited multiprocessor 

support, but this generally amounts to the provision of a number of DMA control 

lines. Elaborate interprocessor communication mechanisms, such as those used in the 

latest general purpose multiprocessor systems, could be used, but these are expensive. 

A digital signal multiprocessor needs to offer an efficient interprocessor 

communications bandwidth, whilst incurring minimal additional hardware costs. The 

more constrained behaviour of digital signal processing algorithms, compared to their 

general purpose counterparts, allows more efficient, and less complex architectures to 

be developed. 

This thesis has examined the performance of two different types of processor, 

the Inmos transputer and the Motorola DSP56001, when used to implement a typical 

signal processing application, a multiple channel digital filter. The resulting 

characteristics of these devices has been used in the design of a hybrid MIMD 

multiprocessor system tiiat is optimised to implement DSP applications. A node of this 

hybrid multiprocessor (Hymips) has been constructed, and is currcntiy running 

performance test software. 

This chapter is divided into two parts. The first summarises the work carried 

out on the processors and tiie multiprocessor system, tiie second discusses possible 

continuing work. 

10.1 The Transputer 

The transputer represents an ideal building block with which to construct large 

multiprocessor systems. The devices in this family incorporate up to four bidirectional 

serial links, which are used to interconnect them. Although the data transfer rate is 
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quite high, the main advantage of link transfer over more conventional 

communications methods is that once they have been initialised, the transfers occur 

simultaneously with cpu operation. Although based around a von Neumann 

architecture, the native language of die transputer, Occam, is a parallel language. This 

language allows parallel constructs to be defined, and directiy supports the 

asynchronous unbuffered message passing communications protocol used by the 

transputer. Parallel programs may be developed on a single transputer, then easily 

mapped on to a transputer network to provide increased performance. With the 

exception of external communications, all logical parallel processes running on a 

single transputer are executed "pseudo-concurrently". This is achieved through the use 

of a microcoded scheduler, which keeps track of which processes arc awaiting a 

communications or timer input (inactive processes), which processes are able to run 

(active processes) and for how long the present process has been running. Two priority 

levels may be defined. High priority processes run in preference to low priority 

processes, and are generally used to instigate link transfers. Low priority processes are 

timesliced by the scheduler, in order to ensure that each process is allocated its fair 

share of cpu time. Performance optimisation techniques, using Occam, are well 

documented. The Occam compiler also supports assembly language insens, which may 

be used for time critical sections of code. 

Transputer networks have been successfully used to implement DSP 

applications. As the transputer has not been optimised for DSP operation, these 

systems gain their power from the high degree of parallelism which they exhibit. The 

suitability of smaller transputer systems to DSP applicatiohs has been investigated in 

tills diesis. The application consisted of a three pole Butterwortii bandpass filter, 
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implemented in a multi-channel configuration. The filter utilised shifting operations 

rather than multiplication operations in order to increase computational throughput. 

In order to investigate the effects of parallelism, the filter was mapped onto 

one, two and three transputers. The two processor mapping constituted a simple 

pipeline structure, whereas the three processor mapping incorporated an additional 

feedback link. Unlike sequential languages, the use of a parallel language allows the 

same logical program to be implemented using a number of different program 

structures. Two such stmctures, or harnesses, were used to gain an insight into die 

performance implications of program structure. Both harnesses used high priority 

communications processes and a low priority sequential computation process. Harness 

type I used the decoupled construct recommended in the literature, whereas type n 

used internal channels to pass data between the communications and computation 

processes. These harnesses incurred different types of overheads, the effects of which 

were analysed from the results. 

In order to provide maximum performance, the computation section was coded 

in assembly language. The computation section associated with each data channel was 

coded expliciUy, and the data elements accessed directiy. This approach was memory 

intensive but supplied the maximum performance. 

Link communications proceed more efficientiy if blocks of data, ratiier than a 

single item, are transferred, as initialisation overheads are reduced to negligible levels. 

The effect of transfer block size (vector length) upon performance was investigated. 

This has been shown to be a flexible approach, allowing a data channel to use either 

one vector element or a number of elements, and allowing multiple rate filters to be 

implemented 
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A theoretical model of program behaviour was developed, in order to allow the 

overall perfonnance to be investigated and the effects of overheads and vector lengths 

to be assessed. The theoretical performance predictions were compared with the 

empirical results. 

The empirical perfonnance of each mapping of each harness for a range of 

vector lengths was measured using a system comprising in-house transputer boards. 

As expected, performance increased witii vector length in all cases. The two processor 

mappings exhibited higher performance tiian the single processor mappings (but not 

twice as high), whereas the three processor mappings exhibited some unexpected 

behaviour. The three processor mapping of harness type I provided similar 

performance to the two processor mapping, whereas that of harness type n provided 

die lowest performance of all. This was probably due to die low computation code 

size, resulting in the dominance of the communications overheads. 

Harness type I required almost twice the amount of memory space tiian type 

n. The effects of external memory access were seen as the drop in performance of the 

single processor mappings at higher vector sizes. This was also seen in the two 

processor mapping of harness type I . All other mappings used internal memory 

exclusively within the given range of vector size. 

The theoretical model performed well for the one and two processor mappings 

of both harnesses. The model estimated a slightiy higher performance than that 

obtained for low vector sizes, since it assumed a vector size of at least sixteen. The 

estimated performance at high vector sizes was slightiy higher tiian tiiat obtained, 

since the model did not take into account tiie effects of operand prefixing and external 

memory usage. The model provided much higher performance estimates than tiiose 
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obtained for the three processor mappings, however. This was probably caused by the 

assumption of the model that the processor running the largest section of computation 

code dictated the overall performance. The additional link between die second and 

third processors caused additional complexity which the model did not take into 

account. 

Harness type 11 offers the best performance for vector lengths below 12, 

whereas type I provides the best performance up to those vector sizes at which 

external memory accessing causes performance degradation. 

10.2 The DSP56001 

In contrast to the transputer, the Motorola DSP56001 has been designed specifically 

to implement DSP algorithms. This was the first digital signal processor marketed by 

Motorola, incorporating a 24bit wordlength and operating at clock frequencies of 20.5, 

27 and 40MHz. 

The heart of the processor is the arithmetic unit (ALU) which contains a single 

cycle non-pipelined MAC unit, a number of 24bit input and 56bit output registers and 

assoned shifter units. The device contains three independent simultaneously accessible 

memory spaces on chip, which together with a versatile register based indirect 

addressing scheme allow the MAC unit to be invoked every instruction cycle. 

The address generation unit (AGU) contains eight sets of 16bit register triplets, 

divided into two banks of four. Each bank possesses its own arithmetic unit. The 

register triplets consist of an address register together with associated offset and 

modifier registers. An address register is used to access an operand in one of the 

memory spaces, and may be pre- / post- incremented / decremented by one or the 
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its offset register. An address may also be generated by adding / subtracting die 

contents of the offset register to the address register. A modifier is used to define one 

of three addressing modes — linear, modulo and bit reversed. Linear mode is the 

usual addressing scheme used in all processors. Modulo addressing allows circular 

buffers to be implemented with zero overhead. The bit reversed mode allows FFT 

algorithms to be implemented, also with zero addressing overheads. 

The device also incorporates a byte wide interface in addition to asynchronous 

and synchronous serial interfaces, which are treated as memory mapped peripherals. 

These may be used for connection to another processor, or an ADC/DAC system. 

Multiprocessor support is limited. The serial port may be configured in a 

"network" mode, with 32 time slots, but die communications bandwidth is limited. Bus 

request / grant pins are also included, in order to support DMA or shared memory 

access. 

In common with other programmable digital signal processors, the DSP56001 

optimally implements canonic n form filter difference equations. The difference 

equations of die application filter were derived from die shift and add algoriduns used 

by the transputer. The final analytic form consisted of a single order high pass section 

in series with a bandpass biquadratic section. However, coefficient quantisation 

problems required that the filter be implemented as a cascade of single pole sections, 

widi an additional feedback padi. Extension to die multichannel case was achieved 

using address offset and modifier registers. 

As the DSP56001 is a sequential processor, and interrupts were suspended 

during filter kernel operation, performance analysis simply became a matter of 

counting instruction cycles. A Motorola ADS56 Development System was used to 

268 



implement the code, and its monitor used to determine the number of cycles required 

to do so. Understandably, the DSP56001 provided sigiuficantiy higher performance 

than the transputer. 

The nature of the frequency response of the application filter precluded the use 

of on-line methods to test it. Instead, data was stored on disk and processed off-line 

using a proprietary signal analysis package. 

10.3 The Hybrid Multiprocessor 

It may be concluded from the characterisation of the above processors that, in a signal 

processing environment, the transputer is more efficient at communicating data than 

it is at computation, whereas the DSP56001 possesses the inverse properties. Based 

on these observations, tiie design of a digital signal multiprocessor was proposed. The 

architecture of this hybrid multiprocessor (Hymips) consists of nodes, interconnected 

by transputer links. Each node contains a number of DSPS6001s, connected to a 

transputer tiirough areas of dual ported RAM (DPR). The transputer cono-ols die flow 

of data both within the node (using memory to memory block moves) and outside the 

node (using its links). This interconnection scheme allows the DSPs to continue 

processing data with minimal interruptions caused by communications. The logical 

configuration of the DSPs is software defined, and may be dynamically modified. 

Special memory maps may be used to speed up data transfer, and DSP programs may 

be downloaded from the transputer on the fly. 

However, implementation problems associated with the interprocessor 

communications mechanism were encountered, Inteiprocessor communication occurs 

through shared memory, using a semaphore based protocol in order to ensure data 
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validity. The transputer has been designed to communicate over its links, using a 

message passing paradigm, and does not support the "atomic" instructions required to 

implement most semaphore protocols safely. A modified test and set semaphore 

protocol has been developed, which may be safely implemented on devices such as 

the transputer. The execution time of the semaphore test routine was decreased using 

assembly language and an addressing scheme which mapped the semaphore locations 

into positive address space. 

The Hymips system has been designed to offer scalability both in the number 

of nodes (the transputer plane) and in the number of DSP56001s supported per node 

(the DSP plane). The upper limit to the number of DSPs which may be supported by 

a node with zero communications latency (the scalability limit) occurs whenever the 

data bandwidth required by the DSPs reaches the maximum capability of the 

transputer. Beyond this limit, tiie DSPs will be forced into idle periods as they await 

data transfer. This has been used as a gauge to the maximum attainable performance 

of the node, since in real-time systems performance is limited by i/o bandwidth, not 

overall computational performance. 

Using experience gained in theoretically analysing the transputer filter code, 

programs were written in Occam which controlled data routing both inside and outside 

tiie node. Two of die many possible DSP configurations were highlighted — die 

orthogonal and pipeline configurations. 

The internal control programs were straightforward, implemented sequentially 

and utilising block moves. The external control programs were more complex, 

incorporating parallel processes to initialise link transfers. Two versions of die external 

orthogonal code were implen»nted, one being more robust dian die odier but 
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providing higher latencies. 

These programs were analysed using the transputer performance model. Using 

the results of these analyses, expressions for the scalability limit of the node were 

derived for each configuration in terms of the number of DSPs, the vector length and 

the amount of DSP code executed per damm. These theoretical performance 

predictions show diat die node is capable of sustaining a usefiil amount of DSPs, for 

a general set of given conditions, which results in high node performance. The 

external pipeline configuration, in particular, is able to sustain additional DSPs whilst 

incurring no additional overheads. 

A node of the proposed Hymips system, incorporating two DSPs, has been 

constructed. Performance testing is limited widi such a small number of processors, 

but the tests which have been carried out have aligned the dieoretical performance 

figures with the empirical results. 

10.4 Suggestions for Further Work 

Further work lies mainly with Hymips, although an extension to the transputer 

performance model to include multiprocessor link oransfer synchronisation would be 

useful. 

Suggestions for further work on Hymips may be divided into two sections — 

development work carried out on the existing system, and extensions to the 

architecture. 

Presendy, i f the DSPs are to be reprogrammed, then the ADS56 system (and 

host PC) must be connected to one of die in-house transputer boards (and host PC), 

via a DPR prototype board. The DSP object code is dien transferred from die ADS56, 
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tiirough DPR and the transputer and finally into a DOS file on the transputer host PC, 

which may tiien be accessed by Hymips. Quite obviously, dus is a laborious and 

inconveiuent process. A routine could be easily written to strip a DSP object code file 

of its header information, and to convert it to a form which would be direcdy readable 

by Hymips. Routines could then be assembled and converted on the same PC, gready 

easing reprogramming. 

The DSPs in the node may currendy be accessed only through DPR. This is 

sufficient for high speed data transfer, but does leave the DSPs somewhat isolated, 

severely restricting debugging support. The additional communications ports could be 

used in a similar fashion to those on the development system board. This would allow 

system debugging and monitoring to be implemented,and will be an essential tool 

whenever the system is programmed with real application software. A straightforward 

method of interconnection would be to connect a PC serial port to the RS232 level 

converters on the DSP boards, and configuring the DSP serial ports in multidrop 

mode. 

An extension to the above improvements would be to design an integrated 

development and application environment. This would be a major project, but would 

gready ease application development on Hymips. Such a system might be based 

around a windowing type environment, allowing DSP and transputer code to be edited 

and compiled firom die same screen. Graphical output windows could also be 

supported in addition to processor state windows. 

The most obvious architectural extension to the present system would be to add 

more DSPs to the present node, and to produce more nodes. This would then allow 

the performance of die system to be assessed more fiilly, and allow a wide range of 
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applications to be implemented. 

The architecture itself has been designed to be as open as possible. Devices 

such as ADC/DACs may be easily connected to die DSPs, the transputer or onto die 

backplane bus. 

The backplane bus supports 32bit data wordlength, and so allows other 

processors, such as floating point DSPs, to be incorporated into the system. These 

components tend to be more expensive than their fixed point counterparts, however. 

Increased node performance may be obtained by using a higher bandwidth 

controller processor. This could be achieved using an ASIC, but this would limit 

reprogrammability. Only one ciurentiy available high performance processor (the 

TMS320C40) supports high bandwidth interprocessor commuiucation. The new 

generation transputer, die T9000, also offers higher bandwiddi and an expanded 

instruction set which supports semaphores and allows the scheduler operation to be 

modified from software, but has not yet been released. These processor are very 

expensive, and their use would be dependent upon a cost / performance trade-off. 
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Appendix A 

Filter Analysis 
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A.I Introduction 

This section deals with the analysis of the filter structures used by the transputer and 

DSP56001. The stiuctures of the highpass and lowpass single pole sections are given 

in Fig A . I , togetiier with the overall block structiire. 

The difference equations of the two basic filter types, and their associated 

transfer functions, are developed in section 2. These transfer functions arc used to 

determine the difference equation for a lowpass/highpass cascade in section 3. The 

difference equation for the "modified" cascade, and its associated transfer function, is 

developed in section 4. As cascaded filter sections (either single pole or biquadratic) 

are usually used in digital filter implementations, it was not felt necessary to develop 

the characteristic equations of the filter any further. The overall filter, then, may be 

decomposed into either three single pole sections or a single pole highpass stage 

followed by a modified cascade stage. The location of the poles and zeroes of the 

various filter elements are detennined in section 5. 
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(1) 

A.2 The Single Pole Sections 

A.2.1 The Lowpass Section 

From Fig A.la , it may be seen that 

xin-\)-y,^in-l) 
y^"^'p = — ^ y'^"-^^ 

re-arranging forms the difference equation, 

y,^(n) = 2-^x(n-l) + (l-2-'^)>',^(«-l) (2) 

corresponding to a transfer function of 

G, (z) = L i (3) 
l - ( l - 2 - ' ' ) 2 - ' 

which, in pole—zero form, becomes 

G. (z) = I (4) 
z-( l -2- '^) 

The frequency and phase response of this filter are shown in Fig A.4. The filter 

exhibits a first order Butterworth response (maximally flat, 20dB per decade cut off 

rate), with a low cut off frequency. The amplitude has not been normalised, and so it 

may be seen that the gain of this filter is never more than unity. 

A.2.2 The Highpass Section 

From Fig A. lb , 

y^in) =xin)-u{n) (5) 

re-arranging, 
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(10) 

uin) =xin)-yjin) (6) 

From Fig A. lb and equation 2, 

uin) = 2-^xin-l) + (l-2^)uin) 0) 

Substituting 4 into 5, 

xin)-y^in) = T'xin-DHl-r'Hxin-D-yJin-l)) (8) 

re-arranging, 

y^in) = xin)-2-'xin-l)-(\-2-'){xin-l)-y^in-l) (9) 

and simplifying, to give the difference equation 

y^in) = x(n)-xin-l)Hl-2-')y^(n-l) 

which corresponds to a transfer function given by 

GJz) = Izll (11) 
" 1-(1-2-^)2-' 

which, in pole—zero form, becomes 

GAz) = (12) 
z-(l-2-') 

The frequency and phase response of this filter are shown in Fig A.5. As for the low 

pass section, this also filter exhibits a first order Butterworth response, at the same cut 

off frequency. 

A.3 Cascaded Sections 

The highpass/lowpass cascade is represented in Fig A.2a. Now, 
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G(z) = G^(z)G^(z) (13) 

Hence 

G(z) = ^ i l i (14) 
' z - ( l - 2 - ^ ) z - ( l - 2 - ^ ) 

expanding. 

G(z) = 2-^ i l l (15) 
z^-2( l -2-^)z + ( l - 2 ' - * + 2-"') 

dividing by Z*Z, 

G(z) = 2-" Czll (16) 
l - 2 ( l - 2 - ' ' ) z - U ( l - 2 ' - ^ + 2-^)z-* 

which corresponds to a difference equation of 

^^(n) = 2-' '(x(/j-l)-:c(n-2)) + 2 ( l - 2 - ^ ) - ( l - 2 ' ' + 2-^)y(/j-2) (17) 

The frequency and phase response of this compound filter are shown in Fig A.6. 

A.4 Modified Cascade 

The modified cascade structure is represented in Fig A.2b. It may be seen from this 

figure that the modification takes the form of a feedback path from the output directiy 

into the input 

By inspection, 

v{n) = x(n)+yjin) (18) 

and from 17, 

(19) 
ySn) = 2- ' ' (v (n- l ) -v(«-2) ) + 2 ( l - 2 - ^ ) y > - l ) - ( l - 2 ' - ^ + 2 « ) y > - 2 ) 

substituting 18 into 19, 
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y » = 2 - * ( x ( n - l ) + y > - l ) - a : ( n - 2 ) - y > - 2 ) ) ^20) 
+ 2 ( 1 - 2 - ^ ) y > - 1 ) - (1 - 2'-^ + 2 - * ) y > - 2 ) 

siir5)lifying, to give the difference equation, 

y » = 2-^(;c(/z-l)-;c(n-2)) + (2 -2 -* )y_ (n - l ) - ( l -2 -^ -H2 - ^ )y>-2 ) (21) 

corresponding to a transfer function given by 

G (z) = 2-^ Czll (22) 
1 - (2-2-^)2- '+ ( l -2 -* ' + 2-^)z-^ 

which may also be written 

G (z) = 2-" i l i (23) 
z^-(2-2-^)2 + ( l - 2 - ^ + 2'^) 

The fi^uency and phase responses of this filter arc shown in Fig A.7. The effect of 

the feedback is to shaipen the frequency response. 

A.5 The Whole Filter 

The whole filter may be thought of as being composed of a single pole highpass 

section in series witii a biquadratic bandpass section. Fig A.3b, witii a transfer function 

given by 

G(z) = 2-^ ^ i l i i ! (24) 
( z - a ) ( z ' - ( 2 - 2 - ' ' ) z + ( l - 2 ^ + 2 - ^ ) 

The frequency and phase responses for the whole filter are given in Fig A.8. Note the 

slight change in gain and cut off frequency, and the second order high pass response, 

caused by the additional high pass section. 
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A.6 Location of Poles and Zeroes 

A.6.1 Highpass and Lowpass Sections 

From equation 4, it is apparent that the lowpass section does not possess a zero. It 

does, however, possess a pole which lies at 

^ ^ = 1 - 2 - " (25) 

As N=15, then, the pole, which is real, lies at 

p ^ = l - 2 - » (26) 

From equation 12, it may be seen that the highpass section possesses a pole in the 

same position as the lowpass section, but that it also possesses a zero at z=l . 

As the cascade section is composed of highpass and lowpass sections, equation 

13, then it possesses a zero at z=l and two poles, both of which occur at 

P . = 1 - 2 " (27) 

The modified cascade section has a zero in the same place as the highpass/lowpass 

cascade. In order to determine the position of its poles, however, it is necessary to find 

the roots of the denominator of equation 23, ie 

z ' - (2 -2- ' ' ) z + ( l - 2 - ' ' + 2-"') = 0 (28) 

Using the quadratic formula. 

(2 -2 - ' ^ )±v / (2 -2 -^ )^ -4 ( l -2 -%2-" ' ) (29) z = — 

Hence roots arc given by 
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z = 
_ r*'-l±jy/3 (30) 

and so the poles of the filter lie at 

= (l-2-^-»)+y2-<"-"v^ ^^^^ 

and 

p^ = (l-2^''')-j2-^'''^ (32) 

Compared to the cascade, the poles of the modified cascade have a higher real 

component, and an imaginary component (albeit a small one). The poles form a 

conjugate pair, as they must since the coefficients of the filter are real. 
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Occam! Filter Code 
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Appendix C 

Occam2 Filter Program 
Scheduling Charts and 
Results Table 
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Two Processor M ^ i n g of Harness Type I 

Note ref. Cominents 

1 OP begins by jumping to the first instruction. 

2 OP claims its woikspace. 

3 The location of the 'jump' block (at the head of the program) is stored in 
workspace location IS. 

4 The vector initialisation loop is set up. 

5 One iteration of the initialisation loop is perfonned. 

6 OP executes a LEND. If flie loop has cotapleved, iheo execution will continue. If 
not, then execution returns to the start of the loop. The total number of cycles 
taken to perform the loop (excluding initialisation) is 82+(w-l)87. 

7 OP begins to set up the PRI PAR by storing flie number of parallel processes in 
woikspace location 1... 

8 ...and storing the instruction pointer to the successor process (the next PRI PAR) 
in woikspace location 0. 

9 The current priority is checked to make sure that it is low. 

10 OP stores the instruction pointa^ of flie child process in (what will be) flie new 
woikspace location -1. 

11 OP defines ttie process descriptor of flie child process (which impliddy defines 
its priority - high) and places fliis process on flie high priority queue. OP is de­
activated. 

12 P is interrupted in deference to the high priority process OQ. 

13 OQ begins by setting flie number of parallel processes it will produce. 

14 OQ stores flie instruction p[ointer of its successor istx^ss. 

15 OQ sets up a child parallel process... 

16 ... and initialises it at flie current iHiority level. The new process, R, is placed on 
the high priority queue. 

17 Q continues by setting up a ccxnmunications transfer. 

18 Q executes an external 'in' and so is descheduled. R is executed in preferraice to 
P. 

19 R begins by setting up a ccHnmunications transfer. 

20 R executes an external 'out' and so is descheduled. As P is flie only remaming 
active process, it is re-executed. 

21 P continues by claiming woikspace for flie conqiutation section. 

22 P enters its computation section. However, after a fiiitha- 46w-26 cycles, Q 
completes its external transfer apd so is rescheduled. 
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Two Processor M ^ i n g of Harness Type I 

Note ref. Comments 

23 P is interrupted in deference to Q. Tbe particular instruction on which P is 
interrupted varies biotfa with w and with time, hence the average instruction 
length of 4 cycles is used. 

24 Q continues by pointing to its parent (OQ) and ending itself. Hence Q is taken off 
the queue. 

25 R has still not completed, and so P is re-executed. 

26 P continues with its computation section. However, R completes its external 
transfer during the context switch, and so P is aUowed to execute just one 
instruction... 

27 ...before being interrupted. 

28 R continues by pointmg to its parent (OQ) and ending itself. Hence R is taken off 
the queue. Both the child processes of OQ have now completed, and so OQ is 
free to invoke its successor process. 

29 The de-prioritising code is invoked by OQ... 

30 ... and then, having pointed to its parent (OP), ends itself. 

31 As P is the only remaining process, it is rescheduled. 

32 P completes its computation section. 

33 P points to its parent (OP) and ends itself. As its child processes have completed, 
OP is free to invoke its successor process, the next PRI PAR structure. 
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Two Processor Mapping of Harness Type H 

Note ref. Comments 

1 p' claims its woikspace, initialises tbe internal channels, diecks tbe pri(xity, 
points to its successor process and sets up the high jBiority process. 

2 P' executes a RUNP, activatiiig the high priority process, Q'. P' is de-activated in 
preference to Q'. 

3 Q' defmes the number (rf 'child' processes, points to its successor (the de-
priwitising code). 

4 Q' sets up its child process, R. 

5 Q' executes a STARTP, which places R on the active high priority queue. 

6 Q' enters Q by adjusting die workspace pointer and setting up a conununications 
transfer. 

7 Q executes an internal 'in'. However, the diannel is empty and so Q is 
descheduled. R is executed in preference to P'. 

8 R begins by setting up a communications transfer. 

9 R executes an external'm' and so is descheduled. P' is the only ronainmg active 
process and so is re-executed. 

10 P' enters P by adjusting the wĉ cspace pointer and initialising a control block for 
a replicated SEQ structure. 

11 P enters a replicated SEQ loop. The time taken to execute this loop is 41(w-l) + 
36 cycles. The next high {niority process to become active is R, after 46w -7/+32 
cycles &om the begmning {rf die replicated SEQ. Hence, die loop completes 
before the transfer finishes and so P is not forced on to the queue by R. 

12 P sets up a ccHnmunications transfer. 

13 P executes an internal 'in*. However, die channel is emp\y and so P is 
descheduled. There are no currendy active processes. 

14 There is now a delay until R, flie only process not awaiting internal diannel 
rescheduling, completes its external transfer. Tbe delay is 5w - 8 (min), 5w + 31 
(max). 

15 R craitinues by setting up a communications transfer. 

16 R executes an intonal 'out', corresponding to flje 'in' of P. Hence the transfer 
takes place and P is rescheduled. 

17 R jumps to die top of its WHILE TRUE loop. 

18 R sets up a communications transfer. 

19 R executes an external 'out' and so is descheduled. P is the only remaining active 
process and so is re-executed. 

20 P continues by entering its computation section. During tiiis period, R con^letes 
its ttansfer after a further 46w-19 cycles and so is rescheduled. 
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Two Processor Mapping of Harness Type I I 

Note tef. Comments 

21 This rescheduling causes P to be inteirupted duiing the computation section, [the 
instruction that this rescheduhng occurs on is dependent upon w. It is possible to 
calculate die instruction, but use die avoage instruction lengdj of die computation 
sectiOT here, abs(3.54)=4]. Thus, die intanipt latency is 22 cycles. 

22 R continues by setting up a communications transfer. 

23 R executes an internal 'out'. The channel is empty and so R is descheduled. P is 
die only remaining active process and so is re-executed. 

24 P continues by completing its coiiq)utation loop. The high priority processes are 
cuirendy awaiting soft channel omununications. and so diere is no furthw 
interruption of die computation section. 

25 P sets up a communications transfer. 

26 P executes an internal 'out', corresponding to die 'in' of Q. Hence die transfer 
takes place and Q is rescheduled. 

27 P is interrupted in defwence to Q. 

28 Q continues by setting up a communicatirai transfer. 

29 Q executes an external 'out' and so is descheduled. P is die cmly remaming active 
process and so is re-executed. 

30 P continues by jumiMng to die top of its "WMLE TRUE" loop. 

31 P sets up a ccmmunications transfer. 

32 P executes an internal 'in', cffliesponding to die 'out' of R. Hence die transfer 
takes place and R is rescheduled. 

33 P is interrupted in deference to R. 

34 R continues by jumping to die top of its "WHILE TRUE" loop. 

35 R sets up a communications transfer. 

36 R executes an external 'in' and so is descheduled. P is die only remaing active 
process and so is re-executed. 

37 P continues by entering its computation sectirai. After a fiirther 46w-[2w+76] 
cycles, Q completes its external transfer, and so is resdieduled. 

38 P is interrupted in defwence to Q. 

39 Q continues by jumping to die t(?) of its "WHILE TRUE" loop. 

40 Q sets up a cranmunications transfer. 

41 Q executes an internal 'in'. The channel is empty and so Q is descheduled. P is 
die only remaining active process and so is re-executed, [not enough cycles yet 
f o r R t o h a v e c o m p l e t e d f o r l a r g i s h w ] 
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Two Processor Mapping of Harness Type n 

Note ref. Comments 

42 P continues its computation section. However, after a further 2w+25 cycles{46w-
[44w-76f51]}, R completes its external transfer and so is rescheduled. Hence 
W>=11. 

43 P is interrupted in defnence to R. 

44 R continues by setting up a communications transfer. 

45 R executes an internal 'out'. The channel is empty and so R is descheduled. P is 
the only remaining active process and so is re-executed. 

46 P continues by completing its coiiq>utation section. {78w-[44w+2w-764-25]) 

47 P sets up a osmnunications transfer. 

48 P executes an internal 'out', corresponding to the 'in' of Q. Hie transfer takes 
place and Q is rescheduled. 

49 P is interrupted in deference to Q. 

50 Q continues by setting up a communications transfer. 

51 Q executes an external 'out' and so is descheduled. P is the only remaining active 
process and so is re-executed. 

52 P continues by jumping to the top of its "WHILE TRUE" loop. 

53 P sets up a communications transfer. 

54 P executes an internal 'in', corresponding to the 'out' of R. The transfer takes 
place and R is resdieduled. 

55 P is interrupted in deference to R. 

56 R continues by jumping to flie top of its "WHILE TRUE" loc .̂ 

57 R sets up a communications transfer. 

58 R executes an external 'in' and so is descheduled. P is the only remaining active 
process and so is re-executed. 

59 P enters its computation loop. After a further 46w-[2w+76] cycles, Q completes 
its external iransfw and so is rescheduled. 

60 P is interrupted in deference to Q. 

61 0 continues by jumping to the tt^ of its "WHILE TRUE" loop. 

62 Q sets up a communications transfer. 

63 Q executes an internal 'in'. The channel is empty and so Q is descheduled. P is 
the only remaining active process and so is re-executed. 

64 P continues its computation section. After a further 2w+25 cycles. {46w-[44w-
76+2344+5+19]), R completes its external communication and so is rescheduled. 

65 P i s i n t e r r u p t e d i n d e f e r e n c e t o R . 
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Two Processor Mapping of Harness Type H 

Note ref. CcHnments 

66 R continues by setting up a commimirations transfer. 

67 R executes an internal 'out'. The channel is empty and so R is descheduled. P is 
the only remaining active process and so is re-executed. 

68 P continues by completing its ooiiq)utation section. 

69 P sets up a cmununications transfer 
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Hybrid Multiprocessor Code 
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Hybrid Multiprocessor 
Performance Test Code 
Scheduling Charts 
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HYMIPS CONTROL TYPE I 

Note ref. Coinments 

1 The PRI PAR is set up. and the high priority process initiated with nmp. 

2 The parallel iwocesses witin the high priority process are set up. 

3 Process P is placed on the high priority queue by executing a STARTP. 

4 Process Q is also placed on teh high priority queue. 

5 Process R cintinues by spinning on senuphore la. 

6 R sets up a PAR construct. 

7 Process Ra is placed on tdi high priority queue. 

8 R continues by executing an external communication, and so is descheduled. P is 
taken off the active queue. 

9 P continues by spinning on semaphore 2a. 

10 P sets up a PAR construct 

11 Process Pa is placed on the high priority queie. 

12 P continues by executing an external cranmunication and so is descheduled. Q is 
taken off the active queue. 

13 Q begins by spinning on semaphore 3a. 

14 Q sets up a PAR construct 

15 Process Qa is placed on teb active queue. 

16 Q continues by executing an extonal conununication, and so is descheduled. Ra 
is taken off the active queue. 

17 Ra begins by executing an extonal conununicxation and so is desdieduled. Pa is 
taken from Ae active queue. 

18 Pa begins by executing an external communication and so is descheduled. Qa is 
taken from the active queue. 

19 Qa begins by executing an external communication and so is descheduled. There 
are no processes currently active. 

20 There is now a delay of Lw-(168+X2+X3) cycles untU R completes its external 
communication. 

21 R is rescheduled, but may not continue until its sub-process has cranpleted. 

22 P completes its external cwnmunication after a further x2+48 cycles... 

23 ... and behaves similarly. 

24 Q completes its external transfer after a further X3+48 cycles... 

25 ... and behaves similarly. 

26 Ra completes its external transfer after a further 24 cycles. 
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HYMIPS CONTROL TYPE I 

Note ref. Comments 

27 Ra points to its parent process (R) and ends. 

28 This allows R to continue by resetting sem^hrae la. 

29 R points to its successor and ends. 

30 Pa completes its external transfer and is rescheduled. 

31 Pa points to its successor (P) and ends. 

32 This allows P to continue by resetting saaaphoK 2a. 

33 P points to its successor and ends. 

34 Qa, which is rescheduled, ppoints to iots successor (Q) and ends. 

35 This aUows Q to continue by resetting sem^hore 3a. 

36 Q points to its successor and ends. 

37 The main high priority process is now able to point to its succesor, the next PRI 
PAR construct, and end. 
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HYMIPS CXDNTOOL TYPE U 

Note ref. Comments 

1 The PRI PAR construct is initiaUsed, and the high priority (main) process is set 
up. 

2 The high priority PAR construct is set up. 

3 Process P is placed on the high priority queue with a STARTP instruction. 

4 Similarly for Q... 

5 ...R... 

...S... 

7 ...T... 

8 U continues by spiiming on semai^ore la. 

9 U executes an external communication and so is descheduled. P is taken frran the 
active queue. 

10 P continues by executmg an external cramnunication and so is descheduled. Q is 
taken from the active queue. 

11 Q continues by spinning on sem^ore 2a. 

12 Q executes an external communication and so is descheduled. R is taken from die 
active queue. 

13 R executes an extanal communication and so is descheduled. S is taken from the 
queue. 

14 S continues by spinning on sem ĥOTe 3a. 

15 S executes an extOTial communication and so is descheduled. T is taken from the 
active queue. 

16 T executes an external communication and so is descheduled. Thoe are no 
remaining active processes. 

17 There is now a delay of Lw-(X2+X3+120) while U completes its transf«. 

18 U continues by pointing to its successor and ending. 

19 After a further 8 cycles, P completes its communicaticm and is rescheduled. 

20 P continues by resetting sonaphore la. 

21 P points to its successor and ends. Q is rescheduled. 

22 Q continues by pointing to its successor and ending. 

23 R is rescheduled after a further 8 cycles. 

24 R continues by resetting sem^ore 2a. 

25 R points to its successor and ends. S is rescheduled. 

26 S p o i n t s t o i t s s u c c e s s o r a n d e n d s . 
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j HYMIPS CONTROL TYPE 11 

1 Note ref. Commoits 

1 27 T is rescheduled after a further 8 cycles. 

1 28 T continues by resetting somqAore 3a. 

1 29 T points to its successor and ends. 

1 30 The main high priority process may now point to its successor (the next PRI PAR 
construct) and end. 
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HYMIPS PIPELINE CONTROL 

Note ref. Coinments 

1 PRI PAR construct is initialised. 

2 The high priority process is set up. 

3 Process P is placed on the high priority queue by executing a STARTP 
instruction. 

4 Similarly for process Q. 

5 R continues by spinning on semaphore la. 

6 Process Ra is placed on the high priority queue. 

7 R executes external communication and so is descheduled. P is taken from the 
queue. 

8 P continues by spinning on semaphore 3a. 

9 Pa is placed on the queue. 

10 p executes an external c(Himiuiiication and so is desdieduled. q is taken from the 
queue. 

11 Q continues by spinning on semai^ore 2a. 

12 Q executes an internal coomiunication . However, the diannel is empty and so Q 
is descheduled. Ra is taken from Ae queue. 

13 Ra continues by executing an internal communication, corresponding to that of Q. 
The transfer takes place and Q is resdieduled. 

14 Ra points to its successor and ends. Pa is taken from the queue. 

15 Pa continues by executing an internal communication. The diannel is empty and 
so Pa is descheduled. Q is takra from the queue. 

16 Q continues by executing an internal communication, cwiesponding to that of Pa. 
The transfer takes place and Pa is rescheduled. 

17 Q continues by resetting semaphon 2a. 

18 Q points to its successor and ends. Pa is taken from the queue. 

19 Pa points to its successor and ends. 

20 There is now a delay until R completes its link transfer. 

21 As Ra has con^ileted, R is aUowed to continue by resetting semaphore Sla. 

22 R points to its successor and disappears. 

23 P completes its link transfo* and is rescheduled. 

24 P is aUowed to continue by setting senuqAore 3a. 

25 P p o i n t s t o i t s s u c c e s s o r a n d d i s a p p e a r s . 
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1 HYMIPS PIPELINE CONTROL 

1 Note ref. Comments 

1 26 The high priority process points to its successor (die next PRI PAR construct) and 
ends. 

1 27 

1 28 



Appendix F 

Background References 

F - 1 



Further background on the work presented in this thesis is presented in the following 
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1989. 
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1990. 
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