W Durham
University

AR

Durham E-Theses

Digital signal conditioning on multiprocessor systems

Gould, Lee

How to cite:

Gould, Lee (1992) Digital signal conditioning on multiprocessor systems, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5965/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5965/
 http://etheses.dur.ac.uk/5965/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Digital Signal Conditioning on

Multiprocessor Systems

Lee Gould BSc. MSc.

Submitted in Partial Fulfilment of the Degree of
Doctor of Philosophy

University of Durham

1992

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

- 3 JAN 1993

Declaration

I declare that the work reported in this thesis, unless otherwise stated, was carried out
by the candidate, that it has not previously been submitted for any degree and that it

is not currently being submitted for any other degree.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged.

Table of Contents

Acknowledgementscoutiieiattintiiiiiiaaaaas vi
N T3 -V T vii
1IntroduCton v it iiieteeioeeeneneaaneenosonasacnencans 1
1.1 A Brief History of chroprocessors 2
1.2 Issues in Processor Designcouieieeenennn. 4
121 Pipeliningo viii it i 5

1.2.2 The Harvard Architecture 5

123 Caches MEMOMESvvvev v iennnnnnnnnennnns 6

1.2.4 Extended Processing Units 7

125 RISC .ottt i et i e e 7

1.3 MUultiproCesSOrS . . . oo vvvennenneeonenenneonneennsns 8
1.3.1 Interconnection Networkscovinennnn 9
133MIMD ...ttt ittt e 10
1.33.1Shared Memorycceienonn 10

1.3.3.2 Distributed Memoryc.cco0ooen. 12

1.3.4 Multiprocessor Performance 13

1.4 Digital Processing of Signalsot 14
14.1 Sampling Theoryc.ciieiiiiinnnn. 14

142 Filter STucturesc.cvveveneeeooneoccnns 15

143 Quantisation Effectso oo 15

1.4.4 Programmable Signal Processors 16

1.5 Concurrent Digital Signal Processing 17
ILOSUMMAIY . ..vvvovvennnnneneeeeenanennnnnnnsnessnns 18
2 The TranSPULET . . . oo vvit i veennneeseonatoennannesannnesens 30
2.1 IntroduCtion . . . vttt i e e 30
2.2 Transputer Architecturecovetvnntinnneannne. 33
2.2.1 The Central Processing Unit 33
222Intermal MEMOTY iiiiiiiiine e eeennn 34

2.2.3 External Memory Interface 34

224 LINKS © o v ittt ittt e e 35

2.2.5 The Floating Point Unit et e 36

2.3 The Transputer Instruction Set v 36
23.1 Direct InStTuCtionso vviiverenaaeeccenn 36
232Prefixingt e 36

233 Indirect Instructionscovieiea e 37

2.4 Performance Implications of the Instruction Set 37
2.5 The Implementation of Sequential Processes 38
2.6 The Implementation of Concurrent Processes 38
2.6.1 WOIKSPaceccovuvennennennnnaccnnnennns 38

2.6.2 The Process Descriptorccovunnnnn. 38

2.6.3 Scheduling Listsccoviueiiiinnn, 39

264 PHOTILY .« e veeeeteeneeeeneeeennenenannens 39

2.6.5 The Construction of Parallel Programs 39

2.6.6 The Construction of Prioritised Parallel Programs 40
2.7 CommuniCationoueteetrnne ettt 41
271 OVeIVIEW ... it ittt e e 42
2.7.2 Internal Communicationccveii .. 42
2.7.3 External Communication00uuu.. 42
28Memory Mapottt ittt e 43
29 Event Pins i 43
2.10BOOtNE . . .o e e 43
2.11 Optimising Performance e 43
2.11.1 Uni-Processor Optimisation 43
2.11.2 Multi-Processor Optimisation 44
2,12 8Ummary ii e e i e 45
3 Digital Filtering on the Transputer [61
30 Introductionottt e s 61
32The Filterttt ittt it 62
3.3 Implementation on the Transputer 62
3.3.1 Mapping the Processes onto the Processors 63
3.3.2 The Structure of the Processes 63
332.1The Hanessescoviniuiunnnnnn. 63
3.3.2.2 The Computation Section 65
3.3.2.3 The Occam2 Version 66
3.3.2.4 The Assembly Version 67
3.3.2.5 Compounding Filter Sections 68
332.6The Useof Vectorsoocvuunn. 69
3.3.2.7 Structuring the Computation Code 70
3.3.3 Measuring Perfformance 72
348SUmMmMary e e 73
4 Transputer Code: Performance Analysis and Results 88
41 InroduCtionttt e e e 88
4.2 Occam?2 Programs — A Method of Decomposition 89
4.3 The Transputer — an Operational Model 91
4.4 The Operation of the Harnesses 92
441 Hamess Type I it 93
442Hamess Type I i 94
D L 11 -3 96
4.5.1 Theoretical Performance Figures 96
452 CodeOverheadscciiiniiinnnnnnnn 96
4.5.2.1 The Impact of Overheads on Performance 97

4.5.2.2 The Effect of Vector Length and Computation
Code Sizecciiiiiiiinnannans 08
4523Summaryooi i 98
4.5.3 Empirical Results e 99
4531G6Gr0Up1 .. vvviii i e 99
4532Groupii ..ottt 103
45338umMmaryccovieniinnnnnaeanens 105

4.5.4 Comparison of Empirical and Theoretical Results 106

46 SUMMATY .. .i i ittt iieiinesnnenoanennnaneeneeens 108

5 The Motorola DSPS6001 i, 128

SlIntroductioniiiiiiiiiiiiiii i e 128

5.2 Architectural Overview 130

5.3 BUSES ittt e e e e e 131

531TheDataBuses........c.coviiiiiiiinnnn. 131

5.32The Address Busescciiviiinnnnnn. 132

5.3.3 The Internal Bus Switch 132

5.3.4 The External Bus Switches 132

5.4The Memory SPaces . . . oo eve v iiin it eennn. 133

541 x-DataMemory, 133

S42Y DataMemoryciiiiitiiii i 134

543 Program MEMOTYciiiiiieenennnnennn. 134

5.5 The Address Generation Unit un. 135

55.1TheRegisterFiles 136

552The Address ALU, 137

5.5.3 The Address Output Multiplexer 137

5.5.4 Address Register Indirect Modes 138

5.6 The Data Arithmetic and Logic Unit 138

5.6.1 The Data ALU Input Registers 139

5.6.2 The Multiply Accumulator and Logic Unit 139

5.6.3 The Data ALU Accumulator Registers 139

5.6.4 The Shifter/Limiter Circuitryc0.vonnn 140

5.7 The Program Controller uiann. 141

5.7.1 The Program Decode Controller 141

5.7.2 The Program Address Generator 141

5.7.3 The Program Interrupt Controller 143

5.8 The External Memory Interface (Port A) 145

SO POrt B . it e i e e 146

5.9.1 The General Purpose I/O Interface 146

592TheHostInterfaceoiviiinnnn. 147

S0 POt C .ot e i i e 147

5.10.1 The General Purpose I/O Interfaces 148

5.10.2 The Serial Communications Interface 149

5.10.3 The Synchronous Serial Interface 149

5.1 Programmingottt e 150

502 SUMMATY . ..o ittt ittt e e e 152

6 Digital Filtering on the DSP56001 164

6.lIntroductionci ittt e e 164
6.2 Realisation of the Canonic Biquadratic Filter Section on the

DSP56001 e 165

6.3 Expansion to Multiple Data Paths 167
6.4 Problems in the Implementation of the Application Filter on the

DSP56001 e 169

6.5 A Cascade of Single Pole Sections 170

iii

6.5.1 Structural Decomposition 171

6.5.2 The Sequence of Operations 171
653TheCodeccviiiiiiiiinnteennnnnnnnn 172

6.5.4 Expansion to Multiple Orthogonal Data Paths 173
655Performance i 173
G.OSUMMATYttt eeneenannnnennnns 174
7 Hybrid Multiprocessor: Design Concepts 185
71 Introduction . ..o v it e et e e 185
7.2 System Requirementsot 187
7.3 The ProCesSOrs « v o o vt v et ieie e e ennnennenannss 188
7.4 The Interconnection Scheme 189
7.4.1 A Review of External Interfaces @ 190
7.41.1The DSP56001c.. ... 190

74.12The Transputercccvevennn.. 190

7.4.2 Interfacing Possibilities 191
7421 LinktoHostPort 191
7J422EMItoEMI........... ... v, 192

7.4.3 Interconnection Methods 193

7.5 Memory ReqUirementsoovevennnnnnecsenn. 195
7.6 Reconfigurationc.couiiiinieereennnnnaannnnnns 197
7.7 Reprogrammingcoeuvennnnuannncoceessnnn 197
7.8 Summary (Architectural Overview) 199
8 Hybrid Multiprocessor: Implementation 210
8.1Inroductionviiiii it e 210
8.2 Memory Space Partitioning it 211
821 The DSP56001ciiiiiiiiiinnnnnnn. 211

822 The TranSputercooveveernnnnnnnnnns 212

8.3 Dual Ported Ram Partitioning Schemes 213
8.4 Communications Synchronisationc..oo0n 215
841 DualPorted Memorycciiiiiiiiannn. 216

8.4.2 The Test-and-Set Semaphore Protocol 216

8.4.3 The Hybrid Semaphore Protocol 218

8.5 Semaphore Implementation o 219
85.10ccam2 Versionc.viiiiinennnennnnns 219

852 Assembler Version 1, 221

8.5.3 Assembler Version 2uueieennennnnn 222
8.6Inidalisationciiiiiiiii i i e 223
8.6.1 DSP56001 Bootstrap Routine 224

8.6.2 The IMST801 Bootstrap Routine 224

8.6.3 DSP56001 Initialisation Procedure 224

8.6.4 IMST801 Initialisation Procedure 225

8.6.5 Global Initialisation Procedure 225

8.7 Synchronisationcciiiiiiiiiiiiiiiin.n 227
8.8 Designand Constructioncccovenereinnnennn. 229
BOSUMMArYc.iiiiiinieinnereanineeeieans 230

iv

9 Hybrid Multiprocessor: Perfformance 243

Ol Introductionci ittt e e 243
9.2 AnOperational Model 245
9.3 Data Transfer Withinthe Node 246
9.4 Data Transfer Outside the Node 248
9.4.1 Orthogonal Data Transfer 248
9.4.2 Pipeline Data transfer 250
9.5 Empirical Testingccoii it 252
951TheTestCodeoiiiiniiiinnn. 252
952 Results e e e 253
0.6 SUMMATY . . . ittt ittt it ittt ettt 253
10 Conclusionottt it i e e 261
10.1 The TranSputerot v i i ittt ittt ii e iie e 263
10.2 The DSP56001 it i 267
10.3 The Hybrid Multiprocessor 269
10.4 Suggestions for Further Work 271
References ittt 274
Appendix A
Filter Analysisttt i i e e A-1
Appendix B
OccamFilter Code i i B-1
Appendix C
Occam? Filter Program
Scheduling Charts and Results Table C-1
Appendix D '
Hybrid Multiprocessor Code D-1
Appendix E
Hybrid Multiprocessor Performance
Test Code Scheduling Charts, E-1
Appendix F
Background References i F-1

Acknowledgements

I would like to thank my supervisor, Dr. Alan Purvis, and my second supervisor, Prof. P.
Mars, for allowing this project to be initiated and for arranging the initial SERC funding. I
would also like to thank Dr. Purvis for his efforts in helping to secure additional funding

from British Gas plc.

I am also grateful to my industrial supervisor, Dr. J. P. Allen of British Gas ERS,
Killingworth, for his efforts in securing my funding, and for his guidance during my
funding period.

This work has been funded by SERC, British Gas plc and the University of Durham, to

whom I am very grateful.

The work presented in this thesis would not have been possible without the jovial support
and long enduring patience of the electronics and microprocessor centre technical staff. I
am especially grateful to Mr. Ian Hutchinson for those times when vital test equipment

needed to be found.

I am most grateful to my friends and colleagues, Ken Linton and Norman Powell, for our
many helpful discussions and their moral support throughout the period of this project. I
am especially indebted to Norman for the time he spent proof reading some of these

chapters, and for his help in producing the frequency response plots.

Abstract

An important application area of modern computer systems is that of digital signal
processing. This discipline is concerned with the analysis or modification of digitally
represented signals, through the use of simple mathematical operations. A primary
need of such systems is that of high data throughput. Although optimised
programmable processors are available, system designers are now looking towards
parallel processing to gain further performance increases.

Such parallel systems may be easily constructed using the transputer family of
processors. However, although these devices are comparatively easy to program, they
possess a general von Neumann core and so are relatively inefficient at implementing
digital signal processing algorithms. The power of the transputer lies in its ability to
communicate effectively, not in its computational capability.

The converse is true of specialised digital signal processors. These devices
have been designed specifically to implement the type of small data intensive
operations required by digital signal processing algorithms, but have not been designed
to operate efficiently in a multiprocessor environment.

This thesis examines the performance of both types of processors with
reference to a common signal processing application, multichannel filtering. The
transputer is examined in both uniprocessor and multiprocessor configurations, and its
performance analysed. A theoretical model of program behaviour is developed, in
order to assess the performance benefits of particular code structures and the effects
of such parameters as data block size. The transputer implementation is contrasted
with that of the Motorola DSP56001 digital signal processor. This device is found to
be much more efficient at implementing such algorithms on a single device, but
provides limited multiprocessor support.

Using the conclusions of this assessment, a hybrid multiprocessor has been
designed. This consists of a transputer controlling a number of signal processors,
communicating through shared memory, separating the tasks of computation and
communication. Forcing the transputer to communicate through shared memory causes
problems, and these have been addressed. A theoretical performance model of the
system has been produced. A small system has been constructed, and is currently

running performance test software.

Chapter 1

Introduction

From the inception of the first microprocessor based systems in the early 1970s, their
range of application has steadily increased. This has been aided by the ongoing
development of integrated circuit fabrication technology, which has resulted in the
production of relatively inexpensive, powerful processors, and by continuing software
development, which has produced compilers, operating systems and development tools
used to ease the programming task.

One particular area which has benefitted significantly from these developments
is that of digital signal processing (DSP), which is concerned with the modification
or synthesis of signals represented in the digital domain. Although some DSP
operations mimic their analogue counterparts, many may be realised only in the digital
domain. This versatility, the ease by ‘whi_ch the characteristics of a digital processing
system may be altered and the simplicity with which many of the basic building block
operations may be implemented has led to the widespread popularity of such systems.

Although once only a spin-off from general purpose microprocessor
technology, digital signal processing systems are now very sophisticated, and may be
said to constitute a major branch of modem computing systems. The range of

applications is wide, recent developments having made a significant impact in the area

of consumer audio products with the advent of compact disc and digital audio tape
(DAT) systems. Other application areas include sound synthesis, medical imaging,
seismic signal processing, speech recognition, graphics rendering and image
processing. The continuing alliance of digital signal processing with the area of
parallel computing promises the development of systems orders of magnitude more
powerful than those of today.

This chapter continues by giving a brief overview of microprocessors and
parallel computing. Digital signal processing is introduced, and an appraisal of modern
digital signal processing devices is presented, with a discussion of the application of
parallel computing techniques to digital signal processing. The chapter concludes by

describing the subject matter of this thesis.

1.1 A Brief History of Microprocessors

Modern microprocessors are the products of continually advancing semiconductor
technology, which began with the invention of the transistor in 1947. These advances
have allowed the dimensions of devices to decrease, increasing both the amount of
circuitry per unit silicon area and the operational speed.

The first microprocessor, the Intel 4004, was launched in 1971. This was a
slow 4bit device, with a limited addressing capability. This device was followed up
by the 8bit 8008 in 1972. As part of its efforts to convince engineers to use their
microprocessors, Intel also developed a range of programming tools.

By -1976, when Intel launched the 5V supply 8085, a number of 8bit
microprocessors were available, including the Zilog Z80 and the Motorola 6800. These

devices were produced in large quantities, reducing their cost which made them more

attractive for use in consumer products. Some of these microprocessors were made
available with on-chip memory and termed "microcomputers".

Although the first 16bit microprocessor was introduced in 1977, it was not
until the launch of the Intel 8086 in 1978 that any significant performance increase
was attained. These processors offer more advanced architectures than their 8bit
counterparts, many incorporating internal 32bit architectures, various memory modes,
large address spaces and high clock speeds.

1983 saw the introduction of the first truly 32bit microprocessor, the National
Semiconductors NS32032. Other 32 bit devices include the Intel 80386, the Motorola
68020/30 and the Inmos transputer [1], [2]. As a result of decreased feature size
and an increase in die size, modern processors are capable of operating at higher clock
speeds (50MHz) and incorporate many features such as memory, cache, peripherals
and specialised execution units (ie floating point units) on-chip. Included in this new
generation are the Intel 80486 and the Motorola 68040, both of which are instruction
compatible with their predecessors but offer significantly higher performance. The
Intel i860 utilises a 64bit architecture and incorporates a 3D graphics processing unit
on-chip, in addition to a floating point unit and multiple caches. The new generation
transputer, the T9000, should significantly increase the performance of transputer
based systems, when it is finally released. This device operates at a higher clock rate
and uses faster links (100Mbits™). Performance is enhanced by the provision of an on-
chip cache, a communications co-processor and an enlarged instruction set.

The performance of processors is often described in terms of MIPS (millions
of instructions per second), MOPS (millions of operations per second) or MFLOPS

(millions of floating point operations per second). However, the architecture of

processors is now so diverse that these ratings should be used only as a rough guide
when comparing the performance of different processors. An operation that is executed
in a single instruction cycle on one processor may take several cycles to execute on
another. Manufacturers always quote the maximum possible attainable performance
of their processors, which generally corresponds to the use of on-chip resources and
a permanently full instruction pipeline. Fig 1.1 shows the increase in processor

performance with time.

1.2 Issues in Processor Design

In 1945, while working as a consultant with the Moore School group, von Neumann
issued a memo concerning the design of a new computer (EDVAC). This repor,
reputedly for the first time, referred to a memory organ, used to hold all the different
types of data required by the computer.

This memo contained the first reference to what has become to be known as
the "von Neumann Architecture” [3], which was used as the basis for processor
architectures for well over 30 years. This type of architecture, shown in Fig 1.2, has
four main characteristics:

i A single computing element consisting of a processor, memory and an
input/output device.

ii A linear organisation of fixed size memory cells.

it A low level machine language with instructions performing simple
operations on elementary operands.

iv Sequential, centralised control of computation.
Data and instructions are stored in the same memory and are accessed via a single

bus. If the performance of the processor exceeds that of the memory, then the

processor is forced to Wait and the situation known as "bus bottlenecking” occurs.
Bottlenecking represents the major limitation of von Neumann architectures, and is
most apparent in high speed systems.

In order to increase the performance of such processors, various architectural

and implementational modifications have been made to this basic structure [4].

1.2.1 Pipelining

The processor must fetch an instruction, decode it and then act upon it. The idea of
pipelining is to use dedicated execution units for each of these functions, allowing
them to operate simultaneously [4], [5]. This divides up the work required of the
processor and increases performance. The basic form is the fetch, decode and execute
pipeline which allows an instruction to be fetched (pre-fetched) while another is being
decoded and another executed. Fig 1.3 demonstrates the action of such a pipeline
when executing three consecutive instructions, a, B and c. The pipeline may be
lengthened to increase the amount of operational parallelism, perhaps by including
units to compute the address of operands.

Pipelining works most efficiently whenever consecutive instructions are
accessed. Jump, call and context switching instructions render some portions of the
pipeline invalid. In such instances, the whole pipeline must be rcﬁlléd. This obviously
reduces performance, and the advanced microprocessors incorporate mechanisms used

to reduce the impact of this pipeline "flushing".

1.2.2 The Harvard Architecture

The performance limitations imposed by storing data and instructions in a single

addressable memory area may be alleviated somewhat by providing separate memories
for dafa ana insuﬁc-:ti;)n's.-_fl'hc Harvard architecture, shown in Fig 1.4, allow§ the
processor to fetch instructions and operé.nds simultaheousfy, significantly increasing
performance. This basic architecture may be extended, allowing multiple operand
fetches to occur simultaneously, Fig 1.5. Due to its high data bandwidth capability,
the Harvard architecture gas been utilised in a number of digital signal processing

(DSP) devices [6].

1.2.3 Caches Memories

Modern processors operate at high clock speeds, requiring fast memory access.
Dynamic RAM is unable to cope with the access speed requirements of the fastest
processors, and the size of static RAM allows only a small amount of memory to be
located on the processor board. Connecting a memory extension board slows down
access times. The consequence of this is that fast systems may only access small
memory areas at full speed.

The solution is to use a small, fast, memory to act as a storage buffer between
main memory and the processor. Such a memory is called a "cache", and is sometimes
incorporated on-chip for really fast access [7].

The effectiveness of a cache depends upon its access time and its “hit ratio”
" how often the processor finds useful information in the cache.

Caches may be used to store data or instructions, requiring sophisticated
control algorithms to maintain a high hit ratio.

The main motivation for using a cache based architecture is to decrease system

cost. Fig 1.6 shows the breakeven points between caches and various memory speeds.

1.24 E_xtex_ldgd Processing Units

Ad@ing Amoi‘q"i;_su'u'ctio"ns to a processor’s instruction set in order to increase its
performance also increases its complexity and die size. One method of increasing
functionality without incurring this complexity is to use extended processing units
(EPUs), or "coprocessors” [2]. Common EPUs include floating point coprocessors,

DMA processors, memory management units and vector coprocessors.

1.2.5 RISC
Continued development of microprocessors resulted in devices utilising many complex
instructions, requiring a large microprogrammed ROM and several cycles to execute
— the so-called complex instruction set computers (CISC). Although this does ease
the task of writing a compiler, it does tend to limit the performance of a processor.
By using a smaller, simpler and more regular instruction set, instruction cycle times
may be reduced. This is the approach taken by the reduced instruction set computer
(RISC) philosophy [8].

Although the definition of RISC is far from standardised, any RISC should
exhibit at least some of the following properties:

i Single cycle instructions.

ii Only roap and STORE instructions access memory, all other instructions
access internal registers.

iii Simple instruction formats.
v Hardwired, rather than microcoded, control units.
v A small, efficient instruction set.

Complex instructions are broken down into a series of shorter instructions. As the
memory bandwidth requirement of RISCs is high, they must use high speed memory

7

in order to maintain a performance advantage. As the control unit is small, this
releases space which may be used to provide a fast on-chip memory area. Example

"RISC processors include the Acorn Risc Machine (ARM), the MIPS 2200 and the -

Inmos Transputer.

1.3 Multiprocessors
When the performance requirement of a particular application cannot be met by a
single processor, then a multiprocessor system must be used [9], [10]. Many
types of multiprocessor are available, ranging from highly specialised to general
purpose systems. Multiprocessors are commonly described in terms of Flynn’s
Taxonomy [11], which classifies architectures according to the presence of single
or multiple instruction and data streams, below.
SISD (single instruction, single data) — serial computers.
MISD (multiple instruction, single data) — a generally impractical approach.
SIMD (single instruction, multiple data) — the same instruction is
simultaneously executed on different data.
MIMD (multiple instruction, multiple data) — multiple processors
autonomously operate on diverse data.
Not all multiprocessor architectures fit neatly into these categories, some may possess
properties attributed to more than one taxon. Multiprocessors may be thought to
consist of a number of processing elements (PEs) connected to memory units (MUs)
through an interconnection network (IN). The size and nature of these three elements

varies enormously among different multiprocessors [12], [13], [14], [15],

[16].

A task may be broken down into processes which may operate in parallel. The

size of these processes is termed the "grainsize". A program running small processes

is said to exhibit fine grain parallelism, whereas one running large processes is said

to exhibit coarse grain parallelism [6].

1.3.1 Interconnection Networks

The variation of IN topologies is considerable, a sample of the most popular is shown
in Fig 1.7. Some, such as the FFT butterfly, have been designed to implement a
particular class of algorithm, whereas others, such as the hypercube, have been
designed to implement a large number of algorithms with optimum efficiency. Some
multiprocessors utilise reconfigurable IN topologies, which considerably increases their
versatility, but also their complexity. The extent to which a multiprocessor supports
additional processors is termed its "scalability”, and is heavily influenced by the

interconnection network topology.

1.3.2 SIMD
Fig 1.8 presents a representation of the standard SIMD model. Processor and systolic
arrays are the two most common forms of SIMD architecture. Processor arrays are
used for numerically intensive applications which require regular, synchronous,
computation. The most popular IN schemes used in such architectures are the mesh
and crossbar.

Some array processors, such as Illiac IV [2], incorporate processors utilising
wordlengths of up to 64bits. A number of systems utilise simple, 1bit, processing

elements. These processors use planes of memory, and are particularly efficient at

implementing image processing algorithms. Example systems include the ICL
Distributed Array Processor (15AP) and‘ Thinking Machines Conncctién Machinc,
which utilises up to 65,536 processors. | A |

Systolic architectures were first proposed by H.T. Kung in the early 1980s
[17], [18]. The term "S)"stolic" arises from the manner in which data is
"pulsed"” through the system. The processors are tightly synchronised and connected
by a regﬁlar IN. Although the IN topology of these processors is highly optimised to
implement particular applications, reconfigurable arrays are available which are
significantly more versatile. Systolic arrays are particularly efficient at implementing
certain signal processing algorithms.
1.3.3 MIMD
MIMD systems generally make use of more sophisticated processors than SIMD
systems, and lend themselves to coarse grain parallelism. The processors operate
asynchronously and often possess their own memory area. Whereas each processor in
a SIMD system is controlled by a centralised controller, the processors in an MIMD
system operate autonomously. MIMD systems may be broadly categorised as either

shared memory or distributed memory architectures [6], [14].

1.3.3.1 Shared Memory

The processors in this type of architecture communicate through an area of shared
memory. It is impdrtant to ensure that the data in this area is not corrupted by
uncontrolled access. This is usually carried out by using a "semaphore” protocol [6],

[19], [20]. A semaphore consists of a word in memory and controls access to

10

an area, or domain, of memory. The state of the semaphore determines whether or not
the domain is in use by a processor, and so determines whether or not other processors
may access it. The processors test thcvsemaphore, and act appropriatcl-y. Whenever a
process gains access to a domain, it "locks"” it by setting the semaphore, and "unlocks”
it when finished by resetting the semaphore. In order for a semaphore protocol to
work, the processors must use so-called "atomic” instructions to test the semaphore
and set it, if appropriate, in a single bus cycle. This eliminates the possibility of
semaphore ambiguity when two processors interleave their memory accesses.

Repeatedly testing and failing a semaphore, "spin locking”, can degrade
performance by increasing the memory traffic [21]. The simple shared memory
architecture shown in i:ig 1.9 is especially susceptible to this problem as the von
Neumann bottlenecking problem is increased due to the additional processors. More
sophisticated semaphore protocols do not allow spin locking, which helps to reduce
the amount of bu§ traffic [22].

Various interconnection networks have been introduced in order to reduce the
bus saturation problem, including the crossbar network and hierarchical bus structures,
Fig 1.10 and Fig 1.11. These may be either "static", as in the hierarchical bus, or
"dynamic", as in the crossbar switch. Dynamic interconnection networks allow
communications paths to be made "on the fly" and are able to offer higher
communication bandwidths and lower latencies. However, they are complex and hence
expensive to implement,[6],[13],[20].

Addition of local memory and caches increases the performance of any of the
above configurations. If shared data is held in a cache, it must be updated whenever

other processors change any related variables in other caches or main memory. This

11

"cache cohe_rency" requires the addition of extra hardware or software, which increases -
‘ Jcorriple»xity and may reduce performanéc [23],[24],[25],[26], . |

1.3.3.2 Distributed Memory

Distributed memory systems consist of nodes comprising a processor and memory pair
which are connected via an interconnection network, and may take on any of the
forms outlined in Section 1.3.1. Data is transferred by passing messages across the IN.

The development of distributeq memory systems has been motivated by the
desire to produce large, scalable systems capable of providing a high performance for
a variety of applications.

The hypercube, in particular, is a popular interconnection network
configuration, possessing a high degree of interconnectivity and relatively low
communications diameter. Commercially available hypercube distributed memory
systems include the Cosmic Cube [27], the AMTEK 2010 and the Intel iPSC2
[28]. The new generation of hypercube machines will utilise specialised
communications processors to provide efficient routing through the use of
"wormholing" {29], which reduces the communications latency whenever a message
is routed through intermediate processors.

The transputer, in particular, has been designed with large scale distributed
memory systems in mind [29]. The provision of four bidirectional serial
communication "links" allows very large systems to be easily constructed with these
devices.

Modules are available which connect a transputer to other processors, which

are used as slaves. These companion processors include the Motorola DSP56001

12

programmable digital signal processor the Motorola DSP56200 FIR chip (both from
Pcnmos) the Intel i860 and Zoran vector processors {301]. Thesc Processors
certainly boost the apparent performance of the transputer, but often the interprocessor

communication bandwidth is low, and scalability is not supported.

1.3.4 Multiprocessor Performance

The maximum speedup that may be attained by a multiprocessor comprising n
processors is n times that of a single processor. This ideal performance is only
attainable if the interconnection network is capable of sustaining the total
communications bandwidth required by the processors. The communication bandwidth
of the interconnection network is the limiting factor in the performance and scalability
of a multiprocessor. Hence the choice of interconnection network must be carefully
considered when designing a multiprocessor system [6], [20], [31].

Transputer systems offer a high communications bandwidth which is
proportional to the number of processors. Thus, the scalability of such systems is
large. However, performance will suffer whenever a message issued by a transputer
must be routed through intermediate transputers in order to reach its destination, as
the intermediate transputers must devote time to through-routing the message [29].

Due to the vast variety of multiprocessor architectures, it is difficult to apply

benchmark programs as a means of comparing the performance of different systems.

The development of multiprocessor benchmarking programs is a growing area of

research [32] [33].

13

1.4 Digital Processing of Signals

Although the mathematical theoriesAar_ld tools forming the ‘ba_sis Qf tl;c Aec_lvcct.i‘c field
of digiial signaln procéssing had been brought together by the middle of this century,
practical implementation was severely limited by the available technology.

The development of digital filter theory [34] and the Fast Fourier
Transform algorithms [35] coupled with the development of integrated circuit
technology resulted in the emergence of feasible digital signal processing systems in
the mid 1960s. Digital signal processing has now grown into an established and ever
expanding discipline. Application areas include audio and video processing,
communications, seismology and tomography [36].

Digital processif;g of signals offers more control, and higher predictability, than
its analogue counterpart. Some applications may only be implemented using digital
techniques. Some applications may be too expensive, or be too slow, to implement

digitally, however, and must use analogue technology.

1.4.1 Sampling Theory

A digital signal consists of a series of values defined at discrete intervals of time.
When an analogue signal is modulated by a set of pulses (delta functions), the
resultant output is a quantised form of the input. This process is known as "sampling”
[37], and the frequency at which the pulses are applied is termed the "sampling
frequency". Sampling theory maintains that the maximum useful frequency content of
a digital signal is limited to half the sampling frequency (the Nyquist frequency). Any
frequency component higher than the Nyquist frequency is "aliased", or folded around

the Nyquist frequency, into the sub-Nyquist range, resulting in signal distortions.

14

Furthermore, the frequency spectrum of the sampled signal exhibits a p_eriodicity.
Whenever an analogue signzil is samplred, it must first be band limited by a low

pass analogue filter, to half the sampling rate, which elimiﬁates aliasing; When a

sampled signal is to be converted back to the analogue domain, it must be passed

through a similar filter in order to properly reconstitute the signal. The entire process

is outlined in Fig 1.12.

1.4.2 Filter Structures

Digital filters utilise multiplication and addition operations to modify a signal’s
frequency and phase spectra. The most widely used digital filtering types are the finite
impulse response filter {FIR) and the infinite impulse response filter (IIR), example
architectures of which are shown in Fig 1.13 and Fig 1.14. Although IIR filters are
more economical, their inherent feedback properties render them liable to unstable
behaviour. FIR filters are stable and offer linear phase characteristics, but tend to

require more operations than IIR filters [38].

1.4.3 Quantisation Effects

Due to the finite length of their registers, digital devices can represent information
with only a finite precision. An 8bit device is capable of half the precision of a 16bit
device, and so on. This has consequences relating to dynamic range, signal to noise
ratio (SNR) and filter response approximations. The limited precision with which filter
coefficients may be represented forces the possible frequency responses to be
quantised. In addition, the truncation caused by transferring data from a long

accumulator to a shorter memory location introduces noise into the system. Noise is

15

also introduced by the analogue to digital converter. As a rough measure, 1bit of noise
reduces the SNR by 6dB. Noise considerations are an imbortant-des'ign “aspect of

digital hardware systems [37].

1.4.4 Programmable Signal Processors

Advances in processor design methods, coupled with the desire to make signal
processing hardware more compact and manageable resulted in the production of the
first programmable digital signal processor, the NEC uPD7720 in 1980. The main
difference between digital signal microprocessors and their general purpose
counterparts is in the provision of a fast hardware multiplier [7], [39].

In order to provide maximum data throughput, these processors incorporate
dedicated registers which act as multiplier input buffers. This allows operands to be
fetched while the multiplier is operating. Arithmetic precision is maintained through
the use of double length multiplier output registers (accumulators), which are often
extended to accommodate overflows. |

As the speed of multipliers increased, so did the need to supply them with
data. Some form of the Harvard architecture is used in every recent processor,
including areas of on-chip memory which may be simultaneously accessed at full bus
bandwidth.

The use of register indirect addressing modes helps to speed up memory
accessiﬁg by removing the need to explicitly calculate addresses. The more recent
signal processors incorporate a number of address registers which may be modified
in parallel with memory and multiplier operations. A summary of presently available

signal processors is given in Table 1.1. More detailed descriptions may be found in

16

[40],[41],[42],[43],[44],[45],[46).

The most recently introduced signal processor fr-om Texas Instruments, the
TMS32OC40, incorporates s_ii byte wide communication interfaces, each capable of
transferring data at 20Mbytes™. This is the first processor to have been designed to
interface, at high speed, with other similar devices, allowing point to point
interconnection network topologies such as the 3D mesh and 6D hypercube to be
directly implemented. The TMS320C40 points to the convergence of two areas of high

performance computing — digital signal processing and parallel computing.

1.5 Concurrent Digital Signal Processing
Parallel signal processir;g systems based on SIMD architectures have been in existence
for a number of years [47]. These tend to be highly synchronous and are capable
of implementing only a small class of algorithms efficiently. The application of MIMD
architectures to digital signal processing applications is an area of active research.
Transputer arrays have proved popular, as they are easily constructed and programmed
[48], [49]. However, the development of architectures designed specifically
to cater for the requirements of specialised digital signal processing elements has not
yet reached maturity [50], [51], [52], [53], [54], [55], [56), [57], [58], [59], [60], [61].
The problems of utilising signal processors in MIMD architectures are
three-fold. Firstly, their data requirement is very high, often requiring up to three
memory accesses per instruction cycle, which puts considerable strain on the
interconnection network and limits scalability. Secondly, although performance models
of multiprocessor systems do exist [32], they tend to be stochastic rather than

deterministic and so are not applicable to real-time digital signal processing

17

applications, which are generally deterministic. Thirdly, signal processors have been
optiﬁaised to pass data"fyréﬁgh tﬁeir multipliers as quickly as possible, not to intc'r;ct-
in a multiproccsso} environment. Hence, any overheads attached to interprocessor
communication management may significantly affect the performance of the processor.

Conversely, these properties also aid the system designer. Digital signél
processing algorithms generally require large amounts of data, and very little (if any)
control information. This allows data to be transferred efficiently to the processors in
large buffered packets (vectors). As the execution of the signal processing algorithms
~ tends to be fixed, then the intervals at which the processors require data is also fixed.
This allows the data transfers to be staggered, reducing communications resource
contention.

Multiprocessor architectures need to be found that allow fast data transfer, to

keep the signal processors fed, without incurring excessive communications

management overheads, which would slow down the processors.

1.6 Summary

This introduction has provided an overview of the growth areas of high performance
multiprocessing and digital signal processing. Although the architecture of the earlier
digital signal processors differed markedly from their general purpose counterparts,
more recent devices have started to incorporate a blend of architectural strategies. For
example, digital signal processors are accessing larger memory spaces, and may be
programmed with high level languages, whereas general purpose processor are

breaking away from the von Neumann architecture by using multiple bus memory

architectures.

18

Digital signal multiprocessor systems tend to suffer from low performance or
reduced scalability as a consequence of relatively low bandwidth interprocessor
communication mechanisms. This is changing as more research is aimed at the
communications requirements of these systems.

The interprocessor communication problem has been acknowledged by Texas
Instruments, in their new "parallel" signal processor, the TMS320C40, which uses
autonomous DMA ports in a similar manner to the transputer. This device incorporates
six byte wide ports, capable of a total transfer rate of 120 Mbytes™. This is a high
transfer rate (over twelve times faster than the transputer), and the six ports allow 3D
meshes or 6D hypercubes to be directly implemented. But it is important not to get
carried away with this specification. The DMA ports will only operate at full speed
when accessing internal memory; external accesses are multiplexed onto a single
interface which must be shared with other DMA msfcm and cpu instruction /data
fetches. This device is best suited to a point to point communications scheme, which
are prone to through-routing latencies and a corresponding performance decrease.
Finally, these devices possess a high pin count (which increases pcb costs), relatively
high power consumption and are expensive.

Some applications may not require 32bit floating point operations, or such a
high degree of interconnectivity, but would nevertheless benefit from a multiprocessor
implementation. The problem here is that the lower range signal processors provide
limited multiprocessor communications support, which results in an inefficient system.
DevelopingA an optimally efficient interprocessor communication mechanism for such
systems would allow more data processing to take plaéc, increasing the effective

number of MIPs per processor and reducing overall cost. The resultant multiprocessor

19

need not be homogeneous (consisting of identical processors), a heterogeneous system
(consisting of different type of processor) could be used to maximise efficiency. Such
a system could be used either as an inexpensive stand-alone signal processor, or as an
add-on accelerator. It would be important in the design of such a system to ensure that
the operation of the processors was fully understood, especially the mechanisms
involved in computation and communication.

The assessment of two different types of microprocessor in terms of signal
processing and interprocessor communications, with a view to combining them to form
an efficient and inexpensive digital signal multiprocessor forms the subject matter of
this thesis. Chapters 2 to 4 introduce the Inmos transputer, assessing its applicability
to signal processing. Chapters 5 and 6 outline the architecture and operation of the
Motorola DSP56001 digital signal processor. Both processors are compared by their
ability ta implement a multichannel digital filtering application. The conclusions drawn
from these chapters are used in the design of a hybrid (heterogeneous) multiprocessor
(Hymips) in chapters 7 and 8. Although this multiprocessor was developed as a
general purpose digital signal processing platform, the research involved in its
development was closely aligned toa particular high performance audio bandwidth
application. The reader is referred to the list of conference papers presented in
Appendix F for further information. Chapter 9 offers a theoretical analysis of system
performance, together with empirical verification of the performance equations.

Finally, chapter 10 provides a conclusion and suggestions for further work.

20

AMI s2811 1978 The first DSP designed; 12/16-hit fixed point; not 300
released until 1982 becanse of technology problems
|| | s22112 1983 | An update of the 2811 .
Analog ADSP-2100 1986 16/40bit fixed point 125
Devices
ADSP-2100A 1988 An update of the 2100 80 or 100
ADSP-210122 1988 A2100A with inteal RAM and peripherals; 2102 -
has mask programmable program ROM.
| ADSP-2111 1990 2101 with host port .
AT&T DSP1 1979 Early 16/20bit device, marketed intemally 800
DSP32/32C 1984/88 | 32bit floating point 160/80
DSP16/16A 1987/88 | 16bit fixed point 5525
DSP16C 1990 DSP16A with voice band Codec -
Motorola DSP56001 1987 24bit fixed point, on-chip peripheral ports 97.5/15/50
DSP56000 1987 56001 with mask programmable ROM -
DSP96001 1990 32bit IEEE floating point. 75
DSP96002 1990 96001 with additional memory port. -
NEC WPD7720 1980 A popular early DSP. 250
HPD7720A . Update of 7720 244
uPDTT230 1985 32bit floating point 150
KPD77220 1986 24/48bit fixed point. 100
WPDTTC25 1988 7720A upgrade 122
uPDT77240 1990 Update of 77230 90
Texas TMS32010 1982 | Popular 16bit fixed point DSP 390
Instruments
TMS32020 1985 Update of 32010 195
TMS320C25 1987 CMOS ‘update of 32020, with additional instructions 100
TMS320C30 1988 32bit floating point 60
TMS320C50 1990 16bit fixed point 35
TMS320C40 1992 32bit floating point with 6 byte wide DMA ports. 60
Designed for multiprocessing
Sharp LH9124 1991 24bit fixed point frequency and time domain -
Processor.
LH9320 1991 Address generator for the LH9124 -

Table 1.1 A Summary of Popular Programmable Digital Signal Processors

21

MIPS

is60 ®
]
80486 ® MC6E8040

10.0 — T414 o .
T800

Z8oooo *

MC68020 © ® 80386

1.0 =
80286 ©
68000 ©
® 8086
0.1 =
® 8085
MCeé800 ®
8oso ®
® 8008
® 4004
0
| I | |
1970 1975 1980 1985 1990

Release Date

Fig 1.1 The Increase of Processor Performance with Time

22

Processor

] 1

bus

Memory

1

- Input/Output

Fig 1.2 The von Neumann Architecture

Fetch Decode Execute
A / /
B / /
c B A
/ c B
/ / c

Fig 1.3 The Execution of an Instruction Pipeline

23

Time

Data
Memory

Program
Memory

Processor

Fig 1.4 The Harvard Architecture

Memory 2

Processor

Fig 1.5 A Modified Harvard Architecture

Cost »

Ows

2ws

4ws

Cache

Size

Fig 1.6 Cache/Main Memory Breakeven Points

24

Pipe

Binary Tree

O—0O0—=0

Mesh

O0—0—=0

Fig 1.7 Example Interconnection Network Topologies

25

PE MU

Control PE N MU

PE MU

Fig 1.8 The SIMD Model

PE PE PE

MU . MU MU

Fig 1.9 The Simple Shared Memory Architecture

26

PE

PE

SW SW
SW SW
MU MU

Fig 1.10 The Crossbar Interconnection Scheme

MU

MU

PE

PE

MU

MU

PE

PE

PE

PE

MU

MY

PE

PE

Fig 1.11 An Example of a Hierarchical Bus Structure

27

$s90014 Suyrdureg ayy, 71y 814

T 1 [T17 4T Il
{ m :
! ! t
c/sde o osd wnoeds wnioeds
wiruoeds pe|dwes peioly (eujByo

_ _ _ 1< 1 }
1Y _ o
uoljejnpow
es|nd 1o} ssed moj

indino reubiqa indu) enBojeuy

28

input
pu A 3

1 -1 ’ ,
output
| z O—® z

Fig 1.13 An FIR Structure

input o7 - . = 2
o
~DLEL,JZ\ O—O—OT+
1 71 1 1 la—
’@f: O—C-

Fig 1.14 An IIR Structure

29

Chapter 2

The Transputer

2.1 Introduction

The term "transputer” refers to a family of RISC - like microcomputers manufactured
by Inmos (now a subsidiary of SGS Thomson Microelectronics Group) [9], [30]. The
major differences between the devices are the wordlength (16 bit or 32 bit), the size
of the internal memory (2kbyte or 4kbyte) and the incorporation of a floating point
unit (fpu - T80x transputers only), the core architecture remaining similar. The generic
term "transputer” will be used to refer to the family as a whole in this thesis, any
particular architectural difference being pointed out when necessary. As the transputer
was designed with embedded systems applications in mind, it requires only an
additional bootstrap ROM for stand-alone operation.

The key feature of the transputer architecture lies in the inclusion of "link
engines". These are essentially DMA controllers which transfer data between memory
and an external, bidirectional, serial interface. The link engines operate concurrently
and asynchronously both with themselves and the central processing unit (cpu). These
links allow any transputer to be directly connected with up to four other transputers,
allowing asynchronous communication to occur concurrently with cpu operation. This

ability to overlap communication and computation is the main feature distinguishing

30

the transputer from other commercially available processors'. It is these links that
allow a network of an arbitrary number of transputers to be easily implemented, Fig
2.1.

The links provide for a point to point message passing communication
paradigm to be implemented. The advantages of point to point links over mult-

processor buses are [30]:

i There is no contention for the communications mechanism, regardless
of the number of transputers in the system.

ii. There is no capacitive load penalty as transputers are added to the
system.
iii. The communications bandwidth does not saturate as the size of the

system increases. Rather, the larger the number of transputers in the
system, the higher the total communications bandwidth of the system.
However large the system, all the connections between transputers can
be short and local.

It must be considered, however, that the communications bandwidth across a
link is lower than may be obtained over a bus. Furthermore, only four links are
provided, which limits the topologies which may be realised using direct connections.
Whenever messages must be routed through intermediate processors, not only is there
a possibility of link communication contention, but the routing éoftware must be
explicitly programmed, which further adds to the communications overhead and
detracts from overall performance.

The point to point message passing paradigm is efficiently implemented by the

! An exception to this is the TMS320C40 programmable digital signal processor from
Texas Instruments, which has been recently released.

31

transputer’s "native” language, Occam (now Occam2) [62]. The transputer was
designed around the ideas embodied in Occam, which itself is based upon the theory
of Communicating Sequential Processes (CSP) [63].

Occam allows any number of parallel processes to be incorporated into a
program. The processes communicate over Occam "channels”, and may run either on
a single transputer or be mapped onto several transputers for true concurrency and
increased performance. Parallel processes running on a single transputer communicate
through "soft" or "internal" channels, whereas those running on different transputers
communicate over "hard" or "external" channels, implemented by the link interfaces.

Parallel processes running on a single transputer are managed by a microcoded
scheduler. The scheduler ensures that no process monopolises the cpu by periodically
"timeslicing" processes, deschedules processes when they are no longer able to
proceed, and reschedules them again when they are. The operation of the scheduler
is normally transparent to the programmer.

Section 2 introduces the architecture of the transputer, and its main execution
units. The instruction set is covered in section 3. Section 4 goes on to discuss the
effect which the manner in which the transputer deals with instructions has on
performance. The construction of sequential and parallel processes are described in
Sections 5 and 6 respectively. The communication mechanisms are covered in Section
7, followed by the memory map, events and bootstrap procedures. Section 11

introduces methods of optimising performance, and finally section 12 offers a

summary.

32

2.2 Transputer Architecture
The architecture of each processor in the transputer family is similar. A schematic
representation of the major blocks is shown in Fig 2.2. for integer and floating point

transputers. The individual blocks will now be discussed separately.

2.2.1 The Central Processing Unit
The microcoded central processing unit (cpu) contains six registers which are used

when implementing sequential processes. These are:

i Wptr The workspace pointer, which points to an area of memory
~ where local variables and process parameters are stored.

ii. iptr The instruction pointer, which contains the address of the next
instruction to be executed.

iii. Oreg The operand register, used to store instruction operands.
iv. Areg The top of the evaluation stack.
V. Breg The intermediate evaluation stack register.

vi. Creg The bottom of the evaluation stack.

The evaluation stack is used for integer and addrcss arithmetic. Loading a value onto
the stack pushes Areg into Breg, and‘ Br;eg into Creg, before loading Areg. Storing a
value from the stack pops Breg into Areg, and Creg into Breg, after Areg is stored. The
floating point unit contains three similar, floating point, registers that behave in the

same way.

The microcoded scheduler also resides in the cpu. Using a microcoded
scheduler removes the need for a software kernel and so allows efficient management

of concurrent processes.

33

The cpu also allows for real-time programming by incorporating two timer
registers, one operating at a resolution of 1ps for use by high priority processes, the

other at 64 us for use by low priority processes.

2.2.2 Internal Memory

The transputer incorporates either 2 or 4kbytes of static memory on chip (device
dependent), which occupies the lowest area of the memory map. In accordance with
the RISC philosophy, this memory is accessed in a single processor cycle. Any
frequently used variables should reside here, in preference to the slower external

memory area.

2.2.3 External Memory Interface

The external memory interface (EMI) provides access to up to 4Gbyte of memory.
Most transputers incorporate a versatile EMI, which is able to interface to most types
of dynamic as well as static RAM. This feature greatly simplifies hardware designs
that use dynamic RAM.

The address and data buses are multiplexed. The full 32-bit data bus is used,
but only the 30 most significant address lines are brought out to the EMI, which
corresponds to a word aligned external addressing scheme. Individual bytes are
accessed using individual byte strobes. One of the seventeen possible EMI
configurations is selected after processor reset.

Sinéc the data and address lines are multiplexed, external memory access is
significantly slower than internal memory access, even when no wait states are used.

Using this EMI, external memory access is three times slower than intemal memory

34

access. If faster external memory access is required, then the T801 transputer may be
used. This floating point transputer uses non-multiplexed data and address buses,
resulting in an external access time of two processor cycles. However, due to the extra
bus pins, most of the EMI’s control and strobe lines have been lost. The EMI of the

T801 is very simple, and is only suitable for direct connection to static RAM.

2.2.4 Links
Most transputers support four bidirectional link interfaces (the exceptions being the
budget T400 and the M212 Disk Controller), which are .used to connect either to other
transputers or to other types of device, through a link adapter. Each link consists of
an input and an output channel. A single byte is sent at a time, and for each byte sent
an acknowledge packet is received on the input of the same link. Data and
acknowledge packets may be multiplexed on the same link. The acknowlédge packet
is transmitted as soon as an input packet begins, allowing for continuous
communication (except on the early revA T414s, which did not implement this
overlapping protocol). The structure of the data and acknowledge packet is shown in
Fig 2.3.

Links may operate at 5, 10 or 20 Mbits™, regardless of the internal clock speed,
allowing transputers of different clock speeds to be linked together. Links can carry
information at a maximum of 1.74Mbytes™ in unidirectional mode, and 2.35Mbytes™

in bidirectional mode [30].

35

2.2.5 The Floating Point Unit

Some transputers (the T80x series) incorporate an on chip floating point unit (fpu),
conforming to ANSI-IEEE 754-1985 standard [30]. This operates on operands, the
addresses of which are supplied by the cpu, and executes concurrently with the cpu.

The fpu is capable of sustaining 2MFLOPS (for a 20MHz processor).

2.3 The Transputer Instruction Set
The transputer instruction set is byte orientated, and so is independent of processor
wordlength. Thus, all the transputer family may use the same compiler. Each
instruction has a similar format [64].

An instruction consists of a single byte, divided into two four bit "nibbles".
The most significant nibble represents a function code, the least significant represents
the operand of the function. The least significant nibble is loaded into the lowest

nibble of the operand register, Fig 2.4.

2.3.1 Direct Instructions

The four bit representation allows sixteen instructions to be directly implemented, each
with an operand value ranging from_zero to fifteen. According to the RISC design
philosophy, Inmos have implemented the most common instructions in this manner.
Among these are the local load and store instructions, which according to Inmos, are

most commonly used with small operands (ie values less than sixteen) [30].

2.3.2 Prefixing

Of course, the transputer uses more than sixteen instructions, and uses operands of up

36

to 32 bits. These other instructions and larger operands must be "built" using the
prefixing instructions, which are included in the set of direct functions. The prefix
(p£ix) instruction first loads its operand into the operand register, then left shifts this
value four places. The negative prefix (nfix) instruction operates in a similar manner,
except that the operand register is complemented before the operand is loaded.
Operands of up to 32 bits may be loaded in this way, using additional prefixing
instructions. The number of prefix operations used to load an operand will be termed

the level of prefixing.

2.3.3 Indirect Instructions

The operate (opr) function has been included in the set of direct functions. The
operand of this instruction is interpreted as another instruction, which operates on the
evaluation stack. Sixteen indirect functions may be encoded in a single byte. Other
indirect instructions may be invoked by extending the operand register, using the

prefix function. Examples of instruction encoding are given in Table 1.

Occam Program Assembler Mnemonics
x = 0 LDC 0
STL b4
x := =256 NFIX 1
PFIX O
LDC 0
STL X
Areg + Breg OPR 5
Areg AND Breg PFIX 4
OPR 6 _

Table 2.1 Examples of direct, prefix and indirect instructions

37

2.4 Performance Implications of the Instruction Set

Inmos claim [30] that “about 70% of executed instructions are encoded in a single
byte..Many of these, such as LDC and ADD require just one processor cycle". It
would certainly seem that coding is efficient, although the user would be able to make
a more objective judgement if the source code for these programs were made
available. The byte wide instruction format does have consequences relating to overall
performance.

Although many instructions require only a single processor cycle to execute,
they often require prefixing to load in their operands, which adds to the overall
execution time of the instruction. It must be remembered that the timing information
that Inmos publishes relates oply to the cycle times of the instructions, and does not
include any time taken to extend the operand.

The cpu reads in a word of program memory at a time, allowing up to four
instructions to be loaded in one processor cycle, providing that on-chip memory is
used. This decreases the bus bandwidth required by the cpu, increases the efficiency
of instruction prefetch and reduces the overheads attached to jumping. The reduced
bus bandwidth requirement is one of the reasons why link operation only minimally

degrades cpu performance.

2.5 The Implementation of Sequential Processes

Sequential processes are executed using the six registers contained within the cpu.
Every sequential process uses two areas of memory. The first is the program area,
which is referenced by the iﬁstruction pointer (Iptr) and provides the instructions. The

second is the workspace, which is referenced by the workspace pointer (Wptr) and is

38

used to store local variables and values associated with timers and alternatives.
Expressions are evaluated on the evaluation stack. Local variables are addressed

relative to the workspace pointer, non-local variables are addressed relative to the

address held in Areg. A schematic representation is given in Fig 2.5.

2.6 The Implementation of Concuﬁent Processes

The instruction set, together with the scheduler, allows for the efficient implementation
of logically concurrent programs on the transputcr; A parallel program consists of a
set of sequential processes, which usually communicate with each other. The scheduler
ensures that these processes are all given an equal share of processing time, although
it may interrupt or deschedule a process under certain circumstances. Whenever it is
interrupted, a process completes the instruction that it is executing before the contents
of the registers are saved in the auxiliary registers (reserved locations in internal
memory). The process may be resumed at a later time by restoring these register
values. Whenever a process is descheduled, however, the registers are not saved. It is
thus important that no important information is held in the evaluation stack when a
descheduling instruction is executing, as this information will be lost if descheduling
occurs.

A parallel program running on the transputer, then, may be ihought of as a set
of sequential processes that are scheduled, interrupted and dcscheduled under the
control of a run time management kernel — the scheduler.

What follows is a description of the software and hardware mechanisms used
by the transputer to implement parallel programs, priority and the structure of both

non-prioritised and prioritised programs. The description is fairly detailed, as an

39

appreciation of the construction of, and the overheads associated with, single processor
concurrent programming is important if the effects on performance are to be fully

understood.

2.6.1 Workspace

Each process uses its own workspace (WS) in a similar manner to the way workspace
is used in purely sequential programs. The cpu registers are also used in the same
way. Whenever a process begins execution, its workspace and instruction pointers are
loaded into the appropriate registers in the cpu. In addition to storing variables, timer
and alternative information, the workspace is also used to store the process instruction
pointer, values associated with communication and scheduling information. All these

non-variable values are stored in negative workspace locations.

2.6.2 The Process Descriptor
The descriptor of a process is the sum of its workspace address (which is word
aligned — ie its byte selector is zero) and its priority (either 1 or 0), which occupies

the 1sb. The process may be completely identified in a program by its descriptor.

2.6.3 Scheduling Lists

A process may be either active (scheduled) — being executed or waiting to be
executed — or inactive (descheduled) — waiting for communication or until a specific
time. Inactife processes consume no cpu time. The scheduler manages the processes
by maintaining two linked lists (or queues) of processes, one for each priority level.

The scheduler uses two registers for each list, one pointing to the front, the other to

40

the back, Fig 2.6. Whenever a process is descheduled, then its instruction pointer is
saved in workspace location -1, it is taken off the queue and the next process on the

queue is executed. It takes about 18 processor cycles to reschedule a process.

2.6.4 Priority
The transputer supports two levels of priority, high (0) and low (1). High priority
processes run in preference to low priority processes.
A low priority process will run until either
i. it has been executing for two "timeslice” periods (2048 high priority

timer "ticks", about 2us), in which case it is put to the back of the
queue at the earliest opportunity.

ii. it has to wait for communication or timer input, in which case it is
descheduled.
iid. a high priority process becomes active, in which case the low priority

is interrupted and execution switched to the high priority process at the
earliest opportunity.

A high priority process will run until it is unable to proceed as it is waiting for
a communication or timer input, in which case it is descheduled.

The scheduler will normally interrupt a low priority process in order to execute
a high priority process at the end of the; current instruction. However, there are six
"interruptible” instructions, concerned either with communication or timer input [65].
It is important that no additional information is contained in the stack when these
instructions are executing. Once one of these instructions is interrupted, then the
instruction pointer of the low priority process is saved in its workspace, and the high
priority process allowed to begin. Typical process switching latency is 18 processor
cycles.

41

Similarly, any process may be descheduled only when it is executing one of

the twelve "descheduling" instructions

[30D),

which are concerned with

communication, timers, jumps, errors or concurrent process initialisation and

termination.

2.6.5 The Construction of Parallel Programs

This section describes the way in which the transputer instruction set is used to

implement parallel programs from processes of equal priority. Consider the processes,

p,0 and R, which are to be executed in "parallel". The Occam construct for this is

wO’U;

The transputer instruction sequence to implement this is

Instructions Comments
LDC 3 Number of concurrent processes
STL 1 stored in WS location 1
LDC (L5-L6) Pointer to first instruction of
LDPI successor process stored in WS
L6: STL 0 location 0.
LDC (L1-L2) Load instruction offset and WS
LDLP WP address of P and put it in the
L2: STARTP queue.
LDC ({L3-L4) Similarly for Q.
LDLP WQ
L4: STARTP
R R continues from initial process
LDLP 0 End R, pointing to successor
ENDP process WS, (R - parent).
Ll: P Code for P.
- LDLP -WP End P, pointing to successor
ENDP process WS, (R - parent).
13: Q Code for Q.
LDLP -WQ End Q, pointing to successor
ENDP process workspace.
L5: The program continues.

Table 2.2 Implementing a Parallel Program

42

Where we is the offset from the workspace of R to that of p, and wg is the offset from
the workspace of R to that of Q.

There are only two startp instructions, as the process used to set up the
concurrent processes in fact continues as process R. Hence, a PAR construct may be
though of as a "parent” or "main" process which generates one or more "child" or
"sub" processes.

The main process stores the number of subprocesses that it generates in its
workspace, which the scheduler uses as a count down counter to determine how many
subprocesses have yet to complete. Whenever a subprocess executes an endp
instruction (relinquishing its workspace by using -ws), this counter value is
decremented by one. When this value reaches zero, the main process may continue,
or execute an endp itself.

Parallel processes of equal priority may be nested to any level, and so p,0 Or
r may themselves define further parallel processes. A schematic representation of the

above parallel construct is represented in Fig 2.7.

2.6.6 The Construction of Prioritised Parallel Programs
Prioritised parallelism is implemented in Occam using the PRI PAR construct. This
construct runs a high priority (priority 0) and a low priority (priority 1) process in

parallel. The Occam representation is

PRI PAR
)
Q

where p is the high priority process, @ the low priority process.

43

The transputer instruction sequence used to implement this is

Instruction Comments
LDC 2 Number of parallel processes
STL 1 stored in WS location 1.
LDC (L3-L4) Pointer to first instruction of
LDPI - successor process (deprioritising
L4: STL 0 code) stored in WS location 0.
pe (L1-L2) Load pointer to first instruction
LDPI of P...
L2: LDLP (WP-1) and store it in location -1 of
STNL 0 P’s WS.
LDLP WP Load pointer to WS of P, and place
RUNP P on the high priority queue.
Q Code for Q.
LDLP 0 End Q.
ENDP
Ll: P Code for P.
LDLP -WpP End P, pointing to its successor
ENDP (Q - the parent).
L3: LDLP 0 Define a "null"™ process, using the
1DC 1 : ' present WS. Explicitly set to low
OR- priority, run it then immediately
RUNP stop it (take it off the queue).
STOPP
LS: : The program continues.

Table 2.3 Implementing a Prioritised Parallel Program

Here, P is explicitly set to run at high priority by runp. Areg should contain the
process descriptor when runp is executed. In this case, the process descriptor points
to p and has an Isb equal to zero, and so P is placed in the high priority queue.

The PRI PAR construct is continued as process 0. The code appearing at L3 is
the successor to the prioritised construct - ie this code will be executed whenever the
processes inside the PRI PAR have both completed. This code runs a second version
of the prioritising code, explicitly starting it at low priority. This is necessary, since
the priority of the process starting at L3 would otherwise be determined by the priority
of the process in the PRI PaR that finished last, and so would be indeterminate.

PRI PAR constructs may not be nested, although the two processes may

44

themselves contain further PAR constructs. Prioritised processes are useful whenever
external communication is used. If the communicating process is run at high priority,
then the link will be serviced as soon as possible. The link transfer may then take
place while the cpu is executing the low priority code, making full use of the
autonomous nature of the link interface. A representation of a PRI PAR CORStruct is

shown in Fig 2.8.
2.7 Communication

2.7.1 Overview

Concurrent processes communicate through channels. Communication is point
to point, synchronised and unbuffered. A channel between two processes on the same
processor ("soft" channel) is implemented with a word in memory, whereas a channel
between two processes on different processors (“hard” channel) is implemented with
a link.

Communication is carried éut by first loading the stack with a pointer to the
message, the channel address and the size of the message in bytes, then by executing
one of the channel transfer instructions. The instruction sequence is the same for both
hard and soft channels as the processor uses the channel address‘ to determine the
appropriate action to take — external channels use special reserved internal memory
locations.

As communication is unbuffered, the transfer takes place only when both

processes are ready. The process that becomes ready first must wait for the second

process to become ready.

45

In order to estimate the performance of a transputer program, it is important
to understand the mechanisms by which messages are passed. Hard and soft channels

are implemented differently, and so they will be considered separately.

2.7.2 Internal Communication

Soft channels are implemented by using a single word in memory, which contains
either a pointer to a workspace or the special value "empty". A soft channel must first
be initialised to the value "empty" before it is used.

When a process wishes to use a channel, the value stored in the channel word
is first checked. If the value is "empty" then the workspace pointer of the process is
stored in the channel (the workspace contains the address of the message to be
transferred), and the process is descheduled. When the second process becomes ready,
it also checks the value of the channel word. This time, the value of the channel is not
"empty", and the message is copied. The second process continues execution, the first
process is rescheduled and the channel is reset. This is shown in Fig 2.9, where a
process P outputs a message to a process Q over channel c.

Note that only one process is descheduled, and the actual transfer is carried out

by the cpu.

2.7.3 External Communication
Hard channels are implemented through a link by using a link interface, which

manages message synchronisation and transfer. The link engines are able to work

concurrently with the cpu.

Whenever a transfer instruction is executed by a process, and found to be

46

external, the information held in the stack is transferred to the link interface registers
and the process is then descheduled. The corresponding recipient process does likewise
on another processor. When both link interfaces have been initialised, the transfer
takes place. Both processes are rescheduled after the transfer has been completed. This
is shown in Fig 2.10.

Note that both processes are descheduled, and that communication is
overlapped with computation by an amount dependent on the size of the message.
Because the overheads associated with setting up the link transfer are independent of

the message size, it is more efficient to transfer larger rather than smaller messages.

2.8 Memory Map

The transputer uses a byte orientated addressing scheme, in that an address word
points to a byte in memory, not to a word. Each address word may be decomposed
into two portions — a word address and a byte selector. For 32-bit processors, the
byte selector occupies the two least significant bits of the address word.

A signed address space is used, with the bottom of the address space being
represented by the most negative number (#80000000). The total addressable space for
a 32 bit processor is 4Gbyte. Internal memory extends from #80000000 to #80000FFF
(for a 32 bit processor). The locations up to #8000006F are used as an extended
register set by the processor, to store information concerning links, events, timers and
interrupted processes.

Although the transputer uses a byte orientated addressing scheme, Occam uses
a word orientated scheme, Fig 2.11. The byte selector is not brought out on the

external memory interface (EMI). Individual bytes of external memory are accessed

47

using the byte strobes of the EML
The EMI also provides facilities for DMA of the external memory space, and

for external wait state generation.

2.9 Event Pins
The event pin, and its associated event acknowledge and event request pins, allows
for an asynchronous handshaking interface between the transputer and an external

device. These pins allow an external event to interrupt an Occam program.

2.10 Booting
The transputer may be booted either from a link or from an external ROM. Link

booting is used exclusively for the work presented in this thesis.

2.11 Optimising Performance
This section presents a brief overview of the various techniques available to optimise
the performance of a transputer system. The reader is referred to [65] for a more
complete treatment.

The - section is divided into two parts. The first deals with optimising
performance on a single transputer, the second discusses how performance may be

increased in a multi-transputer system.

2.11.1 Uni;Processor Optimisation
Performance optimisation on a single transputer is compiler dependent. In this case,

the compiler was the D700D version of Occam (Occam2). As internal memory may

48

be accessed at least twice as quickly as external memory, most of the methods
presented here are concemed with making as much use of internal memory as
possible.

The Occam compiler assigns the process workspaces to the lowest area of
memory, then the program code and finally a section optionally reserved for vectors.
Hence, the program space will be forced off chip in preference to the workspaces.
This is sensible, as the transputer is able to load in four instructions, but only one data
item, in a single cycle, and so the additional external memory access time makes less
impact on the program space than the data space.

The compiler allocates workspaces for procedures and parallel processes as a
falling stack, ie the last procedure/process to be declared has its workspace placed at
the lowest location. Similarly, for each process, the variables are allocated as a falling
stack within the workspace. So, if a process uses time critical data, thén it should be
declared last, and the data within the process should also be declared last. This keeps
the critical variable within internal memory space, and keeps its access time as low
as possible. The exception to this is large vectors, which may force other areas off
chip.

Variables should be declared locally to a process whenever possible, as this
allows the use of local load and store instructions, which are more éfﬁcient than their
non-local counterparts.

Abbreviations may be used to bring non-local variables into local scope (The
scope of a process refers to those variables which may be accessed locally). In
particular, sections of non-local vectors may be abbreviated by sub-vectors using

constant index terms, which speeds up vector access.

49

Vectors should not be assigned using a loop, but by the block move facility,
which is far more efficient.

Whenever vectors are used inside a replicated seQ loop, it is always advisable
to explicitly access a number of consecutive vector elements inside the loop. This is
known as "opening out" the loop, and reduces the overall overhead associated with
performing the loop.

For time critical sections of code, then the cuy construct may be used. This
feature allows the programmer to incorporate sections of transputer assembly code into
an Occam program. Care must be taken with this option, however, as only a limited
compile timé checking facility is available.

Finally, certain compiler options should be turned off once the program has
been tested and verified. An example is range checking, which inserts extra run time
code in order to test for subscript overflows, which obviously decreases performance.
Once the program has been tested, however, there is no need for this code, and the

program may be re-compiled without this option.

2.11.2 Multi-Processor Optimisation
Optimising code to run on a multi-transputer system essentially involves optimising
the operation of external communication. Multi-processor optimisation is much more
sensitive to the particular application than uni-processor optimisation, and is not so
well defined.

Link performance must be optimised. Communication on the links must be

allowed to overlap with cpu operation, and the overhead per word of transferred data

must be reduced as much as possible.

50

In order to allow this cpu/link overlap, link communication and cpu operation
must be decoupled. This involves placing all link communication statements in one
process (which may itself contain parallel sub-processes), all the computation
statements in another, and running them in parallel. Whenever an external
communication statement is executed, then that process is descheduled, leaving the
computation process to continue while information is being transferred on the link.

If the two processes have the same priority, then the communication process
may have to wait, for ar least a timeslice period, for the computation process to be
interrupted before it can transfer data. This delay may cause the computation process
to be starved of data, or further communication delays on other transputers, both of
which will degrade system performance. The solution is to run the communication
process at high priority, which then allows data to be transferred with the minimum
of delay.

In order to remove any soft channel communication associated with buffering
data between the communication and computation process, Inmos [65] recommend the
use of a looped three stage pipeline. Each pipeline element has the same structure —
a PRI PAR with parallel external input and output processes at high priority, and a
computation process at low priority. There are no inter-process soft channels, as data
is passed by reference within the pipeline. This is indeed an efﬁcicht structure, but is
not always the optimal solution, as the overheads associated with setting up each
PRI PAR CONstruct are quite considerabie.

The overheads associated with transferring data may be reduced by transferring
vectors rather than words. This spreads the overheads associated with the setup over

many more words. However, if the message is too long, then the transfer time may

51

impede performance.

2.12 Summary

This chapter has introduced the transputer as a powerful element from which large
multi-processor systems may be constructed. The major points of the architecture have
been outlined, in particular the link engines which allow the transputer to overlap
communication and computation. The nature of the instruction set has been described,
together with the performance implications of the non-standard method of constructing
instructions. The structure of both the sequential and the parallel Occam structures
have been discussed, and their implementation shown to be particularly efficient due
to the run-time scheduler. The inter-process communication mechanisms for hard and
soft channels have been shown to be similar. Finally, a treatment of performance
optimisation techniques has been given.

Due to its RISC-like design, internal memory and concurrent communication
and computation capability, the transputer is a powerful processor. Its run time
microcoded scheduler and uniform communication instructions, in conjunction with
the links, allow multi-transputer networks of arbitrary size to be easily implemented.

Although the transputer is indeed a powerful general purpose processor, the
constraints imposed by real-time signal processing applications often force it to
operate at its performance limit. These constraints, and their performance implications,

are covered in the following chapters.

52

Fig 2.1 An Arbitrary Transputer System Topology

53

Floating Point Unit

System
Services

4kbyte
Static
RAM

CPU

Link
interface 0

Link
Interface 1

Link
Interface 2

Link
Interface 3

External Memory
Intertace

Fig 2.2 Schematic of Transputer Architecture

Data

Data Packet

Acknowledge

Fig 2.3 Link Data and Acknowledge Formats

Function

Data

4

3

Operand Register

A
%

31

Fig 2.4 Instruction Format

55

Workspace

Area
Areg

Program
Breg Area

Creg

Wptr

Iptr >

Oreg

Fig 2.5 Implementing A Sequential Process on the Transputer

Workspace Program
: Area Area
Fptr (Front)
- P —
Bptr {Back)

Areg L—» R <+

Breg M S

Creg

Wptr

iptr

Oreg

Fig 2.6 Irnplcmenﬁng Concurrent Processes on the Transputer

56

weidold pasnuoLd ® Jo uononnsuo) 87 Sug

anufTjuod
$S08901d doig
pue
Awuwing pu3
Awwng
u
dn 1eg H % 3 d m:m_
H d
poYsTUTd ¥ (1) (0)
PaYSTUTd 4
$9553204d

18jiesed dn 18s

peysTutd yiod

wreidord pasnLOUJ-UON € JO uononnsuo) [°Z 814

POYSTUTA ¥

O pu3 H pu3
O

, H

PaYSTUTd O 4

$8559001d
ielesed dn 18s PAUSTUTL d

PAUSTUTd 1TV

57

P C

A No. words

Channel Channe! C
B Pointer [—————®1 (Empty)

Message -
C Pointer

Evaluation Stack Area of Memory

Process P checks channel C, finds that it is empty,
executes an output instruction and is descheduled.

P C
Next .
instruction [@——— Pointer to
Workspace of P
Message
Pointer
Workspace Area of Memory

Channel C now contains a pointer to the workspace of P,
which itself contains a pointer to the message.

Q

P
C No. Words

Next

instruction \ Pointer to Channel
Workspace of P [——————] Pointer

Message

Pointer
Message
Pointer
Workspace Area of Memory Evaluation Stack

Process Q executes an input on channel C and finds that it has been initialised.
The transfer takes place (memory to memory block copy), C is reset and P rescheduled.

Fig 2.9 Internal Communication

58

uonedUNURUO)) feuIdxy (O1°¢ 8

“PanpayIsal e $2559001d YI0Q YIIyM 131J8 ‘PosTENIUT uaaq ALy sauiSud yuij (noq uaym oeid saes Jajsues],
*2Z1S)1 pUB paudJsuer) 9q 0} a3essaw Ay o) 1ulod B ‘sassasaud 2ansedsal nay 03 szautod aoedsyom urBIU0D s10151391 awBuo yury ay,

spiom "ON SpIOMm "ON
lejuiod lejuiod
efiessopy N ebessepy
uojonNsu) 1' Jejujod lepiog ——pp| uOIRNASY|
XeN : esedsyiopy 00edsHIOM XeN
| 10SS800Id 0 40ssad0id

pompayosap ssac0xd Surjreds oy pue pasyeniut axe sourBua Yuyy oy ‘uondnnsus Indino Jo ndul fewAxo ue Sunnaexa uodn

%OBIS uoieneay suibuz uy suibug un %OR|S UolieineA]
1e)ui04 lejujod
Y ebessepy N ebessopy o
e Jejujod > P —— lejuiod g
[euueyn |euuey)
v SpIOM "ON SpIOM "ON "4
| 4058580014 0 405589014

59

Byte Address

#7FFFFFFE

External
Memory 2
#800001000
internal
Memory
#800000070
Reserved
Locations
#80000000

Word Offset

#3FFFFFFE

¢

#400

External

Memory

#1C

Internal

Memory

#0

Reserved

Locations

Fig 2.11 Comparison of Transputer and Occam Memory Map

60

Chapter 3

Digital Filtering on the
Transputer

3.1 Introduction

With its concurrent communication and computation capability, and its relatively high
clock rate, the transputer has potential for use in high performance signal processing
applications [66]. This chapter investigates the implementation of one such
application — a digital filter — on the transputer.

The code was mapped onto one, two and three transputers in order to
investigate the impact of concurrency on performance. Furthermore, two intra;
processor communication structures (or harnesses) were utilised for each mapping, and
their effect on performance investigated.

The computation code running on the transputers is shown to be relatively
short. Because of this, the performance of each implementation i§ sensitive to any
unnecessary overheads. The full optimisation of the code is described.

The application requires that many data streams (or channels) are processed.
It is shown that once a fully optimised single channel filter is implemented, it is a
straightforward step to modify the code in order to produée a multichannel filter.

The working environment for this application is such that power consumption

61

and occupied space are at a premium. The implementation of the filter on the
transputer is assessed, then, in terms of the dual criteria of overall performance (total
throughput) and the performance per processor (total throughput per processor, or per

unit silicon area).

3.2 The Filter
The filter possesses a three pole bandpass Butterworth response, the characteristics of
which are given in Appendix A. The filter comprises single pole high and low pass
sections, connected as in Fig 3.1. The single pole sections are constructed as shown
in Fig 3.2.

The structure of the single pole sections is notable in that it does not include
a multiplier, the mulﬁplicaﬁon (division) function is effectively carried out by a shift
operation. This renders the filter suitable for implementation on processors, such as
the transputer, that do not possess a fast multiplier. The structure of this filter, then,

departs from the more usual filter architectures that use fast (fractional) multipliers

[37].

3.3 Implementation on the Transputer
The implementation of the filter on the transputer may be divided into two areas. The
first deals with the mapping of the processes onto the processors, and the second deals

with the structure of the processes themselves. These will now be considered in turn.

62

3.3.1 Mapping the Processes onto the Processors

From Fig 3.1, the overall structure of the filter may be mapped into three sections.
This partitioning provides a natural mapping onto one, two and three processors, Fig
3.3a to Fig 3.3c.

Other partitioning schemes are possible, of course, but these would involve
decomposing the single pole computation sections. The computation times of these
sections are very small already, the total execution time being dominated by the
communication bandwidth, and so further partitidning would provide little, if any,
performance increase. Furthermore, this would increase the number of processors,

which would in turn increase the power and space requirement of thé system.

3.3.2 The Structure of the Processes
The structure of the processes consists of a computation section, running at low
priority, embedded in a larger structure, termed the harness, that defines the
communication structure of the process and includes the external communication
statements, which run at high priority.

Two harness structures, Type I and Type II were implemented. The same
computation section was used in both harnesses, for a given mapping. Minor
modifications were made to the harnesses and the computation sectioﬁ for the different
mappings. The harnesses and the computation section are considered separately,

below.

3.3.2.1 The Harnesses

The structure of the two harnesses is shown in Fig 3.4 and Fig 3.5, together with their

63

| "hedgehog" diagrams. Type I uses a pair of PRI PAR statements inside a WHILE TRUE
loop. Inside each PRI PAR, the communications are held at high priority, and the
computation at low priority. There is no communication between the communication
and computation processes within the PRI Par. While the communication processes
are dealing with data set A, the compuiation process is dealing with data set B, and
vice versa in the next PRI PAR statement. Hence communication and computation are
decoupled, and the data sets are passed "by reference” between the two PRI PAR
statements, which is the approach recommended in [65]. This structure is inherently
multi-channel, and may be extended to an arbitrary number of channels simply by
adding more PRI PAR statements.

However, the PRI PAR statement does take many cycles to set up, depending
on the number of parallel processes it contains (Section 4.5.2) — roughly 65 cycles
for these applications. No "useful" work can be carried out during this set up period,
and as this happens for every invocation of the PRI PAR, then it could represent a
considerable overhead.

This overhead is eliminated in type II by implementing a single PRI PAR,
within which are placed wnILE TRUE loops for the communication and computation.
The communication loops are configured in parallel in order to maximise the external
communication overlap. A consequence of this structure, however, is that the
communications and computation processes must communicate through internal
channels (ie they are coupled). Internal communication is carried out by the cpu and
so detracts ‘from the overall performance of the process.

Thus both harness types possess their own peculiar overheads; for instance,

type I requires roughly twice as much memory as type II. The relative merits of each

64

are discussed in Section 4.5.2.

The harnesses for the processes used in the one and two processor partitionings
are similar, as these use the same single output, single input structure. The three
processor partitioning, however, requires a third link between the second and third
processors. The requirement for a third external communications channel adds to the

overheads experienced by the three processor mapping.

3.3.2.2 The Computation Section

The filter is constructed from a combination of single pole high and low pass sections,
Fig 3.1, which possess a similar architecture, differing only in the point at which the
output is taken, Fig 3.2.

The single pole structure contains a shift right (by fifteen places), effectively
a division by 2'°. Multiplication and division on the transputer are expensive. An
integer multiply requires 39 cycles to complete, an integer division 40 cycles
(including prefix overheads), a floating point multiply 11 cycles and a floating point
division 17 cycles (not including setup, but carried out concurrently with cpu operation
— for floating point transputers only). This structure requires a division operation,
which is expensive.

A more efficient method is to directly use a shift right instruction. The
transputer is able to right shift a single length integer in 15 + 2 + 1 (18) cycles, and
a double length integer in 15 + 1 (16) cycles. There is a complication here, however,
in that the shifts are not arithmetic, but logical, and so the leading vacated bit
positions of the word are zero filled. The transputer operates with a two’s complement

data format, and so for a negative number not only is polarity lost upon shifting, but

65

the value of the variable is distorted. It is thus very important that the post shifted

value is sign extended, which unfortunately requires extra instructions.

3.3.2.3 The Occam?2 Version

The most straightforward method of coding the filter is to use a high level language,
in this case Occam2. The computation code for the high pass and low pass sections,
together with the disassembled form of the highpass section, is given in Fig 3.6, the
code for all the computation sections is given in Appendix B. Sign extension is
catered for by an 1F statement here. The 1F is placed after the shift, and tests to see
whether the pre-shifted sign bit was set, and if so sets the msbs with a bit-wise OR
instruction, thus restoring arithmetic validity. The code uses 30 bytes of program
memory space and executes in 48 cycles for a positive pre-shifted value, and 56 cycles
for a negative pre-shifted value, the differing times being a consequence of the
conditional branch. This is a hard real-time application, however, and so worst case
times must always be assumed. Hence, the execution time of this piece of code must
be given as 56 cycles. |

The section of code used for sign extension uses 12 cycles and 9 bytes of
program memory. More efficient routines, in terms of execution speed and memory
requirement, may be implemented by directly using transputer instructions.

One such method makes use of the xworp instruction, which sign extends a
part-word value to a single length value, [65]; The code for this method of sign
extension fs shown in Fig 3.7. This section of code is also placed after the shift
operation, but is unconditional in its operation. It uses 6 bytes of program memory and

takes 12 cycles to complete. This method, then, is only marginally preferable to the

66

Occam?2 version, as it uses less memory space but completes in the same number of
cycles.

A more efficient method uses the xpBLE and LSHR instructions, [65]. The xpBLE
instruction converts a single length value held in Areg into a double length value in
Areg and Breg. The LsHR instruction logically right shifts a double length value. The
code to implement a sign extended shift using this method is given in Fig 3.8. The
action here is that the sign extension bits, held in the most significant word, are
shifted into the msbs of the least significant word (the actual data word). Thus, the
sign bits are preserved and the value held in Areg is arithmetically shifted.

This code operates on the pre-shifted value, and incorporates the right shift
operation. As the double length shift is executed in two cycles less than the single
length shift, this routine effectively adds a sign extension overhead of a single cycle,
compared to the other versions, making it by far the most suitable method.

Furthermore, this method is not at all affected by data prefixing.

3.3.2.4 The Assembly Version
The Occam?2 compiler does not allow data to be passed from one statement (line of
code) to another through the stack. This is essential if the code is to be secure, but
does not optimise performance as additional sTL and LDL instructions must be used.
Information may be passed through the stack, providing a higher performance, if
statements are compounded onto a single line.

For example, as shown in Fig 3.9, the code assigning c:=a+b then e:=c-d is
compiled down to a sequence lasting twelve cycles, as the variable c is stored at the

end of the first assignment and loaded again at the beginning of the second

67

assignment. However the compounded code of e:=(a+b)-d is compiled down to a
sequence lasting only nine cycles, as the variable c is kept on the stack.

This is also an example of what may be achieved by hand coding critical
sections in transputer as.scmbly language. Although the Occam2 compiler is highly
optimised, often the number of instructions may be cut do;wn to the bare minimum,
and optimum use made of the stack, only by fine tuning sections of code by hand.
This is what has been done in the fully assembly language versions of the computation
code. One sTL and one LDL may be eliminated from the high pass section, saving 3
(5, with prefix) cycles. Two sTL and DL instructions may be eliminated from the
lowpass section, saving 6 (10) cycles. Of course, all the optimisation methods outlined

in Section 2.11.1 were used for the code.

3.3.2.5 Compounding Filter Sections
From Fig 3.3a and Fig 3.3b, the one and two processor mappings require that a
combination of single pole sections be placed on a single processor. The single pole
sections, written in transputer assembly, are combined sequentially, with any
supplementary code, such as addition, being inserted where required. The stack is used
to pass values between sections.

| It would be possible to configure the processes in parallel, passing data either
through internal channels or by reference. The code sections are very small, however,
and so their throughput would be greatly affected by the overheads incurred by setting
up both the parallelism and the internal communication. Maximum performance on a
single processor is attained by running a sequential computation process in parallel

with a communications process.

68

- 3.3.2.6 The Use of Vectors
It has already been mentioned that efficient inter-processor communication can only
be carried out by passing vectors, rather than single words, of data. It follows, then,
- that for a given optimised computation section, maximum performance will only be
attained if data is passed in vectors. This approach has also been used in non-
transputer based digital signal processing systems [62].

Consider a data vector as in Fig 3.10. For every element of the input vector,
there exists both a corresponding element in the output vector and a logical
computation section. Now, if the output of the ith element is allowed to form the input
of the i+Ith element (by using non-vectored variables to pass data between sections
— "internal" variables), then any given value of an element in the output vector
depends upon the previous elements in both the present input and output vectors. As
the data elements are processed in a logically sequential and dependent manner, the
input vector may be considered to contain a number of samples from the same data
source — the filter is processing a single channel of data.

Consider, now, Fig 3.11. If the internal variables of each filter section are
vectorised and are not passed from one section to another, then any given value of an
element in the output vector depends upon the values of the same element in the
preceding input and output vectors. The data is processed in a logically parallel and
independent (orthogonal) manner. The input vector may be thought to contain a single
sample from a number of data sources — the filter is processing a number of channels
of data.

For a given vectorised structure, then, the multiplicity of data channels being

processed is determined by the amount by which individual computation sections share

69

their internal variables. This method may be developed to provide a combination of
logically sequential and parallel data channels, Fig 3.12.

For a given vector size, the overall sample rate is constant. If, for instance, the
overall sample rate is 80kHz, and a four element vector is used, then either a single
filter with 80kHz sampling frequency, or two filters with 40kHz sampling frequency,
or four filters with 20kHz sampling frequency, or any combination, may be
implemented. Thus, not only multi-channel, but also multi-rate filters may be

implemented using this method, if suitable input/output buffering is utilised, Fig 3.13.

3.3.2.7 Structuring the Computation Code
For the single channel case, the most obvious way of structuring the code is to embed
the computation section inside a replicated sEQ. An example section of code is shown
in Fig 3.14, in which the input and output data are defined as vectors, whereas the
internal variables are defined as simple variables.

There are two drawbacks with this structure, however. Firstly, there is an
overhead of approximately 1us (20 cycles) attached to the looping operation [30],
[65]. The length of the computation code ranges from about 40 cycles to about 120
cycles in this application, and so this overhead is far from negligible.

Secondly, the elements of the input and output vectors are not accessed
directly, their addresses are calculated in runtime by use of the wsus instruction. The
instruction sequence required to access an element is LDL i, LDL input.base, WSUB,
‘I:SNL whicfn introduces an additional overhead of at least Six cycles per element [65].

The overhead attached to the looping operation may be reduced by "opening

out" the loop, effectively increasing the amount of computation carried out in each

70

pass of the loop. The overhead concerned with accessing the vector elements may be
reduced by opening out the loop in sections of sixteen and using abbreviations to
directly access the elements, with zero prefixing, [66]. However, opening out the loop
in this way requires additional run time calculations, and the looping overhead is never
totally eliminated. This type of loop optimisation is suitable only for larger
computation sections, or for many more iterations than are required here.

As the memory space required by a computation section is small, and the
number of loop iterations is relatively low, then it becomes feasible to dispense with
the loop structure altogether and explicitly define each computation section, which
eliminates the loop overhead. The overheads associated with addressing the vector
elements are also removed, as they may now be explicitly addressed as local variables.
An opened out version of Fig 3.14 is given in Fig 3.15. The memory requirement for
this structure is obviously greater than that of the replicated sEQ structure, but as the
code sections are small, large vectors may still be used before the effects of external
memory access are seen (the actual threshold vector size depends on the size of the
computation section and which harness is being used).

The most obvious way of dealing with the multi-channel case is to use a
replicated Par structure, Fig 3.16. In addition to the overheads associated with looping
and non-local indirect element access in the replicated sEQ structure, there is also an
additional overhead caused -by setting up a number of parallel processes on each
iteration. This overhead is proportional to the number of parallel processes and is in
any case considerable. Furthermore, this structure does not allow different length
computation sections, and so multi-rate filters may not be implemented. There is no

performance gain in irhplementing parallel processes on a single transputer. The code

71

may equally be structured as a replicated sEQ, which would reduce the overheads
related to parallelism. But it has already been shown that the most efficient way, in
this case, of structuring the sequential code is to fully open the loop. Thc‘ best solution
for the multi-channel case, then, as for the single channel case, is to use a linear code
structure. In order to maintain orthogonality, the internal variables must be defined as

vectors. This also allows computation sections of different lengths to be implemented.

3.3.3 Measuring Performance

The filter was implemented and tested using an in-house transputer system with an

Inmos B004 board acting as host. The in-house system comprises 3U boards

containing an IMST800C-20 transputer and 128kbytes of zero wait state static RAM,
’intcrconnected via cables connected to the front of the boards [67].

The filter configuration was placed between a "source” transputer, which
supplied data to the filter, and a "receiver” transputer, which acted as a data sink and
a stopwatch. The "host" transputer, running on the B004, collected the timing data
from the stopwatch, post processed it and displayed the results.

The source process outputted vectors to the filter in batches of a thousand. The
stopwatch process measured the time taken for the filter to output a thousand vectors
and output the elapsed time to the host. The host collected the elapsed time in batches
of a hundred and calculated the mean time.

Both the source and the stopwatch processes, Figs 3.15 and 3.16, utilised all
the pcrforrhancc maximisation techniques mnﬁoned in Section 2.11.1. In particular,

vector output and input was accomplished by using linear code — a thousand transfers

in a row, which eliminated the possibility of mistimings due to excessive transfer set

72

up overheads.

Results were taken for all three processor mappings, using both hamesses, for
a number of vector lengths using the configuration shown in Fig 3.19. The results are
presented in the next chapter.

The filter response could not be measured directly, as ADC and DAC systems
were not available. Instead, input files were created with Hypersignal Workstation®
and fed to the filter through the host filing system. The result files produced were also
analysed using Hypersignal. The response of this filter is very severe, making the use
of a multiple frequency test signal (noise) impracticable as the number of points
required to generate a useful FFT is prohibitive. Individual sinusoids were produced,
and their processed amplitudes and phases analysed in order to build up a picture of

the filter’s response.

3.4 Summary
This chapter has outlined the implementation of a multi-channel digital filter on the
transputer. The particular constraints imposed on multi-processor systems have been
addressed by this implementation. The structure of the filter has been given, and its
partitioning onto one, two and three transputers described. Two program structures,
or hamesses, have been implemented, and their relative merits diséusscd.

Although ADC and DAC hardware was not available, the performance of the
transputer system and the response of the filter were tested in software.

This chapter has provided a means of investigating the optimum method of
implementing small scale digital signal processing algorithms on multi-transputer

networks. The results produced, and their analysis, provide an insight into the

73

applicability of the transputer to DSP applications, and are discussed fully in the

following chapter.

74.

uoNI3g 30 9[3uIS € Jo onewayds ¢ g

<<
indino ssed moj

W/

amonng 131, jJo wexdeiq yooid 1°¢ Su

<<

indino

uopo8s
ssed Mo

uonosg
ssed UbiH

indino ssed ytiy

uoyjo8s
ssed ybiH

wndul

induy

75

Suirddepy 105530014 93uig YL e¢'E St

:&so

uoyo9esg
ssed Mo

uoloes

< ssequbH @

uonoas
ssed ybiH

nduyj

76

Suiddep 1ossasorg omy ayy, qg'¢ S1d

:&.zo

uono8sg
ssed Mo

uoloag

< ssequby [¢

uoNoas
ssed ybiH

indyy

7

Surddey Jossasold a1y, Y], 9¢°¢ 31

o T

uonoes
ssed Mo

uoioss

ssed ybiy

uoloes
ssed ybiH

indu

78

PROC high.pass.A(CHAN OF ANY input,output)

Declarations
Initialisation
WHILE TRUE
SEQ
PRI PAR
PAR
... communicate set A
SEQ
... compute set B
PRI PAR
PAR
communicate set B

SEQ

compute set A

Communication

Computation
[B/A)

Fig 3.4 Hamess Typel

79

PROC high.pass.B(CHAN OF ANY input,output)

Declarations
Initialisation

PRI PAR
PAR
WHILE TRUE
SEQ
... input.buffer
WHILE TRUE

SEQ
.. output.buffer

SEQ
... input.data.from buffer
... compute
. output.data.to.buffer

Communication

output.butfer

input.buffer

Computation

Fig 3.5 Hamness Type II

80

internal := ({in - lp.out) >> 15)
IF
internal >=#10000
internal := internal \/ #FFFF0000
TRUE
SKIP
lp.out := lp.out + internal
hp.out := in - lp.out -
internal := (hp.out >> 15)
IF
internal >=%#10000
internal := internal \/ #FFFF000
TRUE
SKIP
lp.out := lp.out + internal

LDL in

LDL lp.out
SUB

STL hp.out
LDL hp.out
LDC 15

SHR

STL internal
LDC 65536 (#10000)
LDL internal
GT

EQC 0

cJ -9

LDL internal
LDC -65536 (#FFFF0000)
OR

STL internal
LDL lp.out
-LDL internal
ADD

STL lp.out

Fig 3.6 Occam2 Versions of High and Low Pass Filter Sections and the Disassembly of
the High Pass Section

hp.out := in - lp.out
internal := (hp.out >> 15)
GUY

LDL internal

LDC #10000

XWORD

STL internal
lp.out := lp.out + internal

Fig 3.7 Arithmetic Shifting Using Explicit
Sign Extension

LDL
LDL

oo
o0
non
o
P+
o U

STL
LDL
LDL
SUB
STL e

[o P o o]

LDL in
LDL 1p.out
SUB
STL hp.out
LDL hp.out
XDBLE
LDC $#0F
LSHR
LDL l1p.out
ADD
STL lp.out
Fig 3.8 Arithmetic Shifting Using
Implicit Sign Extension
LDL a e := {a+b) -d
LDL b
ADD
LDL d
SUB
STL e

Fig 3.9 Compounding Code onto a Single line

81

5101997 Buisq) jpuuey)) ajurg v Suissasard O1°¢ St
[T]3ano =: dt snotadad

Qolm90ﬂ>wuan"
[TJur =: dY snotaaad

do snotasadaxdyzq + do snovasadyiq +
d1i snotasxdyTe+dT uoTlOas,0R =: [T]3no

do snotasadead

(€] dwod

(z]1dwo)

[1])dwoD

vt v v

[113n0] [g]ano] [g]ano

(o)uy

[o]3no

(tluy

(Zluy

(eluy

82

[(t]1dt snotaaxdyre+[T]dT UOTIDVEL(0R =:

10103 3uis() spauuey)) adninpy Swissaoold 11°€ 814

[t}3no =: (r}dT snotaoaad

(t]1do snoasiad =: [1)do snotasadaad

{Tjut =: [T]dY snortaoaad
[T]1do snotaazdaadyzq + [T)do snoraaad,iq +

[T]ano

) 4

 J

L[]

folano

{1]3no

[2]3no

[€]ano

(o]uy

{tluy

[zluy

(eluy

83

D(7) | DI6) | DI[S] | D[4] | D[3] | D[2] | D[1] | D(O]

(oot Comot0...3

Fig 3.12 Buffered Multiple Channel Processing Using Vectors

D{7] |DI[6) | DI5S] | D[4]) | DI3]) | D[2] | D[1] | DIO]

Fig 3.13 Multiple Channel, Muldrate Processing Using Vectors

WHILE TRUE
SEQ
SEQ i
SEQ
internal.vall
internal.val2
out(i]

0 FOR vector

LDC
STL
LDC
STL
LDL
LDLP
WSUB
LDNL
LDL
LDLP
WSUB
LDNL
SUB
STL

NO O AO OO

(=4

11

.size

in[i] - outli]
internal.vall >> 1

internal.val2 + 1

LDL
LDC
SHR
STL
LDL
ADC
LDL
LDLP
WSUB
STNL
LDLP
LDC
LEND

Fig 3.14 A Replicated sEo Structure and its Disassembly

WHILE TRUE
SEQ

LDL
LDL
SUB
STL
LDL

SHR
STL
LDL

STL
LDL
LDL
SUB
STL

internal.vall in{0]
internal.val2
out[0] := internal.val2 + 1
internal.vall in[1]
internal.val2
outf1] internal.val2 + 1
internal.vall in[2]
internal.val2
out[2] internal.val2 + 1
internal.vall in[3]
internal.val2

- out[0]
internal.vall >>

- out[1l]
:= internal.vall >>

- out(2)
:= internal.vall >>

- out[3]
:= internal.vall >>

out[3] := internal.val2 + 1

in{0]} LDL internal.vall LDL internal.
out[0] LDC 1 ADC 1

SHR . STL out[2]
internal.vall STL internal.val2 LDL in[3]
internal.vall LDL internal.val2 LDL out[3])
1 ADC 1 SUB

STL out(1l] STL internal.
internal.val2 LDL in{2]} LDL internal.
internal.val2 LDL out (2] LDC 1
1 SUB SHR
out[0]} STL internal.vall STL internal.
in{1) LDL internal.vall LDL internal.
out[1]} LDC 1 ADC 1

SHR STL out|[3]
internal.vall STL internal.val2

Fig 3.15 "Opening Out" a Sequential Loop

85

val2

vall
vall

val2
val2

PROC replicated.par (CHAN OF ANY in, out)
VAL vector.size IS 4 :
[vector.size)INT in, out, internal.vall, internal.val2
SEQ
... Initialisation
WHILE TRUE
PAR i = 0 FOR vector.size
SEQ
internal.vall(i] in[i) - out[i]
internal.val2[i]) internal.vall[i] << 1
out[i] := internal.val2[i] + 1

Fig 3.16 A Replicated AR Structure

PROC inputter (CHAN OF ANY to.filter)
VAL vector.size IS 1
CHAN OF ANY from.host :
PLACE from.host AT #05 : --1linkl input
{{{ declarations
INT len,error,val,char,any :
11}
SEQ
{{{
WHILE TRUE
[vector.size] INT output.val
SEQ
SEQ i = 0 FOR vector.size
output.vall[i] :=1
{{{ 100 outputs
to.filter ! output.val
1)
1})

Fig 3.17 The Filter Source Process

PROC watch(CHAN OF ANY in)
VAL array.len IS 1

INT i :
WHILE TRUE
SEQ
SEQ i = 0 FOR 20
PRI PAR

{{{ DECs
[20]INT start.time,end.time :
CHAN OF ANY tohost, fromhost
TIMER clock :
(array.len)INT any :
PLACE tohost AT #02 :
PLACE fromhost AT #06
1)}
SEQ
clock ? start.time{i)
{{{ 100 inputs
in ? any
11}
clock ? end.timel[i)
tohost ! start.time[i) / array.len
tohost ! end.time[i] / array.len
SKIP

Fig 3.18 The Filter Stopwatch Process.

86

2

19M8%9Y

uoneInSyuo)) 1531, OUBULIONIA] JAM[I JO onewaydS 61°¢ J1d

87

Chapter 4

Transputer Code: Performance
Analysis and Results

4.1 Introduction
The code running on any particular transputer usually consists of two or more parallel
processes. At wﬁich time each of these processes is executed, and for how long, is
controlledl by the transputer scheduler and depends upon the state of the
communication channels, timers and the timeslice period. The scheduler schedules,
deschedules, reschedules and executes the processes according to their state and their
position in the active process queues. "The operation of the scheduler is largely
transparent to the programmer, and so very little information concerning the detailed
execution of the program may be obtained by analysing only its Occam2 source code.

In order to fully appreciate the effect of program structure upon performance,
and to assess the impact of such parameters as vector length, it is necessary to break
down the Occam2 source into transputer instructions, and to determine how the
transputer executes this code.

This approach has been used in this chapter to assess the impact of program
structure and vector length upon the performance of the Occam? filter programs. Not

only does this allow the performance of the code to be predicted, but also the

88

overheads associated with each harness to be assessed. The latter enables the most
appropriate harness to be chosen for similar applications, taking into account the
number of communications channels, ﬁe vector length and the execution time of the
low priority process.

The theoretical results obtained using this method are presented, together with
the corresponding empirical results, and a comparison made between the two. The
accuracy of the theoretical predictions is used to assess the methods limitations, and
its applicability in predicting the performance of similar programs.

Section 2 outlines the manner in which an Occam2 program may be
decomposed into machine instructions, and its operation determined using scheduling
charts. Section 3 describes an operational model of the transputer, which is used to
generate the scheduling charts. The operation of each hamess, for a particular
mapping, is described in Section 4. Section 5 presents the theoretical and empirical
results, compares them and makes an assessment of the decomposition method.

Finally, Section 6 provides a summary.

4.2 Occam2 Programs — A Method of Decomposition
This section describes a method of analysing Occam2 programs in order to produce
an estimate of the time taken to execute the code. A flow chart Qhowing the steps
involved in this method is shown in Fig 4.1.

The first step in decomposing a piece of Occam2 code is to convert the high
level source code to solely transputer instructions. This disassembly was carried out
using the TDS Debugger [68], which also provides a hex dump of the code. The

disassembled instruction mnemonics, the hex representation of the instructions (used

89

as a double check for prefixing), their memory location and the number of processor
cycles required were placed in a table.

Using this table, the code was grouped into its main components — general
process and channel initialisation, vector initialisation loo;is, concurrent process
initialisation and the communication and computation code sections (the recognisable
Occam?2 processes). A representation of the location of the main components of the
program is thus constructed, an example of which is shown in Fig 4.2, for harness
type II, single processor mapping.

This decomposition may be used to construct a more graphical representation
of the structure of the program, Fig 4.3. This representation labels the major sections
of the code, together with their execution cycles, and shows not only the parallel
nature of the program but also the logical flow of execution of each process.

This "graphical" representation of the program is used in conjunction with an
operational model of the transputer to construct a further chart, the scheduling chart,
which is used to determine the operation of the code. A section of the scheduling chart
for the process depicted in Figs 4.2 and 4.3 is shown in Fig 4.4. It references the same
blocks of code as the graphical representation, and uses the same labelling strategy,
but also provides information concerning the currently executing process, the currently
active and inactive processes at each priority level, and the state of the communication
channels. This allows the time required to complete any section of code to be
determined, in addition to providing information concerning when processes are
descheduled, rescheduled or interrupted.

For this particular application, the sequence of instructions will settle down into

a loop, and it is the length of the loop, in instruction cycles, that must be determined

90

in order to provide a performance estimate for the program. The scheduling chart
allows the length of the loop to be easily determined. The scheduling chart,
importantly, also allows the overheads involved in executing the program to be

quantitatively assessed.

4.3 The Transputer — an Operational Model
The scheduling chart is constructed by applying a set of rules concerning the operation
of the transputer to the graphical representation of the program. These rules constitute
an operational model, and are concerned primarily with the manner in which the
transputer both allocates cpu time to parallel processes and performs channel
communication. The operation of the transputer has been considered in some detail in
Chapter 2, and will not be repeated here. However, three main rules associated with
the operational model are listed below:-
i. A high priority process becomes active immediately upon inception by
either a RUNP or a sTARTP instruction. If the process is initialised by a STARTP
then, in the code presented here, a high priority process is already running, and
the process will be placed at the end of the high priority queue. If the process
is initialised by a runp, however, then a low priority process is executing. In
this case, the low priority process is interrupted, its state stored in internal

memory, and the high priority process executed.

il Interruption of a low priority process by a high priority process requires
18 processor cycles.

iii. Descheduling requires 18 processor cycles.
There are other factors affecting the overall timing of the program which are
independent of the operation of the scheduler. The timing of some of these depends
upon the vector size and determines the order of execution of the code. In order to
alleviate the need for a different model for different vectors sizes, it has been assumed

that the vector size is a particular value whenever such instances arise. These

91

additional rules are listed below:-

iv. Any external channel communications are immediately serviced, there
is no communication latency.

\2 Internal memory is used exclusively.

vi. Accessing local variables in the computation section may or may not
require a single level of prefixing for small values vector sizes, depending on
which harness is being used. However, the overall prefixing level rapidly
approaches one for any reasonable vector size. Hence the level of prefixing in
the computation section is assumed to be one.

vii. At some points in the execution of the code, the ordering of operations
is dependent upon a threshold value of w. In such cases, the value of w is
assumed to be 16, a "large" value.

viii. Whenever a low priority process is interrupted, it is allowed to
complete execution of its present instruction. The execution time of this
instruction is taken to be the average instruction execution time of the low
priority (computation) section, 4 cycles.

ix. The link speed is fixed at 20Mbits™

In addition, for the multi-processor operation of the transputer, it is assumed that:

ix. The performance of any multi-processor implementation is determined
by the performance of the processor running the largest computation section.
(This is assumed to be the case for any program using a single sequential low
priority process).

4.4 The Operation of the Harnesses

This section outlines the sequence of operations involved in executing the single
processor mapping in each harness. The single processor mapping has been chosen as
it most readily demonstrates the difference in memory requirements of the two
harnesses. For any given harness, the sequence of operations is similar for all
processor mappings, the main difference occurring in the additional complication of
the second and third processes of the three processor mapping due to the extra

communication channel. The operation of each harness will be considered in turn.

92

4.4.1 Harness Type I
This harness is described by Fig 4.5 in terms of its hedgehog diagram and Occam2
code.

After general process and vector initialisation is completed, the main loop
begins. The high priority processes are first invoked in turn. These both initiate
external communication transfers and so are descheduled. The low priority
computation vprocess is then allowed to proceed until the first external communications
transfer completes and a high priority process rescheduled. The state of the 10\.av
priority process is stored, and the high priority process allpwed to proceed, continuing
by ending itself. The low priority process is again allowed to continue until the second
communications transfer completes, and the second high priority process becomes
active. Once more, the state of the low priority process is saved and the high priority
process allowed to proceed, which does so by ending itself. The completion of this
final high priority process signals to the "parent” of the communications processes that
all of its "children" have completed, and that it may call its successor process. Thc.
successor process in this case is the standard de-prioritising code, which also ends
itself upon completion. The low priority process is then allowed to continue
unhindered until it too ends itself. This signals to the process controlling the PRI PAR
construct that all of its constituent processes have completed, and that it may invoke
its successor, which is the next PRI PAR construct and operates in exactly the same
way as the first construct.

There are no internal communication channels (the processes are decoupled,
as depicted in the hedgehog diagram), as data is passed by reference between the

communication and computation processes. For instance, inside one PRI PAR

93

construct, data set A may be communicated and data set B computed, whereas in
another PRI PAR construct data set B is communicated and data set A computed.
Internal communication is avoided, then, but at the expense of memory space. The
memory requirement of this type of harness is high, as the code is duplicated inside
each PRI PAR construct. The code may well spill out into external RAM, which is
accessed much more slowly than internal memory, thus affecting performance. The
overall operation of the harness, then, is of a repeating sequence of PRI PAR
constructs which are continually set up and closed down. Inside each PRI PaR, high
and low priority processes are themselves initiated and terminated. The overheads
associated with this harness are those incurred by this continual initiation and

termination of processes and constructs.

4.4.2 Harness Type II
The hedgehog diagram and Occam2 code for this harness are given in Fig 4.6.
After general initialisation, the high priority communication processes are
invoked. The first process enters its WHILE TRUE loop and tries to execute a transfer
on an empty intcmal‘ct'lannel and so is descheduled in preference to the second
process. This process enters its WHILE TRUE loop and executes an external
communications transfer, also causing it to be descheduled. The low priority process
continues by initialising its local vectors and enters its WHILE TRUE loop by trying to
execute a transfer on an empty internal channel, whereupon it is descheduled. There
is now a delay until ﬁc first communications process completes its transfer and is
rescheduled. This process continues by executing an internal transfer, which also

reschedules the low priority process. The high priority process continues by jumping

94

to the beginning of its loop and executing an external transfer, thus being descheduled.
This allows the low priority process to continue by entering its computation section.
The low priority process continues until it is interrupted by the newly rescheduled
communications process. This high priority process continues by trying to execute a
transfer on an empty internal channel, and so is descheduled. This allows the low
priority process to complete its computation section. This process continues by
executing an internal transfer, which also reschedules the second high priority process.
This causes the low priority process to be interrupted by the second communication
process, which continues by executing an external transfer, so being descheduled. This
once again allows the low priority process to continue, by jumping to the top of its
loop and executing an internal transfer, rescheduling the first communication process.
The low priority process is interrupted by this communications process, which
continues by jumping to the top of its loop. At this point, all processes have
completed a single pass of their wiILE TRUE loops. Execution continues in a similar
manner, although the delay incurred by waiting for an external transfer does not occur
again.

The operation of this type of harness is more complex than that of the other
harness. Each communication process is coupled to the computation process via an
internal channel, as shown in the hedgehog diagram.The overall memory requirement
is nearly half of that of Type I, allowing larger computation sections to be
implemented in internal memory. The individual processes never terminate as they
continually repeat inside local wiILE TRUE loops. The PRI PAR construct is initiated
only once at the beginning of the program. Thus the overheads relating to process

initiation and termination incurred by Type I do not occur here. The main source of

95

overheads for this harness is the internal communication, which takes the form of a
_ cpu intensive memory to memory transfer.
The relative effects of the overheads of the two harnesses are investigated in

the next section.

4.5 Results

This section presents both the theoretical performance estimates and the results
obtained from the transputer system for each harness and mapping. Initially, the
theoretical performance of each hamess and mapping is given, together with their

associated overheads. The empirical results are then discussed, followed by a

comparison of the theoretical and empirical results.

4.5.1 Theoretical Performance Figures

The procedure outlined in Sections 4.2 and 4.3 was applied to each of the mappings
for both of the harnesses, and the performance of each derived as a function of vector
length, w. These results are presented in Appendix C, and their graphical
representations shown in Fig 4.10. From rule ix of the performance model outlined in
section 4.3, only the program using the largest computation section was considered in

the multiple processor mappings.

4.5.2 Code Overheads
The term "overhead" will be applied to any operation other than computation or
external communication. Hence, internal communication and descheduling /

rescheduling operations are considered overheads, since they do not involve operations

96

directly related to the function of the filter.

The overheads are derived from the scheduling chart and are presented for each
harness and mapping in Tables 4.1 and 4.2, a breakdown of the overheads incurred
by the single processor mapping of each hamess is presented in Tables 4.3 and 4.4.
It may be seen from this table that for a given harqcss, the overheads are the same for
the one and two processor mapping, but are larger for the three processor mapping.
This is to be expected, as the three processor mapping makes use of an additional
communications proceSs. Each communication procéss incurs an overhead of 64 cycles
for harness Type I, and 2w+53 cycles for Type II. Tables 4.5 and 4.6 provide a
summary of the total number of cycles required to execute the code, and the total

overheads incurred, for each harness and mapping.

4.5.2.1 The Impact of Overheads on Performance

The overhead associated with type I is not dependent upon vector length,
whereas that of Type II is, due to internal communication transfers. This implies that
the theoretical performance difference between types I and II varies with vector length.
For shdrt vectors, type II offers the highest performance. The changeover point occurs
when

No. cycles required by Typell > No. cycles required by Typel
ie 241 124w > 295 120w
4w > 54

w > 13.5(14)

So, type II should offer the best performance for vector lengths below 14.
The overhead associated with type II is more sensitive to the number of high

97

priority (external communications) processes. For type I, each high communications

process incurs an additional 64 cycles, whereas for type II, this becomes 2w+53.

4.5.2.2 The Effect of Vector Length and Computation Code Size
Harness type II offers the better performance if small vectors are used. This harness,
then, would be best suited to applications requiring a relatively large computation
section, as low vector sizes must be used in order to constrain the program to internal
memory.

Harness type I is twice as sensitive to the required amount of computation code
than type II. Code will tend to be forced into external memory for a lower vector size,
and so type I will tend. to favour smaller vector sizes than type II for large

computation sections.

4.5.2.3 Summary
It is clear that which harness provides the best performance depends upon the vector
size, the computation code length and the number of external communications
channels required. The exact boundaries of vector size and computation code length
will be dictated by the particular program under scrutiny. However, the analysis of the
single processor mappings of this particular application may be summarised as
follows.

Harness Type II provides the best performance for w < 14. For w 2 14, then
providing that external memory is not used, hamess Type I offers the best
performance. Harness type II will provide the best performance for values of

computation code length and vector size outside this region. Eventually, external

98

memory accesses and communications overheads of hamess Type II decrease its
performance, and type I once again provides the best performance.

The performance of harness type II is more sensitive to external
communications channels than Type L If any more than two external communication

channels are to be used, then Type I offers the better performance overall.

4.5.3 Empirical Results
This section examines the measured performance of the multi-channel filter as

implemented on the transputer system. The analysis of these results is divided into two

main groups:
i. Harnesses
ii. Processor mappings

Group i allows comparison of different processor mappings for a given harness,
whereas group ii allows comparison of harnesses for a given processor mapping. The
complete set of results is presented in Appendix C. Line plots of the time to compute
one word of data against vector length are shown in Fig 4.10, for all mappings and

harnesses.

4.5.3.1 Group i
Plots showing the performance of the mappings for each harness are given in Fig 4.8

a&b. They will be considered in turn.

Hamess Type I — Observations:-

i All three mappings exhibit the trend of higher performance for larger vector

99

size.

il The single processor mapping offers the lowest (absolute) performance.

ii For the single processor mapping, an increasing reduction in performance may

be seen for vector sizes greater than 24.

iv The three processor mapping offers lower performance than the two processor

mapping up to vector sizes of 32.

\ The single processor mapping seems to experience a sharper decrease in
performance than the two processor mapping. The three processor mapping does not

seem to suffer any decrease in performance in the given range of vector size.

vi The maximum absolute performance is provided by the two processor mapping

up to a vector size of 32, when the three processor mapping becomes the fastest.

Harness Type I - Explanations:-
i The general trend of increasing performance with vector size is due to the

decrease in relative importance of the communications set up overheads.

il The single processor mapping uses the largest computation code section. The
time required to compute a word of data (computation time) dominates the time

required to communicate a word of data (communication time), and so the

100

computation time will dominate the overall performance. Hence, the single processor

mapping offers the lowest performance.

iii This harness requires a relatively large amount of workspace and program
memory space, dependent upon the vector size and the size of the computation code
section. The single processor mapping uses the largest computation code section and
so requires the largest amount of memory. As the vector length is increased, then, the
amount of space required to contain the workspace and program areas increases. At
some particular value of vector size, the total memory requirement will exceed that
available in internal memory, and the program area will begin to use slower external
memory, causing the decrease in performance. Using the debugger, it was seen that
for this mapping and harness, external memory was first used at a vector size of 24,
which matches the point at which performance begins to be degraded. As four
instructions are read every memory cycle, the performance is not as impaired as it
would be if data areas where also placed off-chip, as in the case of very large
workspace areas or by using the "separate vector space" option of the Occam

compiler.

iv Surprisingly, the three processor mapping does not provide the maximum
performance for all vector sizes. The computation code section of this mapping is
small, and requires fewer cyﬁles to complete than a link transfer. Thus this mapping
is dominated by communication, in contrast to the other mappings. More
communication is required in this mapping than in the others, and so any additional

communications overhead or delay will significantly affect performance. The effects

of external memory access cause the performance of the two processor mapping to fall

below that of the three processor mapping at w = 32.

v Performance degradation at larée values of vector size is due to an increased
usage of external memory. The single processor mapping requires more workspace and
program code space per word than the other mappings, and so will make more use of
external memory for a given increase in vector size, causing a larger decrease in
performance. For the given range of vector size, the memory requirements of the three
processor mapping may be met solely by internal memory, and so no performance

degradation is exhibited.

vi Although the maximum overall performance is provided by the two and three
processor mappings, the single processor case offers the highest performance per
processor. This is not surprising, perhaps, as if this were not the case, it would imply
that the overall overheads associated with this harness are reduced in the multiple
processor mappings, which surely cannot be the case. The best that could have been

expected was a linear speed up with an increased number of processors.

Hérness Type I — Observations:-

i The mappings of this hamess exhibit the same general trend of increasing

performance with vector size.

ii The performance of the single processor mapping begins to degrade at a vector

102

size of around 44, but not as rapidly as for harness type I.
iii The three processor mapping, surprisingly, offers the lowest performance.
iv Maximum performance is attained by the two processor mapping.

Hamess Type II - Explanations:-
i As for harness type I, this increase in pérfonnance is due to the relative

decrease in importance of overheads.

ii The communication and computation processes are not duplicated in this
harness, and so less memory per word is required. The single processor mapping uses
more memory than the other mappings, and so it will require external memory at
lower values of vector size, causing a corresponding decrease in performance. As less
memory is required by this harness, however, then performance degradation will occur

at higher vector sizes than for the other harness.

iii As outlined above, the performance of the three processor mapping is
dominated by communication rather than by computation. This harness is experiences
more communications’ overhead than Type I, and so will experience more of a

performance degradation as a result.

iv It would be expected that the two processor mapping be faster than the single

processor mapping, due to the smaller computation code size.

103

4.5.3.2 Group ii
Plots showing the performancéof both harnesses for each of the mappings are shown

in Fig 4.9.

Observations:-

i For the single processor mappings, the performance of each harness is similar,
although harness type II performs marginally better for vector sizes below 12 and
above 32. The minimum sampling period (maximum sampling frequency) of 6.41

microseconds (156kHz) is attained by harness type I at a vector size of 24.

ii The performances of both hamnesses of the two processor mapping are also
very similar. Harness type I performs slightly better than type II up to a vector size
of 32. The performance éf hamess type II is not degraded within the given range of
vector sizes, providing the minimum sampling period of 4.624 microseconds

(216.2kHz) at a vector size of 48.

iii In contrast to the two cases above, markedly different performances are
provided by the harnesses for the three processor mapping. Harness type I performs
much better than harness type II, providing the minimum sampling period of 4.73
microseconds (211.4kHz) at a vector size of 48. Neither hamess experiences a

performance degradation within the given range of vector size.

104

Explanations:-

i The better performance offered by harness type II below a vector size of 12
is probably due to a lower proportion of operational overheads, although this does
require theoretical confirmation. The better performance of harness type I between
vector sizes of 12 and 32 is similarly caused by a difference in operational overheads.
The performance of harness type I begins to degrade at a vector size of 24, due to
external memory accesses. At a vector size of 32, the inherent overheads of harness
type I, combined with the additional overhead incurred by external memory access
become greatér than those experienced by hamess type II, resulting in hamess type II

providing the better performance.

ii Harness type I begins to feel the effects of external memory access at a lower
value of vector size than harness type II, hence the degradation at a vector size of 36.
Hamness type II does not need to use external memory for the given range of vector

size, and so experiences no performance degradation.

iii The computation code sections of the three processor mapping is small, its
execution time being less than the time required to transfer data over a link. Thus, any
additional overheads will have significant impact on performance. The soft
communications’ ovefheads experienced by harness Type II will be particularly

significant.

4.5.3.3 Summary

It may be seen that the performances of the two harnesses for the one and two

105

processor mappings are very similar. Hamnesses type I and II provide the best
performances for the one and two processor mappings respectively. The effects of
external memory access may be seen in both mappings, especially for hamess type 1.

The harnesses for the three processor mapping provide very different
performances, however. Here, harness type I provides more than double the
performance of type II. This is probably because of the proportional increase in the
overhead of type II, caused by the additional external / internal communication
channel. It is interesting to note that for harness type II, the three processor mapping
actually provides the poorest performance of all the mappings. In this case,
parallelising the code actually causes a performance decrease.

The maximum performance per processor is always attained by the single

processor mapping.

4.5.4 Comparison of Empirical and Theoretical Results

The theoretical predictions of the performance of the mappings for both harnesses are
derived from Appendix C. The performance equations are summarised in Tab 4.2, and
shown in graphical form, together with the corresponding empirical performance cﬁrvc
in Fig 4.10a,b,c.d,e.f. Also included in these plots is a measure of the accuracy of the
theoretical predictions — the percentage error — which is defined as

(Empiricalvalue - Theoreticalvaiue) % 100

PercentageError = —
EmpiricalValue

and the key is given by Mapping_Harness Type, where Mapping = 1,2 or 3,
Harness = | or Il and Type = Emp (Empirical), Thy (Theoretical) or % (Percentage
Error).

These comparison curves all exhibit various similar properties that serve to

106

demonstrate the limitations, and the accuracies, of the performance models. These

properties will be listed, and discussed.

Observations:-
i It may be seen from these plots that the theoretical curves all predict a lower

performance for small vector sizes than is actually attained.
ii This is more noticeable for harness type I than for hamess type II.

1ii For the single processor mappings, and to a lesser extent the two processor
mapping of harness type I, the theoretical curves diverge from the empirical curves
at large values of vector size. This is most noticeable in the single processor mapping

of harness type I.

Explanations:-

i The model assumes that the computation section variable accesses all incur a
single prefixing overhead. However, very few, if any, prefixing instructions will be
required to access variables if the vector size is small. Hence, the models predict a

longer computation cycle and hence lower performance.
ii The additional internal communications overhead experienced by harness type

II could mask this difference in computation length to some extent, resulting in the

decreased difference between theoretical and empirical performance.

107

iii The theoretical models assume that only fast internal memory accesses are
made, and so they do not take into account slower external memory usage. It has
already been shown that for large vector sizes, the code will eventually spill out into
external memory, causing a performance decrease. This is happening in the empirical

curves for the single processor harnesses, and the two processor mapping of harness

type L

4.6 Summary

A systematic method of decomposing Occam?2 programs was developed, in order to
allow the performance of a program to be predicted and to investigate the effects of
program structure upon performance. An operational model of the transputer was
applied to a graphical representation of the program, producing a scheduling chart
which gave information concerning the status of constituent processes and associated
communications channels at any given time. Information such as the execution period
of a program é.nd additional overheads incurred may be derived from this chart.

Theoretical performance figures were obtained for each hamess and processor
mapping using this method. The information obtained concerning the operational
overheads of each harness allows the appropriate harness to be chosen for programs
of a similar structure, for any given vector size.

The empirically obtained performance data has also been presented in this
chapter. Surprisingly, the three processor mappings did not offer significantly better
performance than the other mappings. This was explained by the low execution time
of the low priority processes and the increased communications requirement of this

mapping. Maximum performance within the given range of vector size was offered by

108

quoted vector size of 48, and so would be expected to further increase with larger
vector sizes. The two processor mapping will experience decreased performance due
to external memory access at a smaller vector size than the three processor case, and
so the three processor mapping would be expected to out perform the two processor
case above a particular value of vector size. <The maximum vector size used
experimentally was limited to 48 by the available compiler memory space.

The predicted performance figures were compared with the empirical data and
found to match to within less than 10% for the most part, any deviation being
explained by the limitations imposed by the operational model. Exceptions to this were
the three processor mappings, whose predicted execution periods were less than those
obtained empirically. This highlighted a major limitation of the operational model
when applied to mu]ti-processor-mappings making use of short low priority code
sections, namely the inability to adequately take into account the effect of
communications synchronisation.

Nevertheless, this model performs very well for most of the programs analysed
in this chapter. An increased sensitivity to external communication synchronisation
could be incorporated as an extension to the present analysis method.

The information gained by analysing the application filter programs in this way
may be used to determine the most efficient form of implementation of similarly

structured application programs.

109

| Overheads incurred by Harness Type 1
Cycles Required

Set up main parallel process 34
Set up high priority parallel process 23
High priority ENDPS 32
De-prioritisation code ENDP 16
Main process ENDP 16
De-prioritisation code 125
Context switching 126
Total 272

Table 4.1

“ Overheads Incurred by Hamess Type 11
Description Cycles Required
Soft communication transfer Cx(2w+ 19
Soft communication transfer set up 2Cx6
WHILE TRUE jumps 12
Context switching ' 144
Total) C2w + 218
Table 4.2 C - number of channels

110

Description Mapping
2 3
Set up main parallel process 34 34 34
Set up high priority parallel 23 23 35
process
Deprioritising code 32 32 48
High priority endps 16 16 16
Main process endp 16 16 16
Deprioritising code endp 25 25 25
Interrupt/scheduling 126 126 162
Total 272 272 336
Table 4.3 Breakdown of Overheads for Harness Type I
Description Mapping
1 2 3
Internal communications 2(2w+19) 2(2w+19) 3(2w+19)
set up
Internal communications 12 12 18
transfer
Loop jumps 12 12 16
Interrupt/scheduling 144 144 180
Total 4w+218 4w+218 6w+271

Table 4.4 Breakdown of Overheads for Harness Type II

111

Mapping Harmness
1 120w+295 124w+241
2 75w+295 T9w+241
3 46w+262 42w+298

Table 4.5 Number of cycles required to execute code loop

Mapping Hamess
1 272 4w+218
2 272 4w+218
3 336 6w+271

Table 4.6 Summary of overheads

112

(Occam?2 Process)
Disassembly
Hex
Process Partition Table
Timing Information
(Process Flow Graph)
(Scheduling Chart)

(Performance Model)

Fig 4.1 Flow Chart of Process Decomposition

113

%3B5

%3A4

%391

%385

%31E

%309

%300

%2EC

%8C
%0

Fig 4.2 Memory Utilised by the Second Process of the
Two Processor Mapping, Hamness Type II

End process

De-prioritising code

End process

External input buffer loop

End process
External output buffer loop

Initialise high priority
parallel processes

End process

Main low priority loop
Initialisation loop
Adjust wptr

Set up and run main high
priority process

Initialise internal channels

Adjust wptr

“Configuration Code

Workspace

Reserved Locations

114

High priority processes
and control blocks

Low priority processes
and control blocks

(]
o
4
uvd
4vd 1dd

apo> dp ,daNdu Le

apoo buysy3yjroyad

4 »wddNdu

—>

#wdaNd, dn 33§

¢y dunp

- —»>

61+MZ 43N0, TeuIajUI

-

¢ I23Jx suorjedjunuuwos dn 38§

.

M9p ,UT, TeuIajyxy

+

9 19jx suoyjeojunuwod dn 38§

L4

$53201(& jo uonejuasaday ydein mof €4 mE

d o ddNdu

* ¢ dunp
$ «daNd. dn 385 Z| 45

0 uddN3du

+

uddNd, dn 30§

+

p dunp

-3

M9p ,3N0, TPUIDBIXT

+

9 193X suofjeojunumod dn 3a3g

o€ 6[+MZ LUT. TEUId3UI
62 ¢ 193Jx suojiedyunuwod dn 3as

oz ¢

Z 3I93utod eoedsyiom 3Isn{py

d Y «dlUNVLSy

2 ¢
4

14 p o ssodoiad dn 3ag
sz t

lossaoons 03 Jufod

mmmmmwuoum K3ypaotad

ve ybty T1o1Tered -oN 8ut3ag

0

1300, TeUIdUI
MN oI +MZ

-

9 123jx suorjedojunuwod dn 38§

r x4 A+
m[[] uof3ioes uoyjejndwo)

1e +
61+MZ wUTa TEUIDUT

0¢ +
9 193x suofjedjunuwod dn 38§

61 *
«ANT T

8L »
azl 9eH(I- My (dooT 3o Apoq)

'§9TqeTIBA BSTTETITUI

Bl *

3o0T1q T0FU0D ,(ANHT. OSTTETITUI
£ 19jutod aoedsyaom 3Isnf{py

9l _+

II 0 wdNNYu

+

K3713072d ybIy utew dn 3as

J0Ss820ns 03 3jujod
43 K3yt1aotad yoayd
sTeuUURYD JEUIBJUT asFTeTITUI
1ajutod ooeds)iom 3sn(py

Si

vi

d

i

ol

115

11 9dA1 ssaurey jo Surddejy J0ssa201d OmI ay1 J0J Wey) Surnpayos ay Jo UoNRS V ' 314

. “ a0 d 9 9 4|
" " q'0 d S
9
| “ " a0 d v + (I-M1y 1|
" " A0 d £ L o1
Joyx " 0 d Y4 61 6
" 0 d A vT 9 8
i H 0 d d 81 61 L
d d o} L L 9
d b | 0 91 (A S
d 0 9 v 14
d 0 14! 8 £
d 0 [4 I (4
d I € I
no aW o ul no ur 1d od 1d od
. 0 aATORU] Ay ANDIXTY
NOLLVIINNIWINOD DONITNAAHDS so1o65
SNLVLS SS4004d 1°qe1 JOSS00I] ‘J31 AON

116

PROC high.pass.A(CHAN OF ANY input,output)

Declarations
Initialisation
WHILE TRUE
SEQ
PRI PAR
PAR
... communicate set A
SEQ
... compute set B
PRI PAR
PAR
communicate set B

SEQ

compute set A

output
{A/B]

Computation
[B/A)

Fig 4.5 Hamess Type I

117

PROC high.pass.B(CHAN OF ANY input,output)

Declarations
Initialisation

PRI PAR
PAR
WHILE TRUE
SEQ
input.buffer
WHILE TRUE
SEQ
.. output.buffer

SEQ
input.data.from buffer
compute
.. output.data.to.buffer

Communication

output .buffer

Computation

Fig 4.6 Hamess Type II

118

spiom / yiBue 10196
1214 144 ov 9€ [8¢ ve 0c 9l cl 8 14 c

i
v T Ll Ll T L Ll T T T

duly e —o— i

dw3z|e —p—

duz |} — e —

| dA] ssaweH ‘Buiddew yoe3 jo
s)nsay jeapyjdwiz jo uospedwo)
eg'p 614

©

(=]
-

N
-

<
-

©
-

o)
-

(=}
N

SpL022S0JoIW / poudg 3|dwiog

119

spiom J yiBue] 10)08A
e 8¢ ve 0¢ 9l cl

]

=]

[I Il [1 Il
L T T ¥

<«

<

L |

P

L |

dw3i|I'e —e—
dwl iz —o—

dwl | —e—

11 8dA] sseusey ‘Buiddep yoe3 1o0j
s)insay feayjdw3 jo uospedwod
qg'y 614

(=4
-

7o}
-

(=]
N

5S¢

Spu023s0iolW / poudd jdwog

120

duz ") —o0—

dug (L —e—

spiom / yBue 101907
ce 8¢ ve 0¢c 9l ct

} } } Il 1 Il
T T ¥ T T

B6ujddepy 108s3901d 91bus ‘ssauseH yoea
Jo sjnsay jespjdwz jo uospedwo)
e6"y B14

o
-—

N
-

<t
-

©
-

@
-

[=]
N

spu023soIoIW / pouad buiidwiog

121

dw3 | ¢ —o—

dug| e —»—

spiom [YiBue] 10100

8 v O 9 g 8 ¥ 0 9 ¢ 8 v 2 !
“ “ “ “ " " “ “ “ " “ “ “ 0
+ 2
+ v
e ——
+9
+8
1 o1
1+ e
1+ vt
91

Huiddeyy 108839014 om| 8y} 10} ssauseH yoeg
Jo synsay [eapsdw3 jo uospedwo)

q6't 614

spu0dasosol / pouag buyduwog

122

dwinNeg —o—

dw3 e —e——

spiom / yiBue 101007
8¢ ve (V74 9l 43 8 14 c ¢

L |
«
«
-«
«

{ Il } } [Il
T T T)) |

|
L
L

o
-

Yo}
-

(=]
N

S¢

Bujddepy 108532044 8aiy] 8Y) Jo ssauieH yoe3 jo sjnsay jeopjdwiz eyy jo uosypedwod

26'y 614

Spuodasosolw / pousd buyduiog

123

%It ——
YLt —o—

dwg "y —g—

aouasay)q abojuadsay

spiom / yiBue] J0190A
°14 144 ov 9€ ce 8¢ Ve 0¢ 9l el 8 14 4 i

0z 1 L

| 9dA) sssusel ‘Bujddepy
J0S$3204d 8j6u|S 8y} 10j esuewWIOMAd [edidw] pue j8ojeloay] jo uospedwo)
eol'y Bid4

(=4
-

n
-

(=]
N

Sé

Spuodasooiw / pouad ajdwog

124

% —o—
L2 —e—

dwl | g —p—

spJom / yiBue 10)90A
8 v oy 9 2 8 ¥ 02 9 I 8 ¥

-
——

Sk +

ok +

aouaiagiq abojuadiag
o

0t +

0¢ -

| 8dA] ssswieH ‘Bujddep 105882014 om] 8y} 1o}
aouewWIoOMad |eauidw3 pue [eapaioay] 8y} jo uospedwo)
qolv 614

143

o
SpU03soiolw / poud 2|dwDs

©
-

8t

0c

125

spiom / Yibue 1006
%14 144 or 9€ e 8¢ ve 0c 9l 4 8 14 e L

% | € —»—
AMLITE —o—

dul e —o—

souaJay)ig abojuadiag

| edA] ssausey jo Buiddeyy 10ss8301d 884Y) 8Y} 10}
asuewiouad jespsidwa pue jeopalosyy jo uospiiedwod
201y 614

1

[=]
SpU02asoIdIL / pouad 3|dwos

vi

-] ©
- -

—
(=]
N

126

spiom / yiBue 101007
1314 144 oy 9t ce 8¢ ve (474 91 cl 8 v < '

e

%t —e—om

AL —e—

dwli | p —og—

auasayyg abojuadiag

Il 9dA)L sseusey ‘Bujddey 10ss9201d 81buls ey} 1o}
eJuBuLIOMad jedpidwg pue jeapjaio8y] ey jo uospedwod
POL'Y 614

© © ¥w o ©
*- - - - L
spu02asosolw / pouad 3|duiog

—
(=]
N

127

% II'e —e—0
AL e —e—

dw3l g —o—

3auasaylq abojuaduag

SpJOM / yiBue J0J00A
1214 144 oy ot ce 8¢ ve 0c 9l cl 8 14

-,

jl 8dA] ssauieH ‘Bujddepy 10S58204d OM] 10}
aauewIouad [edapidwiz pue jedjiaioey) ayy jo uospedwo)
e0l'y 614

© T o 9
- - - -
Spu02as0Jolw / poudy a|diiog

o]
-

|1 =

SpJoMm / yiBue 10100\
1214 144 oy ge ce 8¢ Ve 0c 9l cl 8 14 c t

&

%I e —w—o
ALITE —e—

dug e —p—

aauasayyl abojuasiagd
[=]
<

8

0L A

08

)} 8dA] ssauseH jo Bujddep 108$8201d 831y] 8y} 10}
#ouew.loyad jeapidwg pue [eajiaioay] jo uospedwod

JoL'y 614

1 b

SpU0%3soioiw / poudd 3|dwos

Chapter 5

The Motorola DSP56001

5.1 Introduction

This chapter describes the architecture and operation of the Motorola
DSP56001 Digital Signal Processor (DSP) [42]. This device was the first
programmable DSP marketed by Motorola, being released in 1987. The DSP56001
incorporates many design features associated with high performance DSPs — a
parallel memory and multiple bus architecture, single cycle fractional multiplier and
a comprehensive set of address registers [7], [40], [69]. The power of this
particular device is enhanced by the modification of some of these features, and by
the addition of new ones. The register addressing scheme, for instance, was the most
versatile available at the time, allowing circular buffers and Fast Fourier Transforms
to be easily implemented. The devicg also incorporates two on-chip communications
peripherals which allow straightforward connection to "host" microprocessor systems
and to devices such as analogue to digital (ADC) and digital to analogue (DAC)
converters. A small amount of memory is incorporated on chip, and so the device may
be thought of as a specialised microcomputer rather than as a microprocessor.

The architecture is based around three main parallel execution units — the

Arithmetic and Logic Unit (ALU), the Address Generation Unit (AGU) and the

128

Program Controller (PC) — which are connected via multiple buses to parallel
memory areas [70]. This results in a high degree of operational concurrency,
which is reflected in the programming style.

Although an optimised C compiler is available, the highest performance may
be attained only by using hand coded assembly language [71]. The assembler uses
a time stationary coding method [40], which allows the programmer to maintain a high
level of control over the sequence of operations. This approach contrasts with that of
the "interlocking" style, used by Texas Instruments in the TMS320 range [40], which
allows the programmer little direct influence on the sequence of internal operations.

The DSP56001, unlike the transputer, is not a general purpose processor; it has
been designed specifically to process digital signals as efficiently as possible. The
device is programmed in a far more direct and straightforward manner than the
transputer, primarily because it has no facilities for supporting software defined
parallel processes. The programmer may exert far greater control on the operation of
the main execution units of this processor, which results in a far more hardware
orientated programming style than the transputer. However, as the language represents
a specialised sequential processor, programming is quite straightforward, once the
architecture of the processor and time static coding are understood. This chapter is
concerned primarily with the main architectural features of the DSPSGOOI, and how
they are controlled, rather than programming technique.

This particular device was chosen in preference to others for four main reasons.
Firstly, it supports a 24 bit word format and so provides a larger dynamic range than
16 bit processors. Secondly, the architecture provides a high degree of operational

concurrency and a single cycle non-pipelined MAC unit, which aids computational

129

efficiency. Thirdly, a byte wide parallel interface and both asynchronous and
synchronous serial interfaces are incorporated as on-chip peripherals, allowing
straightforward connection of external devices such as analogue to digital to analogue
converters. Finally, a device simulator and a hardware development system were easily
available [72], [73). Floating point processors were not considered, as the
devices available at the time, notably the NEC puPD77230 [74] and the AT&T
DSP32 [45], could not provide performance comparable to that of fixed point DSPs,
and their cost proved to be an inhibiting factor.

Section 2 provides an overview of the architecture of the device. The main
functional elements are described more fully in Sections 3 to 8. The method of
assembly programming is covered in Section 9, which also provides a gauge of
processor performance. This chapter does not provide an exhaustive description of the
DSP56001; the reader is referred to [70] and [71] for an in-depth treatment of the

device. Diagrams labelled with 1 are taken from the Motorola literature.

5.2 Architectural Overview
The architecture of the DSP56001 is based around three main execution units — the
data ALU, the address generator and the program controller — which operate
concurrently, the memory areas and the interconnecting bus structure, all of which are
contained on-chip. Additional units include both internal and external bus switches,
a bus controller and serial and parallel communications interfaces (treated as memory
mapped peripherals). A schematic representation of the architecture is given in Fig 5.1.
The memory structure is based on a modified Harvard architecture [7] — one

program area and two data areas, denoted "x" and "y". The execution units and the

130

memory are connected via three address and four data buses. In order to reduce pin
out requirements, these have been multiplexed to one address and one data bus, with
appropriate control lines, for external memory access. A 16bit address word is utilised,
allowing an external addressing limit of 64kwords for each of the program, x-data and
y-data address spaces.

The ALU supports a 24bit fixed point fractional integer format. The
accumulators impose no truncation errors after multiplication, and provide sufficient
headroom for 256 consecutive overflow multiplications. Scaling and saturation
arithmetic are supported.

The address generation unit allows simultaneous modification of two address
registers, thus complimenting the access of the two data memory areas.

The peripherals may be configured either as general purpose i/o pins, or as a

byte wide "host" interface and synchronous and/or asynchronous serial interfaces.

5.3 Buses

The DSP56001 contains three internal address and four internal data buses, see Fig
5.1, which concurrently move data and instructions between the main execution units
while they are operating. Other elements of the internal bus structure include the
internal bus switch and bit manipulation unit, and the external address and data bus

switches. These will now be considered in turn.

5.3.1 The Data Buses

Data is passed around the chip using four bidirectional 24bit wide buses — the x-data

bus (XDB), the y-data bus (YDB), the program data bus (PDB) and the global data

131

bus (GDB). Certain instructions cause the XDB and YDB to be concatenated, in order
to produce one 48bit wide bus. The XDB and YDB connect the ALU to the x and y
data memory areas. The PDB connects the program controller to the program data
areas. Other data transfers, such as i/o transfers with peripherals, are carried out over
the GDB.

This multiple bus structure, together with the extended Harvard architecture
and execution pipelining, allow an instruction pre-fetch, two operand fetches and

instruction execution to occur in parallel.

5.3.2 The Address Buses
Accesses to internal x and y data memory are addressed using the unidirectional 16
bit wide x address bus (XAB) and y address bus (YAB). Accesses to program memory

are addressed using the 16 bit wide bidirectional program address bus (PAB).

5.3.3 The Internal Bus Switch

The internal bus switch allows the connection of any two data buses, without incurring
a pipeline delay. This switch also incorporates a bit manipulation unit, as all data must
pass through it. Bit manipulation is carried out on memory operands on the XDB,

YDB and GDB.

5.3.4 The External Bus Switches
Although tﬁe DSP56001 may address each of its three internal memory areas
simultaneously, allowing the same degree of access to external memory would

increase the pin count of the device, resulting in a more expensive package. For this

132

reason only one address bus and one data bus are brought off chip. The four data
buses are multiplexed into one by the external data bus switch, the three address buses
are similarly multiplexed by the external address bus switch, which form part of the
external memory interface (EMI). If only one bus requires access to external memory,
then no performance penalty is incurred. If more than one bus requires external access,
then bus arbitration must occur, and wait states inserted in the bus cycle by the bus

controller.

5.4 The Memory Spaces

The DSP56001 utilises a modified Harvard architecture, accessing three separate
memory spaces, the program space and the x-data and y-data spaces. These spaces
may be forced into one of four configurations, controlled by the MA, MB and DE bits
in the operating mode register (OMR), described in Section 5.7. The use of parallel
memory areas is a typical feature of DSPs and aids performance by allowing more
than one operand to be fetched in a single instruction cycle. A description of the

individual memory configurations, shown in Fig 5.2, follows.

5.4.1 x-Data Memory

A maximum of 64kword of x data memory may be accessed, 256 words of which are
contained on-chip. The on-chip x data static RAM area is 24 bits wide and occupies
the lowest 256 locations of x memory space. An additional 256 words of internal
preset ROM, containing A-Law and p-Law expansion tables, may be mapped into
locations $100-$1FF by setting the DE (Data Enable) bit to one in the OMR.

Whenever the ROM is disabled, addresses $100-51FF access external RAM locations.

133

The on-chip peripherals are mapped into external locations $FrFco-SFFFF of the x

memory space, and may be accessed using the MovEC instruction [70].

5.4.2 Y Data Memory
The y data memory is similar in size and operation to the x data memory. The ROM
area contains a full sinewave look-up table, with off-chip peripherals being mapped

into locations $FFCO-S$FFFF.

5.4.3 Program Memory

The total addressable p-memory space is of similar size to the x- and y-data spaces,
but differs significantly in its configuration.The on-chip program static RAM area is
24 bits wide and occupies the lowest 512 locations in p memory space. The program
memory may be configured in one of four ways, shown in Fig 5.2, corresponding to
the four operating modes of the device. The configuration is determined by the state
of the MA and MB bits in the OMR.

Modes 0 and mode 2 utilise internal program RAM. These modes are similar,
differing only in the location of the reset vector, which is placed at internal location
$0 in mode 0, and at external location $£000 in mode 2.

In mode 3, the internal program memory is disabled and the processor
exclusively accesses external program memory. Mode 1 is the special bootstrap mode
that should be entered upon processor reset. In this mode, the special on-chip
Bootstrap ROM is mapped into internal program memory space as read-only, and
allows a program to be loaded either from the host interface or from a byte-wide

ROM connected to the EMI.

134

5.5 The Address Generation Unit

The provision of multiple memory units, and their corresponding buses, in a
processor architecture may well facilitate a high instruction throughput, but it also
presents a problem. An instruction must specify an address for each of the memory
areas that it wishes to access. For this device, then, an instruction would need to
include three 16bit address fields. This would require either a long instruction word,
increasing the overall cost and size of the memories and buses, or more cycles to
access the instruction which would tend to decrease instruction throughput.

The solution, which is used by many processors, is to use "register indirect
addressing”. Special purpose address registers are used to hold the address of a word
in memory. Instructions refer to a particular register, indirectly accessing a memory
location. A dedicated arithmetic unit is usually incorporated to allow the address
registers to be updated concurrently with bus and ALU operation. The number of
registers used is comparatively small, requiring a shorter instruction. The DSP56001
possesses eight address registers, each with their associated offset and modifier
registers. These allow complicated addressing schemes, such as modulo addressing
(circular buffering, used in filters) and reverse carry addressing (bit reversal, used in
Fast Fourier Transforms) to be implemented without incurring additional overheads.

The Address Generation Unit (AGU) is one of the main cxe?:ution units on the
DSP56001. This unit is used to calculate addresses used in register indirect addressing,
and contains the registers used in this addressing mode. The unit is divided into two
halves, and is capable of supplying two addresses every instruction cycle. This allows,
for instance, two operands to be accessed, in x and y space, simultaneously. The unit

consists of three main elements — the register files, the address ALU and the address

135

output multiplexer, Fig 5.3. These will now be considered in turn.

5.5.1 The Register Files

The AGU contains 24 registers, arranged as eight sets of register triplets. Each triplet
consists of an address register, Rn, an offset register, Nn, and a modifier register, Mn.
Each register is 16 bits wide and may be read or written by the GDB. When a register
is read by the GDB, only the lowest two bytes are used, the most significant byte
being zero extended. When the registers are written by the GDB, then only the two
lowest bytes of the data word are used, the most significant byte being truncated.The
eight register triplets are arranged as two banks of four. Each bank is controlled by
its own address ALU.

The address registers are usually used to hold addresses that are used as
pointers to memory, although they may be used to hold general data. Each address
register may be used either as an input or as an output for its respective address ALU.
One address register from each half of the AGU may be accessed simultaneously,
allowing parallel data moves. Hence, if one half of the AGU is used to access x-data,
and the other y-data, then two data operands, held in x and y data memories, may be
accessed simultaneously. The manner in which any particular address register is
changed depends upon the contents of its associated offset and modifier registers.

The offset registers are used to alter the contents of their respective address
registers by some particuiar value. The offset may be applied in an incremental or a
decremental fashion, and either before or after the address register is used.

The modifier register determines which of the three addressing modes the

associated address register is subject to. The modes supported are linear, modulo and

136

Teverse carry.

5.5.2 The Address ALU

The AGU incorporates two identical address ALUs, which operate on each group of
register triplets. Each address ALU contains thre_e full adders — an offset adder, a
modulo adder and a reverse carry adder — each of which may act upon the contents
of a specific address register and allow the three addressing modes to be implemented
without additional operational overheads.

The offset adder can add plus or minus one, the contents of the associated
offset register or the two’s complement of the offset register, to an address register.

The modulo adder adds the output of the offset adder to a modulo value, M,
or its complement, where M is the value stored in the associated modifier register.

The reverse carry adder operates in a similar fashion to the offset adder, the
difference being that the carry is propagated in the reverse direction, and operates in
parallel with the offset adder.

Each address ALU is capable of updating one address register in an instruction
cycle. The combination of full adders allows linear, modulo or reverse carry arithmetic
to be performed on the address register, depending on the contents of the associated
modifier register. If the modifier register contains the value $rrrF, then linear
arithmetic is used. If the modifier register contains $0000, then reverse carry
arithmetic is utilised. If the modifier register contains any other value, M, then modulo

M-1 arithmetic is used.

137

5.5.3 The Address Output Multiplexer
The two banks of address registers present two 16 bit address values every instruction
cycle. The address output multiplexer determines which bank is to be used to drive

the XAB, YAB or PAB.

5.5.4 Address Register Indirect Modes
All main types of indirect addressing modes are available on the DSP56001, including
pre-/post-increment/decrement by one or the offset value, modulo and reverse carry

(bit reversal).

5.6 The Data Arithmetic and Logic Unit
The arithmetic and logic unit (ALU) is one of the three main execution units of the
processor. The operation of the ALU lies at the heart of the power of the DSP56001.
Incorporating a fast 24bit by 24bit multiplier with 56bit accumulation allows 256
consecutive overflows or underflows to occur with no degradation of accumulator
accuracy. Furthermore, the two sets of input and output (accumulator) registers allow
fast register to register or register to memory transfer, and a convenient local data
store. The latter enables pipelining restrictions to be pre-empted, Section 5.11. The
unit incorporates a non-pipelined multiply-accumulate (MAC) unit that is capable of
operating with positive or negative accumulation, with or without convergent rounding,
in a single instruction cycle.

The-ALU, shown in Fig 5.4, consists of four input registers, a multiplier, an
accumulator, rounding and logic units, two accumulator registers and shifting/limiting

circuits. These are treated separately below.

138

5.6.1 The Data ALU Input Registers

The four general purpose 24 bit wide input registers, x0,x1,y0,y1 act as input buffers
between the MAC unit and the data buses. They may be concatenated to form 48 bit
registers, x1:x0 (x) and y1:y0 (y). The provision of these registers allows fresh data to
be moved in over the data buses while the MAC unit operates on the previous data,

allowing the MAC to operate continuously.

5.6.2 The Multiply Accumulator and Logic Unit

The MAC and logic unit, shown in detail in Fig 5.5, is the heart of the computational
power of the DSP56001. It consists of a multiplier, an arithmetic and logic unit,
convergent rounding circuitry and a data shifter. This unit operates in parallel with the
bus circuitry, allowing continuous operation.

The x and y registers form the input of the multiplier, which executes 24 x 24
bit parallel fractional two’s complement fixed point multiplications. The resulting full
precision 48bit product is right justified and added to one of the accumulators.

The logic unit performs bitwise logic type functions on the ALU registers.
There is a direct path from the output of the accumulators to the input of the MAC
accumulator, incorporating a 56bit shifter that is able to perform single bit arithmetic
or logical shifts to the left or right.

The convergent rounding circuitry is placed between the MAC accumulator and

the accumulator registers.

5.6.3 The Data ALU Accumulator Registers

The ALU incorporates two 56 bit accumulator registers, a and b. These may

139

themselves be subdivided into component registers, a2:a1:a0, b2:b1:b0. The 48 bit
product from the MAC unit may be stored in a1:a0 (b1:b0), whilst the additional 8 bits
of a2 (b2),(the accumulator extension register), which is sign extended, allows 256
consecutive overflows or underflows to occur without loss of numerical accuracy. The

individual register elements may also be accessed as unsigned registers.

5.6.4 The Shifter/Limiter Circuitry

The 56 bit accumulator registers are connected to the 24 bit data buses. Converting
a 56 bit value to a 24 bit value obviously results in a loss of numerical accuracy.
Usually, whenever the accumulator extension register is not in use, the 24 most
significant accumulator bits (a1t or b1) are transferred to the bus. The 24 least
significant bits are either truncated or rounded into the most significant portion before
transfer.

Whenever the extension registers are in use, then simply transferring the
contents of a1 (b1) may result in serious inaccuracies. For this reason, limiting
circuitry has been included on the output of each accumulator register. This circuitry
substitutes the maximum or minimum value representable by 24 bits for the value held
in the accumulator register.

The individual constituent registers may be transferred as unsigned values by
specifying them explicitly as an instruction operand.

Provision is also made for a shifting circuit on the output of each accumulator

register. This is useful for applications involving scaling, such as digital filtering.

140

5.7 The Program Controller
The program controller is the third of the main concurrent execution units of the
DSP56001. It consists of three sub-units, the program decode controller, (PDC), the
program address generator, (PAG), and the program interrupt controller (PIC). The
unit contains the hardware used to control and execute both long and short interrupt
routines, in addition to the main status and control registers, a system stack, and
registers used in the implementation of the hardware po loops. The controller is at the
heart of the instruction pipeline, and incorporates several features which enable highly
efficient program execution — in particular the implementation of interrupts and
hardware po loops.

All registers are 16 bits wide, and may be read or written over the global data
bus (GDB). As this bus is 24 bits wide, only the lowest 16 significant bits are valid.
The 8 most significant bits of the bus are either forced to zero or are held in a "don’t

care" state. The sub-units and their operation are described below.

5.7.1 The Program Decode Controller

The PDC, Fig 5.6, contains the program logic array decoders, the state machines, the
instruction latch and the backup instruction latch. This unit decodes the instruction
held in the instruction latch and generates all the required pipeline cbntrol signals. The
backup instruction latch is used to implement the repeat (rREp) and jump (JMp)

instructions.

5.7.2 The Program Address Generator

This sub-unit contains the program counter (PC), the stack pointer (SP), the system

141

stack (SS), the operating mode register (OMR), the status register (SR), the loop
counter (LC) and loop address (LA) registers. The program address controller is totally
independent of the data AGU, thus allowing data and instruction addresses to be
calculated simultaneously.

The SSis a 15 x 32bit separate internal memory, divided into two banks of 15
x 16bit registers (system stack high and low), referenced by the SP. The stack is used
to hold the contents of the PC and SR during subroutine calls and long interrupts. The
stack is also used to hold the contents of the LA and LC during execution of the po and
REP instructions.

The OMR defines the current operating mode of the processor. Hence, it
determines the memory partitioning scheme, and whether or not the internal data ROM
areas are mapped into internal memory.

The SR is sub-divided into two 8bit registers, the mode register (MR) and the
condition code register (CCR). The MR defines the state of the system, and is affected
by reset, po loop instructions, returns from interrupt and exception processing. The
CCR defines the user state of the processor and is affected by data ALU operations
and data limiting on the accumulator registers.

The operation of hardware loops is also controlled by this sub-unit. The REP
instruction loads the LC with the number of times that the next instruction is to be
repeated. The instruction needs be fetched only once, hence reducing the bus
requirement, which may be important for programs requiring multiple external bus
accesses. This instruction is not interruptible.

The po instruction represents one of the most developed low overhead looping

schemes available on any processor. The instruction loads the LC with the number of

142

times the loop is to be iterated and the LA with the address of the last instruction of
the loop, and asserts the loop flag in the SR. These registers are also stacked, together
with the address of the first instruction of the loop, prior to execution, allowing Do
loops to be nested and repeated with no additional overhead. During execution, the
contents of LA are compared with the contents o_f PC in order to determine whether
the end of the loop has been reached. If this is the case, then the contents of LC are
tested for one. If the test fails, then LC is decremented by one and the PC updated
with the address of the start of the loop. If the test succeeds, then the loop has
finished. The stack is popped and used to write the LC, LA and loop flag in the SR;

and the instruction fetches continue as normal. These loops are interruptible.

5.7.3 The Program Interrupt Controller
The PIC arbitrates among all interrupt requests and generates the appropriate interrupt
vector address. Four external and sixteen internal interrupt sources are processed by
this sub-unit. Each interrupt possesses an associated interrupt priority level, that may
range from zero (the lowest level, maskable) to three (the highest level, non-
maskable). Most of the interrupt request sources may be assigned priority levels
between zero and two, a few sources possess a priority level of three. An interrupt of
higher priority level will be serviced in preference to one of lower priority level. The
interrupt mask bits in the SR define the current processor priority. No interrupts with
priority less than this level will be serviced. Level three interrupts are always serviced.
Each interrupt is vectored to a two word service routine at one of 32 fixed
locations occupying the lowest addresses of program memory. An interrupt begins as

a short interrupt, but may develop into a long interrupt. For a short interrupt, the

143

instruction(s) to be executed are held in the two vectored address words. For a long
interrupt, these instructions specify a jump to subroutine, which may be any length.
Short and long interrupts are depicted in Fig 5.7.

When an interrupt request is received and accepted, the exception processing
state is entered. The instruction presently being decoded will be allowed to execute
normally. The PC is then frozen as the PIC supplies the next two fetch addresses (the
two interrupt vector program words), which form a short interrupt routine. No state
information is saved during a short interrupt, which eliminates any overheads incurred
by stack operations; the interrupt instructions are inserted in the regular instruction
stream. If the short interrupt vector contains a subroutine call, then the more standard
context switching long interrupt occurs. The stack stores the system state and return
address, and the instruction pipeline is flushed in order to implement the subroutine.
This obviously incurs performance overheads.

The provision of short interrupts, then, allows for short sections of code, such
as those required to service the on-chip peripherals, to operate with no additional
instruction pipeline delay. This is a very powerful feature, as data may be transferred
to/from the on-chip peripherals without interrupting the instruction pipeline. Longer
interrupt routines may still make use of the more traditional context switching long
interrupt routines.

Two external interrupt request pins are available on the DSP56001. These are
used to indicate interrupt requests for /IRQA and /IRQB, which are maskable
interrupts. The /IRQA pin is also used to signal the NMI interrupt, although this is

indicated by a super-voltage of 10V, and so has not been designed for prolonged or

frequent use.

144

5.8 The External Memory Interface (Port A)

The external memory interface (EMI), or Port A, is used to connect the DSP56001 to
external memory devices such as additional RAM, ROM or EPROM. The three
internal address buses are multiplexed onto one external address bus. Similarly for the
internal data buses, except that the global data bus is not brought out externally. The
external bus switches determine which of the buses are passed externally at any one
time. Although multiplexed, the bus operates at the same rate as the internal buses,
an important consideration as it allows one of the internal data areas to be extended
off-chip without incurring a performance degradation.

The associated external bus control unit provides signals that indicate which
of the data spaces are being accessed. This unit also provides read enable and write
enable lines.

Two bifunctional lines are available, their mode being selected by the operating
mode register. These are the bus request/bus grant signals, used for external DMA
access, and the bus wait/bus strobe signals, which insert wait states into the present
bus cycle and may be used in shared memory systems.

The external bus interface is capable of operating at full speed, and so incurs
no performance penalty when only one external memory area is required per
instruction. Whenever two or three external areas need to be addressed, the control
logic arbitrates and orders the accesses accordingly, resulting in an overall decrease
in performance.

Up to fifteen wait states may be programmed into the EMI, enabling slower
(and hence less expensive) memory devices to be used. Each address space may be

programmed with a different number of wait states, defined by the bus control register

145

5.9 Port B

Port B is implemented as one of the two on-chip peripheral communications units. It
may be configured either as a general purpose input/output interface, in which the
action of individual pins may be user defined, or as a byte wide "host" interface,
which operates in a similar manner to a standard microprocessor interface. The port
is accessed by the DSP56001 through memory mapped peripheral registers, allowing
a rapid transfer of data by using short interrupts. Port B operates concurrently with the
other main execution units, thus providing a powerful communications mechanism.

The two operating modes will now be considered in some detail.

5.9.1 The General Purpose 1/0 Interface

The general purpose i/o interface consists of fifteen pins which may be individually
configured to act as inputs or outputs. In this configuration, the port may be thought
to consist of three memory mapped registers, residing in the internal peripheral
memory area. These are the port B control register (PBC), which determines the
configuration of the interface, the port B data direction register (PBDDR), which
determines which pins are inputs and which outputs, and the port B data register
(PBD).

Port B is a memory mapped peripheral, and so the MOVEP instruction may be
used to access its locations. This instruction is slower than the normal MOVE
instruction, but as it allows memory to memory transfers, it is ideal for use within fast
interrupt routines.

A hardware strobe is not provided. Hence, if an external strobe signal is

required, it must be generated in software by toggling one of the output pins.

146

The i/o pins are latched. This has the consequence that the data is not actually
placed onto the output pins until an instruction cycle after the instruction appears in
the code. This is an important consideration if port B is to be synchronised with port
A activity.

As the port may be written or read every instruction cycle, the maximum data

transfer rate using this configuration is in excess of 150Mbits™.

5.9.2 The Host Interface

The host interface is an asynchronous, byte wide, full duplex, double buffered port,
designed to be connected directly to a host microprocessor or DMA controller. It
behaves, as far as the host is concemed, very much like static RAM. The
configuration consists of two banks of registers, one which may be accessed by the
DSP56001, the other by the host processor. The host registers are mapped into
peripheral memory space.

Not only does this interface allow data transfer between the DSP56001 and a
host processor, but it also allows tﬁe host processor to force interrupt routines within
the DSP56001. This latter option is very powerful and allows the host to control the
operation of the DSP, or to inspect its state for debugging purposes.

The interface may be configured to transfer 8, 16 or 24 bit words. The
maximum burst data transfer rate is 8Mbytes”, with an interrupt driven transfer rate

of 1.71Mwords”, the maximum allowable with a 20.5Mhz processor.

5.10 Port C

Port C consists of nine pins. Three of these pins may be configured either as a general

147

purpose i/o interface, or as the serial communications interface (SCI). The remaining
six pins may be configured either as a general purpose i/o interface or as the
synchronous serial interface (SSI). This port is therefore very versatile. The
configurations will now be considered separately.

Port C is implemented by the second of the on-chip peripheral communications units,
and like Port B operates independently of the main execution units and is accessed by
memory mapped peripheral registers. This unit may be configured either as a general
purpose input/output port or as both asynchronous and synchronous ports. Although
the data transfer rate is not particularly high, this interface is useful for connection to
devices such as analogue to digital converters. An additional feature of this port is that
it is capable of operating in a time division multiplexed mode, allowing up to 32

DSP56001s to be interconnected.

5.10.1 The General Purpose I/O Interfaces
The two groups of pins constituting port C may be separately configured as general
purpose i/o pins in much the same way as the general purpose configuration of port
B. The configuration mode of the pins is controlled by the port C control register
(PCC), the port C data direction register (PCDDR) determines which pins act as input
and which as output, and the port C data register (PCD) is used to hold the data. These
registers are memory mapped into peripheral memory space, as in the case of port B.
The MovEP instruction may be used to transfer data in the same way as for port
B. Similarly, all timing and strobe constraints applicable to the general purpose

interface of port B also apply here.

148

5.10.2 The Serial Communications Interface

The serial communications interface (SCI) consists of three pins — transmit data
(TXD), receive data (RXD) and serial clock (SCLK). The transmit and receive
sections are separate and may operate asynchronously. Many synchronous and
asynchronous protocols, including RS$232, are supppned, including a wake up on idle
and wéke up on address bit multi-drop modes, for use in multi-processor
configurations. The transmit and receive baud rate clocks are programmable, and may
act as timers.

The SCI is controlled and configured by seven registers, held in a contiguous
area of peripheral memory space. These are the SCI control register (SCR), which
controls all the operational features of the interface, the SCI status register (SSR)
which indicates the present state of the interface, the SCI clock control register
(SCCR), three data transmit and receive registers and the SCI transmit data address
register.

The interface may operate at up to 320 kbits in asynchronous mode, and up

to 2.56Mbits” in synchronous mode (20.5Mhz device) [70].

5.10.3 The Synchronous Serial Interface

The synchronous serial interface (SSI) consists of six pins, and offers a means of high
performance full-duplex serial communication. As in the SCI, the receive and transmit
sections are separate and may operate asynchronously. This interface is very versatile,
and many interface protocols are supported. Control is provided by means of four
registers held in peripheral memory space. These are the SSI control registers (CRA

and CRB), the SSI status/time slot register (SSISR/TSR) and the SSI receive/transmit

149

data register (RX/TX). Data wordlength is selectable as 8, 12, 16 or 24 bits.

This interface may operate in one of three modes. The normal mode is used
to periodically transfer data, at the rate of one word per period. The network mode
also transfers data periodically, but allows for up to 32 time slots per period. This
mode may be used to build time division multiplexed systems — a very useful feature.
The on-demand mode may be used to transfer data whenever it is available, and is
non-periodic in nature.

The SSI is capable of transferring data at a rate of 5Mbits”, and is ideal for

connection to devices such as analogue to digital to analogue converters.

5.11 Programming

In common with most other currently available DSPs, the DSP56001 may be
programmed using either a native assembly language, or a C compiler. Although the
earlier versions of the C compiler produced lamentably inefficient coding, the more
recent versions offer significant performance increases. Maximum operational
performance may still be attained only by using assembly language, however.

The Motorola DSPs use a time stationary coding method as the basis for their
assembly language, compared to the interlocking method used by Texas Instruments,
and data stationary method used by AT&T for their floating point DSPs, [7], [40]. In
time stationary coding, a line of code specifies the operations that are to occur
simultaneously in an instruction cycle. Time stationary coding highlights the
concurrent ot)eration of the main execution units of the DSP56001, as, in comparison
to the other approaches, it emphasises parallelism rather than pipelining. In other

methods, the effects of pipelining, in particular delays caused by resource contention,

150

are largely hidden from the programmer, and performance may well suffer as a
consequence. Time stationary code, although it may appear complex at first sight,
allows the programmer to manipulate the instruction pipeline and interleave memory
accesses to provide the highest possible performance. Any pipeline hazards or resource
contentions are flagged by the assembler, allowing the programmer the opportunity to
restructure the programme, or to insert a delay (a Nop instruction) between the
contentious lines of code. This latter approach is automatically applied by the
processor in data stationary and interlocking code.

The DSP56001 assembly code format consists of an instruction field and two
parallel data move fields. An instruction pre-fetch, instruction execution and two data
transfers may occur within a single instruction cycle. Furthermore, the provision of a
dedicated address generation unit enables two address registers to be updated during

any instruction. An example line of code is

MACR x0,y0,a a,x: (R0O)+NO y:(R4)+,y0

which multiplies the values held in data registers x0 and y0 and stores the result in
accumulator a, simultaneously transferring the previous value held in a to the x-data
memory location specified by RO, po_st incrementing RO by the amount held in offset
register NO, and transferring the value held in the y-data memory location specified
by R4 into data register y0, post incrementing R4 by 1.

A consequence of the number of registers contained in the ALU and the
control offered by time stationary coding is that pipeline hazards or resource

contention may be avoided by transferring values into an ALU register many

151

instructions before it is required. This is an example of both the potential complexity
of time stationary coding and its potential performance benefits.

In order to obtain maximum performance, it is important to ensure that most
memory accesses are made to internal memory areas, and that only one external
memory access is required in any one cycle. Providing that these criteria are met, then
most of the instructions in the DSP56001 instruction set will operate in a single cycle.
The parallel data move capability is especially useful for applications such as digital
filtering and image convolution — the DSP56001 is capable of implementing a
biquadratic filter section in only four cycles, which is the minimum possible for a
single multiplier device.

The devices used in this work were running at 20.5MHz. More recently,

27MHz and 40MHz parts have become available.

5.12 Summary
This chapter has described the architecture of the DSP56001 and shown it to be a very
powerful digital signal microcomputer. The structure of the architecture exhibits a high
degree of operational concurrency, allowing the device to execute an instruction,
perform an instruction pre-fetch, access two data areas and perform updates on two
address registers in a single cycle. Such features enable the DSP56001 to implement
stock DSP algorithms highly efficiently.

The device also incorporates a powerful address generation unit (AGU)
containing eight sets of address registers and allowing circular buffering and bit
reversed addressing schemes to be used with no additional loss in performance.

Together with the arithmetic and logic unit (ALU), the AGU forms the computational

152

powerhouse of the processor.

The two on-chip peripheral interfaces — port B and port C — add to the
versatility of the device. These memory mapped interfaces may be configured in a
variety of ways. Port B is suited to communication with an external host processor,
allowing the host to execute predefined interrupt routines on the DSP in addition to
the more usual bidirectional data transfer. The two serial interfaces of port C are
versatile and capable of operating at high speeds. The SSI, in particular, is capable of
operating in a network mode, allowing the processor to participate in a multi-processor
based time division multiplexed serial communication scheme. The SSI is also easily
connected to ADC/DAC systems.

The device may be programmed either in C or in assembly language. The
assemnbly language, which is based on time stationary coding methods, should be used
if maximum performance is required. The time stationary coding method, while
perhaps less "user friendly" than interlocking or data stationary methods, does allow
the programmer more control over the device, producing optimal code. Assembly
language coding of the DSP56001 fesults in very efficient and compact code.

Although the transputer is more of a general purpose processor than the
DSP56001, both have been designed with efficient code execution in mind, although
they incorporate different design methodologies. The transputer usesva relatively small
and efficient instruction set, building up its instructions from individual bytes. Four
bytes are accessed in a single bus cycle, reducing the overheads attached to instruction
pre-fetching. Operations are performed on a small number of registers, rather than on
elements of memory. This approach to increasing performance is typical of RISC-like

architectures. An area of internal memory is provided, which may be accessed every

153

machine cycle.

The DSP56001 also utilises internal memory, but in the form of a modified
Harvard architecture. One program and two data memory areas, together with their
associated buses, are provided on-chip. This allows up to three 24bit words to be
transferred in a single instruction cycle. The DSP56001 also possesses a relatively
small instruction set, but this is more a consequence of the specialist nature of the
device rather than any RISC based performance enhancement. Due to its high memory
bandwidth, the DSP56001 does not need to utilise compound instructions to help
improve operational efficiency.

There are two major differences between the two devices. The transputer
incorporates a microcoded process scheduler and autonomous link engines to provide
efficient implementation of parallel programs and inter-processor communications. The
DSP56001 utilises a highly optimised ALU which incorporates a non-pipelined MAC
unit, allowing a 24bit by 24bit multiplication (with 56bit accumulation) to be carried
out every instruction cycle. Evidently, then, the DSP56001 would easily outperform
the transputer when executing multiplication intensive applications, as the DSP is
capable of multiplying almost forty times faster than the transputer (for equivalent
clock speeds). However, as the transputer was designed to form multi-processor
networks, it is far more efficient than the DSP at inter-processor communication.

The transputer may be programmed in a variety of languages, none of which,
understandably, provides the performance offered by assembly programming.
However, transputer assembly language is complex, as parallel processes must be
defined, and performance is not easily predicted. The DSP56001 is also optimally

programmed in assembly language. Although this is perhaps one of the more complex

154

forms of DSP assembly language, the programs produced are relatively straightforward
compared to those -of the transputer. Furthermore, the behaviour of the code is more
straightforward, the performance of the code being easily determined by analytical

means.

155

4 AMOAYILY 10095dSA Jo wesderq yooid 1° g

HITIOHLNOD WVHOOHd

2 ;
////p SNMUUURNSR AR ERASEEA ARR A SRS ISR AN

v viva oid oad ovd
& A
? N
N N

ug ol

///////«//////////w/ﬁ//////////y///,
SN

A

gvA

aao N HOLVH3dO
HOLIMS N L8
<P v \ HOLIMS $0@
viva . % ; ; 5)/
weq TYNHILX3 \\\\\\\\\\\\\\\\\\\\\\ IS \\\\\\\\\\\\\\\\m\m\X\\\\\\ s \\\\\\\\m\\ ”\\\\\\h.\\\\\\. viva
A - X TYNHILNI
N
N
N
\
N
oy o NI WH3HdIHId
<——] 104INOD 3 ? N ...h..g| dHONO
sng W Wy Wy wou N 17
loauog AHOWIW A AHOWIN X WVHOOHd aveisiooa| i § ¢ ¢
, N
m V/ﬁ.mllllf't ..//I 1INN
HOLIMS e B —————— b ot . NOLLVHINID
] esaav b4 : 8vd : 'ss34aav
SSIPPY | quNi31X3 | avx

156

$FFFF

$1FF

$3F

$0

$FFFF

$FFCO

$1FF

$FF

$0

MODE 0

$FFFF

$E000

MODE 2

internal $1FF intemnal
Program Proaram
RAM rgiM
Interrupt $3F Interrupt
Vectors Vectors
Reset $0
Internal RAM Internal RAM
Internal Reset External Reset
On-Chip $FFFF
Peripherals

Internal Intemnal
X ROM Y ROM
Intemnal interal
X RAM Y RAM

Data ROMS Enabled

157

$FFCO

$FF

$0

$0

MODE 3

No Intemal RAM
External Reset

Peripherals

On-Chip

Internal Internal
X RAM Y RAM
Data ROMS Disabled

Fig 5.2 DSP56001 Memory Maps'

f/// N //4////////////J

4 U] UOTIRIBUSD SSAPPY Y} JO AMOMNYXNY €°C 3L

8ao

X S R
H ” Vol
: H Yo
H : { o
H H Vo
: : !
. i
P i
N -8 Y
NI YYYY
IN | IN 4 | ed
SN | SW ed | 2o
SN | SW s | w
N | PN ¥d | oy
Jexa|dainy

s
‘\\\\\\\\\\l

gvd 8vX avA

N

g g g I//I"oooooooloo:oo

E g 2 '///Io'oooooooooooooo,/

=]
=

[«]
=z

158

X Data Bus
[/ 77/ ////////////////////////////////{//A

Y Data Bus

X1
YO

Y1

24 Bits

— 56 Bits

Accumulator,
Rounding
& Logic Unit

r————’
A { "
B
| L
| Sier/uiter |

Fig 5.4 Architecture of the Arithmetic and Logic Unit !

159

b

24 x 24 Bit
Fractional
Multiplier

1941US

Rounding Unit

le—— Scaling Control

24 Bits

48 Bits

e 56 Bits

Condition
Codes

Fig 5.5 Block Diagram of the MAC Unit T

160

PAB PDB

«.@v/mwvwmv. .-.vm««wvm%\,
Z;

Clock PC
—
LA .
Interrupts LC stxt;:kBlt
SsP —
Control OMR SR
4P
\
\
N
N
N
N GDB

Fig 5.6 The Program Controller '

161

Interrupt Recognised

Main Program
$0100 -
SS| Receive
$0101 MACR
$0102 MOVE
$0103 MAC $000C | MOVEP
$0104 REP $000D | X000
$0105 MAC
$0106 - The return
is implicit
Interrupt Recognised
Main Program
$0100 - .
SSI Receive
$0101 MACR with Exception
$0102 MOVE
$0103 MAC $000C JSR
$0104 REP $000D $0300
$0105 MAC
$0106 -
$0300 -
$0301 DO
$0303 MOVE
The return
is explicit $0304 RTI

Fig 5.7 Short and Long Interrupts T

162

Chapter 6

Digital Filtering on the
DSP56001

6.1 Introduction

This chapter is concerned primarily with demonstrating how the features of the
Motorola DSP56001 may be utilised to implement efficient digital signal processing
applications. The architectural features outlined in the previous chapter — indirect
register addressing, extended Harvard architecture and a fast multiplier — are used in
the work presented, together with illustrations of time stationary coding, to construct
highly efficient infinite impulse response (IIR) filter routines. Issues relating to finite
register length — quantisation noise, noise transfer functions, input scaling and node
scaling — are considered only when they directly relate to implementation issues, as
extensive coverage of these effects is not considered relevant to the points being made
and would serve as an unnecessary complication.

Filtering is one of the most widely used digital signal processing functions. For
this reason, the architecture of most digital signal processors is such that they are able
to implement digital filtering algorithms very efficiently. Although there are many
types of digital filtering struétures and algorithms available, [37], [38], [39], [40], this

chapter concentrates on the implementation of the canonic II form of the infinite

164

impulse response (IIR) filter since this may be optimally implemented on the
DSP56001, and is suited to the implementation of the application filter outlined in
Appendix A. The problems involved with the implementation of the canonic II form
of the application filter are described, and a satisfactory solution presented.

The work described in this chapter was éarried out using the Motorola ADS56
Development System. This system comprises a DSP56001 development board
interfaced to an IBM PC and a software package including a2 monitor program, an
assembler and a linker.

After describing the general IIR canonic II structure, together with an extension
of the basic code for multi-channel filtering in section 2, section 3 goes on to
investigate the implementation of the application filter on the DSP56001. It is shown
in Section 4 that this filter possesses a non-standard structure, requiring a slight
algorithmic modification. Furthermore, it is demonstrated why this particular filter may
not be implemented in the form of a cascade of biquadratic sections on the DSP56001.
Section 5 introduces an alternative structure, and extension to the multi - channel case,
and provides a comparison with the more standard biquadratic approach. Section 6

provides a summary.

6.2 Realisation of the Canonic Biquadratic Filter Section on the DSP56001

The canonic form of the biquadratic filter section is widely used as the basic element
in many digital filter realisations, since it incurs a minimal instruction cycle penalty.
The basic biquadratic structure is shown in Fig 6.1 [75]. It may be seen from the

figure that this form requires five multiplication operations. The scaling factor, which

includes a factor of 0.5, and coefficient b,, may be combined to give the structure

165

shown in Fig 6.2. This structure demonstrates the value of input scaling (division) and

accumulator output scaling (multiplication) when coefficient values greater than those

representable by the processor registers (in the case of the DSP56001, 1-2% and -1.0)

are required, as the coefficient values used in this implementation are scaled versions

of those in Fig 6 .1. Only processors incorporating this zero overhead accumulator

scaling facility provide suitable platforms for this structure [76].

The transfer function for Fig 6.1 is given by

-1 -2
b,+bz" +bz

G(2) =
' l1-gz'-az*

with difference equations given by
y,(n) = bw,(n)+bw,(n-1)+bw (n-2)
w(n) = cx(n) +aw(n-1)+aw(n-2)
and that for Fig 6.2 is given by

a(l+pz'+oz?)

G(2) =
) 05+yz'+Bz?

with difference equations given by
y(n) = 2(0.5w,(n) +0.5uw,(n-1) + 0.50w,(n-2))
w,(n) = 2(ox(n) -yw(n-1)-Bw,(n-2))
Now, multiplying top and bottom of (4) by 2 gives

200(1+pz?+0z7?%)

G.(2) =
+(?) 1+2yz7'+2Bz

and comparing like terms in (1) and (7) gives
200 = b 204 = b, 200 = b,

Y =a 2B =a,

1)

09
3)

4

®
(6)

Q)

The code segment for the structures of Figs 6.1 and 6.2, which are similar, differing

only in their coefficient values, are given in Fig 6.3, together with a representation of

166

their data memory requirements. Both forms hold their coefficients in on-chip y-data

space and their intermediate values, w(n-i), in on-chip x-data space. This allows both

data areas to be accessed simultaneously, since both halves of the AGU may be used.
The coefficients are accessed using a cyclic addressing mode, whereas the intermediate
values require only a linear mode. These code segments assume that the input and
output values are accessed via a particular word in memory — in this case a
peripheral i/o location. It would be a simple matter, however, to use non-peripheral
locations, or even buffers, using indirect addressing. An explanation of the operation

of the code is shown in Table 6.1, using nomenclature relating to the second form.

6.3 Expansion to Multiple Data Paths

It would be possible to support multiple data paths by using a different set of address
registers for each channel / data path. However, as the number of address registers is
limited, the number of channels which may be implemented using this method is
correspondingly small. A more efficient method is available, thanks to the versatility
of the addressing modes and the provision of a zero overhead po loop, which requires
only one minor change to the filter code kernel.

A possible memory structure of an N, - channel filter is shown in Fig 6.4

(j =0 .. N,-1). For the single channel case, the coefficients are accessed using a
cyclic buffering scheme. If, in the multi-channel case, the response of each filter is to
be independently con_trollcd, then the same type of addressing scheme may be used
providing that a larger buffer size is declared. The coefficient blocks would then be
accessed in a cyclic sequential manner, Fig 6.4a. However, if each filter is to possess

the same response, then a single coefficient block, addressed as in the single channel

167

case, will suffice, Fig 6.4b. The latter case obviously requires less memory.

The single channel case does not use cyclic addressing to access the
intermediate values (w(n-i)), as there is no need to do so [75]. In the multi-channel
case, however, cyclic addressing may be used to allow the intermediate value blocks
to be accessed in a cyclic sequential manner. This would force RO to point back to the
first section whenever the last section had been completed. For this reason, then, MO

must be initialised so as to provide a cyclic buffer of size 2N, for R0. Furthermore, at

the end of the end of the j* section RO is pointing to w(n-1). This must be modified

such that RO is pointing to w, (n-1) at the end of the section. This may be

accomplished by using NO to post increment RO after the last reference in the section,

ie by changing line 4 from

MAC x0,y0,a a,x: (R0O) y:(R4)+,y0

to

MAC x0,y0,a a,x: (R0O)+(NO) yv:(R4)+,y0

For biquadratic filter sections, NO should contain the value 2.

It should be noted that the data paths in this implementation are orthogonal —
data input and output paths are not connected. A cascade filter structure may easily
be implemented, however, by storing the output of one filter section in an ALU
register and using it as the input to the next section.

Simply by using a modified addressing scheme, then, and a computation
section embedded in hardware po-loop, a single channel filter may be expanded to a

multiple channel implementation with no additional performance overheads.

168

6.4 Problems in the Implementation of the Application Filter on the DSP56001
From Fig A.3, it may be seen that the application filter may be decomposed into a
single pole highpass section in cascade with a biquadratic bandpass section. The single
pole section may be simply implemented as half a biquadratic section, its output

forming the input of the bandpass section. The transfer function of the bandpass

section (Equation A.11) does not contain a term in b, indicating that the output of

the section contains no proportion of the present input section. Furthermore, Appendix
A shows that no input scaling is required, since the overall gain of the section is less
than one. This results in the modified structure shown in Fig 6.5.

The code shown in Fig 6.3 is unsuitable for this structure, however, as the

output would always be zero. As b =0, then & =0. Now, consider the biquadratic

section output as it takes its first few input values, from (9),

w(0) =20x(0)
=0
w_(l) =20x(1)+vy.0
=0
w(2) =20x(2) +7.0-B.0
=0
and therefore,

]

w(n) =0, n=0..0
From Equation (6), as y(n) is a function of w(n),w(n-1) and w(n-2), then y(n) will
always take the value zero. Thus this particular implementation of the biquadratic filter
section is useless when applied to those filters with b =0.
What is required is code that implements a filter section whose difference

equation contains no proportion of w(n). In the code segments of Fig 6.3, w(n) is first

169

calculated (lines 1, 2 and 3). This value is then left in the accumulator while y(n) is
calculated using w(n-1) and w(n-2). The contribution of w(n), then, may be
disregarded if the accumulator is overwritten by those lines that calculate y(n). In this
case, w(n). is used only to update the values of w(n-1) and w(n-2). This may be

implemented by replacing the MAC instruction of line 4 with an MpY instruction, which

overwrites the accumulator.

This modified code will implement the filter structure shown in Fig 6.5.

However, from Equation A.17, it may be seen that for the application filter,b,

contains a term in 2. This value may not be represented within the 24bit registers of
the DSP56001, and so the coefficient value is truncated. This truncation causes a shift
in the location of the poles of the filter and hence changes its characteristic magnitude

and phase response. In particular, the poles, previously a complex conjugate pair
(Equation A.9) are forced onto the real axis at z=1-2" and z=1. This problem may

not be resolved by explicitly coding the direct feedback path of the structure, as the
unmodified biquadratic section also contains coefficients with terms in 2%, The
problem may be met by either implementing a 48bitx24bit multiplication routine
[76], or by decomposing the biquadratic into two single pole sections. This latter

option will now be described, as the former is computationally expensive.

170

6.5 A Cascade of Single Pole Sections

6.5.1 Structural Decomposition
Forming two single pole sections from the modified biquadratic section would result
in two cascaded single pole sections requiring complex coefficients, which would add
considerably to the computational complexity [77]. For this reason, the unmodified
biquadratic section was decomposed, and the feedback path implemented explicitly,
resulting in a cascade of single pole sections.

The general single pole canonic structure is shown in Fig 6.6a. However,
substituting the coefficients given in Equations A.2 and A.10 for the high and low
pass sections results in the structures given in Figs 6.6b and 6.6c. The high pass

section uses a coefficient of -1, which may be implemented either as a subtraction

or as a multiplication operation. Although each require the same amount of time to
perform, the multiplication operation may also incorporate a rounding operation, and
so was used in the code. These filter sections use coefficients that may be represented
with 24bits and so may be safely implemented on the DSP56001.The structure of the

entire filter is shown in Fig 6.7, and its code presented in Fig 6.8.

6.5.2 The Sequence of Operations
Consider a flow of operations across the filter structure from left to right. It is clear

that the single pole high pass section may be completed with no problems. The
summation at point A, however, may not be evaluated until the filter output, y(n), has

been determined, and so execution must halt at this point. The output may be

determined by continuing the calculation at point C, which is separated from the

171

previous signal path by a delay operator, and continuing through the final single pole
high pass section. The summation at point A may then be completed, followed by the
signal path up to point C. It is of no consequence whether stage one or stage two is
calculated first.

The DSP56001 incorporates two 56bit accumulators. Thus, the intermediate
value stored at point A may be left in accumulator a, in full 56bit precision, while
ac;:umulator b is used for the second stage. The two accumulators may be added
together, eliminating the rounding errors which would occur if the value at point A

was stored in an intermediate memory location.

6.5.3 The Code

From Fig 6.7, and Appendix A, it may be seen that the single pole high pass section

incorporates a term in w(n), whereas the single pole low pass section does not. The

low pass section, then, needed to make use of the w(n) blocking properties of the
code shown in Fig 8.5. From Appendix A, the single pole filter sections have gains
of less than one, and so no external scaling is required. Consequently, the scaling
factors may be assumed to be equal to one, and hence disregarded. The structure of
the code may take two forms, depending upon whether the rounding operation is
performed during or before the summation at point A of Fig 6.5.

Both versions of the code are shown in Fig 6.9, together with the memory
usage requirements. An explanation of the code is given in Table 6.2. Address register

RO is used to point to the w’(n-1) values, which are stored in internal x memory and

are accessed cyclically by setting M0. The offset register, N0, is used to allow a return

172

to the start of the block. The coefficients are held in internal y memory and are also

accessed cyclically using R4 and M4.

6.5.4 Expansion to Multiple Orthogonal Data Paths

Expansion to the multi-channel case is §trajghtforward, using methods similar to those
outlined in Section 6.3. If the response of each filter is to be independently controlled,
then address mode register R4 must be used to define a cyclic address range equal to
N, . Number of coefficients per filter. Furthermore, the address modifier register RO

must be used to define a cyclic address space equal to 3N,

6.5.5 Performance
Version "a" requires 11 cycles to perform the filter computation, version "b" requires

12. The overhead for setting up a hardware po loop is three cycles, and the instruction

cycle time is 97.5ns. Let the number of channels required be represented by C, the
number of cycles required to perform the computation by N, and the required sample
rate of each filter by R , then the following relationship must hold true for a realisable

implementation

R-l
3+ NxC< —L (12)
¢ 97.5 x 10°

Using this equation, the maximum sampling frequency for a single channel filter is
683.76kHz for type "a" and 732.6kHz for type "b". For a sampling frequency of
28kHz, the maximum number of channels that may be supported is 30 for type "a"

and 33 for type "b".

173

The original filter structure, used in the transputer implementation, was also
investigated. However, the single pole section alone was found to require 10 cycles
to execute, and so this form would offer significantly less performance than the
canonic form.

The frequency and phase responses of this filter were tested by using
Hypersignal Workstation®, and found to compare with those presented in Appendix

A.

6.6 Summary

This chapter has demonstrated the implementation of an infinite impulse response
(IIR) filter on the Motorola DSP56001. One of the basic elements of recursive
filtering, the canonic II biquadratic section, has been described and the associated
DSP56001 code prescnted. Various coding methods may be used, depending on the
coefficient values and whether scaling is required. Three variations in filter structure
— standard, coefficient scaling and w(n) blocking — have been presented and shown
to represent modifications of the same basic code. The coefficient scaling form
depends for its efficiency upon the use of accumulator output scaling, available on the
DSP56001.

The canonic form of the application filter has been described, with the view
that this would offer the most efficient implementation on the DSP56001. However,
the coefficients of the biquadratic section of this filter require wordlengths greater than
those accommodated by the ALU registers of the DSP56001. For this reason, it was
necessary to form a filter structure based on single pole sections. Two forms of the

filter were coded, and found to operate at maximum sample frequencies of 683.76kHz

174

and 732.6kHz respectively.

This chapter concludes the investigation of the applicability of the Inmos
Transputer and Motorola DSP56001 to digital signal processing (DSP) type algorithms
(ie those requiring a high i/o bandwidth and using small, multiplication intense
computation sections), in particular to the application filter.

Albeit a general purpose processor, the transputer has been shown to be
capable of effectively implementing DSP type algorithms. Although this is due in part
to its RISC type architecture, one of the main contributing factors to the transputer’s
operational efficiency is its ability to overlap communication and computation. This
often enables the transputer to transfer data with minimal time penalty — the transfer
appears "invisible" to the processor. However, as shown in Chapter 4, performance is
likely to suffer whenever the computation execution time is short and the data transfer
requirement is high (ie more links are required). Furthermore, the application filter
code utilises a shifting operation in place of a multiplication, which requires
approximately half as many cycles to execute than the corresponding multiplication.

The integer multiplier is the main performance limiting feature of the
transputer, especially when implementing multiplication intensive algorithms. The
inclusion of a concurrent floating point unit (FPU) on the T80x series does little to
alleviate this problem. Other limiting features include the available memory bandwidth
— only one word may be accessed at any one time — and the link transfer
bandwidth. The latter results in the requirement_to maintain the computation execution
period abové a certain limit; the time required to compute one word of data should be
greater than the time required to transfer a word over a link.

The architecture of the DSP56001 has been designed around the need to ensure

175

that its multipliér unit is fed with data as fast as it can use it. The arithmetic and logic
unit (ALU) incorporates a single cycle, non-pipelined MAC unit together with several
input and accumulator registers. Combining the ALU with a comprehensive register
indirect addressing scheme and an extended Harvard architecture, the DSP56001 is
extremely effective at implementing DSP algorithms. Of particular note is the ability
to implement zero overhead modulo and bit reversed addressing schemes and hardware
Do loops.

The DSP56001 also incorporates two on-chip communication peripherals,
designed to interface to "host” processors and serial devices such as modems and
ADC/DAC:s. These perform byte wide parallel and synchronous / asynchronous serial
communications, although at a slower rate than the transputer. Some facility has been
given to multi-processor operation, namely DMA control lines and a "network" mode
on one of the serial ports, but these are limited and involve low data transfer rates
compared with the transputer.

In summary, then, the DSP56001 is highly efficient at implementing DSP
algorithms due to its optimised architecture and fast multiplier. Although it
incorporates three additional communications ports, these offer slower transfer
bandwidth than the transputer. Limited multi-processor support is provided.

The transputer, in contrast, efficiently implements inter-processor
communication due to its microcoded scheduler and concurrent link engines, having
the ability to make transfers seem almost "invisible". However, the available link and
memory bandwidths, and the provision of a relatively slow multiplier, limit

performance when implementing DSP type algorithms.

176

Description of Code Segment 2

Line
Number

Comments

The input value is scaled and placed in accumulator a.w(n-1)is placed in x0,

RO is post incremented, to point o w(n-2). R4 is presently pointing at ¥,
which is moved into y0. R4 is post incremented to point to B.

x0 and y0 are multiplied and added to accumulator a, which now contains

ox(n)+yw(n-1). w(n-2) is moved into x1, this time there is no change in
RO. B is moved into y0, which is post incremented to point to 0.5u.

x0 and y0 are multiplied and added to accumulator a, which now contains

ox(n)+yw(n-1). w(n-2) is moved into x1, this time there is no change in
RO. B is moved into y0, which is post incremented to point to 0.5u.

x1 and y0 are multiplied and added to the accumulator, which is rounded to 24
bits and now contains ox(n)+Yw(n-1)+Bw(n-2). x0 (w(n-1)), is moved

into w(n-2), and RO is post decremented to point at w(n-1). 0.5u is moved
into y0, which is post incremented to point at 0.56.

At this point, accumulator a holds 0.5w(n), x1 holds w(n-2), RO points to
w(n-1) and R4 points to 0.56. The previous section, then, has calculated a

value for w(n). The next section will use this value to calculate a value for the
output.

x0 and y0 are multiplied and added to the accumulator, which now contains

0.5(w(n-1)+uw(n-1)). However, before the accumulation operation, the
rounded contents of a are left shifted one bit (multiplied by two) and moved into

w(n-1), ready for the next cycle. 0.5G is moved into y0. R4 is post
incremented to point to a.

x1 and y0 are multiplied, and added to accumulator a, which is rounded and now

contains 0.5(w(n)+uw(n-1)+ow(n-2)). o is moved into y0, ready for the
next cycle. R4 is post incremented and forced to return to the beginning of the
coefficient block by the cyclic addressing scheme.

The accumulator now holds a rounded value of 0.5y(n), which is left shifted by
one bit and moved to the output location in the final instruction of the loop.

Table 6.1 Operation of the Filter Code

177

Description of Three Pole Filter Code
Line No Comments

1 Clear accumulator a8 and move the present input into y1.

2 Move input into a, w'(n-1) into x0 and @' into y0, post increment R4,

3 a=a+ a' X w'(n-1), rounded. Move b' into y0, post increment R4. a now
contains the new value of w'(n).

4 Move the rounded value of a, w'(n), into w'(n-1).a=2a+ b' x w'(n-1), post
increment RO. Move b? into y0, post increment.

At this point, a holds the output of the first stage and w'(n-1) has been updated. y0
contains b*, RO points to w*(n-1) and R4 points to @*. This is point A.

5 Move w?(n-1) into x0, post increment RO to point to w(n-1).

6 b=b+ b* x win-1). Move w’(n-1) into x0. Move @’ into y1, post increment
R4 to point to b°.

7 b=b+ a® X w¥(n-1), rounded. Move b* into y0, post increment R4 to point to
a' using circular addressing.

8 b=b+ b* X wi(n-1). Update w’(n-1), post decrement RO to point to
w?*(n-1). The order of operations now depends upon whether or not the
multiplication includes a rounding operation. If so, then option ’a’ is carried out, if not,
then option ’b’.

%a Add b (rounded) to a. Move w*(n-1) into x0, and b (rounded) into the output
memory location.

10a a=a+ a® x wi(n-1). Note that for the application filter, @* = b?, which is
already stored in y1, and so there is no need for a coefficient move at this point.

l1a w¥(n-1) is updated.

% Add b to a, move w?(n-1) into x0.

10b Round b.

11b a=a+ a’® X win-1). The rounded value in b is moved to the output memory
location.

12b wi(n-1) is updated. RO is post incremented by NO, allowing it to point to the
beginning of the block, using cyclic addressing.

Table 6.2 Operation of the Three Pole Filter Code

178

¢ D,
2-1
21
F) /-aZl
H—<2

b2
wi(n2) {>_€")

Fig 6.1 Basic Biquadratic Structure

x(n) . w2(n) n)
o \"‘}'@—l

left shift
2-1
G>—< w2(n-1) M
, -

@ /—B]) +

Fig 6.2 Alternative Biquadratic Structure

179

MPY x0,y0,a x: (RO) +,x0 yv: (R4)+,y0

MAC x0,y0,a x: (RO) ,x1 y: (R4)+,y0
MACR x1,y0,a x0,x: (RO) - y:(R4)+,y0
MAC x0,y0,a a,x: (RO) y:(R4)+,y0
MACR x1l,y0,a v: (R4)+,y0
MOVE a,X:S$SFFEF
win-1) -al Y
win-2) -a2 -B
RO bl or 0.5u
b2 0.5¢
C o
R4 R4

Fig 6.3 Biquadratic Section Code and Memory Requirements

180

Coefficients
for Filter 0

Coefficients
for Filter 1

2(+1)

No.Coeffs(j+1)

Coefficients
for Filter j

R4

NO

MO

M4

Fig 6.4a Memory Requirements for Multiple Filter Responses

Fig 6.4b Memory Requirements for Multiple Data Paths

and Multiple Data Paths
2
Coefficients
2(G+1
R4 ¢D
No.Coeffs

181

NO

MO

M4

x(n) win) ¥n)
—

2-1

G ! w(n-1)

D

A

2-1

bl -+

Fig 6.5 Modified Filter Structure

x(n) c win) /_‘_\ l’l)
l 71 I
-al bl
win-1)
Fig 6.6a General Single Pole Section
b { W
n) > n) J-l-\ an)
71
1-a -1
win-1)
Fig 6.6b High Pass Section
x wn))
n) > n ¥n
y
- -N
1-o wind) 2

Fig 6.6c Low Pass Section

182

uonesijeay JAL] 3[0d 9[Suig papeosse)) jo smponng £9 T

vd
M.I
(1u)gm 0
- 00—
=+ i — oy
0-1 (1-u)em
2 - (1-u)zm
0-] (1-v)1m
O ® > o
(I-u)[m
A__ :.5N>ﬁ__ __W I >
b= .N - N
<
(u)zm M. t (u)[m (up

183

O~NAUNE Wb

CLR
MOVE
MACR

MOVE
MPY
MACR
MAC/R

ADD
MACR
MOVE
ADD

MACR
MOVE

Fig 6.8 Code for the Three Pole Single Stage Cascade Filter

vl,a
x0,vy0,a
x0,y0,a

x0,y0,a

x0,yl,b

x0,y0,b

b,a

x0,yl,a
b,a

x0,v1,a

184

x: (RO),x0
a,x: (R0O)+
x:(RO)+,x0
x: (RO),x0
b,x: (RO) -
x: (R0O),x0
a,x:(R0O),x0

x: (R0O),x0

a,x: (R0O)+NO

y:(R4)+,y0
y:(R4)+,y0
y: (R4)+,y0

y:(R4)+,yl

b,y:Soutput

b,y:output

Chapter 7

Hybrid Multiprocessor: Design
Concepts

7.1 Introduction

The computational power of contemporary processors is increasing, but the most
recent devices are approaching the performance limits of silicon based fabrication
technology. There will always be applications, however, that require computational
performance greater than that which may be provided by any single processor. In this
case, there is no alternative but to move to a multi-processor system [10]. The
performance of many digital signal processing applications may be improved
considerably by implementing them on a multi-processor system, due to the increased
overall computational power. Furthermore, many digital signal processing algorithms
lend themselves to parallel partitioning, and so they may be easily and profitably
mapped onto a multi-processor system.

However, although implementing an application on a number of concurrently
operating processing ﬁhits greatly increases the overall computational performance,
these processing units must be supplied with data at a rate at least equal to their
computation rate if the system as a whole is not to suffer a performance degradation

[77]. Thus, the bandwidth of the inter-processor communication mechanism must

185

not fall below that of the computation. For any given set of tasks, or processes, the
requirement for maximum computational performance will tend to decompose the
application into as many parallel sub-processes as possible, running each sub-process
on a separate processor. However, the requirement to reduce the overall
communications bandwidth tends to favour a sequential program, running on a single
processor [6], [20]. In any multi-processor architecture a compromise must be made
between these two extremes.

Another important aspect of a multi-processor design is that of scalability
[78], [79]. The scalability of a system is a gauge of the number of processors
that may be added before system performance is unacceptably degraded. The inter-
connection network greatly influences scalability.

Many high performance multi-computers are available today [80], [81],
[82]. They range from small systems using relatively inexpensive and low
performance interconnection mechanisms to systems utilising high performance
processors and very elaborate interconnection mechanisms using dedicated
communications co-processors. Such systems are expensive, however, and are not
generally optimised for digital signal processing applications. One of the aims of this
project was to design a multi-processor system using relatively inexpensive off-the-
shelf parts and an inexpensive interconnection mechanism, which ruled out the use of
complicated bus switching networks and communications co-processors.

Presented in the following chapters is a description of the architécture and
performance of a multi-processor system that isolates the majority of the workload
associated with computation and interprocessor communication onto separate

processors. This Hybrid Multiprocessor (Hymips) has been designed with cost and

186

scalability in mind.

This chapter offers an architectural overview of such a system. The general

design issues, such as the choice of processor, the interprocessor connection

mechanism and the control software methodology are discussed. The following chapter

deals with more specific design issues, problems encountered and their solutions.

A general specification of the requirements which the system must satisfy is

given in Section 2. Section 3 discusses the processors and how they may be best

utilised. The interprocessor communication mechanism is outlined in Section 4.

Section 5 covers memory requirements, while Sections 6 and 7 cover system

reconfiguration and reprogramming. Finally, Section 8 presents a summary of the

proposed architecture.

7.2 System Requirements

The design of the multi-processor was to satisfy certain requirements. These did not

constitute a technical specification as such, but did provide a guideline for the design

process. The multi-processor was seen very much as a prototype system. A list of the

major requirements follows.

ii.

iii.

iv.

The system should interface with a host system (a PC),
in order to provide access to a terminal, a monitor and
a file system.

The system should also possess the ability to independently interface
with additional peripherals such as disk storage units and graphics
boards, as they provide higher performance than the host based
peripherals.

Digital signal processing algorithms should be efficiently implemented.
The architecture should be scalable.
The architecture should not be complex, and make use of relatively

187

inexpensive off-the-shelf components.

vi. The interprocessor connection mechanism should allow high speed data
transfers both into and out of the system whilst incurring minimal
communications overhead.

vi. The interprocessor connection mechanism should be independent of
processor type.

7.3 The Processors
The system must implement somewhat specialised applications, but still be capable
of interfacing to general purpose peripherals such as disc storage devices. Digital
signal processing algorithms require few instructions other than arithmetic and basic
logic functions. General purpose microprocessors, be they CISC or RISC, offer many
instructions that would not be required by signal processing algorithms. As a
consequence of this generality, such microprocessors are inefficient at implementing
this class of algorithm. As has been shown in Chapter 6, digital signal
microprocessors, due to their specialised architectures and instruction sets, are capable
of executing such algorithms far more efficiently than their general purpose
counterparts. However, because they are specialised, then they are not suitable for
managing the interfacing to external peripherals. Furthermore, managing interprocessor
communication would incur a scve_re computation performance penalty for such
devices. The Motorola DSP56001 offers a 24 bit wordlength, a high degree of
operational concurrency and a number of internally based peripheral interfaces.
Although the transputer is a general purpose RISC-type processor, and so is
relatively inefficient at executing DSP algorithms, it has been designed to provide
efficient inter-processor communication. The transputer is capable of communication

with up to four other transputers using its serial links. Furthermore, this

188

communication proceeds with very little cpu intervention - even when all four links
are saturated, cpu performance is degraded by only 5%. The transputer may be
programmed in many parallel languages and run inside a mature operating system,
providing the usual peripheral interfaces.

An architecture that allows the transputer to manage communications and the
DSPs to perform the computation promises to be particularly efficient, as each type
of processor is allowed to perform tasks for which it has been optimised. A system
architecture, consisting of nodes connected by ﬁ'ansputcr links, each of which
comprise a single transputer controlling the data flow around a number of DSPs,
would allow scalability both in the number of DSPs supported within a node and the
number of nodes supported, Fig 7.1. Furthermore, the transputer could be easily

connected to disk storage units, graphics boards or host systems, Fig 7.2.

7.4 The Interconnection Scheme
In a multi-processor, it is vital that data is transferred to the processors as quickly as
possible, in order to ensure that the overall performance of the system is not impaired.
The design of the interconnection network, then, is of paramount importance in the
design of any multi-processor, as it is this sub-system which determines the overall
scalability of the system, and hence the maximum potential performance. This section
deals with the design decisions used to select the interprocessor connection sub-system
of the multi-processor.

The external ports of the processors, and how they may be interfaced, are

examined in this section, allowing the optimum interconnection scheme to be

determined.

189

7.4.1 A Review of External Interfaces

7.4.1.1 The DSP56001

The DSP56001 incorporates three on-board peripheral interfaces in addition to its
external memory interface (EMI), namely the serial communications interface (SCI),
the synchronous serial interface (SSI) and the host interface. The SCI is capable of
transferring data at a maximum of 2.56Mbits* (20.5MHz), the SSI at a maximum of
5.125Mbits™ (20.5MHz). Both of these interfaces offer multi-processing or network
modes, allowing for interprocessor communication in a multiprocessor system.
However, the communication bandwidth, and the inherent software management
overhead associated with servicing these interfaces, makes these interfaces unsuitable
for use as the main communication mechanism in this system. The host interface is
a synchronous byte wide interface that is capable of transferring data at a burst rate
of 8Mbytes™!, but more realistically at 1.71 Mwords™ in interrupt mode. This is a more
attractive option, but again the bandwidth and software overhead do not make this a
valid option in a system that requires high data throughput. All three of the above
options are suitable as a secondary communications interface, however. For instance,
the host interface is suitable for receiving low bandwidth control information and the
serial interfaces may be connected to an ADC/DAC or used as a debugging port. The
EMI of the DSP56001 is able to transfer data at 10.25Mwords™ (20.5MHz), ie one

word every instruction cycle.

7.4.1.2 The Transputer

The transputer offers its four serial bi-directional links and its External Memory

190

Interface (EMI). The links are capable of transferring data at 1.74Mbytes” in uni-
directional mode or 2.35Mbytes in bi-directional mode.

Most transputers use multiplexed data and address lines on the EMI, resulting
in a transfer bandwidth of 6.66Mwords? (20MHz), which is slower than a DSP56001
of the equivalent clock speed. The IMST801 transputer, however, uses non-
multiplexed bus lines on its EMI, resulting in a transfer bandwidth comparable to that
of the DSP56001. Furthermore, this part is available in a 25MHz version, providing

a transfer bandwidth of 12.5Mwords™.

7.4.2 Interfacing Possibilities

The viable options for passing data between the processors would be to either
utilise the transputer links to interface to the Host Port through an IMSCO11 link
adapter or to somehow connect the External Memory Interfaces of the processors.

These options are considered in turn.

7.4.2.1 Link to Host Port

Each of the links may be connected to an IMSCO011 link adapter, which converts from
the serial link format to a parallel byte wide format and vice versa. It would seem
feasible to connect a link to the host interface of a DSP through an IMSCO11 and

some glue logic. There would be three disadvantages to this method, however:

i Although the host interface of the DSP is able to transfer data at 1.7 1Wwords™,
the links can transfer at only 1.74Mbytes” in uni-directional mode, or 2.35Mbytes™

in bi-directional mode, both of which fall well below the capabilities of the host

191

interface. The transfer bandwidth would be limited by the link bandwidth, which may

provide a serious bottleneck for some DSP applications.

ii. In the simplest form, the IMSCO11 would be connected to only one DSP. If
multiple DSPs were to be connected to a single IMSCOll, then what would result
would effectively be a (non-buffered) shared bus architecture. Communication from
the transputer to the DSP would occur in a broadcast fashion — each DSP would read
and interpret a "destination" byte, and then only the designated recipient DSP would
read in the following data. Communication from the DSPs to the transputer would
need to be arbitrated, probably by a token passing system which would be controlled
by the transputer. All this would incur a significant communications management
overhead on each of the DSPs. Some of the overhead could be alleviated by the use
of additional hardware [57], although even in the ideal case (zero communications idle
time) the data transfer bandwidth is still limited by the transputer link. This method
severely restricts scalability — the link bandwidth must be shared between a number

of DSPs, which would create a tight bottleneck.

iii. Each IMSC011 would use up a link, which would limit the available inter-node
connection topologies and overall inter-node communications bandwidth. This method
would be more suitable for broadcasting low bandwidth control information to all of

the DSP host ports simultaneously.

7.4.2.2 EMI to EMI

Both the DSP and the transputer are capable of transferring data at a rate in excess of

192

10Mwords™! over their respective EMIs. Furthermore, both processors possess internal
(on-chip) memory areas, allowing programs to be stored on-chip. Hence, the EMIs
may be used to access data whilst incurring minimal hindrance to instruction pre-fetch
— the transputer is able to fetch four instructions in a single instruction cycle from
its internal memory, and the DSP possesses a separate internal program memory area
and bus, allowing instructions and data to be fetched simultaneously.

It would seem, then, that the fastest way of transferring data between the
processors would be to use their respective EMIs.The problem now remains as to how
to interconnect the processors both in terms of the connection mechanisms and the

network topology.

7.4.3 Interconnection Methods

The most straightforward connection method would be to use a shared bus
and/or shared memory architecture, Fig 7.3. The shared bus system is prone to bus
bottlenecks and severe communications overhead penalties. Incorporating a block of
shared memory helps to ease the amount of idie time experienced by the processors,
but bus contention is still a problem — the data bandwidth requiremeﬁts of the system
may easily exceed the available bus/memory bandwidth. Furthermore, only one
processor may access the memory at any one time, resulting in delays due to resource
contention. Not only does the bus have to handle data traffic, but also the control and
test traffic associated with shared bus/memory architectures ("you have the bus”
tokens, semaphore test and retry), which in turn reduce the amount of time available

to transfer data and increase the communications’ management overhead on each

193

processor [22].

Another drawback of this architecture is that the bus bottlenecking and memory
access blocking problems restrict the scalability of the node architecture. The number
of DSPs supported by this architecture will be low, since the communications cost is
high and so the number of shared RAM accesses should be kept to a minimum. This
may be achieved if more code is placed onto individual DSPs, since their internal
memory may then be used as intermediate storage areas rather than the shared
memory (ie map two processes onto one processor, holding the communicated data
in local memory). If an additional DSP is added to a node that is already at or near
to its communications bandwidth limit, then the new rcqﬁircd communications
bandwidth would exceed that available. The extra bus traffic and memory usage
incurred by this extra DSP may well severely impede the performance of the node, so
that rather than a performance increase, a performance decrease results. Furthermore,
the individual processors do not possess any external local memory, restricting their
code and data space to internal memory only.

A variation of this architecture is to use dual-ported RAM (DPR) as the shared
memory resource, with the addition of local memory blocks for the transputer and
DSPs, Fig 7.4. This allows both the DSPs and the transputer to access their own block
of memory. Bus bottleneckiﬁg is relieved somewhat as the transputer and one of the
DSPs may simultaneously access the DPR. However, the DSPs still experience
bottlenecking and memory blocking.

Expanding this architecture even further results in the configuration shown in
Fig 7.5. In this method, each DSP possesses its own physical block of DPR and a

block of local RAM. The transputer is connected to all of the DPR blocks, and also

194

possesses its own block of local RAM.

The effects of bus bottlenecking are removed in this architecture. As each
processor possesses its own bus, the bus access arbitration software may be removed.
In fact, the communications control software may be reduced to a matter of checking
whethgr or not a particular area of DPR contair_ls valid data, which may be done
quickly and easily. Thus more time is made available to the DSPs to compute data
(rather than managing communications), allowing more computing to be carried out
in unit time. It may also be seen that each processbr méy access an exclusive block
of RAM, which it may access with no additional communications overhead.

Interprocessor communication now becomes a matter of assigning variables on
the transputer. Data pertaining to a particular DSP may be placed at the relevant DPR
location using the occam PLACE statement.

Thus, all interprocessor communication is dealt with by the transputer. This
allows a DSP to continue compﬁting on a dataset whilst data is being transferred
to/from its DPR by the transputer — truly parallel computation and communication.
The communication strategy may be defined either statically, ie defined by the
transputer program, or dynamically, by specifying the source or destination of a data
vector in a header. The latter obviously incurs a larger overhead than the former.This

final interconnection scheme was the one chosen for the hybrid multi-processor.

7.5 Memory Requirements
The amount of memory incorporated into the system, and how it is used, is another

important design factor. Include too little memory, and the communications bandwidth

195

could suffer in addition to the size and variety of code capable of being implemented
by the processors; too much and money is wasted. It was considered that 8kword of
local static RAM (SRAM) would be sufficient for each processor. As the intermediate
data storage requirements of most DSP algorithms, and their code kernels, are quite
small, then 8kword provides sufficient additional storage space should larger programs
or data sets be required.

Dual ported memory is expensive. Furthermore, the DPR is used only to pass
data, not to store intermediate data or code. For these reasons, it was considered that
2kword of DPR per DSP would be sufficient memory to test the system viability.

Although the memory size provided will be adequate for most applications,
there are some applications that require more memory. Examples are image processing
algorithms, which operate on a large data set, and reverberation algorithms, which
require many large FIFO buffers. It would be impossible to successfully implement
these algorithms with the memory available to the DSP alone. The dual domain DPR
partitioning method mentioned above, however, allows the DSP to utilise ﬁ much
larger memory area with no additional communications overhead. The transputer is
able to transfer data from its own local memory, the DPR of other DSPs or from other
nodes (over its links). Hence, the DSP is able to access a much larger memory space
than it can physically address, Fig 7.6 and Fig 7.7. This simple block move method
is suitable for transferring contiguous sections of memory, such as an image, but is
unsuitabie for algorithms requiring many buffers of different lengths, such as
reverbcratidn algorithms. There are two possible solutions to this problem, the first
allows the transputer to compound piecewise contiguous areas of its local memory into

a single contiguous block transferred to the DPR, Fig 7.8, the second allocates a

196

separate domain to each non-contiguous area, Fig 7.9.

7.6 Reconfiguration

The configuration, or network topology, of a multiprocessor system can greatly affect
its overall performance. Many processor configurations, and many connection
mechanisms, are used in contemporary multiprocessor systems. Certain systems
possess a topology that cannot be changed either at all or while the system is running
— statically configured systems. Others may alter their configuration during run time
— dynamically configured systems. Dynamic systems usually incur additional costs
in complexity or communication delay.

The physical configuration of the hybrid node is fixed, the only manner in
which it may be changed is by adding or removing DSPs. Although this physical
topology is fixed, however, the logical configuration is not. The transputer controls
the flow of data around the node, and the software running on the transputer
determines the manner in which the data is routed. chce,‘ the logical configuration
of the DSPs may be defined entirely in software, and so may be changed dynamically.
Complex memory mapping techniques, ie aliasing, may be used to enhance the

performance of some configurations. Example topologies are shown in Fig 7.10.

7.7 Reprogramming
One of the DSP memory mapping modes maps program space into the DPR. This has
been implemented to allow the transputer to download programs to the DSP. DSP

programs must first be assembled and linked using an appropriate assembler package.

197

The resulting object files need to be stripped of their headers before they can be
handled by the transputer.

The DSP programs to be downloaded by the transputer may either be stored
in local transputer memory, or read in from a filing system, over a link. The transputer
treats the block of object code as a data vector, and block moves it into DPR.

Once the object code has been read into the DPR, and the semaphore reset, the
DSP is able to make use of the code. It is not desirable for the code to remain in the
DPR for two reasons. Firstly, an area of DPR, which is a valuable resource, is used
as a static store. Secondly, keeping both program and data in external memory areas
reduces the performance of the DSP as only one external memory access may be made
in an instruction cycle — two external accesses results in a delay in instruction
execution. For these reasons, the DSP must move the code from external DPR into its
internal program memory, using the MOVEM instruction (move program memory). This
move does take some time, but it does ensure that subsequent execution is not
impeded by additional external memory accesses.

Although the primary use of this downloading facility is expected to occur
during system initialisation, this method does allow for dynamic downloading of code.
Thus the code running on the DSP may be changed while the system is still in
operation. The DSP will have to go "off line" while it moves the program to internal
memory, but this will be a short time compared to the time taken to execute a
reasonable size computation kernel.

The local memory of the DSP may also be preloaded with sections of object

code at initialisation time, via the DPR, allowing the DSP to access its own local

."library" of code.

198

7.8 Summary (Architectural Overview) |

The proposed architecture of the Hymips multiprocessor consists of a node comprising
a single IMST801 transputer and a number of Motorola DSP56001 devices. The
transputer may communicate with other transputer based nodes via its four serial links.
Data is transferred between the transputer and the DSPs through dual ported RAM.

In this architecture, the transputer controls the flow of information around the
network. The DSPs are not concerned with where their input data has come from, nor
where their output data is going to. This reduces their communications’ overhead and
allows them more time to perform what they have been designed to do —
computation.

The overall communications bandwidth of the node is limited by the rate at
which the controller processor, the transputer, is able to access external memory, ie
the DPR blocks. The data transfer bandwidth of the node is now a function of how
efficiently the transputer is able to decide whether or not an area of a particular DPR
block is valid and how quickly the transputer is able to transfer external data once the
decision has been made. The mosf efficient manner in which to transfer data on the
transputer is to use its block move facility.

This architecture allows for a high degree of scalability within the node. The
actual number of DSPs supported is governed by the data transfef bandwidth of the
transputer. As this is not a shared bus system, the performance of each DSP is limited
only by the rate at which data can be supplied to it, and is not affected by additional
communication management overheads.

In summary, then, this architecture allows for efficient inter-processor

communication, as the problems of bus bottlenecking and the additional overheads

199

associated with control in shared bus/memory systems are alleviated. The scalability
of each node is limited mainly by the external transfer bandwidth capability of the
transputer. The maximum simultaneous data transfer bandwidth of the node is equal
to the sum of the transfer bandwidths of all the processor. This compares with the sum
of the bandwidths of the transputer and one DSP using the single block of DPR, and
the transfer bandwidth of either the transputer or a DSP using SRAM. As the control
softwam overhead is greatly diminished, more time is available to the DSPs to

compute data rather than manage communications.

200

Transputer Plane

DSP Plane

—' Direction of Scalability

Fig 7.1 Schematic Representation of System Scalability

201

Transputer/ A
Transputer ; A
DSP Hybrid A

Figure 7.2 An Example Configuration of Nodes

202

Transputer
Graphics

VY Pauod fenq Suls() 2misalyary AIOWSA pareyg ‘sng UM v 'L 1]

ejeg Bleg

SSaIppY $SaIpp
Wvd
uod jenp
L009SOW L009SON LO09SON L009SOW paieys seindsues)
amoalyory AIOWSRN pareyg ‘sng pareys y €L 314
eleqg

100950 L009SOW L009SOW L009SONW 18indsuels)

203

V¥ 104 [enq Sutsn amoaiyary A10way pareys a(dnniy ‘sng AdninN v ¢°L 31

AOTTR P - eool

SCEY-

1009SON L009SON L009SON Jaindsues

204

dsa Jad piomig

K1ousaur [e007] paInqLusiy Suisp) Jo Py 2 dwIS vV 9°L 31]

L009SON
Aq esn ul

\II(

300i{q
1X8u

300|q
juasaid

300Iq
snoineid

A

spou Jad piomo| oy dn

205

2 epou

K1owa [eo0]-UON panquusic Suis Jo poydN Adwis v 'L 31

L009SON
Aq esn uj

e 4
&

8

%00|q
xXau

300|q
juasaid

300(q
snoianaid

\’u/u\

Null
Jaindsuel)

| apou

")

%0019
Xau

%00(q
Jjuesaud

%o0I1q
snoinaid

"

.
~~

1009SON
Aq asn uj

206

L009SON
Aq asn ul

P A AR NN RIS
YAV VAN Y YR YA YL A JA YA

Xirlele

\lc/’l\

sealy snondnuoy) as1madslyg Surpunoduwio)) - AIOWSJA] [€30] panquisi Suis() JO POYRAL x9[dwo) 210 V §°L 814

fd

snojaaud

Ixau

snoiaaid

N2 sz

1xau

AAARAR AR AT

A NN AN NN,

/\I\/\I\éagl\l\l\l\l\ ’

'

» o

e,/

’ 7

~
Ay

L
4
A

AN

}xau

snoiaaid

-

J

207

major domain

sasoydewag [eolyoresiay - AIOWaA [e20T painquisi(y Suisn) Jo poylsAl xa[dwo) AN V 6L S

L009SOW
Aq esn uy

sub-domains

LI N NN
AR TAVATAYE VAT YL T U YN
I NN NN

AN LN LN LN NN NN

DN

\\|/\

A PRARM AR TR TATATAIAY
LI A S AR IR
A WA W U W L W R A T WA A A Y
PN RN
LA YA WA WL N A 0 WA A W T U
P NI
AAE N MMM L N

NI NN N N N NN N NN N

DA

\/\

208

©

(4] (a) Orthogonal
(b) Pipeline

(c) Star (tetrahedral)
(d) Binary Tree

Fig 7.10 Example DSP Network Topologies

209

Chapter 8

Hybrid Multiprocessor:
Implementation

8.1 Introduction

The previous chapter presented the design rationale and an overview of the proposed
architecture for Hymips, a hybrid multiprocessor. This chapter goes on to discuss the
hardware and low level control software implementation of such an architecture.
Although, in principle, the architecture promisesvto offer high performance and a high
degree of scalability, the inherent differences of the constituent processors does cause
problems which threaten to reduce the potential overall performance of the
multiprocessor. These problems, their causes and their solutions are outlined in this
chapter.

Section 2 covers the memory map schemes used by the transputer and
DSP56001. A DPR partitioning scheme that allows maximum data transfer rates to be
attained is outlined in Section 3. Efficient processor synchronisation and data
protection is vital to any shared memory multiprocessor architecture, the method used
in Hymips being described in Section 4. Section 5 discusses possible synchronisation
coding schemes. System initialisation is outlined in Section 6. Initial processor

synchronisation, an important aspect of system initialisation, is covered in Section 7.

210

Section 8 outlines the construction of a Hymips node, Section 9 pmviding a Summary.

8.2 Memory Space Partitioning
It has been decided that the highest data transfer bandwidth between processors in this
system mayvbe attained through the use of a communication scheme involving blocks
of dual ported (shared) memory. However, the manner in which these areas of
memory are addressed by the processors, ie the processors’ memory map, has
significant bearing on the performance of this communication scheme. The memory
mapping affects particularly the efficiency with which the transputer transfers data.
Furthermore, the processors themselves are to possess an area of local memory, which
must also be addressed.

This section outlines the placement of these memory areas in the address space

of the processors.

8.2.1 The DSP56001
The DSP56001, with its modified Harvard architecture, may address three independent
memory spaces — x-data, y-data and program. These address spaces begin in the on-
chip RAM areas, allowing simultaneous access, and are continued externally, where
only one space may be accessed at any given time. The processor. is allowed access
to 8kword of local RAM and 2kword of shared dual ported RAM, each of which need
to be placed within the address space of the memory areas.

The dual ported memory is to be primarily used to transfer data. It would seem
sensible to map the whole of this memory into the address space of one of the data

areas. The only restriction on the placement of the memory should be that it is placed

211

sufficiently high up to allow the modulo addressing mode to be utilised over the
whole DPR. However, in order to aid dynamic programming of the DSP network, it
would be useful if a portion of the DPR was placed into the program memory address
space. The DPR may thus be accessed in one of two address mapping modes, mode
1 and mode 2. The first maps the whole of the DPR into x-data space, allowing large
vectors to be transferred. The second maps half of the DPR into x-data space, and half
into program space, reducing the size of data vectors that may be transferred, but
allowing DSP programs to be placed directly into program space by the transputer.
The local memory, at 8kword, is large enough to be partitioned between
memory spaces. It is important that the addressable program area is contiguous with
the on-chip area, in order to allow large programs to overflow from on-chip into off-
chip memory. There need be no such restrictions placed on the positioning of the data
spaces. In mode 1, then, the local memory is equally divided between y-data and
program spaces. In mode 2, the program space addresses 4kword, with the x-data and
y-data spaces addressing 2kword each, Fig 8.1. Both memory map maps are defined

by the same PAL device.

8.2.2 The Transputer
The transputer may access a signed address space of 1Gword, with lkword being
placed on-chip. Unlike the DSP56001, the transputer stores its data and programs in

a single memory space. Both the 8kword local memory and all the DPR areas must

be mapped into this single address space.

It is important that the local memory is placed in an area contiguous with the

on-chip memory, in order to allow the program and workspace areas to "overflow"

212

from internal to external memory.

There are a number of options for mapping the blocks of DPR into the address
space, Fig 8.2. The most straightforward would be to map each block contiguously
into the address space. Another option would be to allow double imaging (aliasing)
of the same logical locations at two or more different physical DPR locations in the
transputer address space. Two or more blocks may be aliased to the same address,
allowing the transputer to write data to more than one DPR simultaneously, increasing
the data transfer bandwidth from the transputer to the DSPs. Of course, non-aliased
DPR areas must be used for the transfer from the DSPs to the transputer. Another
option would be to place the input and the output sections of the DPRs at contiguous
logical addresses. This would allow entire input or output vectors to be moved in a
single block move. These are only three of the many possible memory map
configurations, some of which are general, some of which would be specific to a
particular applicatidn. Any particular memory map may be implemented by the use

of a PAL.

8.3 Dual Ported Ram Partitioning Schemes
The efficient use of the DPR blocks is essential if a high communications bandwidth
is to be attained throughout the node. This section examines the manner in which the
individual blocks of DPR may be partitioned. Communication synchronisation occurs
through the use of semaphores, which will be discussed in the next section.

The simplest partitioning scheme is shown in Fig 8.3. The DPR contains one
domain, controlled by a semaphore, which contains either input or output data. This

partitioning scheme requires the use of an additional block of DSP local RAM, acting

213

as a buffer, Fig 8.4 [21]. Transferring data to and from this additional memory incurs
unacceptable overheads.

An alternative partitioning scheme is depicted in Fig 8.5. Here, the domain is
split into two sections, one exclusively containing data passing from the transputer to
the DSP, the other data from the DSP to the transputer. As both input and output data
reside in the DPR, there is no need for the DSP to utilise local memory as a data
store.

Both of the above schemes use only a single semaphore, allowing only one
processor to access the DPR at any given time. The DPR is thus being used in a
similar way to shared single ported memory, very little dual ported capability is being
used — the only manifestation being that no access arbitration is required to read the
semaphore, so that the "blocked" processor’s attempts to access the semaphore do not
interfere with the operation of the "unblocked" processor. An important consequence
of this is that the processors experience a large amount of idle time, when they are
continually testing and failing the semaphore.

A compromise solution would be to add a local data store to the second
scheme outlined above, Fig 8.6. This would allow more efficient overlapped
communication and computation than the first scheme. Once the DSP has moved the
i/o data from the DPR into its local memory and begins its computation on that data,
the transputer is free to access the DPR — thus overlapping computation and
communication. However, this scheme still requires a lot of unnecessary transferring
of data to 'and from the local store.

The solution is to partition the DPR into two domains, Fig 8.7. This

partitioning scheme allows concurrent access of the DPR by both processors. There

214

is no need for the DSP to transfer the data to a local store. Maximum transfer
bandwidth is attained if each domain is further divided into input and output areas, Fig
8.8. When the DSP is operating on the first domain, the transputer is able to operate
on the second, and vice versa. While the DSP is computing on data set n, the
transputer is able to transfer the input for data set n+1, and the output from data set
n-1, Fig 8.9.

There may be some "idle time" experienced by the processors, depending on
the number of DSPs, the length of the code segments that they are running and the
size of the data vectors, but this may be reduced to a minimum by using relevant task

allocation and scheduling algorithms.

8.4 Communications Synchronisation

Data is transfefred through areas of shared memory in this system. In order to allow
a high communications bandwidth to be attained, dual ported memory is utilised. It
is important with shared memory systems, however, to ensure data integrity. This is
often ensured by the use of semaphores, which control access to a particular area of
memory [21], [83]. There are many semaphore protocols in use today; this system
makes use of a protocol based (;n the test-and-set method [6], [20]. In order for these
protocols to operate successfully the processor must be able to execute certain
"atomic” instructions, and indeed the DSP56001 does so. However, the transputer was
designed specifically to operate using a different communications mechanism, and
does not support these uninterruptible instructions. The standard test-and-set protocol
has been modified in order to allow the use of interruptible instructions and hence

avoid data corruption. Semaphores and shared memory methods have been applied to

215

interprocessor communication for transputers [84], [85], [86], but these
have conformed to the CSP communication model.

This section first examines the operation of the dual ported memory. The
standard test-and-set semaphore protocol is then described, and the problems
encountered through using the transputer instruction set are highlighted. Finally, the

modified protocol is described.

8.4.1 Dual Ported Memory
It is possible to allow more than one processor to access single port memory, but this
method allows only one processor access at any given time, and requires additional
arbitration logic. Multiple accessed single port memory offers no performance benefits.
True dual ported memory allows two processors to access the memory at any
given time. An exception to this is when both processors wish to access the same
location; one of the processors is forced to wait until the other has completed its
access cycle, eliminating the risk of data being spuriously overwritten. Such contention
is normally flagged by a "busy" pin, which is driven by on-chip address sensing

arbitration logic.

8.4.2 The Test-and-Set Semaphore Protocol

Let a semaphore value of zero indicate that the domain of the semaphore is unlocked,
ie. is free to be accessed, and a value of 1 indicate that it is locked, ie. is in use. The
test-and-set method is depicted in Fig 8.10. The value of the semaphore is read into
a local variable (Local_Dummy). The semaphore is then set to one, in order to lock the

domain (if it is not already locked). The original value of the semaphore is tested. If

216

the original value was zero, indicating that the domain is unlocked, then a section of
critical code is executed, after which the semaphore is reset to zero, unlocking the
domain. If however, the original value was one, indicating that the domain is locked,
the process may not access the domain. Two options for continued execution in this
case are firstly to retest the semaphore and secondly to enqueue the present process
and dequeue another [22], [23]. For such a protocol to work correctly, it is essential
that no other processor is allowed access to the semaphore between operations i and
ii of Fig 8.11 — the read and set instructions must be compounded into a single
uninterruptible instruction.

Consider the situation when this is not the case and that the bus is released
between operations i and ii, ie the read and set operations are interruptible. The
following situation could arise, depicted in Fig 10. The original value of the
semaphore is zero, which is duly read in by processor 1. Consider, now, that another
processor, processor 2, is allowed access to the semaphore between the read and write
operations of process 1. This second process will also read the semaphore as zero,
indicating that the domain is free. Thus, two processors are allowed to operate on the
same domain simultaneously. Data corruption is almost a certainty in this situation,
and so using the semaphore as a means of both process synchronisation and data
security breaks down. This situation would probably arise very seldomly in most
systems using interruptible instructions. Hence run time testing of such systems is
unreliable — data corruption may not occur for quite some time. The manner in which
processors test semaphores is an important consideration when porting code from one
system to another.

~ The DSP56001 does support uninterruptible instructions, although not the test-

217

and-set variety. The transputer, however, supports no such instructions. For this

reason, a modified approach had to be developed.

8.4.3 The Hybrid Semaphore Protocol
The problems presented in the previoils section are manifest in any shared memory
multiprocessor system using processors that do not possess uninterruptible read and
set instructions. In the type of protocol already mentioned, the state of the semaphore
indicates whether or not its particular domain is locked or unlocked. This is sensible,
since many processes Or processors may wish to access the domain in any given
multiprocessor system. However, as any physical block of DPR is shared between only
two processors in this system, a different type of protocol may be implemented.
Rather than indicate whether or not the domain is locked or unlocked, the
semaphore mdicates which of the two processors may access the domain. Together
with the on-chip arbitration of the DPR forcing wait states when required, this
protocol ensures data and synchronisation validity. The pseudo-code of this protocol
is depicted in Fig 8.12. It may be seen that the two main differences between this
protocol and the test-and-set protocol are firstly that the state of the semaphore
determines which processor may access the domain, not whether the domain is locked
or not (the domain is always "locked" in the test-and-set context) and secondly, as
a consequence, there is no need to lock the domain by setting the semaphore.
Using this protocol, there is no way that the two processors can access the
domain at the same time. This protocol allows processors that do not possess

uninterruptible instructions to efficiently utilise dual ported memory.

218

8.5 Semaphore Implementation
It is important that the code running on the transputer is written as efficiently as
possible, incu;‘ring minimal performance overheads, if the system is to operate at its
maximum potential performance. The transputer will execute its semaphore test code
N, or 2N,, times for each of the ND. DSPs’ one or two, and so any additional cycles
will add N, or 2N, cycles to the whole of the test and transfer sequence. If the extra
cycles cause the execution time of the whole loop to exceed a particular critical value
then the DSPs will experience idle times.

Three possible versions of the semaphore test code are discussed below. The
first is written in Occam? and will be used as the base from which other versions may

be compared. The second two versions are written in transputer assembly language.

8.5.1 Occam2 Version

Tﬁis routine, shown below, uses an IF construct to test the value of semaphore sl.
The transputer use a 32bit word, whereas the DSP56001 uses a 24bit word. In order
to preserve the parity (+ve or -ve) of the DSP data the three DSP data words are
mapped into the upper three bytes of the transputer’s data word. Hence a value of $1
(Hex 1) on the DSP is equivalent to a value of #100 (Hex 100) on the transputer (the
s prefix indicates a DSP hexadecimal value, the # prefix indicates a transputer
hexadecimal value). This is the reason that sl is tested for #100 and not #1. If the
semaphore is set, the relevant i/o is performed and then s1 reset. If s1 is not set, then

the program comes out of the IF construct and continues.

219

IF
sl := #100 (256)

SEQ
. perform input
... perform output
sl :=0
TRUE
SKIP

s1 praced at Occam?2 word address #7FF.

The input/output and semaphore reset code is identical in all three versions presented
here, and so will not be discussed further. The critical part of this code is the
conditional section, which will be considered in more detail.

The assembled form of the Occam version is shown below:

MINT 1 Load in the value of sl
LDNLP 2047 (#7FF) 2+2 using indirection.

LDNL 0 2

EQC 256 (#100) 2+2 Compare this value to

CJ 23 2/4 +1 #100 and jump if required

This takes 14 or 16 cycles, depending on whether or not the jump is taken. The same
level of prefixing for the other semaphore addresses will be experienced only if their
addresses lie between #100 and #7FF. For addresses above #7FF, which will normally
be the case, an extra prefix will be used to read in the semaphores’ addresses, which
will add another instruction cycle.

About 50% of the time taken to run this section of code is used to generate the
address of the semaphore and to read it in. This method is the most general, and is of
the type typically produced by the Occam compiler as it is does not assume that the

addresses of variables are known at compilation time.

220

8.5.2 Assembler Version 1

Whenever the address of a variable is known a priori, another method may be used.

Occam?2 provides no provision for this method and so transputer assembly language

must be used.
LDC -2147475457 (#80001FFF) 1+7 (byte address of sl)
LDNL 0 2
EQC 256 2+2
CJ 23 2/4+1

The absolute (machine) byte address of the semaphore is loaded in directly
using LDC. As the machine addressing scheme must be used, however, a small Occam
address is translated into a large negative machine address. Many prefix instructions
are needed to read in such a value, which is the reason that this version of the code
takes more cycles to complete than the previous version.

These additional prefix instructions may be avoided by placing the semaphore
addresses higher up in the memory map. If machine addresses between #0 and #F are

chosen, then no prefixing is necessary to produce the address.

LDC #8 1
LDNL 0 2

EQC #100 2+2
CcJ 23 2/4+1

This section requires ten or twelve instruction cycles. Furthermore, using a
value of between #0 and #F as the operand of the LDNL instruction allows fifteen
possible offsets for each of the sixteen possible values specified on the Lpc instruction,

allowing a total of 31 locations to be accessed with no prefixing overheads.

221

Although this implementation is quicker, it does require additional address
mapping to map the semaphores into the DPRs. The semaphores occupy a single
contiguous block of transputer memory starting at logical machine address #0. These

must be mapped into individual words occupying physical DPR locations.

8.5.3 Assembler Version 2
The above method simply uses a different addressing technique to access the
semaphore. The test section is essentially the same as that used in the Occam version.

A different approach is used in the following code.

1DC 0-15 1
LB 5
CcJ 23 , 2/4+1

This method requires nine or eleven instruction cycles. Again, the semaphores
are seen to reside in a contiguous block occupying the first sixteen bytes of positive
machine address space. Each semaphore occupies a single byte in address space,
necessitating the use of the "load byte" instruction. As the semaphores are treated as
bytes, ie as word subsections, then the transputer no longer needs to read in a shifted
version of the DSP data word. The byte values may take on boolean values. Hence,
a semaphore byte may be read in by the transputer and used as the operand to the
"conditional jump" instruction, which eliminates the need for the "equivalence”
instruction and so saves cycles. The number of semaphores that may be accessed with
zero address prefixing is limited to only 15, however. To ensure a uniform execution
time for a larger number of semaphores, the semaphores themselves may be placed

between byte machine addresses #10 and #100, which requires a single level of

222

prefixing.

The address decode scheme is the most complex. as not only does the
contiguous block of bytes need to be mapped over to discrete areas of DPR, but
because the transputer uses a word orientated addressing scheme on its EMI, and the
lack of additional strobes on the T801 EMI, then semaphores must be placed in
particular byte locations in order to avoid "overlap” on the data bus and hence

semaphore corruption.

8.6 Initialisation
The initialisation of any asynchronous multiprocessor system is far from
straightforward. Care must be taken to ensure that each processor executes its
initialisation routine in sequence with all the other processors in order to prevent the
occurrence of spurious or erronebus events. In the system discussed here, each
processor possesses its own local ports and memory in addition to an area of shared
memory. Hence, a processor must both initialise its own local environment and
synchronise with a global initialisation routine, which involves all the processors in
the system. The transputer controls the data flow around the system, and so it is
logical that it should also control the global initialisation procedure.

The method of synchronisation is non-trivial and is treated in the next section.
This section describes the local initialisation procedures of the IMST801 and
DSP56001, binding them into a global initialisation procedure that takes the system
from its boot state to a fully initialised and operational state. Firstly, however, the

bootstrap routines of the processors must be described.

223

8.6.1 DSP56001 Bootstrap Routine

The DSP56001 possesses a special area of internal program ROM, which it maps into
its memory space upon power up. This read-only routine begins to load in executable
code from either the external memory interface or the host port, depending upon the
state of data line D23. The code is read in byte wide sections and fills internal
program memory from the lowest location upwards. When all the code has been
loaded, the bootstrap ROM is mapped out of memory space, and execution jumps to

the start of the loaded code.

8.6.2 The IMST801 Bootstrap Routine

When booting, the transputer may receive its code either over a link, or from a byte
wide ROM placed on the external memory interface. As the transputer is to be
connected to a host transputer, via a network of transputers, then the boot from link

option is used.

8.6.3 DSP56001 Initialisafion Procedure

The code for the DSP56001 could be stored in PROM, and loaded in during the
bootstrap routine. However, if this were the case then the code running on the DSPs
would be fixed by the PROM. A more versatile approach would be to allow the DSP
to transfer programs held in DPR to its internal program memory area. The programs
could then be transferred by the transputer from, say, a DOS based file system to the
DSPs. This is the approach used in the Hymips system, and effectively constitutes a
secondary bootstrap routine. The code used to initialise the DSP and to safely transfer

the code section from DPR to internal memory is held in EPROM, and is listed in

224

Appendix E. A flow chart representation of this code is shown in Fig 8.13.

This code is placed at the bottom of the program memory space by the
bootstrap program, its function being to initialise various registers within the DSP, to
synchronise with the transputer, to load in code from DPR and to execute it. The code
also initialises the interrupt vector space. The ope;ating mode register is then set, and
the bus control register set up to define zero wait states for all external memory
accesses. The DSP synchronises with the transputer and tests a semaphore in order to
determine whether or not it has access to the DPR. If so, then address registers are
initialised, and the incoming code moved from external x-data space (DPR) into
internal p-space. Execution then jumps to the beginning of the incoming code, which
signals to the transputer that it has been successfully loaded by setting a semaphore,

and then enters its main loop.

8.6.4 IMST801 Initialisation Procedure

The local transputer initialisation procedure consists of initialising its memory space

to zero.

8.6.5 Global Initialisation Procedure -
This procedure includes transferring DSP code segments to DPR and synchronising
with the DSPs. The node transputer is connected to a host transputer, which supplies
the DSP code segments and the input data. The main operations that the transputer
must perform are :-

i To initialise the DPR areas to zero.

i. To transfer the DSP code segments, together with their associated
placement information, to DPR.

225

iii. To transfer the first set of input data to DPR.

iv. To enter the main execution loop.

The form of the code is shown in Fig 8.14, the code being given in Appendix E. The
DSP code segments are stored as DOS files on hard disk. These consist of .Lop files
produced by the DSP assembler which have been stripped of their header information.
Each DSP program word, of 24 bits, occupies the most significant three bytes of a
transputer word as only the upper 24 bits of the transputer data word are written to
DPR. The size of the code segment, and the address to which it is to be loaded in
DSP internal program memory, is also placed in DPR.

Naturally, the transputer must synchronise with the DSPs at various points, in
order to prevent data corruption. The transputer must prevent DPR access by the DSPs
until the DPR has been fully initialised. Only when the code segments and associated
information have been placed in the DPRs is it safe for the DSPs to access them.

The first synchronisation point, then, is placed after the DPR initialisation
section. This is a blocking point — all DSPs must synchronise before the remainder
of the code is executed — and corresponds to the first synchronisation point in the
DSP EPROM code. The action of the synchronisation code is discussed in the
following section.

The transputer then allows each DSP to access its DPR, and transfer its code
segment, by resetting the appropriate semaphore.

A DSP indicates that it has completed the load and is running the code by
setting a sethaphorc on one of its DPR domains. The transputer is then able to transfer
the first set of input data to the DPR. This operation may be treated as a blocking

(data transfers wait until all semaphores are set) or a non-blocking (a transfer takes

226

place on a domain as soon as the semaphore is set) synchronisation point. The

transputer enters its main execution loop.

8.7 Synchronisation
As mentioned above, processor synchronisation mechanisms may be implemented
either in hardware or software. Both options are available on the Hymips system.

The hardware mechanism connects one of the transputer links to the host port
of each DSP through an IMSCO11. The DSPs continually sense the host port, and
begin execution when the transputer broadcasts the correct byte value. This method
allows all of the DSPs to begin execution at the same time, or allows staggering to be
performed. The problém with this method is that it ties up a link that may be required
for inter-node communications.

A more general approach is to use a software routine to synchronise the
processors, using the DPR to pass the synchronising "token". The most straightforward

| method would be to pass a token — particular value — to each DSP via the DPR.

After they have booted up, the DSPs would continually monitor a particular location
of DPR for this token value. Once this value was detected, the DSPs would begin
execution of their main body of code. There is a problem with this method, however.
The transputer initialises the relevant areas of memory as part of its initialisation
routine, which it performs immediately after boot up, before it tries to synchronise the
DSPs. The DSPs begin to test the DPR immediately after tﬁey have booted up. Now,
even if the transputer is able to perform its initialisation routine before the DSPs have
started to test the DPR, there is no guarantee that this will always be the case. The

transputer may experience a delay in booting up, eg its host takes time in booting

227

from the link, allowing the DSPs to read the DPR before the transputer has had time
to initialise it. Consider that this is indeed the case, and the DSPs are able to read the
relevant DPR location before the transputer has had time to set it to a value other than
the token value. As the DPR contains random data at this point, it is possible,
although unlikely, that the synchronisation location does indeed contain the token
value. If this is the case, then one or more DSPs will begin to execute code out of
sequence, causing erroneous system behaviour. Although the probability of this
happening is low, 2%, it is still possible, and so cannot be tolerated. Thus, this
synchronisation method is not secure. The method used in the hybrid system is
outlined below and is shown in Fig 8.13 and 8.14.

The transputer uses a wHILE loop to repeatedly change the value of the variable
sync, which is used to synchronise with the DSP. The execution of the loop is
governed by the value of the variable acknowledge, which has been reset earlier in
the program. Both sync and acknowledge are placed in DPR.

The DSP loads the initial value of sync into one of its accumulators. It then
moves the same value into its x0 register. The contents of the accumulator and x0 are
compared. If they are equal, then the value is loaded into x0 again and the process
repeated. If they are not equal, however, the value ackval is written to the location
acknowledge. The DSP then begins execution of its main section Aof code.

When the transputer determines that the value of acknowledge is equal to
ackval, it ends the loop and continues with the rest of its code.

The DSP detects a change in sync using this method, and so does not rely on

its initial value. This method 1is secure.

228

8.8 Design and Construction

The architecture outlined in this chapter has been implemented in hardware. In order
to allow additional processors to be added easily, each processor occupies its own pcb.
The boards are connected via a backplane bus.

The transputer card incorporates an IMSCO11 link adapter, which may be
connected to link 0, in addition to local memory and link circuitry. The links and the
IMSCO11 interface are accessed via connectors on the front of the board. In order to
save space and to allow for as much addressing flexibility as possible, the transputer
address decode PAL has been located on a separate board.

The DSP56001 boards incorporate local memory, EPROM, DPR memory and
an RS232/TTL level converter in addition to reset and support circuitry. The memory
decode PAL is situated on the board, and may support both memory configurations.
Ports B and C are accessed via connectors on the front of the board. The provision of
a level converter on the board allows devices using an RS232 interface to access the
serial port via another connector on the front of the board.

Circuit schematics, net lists and pcb plots were generated using proprietary
software running on a PC/AT compatible. The boards themselves are 6 layer, the two
innermost layers being used as the power and ground planes, the four outer layers
~ being used to route signal lines. The backplane bus was constructed in-house using a

two layer process.

229

8.9 Summary

This chapter has dealt with the architecture and control software of the Hymips
multiprocessor in detail. Memdry partitioning schemes have been discussed in relation
to the requirements of each type of processor. Shared dual ported RAM has been used
as an interprocessor communication buffer, and a particularly efficient method of
partitioning this memory in order to allow fully overlapping communication and
computation has been described.

Shared memory multiprocessor systcms. require some means of access
arbitration, in order to protect data and allow processor synchronisation. In common
with many other shared memory systems, Hymips arbitrates data access through a
semaphore based protocol. However, the transputer has not been designed to
communicated through shared memory, and does not support the type of instructions
required to safely implement the more usual protocols. The nature of the
interconnection network architecture has allowed a secure protocol to be developed.

The correct initialisation of a multiprocessor system, upon boot up or reset, is
very important, and may be far from straightforward. As there are no control or
interrupt signals running between the processors, then Hymips must be initialised
through its shared memory. The transputer controls the initialisation sequence. and
begins by setting its memory to a predefined value (0). The DSP56001s boot up from
their respective EPROMs, which contain self overwriting code that synchronises with
the transputer and loads in a program from the dual ported RAM, after it has been
placed there by the transputer. The synchronisation is independent of memory contents
and is based on a handshake protocol.

The system has been implemented using a number of 6 layer printed circuit

230

boards, connected over a backplane bus.

231

Dual Port Memory

Dual Port Memory

Local Memory

Fig 8.1 DSP Memory Partitioning Options

232

suond(depy K1owspy Jaindsuer], S[qissod Y, '8 8L

mndui 0dSa

0dsd

induy 1dSa

1dSa

indui 24Sa

edsda

ndino 04sa

180dSd

indino 1dSA

c®idsda

indino gdsa

£32%1dSA

TN

\ll/\

0d4Ssa

tdSa

¢dSsa

£dSd

¥dSd

SdSd

\ll/\

233

transputer

input
or

output P

data

Fig 8.3 Simplest DPR Partitioning

transputer

dual
b~ POTtE0
AR
either input
or output data
transferred local
RAM

Fig 8.4 Utilisation of a Local Memory Store

234

MC56001

MC56001

input and output
data transferred

output

transputer

transputer

MC56001
input

input

transputer -

C56001
output

b

MC56001

Fig 8.5 Improved DPR Partitioning Scheme

transputer |

dual
ported
RAM

input and output
data transferred

AR

local
RAM

MC56001

input and output
data transferred

Fig 8.6 More Efficient Utilisation of a Local Memory Store

235

Jaindsuesj

awayog Suruoniured JYdd urewo(oft yJurg L8 Jig

Kluo peas

Auo sjum

Auo ajum

Ajuo peas

- 10096dSA

236

Jaindsues)

awaydg Jutuonired Y4 urewoq o/ urm, 8°g Sy

Aluo peais

Auo eyum

Auo ejum

Auo pea:

Auo pea.

Auo elum

Auo sjum

Auo peas

10095d4Sa

237

VY HOd [eN(JOA0 PALIQJSUPI], A€ SIOSeIRQ YOIYMm UT I3PIQ YL, 6'8 Sid

u jasejep

S ndut 10095OW

l u joselep

Jeyndsuel |

indino LO09SON

| +U jJaselep

sajlum Jajndsues -

L-U }osejep -II'
speas JaindsueJ)

L009SdSa

238

1 Local Dummy := semaphore_value
2 semaphore_value := 1
IF
Local Dummy = 0
perform action on domain
Local_Dummy = 1

do not take action on domain

Fig 8.10 Pseudo-Code for the Atomic Test-and-Set Method

Processor 2 Processor 1

bus 1 asserted

read semaphore
bus 1 de-asserted
bus 2 asserted

read semaphore
bus 2 de-asserted

bus 1 asserted

write semaphore
bus 1 de-asserted
bus 2 asserted

write semaphore
bus 2 de-asserted

take action

) on domain.
take action

on domain 4

Fig 8.11 Potential Erroneous Behaviour when Non-Atomic Instructions are Used

239

1 Load semaphore_value
2 IF
semaphore_val = processorl_go
perform action on domain
semaphore_val := processor2_go
semaphore_val := processor2_go

do not take action on domain

Fig 8.12 Pseudo-Code for the Hybrid Semaphore Protocol

240

Setup mr, omr, ber, RO

v

Move ack into a

v

yes .
—» Move ack into x0

v

a=x0?

no

‘Move ack.val to x:aéknowledge

v

Set up R1 to point to Semaphore

yes #
I——PSemaphore set ?
|

¥ no
Move location of p_base into R4

v

Move p_size into x0

v

Move prog.vec form x:space to p:space

v

Move p_base into R1

v

Jump to p:(R1)

v

Set semaphore

v

Set up RO, R1, R3, MO and M1

v

Enter main loop

v

Fig 8.13 The DSP56001 Initialisation Routine

241

Synchronise with host transputer
Set semaphores
Initialise memory to ze-ro
Initialise p_base and p_size
Transfer prog.vec from host
Reset semaphores

~— Acknowledge = ack.val 7 ——

no

I sync = sync+ 1

yes
Spin on semaphore 1 ¢—

Spin on semaphore 2
Transfer t.to.dsp1 from host
Reset semaphore
Transfer .to.to:dsp2 from host
Reset semaphore

Enter main loop

Fig 8.14 The Transputer Initialisation Routine

242

Chapter 9

Hybrid Multiprocessor:
Performance

9.1 Introduction
The previous chapter described a hybrid multiprocessor system, which uses areas of
shared dual ported RAM (DPR) to efficiently transfer data between a transputer and
several digital signal processors (DSPs). The transputer and the DSPs, which are
arranged in a sub-network, constitute a node. Many nodes may be connected together
using transputer links. Although the potential computational performance of such a
system is a linear function of the number of DSPs, the overall performance is limited
by the intra- and inter-node communications bandwidths. The inter-node bandwidth
is fixed by the transputer links; the intra-node bandwidth (the rate at which the
transputer is able to supply data to any particular DSP) is not constant and depends
upon such factors as the number of DSPs in the node, the code they are running and
the transputer overheads associated with each transfer.

This system has been designed primarily to implement real-time digital signal
processing élgorithms, which are characterised by high data throughput, small efficient
computation sections and deterministic execution periods. The operation of the system

is assumed to adhere to these properties.

243

If the transputer communications bandwidth matches or exceeds that required
by the DSP sub-network, then the overall performance of the node is proportional to
the number of DSPs (linear scalability). If the transputer is unable to maintain this
bandwidth, however, then the DSPs will be forced to wait for data, thus reducing the
performance of the node somewhat. The point at which this happens is termed the
latency threshold, and marks the point at which the transputer/DSP communications
mecﬁmism reaches saturation.

This chapter is concerned with the performance of the data routing code
implemented on the transputer, in order to give a measure of the attainable
performance of the node, and to determine the latency threshold, for a given DSP
configuration.

The topology of the DSP network is defined by the data routing software,
enabling arbitrary topologies to be implemented. Each different topology requires a
different code structure, which modifies the performance of the inter-processor
communication mechanism. This chapter considers two topologies directly applicable
to a wide variety of DSP applications — the orthogonal mapping and the pipeline. In
the former, data is used exclusively by a single DSP, in the latter, the output of one
DSP forms the input of the next. The approach used in this chapter is aimed
specifically at the Hymips architecture, and an effort has been made to provide a
deterministic measure of performance. Hence the analysis may not be as general as
those offered in [32], [78], [87], [88], [89), [%0], [91], ([92],
[93], but offers a more accurate description of the system.

The performance of the routing software is parameterised in terms of the

number of DSPs in the network, the execution period of the code running on the

244

DSPs, the data transfer rate of the transputer, the data vector length and semaphore
test and set overheads. The expressions produced allow the latency threshold to be
determined for any given set of conditions, thus giving a limit to the linear scalability
properties of the particular configuration.

The transputer communicates according to the principles of CSP, the provision
of a microcoded scheduler ensuﬁng that it is very efficient at doing so. However, the
transputer is being forced to communicate with the DSPs through shared memory,
using a semaphore protocol, which is a foreign environment and departs significantly
from previous methods of using either semaphores or shared memory to provide
‘communications. The main problem arising from this different approach occurs when
a number of parallel processes are created and enqueued (as is the case whenever link
communications are utilised). The effect of program structure and the conditions
required for valid operation are outlined in this chapter.

An operational model of the routing code is presented in Section 2. Section 3
discusses communications software using only memory to memory transfers (intra-
node case). Section 4 expands on the intra-node case by including external transfers
in the analysis (inter-node case). An empirical verification of the analyses is presented

in Section 5. Finally, Section 6 provides a summary.

9.2 An Operational Model

In addition to testing semaphores, transferring data and resetting semaphores, the data
routing code is also required to initialise the shared memory areas and synchronise
with the DSPs. This chapter, however, is concerned only with data transfer and not

with initialisation. There are many ways in which this may be carried out. One option

245

would be to test a semaphore, then transfer the data or go on to test another
semaphore, depending upon whether or not the semaphore was set. This type of
protocol is adequate for general purpose systems [22], but produces a non-
deterministic communication scheme which may produce communication latencies
unacceptable in a real-time DSP application. This system has been designed to
implement digital signal processing algorithms, which possess a fixed execution time.
The DSPs thus require data, and set their semaphores, at periodic intervals. A
deterministic semaphore protocol, such as the blocking protocol [22], is more suitable
for such applications. Using this protocol, a processor repeatedly tests a semaphore
until it is set, the processor is said to be "spin locked" [22].

It has been shown in Chapter 8 that a dual domain DPR partitioning scheme
provides an efficient communication mechanism, and so is used in this model. Other

conditions used in the development of the performance models are:

i The code sections running on the DSPs are identical.
ii The data vectors are of constant size, w.

iii The transputer initialises all shared data areas and performs
synchronisation with all of the DSPs before transferring data.

iv The domains are pre-l;)aded with data.

9.3 Data Transfer Within the Node

This section presents a performance characterisation of both the orthogonal and
pipeline configurations for the case of data transfer within the node. The structure of
the code is inherently sequential, data transfer being achieved by memory to memory
block moves. The minimum execution period that may be tolerated by the DSPs in

246

order to ensure that they do not experience communication latency is
1, > N,(t, +1, +21) ¢y
for the orthogonal configuration, and
t. > ND(tm+tT") + 1, (N,-1))]
for the pipeline configuration, where

N The number of DSPs

T The time required for a DSP to successfully test a semaphore, perform
computation upon the domain and reset the semaphore.

T,, The time required by the transputer to successfully test a semaphore.

T,, The time required by the transputer to reset a semaphore.

t The time required by the transputer to transfer a domain’s input and
output vectors.

From these expressions, it may be seen that the data transfer bandwidth of the pipeline
configuration is significantly higher than that of the orthogonal case.

These general parameters may be expressed in terms of vector length, w, and
instruction cycles. The transputer, running at 25MHz, operates with a 40ns instruction
cycle; the DSPs,running at 20.5MHz, operate with a 97.5ns instruction cycle. The
transputer utilises external memory to memory block moves, and so the time required
to set up and implement the transfer of a data vector of length w may be expressed
as [30]

t, = (4w+6)40ns
The semaphore test routine requires 10 cycles, and a semaphore may be reset in 6
cycles. Now, the DSP requires 6 cycles to successfully test a ssmaphore and 2 cycles

to set a semaphore. Using these execution times, Equation (1) may be re-arranged as

247

97.5(8 +wN.)

<< 3
° " 40(28+8w)
and Equation (2) as
N, < 97_.5(8+ch) + 40(6+4w) @)
40(28 +4w)

which give the maximum number of DSPs which may be supported before they begin
to experience communication latency.

A typical audio processing application will utilise about 200 DSP instruction
cycles [94]. If a vector length of 256 is used, then from Equation (3) 59 DSPs
rriay be supported in an orthogonal configuration, and from Equation (4) 120 DSPs in
a pipeline configuration. As the performance of these processors is not affected by
communications latency, this corresponds to a node performance of 590 and 1200

MIPs respectively.

9.4 Data Transfer Outside the Node

The transputer uses its links to transfer data off the node. In order to reduce
communication latency, it is important that the links are allowed to operate
concurrently with the cpu, which necessitates the use of parallel constructs within the
routing code. As demonstrated in Chapter 4, the operation of parallel programs is not
straightforward, and care must be taken with their design in order to ensure that

performance does not suffer.

9.4.1 Orthogonal Data Transfer

In this configuration, the data input and output vectors for each DSP are transferred

248

over transputer links. The transputer possesses four bidirectional links, limiting the
number of DSPs that may be serviced in any one communication cycle to four if
bidirectional link mode is used, or two if unidirectional link mode is used. A program
controlling three DSPs is shown in Fig 9.1. The flow diégra.m and scheduling chart
for this code are presented in Appendix E.

It may be seen from Appendix E that this program consists of three parallel
processes — one for each DSP — which themselves contain two nested parallel
processes, used to initialise the link transfers. The processes run at high priority, which
eliminates the requirement of process timeslicing and makes the operation of the code
more deterministic whenever excessive semaphore spinning occurs. Note that the
process to be executed first is declared last, due to the manner in which the processes
are scheduled.

From the scheduling chart, it may be seen that the second communications
process (Ra) of this process (R) is not executed until the first parallel process of the
last process (Q) is exécuted. This may cause excessive communications latency, as a
data transfer associated with the first DSP must wait until the last DSP has set its
semaphore before it is allowed to proceed.

From the appendix, for a network of one DSP, the minimum execution period
that may be tolerated by the DSPs in order to ensure that they do not experience
communications latency is givgn by

177 +Lw+t, +1, +X 5)
and the ovefhead associated with each additional DSP given by
88+1, +1, +X (6)

Hence, for a four DSP system,

249

t,, > 451+4(1 +t, +X)+Lw @)

which, as at the limit X = ¢, may be re-arranged as

N, > 40(515+Lw)-780 (8)
97.5w

which gives a measure of the minimum DSP computation section execution period
required to alleviate DSP communication delay. For a four DSP configuration, only
the bidirectional link mode is available (L=85.1), as each link is mapped to one of the
DSPs. From Equation (8), for a vector length of 256, the DSPs must run a
computation code section of ar least 35 instruction cycles per data word.

An alternative program is shown in Fig 9.2. The structure of this program
allows the communication transfers associated with a particular DSP to be initialised,
in turn, after the semaphore has been set. The communication latency of this program
is lower than the previous program, but the behaviour is not so robust. It may be seen
that the operations of testing and resetting a semaphore are spread across two parallel
processes. In order to avoid data corruption using this structure, the process testing the
semaphore must both begin its datéx transfer before its paired process begins its
transfer, and end its transfer before its pair has finished its transfer. If these
precedence constraints are not met, then either data will be transferred before the
semaphore has been set — causing the transputer to overwrite the DPR — or the
semaphore will be prematurely reset — causing the DSP to overwrite the DPR. These
precedence requirements are upheld if each external transfer set up by the transputer
is serviced immediately. Providing these conditions are met, then this structure offers

250

less latency between associated link transfers, reducing overheads and increasing
performance. The flow diagram and scheduling chart for this program are presented
in Appendix E. For a network of one DSP, the minimum execution period that may
be tolerated by the DSPs in order to ensure that they do not experience
communications latency is given by

1, > Lw+t, +166+X ©)

and the overhead associated with each additional DSP given by

5641 +X (10)
Hence, for a four DSP system,
t, > 334+4t +Lw+dX (11)
which may be re-arranged to give
> 20@w-382) (12)
97.5w

For a vector length of 256, the DSPs must run a computation code section of at least

32 cycles per data word if they are not to experience communications delays.

9.4.2 Pipeline Data transfer

The program for a three stage pipeline is shown in Fig 9.3. The input of the first DSP
in the pipe is taken from a link, and the output of the last DSP is taken to a link. All
other data transfers occur through intgmal Occam channels. In order to maximise the
overlap of external and internal data transfer, the processes utilising the links are
initialised first. The internal transfers will not be made until the final semaphore has

251

been set, but the delay incurred is outweighed by the advantage obtained through
overlapping the external communications.

Processes using internal communication set up their channels sequentially, as
there is no benefit in using parallel constructs. Channel communication is used in
preference to direct block move operations as the communication synchronisation
capability of soft channels ensures that data is not output by a process until the
semaphore of the input process has been set. Any latency caused by the queuing of
processes is outweighed by the relative efficiency of soft, compared to hard, transfers.
The flow diagram and scheduling chart of this program are given in Appendix E.

From this analysis, for a network of two DSPs, the minimum execution period
that may be tolerated by the DSPs in order to ensure that they do not experience
communications latency is given by

5. > 169+t +Lw+X (13)

which may be re-arranged to give

> H0Lw-395) (14)
97.5w

which is a restriction applied to only_ the first and last DSPs in the pipeline, as only
they utilise external transfers. In fact, this configuration is capable of transferring data
between a number of DSPs while the external communications are taking place. These
DSPs add to the computational performance of the node whilst incurring no additional

communication overheads. From the appendix, the maximum number of DSPs

supported is given by

252

- 4w + 80

For a vector size of 256, and unidirectional links, eleven additional DSPs may be
supported, providing a total node performance of 130 MIPS. For the bidirectional link
case, up to 17 DSPs may be supported, providing a total node performance of 190

MIPS.

9.5 Empirical Testing

The Hymips system consists of a single node supporting two DSPs at the time of
writing. Although this configuration does not allow an in-depth analysis of
performance, the validity of the above performance equations may still be investigated.
The purpose of the empirical testing is to determine the efficiency of the semaphore
based shared memory communications method by verifying the theoretically derived
performance equations. In particular, the testing reported in this section determines the
amount of idle time (latency) experienced by the DSPs, comparing the actual values
to the predicted ones. This latency is a gauge to the efficiency of the communications

scheme.

9.5.1 The Test Code
Transputer code was written for all of the configurations outlined in this chapter —
orthogonal and pipeline intra-node, orthogonal types 1 and 2, and pipeline, inter-node.
An additional transputer was used as the data source and sink for the inter-node
configurations.

The DSPs were loaded with code comprising a modified semaphore test loop

and a simple computation section held in a nested po loop. Attempting to measure

253

| latency directly on the DSP, using timer registers, would have significantly interfered
with the operation of the code, providing misleading results. The adopted method
incremented the contents of an address register by one on every semaphore spin,
requiring only an additional cycle. After a pre-determined number of cycles, the DSPs
came out of their "semaphore test / compute” loops and stored the contents of the
address register in the DPR. This value was then read by the transputer system, and

output to the screen.

9.5.2 Results

The theoretical values of N, at which the latency threshold occurs were obtained from
equations (1), (2), (4), (8) and (12) for each configuration. These values were used as
the base for the empirical tests. Vector lengths of 4 and 256, both transputer link
modes and N, = 2 were used for the empirical comparisons. Tables 9.1 to 9.4
summarises the theoretical threshold values, and the corresponding empirically

obtained latencies.

9.6 Summary
This chapter has been concerned with the performance of the Hymips multiprocessor
node. The performance is determined by the intra-node communications bandwidth,
which in turn is determined by the rate at which the transputer is able to transfer data
“over its EML

An operational model has been developed and used to provide theoretical
estimates of the performance of the node for two configurations — orthogonal and

pipeline — for both the intra- and inter-node cases. Two variations of the code for the

254

inter-node orthogonal transfer have been presented. The second type offers a higher
performance than the first, but requires that its external transfers are always serviced
in turn, with no delay. Such deterministic communications requirements are
characteristic of many DSP applications. However, if such conditions are not met, then
the first type may be used, which offers lower performance but is more robust. Due
to the ability of the transputer to overlap link communications and cpu operation, the
inter-node pipeline configuration is able to support a number of "intermediate" DSPs
with no additional overheads.

An important characteristic of any DSP sub-network configuration is its latency
threshold, which denotes the point at which the transputer communications mechanism
becomes saturated and provides an upper limit to the linear scalability of the node.
The theoretical predictions of the latency threshold, determined using a similar
technique to that outlined in Chapter 4, have been compared with empirically obtained

results and found to closely agree.

255

Theoretical N, Average No. Spins at
Theoretical N,
Orthogonal (Intra) 7 1
Pipeline (Intra) 2 2
Orthogonal 1 (Inter) 24 10
Orthogonal 2 (Inter) 24 8
Pipeline (Inter) 24 3

Table 9.1 Threshold Values for L = 57 w =256 Np =2

Type Theoretical N, Average No. Spins at
Theoretical N,
Orthogonal (Intra) 7 1
Pipeline (Intra) 2 2
Orthogonal 1 (Inter) 36 12
Orthogonal 2 (Inter) 36 9
Pipeline (Inter) 34 2

Table 9.2 Threshold Values for L =85 w =256 N, =2

Type T_heoretical N, Average No. Spins at
Theoretical N,
Orthogonal (Intra) 11 2
Pipeline (Intra) 5 3
Orthogonal 1 (Inter) 57 15
Orthogonal 2 (Inter) 48 12

Table 9.3 Threshold Values for L =57 w=4 Np=2

256

Type Theoretical N, Average No. Spins at
Theoretical N,
I Orthogonal (Intra) 11 2
Pipeline (Intra) 5 3
Orthogonal 1 (Inter) 69 16
Orthogonal 2 (Inter) 60 12

Table 9.4 Threshold Values forL =85 w=4 Ny=2

257

PRI PAR
PAR
SEQ -
. spin on semZa
PAR
in2 ? in2a

out2 ! out2a
= sem.set

sem2a :=

- SEQ
. spin on sem3a
PAR
in3 ? in3a
out3 ! out3a
sem3a := sem.set
-=- R

SEQ
spin on semla

PAR
inl ? inla
outl ! outla
semla := sem.set
"bll

Likewise for data set

Fig 9.1 Orthogonal Control Program Type I

258

PRI PAR
PAR

SEQ -— P
out ! outla
semla := sem.set

SEQ ' --Q
. spin on sem2a
in2 ? in2a

SEQ -—- R
out ! out2a
sem2a := sem.set

SEQ - 8
. spin on sem3a
in3 ? in3a

SEQ - 7T
out ! out3a
sem3a := sem.set

SEQ -—U

. spin on semla
inl ? inla

Likewise for data set "b"

Fig 9.2 Orthogonal Control Program Type II

259

PRI PAR
PAR

SEQ - p
... 8pin on sem3a
PAR
2.to.3 ? in3a
out ! out3a
sem3a := sem.set

SEQ - Q
... Spin on sem2a
PAR
2.to.3 ! out2a
l1.to.2 ? in2a
sem2a := sem.set

SEQ -=- R
... spin on semla
PAR
1.to.2 ! outla
in ! inla
semla := sem.set

... Likewise for data set "b"

Fig 9.3 Pipeline Control Program

260

Chapter 10

Conclusion

The rapid growth of silicon device technology over the past two decades has resulted
in the production of increasingly powerful processors. This growth has allowed the
development of many varieties of high performance computer systems, such as
multiprocessors which offer increased perfoxmance by executing tasks in parallel. The
variety of multiprocessor architectures is wide, ranging from small SIMD systems
employing parallel processing on a single silicon die, to large MIMD systems
comprising many thousands of autonomous inter-communicating microprocessors. The
corresponding increase in computer power has broadened the application area of such
systems, including CAD, mathematical modelling, image processing, database systems
and real-time digital signal processiqg.

Digital signal processing applications tend to require high data throughput and
the ability to perform efficiently a small set of arithmetic operations (primarily
multiplication and addition). These requirements are especially acute if the application
is to be implemented in ;eal time, when strict timing constraints must be met. Early
microprocessors, being géneral purpose, were not optimised for arithmetic throughput,

and so had limited use within real time signal processing systems. The low

261

performance of general purpose miCTOprocessors, together with the apparent
advantages of using digital rather than analogue processing methods, resulted in the
development of specialised high speed multiplier and associated support chips which
were used in dedicated systems. Although these systems provided a much higher
operating bandwidth, they required a large number of dedicated devices (requiring a
large amount of board space and high power consumption) and were difficult to
program.

The continuing advances in microprocessor design and fabrication allowed the
development of the first programmable digital signal processors, in the early 1980s.
These devices incorporated a hardware multiplier within the datapath. Other
architectural characteristics included a double wordlength accumulator (at least),
multiple mc.r_nory areas (Harvard architecture) and a number of input / output registers.
These devices were relatively straightforward to program, whilst offering a high
performance. Subsequent generations of signal processors have enhanced or added to
these characteristics — contemporary devices incorporate larger multiple memory
areas, instruction caches, hardware floating point multipliers and additional peripherals
on chip. Many of these devices may be programmed using optimised C compilers in
addition to their native assembly languages, and run inside mature operating systems.
Although these devices offer very high performance (33 MFLOPS is typical), the need
for higher bandwidths, or increased overall processing power, is leading to the
development of multiple signal processor systems.

Large arrays of transputers have been successfully used in such application
areas as radar processing , as even though their computing power is no higher than

any other general purpose processor, they may be easily interconnected to provide

262

large parallel systems. Some digital signal processors do offer limited multiprocessor
support, but this generally amounts to the provision of a number of DMA control
lines. Elaborate interprocessor communication mechanisms, such as those used in the
latest general purpose multiprocessor systems, could be used, but these are expensive.
A digital signal multiprocessor needs to offer an efficient interprocessor
communications bandwidth, whilst incurring minimal additional hardware costs. The
more constrained behaviour of digital signal processing algorithms, compared to their
general purpose counterparts, allows more efficient, and less complex architectures to
be developed.

This thesis has examined the performance of two different types of processor,
the Inmos transputer and the Motorola DSP56001, when used to implement a typical
signal processing application, a multiple channel digital filter. The resulting
characteristics of these devices has been used in the design of a hybrid MIMD
multiprocessor system that is optimised to implement DSP applications. A node of this
hybrid multiprocessor (Hymips) has been constructed, and is currently running

performance test software.

This chapter is divided into two parts. The first summarises the work carried

out on the processors and the multiprocessor system, the second discusses possible

continuing work.

10.1 The Transputer

The transputer represents an ideal building block with which to construct large
multiprocessor systems. The devices in this family incorporate up to four bidirectional

serial links, which are used to interconnect them. Although the data transfer rate is

263

quite high, the main advantage of link transfer over more conventional
communications methods is that once they have been initialised, the transfers occur
simultaneously with cpu operation. Although based around a von Neumann
architecture, the native language of the transputer, Occam, is a parallel language. This
language allows parallel constructs to be defined, and directly supports the
asynchronous unbuffered message passing communications protocol used by the
transputer. Parallel programs may be developed on a single transputer, then easily
mapped on to a transputer network to provide increased performance. With the
exception of external communications, all logical parallel processes running on a
single transputer are executed "pseudo-concurrently”. This is achieved through the use
of a microcoded scheduler, which keeps track of which processes are awaiting a
communications or timer input (inactive processes), which processes are able to run
(active processes) and for how long the present process has been running. Two priority
levels may be defined. High priority processes run in preference to low priority
processes, and are generally used to instigate link transfers. Low priority processes are
timesliced by the scheduler, in orcier to ensure that each process is allocated its fair
share of cpu time. Performance optimisation techniques, using Occam, are well
documented. The Occam compiler also supports assembly language inserts, which may
be used for time critical sections of code.

Transputer networks have been successfully used to implement DSP
applications. As the transputer has not been optimised for DSP operation, these
systems gain their power from the high degree of parallelism which they exhibit. The
suitability of smaller transputer systems to DSP applicatiohs has been investigated in

this thesis. The application consisted of a three pole Butterworth bandpass filter,

264

implemented in a multi-channel configuration. The filter utilised shifting operations
rather than multiplication operations in order to increase computational throughput.

In order to investigate the effects of parallelism, the filter was mapped onto
one, two and three transputers. The two processor mapping constituted a simple
pipeline structure, whereas the three processor mapping incorporated an additional
feedback link. Unlike sequential languages, the use of a parallel language allows the
same logical program to be implemented using a number of different program
structures. Two such structures, or harnesses, were used to gain an insight into the
performance implications of program structure. Both hamesses used high priority
communications processes and a low priority sequential computation process. Harness
type I used the decoupled construct recommended in the literature, whereas type II
used internal channels to pass data between the communications and computation
processes. These harnesses incurred different types of overheads, the effects of which
were analysed from the results.

In order to provide maximum performance, the computation section was coded
in assembly language. The computation section associated with each data channel was
coded explicitly, and the data elements accessed directly. This approach was memory
intensive but supplied the maximum performance.

Link communications proceed more efficiently if blocks of data, rather than a
single item, are transferred, as initialisation overheads are reduced to negligible levels.
The effect of transfer block size (vector length) upon performance was investigated.
This has been shown to be a flexible approach, allowing a data channel to use either

one vector element or a number of elements, and allowing multiple rate filters to be

implemented.

265

A theoretical model of program behaviour was developed, in order to allow the
overall performance to be investigated and the effects of overheads and vector lengths
to be assessed. The theoretical performance predictions were compared with the
empirical results.

The empirical performance of each mapping of each harness for a range of
vector lengths was measured using a system comprising in-hoﬁsc transputer boards.
As expected, performance increased with vector length in all cases. The two processor
mappings exhibited higher performance than the sihglc processor mappings (but not
twice as high), whereas the three processor mappings exhibited some unexpected
behaviour. The three processor mapping of hamcs.s type 1 provided similar
performance to the two processor mapping, whereas that of harness type II provided
the lowest performance of all. This was probably due to the low computation code
size, resulting in the dominance of the communications overheads.

Harness type I required almost twice the amount of memory space than type
I1. The effects of external memory access were seen as the drop in performance of the
single processor mappings at higher vector sizes. This was also seen in the two
processor mapping of harness type 1. All other mappings used internal memory
exclusively within the given range of vector size.

The theoretical model performed well for the one and two processor mappings
of both harnesses. The model estimated a slightly higher performance than that
obtained for low vector sizes, since it assumed a vector size of at least sixteen. The
estimated performance at high vector sizes was slightly higher than that obtained,
since the model did not take into account the effects of operand prefixing and external

memory usage. The model provided much higher performance estimates than those

266

obtained for the three processor mappings, however. This was probably caused by the
assumption of the model that the processor running the largest section of computation
code dictated the overall performance. The additional link between the second and
third processors caused additional complexity which the model did not take into
account.

Harness type II offers the best performance for vector lengths below 12,
whereas type I provides the best performance up to those vector sizes at which

external memory accessing causes performance degradation.

10.2 The DSP56001

In contrast to the transputer, the Motorola DSP56001 has been designed specifically
to implement DSP algorithms. This was the first digital signal processor marketed by
Motorola, incorporating a 24bit wordlength and operating at clock frequencies of 20.5,
27 and 40MHz.

The heart of the processor is the arithmetic unit (ALU) which contains a single
cycle non-pipelined MAC unit, a number of 24bit input and 56bit output registers and
assorted shifter units. The device contains three independent simultaneously accessible
memory spaces on chip, which together with a versatile register based indirect
addressing scheme allow the MAC unit to be invoked every instruction cycle.

The address generation unit (AGU) contains eight sets of 16bit register triplets,
divided into two banks of four. Each bank possesses its own arithmetic unit. The
register tripléts consist of an address register together with associated offset and
modifier registers. An address register is used to access an operand in one of the

memory spaces, and may be pre- / post- incremented / decremented by one or the

267

its offset register. An address may also be generated by adding / subtracting the
contents of the offset register to the address register. A modifier is used to define one
of three addressing modeg — linear, modulo and bit reversed. Linear mode is the
usual addressing scheme used in all processors. Modulo addressing allows circular
buffers to be implemented with zero overhead. The bit reversed mode allows FFT
algorithms to be implemented, also with zero addressing overheads.

The device also incofporates a byte wide interface in addition to asynchronous
and synchronous serial interfaces, which are treated as memory mapped peripherals.
These may be used for connection to another processor, or an ADC/DAC system.

Multiprocessor support is limited. The serial port may be configured in a
"network" mode, with 32 time slots, but the communications bandwidth is limited. Bus
request / grant pins are also included, in order to support DMA or shared memory
access.

In common with other programmable digital signal processors, the DSP56001
optimally implements canonic II form filter difference equations. The difference
- equations of the application filter were derived from the shift and add algorithms used
by the transputer. The final analytic form consisted of a single order high pass section
in series with. a bandpass biquadratic section. However, coefficient quantisation
problems required that the filter be implemented as a cascade of single pole sections,
with an additional feedback path. Extension to the multichannel case was achieved
using address offset and modifier registers.

As the DSP56001 is a sequential processor, and interrupts were suspended
during filter kernel operation, performance analysis simply became a matter of

counting instruction cycles. A Motorola ADS56 Development System was used to

268

implement the code, and its monitor used to determine the number of cycles required
to do so. Understandably, the DSP56001 provided significantly higher performance
than the transputer.

The nature of the frequency response of the application filter precluded the use
of on-line methods to test it. Instead, data was stored on disk and processed off-line

using a proprietary signal analysis package.

10.3 The Hybrid Multiprocessor
It may be concluded from the characterisation of the above processors that, in a signal
processing environment, the transputer is more efficient at communicating data than
it is at computation, whereas the DSP56001 possesses the inverse properties. Based
on these observations, the design of a digital signal multiprocessor was proposed. The
architecture of this hybrid multiprocessor (Hymips) consists of nodes, interconnected
by transputer links. Each node contains a number of DSP56001s, connected to a
transputer through areas of dual ported RAM (DPR). The transputer controls the flow
of data both within the node (using memory to memory block moves) and outside the
node (using its links). This interconnection scheme allows the DSPs to continue
processing data with minimal interruptions caused by communications. The logical
configuration of the DSPs is software defined, and may be dynamically modified.
Special memory maps may be used to speed up data transfer, and DSP programs may
be downloaded from the transputer on the fly.

However, implementation problems associated with the interprocessor
communications mechanism were encountered. Interprocessor communication occurs

through shared memory, using a semaphore based protocol in order to ensure data

269

validity. The transputer has been designed to communicate over its links, using a
message passing paradigm, and does not support the "atomic" instructions required to
implement most semaphore protocols safely. A modified test and set semaphore
protocol has been developed, which may be safely implemented on devices such as
the transputer. The execution time of the semaphore test routine was decreased using
assembly language and an addressing scheme which mapped the semaphore locations
into positive address space.

The Hymips system has been designed to offer scalability both in the number
of nodes (the transputer plane) and in the number of DSP56001s supported per node
(the DSP plane). The upper limit to the number of DSPs which may be supported by
a node with zero communications latency (the scalability limit) occurs whenever the
data bandwidth required by the DSPs reaches the maximum capability of the
transputer. Beyond this limit, the DSPs will be forced into idle periods as they await
data transfer. This has been used as a gauge to the maximum attainable performance
of the node, since in real-time systems performance is limited by i/o bandwidth, not
overall computational pefformancé.

Using expen'cnéc gained in theoretically analysing the transputer filter code,
programs were written in Occam which controlled data routing both inside and outside
the node. Two of the many possible DSP configurations were highlightcd — the
orthogonal and pipeline configurations.

The internal control programs were straightforward, implemented sequentially
and utilising block moves. The external control programs were more complex,
incorporating parallel processes to initialise link transfers. "T'wo versions of the external

orthogonal code were implemented, one being more robust than the other but

270

providing higher latencies.

These programs were analysed using the transputer performance model. Using
the results of these analyses, expressions for the scalability limit of the node were
derived for each configuration in terms of the number of DSPs, the vector length and
the amount of DSP code executed per datum. These theoretical performance
predictions show that the node is capable of sustaining a useful amount of DSPs, for
a general set of given conditions, which results in high node performance. The
external pipeline configuration, in particular, is able to sustain additional DSPs whilst
incurring no additional overheads.

A node of the proposed Hymips system, incorporating two DSPs, has been
constructed. Performance testing is limited with such a small number of processors,
but the tests which have been carried out have aligned the theoretical performance

figures with the empirical results.

10.4 Suggestions for Further Work

Further work lies mainly with Hymips, although an extension to the transputer
performance model to include multiprocessor link transfer synchronisation would be
useful.

Suggestions for further work on Hymips may be divided into two sections —
development work carried out on the existing system, and extensions to the
architecture.

Presently, if the DSPs are to be reprogrammed, then the ADS56 system (and
host PC) must be connected to one of the in-house transputer boards (and host PC),

via a DPR prototype board. The DSP object code is then transferred from the ADS56,

271

through DPR and the transputer and finally into a DOS file on the transputer host PC,
which may then be accessed by Hymips. Quite obviously, this is a laborious and
inconvenient process. A routine could be easily written to strip a DSP object code file
of its header information, and to convert it to a form which would be directly readable
by Hymips. Routines could then be assembled and converted on the same PC, greatly
easing reprogramming.

The DSPs in the node may currently be accessed only through DPR. This is
sufficient for high speed data transfer, but does leave the DSPs somewhat isolated,
severely restricting debugging support. The additional communications ports could be
used in a similar fashion to those on the development system board. This would allow
system debugging and monitoring to be implemented,and will be an essential tool
whenever the system is programmed with real application software. A straightforward
method of interconnection would be to connect a PC serial‘port to the RS232 level
converters on the DSP boards, and configuring the DSP serial ports in multidrop
mode.

An extension to the above improvements would be to design an integrated
development and application environment. This would be a major project, but would
greatly ease application development on Hymips. Such a system might be based
around a windowing type environment, allowing DSP and transputer code to be edited
and compiled from the same screen. Graphical output windows could also be
supported in addition to processor state windows.

The most obvious architectural extension to the present system would be to add
more DSPs to the present node, and to produce more nodes. This would then allow

the performance of the system to be assessed more fully, and allow a wide range of

272

applications to be implemented.

The architecture itself has been designed to be as open as possible. Devices
such as ADC/DACs may be easily connected to the DSPs, the transputer or onto the
backplane bus.

The backplane bus supports 32bit data wordlength, and so allows other
processors, such as floating point DSPs, to be incorporated into the system. These
components tend to be more expensive than their fixed point counterparts, however.

Increased node performance may be obtained by using a higher bandwidth
controller processor. This could be achieved using an ASIC, but this would limit
reprogrammability. Only one currently available high performance processor (the
TMS320C40) supports high bandwidth interprocessor communication. The new
generation transputer, the T9000, also offers higher bandwidth and an expanded
instruction set which supports semaphores and allows the scheduler operation to be
modified from software, but has not yet been released. These processor are very

expensive, and their use would be dependent upon a cost / performance trade-off.

273

References

274

[1]
[2]

(3]

(4]

151
(61
(7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

Mitchell H J (Ed.), 32bit Microprocessors. London: Collins, 1986.

Freer J R, Systems Design with Advanced Microprocessors. London:
Pitman, 1987.

Dasgupta S, Computer Architecture: A Modern Synthesis (Volume 1).
NY: Wiley, 1989.

Jouppi N P, "The Non-Uniform Distribution of Instruction Level and
Machine Parallelism and its Effect on Performance", IEEE Trans.
Comp., vol. 38 No. 12, pp 1645-1658, Dec. 1989.

Hwang and Briggs, Computer Architecture and Parallel Processing.
USA: MacGraw - Hill, 1987.

Lee E A, "Programmable DSP Architectures: Part 1", ASSP Magazine,
Oct. 1988, pp4-19.

Dasgupta S, Computer Architecture: A Modern Synthesis (Volume 2).
New York: Wiley, 1989.

Patterson D A, "Reduced Instruction Set Computers”, Comms. ACM,
vol. 28 No. 1, pp 8-21, Jan. 1885.

Wilson R, "Higher Speeds Push Embedded Systems to
Multiprocessing", Computer Design, July 1989, pp72-83.

Hwang K, "Multiprocessor Supercomputers for Scientific/Engineering
Applications", IEEE Computer, June 1985, pp57-73.

Flynn M J, "Very High Speed Computer Systems", Proc. IEEE, vol. 54
No. 12, pp 1901-1909, Dec. 1966.

Duncan R, "A Survey of Parallel Computer Architectures”, JEEE
Computer, Feb. 1990, pp5-24.

Patton P C, "Multiprocessors: Architectures and Applications”, IEEE
Computer, June 1985, pp29-42.

Schindler M, "Multiprocessing Systems Embrace Both New and
Conventional Architectures”, Electronic Design, March 1984, pp97-130.

Hockney R, Introduction to Parallel Computers, Tutorial Lecture Notes
presented at Conpar '88, UMIST, Manchester, UK. Sept. 1988

Hockney and Jesshope, Parallel Computers 2: Architectures,
Programming and Algorithms. Bristol, UK: Adam Hilger, 1988.

Kung H T, "Why Systolic Architectures?", IEEE Computer, Jan. 1982,
pp37-46.

275

[18]
[19]

[20]

[21]

(22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]
[32])

[33]

Kung H T, "VLSI Array Processors”, IEEE ASSP Magazine, July 1985,
pp4-22.

Stone H S, High-Performance Computer Architecture (2nd ed.).
Reading, Mass.: Addison Wesley, 1990..

Jagadish N et al, "An Efficient Scheme for Interprocessor
Communications using Dual-Ported RAMs", IEEE Micro, Oct. 1989,
pp10-19.

Anderson T E, Lazowska E D and Levy H M, "The Performance
Implications of Thread Management Alternatives for Shared Memory
Multiprocessors”, IEEE Trans. Comp., vol. 38 No. 12, pp 1631-1644,
Dec. 1989.

Graunke G and Thakkar S, "Synchronisation Algorithms for Shared
Memory Multiprocessors", IEEE Computer, June 1990, pp60-69.

Dubois M and Thakkar S, "Cache Architectures in Tightly Coupled
Multiprocessors”, IEEE Computer, June 1990, pp9-11.

Stensttom P, "A Survey of Cache Coherence Schemes for
Multiprocessors”, IEEE Computer, June 1990, pp12-24.

Chaiken D et al, "Directory-Based Cache Coherence in Large Scale
Multiprocessors”, IEEE Computer, June 1990, pp49-58.

Thakkar S et al, "Scalable Shared-Memory Multiprocessor
Architectures", JEEE Computer, June 1990, pp71-83.

Seitz C L, "The Cosmic Cube", Comms. ACM, vol. 28 No. 1, pp 22-29,
Jan. 1989.

Zhiang X, "System Effects of Interprocessor Communications Latency
in Multicomputers", IEEE Micro, April 1991, pp12-55.

Inmos Ltd, The Transputer Databook (2nd Ed). London: Prentice Hall
International, 1989.

Yassaie H and Bramley R, "Vectram", Parallelogram International,
Sept. 1990, pp6-10.

Gelenbe E, Multiprocessor Performance. UK: Wiley and Sons, 1989.

Inmos Ltd, Transputer Technical Notes: Lies, Damn Lies and
Benchmarks. London: Prentice Hall International, 1989.

Conte T M, Hwu W W, "Benchmark Characterisation", IEEE
Computer, Jan. 1991, pp48-56.

276

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Kaiser J F,Design Methods for Sampled Data Filters. Proc. First
Allerton Conf. on Circuits and Systems, Nov. 1963, pp221-236.

Cooley J W,Tuckey J W, "An Algdrithm for the Machine Computation
of Complex Fourier Series", Math. Comp., vol. 19 No. 4, pp 297-301,
April 1965. _

DeFatta D J, Lucas J G and Hodgkiss W S, Digital Signal Processing:
A Systems Design Approach. New York: John Wiley and Sons Inc.,
1988.

Rabiner and Gold, Theory and Application of Digital Signal
Processing. NJ. Prentice Hall, 1975.

Terrel T, Introduction to Digital Filters. UK: Macmillan, 1988.

Lee E A, "Programmable DSP Architectures II", IEEE ASSP Magazine,
Jan. 1989, pp4-14.

Frantz G A et al, "The Texas Instruments TMS320C25 Digital Signal
Microcomputer”, IEEE Micro, Dec. 1986, pp10-28.

Kloker K L, "The Motorola DSP56000 Digital Signal Processor”, IEEE
Micro, Dec. 1986, pp29-48.

Roesgen J P, "The ADSP-2100 DSP Microprocessor”, I[EEE Micro,
DCC. 1986, pp49'69.

Papamichalis P and Simar R, "The TMS320C30 Floating Point Digital
Signal Processor", IEEE Micro, June 1988, pp13-29.

Fuccio M L et al, "The DSP32C: AT&T’s Second Generation Floating
Point DSP", IEEE Micro, June 1988, pp30-48.

Sohie G R L and Kloker K L, "A Digital Signal Processor with IEEE
Floating Point Arithmetic", IEEE Micro, June 1988, pp49-67.

LH9124 Digital Signal Processor, Advanced Product Brief, Sharp
Corporation, 1991.

Raja P V R and Ganesan S, "An SIMD Multiple DSP Microprocessor
System for Image Processing", Microprocessors and Microsystems, vol.
15 No. 9, pp 493-503, Sept. 1991.

Kingswood N et al, "Image Reconstruction using the Transputer”, Proc.
IEE (E), vol. 133 No. 3, pp 139-144, May 1986.

Beton R D, Turner S P, Upstill C, "Hybrid Architecture Paradigms in
Radar ESM Data Processing Applications", Microprocessors and
Microsystems, vol. 13 No. 3, pp 160-164, April 1989.

2717

[50]

[51]

[52]

[53]

[54]

(55]

[56]

[57]

[58]

[59]

[60]

[61]

Gass W A et al, "Muldple Digital Signal Processor Environment for
Intelligent Signal Processing”, Proc. IEEE, vol. 75 No. 9, pp 1246-
1259, Sept. 1987.

Hesson J H, Gallagher F A and Harrington D R, "A 32 bit
Programmable Signal Processor for a MultiProcessor System
Environment", IEEE Trans. ASSP, vol. ASSP-31 No. 4, pp 912-921,
Aug. 1983.

Bolch G et al, "MUPSI: A Multiprocessor for Signal Processing”, Proc.
IEEE, vol. 75 No. 9, pp 1211-1219, Sept. 1987.

Santos J, Parera J and Veiga M, "A Hypercube Multiprocessor for
Digital Signal Processing Algorithm Research”, Proc. ICASSP, May
1988, pp1698-1701. o

Gaudiot J-L, "Data Driven Multicomputers in Digital Signal
Processing”, Proc. IEEE, vol. 75 No. 9, pp 1220-1234, Sept. 1987.

Multinovic V, Fortes J A B and Jamieson L H, "A Multiprocessor
Architecture for Real-Time Computation of a class of DFT
Algorithms", IEEE Trans. ASSP, vol. ASSP-34 No. 5, pp 1301-1309,
Oct. 1986.

Sandler M B, "Interfacing the Transputer to the TMS320 in an Image
Processing Environment", Microprocessors and Microsystems, vol. 12
No. 11, pp 490-496, Nov. 1988.

Ching P C and Wu S W, "Real-Time Digital Signal Processing using
a Parallel processor Architecture”, Microprocessors and Microsystems,
vol. 13 No. 10, pp 653-658, Oct. 1989.

Zhon S, Sandler M B and Bergman G D, "A Switched Memory
Decoding System for a Multiprocessor System", Microprocessors and
Microsystems, vol. 15 No. 9, pp 493-503, Sept. 1991.

Sandler M B, Hayat L and Casta L D F, "Benchmarking Processors for
Image Processing", Microprocessors and Microsystems, vol. 14 No. 9,
pp 583-588, Sept. 1990.

Lang G R et al, "An Optimum Parallel Architecture for High Speed
Real-Time DSP", IEEE Computer, Feb. 1988, pp47-58.

Sung W, Mitra S K and Jeren B, "Multiprocessor Implementation of
Digital Filtering Algorithms using a Parallel Block Processing Method”,
IEEE Trans. Parallel and Distributed Computing, vol. 3 No. 1, pp 110-
120, Jan. 1992.

278

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]
[70]
[71]
[72]
[73])

[74]

[75]

[76]

[77]

[78]

Pountain R, A Tutorial Introduction to OCCAM Programming. UK:
Inmos Ltd, 1987.

Hoare C A R, "Communicating Sequential Processes", Comms. ACM,
vol. 8 No. 21, pp 666-677, Aug. 1988.

Inmos, The Transputer Instruction Set - A Compiler Writer's Guide.
UK: Inmos Ltd, 1987.

Atkins P, Performance Maximisation, Transputer Technical Note No.
17, Inmos Ltd, 1987.

Anderson A J, "A Performance Evaluation of Microprocessors, DSPs
and the Transputer for Recursive Parameter Estimation",
Microprocessors and Microsystems, vol. 15 No. 3, pp 131-140, April
1991.

Lee P J, Design of a Transputer Evaluation System, MSc Project
Report, University of Durham, 1986.

Inmos Ltd, The Transputer Development System. UK: Inmos Ltd, 1988.
Motorola, DSP5600! Users Manual. USA: Motorola, 1989.
Motorola, The DSP56001 Technical Data Sheet, USA: Motorola, 1988
Motorola, DSP56000 Assembler Manual. USA: Motorola, 1988.
Motorola, The DSP56000 Simulator. USA: Motorola, 1988.
Motorola, ADS56 User’s Manual. USA: Motorola, 1988.

Eichen W, "NEC’s PD77230 Digital Signal Processor”, IEEE Micro,
Dec. 1986, pp60-69.

Lane J, Hillman G, Implementing IIR | FIR Digital Filters with
Motorola’s DSP56001. USA: Motorola, 1990.

Chrysafis A, Lansdwne S, Fractional and Integer Arithmetic using the
DSP56000 Family of General Purpose Digital Signal Processors. USA:
Motorola, 1990.

Bhuyun N L, Yang Q and Agrawal D P, "Performance of
Multiprocessor Interconnection Networks", IEEE Computer, Feb. 1989,
pp25-37.

Cheriton D R and Goosen H A, "Paradigm: A Highly Scalable Shared-
Memory Multicomputer Architecture”, IEEE Computer, Feb. 1991,
pp33-46.

279

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Vranesic Z G et al, "Hector: A Hierarchically Structured Shared-
Memory Multiprocessor”, IEEE Computer, Jan. 1991, pp72-79.

Allan R and Purvis B, "Exercising the FX2800", Parallelogram
International, April 1991, pp8-10.

Sanders J, "Intel Scientific Wows Users with 7GFLOP i860 Based
Hypercube", Parallelogram International, Jan. 1990, pp8-10.

Hastings H, "Power Per Processor", Parallelogram International, Sept.
1989, pp10-11.

Molesky L D: et al, "Predictable Synchronisation Mechanisms for
Multiprocessor Real-Time Systems", The Journal of Real Time Systems,
vol. 2 No. 3, pp 163-180, Sept. 1990.

Howeister D, "Semaphores at the Transputer Instruction Level”, Occam
User Group Newsletter, July 1990, pp46-50.

De Pietro G and Vaccaro R, "Asynchronous Communication Primitives
for Occam Programs”, Occam User Group Newsletter, Jan. 1992, pp43-
48.

Boianov L K and Knowles A E, "Higher Speed Transputer
Communication Using Shared Memory", Microprocessors and
Microsystems, vol. 15 No. 2, pp 67-72, Feb. 1991.

Gustafson J L, "Re-Evaluating Amdahl’s Law", Comms. ACM, vol. 31
No. 5, pp 532-533, May 1988.

Holliday M A and Vernon M K, "Exact Performance Estimates for
Multi-Processor Memory and Bus Interference”, IEEE Trans. Comp.,
vol. C-36 No. 1, pp 76-85, Jan. 1987.

Dubois M and Scheurich C, "Memory Access Dependencies in Shared-
Memory Multiprocessors", IEEE Trans. Software Engineering, vol. 16
No. 6, pp 660-673, June 1990.

Mahgoub I O and Elmagarmid A K, "Performance Analysis of a
Generalised Class of m-Level Hierarchical Multiprocessor Systems",
IEEE Trans. Parallel and Distributed Systems, vol. 3 No. 2, pp 129-
138, Feb. 1992.

Menasce D A and Barroso L A, "A Methodology for Performance
Evaluation of Parallel Applications on Multiprocessors”, Journal of
Parallel and Distributed Computing, vol. 14 No. 1, pp 1-4, Jan. 1992.

Dolter J W, Ramanathan P and Shin K G, "Performance Analysis of
Virtual Cut-through Switching in HARTS: A Hexagonal Mesh

280

[93]

[94]

Multicomputer”, IEEE Trans. Comp., vol. 40 No. 6, pp 669-680, June
1991.

Chiang M C and Sohi G S, "Evaluating Design Choices for Shared Bus
Multiprocessors in a Throughput Oriented Environment”, [EEE Trans.
Comp., vol. 41 No. 3, pp 297-317, March 1992.

Linton N L, Terepin S and Purvis A, "Parallel Digital Signal
Processing for Audio Engineering", 88th Audio Engineering Society
Convention, Montreux, March 1990.

281

Appendix A

Filter Analysis

A -

A.1 Introduction

This section deals with the analysis of the filter structures used by the transputer and
DSP56001. The structures of the highpass and lowpass single pole sections are given
in Fig A.1, together with the overall block structure.

The difference equations of the two basic filter types, and their associated
transfer functions, are developed in section 2. These transfer functions are used to
determine the difference equation for a lowpass/highpass cascade in section 3. The
difference equation for the "modified” cascade, and its associated transfer function, is
developed in section 4. As cascaded filter sections (either single pole or biquadratic)
are usually used in digital filter implementations, it was not felt necessary to develop
the characteristic equations of the filter any further. The overall filter, then, may be
decomposed into either three single pole sections or a single pole highpass stage
followed by a modified cascade stage. The location of the poles and zeroes of the

various filter elements are determined in section 5.

A.2 The Single Pole Sections

A.2.1 The Lowpass Section

From Fig A.la, it may be seen that

x(n-l)—ylp(n—l)

y(n),, = o + y,(n-1) (1)
re-arranging forms the difference equation,
y,(n = 2-¥x(n-1) + (1-2")y, (n-1) (2)
corresponding to a transfer function of
-N,-1
G,@ = —2 2 3)

P T (-2

which, in pole—zero form, becomes

G = __ 2 (4)
=

The frequency and phase response of this filter are shown in Fig A.4. The filter
exhibits a first order Butterworth response (maximally flat, 20dB per decade cut off
rate), with a low cut off frequency. The amplitude has not been normalised, and so it

may be seen that the gain of this filter is never more than unity.

A.2.2 The Highpass Section

From Fig A.1b,
¥, = x(n) - u(n) (5)

re-arranging,

u(n) = x(n)-y,(n) (6)

From Fig A.1b and equation 2,

u(n) = 2¥x(n-1)+(1-2Mu@) @)
Substituting 4 into 5,
x(n) -y, (n) = 2"x(n-1)+(1-2")(x(n-1) -y, (n-1)) (®)
re-arranging,
Yo = x(n) -2"x(n-1) - (1-2") (x(n~1) -y, (n-1) ©)

and simplifying, to give the difference equation

YW = x(n) -x(n-1)+(1 'Z'N))’,.,("“l) (10)

which corresponds to a transfer function given by

1-27
G (2) = ——— (11)
v 1-(1-2")z"

which, in pole—zero form, becomes

G@=_21_ 12
w2 z-(1-2%))

The frequency and phase response of this filter are shown in Fig A.5. As for the low

pass section, this also filter exhibits a first order Butterworth response, at the same cut

off frequency.

A.3 Cascaded Sections

The highpass/lowpass cascade is represented in Fig A.2a. Now,

A-4

G(2) = GG, (2 (13)

Hence

@)= 2 z-1 (14)
z-(1-2") z-(1-2")

expanding,

G@) = 2" z-1 (15)
72-2(1-2")z+(1-2""+2%)

dividing by Z*Z,

G(2) = 2* 2’-27 (16)
‘ 1-2(1-2M)z 4 (1-2"7+2%)z2

which corresponds to a difference equation of

y(n) = 2" (x(n-1)-x(n-2)) +2(1-2%) - (1-2"+2")y(n-2) 17)
The frequency and phase response of this compound filter are shown in Fig A.6.
A.4 Modified Cascade
The modified cascade structure is represented in Fig A.2b. It may be seen from this
figure that the modification takes the form of a feedback path from the output directly
into the input.
By inspection,

v(n) = x(n)+y (n) (18)

and from 17,

. (19)
y.(n) = 2" (v(n-1)-v(n-2)) +2(1 -2M)y_(n-1)-(1-2'"+2")y (n-2)

substituting 18 into 19,

y(m) = 2% (x(n-1) +y (n-1) -x(n-2) -y, (n-2)) 20)
+2(1-2*)y (n-1)-(1-2"*+2*)y_(n-2)

simplifying, to give the difference equation,
y.(n) = 2" (x(n-1)-x(n-2)) +(2-2")y_(n-1) - (1-2"+2™)y_(n-2) 21

corresponding to a transfer function given by

G(2) = 2* z 2 (22)
1-(2-2Mz7+(1-2"+2%)z?

which may also be written

G = 2" z-1 23)
22-(2-2Mz+(1-27"+2%)

The frequency and phase responses of this filter are shown in Fig A.7. The effect of

the feedback is to sharpen the frequency response.

A.5 The Whole Filter
The whole filter may be thought of as being composed of a single pole highpass

section in series with a biquadratic bandpass section, Fig A.3b, with a transfer function

given by

G = 2* (z-1) 24)
(z-a)(z’—-(2-2‘”)z+(1 -2_~+2'")

The frequency and phase responses for the whole filter are given in Fig A.8. Note the
slight change in gain and cut off frequency, and the second order high pass response,

caused by the additional high pass section.

A.6 Location of Poles and Zeroes

A.6.1 Highpass and Lowpass Sections

From equation 4, it is apparent that the lowpass section does not possess a zero. It

does, however, possess a pole which lies at
pb = 1_2-N (25)

As N=15, then, the pole, which is real, lies at

pb = 1_2-15 (26)
From equation 12, it may be seen that the highpass section possesses a pole in the
same position as the lowpass section, but that it also possesses a zero at z=1.

As the cascade section is composed of highpass and lowpass sections, equation

13, then it possesses a zero at z=1 and two poles, both of which occur at

plc = pZ‘ = 1—245 (27)

The modified cascade section has a zero in the same place as the highpass/lowpass
cascade. In order to determine the position of its poles, however, it is necessary to find
the roots of the denominator of equation 23, ie

22-(2-2M")z+(1-27+2") = 0 (28)

Using the quadratic formula,

, - (2-2")%/(2-2")-4(1-2"+2") (29)
2 .

Hence roots are given by

= 201443 (30)

o
and so the poles of the filter lie at

p,. = (1-27%0)4j2%D /3 (31
and

p, = (1-2¢9y_jpen /3 (32)

Compared to the cascade, the poles of the modified cascade have a higher real
component, and an imaginary component (albeit a small one). The poles form a

conjugate pair, as they must since the coefficients of the filter are real.

SUON0aG ssed MO] pue ssed YStH oy Jo aamponng 929 q1'y Sid

<
indino ssed moj

<<

indino ssed ybiy

39ML.] 94 JO AIMONNG [[BIAQ € ['Y 81

indino

uonoag
ssed Mo

uoloesg
ssed ybiH

uot}0ag
ssed YbiH

induy

induy

opeose)) ssed Mo / Ssed YSTH PRLIPOIA 24h JO 21udNS qT'V 31

ndino

uoyoag
< ssed Mo

uojj09s
ssed UbiH

apeose)) ssed Mo / ssed YSTH oy Jo aimonng e’y 314

indino

uol}oasg
ssed Mo

uoIo8s

< ssed ybiH

nduy

induy

A-10

indino

IO A0y 34} Jo ImIoNng €'Y St

apeosed
paijipow

ssed ybiy

induy

A-11

uo1193G ssed MO ay) jo asuodsay spmuudey ep'y 314

(Aduanbaig 1sinbAN/Aouanbaiy) 180
0°0 S0~ 0°1- S°1- 0%¢- S 0~ S~ 0y Sy~ 0SSt S°G 079 SO~ 0°¢L-

n i i rt n
L T T T v

n 3 4
T T T

3
T

00t-

A-12

(8P) epnaiubey

-
-

0¢-

oi-

uonaag ssed Mo ays Jo asuodsay aseyd qp'y 8id

(Aouanbaiyg 1smbAN/Aouonbayy) oo

0¢- 6%¢- 0°¢- S'¢- 0%~ G'% 06"

—t 3 3 n .
\J g L] L] L}

n 3
T T

-’

(suerpel) aseyd

A-13

0°0

S0~

-

uonoag sseqd Y3y ays Jo asuodsay apmudey eg'y 81
(Aousnbary 1sinbAN/£duanbaig) o180

0°1- §%¢- 0'¢- S'¢- O~ G- 0SS 09~ G°9-

-
.-
e

0°¢-

4 n 3 s It i
Y T T T L 4 AJ

-+
-+
-+
-+
-+

06~

—f °w|

-t ONl

- oq.l

-+
-+
-+
-
-+
-+
-

ot

(8P) °PQ3 .“‘161“

uon23g ssed YSiy ayi jo asuodsay aseyd qg'y 91

(Aduanbaryg 1sinbAN/Kduanbary) S0

0°'¢- 6% 0°¢- S°'¢- O~ S'%- 0°S- G'G- 0°9- 6°9- 0f2-

3 3 " 1 n
T T \ v

¢ '
\J L]

-’

A-15

(suerper) aseyd

uo1193g Ipedse)) Yy jo asuodsay apmiudely e9'y 314
(Kouanbaig 1sinbAN/Kouonbaiy) 1801

Sl 0¢- S%¢- 0'¢- S'¢e- 0y~ S 0°S”

4
Al

4
L

-
-+

-
-

-+

-~

3
T

-

3
T

4
\J

-

(=]

(gP) epnaiubey

A-16

uo123§ 9pedse)) ayl Jo asuodsay aseyd q9'V 31

(Aouanbaiyg 1stnbAN/Aousnbary) Q1807
0¢- §%¢ 0°¢- 6'¢ 0O°%-

n s
T L§

S*y- \0'6- 66~ 09 679"

n
T

3 : 3
v AJ v

-~

(suerpes) oseyd

A-17

UOI193§ apeIse)) PAYIPOIA 2y Jo asuodsay apmiudey el Fig

(£ouanbary 1stnbAN/Aouanbaiy) 1801

S'l- 0¢- S%¢- 0'¢- Sg- O~ S~ 0°ST

4 3 3 3 3
t T T T L]

-
-’
o>

-
-
-

0°¢-

001t~

06~

08-

02-

09-

05~

0%-

0e-

0c-

ot-

(8P) °PR3_IUPgu

UO1103G 2peISE)) PAYIPOIA 3y Jo asuodsay aseyd qL'V Sid

S0~

0°'l- §°I-

0°¢- G6°%¢- 0°'¢- S'¢- O0°'y- G°%y-

(Aouanbaig 1sinbAN/Aouanbayy) 91801

r 4 n I i 3
¥ T ¥ T T T

S G-

0°9-

o
(suerpel) 9seyd

A-19

I S0y 3y Jo asuodsay apmiuSepy eg'y Jig

(Kouanbaig 1sinbAN/Aduanbaly) 1807

0°0 507 071" STIm 0%%T S 0°E- S’ 0"~ S'M- 0'S- §°G- 09~ G'9- 0°2-

+ t + ' ¢ t t ' + + t ¢ + 001-
4 T 06-
4 1~ 08-
4+ T 02-
4 T 09-
4 , 4 os-
+ 4 oy-
4 4+ os-
4 4 0z-
4 4+ 01-

+ t + + t ' + + t t ' t t 0

Se
20"

A

(8P) epP3ty

11 9[0YA\ 241 Jo asuodsay aseyq qg'v S1d

[0

(Asuonbaig 1sinbAN/Aousnbary) o180

0°¢- 6%~ 0°'¢- G°¢- 0% G-

0°S-

§°G6-

09~

S9-

3 N 3 i i :
T ¥ L] g T T

(suerper) aseyd

A -2l

Appendix B

Occam?2 Filter Code

oduwod }}} ans

oas {0}zody-3sat13 a1
0 dwos }}} folzTea andut a1
{{ (o) 1
Ziea*andano j 3ndano tstl - (0] 1}}
Zzrea-andur ¢ andut 0ds
avd 1 dwod }}}
1 suwod }}) {{{
dvd Idd I1ea*andano ; andano
{{{ 11ea‘andut ¢ 3ndurt
{{{ avd
[0]lZTea’ andano LS 0 suwod }})
nns ¥vd 1iud
{olZTearandano A7 : 0das
YHS T dNYL ITIHM
Jo4 oa1 ({{
d1dax 0 =: [T)Zz1ea 3andano
ans 0 =: [TlireAarandano
(0)Z1eA*and3no a1 0 =: [1)zod]:puodas ~
[0]Zzody puooas A1 0 =: [T])1od] - puooes)
[0]zZodY - puodas IS 0 =: [T)}zedr asatd o
aav 0 =: [T)lrodr 35113
(0]} ZodT - puodas 1471 0 =: [T]ziearandur
YyHSN | 0 =: [t)lt1ea-andurt
d0# 241) 0ds
d14aXx 2215 ¥0od 0 = Y O3S
{0)zody - puodas a1 safqerieAa asT{eIaTUT }}}
{0)zody-pucdss 111S ods
a0s {{{
{0)zodT *puodas 1A1 : gzody-puodas’yg
aav onﬂ.umuwu~Nom£.vcoumw~mom£.umuﬂu.Nam>.usmu:0.mam>.usacﬁ
[0lzT1ea - 3ndano a7 €L N I { 3 Z T s]
{0)lgody-3sat] a1 : 1odi-puocoas’]
{0lgodt-3sa1] 71IS od1' 38113 ‘Tody- puooas’Tody-3sat3‘Trea’ andano‘grea- ndut
aav L N I () z 1 s |
[0)lzodT-3saT] 1Q1 : T INI
4HST andur TYUTT -- : g0# IV andut JOVId
Jdo# oa1 : anduy ANV 40 NVHD
a7dax suotjerefosp }}}
[0lgody-asat] 101 : 1 SI @21Is VA

{olzody-3sat] IS (andano’andut ANV 40 NVHO)1°I DOdd

aav
[0)odT 3saT] A1
dHS1

J04 oa1

374axX
[0)ody-3sat] 1101
(0lody-asat3 11ls

o

({{
{{{
{olT1®A:ANdanO 1S

ans nns
(olody-3sar3] 101 {o]1TeA" and3no a1
(0)1ea 3andut 1101 4HST
uotjeanduod }}} Jog¢ Oa1
mou [91] dwoo Afquasse }}} J749ax
TeAa*andutr ¢ dwod- o3 sumod ans
duod }}}) [0)TTea 3Indino Q1
0ds [0)Tody - puodes a1
Nyl JTIHM [0} TodT *pucoas 1l1s
0 =: [T)ody'puooas aav
.0 =: [T]ody-3sat] {0]10dT "puooas a1l

0 =: [T]1ea’3ndino 4JHS1 -

Ods Jd0# D4l \

uay-Aeaae yod 0=t O3S J314ax m
ods (0) Tody-puodas a1
: ody-puodas‘’ody-3satj‘tea’andul [INI[ua]' Aeixe]) [0]10dy - puodas fLs
¢ 1ear3ndino’‘ody-puodss‘odyr3saT] INI[ual-Aeaae] _ ans
{{{ . {0} 10dT - pucdas a1
Tea‘andutr ; dwoo- o3’ sumod aav
Tea andut ¢ andug [01TTea andino Q1
ods [0l1ody-3s1t13 101
i Tea-andur INI(ua(°Aexie] {o)Tedy 38313 11S
dndlL dTIHM aav
Teaandane ;i andano (ol tedr-3saty a1
Tea - 3ndano ¢ suwod- o3 -duod HHS1
0ds Jd04 Oal
: Tea*andino INI[uaT-Aexae} dr1adx
anydl ITIHM fo)1edy-asat3 1a1
dvd [oltody-asit) 1S
sumod }}} ans
ygvd Idd [0)todT"3s1T] 101

: 1 SI uar-Aeaae VA

SUMIOD * 07 * dwod ‘duos * 07 * sumos ANV JO NVHD

(andano‘andur ANV 4O NVYHO) T II D0dd

(ol TTRA" INdUT 107
(o]l 1}}
(stl - (o} 1)}

[0ledT 101
HHS'T
J0o4 2a1
J1g9ax
[o)lody a1
[0ledy LS
ans
(0ledl 101
(0)3andut -duod a1
ANO
(o) 11}

{s1] - [0l 1)}
uotjejnduwcd }}}
Induft ‘dwod ¢ dwod- 03’ SUMIOD .

0ds {{{

¢ anduy-dwos’ody [INI([221s5°10323A]) Tea*3andano | sumod- o3 dwod
andl JTIHM {{(

0 =: [T]lody {{{

0ds (0l1ea*andyno LS

9Z1S°I07329A Yo4d 0 = T 0dS Wns

0ds [0]1Tea"andano Q1

: odl INI[®ZT1S°®3103094A) . UHS'1

{({{ 04 2041

Tea*3nd3no j 1a93uf . Jr1gax

T1eA*3ndino ¢ sumod - 03 duod ans

, bas [0]Tea°andano qqn
: fea3ndano INI([221s°10323A]) [0)ody-puosas a1
Ia33ngq andino }}} [0]odT puodas LS

dndL JTIHM aav

{{{ [0)odT *puodas 101

Tea*3ndut | dwod- o3 Suwod dHS1
Tea-3ndut ¢ jndut J04# o4l

0ds dJ1dax

: Tea"andut INI[2z1s°a0300a] (0)ody-puodas a1
Ia3jng 3jndutr }}) [0]ody-puodas LS

dndL 3 1IHM ans

qvd [0]odT puodas a1

dvd Idd aav

¢ SuwmoD 073 " dwod ‘dulod " 03 sSumiod ANV JO NVYHD (0)1eAa* andano a7t
¢ T SI ®21s°I03098A VA [0lody-asar3 r1a1

(Ta23uT ’3Indut ANV J40 NVHD)®Z II D0dd (0lodT 3sat3 1S

aav
[0]edy 1a71
f0}andut-dwod a1
ANO
(o] 11}
(s1] - (0] 1))
uotjeandwod }}}
andut ‘dwod ¢ Tdwod 03 SUWOD

ods
: andut-dwoo INI([®2TS°10329A])
andlL dTIHM
0 =: [Tlodiy
0 =: [T]edy
0 =: [t)ody
ods
9z1s°I10309A ¥od 0 = T 0dS
ods
: odyy‘ody‘ody INI([®21S°I03D2A]
{{(
Tea*3ndano
i zaajuy -- Tea*and3no | zIxsjutl

1ea‘3ndino ¢ sumiod - o3 ° duiod
Tea*andino ¢ suwod’ o3 dwod
0ds \
: Tea*3ndano INI[221S°103223A]
I233ngq ndano }})
andl d1IHM
{{(
TeA*yoeqpaaj ¢
jyoeqpeal -- Teacandutr ; 1dwod 03 SuUMIOD
1ea-3ndurt
1ea-andutr ¢ Taejut
0ds
: 1ea“andutr INI([®2T1S°103D38A])
1ay3nq andut }})

¢ TI2qUT --

ANy dTIHM
avd
‘ gvd 1dd ody i sumod-03°duwod
: sumoS * 03 duloo Tduos 03 SumIoD ANY JO NVHO {{(
: 1 SI °ZIS I0309A VA (o)odl 1S
aavy

(zax23uT’'TI53UT ANY 40 NVHD)QZ II DOudd

{{{
(0)2ZedY 1is
aav
[0)ZodT a1
¥HS'1
Jog oa1
314Ax
[0)lzody 1a1
{olzody 1S
ans
[0)Zody na1
aav
{0lea3 101
folzx 101
AND
(ol 1}
zXexxe dwod }}}
. ods
193 ¢ qoeqpas)]
IX ¢ Ta23uy

1ody | zaaajut ody j sumod’ o3 duod
yvd {({{
ssed 38113 }}} . (olodiy 11s
dvd 1dd ﬂ aav
0ds [olodTy 1071
: qTeuaajurt ‘efeuaajul NI ' dHsS1
, : gody'’'Tx JINI[uSaT- 10323A} Jo# oan
dndl JTIHM J71dax
{{{ {oledy 1G1
0 =: [Tle4q3 {olody f11s
0 =: [T)lgedl ans
0 =: [T]10d] {o)odTu 1Q1
0 =: [1]2gX aav
0 =: [Tl1ody {oledy a1
ods dHST
uar-Io0399A ¥Yod 0 = T 0dS J0# D2a1
sanfeA asTTeIJITUT }}} a1dax
ods {olody a1
: 7q3 ‘193 ‘zody‘zx‘tody’tody INI[UST°I0323A] {olody 1S
: 1 SI usT- 10323A VA ans
(3oeqpoa] ‘gIajul ‘TI83UT ANY JO NVHO)dE'I D0dd foled1 141

B -.6

zod1 i joeqpa?d]
zody i anodt
ZX ¢ zaejut

yvd
ssed puodas }}}
dvd Idd
{{{
[0lzodT 11s
aav
(0)zedt a1
JHS'1
d04 O0Q1
angaax
ans {{{
{olzedt 101 {{{
fo)ex a1 {{l
AnS {oltedy 148
ol 1}} aav
zKeaze duocd }}} {oltodl Q1
0ds YHS'1
1ody | yoeqpaaj Jo4 oAl
1odt i anodt angaax
IX ¢ gaajut (0)1ody 101
yvd (oltedy 1LS
ssed 3sa13 }}) _ ans
¥v¥d Idd {oltodr 107
0ds aav
: zody'’fx INI[ua1‘I103D3A) fol1a3l a1
anydl JTIHM R (o]1x 1a1
{{{ AN
0 =: [r)godl (0] 1}}
0 =: [t]10dl 1Aexae dwod }}}
0 =: [1lex 0ds
0 =: f{r]tody a3 ¢ deqpsa]
0ds ZX ¢ TILjul
uaf - I10322A yod 0 = T O3S zody | zasjurt
Keize seniea asiTer3Tur }1}} yvd
ods ssed puooas }}}
: zq3’'193 ‘godi‘zx‘1ody’tody INI[uaT°103084A] dvd 1dd
[SI uay-I0323A "INA {{(

(anod{ ‘yoeqpeaj ‘ZI923uT ANV JO NYHD)2€°'1 O0dd {{{

ods

: eodl INI
: q3‘andut-dwod‘ody LINI[uaT°10329A]
andl 3TIHM
0 =: [T)od]
us{*I03daa yod 0 = ¥ OIS
0ds

: odl INI[u®ST‘®1023234A]
{{(
1ea-3ndano
i zIL9juyr -- 1ea*3nd3ino | ZzIs3jut
Tea: 3ndano ¢ suwwod* o3 dwod
- Tea*3ndino ¢ sumoed- o3 dwod
ods
: Tea*andino INI{ual*®I032dA]
as33nq 3ndano }}}

dndlL dI1IHM
{{{
1ea*yoeqpesl i zdwos o] sumod
- 1eAoeqpaal i gdwod© o3 suwod

Tea3ndut j TAdwod° O3 SUNIOD
-- Tea-ydeqpaaj ¢ deqpa3]
odas
: TeA'yoeqpaaj INI[uaT I03d24A]
1933ng andut oeqpea3j }}}

andl d7TIHM
{{{
Teaydeqpaaj ¢
3yoeqpeaj -- 1ea Indutr j [dwos* o3}’ SUWOD
1ea - 3ndut
¢ Ta@3uTr -- 1ea-andutr ¢ [Iajul
. 0ds

: Tea*3Indut INI[uef 103534}
1a33ng andutr }}}
IndL dTIHM
dvd
yvd Idd
: T SI ual'I0323A 'IVA
suoo * 073 * dwod * zdwoa * 073 * suwmod ‘ Tdwos 1 03 * SWWod ANV 40 NVHD
(yoeqpaa] ‘zaa3ul ‘1I23UT ANV JO NVYHO)AZ 11 DOdd

..

{({
{{{
{{{

{ol1odT 1S
aav
[0} 1edT 1a1
HHS1
Jo# 2a1
474ax
ans
(0l1ed1 11Q71
fo)ix 1a1
ANO
ol 1)}
1Aexze dwocd }}}

o3s

andut-dwod ¢ dwos’ 03]’ SWWoD

0ds
: eodl INI
: andut-dwod NI [uST'10303A])
andl ATIHM
0 =: [T]ody
uaf-10322a Jyod 0 = T O3S
0ds
: ody INI[US]°®I10308A]
{({(
Tea q3y i Yoeqpsaj
Tea"q3 ¢ 93
0ds
: Tea°dq3 JINI[uoT- I10303A])
aajjing oeqpa23 }1}}
andd dT1IHM
{{{
1ea-andano § 3nody
Tea-3ndano ¢ sumiod 03 dwod
0ds .
: Tea’3andano INI[uS]*I10308A]) ody ; sumiod- o3 dwocd
as3jngq 3ndano }}} {{{
andl J1IHM {{{
{{{ . [0ledt 1S
Tea3ndutr | dwod° 03’ SUMOD aav
Tearandut ¢ zIa3jut (0)edT Ta71
0ds dHS 1
¢ Tearandut INI[uST'I0323A] Jd04 oQ1
a93jinq ndutr }}} a14ax
andL JTIHM {0]edy 1a1
yvd : {o)lody Tis
dnjas-q3 |)oeqpsaj 8ns
0 =: [tr]ldn3as-q] {olod1 1071
: 0ds aav
us] 10309A W04 0 = T 0dS (0)Ja3 1a1
0ds (0)anduy - dwod a1
: dnjas- qJ JINI[uaT°I0309A} ANO
yvd Idd [o] 1}
: 1 SI uaf'10399A YA uotjejnduwoo Ajquasse }}}
: q3 ‘sumod - 03 dwod ‘ducd 03 " suwod ANV 40 NVYHO q3 ¢ zdwod:© 03 sumod

(yoeqpaaj ‘anody ‘zas3ut ANV 4O NVHD)2€°II D0ud andut *dwos ¢ Tdwod 03 ° SUWOD

{
{
{
fearandqno j I93[T3°O
}
}
}

azls"

({(

L W WY

ot)

00T)

sandano 001 }

1 =: [T]lrea-3nd3ino
10329A ¥YOd 0 = T OdS

0ds

ety L) s ey iy

: 1ea*3ndino INI([®zZ1s°10329A)

andut TYUTI--

(193773 °03 ANV J0 NVHD)I233ndut Doud

dndlL d1IHM
1})
03s
{{{
Aue’1eys’{eA’1011a‘ual INI
suotjeae[oap }})
904 LV 3Isoyrwoxj HOVd
: 3soy‘wolI ANV 40 NVHD
: T SI 9ZTS°I03D9A fIVA

odr i q3
odr | sumiod 03 °dwod
{{{
{({{
[0)odT 11S
aav
(0lodl Q1
dHS1
Jd04 0Q1
ar1gax
ans
foledr 101
(0)}andut-dwod Qa1

(ol
uorjejnduod Afquesse

.B-10

dIds
uaf-Aeaie ;7 [T)awr3 pua | 3Isoyol
uat-Aeiie ; [T]ewy3‘3Ie]sS | 3ISOYO]
[T)awT3y pua ¢ 201>

({{

B-11

,u
sanduy 00T }}
sanduy 00T)}

[T]owT]3ae]S ¢ Y2071

{{{
: 904 IL¥ 3asoyuwoxl JOV'ld
: ZOo# IV 3Isoyol IDVId
: Aue JINI({ua7‘Aexxe]
¢ Y2012 YINWIL
3soyuoaj ‘asoyol ANV J0 NVYHO
QuIT]y ' pua‘awTy - jaels INI([0Z]
soda }}}
dvd Idd
0z ¥yod 0 = T OIS
. 0ds
andl 3TIHM
P T JINT
: T SI uay'Aeixe YA
(UT ANV JO NVHD)U23eMm DOUd

Appendix C

Occam?2 Filter Program
Scheduling Charts and
Results Table

d 00 91 9 pl
d 00 ST z €1
d 00 81 z
d 1 €1 T
d o1 L o1
d 6 9 6
d 8 9 8
d L z L
d 9 11/9 9
__ d S mEL S
__ d v v b
| d £ 9 €
d z z z
| d 1 z 1 =
wo | m 1d od 1d
d O JANIeUY] QATRY ANIAXYH
NOLL
VOINNIWINOD ONI'TNAEHOS o165
SNLVLS SSHD0Ud 1oqET 105530014 'Jo3 10N

1 3dAL SSANYVH 40 ONIddVIN 40SSTD0Ud OML FHL 3404 LUAVHD ONI'TNAIHOS

d 17 91 8T
d d 81 Lz
uy o d €1 v 9T
. ! d 81 sT __
] d d 1z 91 T
¥ v i d 0 w € ‘
__) uy d 0 d €1 9T-#9p w __
I . a0 d z z 1 ——
1
ax " ‘o d %4 81 (174
)) d d «w 9 61 __
s 0 d d 0C 81 81 __
d d 0 61 9 L1
d d 00 81 A 91
d 00 L1 € St
no ul 1d 0d 1d 0d
d O ATORU] Y ND3X5
NOLL
VIINNWINOD ONI'INAEHOS ook
_ SNLVLS SSID0ud 19qET 108530014 Jo1 210N

|

1 4dAL SSANUVH A0 ONIddVIN HOSSTO0Ud OML THL Y04 TAVHO ONI'INAIHOS

d vi 91 123
d 13 0e+M6T t
d 81 1%
_ d - da 9z 91 o€
d dd 1Y §T 6T
no ut 1d 1d
d o} aAnoRy] ATV andexg
NOLL
VOINNININOD ONI'TNAIHOS
L2109
SNLVLS SSH004d 1°qe] J0S$3004] ‘JaJ ION

I ddAL SSINYVH 4O ONIddVIA HOSSAD0Ud OML FHL O LAVHO ONI'INAIHOS

C-4

l Two Processor Mapping of Harness Type I

o e
I Note ref. Comments ‘

1 OP begins by jumping to the first instruction.

2 OP claims its workspace.

3 The location of the 'jump’ block (at the head of the program) is stored in

workspace location 15.

4 The vector initialisation loop is set up.

5 One iteration of the initialisation loop is performed.

6 OP executes a LEND. If the loop has completed, then execution will continue. If

not, then execution returns to the start of the loop. The total number of cycles
taken to perform the loop (excluding initialisation) is 82+(w-1)87.

7 OP begins to set up the PRI PAR by storing the number of parallel processes in
workspace location 1...

8 ...and storing the instruction pointer to the successor process (the next PRI PAR)
in workspace location 0.

9 The current priority is checked to make sure that it is low.

10 OP stores the instruction pointer of the child process in (what will be) the new
workspace location -1.

11 OP defines the process descriptor of the child process (which implicitly defines
its priority - high) and places this process on the high priority queue. OP is de-
activated.

12 P is interrupted in deference to the high priority process OQ.

13 OQ begins by setting the number of parallel processes it will produce.

14 0OQ stores the instruction pfointer of its successor process.

15 0OQ sets up a child parallel process...

16 ... and initialises it at the current priority level. The new process, R, is placed on
the high priority queue.

1 Q continues by setting up a communications transfer.

18 Q executes an external i’ and so is descheduled. R is executed in preference to
P. -

19 R begins by setting up a communications transfer.

20 R executes an external "out’ and so is descheduled. As P is the only remaining

active process, it is re-executed.

|| 21 P continues by claiming workspace for the computation section.

P enters its computation section. However, after a further 46w-26 cycles, Q
completes its external transfer apd so is rescheduled.

—

Two Processor Mapping of Harness Type 1

y | S—

| Note ref. | Comments

23 P is interrupted in deference to Q. The particular instruction on which P is
interrupted varies bioth with w and with time, bence the average instruction
length of 4 cycles is used.

24 Q continues by pointing to its parent (OQ) and ending itself. Hence Q is taken off
the queue.

25 R has still not completed, and so P is re-executed.

26 P continues with its computation section. However, R completes its external
transfer during the context switch, and so P is allowed to execute just one
instruction...

27 ...before being interrupted.

28 R continues by pointing to its parent (OQ) and ending itself. Hence R is taken off
the queue. Both the child processes of OQ have now completed, and so 0Q is
free to invoke its SUCCESSOT Process.

29 The de-prioritising code is invoked by 0Q...

30 ... and then, having pointed to its parent (OP), ends itself.

31 As P is the only remaining process, it is rescheduled.

32 P completes its computation section.

33 P points to its parent (OP) and ends itself. As its child processes have completed,

OP is free to invoke its successor process, the next PRI PAR structure.

e — P ———— . —————t————————————— e ——

1J0SS001]

)] a0 d 9o |9 Nﬂ_
- . a0 d § |
9gH1

v “ q0 d v -M)Iy 11 __
.] a0 d £ |t o1 __
X) ¥D d sz |6t 6 __

“ 0 d . 14 9 8

_» H (o} d p: 81 61 L

__ d L' o] L L 9

d i 0 9 |u <

d 0 s1 | ¥ v
d D e |8 € __
d D z lu z __
d 1 |z 1 __

mo 2 aino w mno w 1d 0d 1d 0d
o) d aAndBuj Ay aindaxyg
NOLLVDINNININOD DONI'TNAAHOS 501k
SALVLS $S900ud g1 Jos AON

N AdAL SSINUVH 40 ONIddVIA HOSSTO0Ud OML JHL 04 LAVHO UZ—JDG@EUW!

. d J L (o} d o1 61+M7 9 __
“ " a0 d 6 9 ST
" “ a0 d 8 61+M6T ¥T
H " :yo] d Ltz |6l €7
| " 0 d k. 9 | (44
|)) d d g8 | 1T
__ d u o] d d 8 61-m9p oz
Jaxx " E: yo) d ¢ |l 61
“ (o} d b | (4 9 81
“ 0 d d 14 14 LY
o) " d o} d . L 61 + M7 91
" “ d o] b | ‘9T | S Si
1€ + Mg __
d u “ d 0 4 8§ - Mg 1
. " H d 40 L 61 €1
mo aW a0 u no ul Id od id od
0 aAnoRU] Ay anoaxg
NOLLVIINNIWINOD DNI'TNGIHDS sapk)
SALVLS $$4004Ud 1oqe] 10SS300J] ‘J31 0N

11 AdAL SSANYVH 40 ONIddVIN HOSSAD0Ud OML FHL YO LIVHO ONI'INAAHOS

. H o d 81 61 114
" d d 0 L1 S ov
. . d (o} 1T v 6€
" d d (o} %4 8¢
“ vy i o] d 8 9L-Myp LE
t yx “ A0 d sz |l 9
__ . 0 d i vz |9
" 0 d d 8T v
. 0 d d 81
d . o) 0 k| d L 61+MT
" . o d 9 9
" " o d RS B/
R X o d 174 61
" d d (o) 61 |9
" ! d 0 81
mo 2t 2o w no ul 1d od 1d od
__ 0 d aAnoRU] ANV aAndaxg
NOLLVIINNWINOD ONI'TNAIHOS so12k
SMLVLS $SA00¥d 13qeT | Jossadoid

1 3dAL SSANYVH 40 ONIddVIN ﬁOmmﬁUOly.-m OML THL 04 LEIVHD DNI'INAAHOS

" o] d .| 8T v 9
. 0 d d 81 S
d " 0) 0 R d L 61 + MZ 2]
__) . o d 9 |9 33
u " o d 11 14 (4
. 1ox o d oz | el {9
“ L d o] 61 S 0s
" R d 0 81 6v
“ o) : 0 d 01 61+MT 8y
. ¥ d 6 |9 Ly __ =
“ qJ0 d 8 1S+MTE 14 C
H a0 d L |6l 194
__ 0 d a ot |s b __
0 d d 37 £v __
= W 0 . d 8 STHmT (44
__ mo a™ g0 no u 1d od 1d od
0 d aAndRy] ANV ANoAXF
NOLLVIINNIWINOD ONI'INAFHIS s>y
SNLVLS S$Sd00ud 1°qe] J0§S3001J *Jo3 0N

11 AdAL SSANYVH 40 SNIddVIA H0OSSAD0Ud OML FHL JO4 LIVHO ONI'INAIHOS

oL
" q0 d 6 9 69
. A0 d 8 1S+mzE 89
H 0 d L 61 L9
0 d d 9 S 99
(o] d d X4 9
uy (o} d d 8 STHMT 9
“ (o) | d 81 61 £9
“ : d (o} L1 S 9
__] A d 0 iz | 19
__ " 4 d o] 8 €T 09
" uwy d o) d 8 oL-MpY 6S
_T 1apx " 04 d s¢ |6 8¢ __
" 0 d b | {4 9 LS
mno mc_ mﬁ_o mo 1d od 1d od
0 aATRU] Ay andaxyg
NOLLVIINNWINOD ONI'INAIHOS sok5
SNLVLS $S320ud Qe JOSS001J ‘Jo3 AON

——

1 4dAL SSANHVH 40 ONIddVIN HOSSTO0Ud OML FHL JO4 LAVHO DONI'INAIHOS

P’ claims its workspace, initialises the internal channels, checks the priority,
pointstoitssumsorp'owssandsetsupthehighpﬁorityprocess.

2 P’ executes a RUNP, activating the high priority process, Q'. P’ is de-activated in
preference to Q’.

3 Q' defines the number of ’child’ processes, points to its successor (the de-
prioritising code).

4 Q' sets up its child process, R.

5 Q' executes a STARTP, which places R on the active high priority queue.

6 Q' enters Q by adjusting the workspace pointer and setting up a ocommunications
transfer.

7 Q executes an internal 'in’. However, the channel is empty and so Q is
descheduled. R is executed in preference to P’.

8 R begins by setting up a communications transfer.

9 R executes an extemal 'in’ and so is descheduled. P’ is the only remaining active
process and so is re-executed.

10 P’ enters P by adjusting the workspace pointer and initialising a control block for
a replicated SEQ structure.

11 P enters a replicated SEQ loop. The time taken to execute this loop is 41(w-1) +
36 cycles. The next high priority process to become active is R, after 46w -7/+32
cycles from the beginning of the replicated SEQ. Hence, the loop completes
before the transfer finishes and so P is not forced on to the queue by R.

12 P sets up a communications transfer.

13 P executes an internal 'in’. However, the channel is empty and so P is
descheduled. There are no currently active processes.

14 There is now a delay until R, the only process not awaiting intemnal channel
rescheduling, completes its external transfer. The delay is 5w - 8 (min), 5w+ 31
(max).

15 R continues by setting up a communications transfer.

16 R executes an intemal ’out’, corresponding to the ’in’ of P. Hence the transfer
takes place and P is rescheduled.

17 R jumps to the top of its WHILE TRUE loop.

18 R sets up a communications transfer.

| 19 R executes an external "out’ and so is descheduled. P is the only remaining active
process and so is re-executed.

20 P continues by entering its computation section. During this period, R completes

its transfer after a further 46w-19 cycles and so is rescheduled.

“ Two Processor Mapping of Harness Type 11
-

" Note ref. I Commeants !]

21 This rescheduling causes P to be interrupted during the computation section. [the
instruction that this rescheduling occurs on is dependent upon w. It is possible to
calculate the instruction, but use the average instruction length of the computation
section here, abs(3.54)=4]. Thus, the interrupt latency is 22 cycles.

22 R continues by setting up a communications transfer.

23 R executes an internal "out’. The channel is empty and so R is descheduled. P is
the only remaining active process and so is re-executed.

24 P continues by completing its computation loop. The high priority processes are
currently awaiting soft channel communications, and so there is no further
interruption of the computation section.

25 P sets up a communications transfer.

26 P executes an internal ‘out’, corresponding to the 'in’ of Q. Hence the transfer
takes place and Q is rescheduled.

27 P is interrupted in deference to Q.

28 Q continues by setting up a communication transfer.

29 Q executes an external "out’ and so is descheduled. P is the only remaining active
process and so is re-executed.

30 P continues by jumping 1o the top of its "WHILE TRUE" loop.

31 P sets up a communications transfer.

32 P executes an internal 'in’, corresponding to the "out’ of R. Hence the transfer
takes place and R is rescheduled.

33 P is interrupted in deference to R.

34 R continues by jumping to the top of its "WHILE TRUE" loop.

35 R sets up a communications transfer.

36 R executes an external ’in’ and so is descheduled. P is the only remaing active
process and so is re-executed.

37 P continues by entering its computation section. After a further 46w-[2w+76)
cycles, Q completes its external transfer, and so is rescheduled.

38 P is interrupted in deference to Q.

39 Q continues by jumping o the top of its "WHILE TRUE" loop.

40 Q sets up a communications transfer.

41 Q executes an internal 'in’. The channel is empty and so Q is descheduled. P is
the only remaining active process and so is re-executed. [not enough cycles yet
for R to have completed for largish w]

c-13

p——

Two Processor Mapping of Harness Type II

Comments

42 P continues its computation section. However, after a further 2w+25 cycles{46w-
[44w-76+51]}, R completes its external transfer and so is rescheduled. Hence
w>=11.

43 P is interrupted in deference to R.

44 R continues by setting up a communications transfer.

45 R executes an internal "out’. The channel is empty and so R is descheduled. P is
the only remaining active process and so is re-executed.

46 P continues by completing its computation section. { 78w-[44w+2w-76+25]}

47 P sets up a communications transfer.

48 P executes an internal ‘out’, corresponding to the 'in’ of Q. The transfer takes
place and Q is rescheduled.

49 P is interrupted in deference to Q.

50 Q continues by setting up a communications transfer.

51 Q executes an external "out’ and so is descheduled. P is the only remaining active
process and so is re-executed.

52 P continues by jumping to the top of its "WHILE TRUE" loop.

53 P sets up a communications transfer.

54 P executes an internal 'in’, corresponding to the ‘out’ of R. The transfer takes
place and R is rescheduled.

55 P is interrupted in deference to R.

56 R continues by jumping to the top of its "WHILE TRUE" loop.

57 R sets up a communications transfer.

58 R executes an external 'in’ and so is descheduled. P is the only remaining active
process and so is re-executed.

59 P enters its computation loop. After a further 46w-[2w+76) cycles, Q completes
its external transfer and so is rescheduled.

60 P is interrupted in deference to Q.

61 Q continues by jumping to the top of its "WHILE TRUE" loop.

62 Q sets up a communications transfer.

63 Q executes an internal "in’. The channel is empty and so Q is descheduled. P is
the only remaining active process and so is re-executed.

64 P continues its computation section. After a further 2w+25 cycles, {46w-[44w-

76+23+4+5+19]}, R completes its external communication and so is rescheduled.

P is interrupted in deference tO R .

==

“ Two Processor Mapping of Harness Type 11 “
“ Note ref. I) Comments !I

66 R continues by setting up a communications transfer.

67 R executes an internal 'out’. The channel is empty and so R is descheduled. P is
the only remaining active process and so is re-executed.

68 P continues by completing its computation section.

69 P sets up a communications transfer

C-15

)X .) AV'd WO 61 85-61 vl __
. “ 0'd Wo | 81 S €1
)X " 0'd WO d 91 86-61 [4!
" d WO d 0 <1 9 I
3oJx d WO i o] £l 85-61 o1
WO a0 d (4 S 6
WO a0 WH 11 Sl 8 =
WO 0 WH 01 o1 L __
WO WH 6 8 9 __
WO WH Y €1 S o
WO v w v O
WO 3 019 £
WO (4 Mgy (4
WO i 9
uy w no 1d 0d 1d 0d
__ d 0 d aAmoRU] MY andaxy
DNI'TNAGAHDS sk
SNLVLS SSA00ud el 10553001 Ja1 0N

|

1 AdAL SSANYVH 40 ONIddVIN JOSSHO0Ud TTIHL 04 LEVHD ONI'INGAHOS

—_ da w % §T __
da 12 T v
__ | 0z v €T :
o Ve w |
. uy A 0 L 1 1£4
. . q 6v/11 174
. " a0 d vl p1 61
__ (xew) 69-Mp __
. . uy qD (unm) Ep1-mp 81
“ " " q0'd S 8 _z L1
" " “ d'0'd S L MZp o1
]]] a0'd WO 9 z S1 __
w u no 1d od 1d
b | 0 d aAnoRu] ARDY andaxy
ONI'TNAIHOS oty
* SNLVLS SSAD0Ud 1qe] 108530014 "Ja1 910N

I AdAL SSANUVH J40 ONIJIVIN H0SSAD0Ud TTIHL Y04 LAVHD ONI'INATHOS

c-17

LI¥09€'2 (2256 GE'P ¥29'v 1Sv'9 190'2 1162/52 LY 102y 96t 10€'9 85'L 8y

9€988€2 |6V5'6 viE Y 8vo'v viv'9 689 1211652 |SLY SESV v6'v SEE'9 vl v

Seev'e |985'6 LO¥ ¥ £L9V 1059 218’9 5l29C |LLY 692 v 26V 69€9 eve ov

688E£9Y'2 [129'6 SEV'Y SLL'Y SES'9 6v8'9 6886992 [8'Y X v8'y 179 G169 9%

6295152 [699'6 Liv'Y ISLY 1159 9889 G/€60L°2 [€8'¥ 19E'Y 'y 19¥'9 £8'9 2

£vie8se (sevi6 [esy 528’y €99 SE6'9 15819.2 |68'Y 12v'y S08'v 1259 299 82

££680/9°C [818°6 209’y 6'F 20.°9 9002 £e8s8’e [S6'Y yiS P S8’y 519'9 1’9 ¥2

S6.°¢ 1£6'6 €0L¥ €L0'S £08'9 6012 5562 580°S 8E9'Y Se6y [8EL9 £5°9 02

Geig6'ec |sLioL lesgv eLL'S £56'9 522'L S/81L'E [22S (7324 20'S 226'9 59'9 ol

[99162€ lvisoL |voL'S 80¥'S ¥02 L 905’/ 19916€°€ |6¥'S 621'S €25 622 €L]

GeL6'c |e160L [909'S S88'S 90/, 286, S/E6€ |16'S Yvi'S €9'S 8L 26°L 8

SLL'S vigztk [etld 502, €126 Evy'6 519°S 'L 885°L L 889'6 EV'6 2

56 l2e9l [seroL [wovor |seeel |seel 58'8 ££01 AT g/eel [89°Cl 2

5691 v8Lee |SL9l 15661 |s28l CITIICET €Z8l S9'8l 18'S} 5102 1681 1

KuLwe| dwane| AuLme duame Aupm i dwami| Aulfe| dw3ig| uilrel dw3pe| uiii] dwg _-—_ IS 10}08A
19|14 19Indsuel) 10} sainbj4 eduBwWIOIad [Bolles08y) pue jedjijdw3

C-18

26012'S. [€85191° [909526'S [¥Z20 |£006£9'8 [19°0 EPO9'SY |€80/Sh ¢ |SPBL'SE [€S20 [2v6L9L (€2}
8¥586'v. [v9c09t'L [600568'S [v220 |9EL.€0'9 [91F 0 LIESy |eleeSte |9gklevt [S0L0 |Sal 506°0
€192.vL |Se9L |2/9028'S |2/20 |e/vS9Sv [11€0 Viol6vh |Sevie |LLIECEl [1G9°0 |S/LpSOL [1SL0
1S06EvL [L11ZSL'L |¥6YBE6'S (820 LI9V8S ¥ [VIED €205 [LLI9ELE |I¥OS6°0L [€G0 8S€004'8 (5950
15286'€L |S/eeSV'L |102/91°S |vi20 |99el8v'¥ |60E0 82506'€V |S29021 ¢ |ESE28E'8 [66€0 |SE920P'S [69€0
2886¥'€L [/SELOL’L [66E1LL'9 [S620 186/6E¥ |SOE0 9/6€€F |eviecl e |508998°L [8Z€0 |vEBYOV'L |€60°0
95961°2L |£91.¥1'L |€€9180'0 [8620 [BEL6EEF |VOEO 2v80S 2y |191¥01 ¢ |Se8/269 |9EE0 [€1861E- [S020-
82/8'1L |eviL 2e6e8t 9 [1€0 €0VYOEY 900 16/88'Ly [ElC /€28109 |/620 |eS8L'E- [8020-
S¥925°0L |S/EE1'L . 9965819 [2€0 90.v9L°¢ [2L20 £86S20V |Scl0L e |e2evp6E 8610 |€2060°'v~ |2L2°0-
¥5269'89 |€6€222'L |20E129'S [FOE0 [8¥¥ESO¥ [20E0 1022 8E |ece860¢ |99LIE6’L [10L0 [€092.6°0 [120°0
928vI'v9 |S000'Z |/980VLv [6/20 |BLISV'E |9/20 £2SYOVE |S2e0C |/8r202- |vibO- [965656'0 [920°0
VSLIZYS [6€8'9 1062’1 |e600 [/995e¥2 (€20 2/90'Se (5981 v's- 885°0- |S6SELe- |8S20-
95Sv'LY (/219 1656S9°C |9/20 |280¥020 |520°0 2LeE VL [svL 800€C}- |SE2L- |1018V'S- |S69°0
9e€L'82 |vE8'9 ISIve'L- |661°0- [59/€92- [69V°0- 98€25'S} (€872 €LIS'L1- [8L2 v2e8e 6~ [8L°}-
%l e MaAWe %ie mane %L mani %l € Mare %ie Mmaire %I ware
sainb)4 eouBuIOpad [€aR81008Y) pue [eapsidwz usamieg eduaieyia

cC-19

Appendix D

Hybrid Multiprocessor Code

({(
Aue ¢ paeoqhay
(«®3UTWIDY 03 A3Y Aue 66314 +UyD,, 'UD3ID6)DUTIAS TINI BIATIM
aj3eutwial }})
{(t
(G’7'usalde) U "8ITIM
(s JIDJEUBRI] BUOPULD,, ‘USB1D06)DBUTIAS TINI*BITIM
2°03°dsp ¢ 83U wWol}
dsp*o3*1 | 39u*ol
yvd
0as
g ¥od 0 = 1 03s
ua2al1oF 03 sarnsaa1 }1})
{{
(UydypPa1I8]6URIY
+, ‘us@108)butIas TINI*SITIM
dsp*03°3 | 3189U*03
108L 03 10309a anduf 2361F3] JO SouUaII1adjsuei] jeubys }))
({{
{«UyDypolaTduod
+,'U2a108)ButIIsS TINI " 2ITIM
Aue ¢ 3@u‘uwox}
aujaInol juswabpaimouyoe jo uoylardwod teubis }}))}
({
(sUyD4T0BL
4+, 'Ud2108)ButIIs TINJ 9ITIM
oaa*boad § 38U 0]
1081 ©3 8pod> d45Q 1d3sueay MMW

Aue | 38U°'0]

usaq - sey 10359Aa Induy 16114

aufanox Juawabps TMouyOy

01 paiiajsueiry weiboad dsa

-

Aue ¢ pieoqhoy
(sUyDWTOBL
Yatm asTuolyouhs 03 A8y Aue 55914 +,‘'usdids)buriascTIN] 337IM
1081 U3IFm 3sjuocaIysuds ”““
(+UyD4P3STTETATUT 103024 Induy 36174 +,°uUda1ds)butiis (NI 217Im
00000018 =: [Y}dsp-o1-3
0as
szys-eiep ¥od 0 = ¥ 0ds
dsp-03°03 8syTeRTITUT “”“
{+Uyd183ndsueil
+,'Us89106)BUTIAE TINI "BITIM
(zeyo’Aumnp‘uf art3)Iuy - peax
(1eyo’'{y)oaarboad‘ur aryl)auy peal
03s
azys-boad yod 0 = ¥ O3S
weiboad dsp uy pe2a }}})
03s

(il
(10118 ‘8TFJUT ‘U UST ‘UT DT 'I8(TJ 01 ‘ISTT] WOIJ) IDAIIE " WOIJ ‘Wwed 11548y

asoy o3juo pepeol uweiboad d4sd

auTInox 20Fa186 113 }})
yvd
(N
»1EP° Z3poOP, =i [Uf°UBT YOd4 0 WOoud 3TTIUf] »
0T =: uy-uef,
1 =: aey
dn 398 °21¥3 }})
0ds
i (t
$ 90#% LV vU‘wol]l HOVId
: 2O IV 13@8U°031 JOV1d
SLNIW3OVY1d www
i J2U°WOol1j‘IPUCI‘UT BTTI ANV A0 NVHO
: 917IutT ILArd[azys- pT-eqe)
i 3°03°dsp’dsp-o03-1 INI[@zTs eaiep]
: daa°bBoad INI(@z1s°bBoad)
s Auunp‘aeyd ‘Aue’10118’uy uat INI
SATAVIUVA NWW
i 00T# SI ®zys-elep VA
: 00T# SI 9zys-boid TvA
SLNVLSNOD ”““
: sopsul dSN#
¢ IPYaaTtl dsnk
: apyaasn dsSnN
¢ Jaa3uy Jsns
t or19sn ISNK
SATYVHEIT }))

Tea)oe <> abpormouxdoe JTIHM
0 =% 18
g8 >> Tea‘eseq-boid =: aseq-boad
g >> Tea‘azys-boid =: azys°Boad
oaa-boid ¢ uy
1ea‘axoydeuss =: 186
uotlesjuoayouke })1})
({{
({{
Tea-aseq-boiad =: aseq-boiad
tea-azys-boid =: azy6-bBoad
s19jawezed BHoad asyreraruy }))
({

0 =t (¥)o8a°bBoad
Teaazys-Hoad od 0 = t O3S
eaae Boid dsp oasz }})
(!

t {7}a‘oa-dsp
t [1)dsproa°2

0
0
Tea*dzys elep HOd 0 = ¥ D3S

seale ejep 013z }))
0 =: abparmouyoe

0 =% 18
1e3ndsuell Isoy YIfm asjuoayouds-- Aue ¢ uyg o
o1az o3 aoseds Aiowaw osyTeTAITUT }}) '
ods)

(({
1002¢ IV o°A°Boad IDVId
002ZZ» IV dsp-01°3 IOVId

s we we o s

dIjis : 000Z# 1V 1°03°dsp ADV1d
({{ vdLze LV @zys-bBoid 3ovld
0 =% 18 gdLZs 1V aseq-boad IOVId
3°03°dsp | 3Ino : DALTe IV Sbparmowide IOVId
dsp-03°21 ¢ uy t QdLzs IV duds Fovd
uvd P JdLZe LY 15 JOVId
diis sjuswedeld priqAy }}}
Tea*azoydewss <> 16 JTIHM {{(
0ds s 2zye'boad’eseq-boad ‘sbpamowioe ‘Aue ‘16 ‘duls INI
FNUL ATIHM : oea*boxad INI[Tea@2zY6°Boad]
doot utew }}} : 3°03°dsp‘dsp°03°3 INI[TeA*®2]6"€3EP])
(i safqetiea }})
0 =: I8 : (!
dspr03°3 ¢ Uug : 098 SI Tea-aseq-boid qvA
dI1is : 00TA SI 1ea-azye-boid qua
ods : 000000014 SI Tea“oe VA
Tea-aioydewss <> 16 ITIHM : 00T# SI U0 MNA
dsp-o03°3 uy usayly ‘13s aq o3l aaoydewas 103] afem }})} : 00TITT# SI (eacaxoydewss YA
{{{ : 967 SI T[ea“ozis"EIEp VA
Aue } no sjuelsuod }})
QU0 S)1d duAs =: Dués ¥yvyd Iud

bas (Ino‘ut ANV 40 NVYHD) 13podd DOoud

s193s8]ba1 esaippe dn 198!
*31 Bujuuna s} pue apod> a8yl

(zy) :x’pd

aioydewss 396! 18:x'04A

zdooTpua ‘sdoxy

1dooTpua ‘22164

Td'09AIMg

1891 @1oydewss! T12qeT ‘(gY) :X‘0%
+(vy)

U’ L#

(gd) :x’'py
1Xx*'31692396<4§
pa‘0o<#
I0q:X ‘054
cu'1I58
gu‘oey
TH'O8AIME
04 ’'D2Ap1y
18: %04

1l 03 193)x steubys! 0A’'TeAWRS
095:d

! 2dLT$
34a4as
01$
0000$
EEEELS
11108
JaLts
0021$
0001$
001$
001%

ana
JAOKW
pus
dON
JAONW
1dooypus
dON
zdootpua
dON
oa
oa
JAOH
1l3ase

JAOH TT13qel
oa

JAOW
JAONW
JAOKH

dIAOKW

JAONW
JAOKW
JAOHW
JAOH
JAONW
JAOR

325 (0]

[plekc yoe
nod 129
nda asejes
nda zano

ndda 13ano
nd3d 1eAwls
nda 18

ndoa oeapa
no3 DIAIM
nda sdai
003 azls

’
lCCCCCCCCCCCCCI.C.CCC‘CCCCCCCCCCCCCO‘CCCCCCCCCCCCCCC.CCCCCCCCCCCCC-

.
L4
»
¥
L
»
3

26-5-6 01
09$:d : uojiledoy u3isaq
000T$:d/0084 : UOTIEDOT 82INOS

¥da I8A0 pailajsuell apod dsd

’
CCCCCCCCCCCCCCCCCCCCCCCCC.CCCC'CCCCCCCC‘CCCCCCCCCCCCCCCCCC‘CCCCCC-

CCCC.CCClCCCCCC.CCCCCCCCCCCCCCC.C.CCCCCCCCCCC...CCCCCC.CC..CCCCCC.C

L
»
»
L
L]
»

yoe:x‘Ix dAOR
IX‘Tea)dey AAOW
119qet oar
e’ox dRD
0X’duks:x JAON 1T1°qel
e’dusB:x AAON

0y ’Daady FAOH
12q:X‘'08 d3IAOKW

WO ‘08§ THO
Iwo‘oy JIAOK
IWEOH 4o dnaes
|||||||||||||||||||||||||||| ¢
(1) dWe
dON

+(py) :d’0x JAOH
0x’‘+(0H) X JAON
dootpua "’ 1x oa

Ix‘ezyed:x JAOKR
py ‘eseqd:x JAOR
zaooq’ (1¥) :X‘08 Lasr ziooq

Ty Twasy dA0OK 3009

dnaes dRp

ors:d DYO

a34aas nd3 12q

1001$ nda oaad
0000015 nda teayoe

vaLT$ nda azysd

a3L1$ nd3 eseqd

24L18 nd3 xoe

adLis 003 duAs

d4Lis nda Tuwas

soeds d Teursju] 03 10109A IPOD Yyl I9JEUBRIY O pue ‘Ydd WOIJ !¢
5691ppe @seq UOJIBUTIESp 61] PUB ‘9pOD JO 3ZT6 3U] PEII OL 4!

t6-¢-9

ziaa JA0D WOoUdd ol

!

?
CCCCCCCCCCCCCCC.CCCCCCCC'CCC..C'.CCCCCCC..CC'CC.'CCCCCCCCCICC.'CCCo

Appendix E

Hybrid M ultiprbcessor
Performance Test Code
Scheduling Charts

1 od£ 1 weiSoig [onuo) sdrukH jo uoneuasarday onewayos ['d 314

ssaooud pua pg

| |

ssaoaud pua €2 ssooardpua 22 ssaoaudpua g
asoydeuns psu 61 7 atoydeunas 15 ¢y [asoydeurs 10521 £
©B0C — Byl — -] —
ssaoosd pus ssooaud pua ssooard pua

ol oA .

M, BUBRIG 00, MU U0, PUBRR 00, WAm U, PUB 00, [Fuaxd 9

:[:a w 4||»_.~. «t t

daws yvd 9l dn w8 yvd o1 dowsyvd ¢
¢ atoydsung o guoydsung o [uoydsung o
uo widg uo wdg uo wdg

mq am m»gs_

_ﬁs:mm

. " dd eD'edd (o} 1 £l 9
" " dd ed'vd 0 o1 I 1
" . ad eded o] 6 £X €1
. Jopx 4| edey 0 81 ¢4 (4|
“ d ededD d LI €1 1
“ k| 0 d 91 11 o1
" | 0 d 9 (4.4 6
J5x d =0 d 9 ve 8
ey0'd d S £1 L
_ | 14 i1 9
__ 0'd 4 £ 1X S
0'd (4 91 v
d 1 £l £
11 z
£V 1
mo 10 gIno gw oo ut od 0d
0O d aAndRy] IOV Bzowxm
NOLLYDINNWIWOD DNI'TNAIHOS $a1265
SMLV.LS SSA00Ud 1oqe] 105520014

I 4dAL TOUINOD SAINAH 4Od LIVHO ONI'TNAIHIS

~*Jar AN ‘

. . eDed | P 8T

“ " eD'ed L2 eg 91 LT

uy “ " eD%ed ey 4 9z

L " M NO;ﬂmé o mN

“ uyy “ “ eDeded0 sr+eX ¥z

" “ " " eD'ed'ed 0 d %4

e
" “ " uy " O'eded'0'd sr+TX 44
1
uy “ u “ “ “ Oed®d'0'd d 12
170} (EX+TX+891)
M M M M M “ g.ﬂﬂm.o.&oﬂ— L | ON
170}
u “ " Ix “ “ eded'D'dd 14 /4 61
" - " " n)x | eded0dd €D (174 ¥T 81
" 1yx " " eJ'0'dd €D ed 8 174 L1
" X “ 0'dd eQ'ed L2 U ¥T 9]
pino ju gino gut ano ral od od
0 AN ATV aAndaxy
NOLLVIINNIWINOD ONI'TNAFHDS
$9194D)
SNLVLS SSA00Ud 1%qe] 108530014 "Jo1 AON

[ddAL TOYINOD SAIWAH J0d TAVHD DONI'TNATHOS

17/ 91 LE
0 (44 91 9¢
o] £l “4 SE
€D ep] 91 ve
uy €0 X4 91 €€ |
" eD d 61 “4 (4
" €0 ed 174 91 1€
" uy o) ed (11
) " eD'ed 1T 91 6C
o T gno gur ono u od od
o) d ATIORUL MY Andaxy
NOLLVDINNIWINOD ONI'TNA3HOS sopho
g SNLVLS $S300dd 1981 105530014 "J33 AON __

I 3dAL TOUINOD SAINAH JOd LIVHD ONI'TNAIHOS

HYMIPS CONTROL TYPE I

Note ref. Comments

1 The PRI PAR is set up, and the high priority process initiated with runp.

2 The parallel processes witin the high priority process are set up.

3 Process P is placed on the high priority queue by executing a STARTP.

4 Process Q is also placed on teh high priority queue.

5 Process R cintinues by spinning on semaphore la.

6 R sets up a PAR construct.

7 Process Ra is placed on teh high priority queue.

8 R continues by executing an external communication, and so is descheduled. P is
taken off the active queue. '

9 P continues by spinning on semaphore 2a.

10 P sets up a PAR construct.

11 Process Pa is placed on the high priority queue.

12 P continues by executing an external communication and so is descheduled. Q is
taken off the active queue.

13 Q begins by spinning on semaphore 3a.

14 Q sets up a PAR construct.

15 Process Qa is placed on teh active queue.

16 Q continues by executing an external communication, and so is descheduled. Ra
is taken off the active queue.

17 Ra begins by executing an external communicxation and so is descheduled. Pa is
taken from the active queue.

18 Pa begins by executing an external communication and so is descheduled. Qa is
taken from the active queue.

19 Qa begins by executing an external communication and so is descheduled. There
are no processes currently active.

20 There is.noviv a delay of Lw-(168+X2+X3) cycles until R completes its external
communication.

21 R is rescheduled, but may not continue until its sub-process has completed.

22 P completes its external communication after a further x2448 cycles...

23 ... and behaves similarly.

24 Q completes its external transfer after a further X3+48 cycles...

25 ... and behaves similarly.

26 Ra completes its external tramsfer after a further 24 cycles.

HYMIPS CONTROL TYPE I

Note ref. Comments
27 Ra points to its parent process (R) and ends. T
28 This allows R to continue by resetting semaphore la.
29 R points to its successor and ends.
30 Pa completes its external transfer and is rescheduled.
31 Pa points t0 its successor (P) and ends.
32 This allows P to continue by resetting semaphore 2a.
33 P points to its successor and ends.
34 Qa, which is rescheduled, ppoints to iots successor (Q) and ends.
35 This allows Q to continue by resetting semaphore 3a.
36 Q points to its successor and ends.
37 The main high priority process is now able to point to its succesor, the next PRI

PAR construct, and end.

1 2d4 1, wesSo1q jonuo) sdruAH jo uonelussaiday onewayds Z'd St

ssaooud pug 12

ssaoaud —EM«

t .

1 woydeums 19§

.

N0, [euIalxy

1

3
289&_:_%

+w—

LU, eway

y

¢ woydsung

uo uidg i

sscood pug
vl » oL
ss200ud pug «U, Buanxyg
S
Jaoydsuns o ¢ uoydsung
uo uds 6
LI
A0, [eumiy
q 8

ssaoosd pug

\

1 Eoﬁ_-:Busﬁw

$,

00, [eusaXg
4

-89&3.

¢

W, puaxy g

4

| aoydeung
uowds ¢

4

19)x “ “ . " sA'dn L o |w 9! __
) “)) q0'dNn 1 S 6 |&x vl ||
J9)x " " " J0'd'Nn L S 1T e €1
JJx " " odn L's d 91 vT 4!
" " dan 1'sd (o} Sl x I
1Jx " dan L'sd 0 81 144]|
1x n 1's'940 d 14 14 6 _
L's¥dd | n € |Ix 8 __
L'sa0d o et L
S04 e |l 9
40'd oz | e ..L_
0'd @ |e v |
d e | €l £
(4 1 z
1 £V I
S d o} d n od od
AANIeU] AANY X
NOLLVDINNIWWOD ONI'TNAIHOS soph>
SMLVLS SS00ud 1qe] 10852001 JoI AN _

I 4dA.L TOYINOD SdIWAH JOd LIVHD ONI'TNAHHOS

g |o 62

L L i 8¢

L 8 Lz

uy L S 11 S 1 9z

" L S v |91 ST

" uy L's | 12 S ¢4

“ " L'S i 8 £2

“ . uy L's™ 0 Ll 91 44

. . . uy L's™ o} (174 91 1T

“ . “ " L's¥0 d 61 4 (174

. . " " uy L's'¥'0 d 8 61

. “ " " “ 1's'9'0'd n S 9l 81

| exvrxrozn)
" " “ . " uy L'SY'0'd n M7 Ly
L

19X " " “ “ . ‘saDd'n 9 T 91

L S d (o} d n od od
AANIBUY AAINDY XY
NOLLYDINNIWINOD ONI'INATHOS sapko
SNLVLS $S3004d : 1qe] 30853001 "Jo1 10N

1 4dAL TOYLINOD SJINWAH O LIVHI ONI'TNAIHOS

E-10

1T

91

0t

0d

0od

aAnORy|

ANOY

aaxyg

NOLLVIINNWINOD

ONI'ITNAAHOS

SALVLS $S400dd

[oqE]

L7161
J0§$3001d

“J33 AION

1 3dAL TOYLINOD SdIWAH J0d LIVHO ONI'INAIHOS

E-1l

HYMIPS CONTROL TYPE II

Note ref. Comments

1 The PRI PAR construct is initialised, and the high priority (main) process is set
up.

2 The high priority PAR construct is set up.

3 Process P is placed on the high priority queue with a STARTP instruction.

4 Similarly for Q...

5 R
=S
weTo.

8 U continues by spinning on semaphore 1a.

9 U gxecutes an external communication and so is descheduled. P is taken from the
active queue.

10 P continues by executing an external communication and so is descheduled. Q is
taken from the active queue.

11 Q continues by spinning on semaphore 2a,

12 Q executes an external communication and so is descheduled. R is taken from the
active queue.

13 R executes an external communication and so is descheduled. S is taken from the
queue.

14 S continues by spinning on semaphore 3a.

15 S executes an external communication and so is descheduled. T is taken from the
active queue.

16 T executes an external communication and so is descheduled. There are no
remaining active processes.

17 There is now a delay of Lw-(X2+X3+120) while U completes its transfer.

18 U continues by pointing to its successor and ending.

19 After a further 8 cycles, P completes its communication and is rescheduled.

20 P continues by resetting semaphore la.

21 P points to its successor and ends. Q is rescheduled.

22 Q continues by pointing to its successor and ending.

23 R is rescheduled after a further 8 cycles.

24 R continues by resetting semaphore 2a.

25 R points to its successor and ends. S is rescheduled.

26 S points to its successor and ends.

HYMIPS CONTROL TYPE II

Note ref. Comments
27 T is rescheduled after a further 8 cycles.
28 T continues by resetting semaphore 3a.
29 T points o its successor and ends.
30 The main high priority process may now point to its successor (the next PRI PAR
construct) and end.

weidolg jonuo) surpadig sdrudy jo uonejussarday onewayds ¢H 31q

ssa001d pua

42

ssoodpe 22

!

¢ asoydewas wsau |12

'

|

ssaooud puw

o |

UL, PR N0, [BWING 02
eat 4

dn1es Yyvd 61

t

¢ asoydewag
uowds @)

: 4,

ssoaudpo 24

!

ssoodp 6

!

7 aoydewas sl g 1 atoydewas wsu @

A

00, [ewan p|

t

Z woydewag
woudg Tl

o?

/'

|

ssaooud pua

dnyasyvd 9

t

1 atoydeusog
uo wdg §

* 1

—v—<n—N

Uvd Nid

E-14

; . H ed'dd) € | s1 __
“ " dd O'ed ey 1" o1 % __
d " . ad O'ed ey o1 pTHmp €1 __
“) 0'dd ed i vi v A\ __

" " dd edey 0 (4 X H

" 1hx 4 edey 0 (174 ¢4 o1
; d ed 0 d 61 i 6 __

. d o0 d 81 £X 8

aayx 2 (o) d L 4 L

ed'0'd d 9 11 9
0'd d S X S _
0'd % 91 v __
d € |e €|l

(4 1 z

I £y 1

no u mno mo [H Ood Ood
0 d aATIORY| Amy ANdAXY
NOLLVDIINNIWINOD ONI'INAFHDS sk |
SNLVLS SS300ud 1°qe] JOS59001 13y AON

TOYINOD ANI'TAdId SdINAH ¥0d LIVHO ONI'TNAIHOS

E-15

Y4 91 9
d w 91 Y4
d 1T “hy ¥
uy d “-gX+ey €7
“ d : 6 91 w
" A 8 “ly 12
uy " d A 174
" " dd ed ve ot 61
“ " ed L1 91 81
“ " dd ed 0 91 “4 L
" 0} " | dd ed 0 St (AL 91
no m no ul no u od od
O aATORY] ATV ANdAXY
NOLLVIINNIWINOD ONI'INAAHDS sapoko)
SNLY.LS SSI00dd 19qey 10853001d 124 AN

TOULNOD ANI'THdId SAINAH J0d LAVHD DONI'TNAIHOS

E-16

HYMIPS PIPELINE CONTROL

Note ref. Comments

1 PRI PAR construct is initialised.

2 The high priority process is set up.

3 Process P is placed on the high priority queue by executing a STARTP
instruction.

4 Similarly for process Q.

5 R continues by spinning on semaphore la.

6 Process Ra is placed on the high priority queue.

7 R executes external communication and so is descheduled. P is taken from the
queue.

8 P continues by spinning on semaphore 3a.

9 Pa is placed on the queue.

10 P executes an external communication and so is descheduled. q is taken from the
queue. :

11 Q continues by spinning on semaphore 2a.

12 Q executes an intenal communication . However, the channel is empty and so Q
is descheduled. Ra is taken from the queue.

13 Ra continues by executing an internal communication, corresponding to that of Q.
The transfer takes place and Q is rescheduled.

14 Ra points to its successor and ends. Pa is taken from the queue.

15 Pa continues by executing an internal communication. The channel is empty and
so Pa is descheduled. Q is taken from the queue.

16 Q continues by executing an internal communication, corresponding to that of Pa.
The transfer takes place and Pa is rescheduled.

17 Q continues by resetting semaphore 2a.

18 Q points to its successor and ends. Pa is taken from the queue.

19 Pa points to its successor and ends.

20 There is now a delay until R completes its link transfer.

21 As Ra has completed, R is allowed to continue by resetting semaphore Sla

22 R points to its successor and disappears.

23 P completes its link transfer and is rescheduled.

24 P is allowed to continue by setting semaphore 3a.

25 P points to its successor and disappears.

HYMIPS PIPELINE CONTROL

Note ref. Comments
26 The high priority process points o its SUCCessor (the next PRI PAR construct) and
ends.
27
28

Appendix F

Background References

Further background on the work presented in this thesis is presented in the following

conference papers:

Gould G L, Bowler I and Purvis A, “Real-Time, Multi-Channel Digital
Filtering on the Transputer”, IEE Symposium on Computer
Architectures and Digital Signal Processing, Hong Kong, September

1989.

Gould G L, Linton K N, Terepin S and Purvis A, “Multiprocessor
Architectures and Allocation Strategies for Digital Audio Mixing
Consoles”, Reproduced Sound 6, Windermere, Great Britain, November

1990.

Linton K N, Gould G L, Terepin S and Purvis A, "Real-Time, Multi-
Channel Digital Audio Processing: Scalable Parallel Architectures and
Taskforce Scheduling Strategies”, 1991 IEEE Conference on Acoustics,

Speech and Signal Processing, Toronto, Canada, May 1991.

Linton K N, Gould G L, Terepin S and Purvis A, "Optimising Massive
Parallel Architectures for Real-Time Digital Audio”, 89th Audio

Engineering Society Convention, Los Angeles, USA, September 1990.

