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Abstract 

For many years research in artificial intelligence followed a symbolic paradigm 

which required a level of knowledge described in terms of rules. More recently 

subsymbolic approaches have been adopted as a suitable means for studying many 

problems. There are many search mechanisms which can be used to manipulate 

subsymbolic components, and in recent years general secirch methods based on 

models of natural evolution have become increasingly popular. This thesis exam­

ines a hybrid symbolic/subsymbolic approach and the application of evolutionary 

algorithms to a problem f rom each of the fields of shape representation (finding an 

iterated function system for an arbitrary shape), natural language dialogue (tuning 

parameters so that a particular behaviour can be achieved) and speech recognition 

(selecting the penalties used by a dynamic programming algorithm in creating a 

word lattice). These problems were selected on the basis that each should have a 

fundamentally different interactions at the subsymbolic level. 

Results demonstrate that for the experiments conducted the evolutionary algo­

rithms performed well in most cases. However, the type of subsymbolic interac­

t ion that may occur influences the relative performance of evolutionary algorithms 

which emphasise either top-down (evolutionary programming - EP) or bottom-up 

(genetic algorithm - GA) means of solution discovery. For the shape representation 

problem EP is seen to perform significantly better than a GA, and reasons for this 

disparity are discussed. Furthermore, EP appears to offer a powerful means of find­

ing solutions to this problem, and so the background and details of the problem are 

discussed at length. Some novel constraints on the problem's search space are also 

presented which could be used in related work. For the dialogue and speech recog­

nit ion problems a GA and EP produce good results w i th EP performing slightly 

better. Results achieved wi th EP have been used to improve the performance of a 

speech recognition system. 
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Chapter 1 

Introduction 

Art i f ic ia l Intelligence ( A I ) lies at the intersection of many disciplines, including 

computer science, psychology, philosophy, mathematics, engineering and linguis­

tics. Several definitions of A I have been suggested, but for this work that given by 

Beardon (1989) is adopted: 

A I is the field of research concerned with making machines perform 

tasks which are generally thought of as requiring human intelligence. 

Although A I is aimed at solving problems which appear to require human in­

telligence i t is not suggested that the methods used are identical to those used by 

humans. The modelling of human mental mechanisms is known as cognitive sci­

ence. The goals of A I and cognitive science are similar in that they both require a 

computer program to be able to perform some task. In addition a cognitive model's 

success is determined by how plausible a model of human mental mechanisms i t 

provides. A I models of in te l l igent 1 behaviour typically use any means available and 

make no claim that they are in any way similar to the processes used by humans. 

Applications of A I are wide ranging and include (amongst many others) com­

puter vision, game playing, automated reasoning, natural language understanding 

and expert systems. Although the fields of applications are diverse there is often a 
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common reliance on techniques pertaining to knowledge representation and search. 

The subject of knowledge representation is in itself a research area wi th in A I . 

Many data structures have been suggested as suitable means of encoding informa­

tion including: slot-and-filler structures, logical formulas and production rules. In 

deciding which structure is the most suitable for representing the knowledge asso­

ciated wi th a particular problem, there are two important features which must be 

considered (Rich 1990). First of all i t must be decided whether the representation is 

powerful enough to represent all of the required knowledge. A second consideration 

is whether the representation is able to support a reasoning mechanism capable of 

inferring the necessary conclusions f rom the represented knowledge. 

Search is a process which can be viewed as the systematic exploration of a space 

of states which represent solutions to a problem. There are five parts to such a 

process: the state space, the in i t ia l state(s), a characterisation of the goal state(s), 

the allowed transitions between states, and any information regarding the most 

useful means of proceeding. Viewed in this way a search algorithm traverses the 

space of possible solutions using legal moves (which may be guided by heuristics) 

in an attempt to move f rom an in i t ia l state to a goal state. 

The knowledge representation and search method used in tackling a problem 

must complement each other since a particular representation determines the search 

space which is to be searched. Some problems, although easily solvable in theory, 

may be far more diff icul t to solve in practice i f a representation is chosen which 

results in the need for a greatly increased search. Consider, for example, the 

problem of determining whether or not an integer is contained wi th in some list of 

integers. A n array, each element of which contains one of the integers, may be used 

as a suitable data structure wi th which to represent the list. A linear search may 

be used to check whether or not some integer is contained wi th in the array. Clearly, 

however, such a search mechanism is not a very efficient means of approaching the 

problem. By using a more suitable representation, e.g., a tree, a more efficient 

search algorithm can be used, e.g., a. binary search. 
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1.1 Symbolic and Subsymbolic Represent at ions 

Traditionally a purely symbolic paradigm has been used in A I to represent knowl­

edge. Symbols refer to objects and relations i n the domain of interpretation, and 

the search mechanisms which are used to examine the space of the representation 

are often heuristic in nature. Such an approach reflects the physical symbol system 

hypothesis articulated by Newell and Simon (1976, p. 116): 

A physical symbol system has the necessary and sufficient means for 

general intelligent action. 

By "necessary" we mean that any system that exhibits general in­

telligence w i l l prove upon analysis to be a physical symbol system. By 

"sufficient" we mean that any physical symbol system of sufficient size 

can be organized further to exhibit general intelligence. By "general 

intelligent action" we wish to indicate the same scope of intelligence as 

we see in human action: that in any real situation behaviour appro­

priate to the ends of the system and adaptive to the demands of the 

environment can occur, wi th in some l imits of speed and complexity. 

The argument is, therefore, that intelligence can be achieved by formal oper­

ations which act on symbol structures. A challenge to this approach emerged in 

the late 1980's wi th the advent of parallel distributed processing (PDP) (Rumel-

hart et al. 1986; McClelland et al. 1986), the paradigm of which contends that a 

physical symbol system is neither necessary nor sufficient for a system to exhibit 

intelligence. The philosophy underlying the emergence of PDP is beyond the scope 

of this thesis and is discussed in detail elsewhere (see, e.g., Luger and Stubblefield 

(1993)). However, one of the reasons that the PDP approach emerged is the lack 

of f lexibi l i ty which is often inherent wi th in a purely symbolic system. For exam­

ple, an expert system is able to perform perfectly adequately w i th in its domain 

of application, but should i t encounter a problem outside of that domain i t wi l l 

typically be unable to suggest a solution. On the other hand, human experts wi l l 

attempt to answer the problem to the best of their ability. Rather than arguing for 
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one approach to be applied in all situations Calmet and Campbell (1993, p. 13) 

state that: 

... i t is widely believed that there are some activities of intelligence 

(e.g. recognition of multidimensional patterns) where an approach op­

erating at some lower level than a level of description in symbols is more 

appropriate than the traditional logical-symbolic approach. 

A subsymbolic approach to knowledge representation is one in which the em­

phasis is not on the use of symbols to represent objects and relations, but instead 

on the collective behaviour produced by the interaction of a number of simple in­

teracting components (Luger and Stubblefield 1993, p. 516). Such a paradigm 

views knowledge as being represented impl ic i t ly in patterns of interaction between 

components. 

Neural networks are perhaps one of the best known examples of a PDP ap­

proach. Inspired by biological brains, a neural network is a computational archi­

tecture composed of a large collection of simple processing units. The units do not 

correspond to concepts, and, i f examined in isolation, are capable of very l i t t l e . 

A neural network is not programmed wi th information, but is instead trained by 

exposure to large amounts of data, and typically uses a means of reinforcement to 

alter the weights (loosely corresponding to the current experience) wi th in the net­

work. Patterns of interaction emerge which represent the network's representation 

of knowledge. 

Luger and Stubblefield (1993, p. 693) argue that neural networks and symbolic 

A I are simply different models of intelligence, each of which discuss intelligence in 

a different language. The two approaches ask different questions, propose different 

answers and interpret any results differently. Although i t is hoped that one day a 

theory may be produced that can link the two approaches this is probably some 

way off. 
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To attempt intentionally to solve a problem using a purely symbolic or subsym-

bolic approach is often not really an attempt at f inding the best possible solution, 

but rather to examine the l imits of the approach itself. One of the aims of this 

thesis is to demonstrate that, for some problems at least, a combination of the sym­

bolic and subsymbolic methods can result i n an approach which can enjoy some of 

the advantages offered by each method. 

As an example of such an hybrid approach consider how a computer can be 

taught to pla3' a good game of chess. The symbolic approach would involve the 

construction of a set of heuristics which were based on the knowledge that has been 

accumulated over the centuries for which the game has been played. This would 

include rules on standard openings, end games, controlling the centre of the board, 

and using one piece to protect another. A subsymbolic approach would involve 

the computer learning how to play by participating in a large number of games, 

and learning f r o m the experiences encountered. In developing a modern chess 

playing computer a vast amount of standard knowledge may be incorporated, yet 

adaptation be allowed to occur so that the opponent's strengths and weaknesses 

can be taken into account. 

A symbolic approach is often favoured when the problem can be encoded 

in terms of a 'convenient' representation. A 'convenient' representation can be 

thought of as one which has a range of properties which offer advantages that may 

include (amongst many others): a f i r m logical base, conciseness and maintainabil­

ity. However, there are certain facets of knowledge which humans are unable to 

encode. Reasons for this include: (1) humans don't have the knowledge and so 

can't explici t ly encode i t , and (2) the level of knowledge is below that of conscious 

knowledge (e.g., pattern recognition). In such situations a subsymbolic represen­

tation is more appropriate. 
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1.2 Search 

Search methods generally fall into two categories, strong and weak. A strong search 

method is one which is rich i n task-specific knowledge and often contains specialised 

heuristics that help guide the search. Such a method is often l imi ted in application 

to the task for which it is designed, and can be of l i t t l e or no use outside of that 

domain. However, for appropriate domains, the method is generally efficient at 

finding appropriate solutions. A weak search method is task independent, but is 

usually less efficient, because of its lack of knowledge about the domain to which 

i t may be applied. 

Symbolic search methods typically use heuristics as a strategy by which a prob­

lem space can be selectively searched.- Heuristics guide the search away f rom less 

promising areas to those where i t is more likely to be successful. Although a good 

set of heuristics can in many cases efficiently f ind an op t imum solution to a problem 

they are not infallible. 

Examining the mechanisms by which subsymbolic components can be manipu­

lated (search) and selecting that which w i l l perform best for a particular problem 

has become increasingly important . This is especially so when there are complex 

interactions between the components. In recent years general search mechanisms 

based on models of natural evolution have become increasingly popular i n attempt­

ing to solve many optimisation problems. 

1.2.1 Subsymbolic Processing using Evolutionary Algo­

rithms 

In at tempting to solve problems, the solutions of which are represented in terms 

of subsymbolic components, some mechanism is needed by which the components 

can be manipulated (Nettleton and Garigliano 1994e). The aim of the mechanism 
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is to optimise the behaviour of the realisation of the encoded solution wi th in the 

environment in which i t is to be tested. Neural networks offer one approach to 

the manipulation of subsymbolic components based upon training. Evolutionary 

algorithms approach the problem in terms of competit ion between alternative con­

cepts, and aim to optimise the concept's performance wi th regard to a funct ion 

that provides a measure of performance wi th in the environment. 

Evolutionary algorithms (EAs) model natural evolution and are robust search 

methods which have been applied to a wide range of problems. By maintaining 

a population of solutions, an EA is able to exploit those which are promising 

while exploring other regions of the search space. I n this way a parallel search is 

achieved. New solutions are produced as variations of those which have survived 

to that point in time, and the worst solutions are probabilistically culled using a 

"survival of the fit test" strategy (analogous to natural selection). The population 

iteratively evolves toward optimal solutions. Further details of EAs, together w i th 

their philosophical underpinnings, are discussed in Chapter 2. 

As has already been stated one of the aims of this thesis is to demonstrate that 

symbolic and subsymbolic approaches can be successfully combined in at tempting 

to solve problems. The second main aim of this work is to investigate and explain 

the relative performance of different forms of EAs when applied to subsymbolic 

manipulation problems for which there are varying types of complex interaction 

between the subsymbolic components. 

1.3 Subsymbolic Interactions 

The behaviour of a solution is its response when tested in the corresponding envi­

ronment. Interactions between the components of an encoded solution can result 

in complex behaviour of the solution. In some problems the representation can 

consist of blocks of components, combinations of which can represent whole or 
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partial solutions in their own right. I n other cases the blocks are just the indi­

vidual components themselves. Two types of interaction between components are 

distinguished. 

1. 'Strong' interaction — changing the value(s) of a component (block of com­

ponents) of an encoded solution can be expected to produce changes in the 

solution's behaviour. 

2. 'Weak' interaction — changing the value(s) of a component (block of compo­

nents) of an encoded solution can be expected to have l i t t l e or no effect on 

the solution's behaviour. 

These forms of interaction are qualitative and no metric by which their strength 

could be measured is provided. Different combinations of the above interactions at 

the subsymbolic level are possible including: 

1. S t r o n g - S t r o n g : There is a strong interaction between blocks of components, 

and a strong interaction between the components wi th in each block. 

2. S t r o n g - W e a k : There is a strong interaction between blocks of components, 

and a weak interaction between the components wi th in each block. 

3. S t r o n g : No blocks of components exist, but there is a strong interaction 

between the components. 

There are of course many other possible forms of interaction, but i t is felt that 

the above selection offer a broad enough base for the performance of EAs on them 

to be worthy of further investigation. Specific examples of problems which have 

these interactions are now required. The subject of A l offers a field which contains 

an example of each. 
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1.4 Example Problems 

The problems which are considered are all f r o m the subject of A I . There are sev­

eral reasons why A I provides a suitable field of study. First of al l , much symbolic 

work has been conducted in A I and some of this provides a framework on which 

a subsymbolic approach can be bui l t . I t is, therefore, only necessary to develop 

a subsymbolic representation for each of the problems considered, the symbolic 

one existing already. Secondly, there has been much debate as to whether a sym­

bolic or subsymbolic representation is the most appropriate for many A I problems. 

This thesis provides some evidence that leather than concentrating on applying a 

single paradigm an approach that emphasises the interplay between the two can 

be successful (Garigliano and Nettleton 1994). Finally, i t is worth noting that 

these problems were not selected on a purely ad hoc basis, but were chosen because 

they are problems which have been researched wi th in the Department of Computer 

Science at the University of Durham (Giles 1990; Jones 1994a; Collingham 1994). 

The problems which exhibit the types of interaction between components dis­

cussed above are briefly introduced below. Each problem is presented in greater 

detail i n other more appropriate parts of this thesis. 

S t r o n g - S t r o n g : Shape representation using Iterated Function Systems (IFSs) — 

I n adopting an IFS representation, the shape to be encoded is represented by pr im­

itive shapes (those f rom which the original is to be reconstructed) which are smaller 

linearly deformed copies of the shape to be encoded. A symbolic means of manip­

ulating the primitives could be used, but since the primitives can be described in 

terms of contraction mappings a more flexible subsymbolic (real-valued) represen­

tation is adopted. 

The contraction mappings interact strongly to determine the shape that is pro­

duced. The individual components of any particular contraction mapping also 

interact strongly. 
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S t r o n g - W e a k : Tuning the parameters of the dialogue module of a large scale nat­

ural language processor — A symbolic based theory of dialogue has been proposed 

which models the structure of a dialogue tha.t can be expected to occur in a partic­

ular situation. In order to help order the appropriateness of particular responses 

to a particular situation a subsymbolic (integer) representation is adopted. 

There are blocks of parameters which control the type of response (e.g., happy, 

angry) and there is a strong interaction between these. However, w i th in each block 

the interactions are weak wi th the emphasis being on how a response is carried out 

and not what is to be said. 

S t r o n g : Selecting the penalties used by a dynamic programming algorithm in 

word lattice creation — A word lattice is a symbolic data structure that can be 

used at the acoustic matching stage of a speech recognition system. A dynamic 

programming algorithm is used to assign ranks to elements of the lattice. The 

dynamic programming algorithm contains penalties for the expected errors and 

these are represented subsymbolically (real-valued). 

Al ter ing the value of each of the penalties results in changes to the ranks of words 

wi th in the word lattice created. There is, therefore, a strong interaction between 

the penalties. 

In order to examine the 'depth' of an approach to problem solving based upon 

a hybrid symbolic/subsymbolic representation and the use of EAs, one of the prob­

lems (the shape representation problem) is discussed in great detail. This includes: 

a fu l l account of the underlying theory (Chapter 3); an examination of how this 

theory can be applied in practice, and a comprehensive review of the literature on 

other approaches to solving the problem (Chapter 4); an extensive set of experi­

ments (Chapter 5); reductions i n the search space of the subsymbolic representation 

(Chapter 6). The other two problems are f rom completely different fields (natural 

language processing and speech recognition), and axe used to show the ' w i d t h ' of 

the approach. As such these problems are discussed in much less detail. 
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1.5 Cri teria for success 

The success of this work wi l l be evaluated in terms of providing evidence for or 

against the following statements: 

1. A combination of symbolic and subsymbolic methods result in an approach 

which can improve on the current approaches to several problems. 

2. Evolutionary algorithms offer an approach to subsymbolic manipulation which 

is able to overcome different forms of interaction that can occur between the 

representation's subsymbolic components. 

The method adopted in collecting evidence is to take several open problems 

f rom different fields of A I , apply the above approaches to them, and evaluate the 

results achieved. 

1.6 Thesis Structure 

Chapter 2 outlines the concept of an EA and in particular examines the paradigms 

underlying the different models of the evolutionary process which have emerged. 

Genetic algorithms, evolutionary programming and evolution strategies are three 

of the models which have emerged. Although al l are based on evolutionary prin­

ciples, each place a different emphasis on what drives the evolutionary process. 

These models and some of their criticisms are discussed, but no details of their 

implementation are given in this chapter (this being included in later chapters). 

Two forms of interaction (pleiotropy and polygeny) which can occur between the 

components of a subsymbolic representation are described, the effects of which 

account (in part) for some of the results of later chapters. 

Chapter 3 is the first of four chapters which discuss in detail the shape repre­

sentation problem. The problem is discussed in detail to show the 'depth' of the 
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approach adopted. This chapter is the first of two which formalise the problem 

of using IFSs for shape representation. The chapter is purely theoretical and in­

troduces the mathematics relating to the geometric properties of IFSs. The first 

two sections of the chapter detail some basic concepts of metric topology, and can 

be safely skipped by a reader acquainted wi th such concepts. The metric space 

on which IFSs are defined is introduced, and the definition of an IFS given. The 

remainder of the chapter discusses some properties of IFSs which are relevant to 

their use as a shape representation scheme. 

Chapter 4 completes the formal framework necessary for using IFSs in two-

dimensional shape representation. In particular two Lemmas show that a good 

IFS representation can be found when the underlying space is either continuous or 

discrete. The discrete case is of particular relevance to computer images. Methods 

for generating a shape which is encoded as an IFS are discussed, and the subsym-

bolic interaction between an IFS's components is demonstrated pictorially. The 

remainder of the chapter reviews the literature on using IFSs for shape represen­

tation. 

Chapter 5 is the first of the experimental chapters of the thesis, and describes 

how EAs can be applied to the problem of finding an IFS for a shape. As this prob­

lem is the one used to demonstrate the 'depth' of the approach, a comprehensive 

set of experiments are conducted, and their results discussed in detail . Solutions 

to the problem are represented subsymbolically, and details are given on how a ge­

netic algorithm, evolutionary programming and three hil l-cl imbing algorithms can 

be applied to the manipulation of the subsymbolic components. Three shape rep­

resentation problems are considered, and the results of the experiments conducted 

are presented and discussed. 

Chapter 6 is the final chapter of the four which examine in depth the shape 

representation problem. Several novel constraints are introduced which can be 

used to reduce the search space for finding an IFS for an arbitrary shape. The 

constraints are introduced since reducing a problem's search space is one way in 
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which to improve the search process. The constraints introduced although non-

trivial are of a low computational complexity, and can be expected to be of use to 

a range of search algorithms which attempt to find an IFS for an arbitrary shape. 

The constraints are not applied in the experiments carried out in Chapter 5 since 

they might bias a comparison between the approaches in favour of evolutionary 

programming. 

Chapter 7 is the first of two chapters which demonstrate the 'width' of the 

approach adopted. As such the problem examined in this chapter is not discussed 

in as much detail as that for shape representation. A symbolic theory of dialogue 

is introduced which is used as the basis for the dialogue module of a large-scale 

natural language processor. However, so that the appropriateness of responses 

to a particular situation can be ordered a subsymbolic (integer) representation is 

incorporated. These parameters govern (in part) the behaviour of the processor 

and have to date been selected by hand. The chapter outlines an approach to 

using EAs in the fine-tuning of the parameters so that a particular behaviour can 

be achieved. 

Chapter 8 discusses the second (and final) problem which demonstrates the 

'width' of the hybrid symbolic/subsymbolic approach. The concept of a word 

lattice is introduced — a symbolic data structure which can be used at the acoustic 

matching stage of a speech recognition system. A dynamic programming algorithm 

is described which is used to assign ranks to elements of the lattice. The penalties 

used by the algorithm are subsymbolic (real-valued) in nature and used to be 

selected by hand. The chapter discusses how EAs can be used to optimise the 

parameters. Evolutionary programming is then used to select parameters which 

lead to the improvement of a speech recognition system. 

Chapter 9 provides a conclusion to the thesis, the general results of which can 

be briefly summarised as: 

1. The method of adopting a symbolic approach when convenient, and then 

moving to a subsymbolic approach to allow for greater flexibility and/or fine-
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tuning, has been successful applied to several problems. The examples came 

from the field of A I . 

2. Evolutionary algorithms are able to find 'good' solutions to problems which 

exhibit different forms of interaction at the subsymbolic level. 

More specific conclusions are that: 

1. Evolutionary programming outperforms a genetic algorithm in finding an IFS 

representation for several shapes, and offers a powerful means of tackling the 

problem. 

2. When a subsymbolic representation is adopted the search space of IFS encod­

ings for an arbitrary shape can be greatly reduced by imposing non-trivial 

constraints on the IFS's components. These constraints can be efficiently 

implemented, and are expected to be of use to a range of search algorithms. 

3. Evolutionary algorithms can be used to fine-tune the parameters within the 

dialogue module of a large scale natural language processor. 

4. Evolutionary algorithms provide a means of selecting parameters for use in 

the dynamic programming phase of a speech recognition system. Results 

achieved with evolutionary programming have been used to improve the per­

formance of a speech recognition system. 



Chapter 2 

Evolutionary Algorithms 

The chapter begins with a brief review of several subsymbolic search strategies and 

discusses some of their shortcomings. The concept of an evolutionary algorithm 

(EA) is introduced, and the relationship between the encoding of a solution and its 

behaviour discussed. In particular Section 2.3 introduces the effects of pleiotropy 

and polygeny, which are forms of interaction that can occur between the subsym­

bolic components of a solution's representation. These effects account (in part) for 

some of the results given in later parts of this thesis. 

Several forms of EA are introduced. These algorithms are inspired by the search 

process of natural evolution and have been successfully applied to a wide range of 

problems. Three main streams of EAs have been independently developed: ge­

netic algorithms (Holland 1975; Goldberg 1989), evolutionary programming (Fogel 

et al. 1966; Fogel 1992a) and evolution strategies (recent review by Back et al. 

1991). Although all are based on evolutionary principles, each place a different 

emphasis on what drives the evolutionary process. The underlying paradigms of 

these algorithms are compared and contrasted, and the chapter concludes with a 

summary. 
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2 . 1 Introduct ion 

Subsymbolic approaches have been adopted in attempting to solve many A I prob­

lems. Such a strategy is appropriate when it is necessary to operate at a level 

below that of traditional logical-symbolic approaches. In situations such as these a 

procedure is needed by which the subsymbolic components can be manipulated in 

order to find a near optimal solution to the problem. This procedure must not only 

be capable of producing near optimal solutions, i t must also be able to do so in an 

efficient manner. Occasionally some specialised algorithm exists which can carry 

out this manipulation in the optimal or near optimal number of steps. However, 

it is often the case that no such procedure is available and some other approach 

needs to be adopted. 

Solutions which are coded by some underlying structure need to be tested in 

the environment, and some measure of performance returned. The measure of 

performance allows for a 'fitness landscape' to be envisaged and the aim of the 

optimisation process is often intuitively considered as finding the solution which 

corresponds to the 'highest peak' of the landscape. The process of optimisation 

is often carried out by manipulating the coding of the structure and testing new 

versions in the environment. Many alternative methods for this manipulation have 

been suggested. The remainder of this section discusses some of the simplest meth­

ods and briefly examines the concept of a fitness landscape. 

It is often the case that the search space, in which solutions to a problem exist, is 

extremely large and complex. For any search algorithm in such a space there exists 

a fundamental trade-off between exploration and exploitation. An example of a 

totally exploratory algorithm would be the enumeration of all cases, and selecting 

the best. This procedure, although eventually yielding the optimum solution, is far 

too inefficient to be of an}' practical use in addressing most real-world problems. 
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Figure 2.1: Example of how hill-climbing is dependent on the underly­

ing representation. 

Representation Representation 

I 

B 
X 

Integer C Binary 

0 4 8 12 16 00000 00010 00100 01000 10000 

In order for an algorithm to search a space efficiently it must be able to ex­

ploit opportunities for improved performance. This often involves making use of 

information acquired from previous evaluations of possible solutions. If such in­

formation is not used then the search could degenerate to the point at which it is 

little better than a random sampling of the solution space. An example of a search 

strategy which makes use of current information is a hill-climbing algorithm. 

Hill-climbing algorithms concentrate the search effort around the best solution 

found so far (exploitation), but it is likely that discovered solutions will be subop-

timal on non-convex surfaces, because the sequence of trials will stagnate at local 

optima. Intuitive concepts such as 'peaks' and 'valleys' are often used to describe 

how such algorithms traverse the fitness landscape. However, such analogies need 

to be made with care, as Figure 2.1 and the following discussion demonstrates 

(Spears 1994; Jones 1994b). 

The objective of a hill-climbing algorithm is to maximise the (local) fitness, 

i.e., climb one of the 'peaks'. The normal procedure for this involves making small 

changes to the solution's representation and accepting as the new best a solution 

which outperforms the current one. Following this method and using an integer 

representation, climbs (with reference to Figure 2.1) such as those from X to X i , 

and from Y to Y i , would intuitively be how the search would be expected to 
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proceed. With a binary representation a climb from A to B would be expected, 

but what about one from A to C? In. fact both of these are equally likely since 

B = 00111 and C = 00010 are both exactly one 'small change' (in the solution's 

encoding) away from A = 00110. This would appear to contradict the idea of 

a 'h i l l 1 climber since a 'valley' appears to have been traversed. The concept of 

what constitutes a hill-climb is the cause of some debate and is dependent on the 

representation and operators used. 

Simulated annealing (Kirkpatrick et al. 1983) is a search algorithm with a nat­

ural metaphor. Inspired by the process of annealing crystalline solids the algorithm 

models the behaviour of thermodynamic state transitions. A starting temperature 

T 0 is specified and an annealing schedule imposed such that T —> 0. The temper­

ature can be viewed as a control on the random search of the space; the larger 

the value of T, the larger the expected movement in the search space. One of 

the important features of simulated annealing is a theory which provides sufficient 

conditions for asymptotic convergence to the global optimum. The main criticism 

of the approach is based on the setting of the initial temperature; too low and the 

algorithm may converge to a sub-optimal solution, too high and the algorithm will 

be slow. 

Natural processes have also inspired a class of search algorithms known as evo­

lutionary algorithms. A feature of both random search and hill-climbing is that 

they discard much of the information which is presented to them during the course 

of a search. In order to try and retain some of this information EAs maintain a 

population of solutions. 

EAs are loosely based upon the Darwinian principles of biological evolution and 

in fact many of the strategies and operators used in their application bear similar 

names to their biological counterparts, e.g., survival of the fittest, crossover and 

mutation. An EA creates a set of possible (usually randomly generated) solutions 

to the problem under consideration and calls this the initial generation. Successive 

generations are produced via a series of operators which act on the previous gener-
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ation. The operators produce new solutions which are variations of those that have 

survived to that point, and probabilistically culls the worst using a "survival of the 

fittest" strategy. This process continues until the desired number of generations 

has been completed. The solutions in the final generation are in effect the 'answers' 

to the search problem. The main advantage of EAs is their ability to be able to 

consider many solutions 'at the same time' and from these solutions produce other 

solutions that converge to the optimal. 

Over the past 30 years, three main streams of evolutionary algorithm have been 

independently developed: genetic algorithms (Holland 1975; Goldberg 1989), evo­

lutionary programming (Fogel et al. 1966; Fogel 1992a), and evolution strategies 

(recent review by Back et al. 1991). Each of these have resulted in robust optimi­

sation techniques that have been successfully applied to a wide range of problems. 

The differences between the EAs stem from the primary forces modelled from nat­

ural evolution. The underlying philosophies of EAs and how they model natural 

evolution are discussed later in this chapter. 

2 o 2 Outline of an Evolutionary Algorithm 

The generic shell for an EA is given by Angeline (1993, p. 26) as: 

function Evolutionary-Algorithm(population, s i z e ) ; 
begin 

for i from 1 to s i z e do 
f i t n e s s [ i ] := evaluate(population[i]); 

while not(Tester(bestof(population, f i t n e s s ) ) ) do 
begin 

Select(population, f i t n e s s ) ; 
Reproduce(population); 
for i from 1 to s i z e do 

f i t n e s s [ i ] := eva l u a t e ( p o p u l a t i o n [ i ] ) ; 
end 
return bestof(population, f i t n e s s ) ; 

end; 
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The inputs to the algorithm are a number, s i z e , of solutions and an array 

which contains them. The array of solutions is known as a population and the 

input array is called the initial population. A fitness function is used to evaluate 

the performance of each member of the population, and the Tester function checks 

to see if the best solution of the population satisfies some termination criteria. 

If the termination criteria are not met then some solutions are selected from 

the population (parents) and used to generate new solutions (children). The child 

solutions either, directly replace members of the parent population, or compete 

with them for places. (The size of the population is usually required to remain 

constant.) Once the Reproduce function has been applied, the current population 

of solutions is evaluated using the fitness function, and the selection, reproduction 

process is then repeated until the termination criteria are met. Each cycle of the 

Select-Modif y-Evaluate loop is known as a generation. 

2.3 Genotype and Phenotype 

In attempting to solve many optimisation problems for which a subsymbolic ap­

proach has been adopted there is often more than one way in which solutions may 

be represented. For example, if the solution is known to be numerical, a binary 

or floating point representation may be adopted. The underlying representation 

of a solution is known as the genotype and can be considered as a solution's 'en­

coding'. The phenotype is the behavioural expression of the genotype within some 

environment. 

In natural evolution, genetic material contains the information required to gen­

erate an organism (although its development depends in part on external environ­

mental conditions). Pleiotropic and polygenic effects often make the understanding 

of the genotype extremely difficult. Pleiotropy is the effect of a single gene affect­

ing several phenotypic traits. Polygeny occurs when a single phenotypic effect is 
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determined by the interaction of many genes. These effects occur in many different 

subsymbolic representations and account for (in part) some of the results of the 

experiments discussed in later chapters of this thesis. 

2 o 4 Genetic Algori thms 

Holland (1975) proposed a genetic algorithm (GA) as an efficient search mechanism 

based upon modelling the evolutionary process in nature. GAs are perhaps the best 

known EA and have been applied to a wide range of problems (e.g., Grefenstette 

1985, 1987; Schaffer 1989; Belaw and Booker 1991; Forrest 1993). The underlying 

coding of a population of individuals is manipulated in an attempt to find a struc­

ture which maximises the performance of the corresponding phenotype within some 

environment. The emphasis of the approach is on the bottom-up construction of 

individuals by incorporating specific genotypic transformations. 

There are many possible operators which can be used to manipulate the geno­

type (a string of data) of an individual. Two of the simplest operators which are 

commonly used are those of mutation and crossover. A crossover operator usually 

acts on two strings to produce two strings, while the mutation operator acts on 

one string producing one string. Figures 2.2 and 2.3 provide examples of these 

operators acting on solutions encoded using a binary representation. 

Figure 2.2: An example of a mutation operator which acts on a binary 

string to produce a new string. The point(s) of mutation is (are) usually 

chosen uniformly at random. 

before mutation 1 1 0 1 0 1 0 1 1 

mutation point * 

after mutation 1 1 0 0 0 1 0 1 1 
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Figure 2.3: An example of a one-point crossover operator which com­

bines two (parent) binary strings to produce two new (child) binary 

strings. The point at which the sections of the strings are exchanged is 

usually chosen uniformly at random. 

parent 1 1 1 0 1 0 1 0 1 1 

parent 2 1 0 1 1 0 0 1 0 1 

section exchanged * * * * * 

child 1 1 0 1 1 0 1 0 1 1 

child 2 1 1 0 1 0 0 1 0 1 

It would appear, at first, that a particular generation of a GA possesses only 

a selection of possible solutions. However, each of these solutions is made up of a 

string of data and within each string there are many smaller strings of data, usually 

called schemata. A schema is a set of individuals which share common attributes. 

In the case of a binary alphabet a schema is denoted by a string consisting of 

elements taken from the set {0 ,1 , • } where • means "don't care". For example, 

00101 and 00111 are both elements of the schema OOnni, but 10101 is not. Each 

binary string of length k will be an instance of 2k schemata. 

Each schema represents a subset of strings and so an average fitness can be 

assigned to i t . In a given population of strings a schema's average fitness (some­

times known as observed average fitness) is the average fitness of the strings which 

contain that schema. A schema's average fitness can vary from population to pop­

ulation since it is determined only by the instances of the schema currently within 

a population. 

The Schema Theorem of Holland (1992, p. 102) relates the number of instances 

of a schema £ in two successive generations. If the expected proportion of schema 

in one generation is P(£, t) then: 
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P(t,t + l)>P{t,t) ^ [l-Po(t)] m 
where i\(t) is the observed average performance of £, /t(i) the average fitness of 

the schema £ and PD{£) is the probability of the loss of £ through the effect of 

operators such as crossover and mutation. 

Throughout a single generation the solutions present will contain many schemata 

which can be combined (via crossover) to represent other individuals that are not 

present in the population at that time. The power of GAs is believed to stem 

from regarding the performance of a single solution as a test on the large num­

ber of schemata of which it is an instance. Thus a test on a solution of length k 

will simultaneously sample instances of 2k schemata. In a population consisting of 

M solutions of length k there are between 2k and M2k schemata with instances 

contained within the population. The proportion of each schema which survives 

to the subsequent generation is largely dependent only on its own observed fitness 

/}<;(/.) and is largely independent of what is happening to the other schemata in the 

population. 

An approach using a, GA allows for the highly fit short schemata to be propa­

gated quickly through a population, while at the same time considering other less 

fit possibilities. This is termed by Holland (1975) as intrinsic parallelism (more 

recently known as implicit parallelism). The proportion of schema in a population 

is in part dependent on its past performance, and so this serves as a record of the 

performance. 

In order to maximise the implicit parallelism, a binary approach to encoding 

is often advocated (Holland 1992, p. 71; Goldberg 1989, p.80). Such an approach 

allows for the maximum number of schemata to be represented and thus processed. 

The success of GAs is described by Goldberg (1989, p. 41) in terms of the building 
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block hypothesis — short highly fit segments of each binary string can be combined 

to form larger, fitter segments of each binary string. The GA constitutes a bottorn-

up approach to solution construction. 

While there is much experimental evidence to support a G A's success, a compre­

hensive theoretical basis is lacking and research into this continues (Goldberg and 

Rudnick 1991; Radcliffe 1991a; Davis and Principe 1993; Garigliano and Nettleton 

1992; Garigliano et al. 1993d; Forrest and Mitchell 1993). 

2.4.1 Criticism 

Criticisms of GAs range from matters of detail to more fundamental questions 

regarding the underlying paradigm. Radcliffe (1991a) and Mason (1993) state 

that there is an overemphasis on a binary representation, and Mason objects to 

Holland's analysis of intrinsic parallelism. Fogel (1991; 1992a; 1993) argues that 

the GA's modelling of the evolutionary process is flawed. 

Holland (1992, p. 71) and Goldberg (1989, p.41) advocate that solutions be 

represented using a binary encoding, since this allows for the maximum number 

of schemata to be represented. Radcliffe (1991a, p. 222) states that efforts "to 

maximise the level of intrinsic parallelism available are frequently in conflict with a 

desire to use natural representations and operators for the structures in the space 

being searched." In an attempt to overcome this Radcliffe (1991a; 1991b; 1992) 

generalises schemata to what are termed formae, and demonstrates that intrinsic 

parallelism is a more general phenomenon. 

Mason's (1993) principle objection to Holland's analysis of intrinsic parallelism 

is that it does not compare like with like. The problem examined by Holland (1975) 

is deemed to be tailor made for a schema processing approach and essentially a sub-

problem generated by the GA itself. Mason states that for progress to be made 

in the understanding of GAs it is "essential that the focus of research move away 
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from issues such as compliance with the Schema Theorem and the degree of intrinsic 

parallelism and instead consider the methodology underlying the GA's exploration 

of new points in the solutions space." 

Fogel (1991; 1992a; 1993) argues that to model the evolutionary process at the 

level of specific genotypic transformations is flawed, and that instead the emphasis 

should be on examining phenotypic adaptation (see Section 2.5). Atmar (1994, 

p. 142) although agreeing that GAs are basically a suitable model of Darwinian 

evolution states that the philosophical emphasis is "put on genetic mechanism, not 

on the process of phenotypic adaptation." 

Common philosophical errors often lead to misinterpretations of the evolution­

ary process. For example, Srinivas and Patnaik (1994, p. 18) state that "Specifically, 

each feature (of an individual) is controlled by a basic unit called a gene." This 

comment profoundly misinterprets the nature of genes, and incorrectly suggests 

that there is always a one to one mapping between a gene and an attribute of 

the individual. Such comments are unhelpful in the development of optimisation 

algorithms which are based on models of natural evolution. 

2 o 5 Evolutionary Programming 

Evolutionary programming (EP) originated in the early 1960s, and was initially 

applied to a population of algorithms in order to study the possibilities of evolving 

artificial intelligence (Fogel et al. 1966). Since then, EP has been extended to cope 

with real-valued variables (Fogel 1992a) and EP has been applied to a wide range 

of problems (e.g., Fogel and Atmar 1992, 1993; Sebald and Fogel 1994). The EP 

perspective of the evolutionary process is very different to the bottom-up building 

block approach of GAs. The differences stem from the primary forces modelled 

from natural evolution. While GAs incorporate specific genotypic transformations, 

EP emphasises phenotypic adaptation. EP adopts a top-down approach to solution 
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improvement, as opposed to the bottom-up approach of GAs. 

In order to help explain the philosophy underpinning the EP approach Atmar 

(1994) has modified the work of Lewontin (1974) and characterised the relationship 

between the genotype and phenotype by four functions. The functions relate a 

genotypic space G to a phenotypic space P. An additional set of environmental 

symbols I is also defined. 

/ i : I X G H P 

h - P ^ P 

f3 : P ^ G 

U - G H G 

The mapping f\ defines the development of the phenotype in terms of its geno­

type and the current environmental conditions. The environmental component is 

needed to model epigenesis (development sensitive to local conditions). For ex­

ample, gender in turtles is influenced by the temperature at which development 

occurs. 

Figure 2.4: Pictorial representation of the mapping functions suggested 

by Lewontin (1974, p. 14). 

Genotypic Space 

f I G 
i 

f f 
Phenotypic Space 
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The mapping J2 controls the selection, immigration and emigration of individ­

uals from within the population. It is important to note that the selection process 

does not act directly on an individual's underlying encoding, but on its behaviour. 

The mapping fa maps the effects of f2 back to the genotypic representation. 

The mapping / 4 controls the manipulation of the coding via operators acting 

on the genotype. Such operators include mutation and recombination. Figure 2.4 

provides a pictorial description of the interaction of the mapping functions. 

Lewontin (1974, p. 15) warns that care must be taken in interpreting the re­

lationship between the evolutionary dynamics of the spaces of the genotype and 

phenotype. The relationship naively may be viewed as being that of two inde­

pendent process, the first of which acts on the genotype and the second on the 

phenotype. However, to assume independence of the processes is a dangerous over­

simplification, which in all but the simplest cases is inaccurate. The functions 

introduced above describe the interactions between the two spaces. The modelling 

of the evolutionary process within this framework is of crucial importance and as 

Atmar (1994, p. 133) points out "'Confusing the attributes of the two state spaces 

lies at the root of much of the confusion that permeates evolutionary theory." 

When the relationship between the phenotype and genotype is characterised as 

above it is apparent that the selection mechanism acts only on the phenotype and 

any change which may occur to the set of genotypes as a result of the selection is 

incidental. In particular if two individuals have identical phenotypes the underlying 

genotype may be very different (Figure 2.5). Such a difference in encoding is 

irrelevant to the selection process. 
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Figure 2.5: A GA concentrates on the acquisition of structure. As (a) indicates 

structurally similar solutions may result in very large differences in behaviour. EP 

emphasises the adaptation of behaviour. Part (b) shows that although solutions 

may have a similar behaviour they may be structurally very different. 

(a) Acquistion of structure (b) Acquistion of behaviour 

Genotypic Space 

Phenotypic Space 

As discussed by Atmar (1994) adaptation in the phenotypic space is of the 

whole behavioural structure. To say that separate traits of an individual evolve 

independently is misleading since they are often highly interdependent. To model 

this behavioural link, EP uses mutations as the reproductive operators. Specific 

genotypic transformations such as crossover are deemed unnecessary. 

Fogel et al. (1966) examined the evolution of finite state machines (FSMs) in 

an effort to create artificial intelligence. The aim of the project was for the system 

to be able to predict its environment, and to use this to produce a response which 

was conducive to the goal to be attained. Five possible mutations (which naturally 

follow from the definition of a FSM) are considered: change an output symbol, 

change a state transition, add a state, delete a state, or change the initial state. The 

number of mutations to occur is chosen with respect to a probability distribution 

(e.g., Poisson), as is the the selection of the mutation (typically uniform). After 

mutation those machines which score in the top half of the population are retained 
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and the others discarded. 

Fogel et al. (1966) described a series of symbol prediction tasks. Problems such 

as the prediction of prime numbers from the sequence before them are considered 

and the results for different payoff functions presented. This early work showed the 

potential of the approach. Other applications of EP to FSMs have been considered. 

For example, Fogel (1992a, 1994) evolves FSMs for the iterated prisoners dilemma 

and shows that "evolving FSMs essentially learned to predict the behaviour (a 

sequence of symbols) of other FSMs in the evolving population." 

More recently, EP has been extended to cope with real-valued continuous op­

timisations problems (Fogel 1991). Each real-valued component of an individual 

is mutated by an amount which is distributed Gaussian normally. The variance 

of the distribution is typically determined by the performance of the individual 

within the environment. Relating the severity of the mutation to the fitness of the 

solution ensures that fitter parents are less likely to be mutated to the same degree 

as less fit parents. After mutation solutions are probabilistically culled and the 

process repeated. Work on applying EP to real-valued problems includes that by 

Fogel (1992a.; 1992b) and Nettleton and Garigliano (1994c). 

Since the details of the mutation operator is dependent on the subsymbolic 

solution representation which is adopted, further discussion of mutation, and the 

selection mechanism, is left to later sections (e.g., Section 5.3). 

2.5.1 Criticism 

Initial criticisms of the EP approach included those by Solomonoff (1966) and 

Lindsay (1968). These criticisms are based on a misunderstanding of the work, 

but were in part responsible for the A I community largely rejecting research into 

evolutionary systems during the 1970s. 

Solomonoff (1966) argued that the method was only applicable to the simplest of 
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problems and Goldberg (1989, p. 106) states that "The evolutionary programming 

of Fogel, Owens and Walsh ... was insufficiently powerful to search other than small 

problem spaces quickly." In fact a calculation of the number of possible solutions 

to some of the problems considered by Fogel et al. (1966) shows that extremely 

large spaces were considered, and these were successfully searched. 

A more fundamental concern of Solomonoff (1966), Lindsay (1968) and Gold­

berg (1989) is the lack of a crossover operator, and Lindsay goes so far as to state 

that "...such a strategy [EP] amounts to random search... ." However, experimen­

tal evidence indicates that a crossover operator is not necessary for the successful 

solution of many problems (e.g., Fogel et al. 1966; Fogel and Atmar 1990; Nettleton 

et al. 1993; Nettleton and Garigliano 1994c). 

More recent criticisms argue that a top down approach to solution development 

is not able to take advantage of combining coadapted sections of the subsymbolic 

representation. Such criticisms may be relevant for some problems, but in general 

problems of pleiotropy and polygeny make the identification of coadapted sections 

difficult (Dawkins 1986; Mayr 1988). 

2.6 Evolution Strategies 

Evolution strategies (ESs) originated in the mid 1960's with early applications being 

practically orientated. Early work concerned the optimisation of real-valued object 

variables and the first experimental applications dealt with the shape optimisation 

of a bent pipe and flashing nozzle (Rechenberg 1973). More recent analysis of ESs 

has been carried out by, amongst others, Back et al. (1991) and Beyer (1993). 

As with EP the emphasis of the ES approach is on the acquisition of a behaviour 

which has a high fitness value. Although philosophically similar, EP and ES differ 

in two important ways: (1) the operators used in generating the progeny, and (2) 

the selection mechanism employed to select which solutions survive to a subsequent 
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generation. 

Unlike EP, in generating new solutions ES allows for the use of a recombination 

operator. Back et al. (1991) discuss several recombination operators which have 

been suggested for use in ES, including: 

1. Discrete recombination — given two parent solutions the values of the off­

spring are chosen uniformly at random from the corresponding values of their 

parents. (This is identical to the uniform crossover operator suggested by 

Syswerda (1989) for use in GAs.) 

2. Intermediate recombination — the values of the offspring are the averages of 

the corresponding values of the parents. 

A mutation operator is also used extensively in ESs. This typically subjects 

each value of an individual to a certain amount of Gaussian noise, the variance of 

which is controlled by what is known as the 1/5-success rule (see, e.g., Back and 

Schwefel 1993): 

The ratio of successful mutations to all mutations should be 1/5. If 

it is greater than 1/5, increase the standard deviation, if it is smaller, 

decrease the standard deviation. 

A successful mutation is one in which the resulting structure outperforms the orig­

inal with regard to some measure of performance. 

Fogel (1994) describes the different approaches to solution generation between 

EP and ESs in terms of the level of the evolutionary process which is being mod­

elled. In the case of EP, evolution is typically modelled at the level of the species, 

while ESs usually models evolution at the level of the individual. A model based 

at the level of the individual allows for the recombination of individuals. The 

recombination of members of different species is, however, not permitted. 
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The second essential difference between ESs and EP is in the selection mecha­

nism employed. While EP adopts a stochastic means of determining which solutions 

survive to a subsequent generation, ESs rely completely on deterministic selection 

methods. The two methods most commonly used are the (//, X)-ES and (/z + A)-

ES. The methods select the best \i individuals from either, the set of A offspring 

individuals ((fx, X)-ES), or the set of parents and offspring ((// + X)-ES). Back and 

Schwefel (1993) recommend the use of the (fi,X)-ES since it is able to deal with 

changing environments. 

2o7 S u m m a r y 

In adopting a subsymbolic approach for encoding solutions to a problem there 

are often many different representations which can be used, e.g., binary or real-

valued. A range of algorithms (e.g., hill-climbing, simulated annealing) have been 

suggested as a means of manipulating solution encodings in an attempt to optimise 

the solution's behaviour within some environment. EAs are based upon models of 

natural evolution and have resulted in robust optimisation techniques. 

GAs rely on mimicking specific genotypic transformations and constitute a 

bottom-up building block approach to solution discovery. EP, on the other hand, 

emphasises phenotypic adaptation and adopts a top-down approach to solution 

improvement. Results of applying these two algorithms to problems which have 

different interactions at the level of the subsymbolic encoding are discussed in later 

chapters of this thesis. ESs are not considered further. The details of the GA and 

EP used in the experiments are introduced at the appropriate place. 



Chapter 

d I P u t ct t t e n 10 n e r Si y e m s 

This chapter is the first of four which describe in detail various aspects of the shape 

representation problem — the first of the problems considered in this thesis. This 

very detailed account has been included to demonstrate the 'depth' of an approach 

to problem solving based upon a hybrid symbolic/subsymbolic approach and the 

use of EAs. 

Giles (1990) suggests that IFSs be used as a shape representation scheme for 

use in a machine vision environment, and includes the following as some of the 

advantages: the theory of IFSs is well understood (Barnsley 1988) and the prob­

lem of finding an IFS for an arbitrary shape has in theory been solved (there are 

still practical difficulties); the primitives used to represent a shape are transfor­

mations of the shape itself and hence no pre-defined set of primitives is needed; 

the primitives used will automatically have the correct morphology, e.g., geometric 

primitives are used for geometric shapes, and fractal primitives for fractal shapes; 

any shape can be represented as an IFS the accuracy only depending on the al­

lowed storage space; the pictorial representation of an encoded shape can easily be 

rendered at any scale or orientation. Some of these features are discussed in detail 

in this and the following chapter. 
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Using TFSs for shape representation leads, initially, to a symbolic representation 

— the shape is to be represented by a. collage of smaller copies of itself. However, 

since an IFS is composed of a set of contraction mappings a subsymbolic (real-

valued) representation can be adopted. The purpose of this chapter is formally to 

introduce the theory and terminology of IFSs. This includes results which formalise 

the interactions that can occur between the subsymbolic components of an IFS's 

representation. 

In order to provide a complete derivation of the material which is presented 

towards the end of the chapter it is necessary to review some basic concepts of 

metric topology. The reader familiar with such concepts can safely skip Sections 

3.1 and 3.2. A fuller account of metric topology is given by Edgar (1990). The 

theory of IFSs was originally developed by Hutchinson (1981) and Barnsley and 

co-workers (Barnsley and Demko 1985; Barnsley et al. 1986). Much of this chapter 

is based on material in Barnsley's book 'Fractals Everywhere' (1988), where a more 

comprehensive treatment can be found. 

3.1 M e t r i c Spaces 

Def in i t ion 3.1.1 A space, X , is a set. The points of a space are the elements of 

the set. 

The standard notation of R and R 2 is used to denote the real line and two-

dimensional Euclidean space respectively. 

Def in i t ion 3.1.2 A metric space is a set X together with a function d : X x X t—> 

[0, oo) which obeys the following axioms: 

1. d(x,y) = d(y,x) V x,y E X 

2. d(x,y) = 0 & x = y V x , y G X 

3. d{x,y) < d{x, z) + d(z, y) V x,y, z e X . 
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The last inequality is known as the triangle inequality. The non-negative real 

number d(x,y) is called the distance between x and y. The function d is called a 

metric on the set X , and a metric space is written ( X , f / ) . 

Def in i t ion 3.1.3 Let (X, d) be a metric space with x £ X . Given e > 0 the set 

B(x,e) is defined as: 

B(x,e)={yeX:d(x,y)<e}. 

Def in i t i on 3.1.4 A sequence of points {xn}^^ in a metric space X converges to 

the point x 6 X if and only if for every e > 0 , there exists an integer N > 0 such 

that d(xn, x) < e for all n > N. 

The point x £ X to which the sequence { a ^ } ^ converges is known as the limit 

of the sequence. In such cases: 

x = lim xn. 
n—>oo 

A sequence is convergent if and only if it converges to some point. 

Def in i t ion 3.1.5 A Cauchy sequence in a metric space (X, d) is a sequence {xn}^L^ 

such that for every e > 0 there is an integer N > 0 such that: 

d(xn,xm) < e V n , m > N. 

Theorem 3.1.1 Every convergent sequence is a Cauchy sequence. 

Proof: Suppose { . T n } ^ converges to x. Given e > 0 there exists an integer > 0 

such that d(xn,x) < | for all n > N. Using the triangle inequality with n, m > N 

then: 
6 C 

d(xn, xm) < d(xn,x) + d(x,xm) < - + - - e 

and so {x^^Ly is a Cauchy sequence. 
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Def in i t ion 3.1.6 A metric space (X , d) is complete if and only if every Cauchy 

sequence in X converges (in X^ . 

Def in i t ion 3.1.7 Let S C X be a subset of a metric space (K,d). A point i £ X 

is called a limit point of S if there exists a sequence {x^J^Lj of points xn € S \ 

{x} such that limn_,oo xn — x. 

Def in i t ion 3.1.8 Let S C X be a subset of a metric space ( X , d ) . The closure of 

S ; denoted S, is defined to be S = SU {limit points o f S ) . S is closed if it contains 

all its limit points, i.e., S = S. 

Def in i t ion 3.1.9 Let S C X be a subset of a metric space (X,</). S is compact if 

every sequence { . T n } ^ = i * n S contains a subsequence having a limit in S. 

Def in i t ion 3.1.10 Let S C X be a subset of a metric space ( X , d ) . Then S is 

totally bounded if given £ > 0, there is a finite set of points {y\, t/2, • • •, yn} C § 

such that for all x £ S, d(x, ?/,) < z for some //, 6 { j / i , J/2, • • • ? y-n] • The set of points 

{y\, ij2, • • •, yn} is called an e-net. 

Theorem 3.1.2 Let S C X be a subset of a complete metric space ( X , d ) . Then 

S is compact if and only if it is closed and totally bounded. 

Proof: Suppose that S is closed and totally bounded. Let { x , } ^ . x be a sequence 

of points in S. I t is possible to construct an e-net, {j / i ,y2j • • • i Vn] C S, with e = 1 

such that: 

S C \ j B ( y 3 , l ) . 

The e-net contains a finite number of points yet {x ,} is infinite and so there must 

be a point yk in the e-net for which B(yk, 1) = B\ contains infinitely many points 

of the sequence. Choose N\ so that x^x £ B\. Clearly S D B\ is totally bounded 
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and so an e-net can be constructed for it with e — | . Again there must be a point, 

ym, of this e-net such that B(ym, |) = B2 contains infinitely many points of the 

sequence. Choose A^ so that x^2 £ B2 and A r

2 > A r

x . Continuing to halve the 

value of e a subsequence {.'CA'n}$£U of the sequence {a : , - }^ is generated. Since: 

(s n Bx) D (s n B2) D • • • D (S n Bn) D • • • 

and given that the radius of Br is 2 1 _ r then: 

d ( x N k i x N k + 1 ) <22~k V f c > l . 

Given a 6 > 0: 
ln(6) 

d(xNk, ^'yvfc+1) < 8 V k > 2 -
ln{2) 

so { I ' A V I ^ L I is a Cauchy sequence which, using the closure of S, has a limit x E S. 

Therefore, S is compact if it is closed and totally bounded. 

To complete the proof, suppose S is compact and assume for a given e > 0 there 

does not exist an e-net for S. Then there is an infinite sequence of points {xi}^ 

in S with d(x-i,Xj) > e for all i ^ j. However, due to the compactness of S this 

sequence must contain a convergent subsequence with limit in S and so there is 

a pair of integers Ni and A^ with A r

v ^ N2 such that dix^^x^) < e. This is a 

contradiction and so an e-net does exist and hence S is closed and totally bounded. 

Therefore S is compact if and only if it is closed and totally bounded. 
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M a p p m M e t r i c o n pace s a 

Def in i t i on 3.2.1 Let f : X t-> X ' be a function from a metric space (X, d) into a 

metric space (X',t?'). If x £ X then f is continuous at x if and only i f , for every 

e > 0, there exists a 8 > 0 such that: 

d(x,y)<6 => d'(f(x),f(y))<£. 

The function / is simply called continuous if and only if it is continuous at 

every point .T £ X . 

Def in i t i on 3.2.2 Let ( X , d) be a metric space. A transformation on X is a func­

tion / : X h X which assigns exactly one point f ( x ) £ X to each point x 6 X . If 

S C X then / ( S ) = { f ( x ) : x £ S } . f is one-to-one if x,y £ X with f ( x ) = f ( y ) 

implies x = y. f is onto if / ( X ) = X . / is invertible if it is one-to-one and onto, 

and it is then possible to define a transformation f ~ l : X n X called the inverse 

of f , defined by = x, where x £ X is the unique point such that y = f ( x ) . 

Def in i t ion 3.2.3 A transformation w : R 2 R 2 of the form: 

w(xi, x2) = (ax\ + bx2 + e,cxi + dx2 + f ) 

where a,b,c,d,e and f arc real numbers, is called a two-dimensional affine trans­

formation. An alternative matrix representation is also used: 

/ 

w(x) = IV 
x2 J 

a b 

c d 

1 ' Xi 
+ 

\ a ' 2 / 

Ax + t. 

Def in i t ion 3.2.4 Let f : X i—> X be a transformation on a metric space. A point 

xj £ X is called a fixed point of f if f ( x j ) = Xj. 
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Def in i t ion 3.2.5 A transformation f : X >—> X on a metric space (K,d) is a 

contraction mapping if and only if there is a constant 0 < s < 1 such that: 

d(f(x)J(y))<sd(x,y) V . T , y e X . 

The number s is called the contractivity factor of the mapping / . 

Lemma 3.2.1 Let w : X •—> X be a contraction mapping on the metric space 

(X, d). Then w is continuous. 

Proof: Let s > 0 be the contractivity factor of the mapping w and x, y 6 X . Then 

given c > 0: 

d(w(x),w(y)) < sd(x,y) < e 

whenever d(x, y) < S where 6 = |. 

The following theorem is often referred to as the contraction mapping theorem. 

Theorem 3.2.1 A contraction mapping f : X >—> X on a complete nonempty 

metric space (X,c?) has a unique fixed point xj G X . Further, for any point x 6 X : 

l i m / " ( * ) = x/ V x e X . 

Proof: Assume there is more than one fixed point. If xj and yj are both fixed 

points then d ( x j , y f ) = d ( f ( x j ) , f ( y j ) ) < sd(xj,yf). But 0 < s < 1, so this is 

impossible if d(xj,yf) > 0. Therefore, d(xj,yj) = 0 and so xj = yj. 

Now let XQ be any point of X (recall that X is nonempty). Then define recursively: 

z n +i = f ( x n ) for n > 0. 
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Claim that { x n } ^ is a Cauchy sequence. Writing a = d(x0,xi) it follows by 

induction that d(xn, . i ' n+i) < asn. But then, if rn < n: 

n - l 

d ( x m , x n ) < ^2 d ( x j , X j + i ) 
j=m 
n-l 

< a s j 

j=m 

1 - S 

asm(l - sn~m) 

l - s 

< asm(l-s)-1. 

Therefore, if e > 0 is given, N can be chosen such that asN(l — s)~l < e. Then for 

n,m, > N, d(xm,xn) < e and is a Cauchy sequence. 

Now (X, d) is complete and {#n}£Li is a Cauchy sequence, so it has a limit xj £ X 

with l im r , _ t c o f n ( x ) = xj. Now since / is contractive it is continuous and hence: 

/(*/) = /Ui™ A*) ) = Jim P+\x) = xj, 

xj is therefore a fixed point of / . 

The above theorem not only shows the existence of a fixed point in a complete 

metric space, but shows a way to construct the point. 
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T h e M e t r i c Space ( H ( X ) , h) 

Def in i t i on 3.3.1 Let (K,d) be a complete metric space. Then 7i(K) denotes the 

space whose points are compact subsets o / X other than the empty set. 

If A and B are subsets of some metric space X , then A and B are within 

Hausdorff distance r of each other if and only if every point of A is within distance 

r of some point of B , and every point of B is within distance r of some point of 

A . This can be made into a metric called the Hausdorff metric, h. 

Def in i t i on 3.3.2 Let (X.,d) be a complete metric space with x £ X , and let B £ 

Then d(x, B) is the distance from the point x to the set B . 

Def in i t i on 3.3.3 Let (X, d) be a complete metric space with A , B £ 7i(X.). De-

Then </(A,B) is the distance from the set A to the set B . 

De f in i t i on 3.3.4 Let (X,</) be a complete metric space. The Hausdorff distance 

between A , B £ W(X) is defined by: 

H(X). Define: 

d(x,B) = m'm{d(x,y) : y £ B } . 

fine: 

d ( A , B ) = max{d(x,B) : x £ A } . 

h(A, B) = rnax{d(A, B ) , rf(B, A )}• 

An alternative definition of the Hausdorff distance, in terms of closed neigh­

bourhoods, is also useful. 
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Def in i t ion 3.3.5 Let A C X be a subset of the metric space (X , d) and e > 0, 

then the closed e-neighbourhood of A is: 

NE(A) = {y G X : d(x,y) < e for some x £ A ) . 

The Hausdorff distance h between A , B 6 7^(X) can then be defined as: 

h(A,B) = in f{ r : A C JV r(B) and B C Nr(A)} 

where inf is similar to min, but need not be attainable. 

It is worth noting that in general h does not define a metric. For example in 

the space R: 

(a) What is the distance between {0} and [0, oo)? It is infinite and from the 

definition of a metric this is not allowed. Use of h is therefore restricted 

to bounded sets. 

(b) What is the distance/i(0, {0})? 1 Again it is infinite and so h is restricted 

to use on nonempty sets. 

(c) What is the distance h((0,1), [0,1])? Now the distance is 0 even though 

the two sets are not equal and so h is restricted to use on closed sets. 

For the purposes of this thesis h will only be applied to the nonempty compact 

sets H{X). 

Theorem 3.3.1 The IIausdorff distance h is a metric on the space 7i(K). 

Proof: Let A , B , C £ W(X). Clearly //(A, B) = / i(B, A ) . Also: 

/ i(A, A ) max{</(A, A ) , r/(A, A ) } - d(A, A ) = m&x{d(x,A) : x e A } = 0. 

'By convention, inf 0 = oo. 
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Since A and B are compact they are bounded and so 0 < / t ( A , B ) < oo. Further­

more if A ^ B then there is an a G A such that a£B and h( A , B ) > d(a, B ) > 0. 

Finally, let e > 0. If x G A , then there is y G B with d(x,y) < h(A,B) + e 

and a z G C with d(y,z) < / J ( B , C ) + e. This shows that A is contained in the 

(h(A,B) + h(B,C) + 2e)-neighbourhood of C . Similarly, C is contained in the 

( / i ( A , B ) + h(B,C) + 2e)-neighbourhood of A . Therefore h(A,C) < h(A,B) + 

h(B, C ) + 2e. This is true for all e > 0, so h(A, C ) < h{A, B ) + />,(B, C ) as desired. 

The following is an important property of the Hausdorff metric that is required 

for a future proof. 

L e m m a 3.3.1 For all B, C, D and E in 7{{X): 

h(B U C, D U E ) < max{ / j (B ,D) , /t(C, E ) } . 

Proof: Let A <E H(X) then: 

( / ( A U B , C ) = max{d(a-,C) : x G A U B } 

= max{max{t/(a-, C) : x G A } , max{c/(:r, C) : x G B } 

= max{d(A,C) ,d (B ,C)} . 

Also: 

cf(A,B U C) = max{min{d(x,y) : y G B U C) : x G A } 

giving d ( A , B U C) < rf(A,B) and d ( A , B U C) < d(A,C). Using this: 

d ( B u C , D U E ) = m a x { d ( B , D U E ) , d ( C , D U E ) } 

< m a x { d ( B , D ) , d ( C , E ) } . 

Finally: 

/ i ( B U C , D u E ) = m a x { d ( B U C , D u E ) , < / ( D u E , B u C ) } 
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< max{<i(B,B),d(C, E) , f / (E, C), d(D, B ) } 

< max{f t (B ,D) ,A(C,E)} 

as required. 

The remainder of this section is aimed at proving that the metric space (%(X) , h) 

is complete. In order to do this several preliminary results are derived. 

Lemma 3.3.2 Let (X,e?) be a metric space and A , B G 7f (X) . Given e > 0 then: 

h(A,B) <e A C Ne(B) and B C JVe(A). 

Proof: h(A,B) < e implies that d ( A , B ) < e and d(B, A ) < e. Consider: 

c/(A,B) = max{rf(o,B) : a G A } < e 

then for each a £ A , a G iV £ (B) and hence A C 7V£(B). Alternatively, suppose 

A C A r

E (B) . Then for each a £ A there is a b £ B such that d(a,b) < e and so 

(/(a,B) < e. This is true for each a £ A and so </(A,B) < e. A similar argument 

for d(J5, A ) completes the proof. 

The following Lemma concerns Cauchy sequences in 7i(K) and is necessary for 

the forthcoming completeness proof. The Lemma is referred to by Barnsley (1988, 

pp. 36-37) as the Extension Lemma. 

Lemma 3.3.3 Let (X,t/) be a metric space and let {A n}JJL 1 be a Cauchy sequence 

of points in ('H(X),h). L^et {nj}<jtl be. a sequence of integers such that 0 < nx < 

n-2 < < .... Suppose that {xn- £ Anj}'jil is a Cauchy sequence in ( X , d ) , then 

there is a Cauchy sequence {x'n G A , , } ^ such that x' = xnj for all j — 1,2,3, 

Proof: For each n £ { 1 , 2 , . . . choose x'n G {x G A n : d(x,xni) = d(xni,An)}. 

That is, x'n is the closest point (or one of the closest points) in A n to x n , . The 

existence of such a closest point is ensured by the compactness of A„. Similarly 

for each j £ { 2 , 3 , . . . } and each n G {'«j-i + l , . . . , n ; - } choose x'n G {x £ A n : 

d(x,xni) ' d(xn],An)}. 
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Clearly f rom construction x'n = xnj and x'n G A n . Given an e > 0, there exists an 

N\ such that d(xnk, x n j ) < | for all n-k,rij > N\. Also, there is a number N2 such 

that d(Am,A„) < | for all m,n > N2. Let N = max{AT 1 ,AT 2} and note that for 

m , n > N: 

d{x'mtx'n) < d{x'm1xnk) + d{xnk,x'n) 

< d(x'm, x n j ) + d(xnj, xnk) + d(xnh, x'n) 

where 777, G { ^ j - i + 1, " j - i + 2 , . . . , iij} and n £ {nf.-i + 1, n t _ i + 2 , . . . , n ^ } . Since 

fc(Am,An>) < § there exists y G A , n f\ N L ^ X ^ } ^ ) SO that ^ ( a ; ^ , ^ . ) < §. 

Similarly d(xnk7 x'n) < | . Therefore c/(a-'m, a:'n) < e for all m,?z > N and hence the 

sequence is a Cauchy sequence. 

The following is the main theorem of this section. 

T h e o r e m 3.3.2 Let (X,cZ) be a complete metric space. Then ( 'W(X) , / i ) is a com­

plete metric space. Moreover, if { A n G 'H(X.)}'^!-1 is a Cauchy sequence then 

A = l im n _oo A n can be characterised as follows: 

A = {x G X : there is a Cauchy sequence {xn G A N } ~ = 1 such that, l i m xn = x). 

P r o o f : Define A as above. The proof is broken into the following parts: 

1. A ^ 0 ; 

2. A is closed and hence complete since X is complete; 

3. for e > 0 there exists an N such that for all n > N, A C N£(AN); 

4. A is totally bounded and thus by 2 is compact; 

5. l i m , ! - , ^ AN — A. 
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P r o o f o f 1 : Let N\ < iV 2 < N3 < . . . < iV n < . . . be a sequence of positive integers 

such that: 

h(Am,An) < 2 _ i V m , n > Nt. 

Therefore / i ( A ^ , AA? 2) < | and so f rom the definition of the Hausdorff metric there 

exists a pair of points £ A /Vj and x^2 £ A^2 such that d^x^^x^) < | . Hence, 

a sequence of points {rc,v, £ A , v , } ^ i can be constructed such that rf(i'/v,,iA'j+1) < 

2 - ' . Given e > 0, choose k such that 2 _ i < e. Then for n > m> k: 

d{xNm,XNn) < d ( x N m , x N m + l ) + d ( x N m + l , x N m ^ ) + • ••d{xNn_1,xNn) 

00 1 

•=* 2' 

and so { # ; v , } ^ i is a Cauchy sequence. By the Extension Lemma (3.3.3) i t is 

possible to construct a Cauchy sequence {.T' £ A , } ~ j w i t h x'N. = xjv,.. Since X is 

complete, this sequence has a l i m i t in X . By definition this l imi t is in A and so 

A f%. 

P r o o f o f 2: Suppose {a, £ A } ^ T is a sequence that converges to a point a. For 

each a, there exists a sequence {xit„ £ A „ } " = 1 such that l im n _oo = a<. There 

exists an increasing sequence of positive integers { A r , } ' , ^ 1 such that the subsequence 

{ a N . } i = i c a n D e chosen such that d(a^i,a) < j . Furthermore for each iV,- there 

exists an integer m, such that the subsequence {£/v , ,m,-}~i can be chosen such that 

d(zNi,m,; aNi) < 7- Thus d(xNiimi,a) < | which tends to zero as i —> 00. Setting 

VNi = -fiVi.m, then (/AT, £ A/V, and l . i m j _ 0 0 = a. By the Extension Lemma 

{ t / ^ } ^ , can be extended to a convergent sequence of points { 2 , £ A , } ? ^ w i th 

l i m i t a. which by definition means a £ A , and hence A is closed. 

P r o o f o f 3: Given e > 0 there exists an N such that for TO, n> N, h(AM,AN) < e. 

Let n > N then for rn > n, AM C N£(AN). For a £ A there is a sequence 
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{a; G A , - } ^ that converges to a. Assume that N is large enough so that: 

d(am,a) < e V m > N. 

Then am G Ns(An) since A m C JV£(An). Since A„ is compact, i t can be shown 

that A r

e ( A n ) is closed. Then since am G A r

e ( A „ ) for rn > N, a G A r

e ( A n ) . Hence, 

A C A j ( A „ ) for n large enough. 

P r o o f o f 4: Assume that A is not totally bounded, then for some e > 0 no f ini te 

e-net exists. There then exists a sequence {a^ G A } ^ 1 such that rf(etj,aj) > e for 

i ^ j . However, f rom 3, there exists an n for which A C A r | ( A n ) and so for each 

a, G A there is a iji G A n such that d(cii,yi) < | . Since A n is compact some 

subsequence { j / n , - } ^ of {yi}^ converges and i t is possible to choose points in the 

sequence { y n , } ^ i as close together as desired. In particular choose two points yni 

and y,,., such that d ( y n i , y n j ) < | . But then: 

d{ani, a n j ) < d(ani, ?/„,.) + d(yni, ynj) + d(y 

This contradicts the in i t ia l assumption that d((ii,a.j) > e and hence A is total ly 

bounded. I t has already been shown that A is closed and so i t is compact. 

P r o o f o f 5: Given e > 0 there exists a sequence of positive integers h\ < N2 < 

... < Nk < • • • such that: 

h ( A u \ j ) < _ 1 _ V i , j > Nk. 
2k+l 

Choose n < J\\ such that h(AN, A^) < | , then taking y G A n there is a point 

xyvj G A,v, such that ( / ( y , ! ^ ) < ^. Similarly there is a point XN2 G AN2 such that 

d(.TN1}XN2) < ^. The sequence x^, XN2, x^3,... can be constructed such that 

d(x;vk,xNk+J) < ^ r p . Using the triangle inequality: 

d(y,xNk) < d(y, x N l ) + d(xNl, xN2) + • • • + dfapf^, x N k ) 
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n=l 2" 

< £• 

Clearly the Cauchy sequence {^'WkltLi converges to a point a £ A for which 

d(y,a) < e. Thus A n C N£(A) for large enough n. Combining this w i t h the 

above result that A C N£(An) for large enough n, then h(A,An) < e for large 

enough n. Thus l im n _oo A n = A . 

The above discussion of the properties of the space 7Y(X) and its metric has 

shown that that ( ? i ( X ) , h) can be treated like any other complete metric space. 

3»4 Mappings on the Metr ic Space (7^(X), h) 

This section extends the work of Section 3.2 to the space "W(X). In addition 

properties of a mapping which is itself a union of mappings are derived. 

L e m m a 3.4.1 Let w : X >—> X be a continuous mapping on the metric space 

( X , d). Then w maps "H(X) into itself. 

P r o o f : Let S be a nonempty compact subset of X . Then clearly w(S) = {w(x) : 

x £ S} is nonempty. I t is now enough to show that iv(§) is compact. Let {yn = 

'w(a . ' 7 i )}^ i be an infinite sequence of points in «;(S). Then { j ; n } ^ L i is an infini te 

sequence of points in S. Since S is compact there is a subsequence {XN„}%LI which 

converges to a point x £ S. The continuity of w implies that {yNn = w(xNn)}^Li 

is a subsequence of {j/n}£Li which converges to a point y — iu(x) £ iv(S). Thus 

w(§) is compact. 
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L e m m a 3.4.2 Let w : X i—• X be a contraction mapping on the metric space 

( X , rf) with contractility factor s. Then w : 7 i ( X ) i—> 7 i ( X ) defined by: 

w(B) = {w(x) : x G B } V B G 7<(X) 

is a contraction mapping on ('H(X),h) contractivity factors. 

P r o o f : From Lemma 3.2.1 w : X i—> X is continuous and hence by Lemma 3.4.1 

w maps H(X) into itself. Now let B , C £ K ( X ) , then: 

d(w(B), w(Cj) = max{min{d(«>(x),«>(y)) : y £ C } : x £ B } 

< m a x { m i n { s : ?/ £ C } : x G B ) = s d ( B , C ) . 

Similarly, d(u>(C),u>(B)) < . W ( C , B ) . Hence: 

fe(ti;(B),M;(C)) = m a x { i / ( t i ; ( B ) , u ; ( C ) ) , ( i ( « j ( C ) , w ( B ) ) } 

< s m a x { d ( B , C ) , < / ( C , B ) } 

< s / i ( B , C ) . 

L e m m a 3.4.3 Le/ ( X , </) 6e a metric space. Let {wn : n — 1 ,2 , . . . , AT} be con­

traction mappings on ( ?Y(X) , / i ) . Let the contractivity factor for wn be denoted sn 

for each n. Define W : H(X) H + H{X) by: 

W(B) = t u i (B ) U t u 2 ( B ) U . . . U wN(B) 
N 

= \Jwn{B) V B G ^ ( X ) . 

Then W is a contraction mapping with contractivity factor s = max{,s n : n = 

1 , 2 , . . . , ^ } . 
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P r o o f : A proof by induction is used. Let N = 2 and B , C £ ~H(JL) then: 

h{W(B), W(C)) = fc(u>i(B) U w2(B),wl(C) U u? 2(C)) 

(by Lemma 3.3.1) 

< max{h(w1(B),wi(C)),h(w2{B),w2{C))} 

< max{s1 h(B, C ) , a2 h(B, C ) } 

< s f t ( B . C ) . 

Thus the. Lemma is true for N = 2. Now assume i t is true for N = m mappings. 

Consider the addition of an extra transform wm+i to construct W such that: 

W\B) = | J wn(B) = | J wn(B) U « ; m + 1 ( B ) = W(B) U u ; r a + 1 ( B ) . 
n=l n=l 

Then: 

h(W'(B),W'(C)) = h(W{B)Uwm+l(B),W(C)Uwm+l(C)) 

(by Lemma 3.3.1) 

< mw{h(W(B),W(G)),h{wm+1(B),wm+1{C))} 

< max{s / i ( B , C ) , 5 m + 1 / i ( B , C ) } 

< max{s , 5 m + l } / i ( B , C ) 

= m a x { s i , s 2 , • • • , ^ m + 1 } / i ( B , C ) . 

Hence, if the Lemma is true for m i t is true for m + 1. The Lemma is true for 

m = 2 and so by the induction hypothesis the Lemma is true for al l m > 2. 
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3,5 Iterated Function Systems^ Defini t ion and 

Properties 

This section introduces iterated function systems and derives some of their prop­

erties. 

D e f i n i t i o n 3.5.1 An iterated Junction system (IFS) consists of a complete metric 

space ( X , d) together with a finite set. of contraction mappings wn : X H-• X with 

respective contractivity factors sn for n = 1 ,2 , . . . , A r . The notation for an iterated 

function system is { X , wn : n = 1,-2,..., N} and its contractivity factor is s = 

m a x { s n : n = 1 ,2 , . . . , N). 

The following theorem summarises some of the main features of an IFS. 

T h e o r e m 3.5.1 Let [X.,iun : n = 1 ,2 , . . . , N) be an iterated function system with 

contractivity factor s. Then the transformation W : 7Y(X) i—> 7i(X.) defined by: 

N 
W(B) = ( J wn{B) V B e W ( X ) 

is a contraction mapping on the complete metric space ("W(X),/t) with contractivity 

factor s. Furthermore the unique fixed point A 6 "W(X) obeys: 

N 
A = W{A) = | J wn(A) 

71 = 1 

and is given by A = l im n _oo W n ( B ) V B <E H(X), where Wn(B) = W ( W n - x ( B ) ) 

and W°{B) = B . 

P r o o f : The proof follows directly f rom those of Theorem 3.2.1 and Lemma 3.4.3. 
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D e f i n i t i o n 3.5.2 The fixed point A £ "H(X) described in the above theorem is 

called the attractor of the iterated function system. 

An important feature of an IFS is that there is a continuous dependence of the 

attractor on the parameters which encode i t . This so-called robustness property 

ensures that small changes in an IFS's encoding parameters produce correspond­

ingly small changes in the attractor. Larger changes, however, can be expected 

to produce large changes in the attractor. There is, therfore, a strong interaction 

between the subsymbolic components of a mapping. A pictorial demonstration of 

this is provided in Section 4.3. 

L e m m a 3.5.1 Let (P,dp) and (X,c/) be metric spaces, the latter being complete. 

Let w : P x X »—> X be a family of contraction mappings on X with contractivity 

factor 0 < s < 1, i.e., for each p g P and x £ X , w(p, x) is a contraction mapping 

on X . For each fixed x £ X let w be continuous on P . Then the fixed point of iv 

depends continuously on p, i.e., xj : P i—» X is continuous. 

P r o o f : Let xj(p) denote the fixed point of 10 for a fixed p £ P . Given p £ P and 

e > 0 then for all q £ P: 

d{xj(p),xj{q)) = d(w(p,Xj(p)),w(q,Xj(q))) 

< d{w(p,Xf(p)),w(q,xf(p)))+d(w(q,xf(p)),w(q,xf(q))) 

< d(w(p,xj(p)),w(q,Xf(p))) + sd(xs(p),Xf(q)) 

which implies: 

d(xf(p),xf{q)) < (1 - s)-ld(w(p,xf(p)),w(q,xf(p))). 

Since w is continuous on P , q can be chosen sufficiently close to p such that 0 < 

dp{p,q) < 6 a n d s o : 

d(iu(p, x), w(q, x)) < £dp(p, q) V a- £ X 
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and hence: 

d(xj(p),xf(q)) < (! -*)~ldp{P,<l) 

a.nd so xj : P f-» X is continuous. 

L e m m a 3.5.2 Let ( X , d) be a •metric space. Let wn : P x X i—> X for n = 

l , 2 , . . . , i V be continuous transformations depending continuously on a parameter 

p £ P, where (P,dp) is a compact metric space. That is, iun(p,x) depends contin­

uously on p for fixed x £ X . Then the transformation W : "W(X) i—>• 7i(X) defined 

by: 

N 

W{p, B ) = U ivn(p, B ) V B G W ( X ) 
n=i 

is also continuous in p, i.e. , W(p, B ) is continuous in p for each B G 7Y(X), in //ie 

metric space ( 7 i ( X ) , / i ) . 

P r o o f : For B £ W ( X ) w i t h p, g G P and given e > 0: 

d(wi(p. B),wi(q.B)) = ma.x{miu{d(wi(p,x), Wi{q, y)) : y G B } : x G B } 

< rnax{min{d( t« i (p , i - ) , Wi(p,y)) + 

rf(«'i(p»y)>«'i(9»tf)) : y £ B } : a- £ B } . 

Since P x B is compact and u»i : P x B H X is continuous, then u>\ is uni­

formly continuous. Hence there exists a 8 > 0 such that i f dp(p,q) < 8 then 

d(wi(p,y),wi(q,y)) < e for all j / G B . Assuming dp(p,q) < 8 then: 

</(i<->i(p, B) , tu i (< / ,B) ) < max{min{d( t i ; 1 (p , x), wx(p, y)) + s : y £ B } : x £ B } 

< d{wi{p,B),wi(p,B)) +e = e. 
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Similarly d(wi(q, B ) , -Wi(p, B ) ) < e for all dp(p,q) < S and so: 

h{w1{p,B),wx{q,B)) < e Vrfp(p,g) < 6. 

Hence W(p, B ) is continuous for TV = 1. This result can now be extended for TV > 1 

using Lemma. 3.3.1, giving: 

h(W(p, B ) , W(q.B)) < ma,x{h(wn(p,B),ion(q,B))} = e' 

< c' Vdp(p,q)<6 

T h e o r e m 3.5.2 Let ( X , d) be a metric space. Let { X , wn : n " 1,2, ...,N} 

be an iterated function system such that wn depend continuously on a parameter 

p £ P , where P is a compact metric space. Then the attractor A G ? i ( X ) depends 

continuously on p £ P , with respect to the Hausdorff metric. 

P r o o f : Follows f rom Lemma 3.5.1 and Lemma 3.5.2. 

This section is concluded wi th the Collage Theorem which is of fundamental 

importance to the possibility of using IFSs for shape representation. 

T h e o r e m 3.5.3 Let (X,d) be a complete metric space. LM L G 'W(X) and choose 

an iterated function system {X.,ivn : n = 1 ,2 , . . . , 7V} with contractivity factor 

0 < s < 1 such that for some e > 0: 

N 

h(L, |J wn(L)) < e 
n = l 

where h is the Hausdorff metric. Then: 

h(L,A) < e ( l -s)~l 

where A is the attractor of the iterated function system. 
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P r o o f : 

n 

h(L,Wn(L)) < £ h(Wm-l{h),Wm(L)) 
n 

< Y , sm-lh(L,W(L)) 

1 - s 
< h(L, W{L)) 

1 - s 

which a,s n oo becomes: 

h(L,A)< (1 - s ) - l f c ( L , W ( L ) ) . 

The implications of the Collage Theorem can be best appreciated by considering 

its consequences in the case of a two-dimensional space. I f a set of the space 

is to be represented as an IFS, each mapping of the set can be considered as a 

reduced size, rotated, skewed copy of the original. These copies are then arranged 

in an effort to form a collage of the original set — hence Barnsley's name for the 

theorem. I f a collage can be found which exactly covers the original set then the 

attractor of the IFS which consists of the mappings of the collage wi l l be exactly 

the original set. Any differences between the collage and the original set result i n 

the attractor differing by an amount related to the contractivity factor of the IFS. 

The problem of finding an IFS which has some set as its attractor reduces to f inding 

a suitable collage. Since the mappings of the collage can be represented by real-

valued coefficients the problem is now essentially one of subsymbolic manipulation, 

i.e., searching the space of the subsymbolic representation. 
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$„(8 Summary 

This chapter has introduced the terminology of iterated function systems and given 

derivations of some of their important properties. The chapter began wi th a sec­

tion on basic metric topology followed by one on mappings of a metric space. The 

next section defined a space 7Y(X), the points of which correspond to non-empty 

compact subsets of an underlying metric space ( X , d). Important properties of 

this space were derived and the Hausdorff metric, h, introduced. W i t h the pre­

l iminary work complete definitions of an iterated function system and its attractor 

were given. Other important results of IFS theory which were presented included 

those of robustness and the Collage Theorem. The robustness property proves the 

continuous dependence of an IFS's attractor on the IFS parameters themselves, 

and formalises the strong interaction between the parameters. Barnsley's Collage 

Theorem provides a, means of calculating an IFS for a given subset of the space for 

which i t is defined. 



hapter 4 

I d Fu d t t net t e r a e on y s e m s a n 

h R nt t e P re e a P e s ion 

This chapter continues the detailed description of various aspects of the shape rep­

resentation problem, and begins by introducing a formal framework for using IFSs 

in two-dimensional shape representation. Two Lemmas show that a good IFS rep­

resentation can be found when the underlying space is either continuous or discrete. 

The discrete case is of particular relevance to computer images. Section 4.2 reviews 

several of the methods which have been suggested as a means of generating the 

attractor of an IFS. The m i n i m u m point plot t ing algorithm (used to generate the 

attractors in the experiments of Chapter 5) is introduced. 

The robustness property of IFSs is discussed and a pictorial demonstration 

shows the strong interactions which can occur between the components of a real-

valued subsymbolic encoding of an IFS. Section 4.4 reviews the literature on the 

problem of using IFSs for shape representation. This includes a discussion of several 

methods which have been proposed for manipulating the subsymbolic components 

of an IFS. The literature review is included since the results of Chapter 5 sug­

gest that evolutionary programming offers a powerful means of approaching the 
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problem, and in order to best appreciate the problem's dif f icul ty a cri t ical review 

of other approaches to solving i t is given. The chapter concludes w i t h a brief 

overview of other applications of IFSs and a summary. 

4.1 Framework 

This section describes a formal framework for the use of iterated funct ion systems 

as a two-dimensional shape representation scheme. The results derived are taken 

f rom Giles (1990, pp. 58-64). 

D e f i n i t i o n 4 .1 .1 Let ( R 2 , d ) be a metric space consisting of the Euclidean plane 

R 2 equipped with a suitable metric, d. A shape S is any set S 6 7i(R2). 

D e f i n i t i o n 4.1.2 Let {H2,wn : n = 1 , 2 , . . . , J V } be an iterated function system. 

Then a shape S is represented by the IFS if: 

\imWn(B) = § V B e M R 2 ) . 
n—too ' v ' 

I n representing a shape by an IFS the aim is, therefore, to f ind an IFS which 

has that shape as its attractor. The following Lemma shows that for any shape a 

'good' IFS representation can always be found. 

L e m m a 4.1.1 Given any shape S and e > 0 there exists an iterated function 

system { R 2 , wn : n = 1 ,2 , . . . , N} with attractor A for which h(S, A) < e. 

P r o o f : The Collage Theorem (3.5.3) gives: 

h(S, A) < (.1 - s)~lh(S, W(S)) V S G H(H2). 

Since S is compact i t is closed and totally bounded, and there exists an e-net 

{yi} yz, • •. ,yw}. Since an e-net contains only a f ini te number of points i t is closed 
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and totally bounded and so {yn}n=i £ 7i(R- 2 )- Furthermore: 

MS, { » » } ~ = 1 ) < e . 

Mappings are now chosen such that: 

w„(x) = y. n M x G S and n = 1 ,2 , . . . , N. 

Hence W(S) = {?/„} AT 
n = l w i t h contractivity factor s = 0. Finally: 

< e. 

Clearly the above method is very inefficient. Each point of the e-net requires 

one mapping and so when e is very small a large number of mappings is needed. 

So far the discussion of shapes and IFSs has been for the case in which the 

underlying space is continuous. I n reality computer images are usually represented 

using a two-dimensional pixel array. The following Lemma shows that a good IFS 

code can be found for any pixelised image. 

L e m m a 4.1.2 Let P € W ( X ) be a finite rectangular array of points in the metric 

space (R^.d), such that (P,d) is a complete metric space. Let S' = {pn f P : n = 

1 ,2 , . . . , N} be a set of points such thai S' is the discrete approximation of a set 

S G ? f ( R 2 ) . Then there exists an IFS { P , wn : n = 1,2, . . . ,N] with an attractor 

A' for which h(A',S') = 0. 

P r o o f : Choose Wn such that: 

wn(x) = p, 'n V x G S' and n = 1 ,2, . . . N. 
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The set of mappings {wn}!^=i has contractivity 5 — 0 and H / r(S') = S'. Hence f rom 

the Collage Theorem (3.5.3): 

h(A',S') = rlh(§',W{§')) = h(S',§') = 0. 

As for Lemma 4.1.1 the number of mappings needed is large. In fact the map­

pings used are l i t t l e more than a pixel list wr i t ten in terms of mappings. Again 

this is very inefficient, but i t does show that any shape defined on a pixel array can 

be represented by an IFS. 

The problem of finding an IFS for an arbitrary shape is often referred to as 

the inverse problem (Barnsley et al. 1986). Although the material of this section 

shows that for pixelised images i t is always possible to solve the inverse problem, 

the method is very inefficient. An obvious question is then: Is i t possible to produce 

a good approximation using fewer mappings? Peitgen et al. (1992, p. 281) mention 

the following difficulties which arise wi th in this context: 

1. How can the quality of an approximation be assessed? How are the differences 

between images quantified? 

2. How can suitable transformations be identified? 

3. How can the number of necessary affine transformations be minimised? 

4. What is the appropriate class of images suitable for this approach? 

The answers to each of these are research problems in their own right and 

varying amounts of progress have been made. For example, question 2 has in theory 

been solved by Barnsley wi th the Collage Theorem. The practical difficulties which 

arise are, however, non-trivial and have resulted in a large body of literature on the 

best way to proceed. Possible solutions to some of these questions are discussed 

further in Section 4.4 and Chapter 5. 
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4o2 Generating the At t ractor 

In this section several methods for generating the attractor of an IFS are discussed. 

These methods can be classified as either stochastic or deterministic. Examinations 

of stochastic methods for generating attractors include those by Barnsley (1988), 

Berger (1989), Goodman (1991), Hepting et al. (1991), Smith (1991), and Culik 

I I and Dube (1993). Deterministic methods for attractor generation include those 

by Barnsley (1988), Monro et al. (1990), Hepting et al. (1991), Kropatsch et al. 

(1992) and Cohen (1992). In addition Sharp and Cripps (1991) describes a C I M P 

(Communication Intensive Massively-Parallel) algorithm which is a deterministic 

method of attractor generation most suited to implementation on a parallel archi­

tecture. 

Stochastic methods are usually simple to implement and can provide a quick 

approximation of the attractor. However, due to their very nature, i t is often 

diff icult to decide when they should be terminated. Deterministic algorithms on the 

other hand are often harder to implement and can be computationally expensive. 

The remainder of this section discusses an example of a stochastic and deterministic 

method for attractor generation, and concludes wi th the algorithm that shall be 

used to generate attractors in the experiments discussed in Chapter 5. 

4.2.1 The Random Iteration Algorithm 

The Random Iteration Algor i thm ( R I A ) developed by Barnsley (1988; Barnsley and 

Sloan 1988) is perhaps the most commonly used method of attractor generation. 

The R I A was developed by considering an IFS as a probabilistic dynamical system, 

and as such being stochastic in nature. Each of the contraction mappings of an IFS 

{wi : i = 1,2,...,??,} is assigned a probability p;. These probabilities are usually 

calculated by wri t ing the mappings in the fo rm U > , ( . T ) = A{X +1{ (recall Defini t ion 

3.2.3) and taking: 
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det Ai\ click - kci 
for i = 1,2,... ,n. Pi ~ 

£ " = 1 |det At\ En 
» = 1 

biCi 

In other words the probabili ty is approximately proportional to the size of 

the contraction that each mapping produces, and of course £ " = 1 p i ~ 1- The 

approximation is needed so that i f , for some i, det / l , = 0, the probabili ty p, can 

be assigned a small positive number, such as 0.001. The R I A then proceeds as 

follows: 

1. Choose an in i t ia l point xo £ X . 

2. Select (wi th replacement) a mapping, to,-, of the IFS wi th a probabili ty p;. 

3. Generate and store the point x\ = W^XQ). 

4. Select (wi th replacement) a mapping, wj, of the IFS wi th a probabili ty p3 

and apply i t to the point xx to generate x 2 . 

5. Continue in this manner to produce the set of points {a ' 0 , x\,x2, • • •, XN}-

6. For large enough N the set {xi}fL0 is, almost surely, a good approximation 

of the attractor of the IFS. 

That the sequence of points converges (almost surely) to the attractor is ensured 

by Elton's ergodic theorem (Barnsley 1988, p. 370). The ini t ia l point a'0 need not 

lie on the attractor since the sequence wi l l converge to the attractor. I t is, therefore, 

usual to disregard the in i t ia l part of the sequence while i t converges to the attractor. 

A n obvious problem is deciding exactly how many points are to be disregarded. 

This can easily be avoided by selecting the in i t ia l point .To to be a fixed point of 

one of the mappings of the IFS. Since this point lies on the attractor so do all of 

the subsequent points generated. 
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The R I A is both simple to implement and has a certain aesthetic appeal, es­

pecially i f used to generate colour attractors (Hepting el al. 1991; Smith 1991). 

However, due to the stochastic nature of the algorithm i t is not possible to de­

termine in advance the number of iterations required to generate the complete 

attractor. Figure 4.1 shows examples of using the R I A to generate attractors of 

the IFSs given in Tables 4.1 — 4.3. 

• 1 
r*1. '.>• • • 
«..."' fc;. p. "t..r 

r*1. '.>• • • 
«..."' fc;. p. "t..r 

4 4 
Figure 4.1: Using the random iteration algori thm to generate a square, Sierpinski 

triangle and a Barnsley Fern. The diagrams show the algorithm after 1000, 10000 

and 100000 iterations. Even after 100000 iterations the attractor for the square 

has not been completely generated, although this may not be clear i n the diagram 

(the fu l l y rendered square consists of 19881 points). 
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i bi Ci di et- Si Pi 

1 0.5 0 0 0.5 35 35 0.25 

2 0.5 0 0 0.5 -35 35 0.25 

3 0.5 0 0 0.5 35 -35 0.25 

4 0.5 0 0 0.5 -35 -35 0.25 

Table 4.1: Coefficients of an IFS for a square. 

i a, bi c, di e; fi Pi 

1 0.5 0 0 0.5 -35 35 0.333 

2 0.5 0 0 0.5 35 -35 0.333 

3 0.5 0 0 0.5 -35 -35 0.334 

Table 4.2: Coefficients of an IFS for a Sierpinski triangle. 

i a-i k Ci di e< f i Pi 

1 0 0 0 0.16 0 0 0.01 

2 0.2 -0.26 0.23 0.22 0 1.6 0.07 

3 -0.15 0.28 0.26 0.24 0 0.44 0.07 

4 0.85 0.04 -0.04 0.85 0 1.6 0.85 

Table 4.3: Coefficients of an IFS for a Barnsley Fern. 
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4 . 2 o 2 A Deterministic A lgo r i t hm 

The following algorithm for generating the attractor of an IFS was suggested by 

Barnsley (1988, p. 88) and follows directly f rom the definition of an attractor. 

If { X , W{ : i = 1,2,. . . , n } is an IFS then the algorithm proceeds as follows: 

1. Choose a non-empty compact set Ao C R 2 . 

2. Compute successively AN = W N ( A 0 ) according to: 

n 
A N + i = ( J Wi(AN) for A f = 0 , 1 , 2 , . . . . 

i= i 

3. The sequence {AN C ^ ( X ) } ^ ^ converges to the attractor of the IFS in the 

Hausdorff metric — Theorem 3.5.1. 

Although no termination criteria has been specified for the above algorithm it 

is easy to include one. For example, terminate when / i ( A „ _ i , A n ) < e for some 

predetermined e > 0. A criteria such as this has the added advantage that i t allows 

the attractor to be generated to any desired degree of accuracy. 

The major drawback of this algorithm is that there is no guarantee as to the rate 

of convergence of the sequence { A A T } , and so a large number of iterations may be 

required. Furthermore, many unnecessary points w i l l often be plotted, especially 

when the in i t ia l shape Ao is far larger than the attractor. This algorithm is, 

therefore, usually slow in generating the attractor of an IFS and so is unsuitable 

for the experiments discussed in Chapter 5. 
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4 „ 2 o 3 The M i n i m u m Point P lo t t ing Algor i thm 

The M i n i m u m Point Plott ing algorithm (MPP) was suggested by Monro et al. 

(1990). I t was noted that the R I A "visits pixels many times so that i t wi l l eventually 

leave all pixels by all possible routes." Monro et al. suggest a method for generating 

an attractor based upon this fact. Given some points which lie on the attractor 

the application of all the mappings of the IFS to these points generates all possible 

paths f rom these points. A queue of new points to be transformed is created. Points 

that have already been plotted are not added to the queue. When the queue is 

empty the attractor has been generated. The fixed points of the mappings of an IFS 

lie on the attractor and so can be used as starting points. This can be summarised 

as: 

1. Calculate the fixed points of the mappings {u>, : i = 1,2, . . . , n } plot them 

and place them in the queue. 

2. Take the point, x, f rom the head of the queue. For each of the mappings to,-, 

* = l , 2 , . . . , n : 

(a) Generate the point y = Wi(z). 

(b) I f y is a point which has not been plotted, plot i t , and add to the back 

of the queue. 

3. Repeat 2 unt i l the queue is empty. 

Although the above algorithm generates points which have already been gener­

ated, these wi l l not be plotted or added to the queue. The checking of whether or 

not a point has been generated can be efficiently implemented by use of an array — 

although care must be taken to ensure that i t is large enough to record all points 

generated. 

It; is perhaps worth noting a potential problem (not considered by Monro et al.) 

that may arise as a result of rounding errors. I f the attractor is large or complicated 
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enough i t is possible that the rounding (or truncation) of fractional parts of values 

may be enough to alter the value produced by the application of a mapping. In 

such cases some spurious points may be plotted, and other points that are part 

of the attractor may not be plotted. However, these potential difficulties can be 

expected to produce only minor variations i n the attractor. I t is possible to reduce 

the effect of rounding errors by refining the array so that i t takes into account 

a number of decimal places. However, this can be expected to increase the t ime 

taken to generate an attractor. Attractors shown on a computer are, in any case, 

often only a,pproxima.tions since only a finite degree of accuracy is available. 

The M P P algorithm is simple and fast when compared to the R I A (Monro et 

al. 1990), and is used throughout the rest of this thesis to generate attractors. 

4.3 Robustness 

An important property of IFSs is that small variations in the mapping coefficients 

result in small changes in the attractor. This property is referred to as robustness 

and is a direct consequence of the results of Section 3.5. which establish that i f the 

mapping coefficients are continuous in some parameter, then so is the attractor. 

The robustness property is demonstrated in Figure 4.2. The sequence of at­

tractors shows the affects on the attractor of altering, by varying amounts, the IFS 

coefficients tor a Sierpinski triangle. The coefficients used are shown in Tables 4.4 

— 4.7. I t can be seen that the introduction of a few small errors produces l i t t l e 

discernible change in the attractor. When these small errors become more numer­

ous appreciable differences in the attractor can be seen, although the shape is s t i l l 

(to the human eye at least) recognisable. However, w i t h the introduction of a few 

large errors the attractor begins to break up, and w i t h the introduction of more 

large errors i t can be expected to degenerate further. This behaviour demonstrates 

the strong interaction that can occur between individual components of a mapping. 
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Interactions between the mappings themselves can be even more pronounced since 

i t is the interaction of all of the mappings which determines the attractor. 

Figure 4.2: A sequence of attractors obtained by altering the coefficients of an IFS 

for a Sierpinski triangle by various amounts. The top left attractor is the original. 

The top right has a few of the original coefficients altered only slightly. The bot tom 

left has all of the original coefficients altered slightly. The bot tom right has most of 

the coefficients altered sightly and the remainder altered by a larger amount. This 

demonstrates the strong interaction which can occur between components when a 

real-valued subsymbolic representation is adopted. 
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i a, hi Ci di Si 

1 0.5 0 0 0.5 -35 35 

2 0.5 0 0 0.5 35 -35 

3 0.5 0 0 0.5 -35 -35 

Table 4.4: Coefficients of an IFS for a Sierpinski triangle. 

i Cli bt 
di e; f i 

1 0.5 0.01 0 0.5 -35 36 

2 0.5 -0.02 0 0.5 34 -35 

3 0 .48 0 0 0.5 —33 -35 

Table 4.5: Coefficients of an IFS for a Sierpinski triangle 

wi th a few small changes (shown in bold). 

i k c, di e,- f i 

1 0.46 0.01 -0.03 0.52 -33 38 

2 0.51 0.05 0.02 0.49 31 -36 

3 0.47 -0.01 -0.02 0.48 -33 -37 

Table 4.6: Coefficients of an IFS for a Sierpinski triangle 

wi th many small changes. 

i Cli bi Ci di e, /.• 

1 0.46 0.01 -0.03 0.52 -33 20 

2 0.62 0.05 0.02 0.49 31 -36 

3 0.47 -0.01 -0.23 0.48 -33 -37 

Table 4.7: Coefficients for a Sierpinski triangle wi th many 

small and a few larger changes (shown in bold). 
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4»4 The Inverse Problem 

The inverse problem is the name often given to the problem of finding an IFS for 

an arbitrary shape (Barnsley et al. 1986). This section discusses several methods 

that have been suggested for solving two-dimensional inverse problems. The review 

is not exhaustive, but provides an overview of some of the approaches which have 

been considered. The literature review is included so tha.t the results presented in 

the following chapter can be placed in the context of other work on solving inverse 

problems. 

The methods examined fal l into two main categories: interactive and automatic. 

Interactive methods generally use a symbolic representation, while automatic meth­

ods usually adopt a subsymbolic approach and some algorithm to search the space 

of encodings. Interactive methods require a human to guide the search, and as such 

are far f rom ideal. Automatic approaches on the other hand often need to resort to 

s implifying assumptions in order to f ind solutions which usually makes them only 

suitable for application to a subset of inverse problems. 

4=4.1 ISIS 

The Interactive System for Image Synthesis (ISIS) tool was developed by Horn 

(1989) and is used for collage construction. The tool consists of two main parts: 

a drawing surface for IFS design, and a drawing surface for image rendering and 

viewing. 

The IFS design process is carried out by the manipulation of a set of paral­

lelograms. Each parallelogram represents a contraction mapping of the original 

shape, and the manipulation is carried out by the use of a mouse which is used to 

meta-skew a parallelogram by 'dragging' a vertex. Addi t ional parallelograms can 

be created or current ones destroyed as required by the user. The set of mappings 

of the parallelograms is an IFS, and, as alterations are made, the attractor of the 
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IFS is generated in the viewing window. The attractor generation is carried out 

using a massively parallel computer and as such is extremely fast. At any t ime the 

attractor may be overlaid over the drawing surface to aid design. The system can 

be used to solve inverse problems, but being interactive has obvious l imitations. 

4 o 4 o 2 Skeletonisation 

Libeskind-Hadas and Maragos (1987) use the morphological skeleton of the shape 

to be encoded as a tool to provide information on the values of the coefficients 

necessary to produce a collage of affine maps (IFS) that cover the original. 

I f A is a set in R 2 then the disc rDx is maximised wi th respect to A i f i t is 

contained in A and is not properly contained in any other disc contained in A. The 

skeleton of A, is defined to be the set of centres of all discs maximal wi th respect 

to A. The skeleton can also be defined using morphological operations, and the 

above concepts can be applied to finding the skeletons of discrete binary images. 

When the tool is applied to an image, the skeleton is computed, and the user 

locates the central branch point and outer branch points. These outer points 

are then used to calculate the coefficients of mappings f rom which a collage is 

bui l t . The system works well for perfect self-similar fractals (those which display 

the same structure at al l scales) by enabling the discovery of collages which f i t 

the image boundary. More generally, however, the mappings generated may not 

cover the image and so the remainder is covered by discs. The system, although 

useful, is not automatic and often requires the use of shapes that are not affine 

transformations of the original. 
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4 . 4 . 3 I terat ive Minimisat ion 

Levy-Vehel and Gagalovvicz (1987) introduce several distance measures between 

shapes and use thern to quantify the distance between a shape and a collage of 

i t . A gradient based algorithm is used to iteratively minimise one of the distance 

functions so that a suitable collage for the shape can be found. The results for some 

of the distance functions are reported to be. i n general, poor, but one example of 

a successful application of the procedure is given. The major drawback of the 

approach is in the selection of the starting collage. I f this is badly chosen then the 

algorithm is not able to f ind a good collage. To overcome this i t was necessary 

to select the starting collage by hand, and as such the procedure is not totally 

automatic. 

4.4.4 Boundary Mapping 

Giles et al. (1989) suggests reducing the collage construction process to an essen­

tially one-dimensional problem by selecting mappings which match to the shape 

boundary only, thus significantly reducing the search space complexity. 

The input data for this algorithm is a digitised binary image of a simple geo­

metric shape. The boundary points of the image are detected and the curvature K 

at each point calculated. The boundary is segmented into arcs, the endpoints of 

which correspond to K = 0. The arcs are then classified as either concave, convex 

or linear. Contractive affine transformations are calculated which map arcs of the 

same curvature type onto each other, the best being accepted as part of the IFS. 

I f no suitable match is found, the unmatched arc is halved and reconsidered. 

The best encodings produce attractors which give good approximations of image 

boundaries. However, although an automatic system, the mappings used are in 

general small and thus unable to cover adequately the image interior. 
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4 . 4 = 5 Evolutionary Algori thms 

Previous applications of EAs to the inverse problem have considered both the use of 

GAs and EP. Vrscay (1991a; 1991b) considered several approaches to solving inverse 

problems, one of which involved the application of a GA. A brief overview of the the­

ory of GAs and how they can be applied to inverse problems was given. Although 

encouraging results were reported, only preliminary details for one-dimensional 

problems were provided and there were no details of any results for two-dimensional 

problems. Garigliano et al. (1993c) 1 and especially Giles (1990) discussed in some 

detail the implementation of a GA to two-dimensional inverse problems and showed 

some promising results for a selection of target shapes. 

Levy-Vehel and Lu t ton (1993) presented the. application of a GA to some two-

dimensional inverse problems. Two target shapes were considered: a Barnsley Fern, 

and a perturbed Sierpinski triangle. The algorithm was reported to be capable of 

finding near optimal solutions, but no details of its mean performance was given. 

Hoskins and Vagners (1992) have applied EP to the inverse problem wi th some 

success. The approach taken assumed knowledge of the size of the linear defor­

mations, and searched for the number of mappings required together w i th their 

translation components. The technique used to achieve this "simulates the com­

petitive dynamics on an array of mapping cells." Each element of a 192 x 192 

array was used to represent a mapping, the fixed point of which corresponded to 

its position in the array. The population consisted of individual mappings, and 

the goal was the determination of an optimal population of individuals. Four test 

cases were presented which showed that (wi th in its l imitat ions) the algorithm was 

able to exactly solve two of the problems: a Sierpinski triangle, and a T w i n Dragon 

fractal . The remaining two problems were a noisy image and two embedded ob­

jects, the exact, solutions of which, were not known. Promising results for both of 

these cases were given. Although the technique is useful i t is clearly l imi ted by the 

' T h e sequence of results shown in Garigliano et al. (1993c) was for a population of 500, not 
100 as implied. 
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requirement of needing a priori knowledge of the linear deformations. 

4.4<.6 Moment Approach 

In addition to the geometric theory of IFSs they can be characterised in terms of 

measures. A f u l l account of this approach is given by Barnsley (1988). 

In the case of the measure approach a gray scale image is modelled as a proba­

bi l i ty measure over its region of support. A contractive mapping is defined in terms 

of a Markov operator and the metric used is known as the Hutchinson metric. The 

successive application of the Markov operator to an arbitrary in i t ia l dis tr ibut ion 

results in convergence to a. unique measure. This is termed the invariant mea­

sure and obeys a fixed point condition w i t h respect to the Markov operator. The 

support of the invariant measure is the attractor of the IFS. 

For a target shape S the inverse problem for measures involves finding an IFS 

whose attractor A minimises the Hutchinson distance dn{fi, v) where the support 

supp(p) — A and supp{v) = S. A Collage Theorem for measures exists and is 

conceptually similar to that for the geometric approach. 

Vrscay (1991a; 1991b) examined the use of a gradient based approach for solv­

ing one-dimensional inverse problems, but found i t to be very unstable. A two-

dimensional inverse problem was considered, and the results so bad that Vrscay 

(1991a, p. 447) states, "This example shatters any hopes of using gradient meth­

ods for moment matching as a global optimisation method." I t is suggested that 

the method may prove useful as a fine-tuning procedure for a more global search 

procedure. 

The moment method has also been applied to the one-dimensional case by 

Abenda and Turchetti (1989). A two-dimensional approach involving wavelets was 

suggested by Rinaldo and Zakhor (1992), but the procedure is only applicable 

to inverse problems whose IFS mappings are of a particular very restricted fo rm. 
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In addition the mappings are assumed to be non-overlapping thus making the 

technique unsuitable for many inverse problems. 

In this thesis only black on white images are considered and a geometric ap­

proach to the inverse problem is sufficient. Barnsley (1988) provides further details 

of the measure theory of IFSs. 

4.4=7 Model l ing One-dimensional Data 

IFSs have been suggested as a means of modelling one-dimensional discrete data. 

Vines and Hayes (1992) suggest two possible algorithms for this based on the 

Collage Theorem. The algorithms split the data into smaller sections, and f ind 

mappings which minimise the squared error between the original data and the data 

when mapped into the smaller sections. The first algorithm encounters difficulties 

in determining the endpoints of the smaller sections which are to be used. Although 

some constraints are applied, the algorithm is required to exhaustively evaluate a 

large number of possibilities, which results in much wasted computation. The 

second algorithm uses a linear interpolation of the data to provide the endpoints 

of the smaller sections, and a least squares approximation is used to optimise the 

parameters of the individual mappings. As discussed by Mazel and Hayes (1992) 

the above (self-a,ffine) fractal interpolation algorithms are only really suitable for use 

on data which is itself self-affine. Since most real world data is not self-affine Mazel 

and Hayes suggest a piecewise self-affine fractal model. Adopting this approach the 

data is viewed as being composed of a collage of transformations of pieces of the 

data and not transformations of the whole data set (as in the self-affine case). This 

approach while being more general resulted in a large number of extra degrees of 

freedom and restrictions needed to be placed on mappings. Using this model Mazel 

and Hayes (1992) show successful models of several data sequences. 
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4o5 Other Applications of IFSs 

The main aim of this chapter has been to continue the detailed description of how 

IFSs can be used for two-dimensional shape representation, and to survey some 

of the approaches which have been considered. There are, however, several other 

useful applications of IFSs which rely on solving corresponding inverse problems, 

and some of these are now briefly discussed. 

Barnsley (1988; 1993) promoted a scheme for encoding images by using what 

he called a fractal transform. The compression ratios achieved for images encoded 

using such a scheme are reported to be very favourable. Barnsley has founded a 

company, Iterated Systems, that produces software for compression/decompression 

(Georghiades and Jacobs 1992), but has not released details of the method used. 

Jacquin (review of the technique in Jacquin 1992) was the first to publish a ful l ac­

count of a method for fractal compression and a block based approach was adopted. 

(This requires that the image be broken up into small blocks, and the discovery 

of mappings which map blocks of different sizes onto each other.) Recent reviews 

and improvements of this technique include those by Waite (1990), Fisher (1992), 

Beaumont (1990), and Monro and Dudbridge (1992). The advantage of this fractal 

based approach, over some other methods of image compression, is that the en­

coding/decoding process has no need to refer to any external library. The image 

instead being encoded using parts of itself. While the decoding of images is very 

fast, the time taken to carry out the encoding appears to be the major drawback 

of the approach. Another method for fractal based encoding of images has been 

suggested by Hollatz (1991). 

Sharp and While (1992) suggest a means of automatically recognising and clas­

sifying fractally encoded images. They state "The aim of fractal recognition is to 

take an unknown image and determine which, if any, of a library of fractals was 

used in its generation" (Sharp and While 1992, p. 6). Each element of their library 

is an IFS encoding for a shape. The approach presented uses an algorithm which 
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repeatedly applies an IFS f r o m the l i b r a r y t;o an u n k n o w n image. T h e a l g o r i t h m is 

described as one which a t t e m p t s t o sustain images ra ther t h a n generate t h e m . I f 

the image is i den t i ca l to the a t t r a c t o r of t he I F S i t remains i n t a c t . However , i f the 

image is ' d i s t a n t ' f r o m the a t t r a c t o r of the I F S then ins tead of be ing t r a n s f o r m e d 

i n t o the a t t r a c t o r i t g r adua l ly disintegrates and even tua l ly disappears. F i n a l l y , i f 

the image is ' s i m i l a r ' to the a t t r a c t o r of the I F S t hen the a l g o r i t h m refines the 

image t o w a r d the a t t r a c to r . T h i s allows for t he recogni t ion of images i n the pres­

ence of noise. A n i m p o r t a n t extens ion to the a l g o r i t h m al lows f o r the r ecogn i t i on 

of displaced, r o t a t e d and scaled images. T h e approach is, however, l i m i t e d b y the 

fact t h a t i t is necessary to app ly the a l g o r i t h m to each of t he encodings i n t he 

l i b r a r y u n t i l one is f o u n d w h i c h does not d i s in tegra te . For a large l i b r a r y th is cou ld 

be p r o h i b i t i v e l y t i m e consuming . I n a d d i t i o n , for a shape to be added to the l i ­

b r a ry i ts IFS encoding needs t o be f o u n d , a n d no a u t o m a t i c means of do ing th is is 

presented, i.e., to add a shape, the inverse p r o b l e m f o r t h a t shape s t i l l needs t o be 

solved. 

W a t t (1993) suggests the use of IFSs fo r m o d e l l i n g in t e l l i gen t behaviour . T h e 

behaviour of b io log ica l systems is o f t e n complex , b u t th is m a y i n p a r t be a t t r i b u t e d 

t o d y n a m i c a l processes conta ined w i t h i n the sys tem. T h e behaviour of d y n a m i c a l 

systems can appear to be very complex , b u t may be con t ro l l ed by s imple rules 

(Gle ick 1988). W a t t demonstra tes how a generic so lu t ion to the Towers of H a n o i 

p r o b l e m (see F i g u r e 4.3) can be represented by an I F S . T h e a t t r a c t o r of the I F S is 

a pa th t h r o u g h the p rob lem ' s s tate space. F r o m the collage of mapp ings , the phys­

ical procedure f o r so lv ing the Towers of H a n o i p r o b l e m can be i n f e r r ed , and the 

u n d e r l y i n g p r i n c i p l e for general is ing the m e t h o d is described as l o o k i n g " fo r pat ­

terns i n behaviour w h i c h a l low a s imple set o f rules to describe appa ren t ly c o m p l e x 

behaviour ." T h e m a j o r d i f f i c u l t y w h i c h arises is the discovery of a su i tab le collage 

to describe a p a t h t h rough a p rob lem's s tate space, i.e., so lv ing the cor responding 

inverse p r o b l e m . 
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Initial State Goal State 

Figure 4.3: T h e i n i t i a l and goal states for the Towers of Hano i p r o b l e m . T h e a i m 

is to move a l l t he r ings f r o m one peg to another . T h e rules are t h a t o n l y one r i n g 

can be m o v e d at a t i m e , a r i n g can o n l y be m o v e d when there are no rings on t o p 

of i t , and no r i n g m a y be placed on a smal ler r i n g . 

4-6 Summary 

T h i s chapter has comple t ed the f o r m a l i s m necessary f o r the use of IFSs as a shape 

representa t ion scheme. A subsymbol ic representa t ion can be adopted w h i c h con­

sists of the real -valued components of the mapp ings of an I F S . M e t h o d s f o r gener­

a t i n g the a t t r a c t o r of an I F S have been discussed, a n d the M P P a l g o r i t h m selected 

f o r use in the exper iments of t he f o l l o w i n g chapter . T h e robustness p r o p e r t y of 

IFSs demonstra tes t h a t there is a s t rong i n t e r a c t i o n between the subsymbol i c com­

ponents . A comprehensive review of t he l i t e r a t u r e on I F S shape representa t ion has 

been i n c l u d e d so t h a t the w o r k i n the nex t chapter can be placed i n the con tex t of 

o ther work on the sub jec t . 



Chapter 

Evolutionary Algorithms and the 

Inverse Problem 

T h i s chapter is t he f i r s t of the e x p e r i m e n t a l chapters of th i s thesis, and explains 

i n de t a i l how a genetic a l g o r i t h m ( G A ) and e v o l u t i o n a r y p r o g r a m m i n g ( E P ) can 

be app l i ed to the inverse p r o b l e m for two-d imens iona l shapes. T h e G A a n d E P 

presented are o f t e n considered to be t he i r s imple versions — an account of the 

a l te rna t ives w h i c h have been suggested is b ey o n d the scope of th is thesis. T h r e e 

h i l l - c l i m b i n g a l g o r i t h m s are also i n t r o d u c e d . 

Solut ions to inverse prob lems are encoded subsymbo l i ca l l y (b ina ry s t r i n g for t he 

G A and h i l l - c l i m b i n g a lgo r i t hms , and real-valued for E P ) and this results i n s t rong 

in te rac t ions occu r ing between blocks of components as wel l as between i n d i v i d u a l 

components of the encodings. T h e G A , E P and h i l l - c l i m b i n g a lg o r i t h ms are app l i ed 

t o several inverse p rob lems . Results presented show the success of EP , b u t i nd ica t e 

t h a t the G A and the h i l l - c l imbe r s a l g o r i t h m s are not as successful. Reasons fo r 

th is d i s p a r i t y are discussed ( N e t t l e t o n and Gar ig l i ano 1994c, 1994d, 1994g). 
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5 o l The Inverse Problem 

As discussed in Sect ion 3.5 a shape can be represented as an I F S by choosing 

c o n t r a c t i o n mappings such t h a t they f o r m a collage t h a t exac t ly covers the o r i g i n a l 

shape. I n essence t h e p r o b l e m is symbo l i c w i t h t he shape be ing recreated f r o m 

a co l lec t ion of smal le r copies of t ha t shape. T w o examples of collages, one fo r a 

square, the other f o r a t r i ang le , are shown i n F i g u r e 5 .1 . 

T h e ' smal ler copies ' w h i c h are used i n the cons t ruc t ion of a collage can, however, 

be represented as c o n t r a c t i o n mappings and a real -valued subsymbol i c represen­

t a t i o n adopted . T h e coeff icients of the mapp ings used in F i g u r e 5.1 are g iven i n 

Table. 5.1 and are of the f o r m : 

x \ 
Wi 

y J Ci d{ 

\ ( „ \ x + 
\ y J 

where i e { 1 , 2 , . . . , n } . (5 .1) 

F igu re 5 .1 : A square and a t r i ang le each of w h i c h is decomposed i n t o a collage 

of smal ler copies of themselves. 

w w 1 
w 1 

w w w 
w 

IFS(a) IFS(b) 
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Tab le 5 .1 : T h e coeff icients of the c o n t r a c t i o n mapp ings w h i c h p roduce the 

collages g iven i n F i g u r e 5.1 

I F S (a) IFS (b ) 

i «t bi Ci di e,- Si en k Ci di e,- Si 

1 0.5 0.0 0.0 0.5 -25 25 0.5 0.0 0.0 0.5 0 25 

2 0.5 0.0 0.0 0.5 25 25 0.5 0.0 0.0 0.5 -25 -25 

3 0.5 0.0 0.0 0.5 -25 -25 0.5 0.0 0.0 -0.5 0 -25 

4 0.5 0.0 0.0 0.5 25 -25 0.5 0.0 0.0 0.5 25 -25 

T h e p r o b l e m is now one of m a n i p u l a t i n g the subsymbol i c components i n order 

to find a su i tab le so lu t ion . T h e f o l l o w i n g s i m p l i f y i n g assumptions are made: 

1. N u m b e r of mapp ings f i x e d i n advance — the n u m b e r of mapp ings w h i c h 

an I F S contains is f i x e d p r i o r to an a l g o r i t h m ' s r u n . F i x e d l e n g t h so lu t ion 

encodings can be used, thus a l l owing fo r the s imple versions of the G A a n d 

E P to be app l ied . M o r e sophis t ica ted versions of these a lgo r i t hm s exist w h i c h 

a l low fo r v a r y i n g l e n g t h encodings, b u t these are not considered i n th i s thesis. 

2. M a p p i n g s coeff icients i n n o n - t r i v i a l ranges — no knowledge o f the m a p p i n g 

coeff ic ients is assumed except t h a t they l ie w i t h i n some n o n - t r i v i a l ranges. 

( T h e cons t ra in ts der ived i n the f o l l o w i n g chapter are no t app l i ed , since, a l ­

t hough they considerably reduce the search space, they are not necessary 

when c o m p a r i n g the pe r fo rmance of a l g o r i t h m s . F u r t h e r m o r e , i f t hey were 

t o be app l i ed , t hen the G A wou ld requi re p r o b l e m specific operators to en­

sure t h a t mapp ings p roduced as a resul t o f crossover a n d / o r m u t a t i o n are 

con t r ac t ive . T h e ranges used ensure tha t i n the cases of the G A and the 

h i l l - c l i m b e r s al l t he possible b ina ry s t r ings represent va l id solut ions . ) 

Even w i t h the above s imp l i f i c a t i ons the search spaces fo r the prob lems discussed 

are very large, and h i g h l y complex . The re are t y p i c a l l y several o p t i m a l and m a n y 

s u b o p t i m a l solut ions — see Section 5.1.4. T h e r ema inde r of th is sect ion discusses 
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how E A s can be appl ied to inverse p rob lems f o r w h i c h a subsymbol ic representa t ion 

has been adopted . 

5.1.1 Environment 

T h e e n v i r o n m e n t of an E A is the source of i n f o r m a t i o n on w h i c h the fi tness of 

solut ions is evaluated. A n e n v i r o n m e n t f o r shape representa t ion m u s t i n theory be 

able t o cope w i t h any shape and hence 7 i ( R 2 ) w o u l d be sui table . For convenience, 

how rever, shapes are shown on a c o m p u t e r screen and so th i s is t he e n v i r o n m e n t 

used f o r the deve lopment of solut ions to the inverse p r o b l e m . M o r e speci f ica l ly a 

257 x 257 g r i d is used on w h i c h the shape t o be encoded is p l o t t e d . T h e elements 

of t he g r i d w h i c h are labe l led 1 are po in t s o f the shape, t he r e m a i n i n g elements 

be ing labe l led 0. 

G i v e n an a r b i t r a r y ta rge t shape ( the shape w h i c h is to be encoded as an I F S ) 

a s imp le image processing a l g o r i t h m is used t o calcula te t he f o l l o w i n g i n f o r m a t i o n : 

1. T h e n u m b e r of pixels of the shape. 

2. T h e coordinates of the cen t ro id of the shape. 

3. T h e m a x i m u m ex ten t of the shape a long the abscissa and o rd ina t e axis . 

W i t h o u t loss of genera l i ty the target shape is t r ans la ted so tha t i t s cen t ro id lies 

at t he centre of the 257 x 257 g r i d . 
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5.1.2 Solution Representation 

I n n a t u r a l e v o l u t i o n , genetic m a t e r i a l contains the i n f o r m a t i o n r equ i red to generate 

an o rgan i sm ( a l t hough i ts development depends i n par t on ex t e rna l e n v i r o n m e n t a l 

cond i t ions ) . These genes can be considered as the b u i l d i n g blocks necessary fo r 

the cons t ruc t ion of an i n d i v i d u a l . I n a s i m i l a r way, the con t r ac t i on mappings of 

an I F S are the b u i l d i n g blocks necessary fo r so lv ing an inverse p r o b l e m , and each 

c o n t r a c t i o n m a p p i n g can be encoded as a s t r i n g o f numbers — th i s t hen becomes 

the genetic m a t e r i a l of t he inverse p r o b l e m . I n order to ensure tha t t he E A s always 

produce va l id solut ions , t he coeff icients of the c o n t r a c t i o n mapp ings (see E q u a t i o n 

5.1) are cons t ra ined such t h a t , f o r a l l i: 

- 0 . 7 0 7 < ai,bi,a,di < 0.707 

- XMAX < e t < XMAX - YMAX < / , < YMAX (5.2) 

where XMAX and YMAX are the m a x i m u m exten t o f the shape i n the x and 

y d i rec t ions (Gi les 1990, pp . 146). T h e cons t ra in ts on c,, 6,, c, and d{ ensure t h a t 

the m a p p i n g w i l l be con t rac t ive . T h e const ra in ts on e, and f i are de r ived f r o m 

n o t i n g tha t once the o r i g i n a l has been con t rac ted i t should not be m o v e d by an 

a m o u n t exceeding the d imensions of the box con ta in ing the o r i g i n a l shape. Such a 

t r a n s f o r m a t i o n w o u l d p roduce an unsu i t ab le collage since some p o i n t o f the collage 

wou ld l ie outs ide of the o r i g i n a l shape. 

T h e constra ints de r ived i n the f o l l o w i n g chapter are not app l i ed due t o t h e p rob­

lems w h i c h wou ld occur i n the i r app l i ca t ion to the G A . W i t h a f i x e d l e n g t h b i n a r y 

representa t ion, and no sophis t ica ted crossover operator , t he G A cou ld produce i n ­

va l id solut ions ( w i t h respect to the cons t ra in ts ) w h i c h E P cou ld never produce . 

A l t h o u g h i n v a l i d solut ions are easily penalised th is m i g h t bias a compar i son of the 

two approaches i n favour of EP. 
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5.1.3 Fitness Function 

T h e q u a l i t y (f i tness) of possible solut ions to the inverse p r o b l e m relies on a q u a n t i ­

t a t i v e measure of how closely t w o shapes resemble each o ther , and can be assessed 

w i t h a var ie ty of techniques ( L e v y - V e h e l and Gagalowicz 1987; M u m f o r d 1987). 

T w o fitness func t ions shal l be considered, b o t h of w h i c h use p o i n t coverage. T h e 

f o l l o w i n g piece of pseudocode demonstra tes how p o i n t coverage between two shapes 

is ca lcula ted . Each of the t w o shapes t o be compared are. represented by a 257 x 

257 g r i d . T h e elements of the g r i d w h i c h are labe l led 1 are po in ts of t he shape, the 

r e m a i n i n g elements be ing labe l led 0. I f two shapes are represented us ing the gr ids 

shape[x][y] a n d image[x] [y] t hen the p o i n t coverage be tween t h e m is ca lcu la ted 

us ing: 

f i t n e s s := 0 ; 
for x := 0 to 256 do 
begin 

fo r y := 0 to 256 do 
begin 

i f image[x][y]=l and shape[x][y]=l then 
f i t n e s s := f i t n e s s + 1 ; 

el s e i f image[x][y]=0 and shape[x][y]=0 then 
f i t n e s s := f i t n e s s ; 

e l s e 
f i t n e s s := f i t n e s s - 1 ; 

end ; 
end ; 

G i v e n a shape to be encoded, A . a n d an I F S {lo-i, W2, • • •, t hen the the t w o 

f u n c t i o n s used to calculate the fitness of the I F S are: 

1. A t t r a c t o r and p o i n t coverage — calcula te the p o i n t coverage between A and 

the a t t r a c t o r of the I F S . 

2. Colla.ge a n d po in t coverage — calcula te the p o i n t coverage between A and 

U L i ^ ( A ) . 



C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 5 

T h e usual stocha.stic m e t h o d f o r genera t ing the a t t r a c t o r (Barns ley 1988, p . 

91) is unsu i tab le since there is no t e r m i n a t i o n c r i t e r i o n . T h e a t t r a c t o r is, there­

fore, generated using the d e t e r m i n i s t i c M P P a l g o r i t h m ( M o n r o et al. 1990) — see 

Section 4.2.3. T h e g r i d o n w h i c h the a t t r a c t o r is p l o t t e d is of a fixed size and i t is 

possible t h a t the a t t r a c t o r contains some poin ts w h i c h l ie outs ide of the g r i d . W h e n 

such po in t s are generated a pena l ty of 5 is sub t rac ted f r o m the cu r ren t fitness and 

the p o i n t discarded. A m o r e c o m p l e x s t ruc tu re t h a n an ar ray c o u l d be used t o keep 

t rack of the poin ts p l o t t e d , e.g.. a b i n a r y tree, b u t th is is m u c h slower to access 

when checking to see i f a po in t has been already p l o t t e d and w o u l d considerably 

slow the a l g o r i t h m ' s execu t ion . B y ensur ing tha t t he target shapes are s m a l l and 

cen t ra l w i t h regards to the g r i d th i s p r o b l e m is m i n i m i s e d . 

T h e above fitness f u n c t i o n s can resul t i n b o t h pos i t ive and negat ive values, 

and as such are not me t r i c s . T h e o p t i m u m fitness value w i l l be the m a x i m u m 

pos i t ive value a t t a inab le , and w i l l be equal to the n u m b e r of pixels of the shape 

which is to be encoded. T h e m a i n advantage of us ing p o i n t coverage i n the fi tness 

f u n c t i o n is speed. One disadvantage is i t s lack of sens i t iv i ty to shape s t ruc tu re . 

O the r measures, such as the Hausdo r f f distance, m a y be used. Each of these have 

the i r o w n advantages and disadvantages over p o i n t coverage. For example , the 

Hausdor f f dis tance is m o r e sensit ive to shape s t ruc tu re , b u t i t s ca l cu la t ion involves 

considerably greater c o m p u t a t i o n a l expense. 

T h e n u m b e r of ch i ld ren t h a t a parent I F S can produce is d i r e c t l y r e l a t ed to i t s 

fi tness: the fitter the parent the greater the p r o d u c t i o n . Once the r equ i red n u m ­

ber of c h i l d IFSs have been p roduced they e i ther 1) i m m e d i a t e l y become a parent 

p o p u l a t i o n ( G A ) or 2) are combined w i t h t he i r parent p o p u l a t i o n , the wors t p rob­

ab i l i s t i c a l l y cu l led and the remainder then become a parent p o p u l a t i o n ( E P ) . T h e 

process of c h i l d p r o d u c t i o n is repeated, and i n th i s way subsequent generat ions 

evolve t o w a r d o p t i m a l solut ions . T h e detai ls of the G A and E P used i n the exper­

iments of this thesis are g iven i n Sections 5.2 and 5.3 respect ively, b u t before t h a t 

the fitness landscape is b r i e f ly inves t iga ted . 
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5.1.4 Cross-sect ions of the Search Space 

T h e search spaces fo r the inverse p rob lems considered in th is chapter are very large 

and complex . I n th is sect ion some cross-sections of the search space f o r t he S ierp in-

ski t r i ang le are shown. T h e coeff ic ients of an I F S f o r a Sierp inski t r i ang l e are g iven 

i n Tab le 5.2. T h e I F S consists of three mapp ings , and hence 18 coeff ic ients . A l l 

of these are f i x e d except f o r the t w o t r ans l a t i on components of t he t h i r d m a p p i n g : 

these are each a l lowed t o take a value f r o m the set {—50, — 4 9 , . . . , 0 , . . . , 4 9 , 5 0 } . 

Figures 5.2 and 5.3 show I F S fitnesses w h e n the a t t r a c t o r and p o i n t coverage, and 

the collage and p o i n t coverage, respect ively, are used as the fitness f u n c t i o n s . T h e 

o p t i m u m fitness lies at t he p o i n t ( 0 , 2 5 ) , b u t th is is no t a c t u a l l y p l o t t e d since i n ­

t e r p o l a t i o n of t he da ta was r equ i r ed t o a l low the p lo ts to be v iewed m o r e easily. 

T h e i n t e r p o l a t i o n has also resul ted i n m u c h d e t a i l be ing smoo thed ou t , and m a n y 

local o p t i m a are not v is ib le . T h e real search space has m a n y m o r e local o p t i m a 

t h a n the figures suggest. 

Table 5.2: Coeff ic ients of an I F S . N o t e a l l the values are f i x e d except fo r 

those of p-3 and fa w h i c h are each a l lowed to take a. value f r o m the set 

{—50, — 4 9 , . . . , 0 , . . . ,49 , 5 0 } . T h e Sierp inski t r i ang le used i n the fitness f u n c t i o n 

is the a t t r a c t o r of the I F S for w h i c h X = 0 a n d Y = 25. Figures 5.2 and 5.3 show 

I F S fitnesses, fo r a. range of X and Y values, when compared to the S ierp inski 

t r i ang le . 

i a, bi di 6{ /, 
1 0.5 0 0 0.5 -25 -25 

2 0.5 0 0 0.5 25 -25 

3 0.5 0 0 0.5 X Y 
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F igure 5.2: Cross sect ion of the search space for the S ierp inski t r i ang le 

w i t h the fitness f u n c t i o n of at tra.ctor and p o i n t coverage. Six teen of the 

eighteen coeff icients are fixed (a t the o p t i m a l ) , the r e m a i n i n g t ransla­

t i o n components of the 3 rd m a p p i n g correspond to the X and Y axis 

(see Table 5.2). ( N o t e t h a t due to i n t e r p o l a t i o n o f the d a t a some de ta i l 

has been smoothed o u t . ) 
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F igure 5.3: Gross sect ion of the search space fo r t he Sierpinski t r i ang le 

w i t h the fi tness f u n c t i o n of collage and p o i n t coverage. Sixteen of the 

eighteen coeff ic ients are f i x e d (at the o p t i m a l ) , t he r e m a i n i n g t ransla­

t i o n components of the 3 rd m a p p i n g correspond t o the X and Y axis 

(see Table 5.2). ( N o t e t h a t due to i n t e r p o l a t i o n of the d a t a some d e t a i l 

has been smoo thed o u t . ) 
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ô 



C h a p t e r 5: E v o l u t i o n a r y A l g o r i t h m s a n d t h e I n v e r s e P r o b l e m 8 9 

502 Outline of a GA 

I n a p p l y i n g a G A to the inverse p r o b l e m the subsymbol i c representa t ion adopted is 

t h a t of a b i n a r y s t r i n g ( H o l l a n d 1992, p . 7 1 ; Go ldbe rg 1989, p . 80) . T h e coeff ic ients 

of the con t r ac t i on mappings are conver ted t o b i n a r y str ings and are concatenated 

together t o f o r m one s t r i n g . Each coeff ic ient is represented by a b i n a r y s t r i n g of 

l eng th e ight , thus each of the coeff icients can take one of 2 8 = 256 values. T h e size 

of the search space fo r an IFS consis t ing of n mapp ings is therefore 2 8 x 6 x n — for 

n = 3 there are m 2.23 X 10' 1 3 poss ib i l i t ies . 

W h e n selecting solut ions f o r m a t i n g , a ' r ou l e t t e whee l ' t y p e of s amp l ing ( G o l d ­

berg 1989, p . 11) is used i n order t o ensure t h a t be t t e r solut ions are more l i k e l y 

to be chosen. T h i s proceeds by f i r s t eva lua t ing the fi tness of each so lu t i on i n a 

genera t ion (us ing e i ther the a t t r a c t o r or collage and po in t coverage). These values 

are then rescaled l inea r ly i n the range 10 t o 100, such t h a t the so lu t ion w i t h t he 

wors t fitness has the value 10 a n d the best 100. T h e rescaling is necessary t o re­

move negat ive fitness values, and the range was chosen to he lp m a i n t a i n so lu t ion 

d ivers i ty . Sections of the rou le t t e wheel are then a l loca ted according t o th i s scaled 

value. T h i s ensures t h a t w h e n the rou le t t e wheel is p r o b a b i l i s t i c a l l y spun, the fitter 

the so lu t ion the more l i k e l y i t is to be selected. 

Parents are combined using a t w o - p o i n t crossover opera tor (see F i g u r e 5.4) w i t h 

the p r o b a b i l i t y of crossover pc = 0.6. W h e n app l i ed to a p o i n t i n the b i n a r y s t r i n g , 

the m u t a t i o n opera tor changes the value at t ha t p o i n t , i.e., 1 to 0, or 0 to 1. 

I n order not t o be too d i s r u p t i v e , the p r o b a b i l i t y of m u t a t i o n was kep t low w i t h 

Pro - 0.0005. 
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Figure 5.4: A n example of how t w o - p o i n t crossover combines the b i ­

nary s tr ings of t w o parents t o give two ch i l d r en . T h e t w o endpoin t s of 

the section of b i n a r y s t r i n g t h a t is exchanged are chosen u n i f o r m l y at 

r a n d o m . 

parent 1 1 1 0 1 0 1 0 0 1 

parent 2 1 0 1 1 0 0 1 0 1 

sect ion exchanged * * * * 

ch i ld 1 1 1 1 1 0 0 0 0 1 

c h i l d 2 1 0 0 1 0 1 1 0 1 

T h e G A used is s u m m a r i s e d i n F igu re 5.5 and is o f t e n k n o w n as the S imp le 

Genet ic A l g o r i t h m . M a n y var ia t ions on th is a l g o r i t h m have been suggested (see, 

e.g., Go ldbe rg 1989; Beasley et al. 1993a, 1993b). 
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Figu re 5.5: O u t l i n e of the genetic a l g o r i t h m used i n the exper iments of th i s 

chapter a n d those of Chapters 7 a n d 8. 

1. R a n d o m l y in i t i a l i s e a parent p o p u l a t i o n of b i n a r y s t r ings . 

2. Eva lua te each m e m b e r o f the parent p o p u l a t i o n . 

3. Select a so lu t ion f r o m the parent p o p u l a t i o n w i t h p r o b a b i l i t y i n p r o p o r t i o n 

to fitness using a rou l e t t e wheel approach. 

4. A p p l y the crossover opera tor w i t h a. p r o b a b i l i t y pc. I f crossover is n o t per­

formed then place the so lu t i on i n t o the c h i l d genera t ion . Otherwise : 

(a) Select a so lu t ion f r o m the parent p o p u l a t i o n w i t h u n i f o r m p r o b a b i l i t y . 

(b ) Select at r a n d o m t w o crossover poin ts t h a t are w i t h i n the b i n a r y s t r i n g . 

(c) Us ing t w o - p o i n t crossover recombine the solut ions ( sp l ic ing the respec­

t i v e sections f r o m each s t r i n g i n t o each o the r ) and place t h e m b o t h 

i n t o the c h i l d genera t ion. 

5. I f the n u m b e r of solut ions to be a l lowed i n the c h i l d genera t ion has not been 

reached then go to step 3. 

6. W i t h a p r o b a b i l i t y pm. m u t a t e each element of t he c h i l d solut ions . 

7. Replace the parent p o p u l a t i o n w i t h the c h i l d p o p u l a t i o n . T h i s completes a 

genera t ion. 

8. I f the t e r m i n a t i o n c r i t e r i o n is not m e t then go to step 2. 
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I n a p p l y i n g E P to the inverse p r o b l e m the subsymbol ic representa t ion adop ted is 

t h a t w h i c h is most ' n a t u r a l . ' T h e coeff ic ients are. therefore , s tored as real numbers 

(six dec imal places), and are cons t ra ined to the ranges g iven by Equa t ions 5.2. A 

c h i l d is p roduced f r o m a parent by m u t a t i n g the coeff icients of t he I F S ( for a l l i) 

according to : 

ai = a, + ^ ( 0 , 1 ) bi = hi + o" iA r (0 ,1 ) 

d = a + <7iAr(0,1) di=di + aiN(Q. 1) 

e, = ei + a2N(0,1) /,- = /,• + < t 2 J V ( 0 , 1) 

where o\ and oi are s t andard dev ia t ions der ived f r o m the fitness of the paren t 

(see Section 5.5) and A r ( 0 , l ) is a s t anda rd n o r m a l r a n d o m variable . R e l a t i n g the 

severi ty of the m u t a t i o n t o the fitness o f the so lu t ion ensures t h a t fitter parents 

tire less l i k e l y t o be m u t a t e d to the same degree as less fit parents. I f as the resul t 

of m u t a t i o n the constra ints of Equa t ions 5.2 are no t sat isf ied, the values t h a t are 

ou t of the feasible range are set t o the nearest a l lowable values. 

T h e E P a l g o r i t h m used is summar i sed i n F igu re 5.6. The re are m a n y var ia t ions 

of the above a l g o r i t h m i n c l u d i n g , for example , m e t a - E P (Fogel 1992a). 
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Figure 5.6: Outline of the evolutionary programming algorithm used in the 

experiments of this chapter and those of Chapters 7 and 8. 

1. Randomly initialise a parent population of solutions. 

2. Evaluate each member of the parent population. 

3. Mutate each member of the parent population, by an amount related to its 

fitness, to generate a, member of the child population. 

4. Evaluate each member of the child population. 

5. For each member of the child and parent populations: 

(a) Select at random a number, T O U R N , of solutions f rom the parent and 

child populations. 

(b) Count the number of these solutions whose fitness is less than or equal 

to that of the current selected solution. This number is the score for 

the selected solution. 

6. Rank the scores of the solutions. 

7. Select the solutions which rank in the top half of the list and replace the 

parent population with these solutions. This completes a generation. 

8. I f the termination criterion is not met then go to step 3. 
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504 H i l l Climbing ' 

The performances of the EAs are to be compared to those of several hi l l-cl imbing 

algorithms. Three commonly used hil l-cl imbing schemes are considered (Forrest 

and Mitchel l 1992): steepest-ascent hi l l -cl imbing, next-ascent hil l-cl imbing and 

random-mutation hil l-climbing. These operate on solutions which are encoded 

subsymbolically as binary strings, and are implemented as follows: 

Steepest-ascent hi l l -c l imbing ( S A H C ) 

1. Choose a string at random. Call the string current-best. 

2. Systematically mutate each bit in the string f rom left to right, recording the 

fitnesses of the resulting strings. 

3. I f any of the resulting strings give a fitness increase, then set current-best to 

the resulting string giving the highest fitness increase. 

4. I f there is no fitness increase, then return the value of current-best. Otherwise 

go to step 2. 

Next-ascent hi l l -c l imbing ( N A H C ) 

1. Choose a string at random. Call the string current-best. 

2. Mutate single bits in the string f rom left to right, recording the fitnesses of 

the resulting strings. I f any increase in fitness is found, then set current-best 

to that increased-fitness string. Go to step 2 wi th the new current-best, but 

continue mutat ing the new string starting after the bit position at which the 

previous increase was found. 

3. I f there is no fitness increase then return the value of current-best. Otherwise 

go to step 2. 
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Random-muta t ion hi l l -c l imbing ( R M H C ) 

1. Choose a string at random. Call the string current-best. 

2. Choose a position at random to mutate. I f the mutat ion leads to an equal or 

higher fitness then set current-best to the resulting string. 

3. I f the set number of funct ion evaluations have been performed return the 

value of cuwent-best. Otherwise go to step 2. 

5.5 Results 

This section presents the results of applying a GA, EP and three hil l-cl imbing 

algorithms to several inverse problems. Three target shapes were used: a solid 

triangle, a Sierpinski triangle, and a Dragon fractal . IFSs for generating these 

shapes are given in Table 5.3 and the shapes themselves are shown in Figure 5.7. 

In the case of the triangle and Sierpinski triangle the number of mappings used 

was set at three, and for the Dragon fractal two mappings were used (since there 

are known theoretical solutions for these values). 
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Table 5.3: The IFSs used to generate the target shapes which are shown in 

Figure 5.7. The triangle is generated w i t h four mappings rather than the 

obvious three, because the M P P introduced some small errors when plot t ing 

the at tract or of the three mapping IPS which was in i t ia l ly considered. 

Triangle 

i cii bi Ci d{ e; f i 

1 0.5 0 0 0.5 -25 -25 

2 0.5 0 0 0.5 25 -25 

3 0.5 0 0 -0.5 0 -25 

4 0.5 0 0 0.5 0 25 

Sierpinski Triangle 

i a, bj c, di e,- f i 

1 0.5 0 0 0.5 -25 -25 

2 0.5 0 0 0.5 25 -25 

3 0.5 0 0 0.5 0 25 

Dragon fractal 

i fli bi Ci di &i f i 

1 0.59 -0.37 0.37 0.59 30 0 

2 0.5 0 0 0.5 -30 0 
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Figure 5.7: The attractors of the IFSs given in Table 5.3. These are the target 

shapes used in the experiments of this chapter. 

Triangle Sierpinski triangle Dragon fractal 

The GA and EP used are those given in Sections 5.2 and 5.3 respectively. For 

both the GA and EP a population of 100 parents was used, and they were executed 

over 100 generations. For EP, a tournament size of five was used, and the following 

formulae were used to set the standard deviations: 

val = (PIX - fit)/PIX 

o\ = \Jval/500 a-i — y/val x 5 

where PIX is the number of pixels of the target shape and fit is the fitness of 

an IFS. A cut-off for ax of 0.1 and for cr2 of 5 was used to prevent large standard 

deviations. These cut-off values allow for large amounts of mutat ion of shapes 

that have extremely poor fitness, while l imi t ing the cha.nce of out of range values 

occurring as a result of the mutat ion. 

For each target shape and each fitness function, 31 trials of the GA, EP and 

the hil l-climbing algorithms were carried out. Each pair of trials of the GA and 

EP had the same randomly generated ini t ia l population (i.e., 31 different in i t ia l 
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populations were used) and each of hil l-climbing algorithms started wi th the. same 

randomly generated binary string (i.e., 31 different starting strings were used). 

The fitness of the best solution found in each of the runs is shown in Tables 5.4 — 

5.9. The mean and standard deviation of each set of results is also given. In the 

case of the GA and EP the generation at which the best solution was discovered is 

shown in parenthesis. 

The results for the median t r ia l of the GA and EP are shown in Figures 5.8, 

5.9, 5.14, 5.15, 5.20 and 5.21 (attractor and point coverage) and Figures 5.11, 5.12, 

5.17, 5.18, 5.23 and 5.24 (collage and point coverage). In Figures 5.8, 5.11, 5.14, 

5.17, 5.20 and 5.23, a sequence of the best a,ttractors f rom various generations is 

shown. The Figures 5.9, 5.12, 5.15, 5.18, 5.21 and 5.24 each show the online and 

offline performance of the median run of the GA and EP. The offline performance 

is the average fitness of all of the IFSs in a particular generation, while the online 

performance is the average fitness of all IFSs that have been generated up to a 

certain generation. Figures 5.10, 5.13, 5.16, 5.19, 5.22 and 5.25 show the best 

solutions found for each taxget shape when using the GA, EP and the hil l-cl imbing 

algorithms for each of the fitness functions used. 

Table 5.10 contains the values of the test statistics which were used in compar­

ing the performance of the algorithms, for all combinations of the target shapes 

and fitness functions considered. These values were obtained by carrying out a 

hypothesis test for two population means w i t h the nul l hypothesis that the means 

are equal. The samples were assumed to be independent and normally distributed. 

The variances of the two samples were not assumed to be equal and so a Srnith-

Satterthwaite modified one tailed /-test was used (Weiss and Hassett 1991, p. 504) 

— this is used in all further pairwise comparisons in this thesis. The number of 

degrees of freedom are the values in Table 5.10 which are in parenthesis. 
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The results of the trials conducted showed that EP outperformed the GA, and 

all of the hil l-cl imbing algorithms, for each of the target shapes considered wi th 

both fitness functions. I n all of these cases the results were statistically significant 

(P < 0.001). 

A comparison of the performance of the GA and the hill-climbing algorithms 

wi th the attractor and point coverage as the fitness function showed mixed results. 

For the Dragon fractal the GA outperformed all of the hil l-climbing algorithms, 

but w i t h the Sierpinski Triangle all of the hill-climbers outperformed the GA. I n 

each of these cases the observed difference was statistically significant (P < 0.05). 

Results for the triangle were varied; the GA outperformed N A H C (P < 0.05) and 

R M H C (P < 0.1), but SAHC outperformed the GA (P < 0.1). 

W i t h the collage and point coverage as the fitness function mixed results were 

again achieved. For the Dragon fractal the GA outperformed all of the hil l -cl imbing 

algorithms, although only the comparison w i t h SAHC was statistically significant 

(P < 0.05). W i t h the Sierpinski Triangle two of the three hill-climbers outper­

formed the GA, but wi th the triangle all of the hill-climbers performed better 

(only the comparison wi th the SAHC was statistically significant). 

The observed differences in the performance of the hil l-cl imbing algorithms were 

not statistically significant (P > 0.05), except in the case of the triangle wi th the 

attractor and point coverage as the fitness funct ion. In this case SAHC significantly 

outperformed both N A H C (P < 0.01) and R M H C (P < 0.05). 
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Table 5.4: The best solutions found by each of the search algorithms w i t h a triangle 

as the target sha,pe. The at tractor and point coverage was used as the fitness 

function. Each algorithm was run 31 times and in the case of the GA and EP 

the generation at which the best solution was found is shown in parenthesis. The 

fitness of the best solution found by each algori thm is shown in bold. 

Algor i thm EP GA SAHC N A H C R M H C 

4574 (89) 3190 (96) 3570 3204 1602 
4675 (78) 2480 (97) 2732 2077 2489 
4584 (87) 3524 (77) 1781 2801 2606 
4045 (99) 2625 (98) 3375 2508 3862 
4751 (87) 3237 (75) 2564 2514 3503 
4723 (91) 1991 (82) 2816 1324 2603 
4787 (98) 2260 (96) 2746 2831 3152 
4546 (95) 2245 (97) 1506 848 319 
4250 (91) 3042 (69) 3823 1388 3433 
4646 (94) 2876 (65) 3192 2859 2754 
4068 (93) 3633 (62) 3036 2476 2077 
4544 (100) 2928 (84) 3110 2788 3101 
4273 (80) 2792 (99) 1803 436 2794 
4660 (96) 2412 (22) 2806 2237 2696 

Fitness of best 4564 (98) 2760 (100) 956 -439 166 
solution found 4062 (100) 2037 (88) 3080 1963 2185 

(Op t imum = 5101) 3709 (100) 2819 (82) 2854 2614 2797 
4735 (96) 2308 (47) 4155 2338 3868 
4271 (99) 3320 (80) 3425 2698 2318 
4793 (82) 2801 (93) 2782 2068 1724 
3855 (92) 2678 (100) 3382 3307 2473 
4214 (95) 2551 (94) 3037 2714 2768 
3789 (99) 2349 (100) 4112 1726 1972 
4182 (100) 3564 (79) 2507 2446 2313 

4808 (95) 1697 (83) 2558 2489 3400 
4706 (98) 2916 (81) 2957 1590 2800 
4612 (98) 2202 (48) 3355 3122 2466 
4608 (95) 2951 (95) 3063 2157 3500 
4427 (100) 2532 (85) 2760 870 -14 
3982 (92) 2069 (96) 3217 1130 1864 
4747 (98) 3046 (100) 3142 1214 1268 

Mean (to 1 d.p.) 4425.5 2704.4 2909.7 2074.1 2414.8 
SD (to 2 d.p.) 328.66 487.64 69.1.28 878.51 981.80 
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Figure 5.8: A sequence of attractors f rom the median tr ial of the GA and EP wi th 

a triangle as the target shape. The attractor and point coverage was used as the 

fitness function. The attractors shown are those of the best solutions in generations 

0, 5, 10. 20. 30, 40, 60, 80 and 100 (top left to bottom right) . 
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Figure 5.9: Online and offline performance for the median t r ia l of the GA and EP 

wi th a triangle as the target shape. The attractor and point coverage was used as 

the fitness funct ion. 
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Figure 5.10: Attractors of the best IFSs found when using each of the search 

algorithms wi th a triangle as the target shape. The attractor and point coverage 

was used as the fitness funct ion. 
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Table 5.5: The best solutions found by each of the search algorithms w i t h a triangle 

as the target shape. The collage and point coverage was used as the fitness function. 

Each algorithm was run 31 times and in the case of the GA and EP the generation 

at which the best solution was found is shown in parenthesis. The fitness of the 

best solution found by each algorithm is shown in bold. 

Algor i thm EP GA SAHC N A H C R M H C 
5010 (100) 2982 (98) 3767 3704 3020 
4786 (100) 3331 (81) 3923 4157 4503 
4967 (95) 3518 (89) 3229 2621 4497 
4594 (100) 3355 (66) 4456 4213 4166 
4910 (98) 3802 (94) 3931 4241 4515 
4842 (98) 3611 (55) 4687 3834 2808 
4864 (99) 2993 (97) 4084 3830 3743 
4854 (92) 3014 (56) 4537 3941 3542 
4377 (96) 3798 (81) 4545 3422 3264 
4890 (99) 3701 (38) 3900 2538 2463 
4858 (91) 2766 (98) 1780 2926 3965 
4742 (85) 3889 (98) 3476 3456 3546 
4848 (100) 3497 (46) 4444 4418 3531 
4840 (94) 3329 (99) 3956 3115 3385 

Fitness of best 4872 (98) 3212 (98) 3991 4097 4081 
solution found 4587 (94) 2990 (93) 3966 4199 3384 

(Opt imum = 5101) 4806 (99) 3709 (82) 3803 3666 3377 
4861 (98) 3597 (99) 4636 4606 3887 
4947 (83) 3535 (100) 3551 3688 2706 
4960 (87) 3342 (97) 4188 3747 3486 
4626 (100) 3282 (93) 3873 2972 4404 
4641 (95) 3579 (96) 2887 3677 3111 
4290 (95) 4254 (82) 2337 2264 2061 
4722 (99) 2691 (95) 2715 2212 3403 
4874 (87) 3263 (64) 3851 2926 4609 
4756 (83) 3623 (91) 4159 3936 3807 
4620 (85) 3351 (91) 4109 4555 2205 
4830 (99) 3762 (96) 4117 4192 4103 
4601 (94) 3382 (90) 3150 1137 3210 
4747 (100) 3554 (83) 3227 4118 3731 
4735 (96) 4014 (98) 4031 4357 4390 

Mean (to 1 d.p.) 4769.6 3442.8 3784.1 3573.1 3577.5 
SD (to 2 d.p.) 164.83 356.10 674.43 802.23 680.95 
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Figure 5.11: A sequence of attractors f rom the median tr ial of the GA and EP 

w i t h a triangle as the target shape. The collage and point coverage was used as the 

fitness funct ion. The attractors shown are those of the best solutions i n generations 

0, 5, 10, 20, 30, 40, 60, 80 and 100 (top left to bot tom right) . 
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Figure 5.12: Online and offline performance for the median trial of the GA and EP 

wi th a triangle as the target shape. The collage and point coverage was used as 

the fitness function. 
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Figure 5.13: Attractors of the best IFSs found when using each of the search 

algorithms wi th a triangle as the target shape. The collage and point coverage was 

used as the fitness funct ion. 
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Table 5.6: The best solutions found by each of the search algorithms w i t h a Sierpin­

ski triangle as the target shape. The attractor and point coverage was used as the 

fitness funct ion. Each algorithm was run 31 times and in the case of the GA and 

EP the generation at which the best solution was found is shown in parenthesis. 

The fitness of the best solution found by each algorithm is shown in bold. 

Algor i thm EP GA SAHC N A H C R M H C 

-1285 (98) -1734 (98) -2028 -2259 -1958 
-1383 (95) -2058 (43) -1621 -1755 -1876 
-1427 (98) -2032 (99) -1953 -1627 -2059 
-1619 (94) -1980 (33) -2149 -1198 -2161 
-1206 (97) -1960 (86) -2219 -2079 -1925 
-1320 (85) -2097 (20) -1646 -2044 -1764 
-1069 (87) -2087 (100) -1939 -1917 -1838 
-1294 (76) -2110 (19) -2124 -1933 -1970 
-1324 (78) -2062 (56) -2162 -2255 -2247 
-1653 (96) -2003 (75) -1511 -1882 -1739 
-1292 (99) -2036 (16) -2074 -2037 -1981 
-790 (99) -2078 (25) -1941 -1795 -1561 
-1415 (94) -2058 (82) -2151 -1762 -1947 
-1164 (83) -1841 (100) -2048 -1842 -2162 

Fitness of best -1232 (86) -1991 (74) -2298 -1685 -1761 
solution found -1159 (72) -2147 (100) -1553 -2106 -2273 

(Opt imum = 2411) -1436 (98) -2188 (6) -1971 -1905 -1659 
-1400 (90) -2063 (94) -1732 -1783 -1617 
-1280 (95) -2020 (91) -1819 -1823 -1805 
-1462 (97) -2049 (96) -2015 -2250 -1562 

-997 (74) -2185 (1) -1938 -2424 -2013 
-1615 (95) -2047 (96) -2264 -1804 -2247 
-1005 (96) -2091 (96) -1244 -2118 -2018 
-1673 (50) -2084 (83) -1932 -2364 -1758 
-1178 (72) -2089 (99) -2000 -1656 -1797 
-1381 (41) -2132 (5) -1240 -1602 -1819 
-1660 (93) -2128 (32) -1727 -2129 -2232 
-1588 (87) -1768 (100) -1526 -2015 -1664 
-1414 (97) -2179 (100) -1778 -2220 -1886 
-1071 (75) -2055 (98) -1872 -1822 -1527 
-1422 (85) -2053 (93) -2027 -2322 -2051 

Mean (to 1 d.p.) 
SD (to 2 d.p.) 

-1329.5 
215.17 

-2045.3 
105.10 

-1887.2 
274.05 

-1948.8 
267.96 

-1899.3 
215.73 
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Figure 5.14: A sequence of attractors from the median trial of the GA and EP with 

a Sierpinski triangle as the target shape. The attractor and point coverage was 

used as the fitness function. The attractors shown are those of the best solutions 

in generations 0, 5, 10. 20, 30, 40, 60, 80 and 100 (top left to bottom right). 
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Figure 5.15: Online and offline performance for the median trial of the GA and EP 

with a Sierpinski triangle as the target shape. The at tractor and point coverage 

was used as the fitness function. 
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Figure 5.16: Attractors of the best IFSs found when using each of the search 

algorithms with a Sierpinski triangle as the target shape. The at tractor and point 

coverage was used as the fitness function. 
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Table 5.7: The best solutions found by each of the search algorithms with a Sier-

pinski triangle as the target shape. The collage and point coverage was used as the 

fitness function. Each algorithm was run 31 times and in the case of the GA and 

EP the generation at which the best solution was found is shown in parenthesis. 

The fitness of the best solution found by each algorithm is shown in bold. 

Algorithm EP GA SAHC NAHC RMHC 
-1082 (90) -1473 (93) -1781 -1829 -1657 
-851 (66) -1251 (99) -1127 -1068 -745 

-1087 (100) -1620 (97) -1562 -1331 -927 
-942 (39) -1218 (99) -970 -1156 -907 

-1187 (59) -1502 (99) -1431 -1555 -1587 
-1072 (94) -1090 (85) -1293 -1054 -1366 
-1131 (79) -1568 (95) -890 -1476 -1657 
-1097 (100) -1187 (90) -1149 -1476 -1974 
-1009 (100) -1187 (83) -1456 -1350 -1735 
-1364 (96) -1294 (92) -1321 -1677 -1664 
-840 (67) -1426 (94) -1658 -1571 -1921 
-907 (65) -1525 (96) -1783 -1127 -1715 

-1032 (86) -1660 (46) -1246 -1436 -1413 
-1039 (47) -1324 (98) -1221 -1100 -1618 

Fitness of best -819 (100) -1362 (100) -1127 -988 -395 
solution found -1015 (85) -1504 (87) -1026 -1698 -1731 

(Optimum =2411) -1137 (98) -1659 (3) -1440 -1804 -786 
-929 (68) -1763 (95) -1280 -929 -1554 

-1094 (79) -1433 (98) -1395 -1465 -1509 
-1074 (84) -1403 (45) -1400 -1839 -1591 
-1066 (60) -1402 (77) -1414 -996 -1446 
-1264 (49) -1394 (90) -1609 -1559 -1810 
-970 (90) -1234 (82) -1192 -1508 -1518 
-984 (50) -1277 (100) -856 -1488 -1670 

-1421 (87) -1185 (96) -1633 -1595 -11.85 
-1174 (63) -1037 (100) -659 -1659 -507 
-1153 (84) -1429 (81) -1862 -777 -1064 
-1111 (71) -1460 (96) -1567 -1212 -1208 
-911 (88) -1437 (83) -1349 -1370 -1302 

-1182 (96) -1324 (81) -1369 -1369 -1336 
-880 (55) -1336 (96) -1222 -1525 -1231 

Mean (to 1 d.p.) -1058.8 -1385.9 -1331.9 -1386.7 -1378.4 
SD (to 2 d.p.) 143.02 171.07 282.51 281.49 401.69 
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Figure 5.17: A sequence of at tractors from the median trial of the GA and EP 

with a Sierpinski triangle as the target shape. The collage and point coverage was 

used as the fitness function. The attractors shown are those of the best solutions 

in generations 0, 5, 10, 20, 30, 40, 60, 80 and 100 (top left to bottom right). 
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Figure 5.18: Online and offline performance for the median trial of the GA and EP 
with a Sierpinski triangle as the target shape. The collage and point coverage was 
used as the fitness function. 
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Figure 5.19: Attractors of the best IFSs found when using each of the search 

algorithms with a Sicrpinski triangle as the target shape. The collage and point 

coverage was used as the fitness function. 
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Table 5.8: The best solutions found by each of the search algorithms with a Dragon 

fractal as the target shape. The attractor and point coverage was used as the fitness 

function. Each algorithm was run 31 times and in the case of the GA and EP the 

generation at which the best solution was found is shown in parenthesis. The fitness 

of the best solution found by each algorithm is shown in bold. 

Algorithm EP GA SAHC NAHC RMHC 
4829 (93) 1043 (49) 854 100 1350 
3485 (84) 525 (40) -134 199 -3655 
2502 (86) 1135 (24) -458 -124 -352 
2667 (77) 817 (73) -621 -1640 382 
2229 (97) 702 (97) 1620 2052 -690 
2405 (67) 932 (53) 1001 1712 238 
3172 (95) 1420 (100) -33 2843 906 
4567 (88) 1281 (90) -4504 -631 -2525 
2584 (95) 1138 (74) -825 2285 419 
4472 (100) 876 (97) 1677 1606 -1599 
2597 (95) 993 (62) 1065 1952 494 
3338 (98) 915 (61) 249 63 1504 
2656 (95) 2178 (59) -689 506 949 
2710 (72) 1467 (57) 1210 657 2685 

Fitness of best 2683 (91) 542 (39) -444 778 276 
solution found 2492 (78) 990 (14) -224 -1609 95 

(Optimum = 6726) 2834 (88) 2731 (63) 1300 -1521 701 
2752 (90) 1137 (23) -1036 -763 -388 
2820 (81) -849 (40) 284 249 925 
2694 (82) 362 (68) 1298 600 -1391 
3701 (94) 1949 (67) 719 1223 913 
4707 (91) 1253 (65) 656 -660 -591 
2674 (94) 200 (15) 1706 536 -742 
2759 (53) 2636 (68) 1227 1528 -613 
3522 (90) 996 (31) 1754 795 447 
2220 (61) 592 (97) 1658 725 254 
3869 (94) 2576 (81) 37 366 2280 
4046 (91) 1019 (26) 3256 1781 157 
2532 (82) 218 (67) 301 338 667 
2762 (95) 1540 (97) 1731 1047 1974 
4597 (97) -4 (95) 436 -2213 -924 

Mean (to 1 d.p.) 3157.3 1074.5 486.2 476.8 133.7 
SD (to 2 d.p.) 798.42 774.53 1346.63 1228.40 1320.15 
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Figure 5.20: A sequence of attractors from the median trial of the GA and EP 

with a Dragon fractal as the target shape. The attractor and point coverage was 

used as the fitness function. The attractors shown are those of the best solutions 

in generations 0. 5, 10, 20, 30, 40, 60, 80 and 100 (top left to bottom right). 
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Figure 5.21: Online and offline performance for the median trial of the GA and EP 

with a Dragon fractal as the target shape. The attractor and point coverage was 

used as the fitness function. 
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Figure 5.22: Attractors of the best IFSs found when using each of the search 

algorithms with a Dragon fractal as the target shape. The attractor and point 

coverage, was used as the fitness function. 
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Table 5.9: The best solutions found by each of the search algorithms with a Dragon 

fractal as the target shape. The collage and point coverage was used as the fitness 

function. Each algorithm was run 31 times and in the case of the GA and EP 

the generation at which the best solution was found is shown in parenthesis. The 

fitness of the best solution found by each algorithm is shown in bold. 

Algorithm EP GA SAHC NAHC RMHC 
5391 (91) 2861 (100) 304 2154 1360 
2102 (96) 2604 (27) 2986 3063 176 
3060 (84) 1180 (78) 681 1141 697 
1910 (78) 1163 (97) 3228 431 660 
1808 (73) 2828 (95) 1293 1941 1917 
1720 (99) 788 (92) 311 3412 289 

5536 (82) 2640 (90) 951 1797 1745 
2013 (84) 1290 (95) -163 1155 736 
3168 (99) 1786 (84) 922 1661 1425 
3139 (77) 1463 (77) 801 2884 4742 
3162 (47) 1107 (32) 2328 1337 1243 
3410 (99) 1015 (92) 828 1259 771 
1973 (87) 906 (31) 1450 924 2922 
3565 (83) 2642 (97) 2026 777 1124 

Fitness of best 1791 (86) 979 (52) 1325 305 2429 
solution found 3652 (88) 678 (48) 847 2750 1420 

(Optimum = 6726) 1814 (77) 2746 (52) 17 -172 2730 
3166 (98) 1549 (74) 3518 1787 1742 
1933 (100) 997 (85) 317 478 1161 
3293 (91) 732 (23) 758 1591 782 
2805 (68) 2423 (70) 682 1.687 1825 
3376 (50) 3535 (93) 1947 421 1419 
3461 (87) 4613 (97) 1917 608 510 
3330 (88) 1085 (48) 811 1932 3048 
3343 (100) 681 (76) 1182 1679 1161 
1790 (91) 1119 (97) 1020 2240 1555 
5424 (76) 479 (96) 959 1209 1584 
3466 (78) 1234 (92) 2901 1721 916 
3209 (79) 1179 (99) 213 1867 1749 
1839 (99) 1106 (95) 1506 1262 950 
3649 (58) 2459 (58) 576 1353 -520 

Mean (to 1. d.p.) 3009.6 1673.1 1240.1 1505.0 1428.0 
SD (to 2 d.p.) 1069.68 990.12 953.18 838.82 999.91 
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Figure 5.23: A sequence of attractors from the median trial of the GA and EP 

with a, Dragon fractal as the target shape. The collage and point coverage was 

used as the fitness function. The attractors shown are those of the best solutions 

in generations 0, 5, 10. 20, 30, 40, 60, 80 and 100 (top left to bottom right). 
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Figure 5.24: Online and offline performance, for the median trial of the GA and 

EP with a Dragon fractal as the target shape. The collage and point coverage was 

used as the fitness function. 
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Figure 5.25: Attractors of the best IFSs found when using each of the search algo­

rithms with a Dragon fractal as the target shape. The collage and point coverage 

was used as the fitness function. 
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Table 5.10: Values of the t-test statistic, with the number of degrees of freedom 

shown in parenthesis. The values in the lower left of grid are those for when the 

attractor and point coverage was used as the fitness function. The values in the 

top right are those for when the collage and point coverage was used. The values 

are read: Is LHS better than TOP? 

Triangle EP GA SAHC NAHC RMHC 

EP 18.83 (42) 7.90 (33) 8.13 (32) 9.47 (33) 

GA -16.30 (52) -2.49 (45) -0.83 (41) -0.98 (45) 

SAHC -11.03 (42) 1.35 (53) 1.12 (58) 1.20 (59) 

NAHC -13.96 (38) -3.49 (46) -4.16 (56) -0.02 (58) 

RMHC -10.81 (36) -1.47 (43) -2.29 (53) 1.44 (59) 

Sierpinski EP GA SAHC NAHC RMHC 

EP 8.17 (58) 4.80 (44) 5.78 (44) 4.17 (37) 

GA -16.64 (43) -0.91 (49) 0.01 (49) -0.10 (40) 

SAHC -8.91 (56) 3.00 (38) 0.77 (59) 0.53 (53) 

NAHC -10.03 (57) 1.87 (39) -0.90 (59) -0.09 (53) 

RMHC -10.41 (59) 3.39 (43) -0.19 (56) 0.80 (57) 

Dragon EP GA SAHC NAHC RMHC 

EP 5.11 (59) 6.88 (59) 6.16 (56) 6.01 (59) 

GA -10.43 (59) 1.75 (59) 0.72 (58) 0.97 (59) 

SAHC -9.50 (48) -2.11 (47) -1.16 (59) -0.76 (59) 

NAHC -10.19 (51) -2.29 (50) -0.03 (59) 0.33 (58) 

RMHC -10.91 (49) -3.42 (48) -1.04 (59) -1.06 (59) 

Levels of significance for a one-tailed /-test with 30 degrees of freedom. 

/ test statistic 1.30 1.70 2.46 3.39 3.65 

Level of Significance 0.1 0.05 0.01 0.001 0.0005 
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5 06 Discussion 

The results show that for the two fitness functions used, EP outperforms a GA 

and the hill-climbing algorithms on the inverse problem for a triangle, Sierpinski 

triangle and Dragon fractal. I t is probable that by changing the control param­

eters, solution representation, and so forth, the performance of the GA could be 

improved, but it appears that there is a fundamental problem with applying GAs 

to inverse problems: the building block hypothesis that appears essential for their 

success does not hold in general. The hypothesis appears to hold at the level of 

contraction mappings, i.e., good individual mappings ca.n be propagated through­

out a population. However, in generating an IFS's attractor, it is the interaction of 

all the mappings that determines the shape produced. For a fitness function using 

the attractor, the presence of some optimal mappings is not enough to guarantee 

a good fitness. IFSs with some optimal mappings may, therefore, be assigned rela­

tively low fitnesses and produce very few offspring. It appears that the GA cannot 

overcome the strong interactions which can occur between the blocks of components 

of the problem's subsymbolic representation. This problem is overcome somewhat 

by using a fitness function that uses a collage of the mappings applied to the target 

shape. Good mappings are then rewarded individually and there is no reliance on 

other mappings of the IFS, i.e., the effect of the strong interaction between blocks 

of components is reduced. 

The above results show that even when using a fitness function based on a 

collage of mappings, the GA does not perform all that well. The reason would 

appear to be due to the need for the building block hypothesis to hold at all levels. 

Not only should combining 'good' contraction mappings give 'good' IFSs, but also 

combining 'good' coefficients should give 'good' contraction mappings. However, 

a contraction mapping does not depend on individual coefficients, but on their 

interactions, i.e., there is a strong interaction between subsymbolic components. 

The poor performance of the GA is, therefore, attributed to the difficulty of being 

able to construct solutions to the inverse problem from the bottom-up. The GA 
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appears to be unable to overcome the strong interactions which can occur between 

the components of the problem's .subsymbolic representation. 

EP suffers from no such problems. By emphasising top-down phenotypic adap­

tation over genotypic transformation, the building block approach is avoided. In­

verse problems are often affected by pleiotropy (a single component affecting several 

phenotypic traits) and polygeny (a single phenotypic effect being affected by the 

interaction of many components), and so a subsymbolic search process based at the 

genotypic level is more likely to be deceived than one which emphasises the pheno­

typic relationship between each parent and its offspring. These results show that 

EP not only outperforms a GA, but is able to overcome conditions of pleiotropy 

and polygeny to obtain near optimal solutions to the inverse problem for a triangle 

and Dragon fractal. 

The hill-climbing algorithms occasionally find near optimal solutions to the 

triangle and Dragon fractal inverse problems, but perform poorly on that for the 

Sierpinski triangle. These results are as would be expected, since the search spaces 

for the triangle and Dragon fractal inverse problems can be expected to contain 

fewer locally optimal solutions than that for the Sierpinski triangle. 

5o7 Summary 

IFSs have been suggested as a suitable means of representing shapes for use in a 

machine vision environment (Giles 1990). The primitives with which a shape is to 

be encoded are smaller linearly deformed copies of the shape. A shape is represented 

by an IFS if a collage of primitives can be found such that they exactly cover the 

shape to be encoded. Finding such an IFS representation for a shape is known as 

the inverse problem. A symbolic encoding can be adopted and the inverse problem 

solved by symbolically manipulating the primitives. Approaches along these lines 

usually greatly restrict the primitives allowed and/or require human interaction. 
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A subsymbolic representation allows for a more flexible approach, but results in a 

large search space with complex interactions between its components. There are 

often strong interactions between blocks of parameters, and between the parameters 

of each block. 

Many methods have been suggested for solving inverse problems for which a 

subsymbolic representation has been adopted. Many of these approaches, although 

automatic, are very limited in application since in order to be successful they greatly 

simplify the problem. This chapter has described how a GA, EP and three hill-

climbing algorithms can be applied to inverse problems for which a subsymbolic 

approach has been adopted (binary for the GA and three hill-climbing algorithms, 

and real-valued for EP). The main simplifying assumption which was made was to 

fix in advance the number of mappings allowed — this allowed for the basic versions 

of a GA and EP to be applied. Even with this simplification the subsymbolic 

representations' search spaces for the problems considered are extremely large and 

complex. 

Results show that EP outperforms a GA and three hill-climbing algorithms in 

finding solutions to the inverse problem. The reason for this appears to be the 

difficulty the GA and hill-climbing algorithms have in being able to overcome the 

strong interactions which can occur at the subsymbolic level between blocks of 

components, and between a block's components. The bottom-up approach of a 

GA is unable to construct suitable solutions. EP on the other hand emphasises 

adaptation of the behaviour of solutions and is less likely to be deceived by the 

strong interactions. 

The conclusion of this chapter is that a move from a symbolic to a subsymbolic 

representation can lead to a successful means of solving a shape representation 

problem. The representations adopted have Strong-Strong interactions (see Section 

1.3), but can be successfully tackled using EP. A GA is not so successful. 



Chapter 

h S R d t e FC C e fas P ue ion 

This chapter is the final one of the four which examine in detail shape representation 

using IFSs, and demonstrates how symbolic rules can be applied to the subsymbolic 

representation to improve the search process. Two possible improvements to the 

way in which a space can be searched are 1) improve the search algorithm and/or 

2) reduce the size of the search space. The previous chapter discussed a search 

algorithm (EP) which performs well in the space of the subsymbolic representation 

of several inverse problems. This chapter examines reducing the search space. 

In the case of two-dimensional shape representation an IFS is composed of a 

set of contraction mappings, and so a real-valued subsymbolic representation can 

be adopted. Each mapping is composed of six real-valued coefficients and although 

some non-trivial constraints can easily be applied, the search space remains ex­

tremely large. In order to help overcome this problem the number of degrees of 

freedom is often reduced by fixing some of the coefficient values to those of a known 

optima] solution. Clearly such an approach is of limited use since it requires a priori 

knowledge of an optimal. 

The work presented in this chapter reduces the search space by the imposition of 

necessary constraints on the mapping coefficients (Nettleton and Garigliano 1993, 



Chapter 6: Search Space Reductions 129 

1994a). In order for the constraints to be of use to a range of search algorithms 

they are required to need no a priori knowledge of any optimum, and to be of a 

low computational complexity. 

Three constraints are introduced which reduce the search space of four of the six 

coefficients of a mapping by between 20% and 85%, and of the other two coefficients 

by between 75% and 95% (the size of the reduction depends only on the size of the 

bounding box of the target shape — see Section 6.5). Since these constraints apply 

to each mapping of an IFS, the cumulative effect on the search space is substantial. 

It is anticipated that these reductions in the search space can be used to aid a 

variety of search algorithms. However, the constraints are not applied to the work 

of this thesis since (as discussed in Section 5.1) they might bias comparison between 

a GA and EP in favour of EP. 

6.1 Preliminaries 

Consider a space X C R n together with a set of constraints {Yi, Y?,..., Y m ) such 

that if x G X satisfies the constraint Y], then Y{(x) = 1, and if the constraint is not 

satisfied then Y,{x) = 0. Let X ' C R n be the set {x £ X : ZiLi Y i ( x ) = rn}, i.e., 

the subset of X which satisfies all of the constraints. In order to select an element 

of X ' one of the following strategies may be used: 

Strategy 1 (Select and check) 

1. Select x £ X . 

2. Calculate sum = Z?=i Yi(x). 

3. a) If sum — m then accept x. Exit, 

b) If sum ^ m then goto 1. 
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Strategy 2 (Deterministically Select) 

1. Select, x G X such that X X i Y{(x) = rn. 

2. Exit. 

In cases for which a strategy of type 2 is available it would appear to be the 

most efficient means of selecting elements of X ' since no spurious elements are con­

sidered. If , however, the (computational) complexity of the algorithm which gener­

ates guaranteed valid solutions is high then this approach may not be suitable. The 

complexity itself is largely determined by the interactions between the constraints. 

For example, consider x = (xi.x?,..., xn) and the constraints : —0.5 < X{ < 0.5 

for i = 1,2,... , n. In such a case the selection of x G X ' is trivial, with each a;,-

being selected independently. With complex interactions between constraints, the 

range of valid values for some Xj, j G (1 ,2 , . . . , n), will often be dependent on the 

values already selected for one or more of the other coefficients. The selection of 

valid coefficients can, in some cases, be expected to require complex calculations, 

and so lead to an increase in complexity. 

Strategy 1 may be considered to be inefficient, due to the possibility of gener­

ating spurious values. Furthermore, stage 1 requires the selection of some x G X , 

and it may be that the space X is itself constrained in some way such that the 

selection of x is non-trivial. (For the purposes of this discussion the selection of 

x G X is considered a trivial matter.) On the other hand if stage 1 has a high 

probability of selecting x G X , such that x G X ' , and the complexity of checking 

the constraints is low, then strategj' 1 may be preferred. 

A further important feature of a selection strategy, which must also be consid­

ered, is how the space X ' is sampled. Usually it will be necessary that the selection 

strategy be capable of generating each element of X ' . A strategy which returns the 

same value (of many possible) each time can be expected to be of limited use. In 

many cases it will be preferable that each x G X ' should have the same probability 

of being selected. 
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In practice a combination of the strategies 1 and 2 may be desirable. For 

example, if some of the constraints are trivial then the coefficients satisfying these 

may be selected according to strategy 2. The remaining coefficients are then subject 

to strategy 1. with them being chosen and checked until valid values are found. 

6„2 Constraints on Mappings 

In constructing an IFS { X , W{ : i = 1,2, ...,N} for a two-dimensional shape, A , 

each of the transformations W; is of the form: 

Wi 

\ y J 

(ii hi 

Ci cU 
+ 

V y J 

(6.1) 

and the Collage Theorem (3.5.3) provides the following necessary constraint: 

Wi(A) C A V i e { 1 , 2 , . . . , 7 V } . 

This constraint may easily be applied using a type 1 strategy. This would 

involve selecting some mapping, applying it to each point of A and checking that 

the resulting point, is an element of A . I f the application of the mapping to a point 

has one unit of complexity then the above check has complexity 0(m) , where m 

is the number of points in A. Although this constraint may be included in a set 

of constraints, its checking would be computationally expensive when compared to 

checks of constant complexity — providing the constant is considerably less than 

m. In this chapter some necessary constraints on each of the transformations, to,-, 

are introduced. Their main advantage is that they are of a low computational 

complexity and result in a considerable reduction in the search space. 

The constraints which are derived in this chapter apply to each of the mappings 

of an IFS and so for ease of notation explicit reference to the coefficients of the i ' th 
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transformation is dropped. 

The following non-trivial constraints are imposed on the coefficients of the trans­

formation given in Equation 6.1: 

a, b, c, d £ (—1,1) e £ [Xmin, Xmax] f £ [Ymin,Ymax] (6-2) 

where Xmin, Xmax,Ymin and Ymax are the extent of the shape along the ab­

scissa and ordinate axis. The constraints on e and / are derived from noting that 

once the original shape has been contracted it should not be moved by an amount 

exceeding the dimensions of the box containing the original. Such a transformation 

would produce an unsuitable collage since some point of the collage would lie. out­

side of the original shape. Without loss of generality the origin of the co-ordinate 

system is chosen such that Xmin = — Xmax and Ymin — —Ymax. These con­

straints are taken as the base case, a,nd all reductions referred to in the remainder 

of this chapter are measured in terms of percentage reductions of this space. 

Giles (1990) uses the constraints a,b,c,d £ [—0.707,0.707], e £ [Xmin, Xmax} 

and / £ [Ymin, Ymax]. These ensure that the mapping is contractive, but do 

so at the expense of excluding many valid contraction mappings. For example, 

mappings with a = d — 0.8 and b — c — 0.0 are not permitted. 

6.3 Calculating Reductions 

Once a set of constraints have been identified and applied, some quantitative mea­

sure of the size of the search space which remains is needed. For constraints such 

as those of Equation 6.2 the actual volume of the search space can easily be cal­

culated by integration. However, when there are complex interactions between 

the coefficients the integration can become extremely difficult. In order to avoid 

any symbolic integration problems a numerical approach can be adopted. This 
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although approximate is of use in evaluating search space reductions. 

Each coefficient of Equation 6.1 is real-valued and can, in theorj', take one of an 

infinite number of values in the ranges given by Equation 6.2. By approximating 

each range of values to a finite set, the search space can be restricted to a finite set 

of points. In the case of a, b, c and d the set of allowed values for each coefficient is 

calculated as follows: 

1. Select a required degree of accuracy acc < 2 such that ^ is an integer. 

2. The set of allowed values for each of a,b,c and d is then { — 1 + acc, —1 + 

2acc,..., 0 , . . . , 1 — 2acc, 1 — acc}. 

For example, if acc = 0.5 the set of allowed values for each of a, 6, c and d 

would be {—0.5,0,0.5}. By selecting progressively smaller values for acc the size 

of the search space can be made as large as required. Following this approach the 

search space for a, 6, c and d is approximated to a set of — I ) 4 distinct points. 

Table 6.1 shows the number of distinct combinations of a, 6, c and d (hence the 

size of the a,b,c,d search space) for various values of acc. The robustness property 

of IFSs (Section 4.3) indicates that the value of acc need not be less than 0.01. 

For computational reasons the minimum value of acc considered in this chapter is 

usually 0.05. 

accuracy number of 

(acc) combinations 

0.2 65611 

0.1 130321 

0.05 2.3 x 106 

0.02 9.6 x 107 

Table 6.1: The number of distinct combinations of a,b,c and d for various 

values of acc. 
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The percentage of values of a, 6, c and d which satisfy some given constraint(s) 

can now be calculated in the following way: 

1. Select the degree of accuracy, acc, of a, 6, c and d required. 

2. For each distinct combination of values of a, b, c and d, determine whether or 

not it satisfies the constraint(s). 

3. If, TV, is the number of combinations of a, b, c and d that satisfy the con­

straint^), then the percentage of combinations that satisfy the constraint(s) 

for the chosen acc is: 

100/V 

(-2- - 1Y« 
\ acc I 

The coefficients e and / may be treat in a similar way — that is approximating 

their range of values to a finite set of values. However, as will become apparent later 

in the chapter the search space reductions for e and / (under the constraints to be 

discussed), can be easily calculated symbolically without the need for a numerical 

approximation. 

6.4 Eigenvalue Constraint 

The transformation given by Equation 6.1 can be written in the form iu5i = A/x + c 

(dropping explicit reference to i) where M is a 2 x 2 matrix. The transformation 

can be applied recursively such that x n = wx n _i and after n successive applications 

to a point Xo: 

x n = PDnp-lx0 + (Mn~l +... + /)£ 

where D is a diagonal matrix of the eigenvalues of M , P is the matrix of corre­

sponding eigenvectors, and / is the identity matrix. 
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Since the transformation, w. must be contractive i t lias a single fixed point and 

this is equal to lim n_,oo x n . The limit point must be independent of the starting 

point and so P J D n P " 1 x 0 —> 0 as n —+ oo for all x 0 - This leads to: 

Constraint 1: The eigenvalues of M , e\ and e2, must be such that |ei| , |e2| < 1. 

The eigenvalues are the values of A for which the characteristic polynomial of 

M is zero, i.e., A2 — (o + d)X + ad — be = 0 and so the following constraint can be 

applied to a, b, c and d: 

< 1. (6.3) 

Table 6.2 shows the percentage of the search space for a, b, c and d which remains 

when Constraint 1 is applied, for varying degrees of coefficient accuracy. 

acc 0.2 0.1 0.05 0.02 

% Remaining 86.1 82.4 80.2 78.8 

Table 6.2: The percentage of the search space for a,b, c and d which remains 

when Constraint 1 is applied. 

The constraint on the eigenvalues can easily be implemented using a type 1 

strategy. If the first stage of strategy 1 ensures that each combination of a, 6, c and 

d (satisfying Equation 6.2) is equally likely to be selected then the expected value 

of the algorithm generating a valid solution on the first pass is quite high (the exact 

values are just those in Table 6.2 divided by 100). It is also possible to use a type 

2 strategy to select values for a,b,c and d such that they satisfy Constraint 1. One 

such algorithm is given in Appendix A. 

a + d ± sj(a - d)2 + 4bc 

2 
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(So5 L i m i t Point Constraint 

The introduction to this chapter stated that the reductions achieved are dependent 

only on the size of the bounding box of the target shape. A shape's bounding 

box is now defined. 

Def in i t i on 6.5.1 The bounding box (BB) of a shape S is defined as the box defined 

by —Xmax < x < Xmax and —Ymax <y< Ymax. 

The constraint introduced in this section is derived from noting that if the fixed 

point of a contractive transformation lies outside of a shape, then that transfor­

mation cannot be part of an IFS encoding for that shape. The calculation of the 

fixed point of a transformation is a simple task (see below), as is checking if i t 

lies within the shape to be encoded. This allows for a strategy of type 1 to be 

implemented with the reduction in the search space being dependent on the tai'get 

shape. By relaxing the condition, the following constraint is introduced for which 

a computationally efficient type 2 strategy is easily developed: 

Constraint 2: The limit point of a contraction mapping must be contained within 

the bounding box of the target shape. 

When this constraint is applied, it is possible to choose e and / (for given values 

of a,b,c and d satisfying Constraint 1) such that the resulting transformation's limit 

point lies inside the shape's BB (a type 2 strategy). This removes the part of the 

search space of e and / for which the limit point lies outside the shape's BB and 

hence can not lie on the shape to be encoded. The size of the reduction in the 

search space when Constraint 2 is applied is now calculated. 

The unique fixed point, (x, y), of a contractive transformation of the type given 

by Equation 6.1 can be found by solving the simultaneous equations x = ax + by + e 
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and y — ex + dy + f . This gives: 

( e(l-d) + bf f ( l - a ) + ce \ 

«)( ! - d ) - h c (1 - ~ d ) - be ) 

where (1 - a)(l - d) - be £ 0. 

Requiring the limit point to lie in a shape's BB requires that the following 

conditions hold; x G [—Xmax, Xmax] and y G [—Yrnax,Ymax]. So: 

- X < e ( l - d) + bf < X - Y < / ( l - a) + ce < Y (6.4) 

where ,Y = ((1 - a)(l - rf) - bc)Xmax and F = ((1 - a)(l - d) - bc)Ymax. The 

Equations 6.4 define a parallelogram since ^ (from above). Furthermore, 

Equation 6.2 requires: 

e G [—Xmax, Xmax) f G [-Fmfl2 : ,y 'ma4 (6.5) 

For a given a, b, c. and d, the values of e and / (satisfying Equations 6.5) which 

ensure the limit point of the resulting transformation lies in the BB are those 

which lie in the intersection of the parallelogram defined by Equation 6.4 and the 

rectangle defined by Equations 6.5. The area of intersection is just the size of the 

search space of e and / remaining for a particular combination of a,b,c and d. 

By calculating the sum of the areas for all combinations of a,b,c and d (satisfying 

Constraint 1) the overall percentage of the search space of e and / remaining can 

be easily calculated. 

In order to find the area of the polygon which is the intersection of a rectangle 

and a parallelogram, a clipping algorithm can be used to find the polygon's vertices 

(Sutherland and Hodgman 1974; Newman and Sproull 1979; Foley and Van Dam 

1982). Since both the parallelogram and the rectangle are convex and centred 

at the origin, then so is the polygon of their intersection (by symmetry). The 
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polygon's vertices are sorted using polar coordinates so that they are clockwise 

about the origin starting at the negative a;-axis. Once this ordered set of vertices 

has been found, the area of the polygon, and hence the area of the search space of 

e and / for a particular a, t, c and d can be found. The area is calculated using the 

following algorithm which acts on the arrays x[n] and y[n], where n is the number 

of vertices (x[i], y[i]) i 6 { 0 , 1 , . . . , n — 1} of the polygon of intersection. 

procedure polygon_area(x[n],y[n]) 

{ c a l c u l a t e s area of polygon with 

ordered v e r t i c e s ( x [ i ] , y [ i ] ) i=0,1,... , n - l } ; 

area := 0.0; 

fo r i:= 0 to n-2 do 

area := a r e a + ( x [ i ] * y [ i + l ] - y [ i ] * x [ i + l ] ) ; 

end; 

area := area+(x[n-l] *y[0] - y [ n - l ] *x[0] ) ; 

area := area/2; 

end {polygon_area} 

The graph shown in Figure 6.1 shows the percentage of the search space of 

e and / remaining when the constraint on the limit point of a transformation is 

applied for varying sizes of the BB. The reduction in the search space of a, b, c and 

d when Constraint 1 is applied is also shown (acc — 0.05). 

Appendix B provides an algorithm which, given a,b, c and d (satisfying Con­

straint 1), selects e and / such that the resulting transformation's limit point lies 

within a shape's BB. 
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Percentage Remaining 

original 
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20.00 

0.00 -
Ymax 

0.00 2.00 4.00 6.00 8.00 10.00 

Figure 6.1: The percentage of the search space remaining when the eigenvalue 

constraint is applied to a,b,c and d (Constraint 1), and the limit point con­

straint is applied to e and / (Constraint 2) for varying sizes of the BB. Xmax 

= 10.0 and acc = 0.05. 
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6»6 Constraint on Transforming the Bounding 

Box 

The final constraint introduced in this chapter is: 

Constraint 3: After the application of a contractive transformation to the bound­

ing box of a shape no edge of the resulting parallelogram can lie entirely outside 

the original bounding box. 

This condition must hold since each transformed edge of a shape's BB touches 

the transformed shape, and so if an edge lies outside the BB then so does part of 

the transformed shape. Such a transformation is not suitable (from the Collage 

Theorem). 

The implementation of this constraint is considered in two parts: 

1. The 2 x 2 matrix in Equation 6.1 must never allow an edge of the BB to be 

transformed outside the BB — a constraint on a, b, c and d. 

2. The transformed bounding box (TBB), produced by applying a valid 2 x 2 

matrix (with regard to 1. above) to the BB, can never be moved such that 

an edge of it would lie outside the BB — a constraint on e and / . 

The following procedure is used to check the validity of a, b, c and d (a type 1 

strategy), and then calculate ranges for e and / such that Constraint 3 is satisfied 

(a type 2 strategy). 

Apply the matrix to two vertices of the BB {Xmax, Ymax) and (—Xmax, Ymax) 

to give two vertices of the TBB, T° = (T°,T°) and Tl = (T*,Tj). Note that the 

other vertices of the TBB are then T 2 = — T° and T 3 = - T 1 . Then if: 
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1. T° and T1 lie inside the BB 

a, b,c and d are valid, and e and / are chosen such that: 

e| < Xmax — min j jT j 
X I J I X 1} l / l ^ y m o a r - m i n i l T ; ! , ! ^ 1 ! } . 

2. One of T° and T 1 lie inside the BB 

a,b,c and d are valid, and e and / are chosen such that if T' is the point 

inside the BB: 

\e\ < Xmax -mm{\Ti\,mzx{\I%\ll\}} 

|/| < Yrnax-mm{\T^mzx{\I0

yl\ll\}} 

where 7° is the point of intersection of the line from T° to T 1 and the BB, 

and 7 l is the point of intersection of the line between T° and T 3 and the BB. 

3. T° and T l lie outside the BB 

The number, N\, and positions 7 2, 7 3, of the points of intersection of the line 

from T° to T 1 and the BB are calculated. Similarly the number, iV 2 , and 

positions 7 4, P, of the points of intersection of the line from T° to T 3 are 

calculated. Then either: 

(a) A\ = 0 or /V2 = 0. In which case an edge of the TBB lies outside the 

BB and so a, b, c and d are not valid coefficients. 

(b) A r i > 0 and A2 > 0. In which case a, 6, c and d are valid and: 

Figure 6.2 provides an example of each case of the above cases. The graph 

shown in Figure 6.3 shows the reductions achieved when Constraint 3 is applied to 

shapes which have varying sizes of the BB (acc = 0.05). 

e| < A'ma.x--max{|7| | , |7*|} | / | < K m a . T - m a x { | 7 j | , | 7 ; | } 

where j and k are such that |7jJ 

that \Il

x\ = 17™| = Xmax. 

\Iy\ = Ymax, and / and m are such 
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Figure 6.2: An example of each type of transformation which needs to be 

considered when implementing the constraint on transforming a bounding box 

(Constraint 3). The rectangles in each part represent a BB, while the other 

parallelogram is the TBB (a 2 x 2 matrix satisfying Constraint 1 applied 

to the BB). Parts 1, 2 and 3(b) show valid transformations of the BB. The 

transformation shown in 3(a) is not valid since an edge of the TBB lies entirely 

outside the BB. The horizontal and and vertical arrows indicate the magnitude 

of the maximum displacement of the TBB which can occur before an edge 

lies entirely outside the BB. These magnitudes are constraints which can be 

imposed on e and / . 
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Figure 6.3: The percentage of the search space remaining when the eigenvalue 

and TBB constraints are applied to a,b,c and d (Constraints 1 and 3), and 

the TBB constraint is applied to e and / (Constraint 3) for varying sizes of 

the BB. Xmax = 10.0 and acc = 0.05. 
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©07 Total Reduction 

The constraints discussed in this chapter are combined to give the overall reduction 

in the search space which has been achieved. The results are shown in Figure 6.4. 

Percentage Remaining 
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4.00 6.00 8.00 10.00 

Figure 6.4: The percentage of the search space remaining when the eigenvalue 

and TBB constraints are applied to a,b,c and d (Constraints 1 and 3), and 

the limit point and TBB constraints are applied to e and / (Constraints 2 and 

3) for varying sizes of the BB. Xmax = 10.0 and acc = 0.05. 
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608 Summary 

Improving the performance of a search algorithm is one way in which a space may 

be searched more efficiently. A second approach is to take advantage of the sub-

symbolic representation adopted in order to reduce the size of the search space. 

This chapter has introduced several constraints on the components of an IFS with 

a real-valued subsymbolic representation. These constraints are of a low computa­

tional complexity and reduce the search space of four of the six components of a 

mapping by between 20% and 85%, and of he other two components by between 

75% and 95% (the size of the reduction depends only on the size of the bounding 

box of the target shape). Since the constraints can be applied to each mapping 

of an IFS their cumulative effect on reducing the search space is substantial. Fur­

thermore, their low complexity allows them to be implemented efficiently, and it is 

anticipated that they can be used by a wide range of search algorithms which op­

erate in the space of an IFS's real-valued subsymbolic representation. Appendices 

A and B provide algorithms for choosing values of IFS components so that they 

satisfy some of the constraints introduced. 



a p t e r 7 

o n t h m 1 A 1 d E ut a r y s a vo ion n 

1 D i a © u e 

This chapter describes the second problem for which a hybrid symbolic/subsymbolic 

approach is successful. Since the aim of the remainder of this thesis is to demon­

strate the 'width' of the approach a less comprehensive treatment, than that for 

the shape representation problem, is given. 

LOLITA (Large scale, Object based, Linguistic Interactor, Translator and Anal­

yser) is a natural language processor, the dialogue module of which is based upon 

a symbolic theory. However, in order to rank the appropriateness of responses 

to certain situations a subsymbolic (integer) representation is adopted. Blocks of 

the subsymbolic components determine the type of utterance the system outputs, 

while components within blocks determine how it is carried out. There are strong 

interactions between the blocks of components, but weak interactions between a 

block's components. 

Tuning the subsymbolic components so that the system exhibits a certain 'per­

sonality' can be carried out by hand. However, this is very time consuming and 

an automatic means of tuning is desired. This chapter examines how a GA and 
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EP can be applied to the problem of tuning subsymbolic components. Although 

successful for the dialogues discussed, limitations of the fitness function currently 

restrict more general applications (Nettleton and Garigliano 1994b, 1994f, 1994h). 

7ol Introduct ion 

Everyday intelligent beings have to respond to a range of different situations. 'The 

question, therefore, arises as to how a suitable behaviour is selected for a particular 

situation. One explanation would be that there are rules so completely governing 

possible behaviours that they cover all situations which may be encountered (a 

purely symbolic model). Clearly, however, while there are certainly some rules 

which help guide behaviour they certainly do not control it all, and simple counter 

examples to the above explanation of behaviour are easily constructed. Another 

extreme possibility would be that no rules are given, but are deduced (for future 

application) by interacting with intelligent beings and other objects (a purely sub-

symbolic model). Again this clearly is not true of human behaviour in general. 

More likely is it that some general rules are given and these, through learning, fine 

tuned to respond to certain situations (a hybrid symbolic/subsymbolic model). In 

effect there is an interplay between symbolic and adaptive techniques (Garigliano 

and Nettleton 1994). 

A particular example of a human behaviour, as described above, would be 

the holding of conversations. Throughout the day one uses a different style of 

conversation depending on the context, e.g., chatting to a friend, giving a lecture, 

conducting an interview, etc. The use of rules such as being polite, needing to 

initiate the conversation, etc, helps to constrain the content of the conversation. 

These rules, however, do not cover all eventualities, and one learns to adapt them 

to other contexts. Furthermore, as a conversation progresses it may be necessary 

to change the style of the conversation, and so further adaptation takes place. It is 

certainly not the case that humans learn conversational rules by interaction alone. 
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For example, one does not learn to be polite at a job interview by being rude at 

others, and learning from the failures. 

In developing a natural language processor able to analyse and respond to 

natural language input, the application of either of the above extreme methods 

would be unsuitable. A purely symbolic system can be produced, by specifying 

a large number of rules, which operates within the domain of those rules. Such 

systems are usually simple, and often fail when the input is not covered by the rules. 

Alternatively it is possible to produce a purely subsymbolic system by exposing it 

to large amounts of data, and hoping that rules can be inferred. This can result in 

a huge amount of time and resources being expended on learning even the simplest 

of linguistic rules, let alone more complex ones. 

The method adopted at the University of Durham in developing the LOLITA 

system (Garigliano et al. 1993a, 1993b, 1994a) has been to use a mainly symbolic 

approach — see Section 7.2.1. However, in the dialogue module, situations often 

arise in which several possible responses are available, and so the system uses a 

subsymbolic (integer) representation to help select between them. This involves the 

use of parameters to control the plan boxes which carry out responses. The tuning 

of these parameters so that a particular behaviour can be achieved has so far been 

carried out by hand. As this can be a very time consuming process, an automatic 

means of tuning is desirable. The search space is, however, very large and there are 

complex interactions between the subsymbolic components — strong interactions 

occur between blocks of components and weak interactions occur between a block's 

components. Furthermore, cases arise in which a single parameter can affect several 

behavioural traits (pleiotropy), and other cases in which several parameters can 

affect one behavioural trait (polygeny). Search algorithms such as hill-climbing are 

unsuitable in such spaces. 

In addition to demonstrating the success of a hybrid syrnbolic/subsymbolic ap­

proach for dialogue, this chapter examines the use of evolutionary algorithms in 

fine tuning the parameters controlling the dialogue module of LOLITA (Nettleton 
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and Garigliano 1994b, I994f, 1994h). This is an example of a problem the repre­

sentation of which exhibits Strong-Weak interactions at the subsymbolic level (see 

Section 1.3). 

7o2 Natural Language Processing 

Natural language processing (NLP) lies at the intersection of disciplines such as 

artificial intelligence, linguistics and cognitive science. A successful natural lan­

guage processor must be able to automatically process, understand and generate 

sections of natural language. Much Work in the field of NLP has concentrated on 

1) implementing a linguistic theory to show that i t can account for the features 

which it describes (computational linguistics) and 2) the modelling of the human 

thought process by a computer (cognitive science). 

Although these are of much interest, such systems are often so specialised, or so 

cumbersome, that they cannot be exploited in any practical way. In recent years, 

however, a more practical approach to NLP has emerged in the form of Natural 

Language Engineering (NLE); indeed a journal is about to be launched dedicated 

to this (Garigliano et al. 1994b). The paradigm of NLE is the development of 

systems which are general enough, and quick enough to be of practical use. Such 

a paradigm takes into account features such as scale, integration, flexibility, feasi­

bility, maintainability, robustness and usability (Smith et al. 1994). NLE adopts a 

pragmatic approach to achieving these goals, which is characterised by a readiness 

to use any means in order to build serious speech and language processing programs 

7.2.1 The LOLITA System 

LOLITA is an example of a system created using an NLE methodology (Garigliano 

et al. 1993a, 1993b, 1994a). LOLITA is built around a large semantic network of 
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some 60,000 nodes (capable of over 100,000 inflected word forms) which contain 

data and world information. The system can parse text, semantically and prag­

matically analyse its meaning, and alter the relevant information in the semantic 

network. Information contained within the semantic network can be generated in 

the form of natural language (Smith et ah 1994), and so a 'natural' interaction with 

the system is possible. Having being developed using an NLE methodology the sys­

tem is very general. Recently the underlying system has been used (with little in 

the way of modification) as the base for a variety of prototype applications. These 

include an Italian to English translator, contents scanning of newspaper articles, 

Chinese tutoring, and dialogue analysis and generation. 

The LOLITA system incorporates several logical and linguistic theories in its 

general construction. However, in dealing with specific areas these theories are 

often not strong enough, and so more localised theories are used. Even when these 

localised theories are impractical (e.g., for efficiency reasons) the LOLITA system 

resorts to a knowledge based approach, or uses heuristics, to solve problems. By 

incorporating such a range of approaches LOLITA is able to enjoy the advantages 

provided by a well constructed general theory. At the same time LOLITA is flexible 

enough to use other approaches should these theories fail for particular problems. 

7.3 Dialogue in LOLITA 

This section discusses the theory of dialogue which is used within the LOLITA 

system. An account of this theory is given so that its power can be appreciated. 

First of all, however, definitions are given of some terms which may otherwise be 

open to various interpretations. 

The terms dialogue and discourse are usually used loosely by many workers in 

the field. The definitions which are used in this chapter are those given by Jones 

and Garigliano (1993). Discourse is taken to mean a set of sentences which are re-
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lated to each other both linguistically and contextually. Such a definition includes 

newspaper articles, but an interaction between participants is not a requirement for 

a discourse. Dialogue is taken to be the rich interaction between two or more par­

ticipants, where 'rich interaction' is taken to include features such as sub-dialogues, 

interruptions and complex shifts in focus. 

Theories of dialogue can be broadly classified as: descriptive, prescriptive, pre­

dictive and inferential. A descriptive theory is simply aimed at being able to 

describe a known piece of dialogue in terms of some set of features. The other 

types of theory are more useful since these can be used (with varying degrees of 

power) to provide information on what is to happen next in the dialogue. In a gen­

eral natural language processor once a piece of text has been analysed the system 

needs to prepare a response. Rather than simply responding with the same style 

of text for all situations, LOLITA is capable of producing a wide range of styles. 

A theory of dialogue capable of providing information on a suitable response is 

required. Such a theory has been developed over the past three years (Jones and 

Garigliano 1993; Jones 1994). 

7.3.1 Dialogue Situations 

In many situations in which humans find themselves, the type of dialogue structure 

that can be expected for that particular situation is known. The knowledge required 

to determine this has been acquired through a mixture of given rules and learning 

(Section 7.1). In order to take advantage of this knowledge Schank and Abelson 

(1977) introduced the idea of scripts. A script is described by Schank and Abelson 

(1977, p. 41) as "... a structure that describes appropriate sequences of events in a 

particular context ... a predetermined, stereotyped sequence of actions that defines 

a well-known situation." An example of a script would be the dialogue between 

a waiter and customer in a restaurant. In such a situation both participants can 

be considered to be filling in the slots of some pre-determined template which has 



Chapter 7: Evolu t ionary Algor i thms and Dialogue 152 

slots for actions such as ordering food. 

Scripts are used to describe events from the physical world. The theory of 

dialogue incorporated in LOLITA is aimed at modelling the actual structure of 

the dialogue. This theory is based on the concept of a Dialogue Structure Model 

(DSM), and is now described (Jones 1994). 

A DSM is a schema which contains all of the information that can be expected 

to be relevant in a particular situation, and thus can be used to guide the generation 

of language to suit that situation. The DSM consists of dialogue elements, which 

are factors that influence and control the structure of the dialogue. In a lecture, 

for example, the lecturer can be expected to be in control of the dialogue, and to 

speak for most of the lecture's alloted time. Factors such as these determine the 

basic information required for a class of similar situations. Furthermore, a theory 

of dialogue based on DSMs is not simply descriptive, for a DSM can prescribe the 

manner in which the remainder of the dialogue is to be carried out. 

7.3.2 Dialogue Elements 

The Dialogue Elements (DEs) are the fundamental components of a DSM, and the 

current set can be subdivided as follows. 

External Elements — These are elements which are external to the language 

itself. Although they are not part of the dialogue they influence its structure. 

» N u m b e r — The number of participants involved in the dialogue. 

9 T i m e L i m i t — Whether or not there is a specific limit on the amount of 

time available within which the dialogue must be completed. Whether or not 

the dialogue must terminate by a particular time. 

» Temporal Progression — The stages through which the dialogue pro­

gresses as time passes. For example, in a lecture one can expect an intro-
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duction, a main body and a conclusion. In a, chat, however, there is far less 

structure. 

Mot iva t iona l Elements — All dialogues are started for some purpose, whether 

it be to simply pass the time of day or to conduct an interview. The elements 

discussed below are connected to the purposes for which a dialogue is being held, 

and are linked to the goals, motivations and intentions of the participants in the 

dialogue. Since a dialogue always has a motive, a DSM must always contain a 

motivational dialogue element. 

o Emot iona l Exchange — Whether or not any of the dialogue's participants 

aim to change the emotional state of another participant, e.g., make them 

laugh, cry or indifferent. 

© Goal — This is divided into 'task' and 'process', and relates to the aim of 

the dialogue. I f the aim is that of a task, then the goal is used to specify some 

end result, e.g., verbal instructions for the assembly of a piece of machinery. 

Process goals are achieved in stages as the dialogue progresses, e.g., a lecture 

conveys information on some topic as it unfolds. 

© I n f o r m a t i o n Seeking — Whether or not any of the dialogue's participants 

aim to gain information during the dialogue. 

e Persuasive — Whether or not the aim of any of the dialogue's participants 

is to cause another participant to believe in the truth of some statement. 

Verbal Elements — These are verbal properties of a dialogue, and may or may 

not be present within the dialogue. 

@ Colour — This relates to the style of language, e.g., use of adjectives, figures 

of speech, analogies, etc. 
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o D i s t r i b u t i o n of T i m e — The amount of speaking time that each participant 

is allowed within the dialogue. In a lecture, for example, the students can be 

expected to speak far less than the lecturer. 

o Dominance — Determines the degree of control a participant has on the 

structure of dialogue, content or direction. 

o Fixed Topic — Whether the dialogue is constrained to be on one topic, or 

whether the dialogue can cover several topics. 

® Length — The length of sentences contained within the dialogue, e.g., long 

or short. 

© Register — This relates to the kind of vocabulary that is in use within the 

dialogue, e.g., formal, informal, slang, etc. 

© R h y t h m — The rhythm of the dialogue. If, for example, it is to progress in 

short bursts or long flowing constructions. 

Al l dialogues have some form of structure that is external to the situation or 

participants. For example, all lectures can be expected to have a fixed timespan. In 

the case of such a dialogue in a particular situation, the relationship, individuality 

and character of the participants all play an important role in the development of 

the dialogue. Furthermore, an individual's state of mind at a particular time (e.g., 

happy, sad) is important in determining how the dialogue progresses. I t is through 

DSMs and DEs that the LOLITA system models these parts of human behaviour. 

7.3.3 Constraints and Plan Boxes 

Although the situation, character, etc, allows humans to place many constraints on 

the responses which may be made in some situation, there are still many possibil­

ities. The process of selecting an appropriate response is one which humans take 

for granted. LOLITA like a human is capable of man)' responses, and therefore 
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needs some mechanism by which responses can be selected. Once a response has 

been selected plan boxes are used to inform on how and when the output is gen­

erated. There are currently some 124 plan boxes contained within LOLITA, and 

some means of selecting a plan box from the many possibilities is requh'ed. 

LOLITA is able to reduce the number of possibilities via. inference and heuristics. 

Inference on the input is used to examine its emotional and intellectual value. 

Heuristics are then used to ensure that certain plan boxes are not triggered. For 

example, if LOLITA is forced not to be rude then blocks of plan boxes that would 

result in a rude response are excluded. Once these processes have been performed 

the LOLITA system is usually left with some 10-15 plan boxes which correspond to 

different outputs. Some mechanism for determining how likely a certain response 

is for a particular situation is needed. For example, one may not wish to answer a 

question, and possible responses could involve replying with a question or simply 

saying ' I don't want to talk about that'. 

The problem that remains is how to order the possibilities, dependent on the 

behaviour which is being sought. If, for example, the current DSM dictates that 

dialogue participant X has a greater level of dominance than participant Y, it is 

possible for X to terminate the dialogue. Although the termination of the dia­

logue is permitted it may not be appropriate at particular points of a dialogue — 

a lecturer has greater dominance in a lecture, but would not be expected to ter­

minate the dialogue half way through without adequate explanation. So although 

'terminate dialogue' is an option it would be inappropriate and must be marked 

as such. In general no clear rules are available for ranking, and so a subsymbolic 

approach is adopted. This involves attaching a parameter (an integer) to each plan 

box to indicate how permissible an action is. Then in selecting a plan box (of those 

allowed) with which to generate a response, the plan box with the lowest value is 

used. 

It is worth noting that it is not the absolute values of the parameters that is 

important, but their relative values. Furthermore, as a dialogue progresses the 
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values of the parameters attached to plan boxes vary to take into account the 

dialogue to that point. For example, if one participant of a dialogue, X, continually 

annoys another, Y, then Y's terminate dialogue option can be expected to become 

more likely as the dialogue progresses. 

7A Tuning the Parameters 

The parameters tha,t control the plan boxes contained within the dialogue module 

of LOLITA have been fine tuned by hand to give a particular behaviour. The 124 

plan boxes each have a single parameter attached which may be altered, and so the 

search space of possible settings is very large. With experience it is possible to ac­

quire an intuitive feel for the optimisation, but this process is very time consuming, 

and an automatic means of tuning is required. 

A method by which the usefulness of a tuning algorithm could be determined 

would involve first of all tuning the parameters to give a particular series of utter­

ances. Then starting with a random set of parameters, use the tuning algorithm to 

try and optimise the parameters so that the same series of utterances is generated. 

Results achieved when adopting such a method are presented later in this chapter. 

This method ha.s the following advantages: 

1. An optimum solution is known to exist for that situation, i.e.. the one ob­

tained by hand. 

2. A large number of previously untested parameter combinations will be gen­

erated, and running LOLITA with these parameters will be a good test of 

the robustness of the LOLITA system. 

The main disadvantage of the above method is that even if the tuning algorithm 

is successful in the particular situation studied, there is no guarantee that it would 

be more widely applicable. If it were possible for the algorithms to optimise for a 
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predetermined behaviour, then i t would be possible to fmd parameter settings that 

resulted in different styles of dialogue, e.g., polite or rude. The later part of this 

chapter begins to examine the use of EAs in this wider role. 

T o 5 Target Dialogues 

The dialogues given in Tables 7.1 and 7.2 are the target dialogues for the opt imi­

sation process. D I A L 1 (Table 7.1) is generated through a single interaction w i t h 

the L O L I T A system for which the parameters were tuned. D I A L 2 (Table 7.2) is 

made up of statements which i t is known the L O L I T A system can produce, and 

were selected f rom dialogues which had several different parameter settings. In the 

case of D I A L 2 i t is not known i f a single parameter setting exists that can produce 

this entire dialogue. 

Table 7.1: The target dialogue, D I A L 1, which was produced in a single inter-

action wi th L O L I T A . 

DIAL 1 LOLITA 1: I desire a success. 
INPUT 1: I like you. 
LOLITA 2: I know; why do you like me? 
INPUT 2: You are beautiful. 
LOLITA 3: I am glad because you think I am beautiful 
INPUT 3: Do you like me? 
LOLITA 4: Yes, I like you. 
INPUT 4: Do you like me? 
LOLITA 5: I slightly am bored and emotional. 
INPUT 5: You are a machine. 
LOLITA 6: I do not believe that I am a machine. 
INPUT 6: Are you a machine? 
LOLITA 7: No. 
INPUT 7: Are you beautiful? 
LOLITA 8: I do not know if I am beautiful. 
INPUT 8: I am tired. 
LOLITA 9: Tell me things. 
INPUT 9: I am tired. 
LOLITA 10: I slightly am bored. 
INPUT 10: Are you tired? 
LOLITA 11: No. 
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Table 7.2: The target dialogue, D I A L 2, which is a collection of utterances 

f rom different interactions. 

DIAL 2 LOLITA 1: I desire a success. 
INPUT 1: I like you. 
LOLITA 2: Why do you like me? 
INPUT 2: You are beautiful. 
LOLITA 3: I am glad because you think I am beautiful. 
INPUT 3: Do you like me? 
LOLITA 4: Yes. I like you. 
INPUT 4: Why do you like me? 
LOLITA 5: I do not know why I like you. 
INPUT 5: You are a machine. 
LOLITA 6: I do not believe that I am a machine. 
INPUT 6: Are you a machine? 
LOLITA 7: No. 
INPUT 7: I am tired. 
LOLITA 8: I understand. 
INPUT 8: I am tired. 
LOLITA 9: I slightly am bored. 
INPUT 9: Are you tired. 
LOLITA 10: No. 
INPUT 10: Tell me if you believe that I am tired. 
LOLITA 11: Yes, you are tired. 

7 , 6 Application of E A s to L O L I T A 

The environment is the source of information on which solutions are evaluated. 

In theory this must correspond to all natural language utterances. In practice, 

however, the current implementation of L O L I T A acts only on literal meaning. 

Metaphors, idioms and humour are, therefore, excluded f rom the environment. 

In deciding which plan boxes are to be activated, i t is not their absolute values 

that are important, but rather their values relative to each other. Therefore, i t is 

not the explicit values of the parameters that are to be optimised, but a shift in 

value f rom that of the current hand optimised setting. For each plan box a range 

of shift values (simply referred to as parameter values f r o m now on) of [-63,64] 

was deemed sufficient, since these allow for a large range of possible behaviours 

(if necessary this range can easily be increased). A solution's representation is, 
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therefore, a string of 124 (the number of plan boxes) integers. Furthermore, a 

solution w i t h al l of its values set to 0 is identical to the current hand optimised 

setting. The parameters of the plan boxes which control utterances of a particular 

type are grouped together in blocks. For example, the three plan boxes labelled 

cause_Af f e c t i o n P l a t o n i c are grouped together, as are the six which are labelled 

show_AngerQf f ense. The components wi th in a block determines how a utterance 

is carried out, e.g., different ways in which anger can be expressed. There are strong 

interactions between the blocks of parameters, but weak interactions between the 

parameters wi th in any particular block. 

As mentioned previously some measure of how closely utterances generated 

match those of the target dialogue is needed. The results given in the next section 

use a very simple fitness function. A solution's fitness is in i t ia l ly set at zero, and 

then increased by one for each utterance that exactly matches that in the target 

dialogue. For the target dialogues discussed in this chapter a solution's fitness 

is, therefore, an integer in the range [1,11]. The total number of utterances that 

L O L I T A generates is eleven, and so this provides the upper bound on the fitness. 

Furthermore, all solutions wi l l have a fitness of at least one, since wi th the current 

'personality' L O L I T A always initiates a conversation wi th the phrase " I desire a 

success." A more sophisticated fitness funct ion is introduced in Section 7.8. 

Comparing the results of runs of a GA and EP is diff icul t since the underlying 

system is continually changing and the data files regularly updated. Only single 

trials of each algori thm are carried out, but these are sufficient to show the validity 

of the approach. 

7 o 7 Results 

This section presents the results of applying a GA and EP to the problem of 

finding plan box parameters. Other than variations in solution representation and 

the details of the EP's mutat ion operator (discussed below), the GA and EP used 
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are identical to those described i n Sections 5.2 and 5.3 respectively. 

The parameters controlling the plan boxes can each take one of 128 distinct 

values. In implementing the GA, the subsymbolic representation adopted is that 

of a binary string. Each of the penalties is encoded as a binary string of length 

seven, and these are concatenated together to fo rm one string. As there are 124 

plan box parameters the size of the search space is 2 7 x 1 2 4 RS 10 2 5 1 . 

In applying EP to the penalty optimisation problem an integer subsymbolic 

representation is adopted. Each of the penalties are stored as integers, and are 

constrained to the range [-63,64]. A child is produced f rom a parent by mutat ing 

each parameter Xi (i = 1 , . . . , 124) according to (and then truncating): 

x\ = xi + y/5 • ( M A X - F I T - f i t n e s s ( J O ) • N{0,1) i G { 1 , 2 , . . . , 124} 

where M A X - F I T is the maximum fitness attainable (11 for the work discussed in 

this section), f i tness(X) is the fitness of solution X = { .T, : i — 1 , . . . , 124} (i.e., the 

number of correct utterances) and A r (0 ,1) is a standard normal random variable. 

The above formula was selected since i t allows for solutions wi th a poor fitness to 

be mutated by a large amount, while at the same time reducing the chance that 

the mutated parameters fal l outside of the permitted range. 

For both the GA and EP a population of 50 was used and they were executed 

for 50 generations. The tournament size for EP was set at three. A single t r ia l 

of each algorithm was carried out. Figures 7.1 and 7.2 show the online and offline 

performance of the GA and EP run, for the target dialogues D I A L 1 and D I A L 2 

respectively. The offline performance is the average fitness of all of the solutions in 

a particular generation, while the online performance is the average fitness of all 

solutions that have been generated up to a certain generation. 
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Figure 7.1: Online and offline performance for a t r ia l of the GA and EP wi th 

D I A L 1 as the target dialogue. 
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Figure 7.2: Online and offline performance for a t r ia l of the GA and EP wi th 

D I A L 2 as the target dialogue. 
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D I A L L O L I T A ' s incorrect utterances 

1 

G A 2: Tell me things. 

6: I slightly am bored and emotional. 1 

EP 8: I do not know i f I am beautiful; tel l things to me. 

2 

G A 2: I could not speak to you i f you repeated you like me. 

6: I desire a success. 

J: I could not speak to you i f you repeated A m I a machine? 2 

EP 2: I know; I could not speak to you i f you repeated you like me. 

7: I could not speak to you i f you repeated A m I a machine? 

Table 7.3: The incorrect utterances generated by the best parameters 

found when GA and EP were used to optimise the plan box parameters 

for D I A L 1 and D I A L 2. 

In the case of D I A L 1 the GA was able to f ind a set of parameters which 

produced a dialogue of fitness 9, i.e., two utterances incorrect. EP performed 

slightly better, discovering a solution of fitness 10. When D I A L 2 was used as the 

target dialogue the GA was able to f ind a solution of fitness 8, and EP a solution 

wi th fitness 9. These results are summarised in Table 7.3. 

In the case of EP the incorrect utterance for D I A L 1 was " L O L I T A 8: I do 

not know i f I am beautiful; te l l things to me." Such an utterance should not be 

considered as wrong, i t is simply that the fitness funct ion is not very sophisticated. 

Similarly for the GA and D I A L 1. For both the GA and EP, wi th D I A L 2 as the 

target dialogue, the incorrect utterances for the best parameters found indicate 

that the parameter settings were such that the input caused L O L I T A to become 

offended quite easily. 

A n interesting feature of the EP results is how the average fitness of a generation 

rose to that of the best solution to date (Figures 7.1 and 7.2). I t appears that when 

a better solution was discovered the average generation fitness would rise gradually 

for several generations and then quickly rise to that of the best. There is, however, 
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one notable exception to this which occured at generation 46 when D I A L 1 was the 

target dialogue — see Figure 7.1. A t this point a solution of fitness 10 was produced 

in a population the remainder of which had fitness 9. The solution of fitness 10 

was, however, subsequently lost and the reason for this is now discussed. Although 

a solution wi th fitness 10 is guaranteed a score of three in the tournament, many 

other solutions in that population also scored a fitness of three since all but one 

solution against which they were competing had a fitness of 9. When the process 

of sorting the scores took place there were more solutions wi th a score of three 

than there were places for them in the next generation and so some were lost. This 

included the solution of fitness 10. A similar occurrence took place in the run wi th 

D I A L 2. A olution of fitness 9 was discovered at generation 25, retained for one 

generation, and then lost. 

The failure to retain an improved solution is in part attributable to the poor 

discriminatory power of the fitness function used. Since many solutions can have 

the same fitness a lot of solutions often perform very well in the tournament, 

and solutions wi th a maximum tournament score may be lost f rom the following 

generation. The following section examines a fitness function which is able to use 

additional information which the L O L I T A system is able to provide. This improves 

the fitness function's discriminatory power, rewarding not just the words produced, 

but the underlying actions which lead to their generation. 

7 c 8 Improving the Fitness Function 

The fitness function adopted in the previous section is very simple and unable 

to take into account additional information which the L O L I T A system is able to 

provide. On analysing an utterance the L O L I T A system infers information on the 

local goals, subgoals, utterance types and action types of the speaker. Table 7.4 

shows this information for the first seven utterances of D I A L 1. 
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Table 7.4: The additional information which the L O L I T A system makes avail­

able for the first seven utterances of D I A L 1. 

LOLITA 1: 
( I desire a success.) 

INPUT 1: 
( I like you.) 

speaker: lolita 
local goal: ShowEmot ion Goal NeutralEmotion 
subgoals: 
utterance types: AllSame 
action types: default_tacticPB 

speaker: roberto 
local goal: InformGoal 
subgoals: 
utterance types: Statement 
action types: 

LOLITA 2: speaker: lolita 
( I know; why do you like me?) local goal: InformGoal 

subgoals: AnyGoal, BelnformedGoal 
utterance types: Statement, Noise, Question 
action types: tellPB, why_questPB 

INPUT 2: 
(You are beautiful.) 

LOLITA 3: 
( I am glad because you think 
I am beautiful.) 

INPUT 3: 
(Do you like me?) 

LOLITA 4: 
(Yes, I like you.) 

speaker: roberto 
local goal: InformGoal 
subgoals: 
utterance types: Statement 
action types: 

speaker: lolita 
local goal: ShowEmotionGoal Serenity 
subgoals: 
utterance types: AllSame 
action types: show .Serenity 

speaker: roberto 
local goal: BelnformedGoal 
subgoals: 
utterance types: Question 
action types: 

speaker: lolita 
local goal: InformGoal 
subgoals: 
utterance types: Statement 
action types: answerPB 
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The fitness funct ion can be modified to make use of the additional information 

given in Table 7.4. The fitness function used in this section calculates a solution's 

fitness by in i t ia l ly setting i t to zero, and increasing i t by one for each utterance, 

local goal, subgoal, utterance type and action type, which exactly matches that of 

the target dialogue. This fitness funct ion is less sensitive to the utterance itself and 

more sensitive to the behaviour required. For D I A L 2 the information associated 

with the individual statements was used. 

Using this additional information a fitness, which is an integer in the range 

[5,55] can now be assigned to solutions — 5 forms the lower bound since L O L I T A 

always initiates a conversation wi th the same utterance and associated information. 

For each of the two target dialogues a single t r ia l of the GA and EP were carried 

out. The GA and EP used the improved fitness funct ion and in addition two 

modifications were made to EP. In the tournament phase of the algorithm i f two 

solutions have the same fitness then a win is awarded wi th probabili ty 0.5. This 

modification is aimed at helping to overcome the problem of EP 'losing' a solution 

which arose in the experiments w i th the first of the fitness functions discussed. 

Secondly, the EP's mutat ion operator is altered so that a child is produced f rom 

a parent by mutat ing each parameter x, (i = 1 , . . . ,124) according to (and then 

truncating): 

x ' { = X i + ^ / ( M A X - F I T - fitness(X)) • N(0,1) i e { 1 , 2 , . . . , 124} 

where M A X - F I T is the maximum fitness attainable (55 for the work discussed in 

this section), fitness(A') is the fitness of solution A' = {x{ : i = 1 , . . . ,124} and 

./V(0,1) is a standard normal random variable. 

Figures 7.3 and 7.4 show the online and offline performance of the GA and EP 

run, for the target dialogues D I A L 1 and D I A L 2 respectively. 
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Figure 7.3: Online and-offline performance for a t r i a l of the GA and EP w i t h 

D I A L 1 as the target dialogue. The fitness function which takes into account 

L O L I T A ' s additional information was used. 
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Figure 7.4: Online and offline performance for a t r ia l of the GA and EP w i t h 

D I A L 2 as the target dialogue. The fitness funct ion which takes into account 

L O L I T A ' s additional information was used. 
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Addit ional 
information 

D I A L 1 D I A L 2 Addi t ional 
information GA EP GA EP 

utterance 9 9 8 7 
local goal 10 10 8 9 
subgoals 11 11 11 10 

utterance types 9 9 8 9 
action types 8 8 8 8 

Fitness 47 47 43 43 

Table 7.5: Decomposition of the results achieved wi th the improved 

fitness funct ion. The op t imum value for each of the values is 11. 

In the case of D I A L 1 the GA was able to f ind a solution w i t h a fitness of 47 

by generation 15, and EP a solution of fitness 47 by generation 8. For D I A L 2 the 

GA discovered a solution of fitness 43 by generation 7, and EP a solution of fitness 

43 by generation 14. The breakdown of these results is shown in Table 7.5. 

Again the exact matching of utterances resulted in statements such as " L O L I T A : 

Why do you like me?" in place of " L O L I T A : I know; why do you like me?" being 

scored as incorrect. Similar instances arose wi th the matching of the additional 

information. For example, i f the utterance types are "Statement, Noise, Question" 

then "Statement, Question" is currently scored as incorrect. A fitness value of 

0.666 would be more appropriate. There is clearly much scope for improvement in 

the discriminatory power of the fitness function. 

7 . 9 Discussion 

The results show that both a GA and EP were reasonably successful at the dialogue 

optimisation problem presented. The problem is an example of one for which 

the subsymbolic representation adopted has strong interactions between blocks of 

subsyrnbolic components, but weak interactions between the components of any 

particular block. These results, although preliminary, do lead to some interesting 

points worthy of further consideration. 
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For both the GA and EP the average fitness of solutions in subsequent gen­

erations steadily improved. No attempt was made to tune the settings of the 

evolutionary algorithms themselves. I n the case of the GA such settings include 

the crossover and mutat ion probabilities. Other components of the GA that may 

be altered include the solution representation (e.g., integers), crossover type and 

selection mechanism. The performance of EP may be improved by altering the 

tournament size, or the formula controlling the amount of mutat ion. Furthermore, 

i t is likely that by increasing the population and generation size improved results 

can be expected. This has not been studied to date since wi th a population and 

generation size of 100, the runt ime (on a Sparc4 workstation) can be expected to be 

of the order of two days. Furthermore, evaluating any differences i n performance 

is diff icul t since the underlying system is continually being modified. 

For the. dialogues and fitness functions considered the fact that both a GA 

and EP are able to discover solutions which perform well indicates that both a 

bottom-up and a top-down approach is a suitable means of solution construction. 

The discriminatory power of the fitness function needs to be further improved. 

Ideally some quantitative measure of semantic distance would be used (Short et 

al. 1994a, 1994b). This would entail f inding some quantitative measure for the 

similari ty of the meaning of two sentences. Another approach would involve making 

better use of the information that the L O L I T A system is capable of producing. 

W i t h an improved fitness function the current l imi ta t ion of having to apply the 

EAs to known dialogues can be removed. Evolving the plan box parameters so 

that the resulting dialogue exhibits a certain personality is the long term aim. e.g., 

finding the parameters which result in L O L I T A becoming easily offended. Once 

sets of parameters for different behaviours have been determined they can be used 

to run L O L I T A wi th that 'personality'. 



Chapter 7: Evolutionary Algorithms and Dialogue 171 

7,10 ummary 

This chapter provides evidence that a hybr id symbolic/subsymbolic approach can 

be successfully applied within the dialogue module of a large scale natural language 

processor. Adopting such an approach allows the dialogue module to enjoy many 

of the advantages of a well constructed theory, while at the same t ime allowing for 

the flexibilit}' which a subsymbolic approach is capable of providing. The complex 

dialogues which can be generated validate the approach. 

Evolutionary algorithms have been applied to the problem of searching the 

space of the subsymbolic representation so that a solution which exhibits a certain 

behaviour can be found. The interactions between blocks of the subsymbolic com­

ponents are strong, but those between individual components of a block are weak, 

i.e., the subsymbolic representation displays Strong-Weak interactions (see Section 

1.3). For the dialogues and fitness functions considered both a G A and EP were 

able to overcome the interactions which may occur and construct solutions that 

perform well. A more general application of the approach is currently l imi ted by 

the poor discriminatory power of the fitness funct ion. 



Evolutionary Algorithms and 

h R 
o t o .e CO e i 10 

This chapter introduces the th i rd and final example of a problem for which a hybr id 

symbolic/subsymbolic approach is successful, and as such provides fur ther evidence 

for the 'w id th ' of its application. A s w i th the two problems considered previously 

the approach taken to solving is to in i t ia l ly adopt a symbolic approach and then 

move to a subsymbolic representation to allow for greater flexibil i ty. This problem 

is an example of one for which there are strong interactions between the subsymbolic 

components. The problem considered is f r o m the field of speech recognition and 

involves t rying to improve the word matching stage of the A l I R A I D system — a 

speech recognition aid for use by deaf students in lectures which is currently being 

developed at the University of Durham (Collingham 1994). 

A word lattice is a symbolic data structure which can be used to contain the 

word hypotheses generated by the first stage of a speech recognition system. Sev­

eral subsymbolic approaches have been suggested as a means of representing the 

likelihood of a particular word occuring at a particular point, e.g., assigning proba­

bilities. A U R A I D uses a dynamic programming algorithm to score the words in the 
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lattice — they are then ranked according to their score. The algorithm contains 

several penalties, which are represented subsymbolically. These penalties can be 

selected by hand, but there are strong interactions between the subsymbolic com­

ponents and an automatic approach would be desirable. This chapter examines 

how a GA and EP can be applied to the problem of penalty determination and 

compares their performance. EP is then used to optimise the parameters for several 

small data sets and the parameters are shown to be robust when applied to a large 

set of unseen data (Collingham 1994; Nettleton and Collingham 1995). 

8.1 Spoken language understanding systems 

As improvements have been made in automatic speech recognition the assessment 

tasks have become progressively more challenging (ARPA 1994). Systems capable 

of continuous speech digit recognition, or isolated word recognition systems, are no 

longer sufficient. A generic speech recognition system must be able to cope w i t h real 

spontaneous speech, very large vocabularies and be domain independent. Modern 

day systems are striving towards this goal. A further challenge for these systems is 

that not only should they be capable of word recognition, but they should be able 

to understand what is being said and act upon i t . In other words go beyond the 

task of speech recognition, and attempt to understand spoken language. 

A spoken language understanding system is one which integrates a speech recog­

ni t ion system w i t h a text-based natural language (NL) understanding system. The 

following are methods which may be used to produce an interface between the two 

systems: 

N - B e s t : the speech recogniser passes a list of the A r best sentence hypotheses 

to the N L understanding system for analysis — a typical value for N would 

be 10. The NL system then analyses these sentences to determine the most 

likely recognition. The analysis typically includes making use of semantics 
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and pragmatics. 

M u l t i p l e K n o w l e d g e Sources : the speech recogniser makes use of mult iple 

knowledge sources. Some of these can be expected to be provided by the N L 

system, e.g., semantics and pragmatics. Others are provided by the speech 

recogniser. e.g., a bigram language model. During recognition each sentence 

hypothesis is passed to each knowledge source for assessment. 

S u m m a r y : the output of the speech recogniser is passed directly to the N L sys­

tem for analysis. The N L systems attempts to parse and/or semantically and 

pragmatically analyse the recogniser output . The N L system then outputs 

a ' t id ied ' up version, or summary, of the recogniser output. This method is 

particular^' suitable for the recognition of spontaneous speech. 

A n appropriate data structure that may be bui l t prior to generating sentence 

hypotheses is a word lattice (Murvei t et al. 1993; Baggia et al. 1992; Ljo l je and 

Riley 1992). A word lattice is a symbolic structure that contains the set of word 

hypotheses produced at the acoustic matching stage. Each word hypothesis is 

characterised by the start and end points of the spoken utterance port ion against 

which it has been matched, and a score representing its acoustic likelihood. The 

word lattice contains many more word hypotheses than the number of actual spoken 

words, and word hypotheses may overlap one another. A simplified example of a 

word lattice is shown in Table 8.1. 

The typical method of determining the acoustic likelihood of a word's pronun­

ciation involves collecting a corpus of recorded speech for a particular domain. A 

subsymbolic representation is then adopted which assigns to each word, or sub-

word (i.e., phoneme), the probability of i t being spoken. One disadvantage of this 

approach is that the likelihood scores need to be re-calculated for each new do­

main, and this involves collecting a new corpus of recorded speech. In addition, i t 

is unlikely that the acoustic models generated wi l l be robust enough for vocabu­

lary and domain independence. In order to overcome this a dynamic programming 

algorithm is used to calculate a word's acoustic likelihood. The algorithm used in 
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spoken 
input 

this course is on software maintenance 

spoken 
phoneme 
form 

D I s k 0 s I z Q n s Q f t u e@ r m e l n t @ n @ n s 

recognised 
phoneme 
form 

D s k 0 I z Q s Q f t 1 e@ r m e l n t @ n n (9 s 

word 

lattice 

this course is on software maintenance 
word 

lattice 

earth ask us loss off tell room an to known as word 

lattice 
these call saw law may ten nice 

word 

lattice carry soft air main 

word 

lattice 
courses meant 

Table 8.1: A .simplified example of a word lattice 

this work contains four acoustic parameters. The parameters can be represented 

subsymbolically (real-valued) and the settings selected by hand (Collingham and 

Garigliano 1993). 

The approach outlined in this chapter is to use evolutionary algorithms to search 

the space of the parameters' subsymbolic representation, and so automatically gen­

erate the required acoustic parameters for word lattice generation. The evolution­

ary algorithms discover a near-optimum solution for a small set of data (113 words 

input and a 1984 word dictionary). These parameters give encouraging results on 

a larger unseen set of data (5057 words f r o m the L U N D corpus (Svartvik 1992) 

and a 2637 word dictionary) and shows that the parameters are robust enough 

to withstand changes in vocabulary and domain. In fact the only dependence is 

on the performance of the underlying continuous speech phoneme recognition sys­

tem. Should this be improved, then the evolutionary algorithm may be re-run to 

automatically generate a new set of parameters. 
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8 „ 2 The A U R A I D System 

The A U R A I D system is a speech recognition aid for use by deaf students in lec­

tures which is currently being developed at the University of Durham. A domain 

independent syntactic sub-system is used for word recognition f r o m a continuous 

sequence of phonemes. The front end processing is to be performed by the A U R I X 

continuous speech phoneme recognition system developed by the D R A (Russell 

1992). The dynamic programming stage matches the phoneme input wi th a dictio­

nary to produce a word lattice. The parsing stage makes use of an 'anti-grammar' 

in order to determine the best sequence of words through the lattice (Collingham 

and Garigliano 1993). A U R A I D uses a vocabulary of up to 2637 words and works in 

real-time using a simulated front end. Experiments are now taking place making 

use of the Aurix f ront end, which is currently only a prototype. I n addition work is 

in progress to integrate fu l ly wi th the L O L I T A natural language processing system 

using all three of the interfacing methods described in the introduction, to provide 

a complete spoken language understanding system. 

8.3 Data Preparation 

Several lectures f rom different courses on various aspects of software engineering 

were recorded on to audio cassette. The text of these lectures was typed into a com­

puter as accurately as possible and included partial words and f i l led pauses such 

as, "urns" and "errs," together w i t h an indication of the location of short and long 

pauses. The phoneme representation for each word in each lecture was obtained 

f rom the Oxford Advanced Learner's Dictionary ( M i t t o n 1986). The phoneme rep­

resentation of each lecture was then corrupted in order to accurately reproduce 

the performance of a continuous phoneme recognition system by using real data 

figures obtained during the assessment of Armada (Browning el al. 1990) which 

is the forerunner for Aurix. These corrupted phoneme lecture fdes form the basis 
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of the simulation and files containing approximately 20%, 30% and 40% phoneme 

error rate were produced. 

8 o 4 W o r d La t t i ce Generat ion 

A word lattice is a symbolic data structure which holds detailed information re­

sulting f rom the lexical matching (word hypothesis) routine of a speech recognition 

system. Informally, each word of a dictionary is compared wi th acoustic/phonetic 

data. Each word is assigned a score indicating how closely i t matches a particular 

portion of data. Paths may be traced (parsed) through the word lattice by joining 

up words that span consecutive portions of data to fo rm sentence hypotheses. 

Dynamic programming is used to match each word in the dictionary w i t h a 

series of phonemes in order to bui ld a lattice of spoken word hypotheses. Dynamic 

programming is a mathematical concept that has been used for many years for 

multistage optimal decision calculation. In the field of speech recognition (where i t 

is also known as dynamic t ime warping) i t was used ini t ia l ly in isolated word recog­

nit ion systems for comparison of segments of speech wi th stored word templates. 

This was extended to continuous word recognition by storing each template as a 

series of frames which wei-e then compared to the segments of speech. A detailed 

description of dynamic programming for speech recognition is given by Silverman 

and Morgan (1990). By assuming a continuous stream of phonemes as its input , 

A U R A I D does not deal wi th frames or segments of the speech signal. However, 

dynamic programming can be used to match stored template words, made up of a 

series of phonemes, wi th the input phonemes. 

There are three main approaches which use dynamic programming in contin­

uous speech recognition: the two level algorithm (Sakoe 1979), the level building 

algorithm (Myers and Rabiner 1981), and the one pass algorithm (Bridle et al. 

1982). Although each differs in detail, the two basic stages involved in each al-
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gorithm are word level analysis a.nd phrase level analysis. I n word level analysis, 

each word in the dictionary is matched against all possible (consecutive) sequences 

of the input phonemes. Phrase level analysis determines the best scoring sequence 

of words that spans the entire phoneme input. These two stages comprise the two 

level algori thm, the others being optimisations which integrate the two stages. 

In A l l RAID a word level analysis using dynamic programming is undertaken, 

and then a beam search used for the phrase level analysis. The word level analysis 

algorithm models explicit ly the kinds of errors which may occur, both wi th in words 

and between words. That is inserted phonemes, deleted phonemes, substituted 

phonemes and word final phoneme deletion are considered. The distance or simi­

lari ty score between phonemes can depend on a variety of factors, and varies f rom 

algorithm to algorithm. Most algorithms group phonemes into classes according to 

their confusability. The phoneme classes used by A lJRAlD are based on manner of 

articulation and are shown in Table 8.2. The distance between phonemes wi th in 

the same class is then less than that between phonemes f rom different classes. This 

can be measured, for example, by absolute values or logarithms of the probabili ty 

of confusing one phoneme for another based on experimental data. Collingham 

(1994) found that long words were unduly penalised because of their length and 

were not recognised as well as they should be. To overcome this inadequacy the 

distance scores are normalised according to the length of the word being considered. 

One of the base case equations used in the word level analysis algorithm is: 
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Class Name Phonemes 

0 Plosive p b t d k g 
1 Affr icat ive tS dZ 
2 Strong Fricative s z S Z 
3 Weak Fricative f v T D h 
4 Liqu id /Gl ide 1 r B j 
5 Nasal . n m N 
6 Vowel i I E { A q O U u 3 V © 

a l e l ol aU @U I® e® U@ 

Table 8.2: Phoneme classes used by A U R A I D 

del ..pen sub^pen(w.l.t) . r„, „ 

W + * w ' + ™ { S ( r ' " M -
2.0 X deljpen sub_pen(u\Lt) . . , r / x ^ v> ^ 

/vw + % L ) + ™ « < S ( r ' " ( r ) " 2 ' ' " 2 ) ) } ' 

Other base cases are used for p = 2 and p = 3 (Collingham 1994) and the 

general equation is: 

. , insjpen sub-pen(w,p,t) 
S(w,p, /,) = m m { + N ^ w )

 ) + S(w,p- 1, * - 2); 

subjpen(iv,p,t) 
1 K ' r 1 + S(w,p - l , t - 1); (8.2) 

J V yw) 
deLpen sub.pen(w,p,t) 

A ( i f j ) A'(w) 
2.0 x deLpen sub.pen(w,p,i) 

N(w) + NH +S(-VP-3,t-2) } 

where S(w. p,t) represents the score for phoneme p of word w when matched against 

input phoneme t, R is the set of words in the dictionary used by A l i R A I D and N(r) 

is the length in phonemes of the r ' t h word. The three penalties, insjpen, deLpen 

and sub-pen are represented subsymbolically (real-valued). Each returns a value 
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independent of the particular phoneme being considered, wi th the exception of 

sub-pen which is divided into two separate cases. The first of these cases penalises 

phonemes in which the substitutions are of the same class. The second case allows 

a different penalty to be used for phonemes which are substituted wi th ones of a 

different class. There are, therefore, four penalty values to be chosen. In previous 

work (Collingham and Garigliano 1993) these settings have been selected by hand, 

and this method of phoneme distance calculation produced better results than 

other subsymbolic approaches, e.g., using logarithms which used the probability of 

confusing one phoneme for another. 

In both Equations 8.1 and 8.2, a min imum score choice is to be taken between: 

the last input phoneme being an insertion error; the current input phoneme being 

correct or a substitution error; a deletion of the previous phoneme of the current 

word or the final phoneme of the previous best scoring word. I n addition, the last 

line of each equation represents the occurrence of two consecutive deletion errors. 

Consecutive insertion errors are not modelled because they are not produced by 

the simulated phoneme recogniser (if required a simple extension to the equations 

could model this). Finally, for each input phoneme the end score for each word is 

adjusted to represent the local score for that word i f i t were to end at that point 

in the input. 

Given a string of phonemes and a dictionary, the application of the above 

dynamic programming algorithm results i n a data structure called a word lattice, 

a simplified example of which is shown in Table 8.1. The position of the words on 

different levels in this simplified lattice is not too significant, in reality each word 

in a box would have associated wi th i t a score representing how well i t matches the 

phonemes spanned by the box. In addition to the correct path through the lattice 

several other paths can be traversed f rom the beginning to the end. For example, 

"this courses loss off tell air main to known as", or "these call us on soft law room 

an ten nice" (Table 8.1). A phrase level analysis stage determines the best path 

according to some criteria, and the text output f rom this stage is the the system's 
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hypothesis as to what was spoken (Collingham 1994). The work of this chapter is 

not directly concerned wi th the phrase level analysis. However, as the output of 

the word level analysis is the input to the phrase level analysis, i t is important that 

the word level analysis be as accurate as possible. This then reduces the number 

of errors which may be propagated through the system. 

To date the subsymbolic components which correspond to the penalties for 

phoneme insertion, deletion, and the two for substitution have been selected by 

hand. The use of EAs as an automatic approach to searching the space of the 

subsymbolic representation is now discussed. 

8 , 5 A U R A I D and EAs 

The environment is a continuous stream of phonemes f rom which words are ex­

tracted producing a word lattice according to the algorithms discussed above. To 

create the phoneme string a piece of text consisting of 113 words was converted to 

phonemes and corrupted by approximately 20%, 30% and 40% to create the data 

hies corrupt20, corrupt30 and corrupt40 respectively. The dictionary used in 

the dynamic programming stage contained 1984 words. 

The penalties ms_pen, deLpen and both subjpens are represented numerically 

and are constrained to be in the range [1,256]. I n applying EP i t isn't necessary to 

restrict the range, but this was done in order to allow for comparison w i t h a GA 

which uses a fixed length binary subsymbolic encoding. 

A fitness measure is needed in order to determine the performance of the penal­

ties used in the dynamic programming algorithm. For each input phoneme, dy­

namic programming is used to calculated a score for each dictionary word on the 

assumption that it ends at that phoneme. These words are then ranked according 

to their score, a rank of 1 being the best. During penalty optimisation, the end 

point of each correct word in the corrupted input phoneme sequence is known (this 
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is not the case during actual recognition). The ranks of the correct words i n their 

correct position are found and their average value used as the fitness value. The 

optimisation process is aimed at minimising the fitness value wi th a fitness of 1 

being the op t imum (although this may not be attainable). 

This section presents the results of applying a GA and EP to the problem of 

estimating the penalties of Equations 8.1 and 8.2. Other than variations i n solution 

representation and the details of the EP's mutat ion operator (discussed below), the 

GA and EP used are identical to those described in Sections 5.2 and. 5.3 respectively. 

In implementing the GA, the subsymbolic representation adopted is that of 

a binary string. Each of the penalties is encoded as a binary string of length 

eight, and these are concatenated together to form one string. Since there are four 

penalties to be encoded the size of the subsymbolic representation's search space 

is 256 4 ft; 4 x 10 9. 

In applying EP to the penalty optimisation problem a real-valued subsymbolic 

representation is adopted. Each of the penalties are stored as real numbers (six 

decimal places), and are constrained to the range [1,256]. A child is produced f rom 

a parent by mutat ing each parameter X{ (?' = ! , . . . , 4) according to: 

where fitness(A') is the fitness of solution X = {x{ : i — 1 , . . . , 4 } and /V(0,1) 

is a standard normal random variable. The above formula was selected since i t 

allows for solutions wi th a poor fitness to be mutated by a large amount, while at 

the same time reducing the chance that the mutated subsymbolic components fa l l 

8 . 6 Results 

v/fitness(A') • A^(0,1) Xi + *G { 1 , 2 , 3 , 4 } 
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outside of the permit ted range [1,256]. Should a mutat ion result i n a component 

fall ing outside of this range then i t is set to the nearest allowable value. 

For both the GA and EP a population of 50 was used, and they were executed 

over 50 generations. The tournament size for EP was set at three. For each of the 

GA and EP, 11 trials were carried out using corrupt20, and 31 trials for each of 

corrupt30 and corrupt40. The fitness of the best solution found in each of the 

runs is shown in Table 8.3 together w i th the generation at which the best solution 

was discovered ( in parenthesis). The mean and standard deviation of each set of 

results is also given. 

The Figures 8.1, 8.2 and 8.3 each show the online and offline performance of the 

median run of the GA and EP for the data corrupt20, corrupt30 and corrupt40 

respectively. The offline performance is the average fitness of all of the solutions in 

a particular generation, while the online performance is the average fitness of all 

solutions that have been generated up to a certain generation. 

The results of the trials conducted wi th corrupt20 showed that i n each t r ia l 

both the GA and EP found opt imal or near opt imal solutions. No difference in 

performance was observed. 

A comparison of the performance of the GA and EP for corrupt30 indicate 

that EP outperformed the GA. The result was not statistically significant (t = 1.04 

wi th DF = 52 gave P > 0.1) unless the EP outlier (2.3) and the GA outlier (2.0) 

were removed (t = 2.36 w i t h DF = 56 gave P < 0.05). 

W i t h corrupt40 the results obtained showed that EP outperformed the GA. 

The result was not statistically significant (/ = 1.31 w i t h DF = 59 gave P > 0.1) 

unless the EP outlier (2.9) was removed (/, = 2.17 wi th DF = 54 gave P < 0.05). 
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Table 8-3: The. best solutions found by each the GA and EP for various levels of 

phoneme corruption. Each algorithm was run 31 times (except for the data file 

corrupt20 which was run 11 times) and the generation at which the best solution 

was found is shown in parenthesis. 

Corruption 20% 30% 40% 
Algor i thm EP GA EP GA EP GA 

1.1 (0) 1.1 (0) 1.4 (21) 1.4 (42) 2.3 (22) 2.6 (25) 
1.0 (30) 1.0 (2) 1.4 (38) 1.5 (3) 2.5 (44) 2.4 (6) 
1.1 (0) 1.1 (0) 1.6 (23) 1.5 (18) 2.4 (17) 2.4 (26) 
1.1 (0) 1.1 (0) 1.6 (48) 1.4 (15) 2.6 (30) 2.2 (2) 
1.1 (0) 1.0 (27) 1.5 (37) 1.6 (8) 2.4 (14) 2.4 (8) 
1.1 (0) 1.0 (11) 1.4 (34) 1.5 (15) 2.9 (48) 2.3 (1) 
1.0 (5) 1.1 (0) 1.4 (11) 1.5 (28) 2.3 (35) 2.4 (18) 
1.0 (4) 1.1 (0) 1.5 (16) 1.6 (5) 2.3 (8) 2.4 (19) 
1.0 (42) 1.0 (6) 1.5 (9) 1.5 (6) 2.4 (49) 2.6 (4) 
1.0 (4) 1.0 (21) 1.4 (8) 1.5 (5) 2.4 (8) 2.4 (24) 
1.0 (12) 1.0 (3) 1.6 (25) 1.5 (6) 2.3 (9) 2.4 (26) 

2.3 (28) 1.5 (9) 2.3 (47) 2.6 (1) 
1.4 (30) 1.4 (19) 2.3 (25) 2.1 (16) 
1.5 (39) 1.7 (8) 2.3 (15) 2.2 (2) 

Fitness of 1.4 (49) 1.6 (8) 2.3 (30) 2.6 (0) 
best solution 1.4 (15) 1.4 (14) 2.2 (0) 2.2 (0) 

found 1.4 (49) 1.5 (16) 2.3 (13) 2.2 (14) 
1.5 (46) 1.5 (32) 2.3 (24) 2.4 (12) 
1.5 (0) 1.5 (0) 2.3 (10) 2.5 (17) 
1.4 (8) 1.5 (9) 2.3 (7) 2.4 (1) 
1.5 (17) 1.6 (0) 2.4 (36) 2.4 (11) 
1.7 (26) 2.0 (7) 2.1 (49) 2.2 (37) 
1.4 (6) 1.7 (0) 2.3 (38) 2.4 (9) 
1.4 (40) 1.5 (12) 2.3 (37) 2.4 (18) 
1.4 (7) 1.5 (1) 2.2 (34) 2.4 (9) 
1.6 (44) 1.6 (6) 2.2 (44) 2.4 (39) 
1.4 (20) 1.5 (33) 2.4 (31) 2.4 (21) 
1.4 (1) 1.5 (0) 2.3 (19) 2.5 (10) 
1.6 (13) 1.6 (10) 2.3 (16) 2.4 (19) 
1.5 (21) 1.5 (4) 2.4 (10) 2.6 (11) 
1.4 (14) 1.5 (8) 2.4 (15) 2.3 (20) 

Mean (2 d.p.) 1.05 1 .05 1.50 1.54 2.35 2.39 
SD (3 d.p.) 0.052 0.052 0.172 0.114 0.139 0.133 
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Figure 8.1: Online and offline performance for the median t r ia l of the GA and 

EP wi th the data file corrupt20. 
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Figure 8.2: Online and offline performance for the median t r ia l of the GA and 

EP wi th the data file corrupt30. 
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Figure 8.3: Online and offline performance for the median tr ial of the GA and 

EP wi th the data file corrupt40. 
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§ o ? Discussion 

W i t h c o r m p t 2 0 the problem appears to be easy solvable. Solutions w i t h a near 

op t imum fitness were often found in the in i t i a l randomly generated generation and 

a wide range of parameter settings were able to produce near op t imum results. 

This indicates that , for this low level of corruption, the search space contains 

large 'plateaus' of near optimal solutions. W i t h such a low level of corruption the 

amount of interaction between the subsymbolic components is low and the problem 

although solvable using EAs could also be tackled by a range of other methods, 

e.g, hi l l-cl imbing and random search. 

As the level of corruption is increased the structure of the search space changes. 

The degree of interaction between the subsymbolic components increases, and dif­

ferences emerge in the relative performance of a GA and EP. A t 30% and 40% 

levels of corruption, EP outperforms a GA. The reason for this appears to be that 

the search spaces contains fewer op t imum solutions (than for 20% corruption), 

and that by emphasising a top-down approach EP is able to overcome the strong 

interactions which can occur between components. 

The problem considered in the previous section used a data set of 113 words 

corrupted to varying degrees and a dictionary of 1984 words. The results pre­

sented show that EP outperformed the GA. Collingham (1994), and Nettleton and 

Collingham (1995) have applied EP to larger problems and some of these results 

are now discussed. 

Two files of 113 and 112 words were converted to phonemes and corrupted 

by 25.6% ( f i l e l ) and 26.0% ( f i l e 2 ) respectively. A dictionary containing 1984 

words was used by the dynamic programming algorithm to match the phoneme 

input in the construction of a word lattice for each of these data sets. The fitness 

function applied used the average rank of the words in the two lattices. EP (as 

described above) wi th a population of 100 was executed over 100 generations using 

a tournament size of five. The best solution found had the following settings (to 
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1 d.p.) for the acoustic parameters: ins-pen = 96.7, del.pen = 95.1, a,nd the two 

subjpens 94.7 (same class) and 214.8 (different class). The average rank of the 

words in the lattice generated for f i l e l and f i l e 2 was 1.7 and 2.0 respectively. 

To demonstrate the robustness of the parameters with regards to the vocab­

ulary, the size of the dictionary was increased by almost 33% from 1984 to 2637 

words. Using the above parameters the average rank of the words in the lattice 

generated for f i l e l and f i l e 2 was 1.7 and 2.2 respectively. A further demonstra­

tion of robustness concerning domain independence was also considered. A passage 

from the LUND corpus (Svartvik 1992) which contained 5057 words was corrupted 

by 25%, and a 2637 word dictionary used in the construction of the lattice. Using 

the above parameters the dynamic programming algorithm created a word lattice 

with an average word rank for the correct words of 2.2. 

With the parameters generated Collingham (1994) demonstrated that for the 

passage from the LUND corpus and a 25% phoneme error rate the word recognition 

phase of A U R A I D is capable of almost 70% success. The results were in all cases an 

improvement on those achieved when the parameters for the dynamic programming 

algorithm were set by hand (Collingham and Garigliano 1993). 
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8o8 Summary 

A word-lattice is a symbolic data structure which may be used at the word match­

ing stage of a speech recognition system. The A U R A I D system uses a dynamic 

programming algorithm for word level analysis in order that ranks can be assigned 

to words in a lattice. The dynamic programming algorithm used contains four 

penalties which can be represented subsymbolically (real-valued). There are strong 

interactions between the subsymbolic components, and, although their values can 

be set by hand, an automatic means of selection is prefered. A GA and EP can be 

used to automatically select the penalties and EP was used to improve the perfor­

mance of a speech recognition system. The results of this chapter provides further 

evidence of the success of a hybrid symbolic/subsymbolic approach. 



Chapter 9 

Conclusion 

The first part of this chapter examines if this thesis has satisfied the criteria for 

success which were laid out in Chapter 1. The thesis concludes with some possible 

directions for future research. 

In order to determine the success of an approach to problem solving which uses 

a combination of symbolic and subsymbolic methods, several open research prob­

lems were examined. The examples taken were from fields of A I which have been 

researched in the Department of Computer Science at the University of Durham: 

shape representation, natural language processing, and speech recognition. In tack­

ling these problems all benefited from a hybrid symbolic/subsymbolic approach. 

The shape representation problem was examined in great detail so that the 

'depth' of the approach could be demonstrated. The use of IFSs for shape repre­

sentation allows for the results of a comprehensive theory to be brought to bear on 

the problem. In particular a result of the theory proves that an IFS can always be 

found for an arbitrary shape, and the Collage Theorem provides a means by which 

one may be found. Adopting a subsymbolic approach allows for a flexible approach 

to primitive selection. Furthermore, properties of the subsymbolic representation 

adopted can be used to improve the search process by reducing the search space. 
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The problems from natural language processing and speech recognition were 

discussed in far less detail, but being from completely different fields help to show 

the 'width' of a hybrid symbolic/subsymbolic approach. The use of a symbolic 

approach to natural language dialogue analysis allows a range of well constructed 

rules to be applied to certain situations, e.g., to be polite at an interview. However, 

when a number of responses are suitable they need to be ordered in a way which 

reflects their appropriateness — a subsymbolic representation offers this versatility. 

In speech recognition a word lattice provides a symbolic data structure in which 

words hypotheses are stored. A dynamic programming algorithm is used to score 

the words in the lattice. For flexibility, the penalties used by the algorithm are 

represented subsymbolically. 

For each of the problems studied evolutionary algorithms were applied to ma­

nipulate the components of a subsyrnbolic representation in an attempt to construct 

suitable solutions. Each of the problems had fundamentally different interactions 

between the subsymbolic components. For the shape representation problems con­

sidered EP outperformed a GA in finding solutions, and the results were statis­

tically significant. The difference in performance was attributed to the difficulty 

a bottom-up (GA) approach had in overcoming the Strong-Strong interactions of 

a solution's representation. EP on the other hand, by emphasising a top-down 

approach, was less likely to be deceived by the interactions. 

In tuning the parameters of the dialogue module, both a GA and EP found 

'good' solutions and hence were able to overcome Strong-Weak interactions of the 

subsyrnbolic components. However, the function used to assign a fitness to a par­

ticular dialogue was very simplistic. A more sophisticated fitness function (perhaps 

capable of using semantics) is needed for a more general application. 

For the problem in speech recognition, both a GA and EP were able to overcome 

the Strong interactions which could occur between the problem representation's 

subsymbolic components and construct suitable solutions. However, EP outper­

formed a GA on the more difficult problems examined, and was subsequently used 
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to generate a solution which has improved the performance of a speech recognition 

system. 

9»1 Research Direct ions 

The work presented in this thesis suggests the following areas for future research: 

1. The application of a hybrid symbolic/subsymbolic approach in conjunction 

with evolutionary algorithms to other problems. Problems which exhibit 

different forms of subsymbolic interaction would be of particular interest. 

2. The development of a theory which can account for how symbols reduce to 

subsymbolic patterns. 

3. Improving the absolute performance of optimisation algorithms for each of the 

problems considered by extensive experimentation with the many variations 

of algorithms which exist. 

The first of the above points requires little additional explanation. The possibil­

ity of applying a hybrid symbolic/subsymbolic approach should be borne in mind 

when attempting to solve an optimisation problem, and that if such an approach 

is to be adopted then evolutionary algorithms are a possible means of subsymbolic 

manipulation. (The advantages of this approach are discussed in detail elsewhere 

in this thesis.) Each of the remaining points are now discussed in greater detail. 

The symbolic and subsymbolic paradigms offer alternate approaches to the 

modelling of intelligence. A question which arises when two alternate methods of 

problem solving are suggested is: When will one perform better than the other? 

Luger and Stubble-field (1993, p. 693) argue that to ask such a question is often 

unreasonable as the two approaches are simply different models of intelligence, 

each of which discuss intelligence in a different language. The two approaches ask 
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different questions, propose different answers and interpret any results differently. 

Indeed the use of a purely symbolic or subsymbolic approach is often to examine the 

approach itself and not to find the best solution to the problem. The work presented 

in this thesis has demonstrated that, for some problems at least, a combination of 

the two approaches can enjoy some of the advantages offered by each. 

From a theoretical standpoint the symbolic and subsymbolic paradigms are 

currently incommensurable. A theory which is able to show how symbols may be 

reduced to patterns and how patterns equate to a symbol system would be a great 

achievement which would allow many developments in A I . For example: network-

based perceptual and knowledge-based reasoning facilities may be incorporated 

together into a single agent (Luger and Stubblefield 1993, p. 694); systems which 

rely on an interplay between the two approaches may be provided with a theoretical 

framework which helps determine how they may best be combined rather than the 

relation depending on individual intuition. However, a theory that can link the 

two approaches is probably some way off. 

Perhaps the clearest direction of research based upon the work of this thesis 

is in the improvement of the absolute performance of the evolutionary algorithms 

used. As indicated previously no attempt has been made to tune the algorithms 

to each of the problems which have been considered. In particular there are many 

different forms of the subsymbolic solution encoding which can be adopted and of 

the subsequent method of progeny generation. 

A general framework in which algorithm improvement may be attempted would 

be: 1) make an alteration, 2) carry out a series of trials, 3) compare the results 

with those of the current best, 4) keep the algorithm which performs best, and 5) 

iterate. In order to determine if a change to an algorithm results in an increase 

in performance a means of comparison is required. For statistically significant 

comparisons at least thirty trials should be performed. In such cases the Smith-

Satterthwaite modified one tailed £-test (Weiss and Hassett 1991, p. 504) which 

is used in all of the pairwise comparisons in this thesis can be used to test for 
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statistically significant changes. 

To specify a framework which exactly determines the alterations to the algo­

rithms that should be considered is unnecessary since although many possibilities 

can be suggested only some may (when their performance is examined) be worthy 

of further consideration. Furthermore, there can be expected to be a high degree 

of interdependence among the alterations which may be considered. For exam­

ple, each of several separate changes may result in a performance reduction, but 

together they may produce an improvement in performance. As in many other at­

tempts at improving the performance of evolutionary algorithms the decision as to 

which alteration (combination of alterations) is worthy of investigation falls largely 

on the intuition of the experimenter. (Dejong (1985) suggests that an evolutionary 

algorithm could be used to optimise the parameters of an evolutionary algorithm.) 

There are, however, several areas which are accepted as generally being worthy of 

further investigation. The remainder of this section discusses some of these and 

their justification. 

As discussed in Section 2.4 the use of a binary coding for a GA is regarded by 

some (e.g., Holland 1992; Goldberg 1989) to be the most suitable solution represen­

tation as it maximises the implicit parallelism of the solution's encoding. However, 

Radcliffe (1991a) argues that a binary coding is often 'unnatural,' and conflicts 

with a desire to use natural representations and operators for the structures in the 

space being searched. A further consequence of using a binary encoding is that the 

magnitude of the effect of a single mutation on a binary string varies considerably 

with regard to where in the string the mutation occurs (this can be avoided by the 

use of a particular form of binary representation known as 'gray coding'). 

Solutions to the problems discussed in this thesis are not naturally represented 

as binary strings. In implementing GAs for these problems a more natural rep­

resentation would be the same as that used in the implementations of EP, i.e., 

floating point for the shape representation problem, and integer for the natural 

language dialogue and speech recognition problems. 
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A further consequence of using a binary representation for the GA is that a 

fixed length encoding is adopted and hence solutions are only defined to a fixed 

(low) degree of precision. While in the case of the shape representation problem 

the robustness property of IFSs indicates that further accuracy is unnecessary, 

this need not necessarily be the case for the other two problems. For the natural 

language dialogue problem in particular an increase in a solution's resolution may 

allow for more subtle effects to occur. 

For the natural language dialogue and speech recognition problems the number 

of parameters required for an optimal solution is fixed in advance by the respective 

symbolic theory, i.e., 124 for dialogue and 4 for speech. Any changes to the number 

of parameters used would require a change in the symbolic theory. This is not the 

case for the shape representation problem. In finding an IFS for an arbitrary shape 

a non-trivial problem is determining a priori the minimum number of mappings 

which will be required to represent that shape to some given degree of accuracy. The 

implementations of the evolutionary algorithms considered in this thesis require the 

number of mappings which are to be used to be specified in advance. For the shapes 

considered this could be easily done since each of the shapes was generated from a 

known IFS. In a more general application such information may not be available and 

it may be necessary to define operators which can add/remove mappings to/from 

an IFS. Adding new mappings does, however, lead to a massive increase in the 

search space and would need to be performed with care. 

The operators used for progeny generation are often highly dependent upon 

the solution representation on which they act. In the case of a GA if a differ­

ent solution representation (i.e., not the binary one used in this thesis) is to be 

adopted then operators more suited to that representation may be used. If, for 

example, a floating point representation is adopted then there are many alterate 

crossover operators including: averaging values, and uniform crossover (Syswerda 

1989). Problem specific information may also be of use in defining operators, in­

deed several complementary operators may be defined and used in parallel. For 
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example, in implementing a GA for the shape representation problem a special 

crossover operator may be introduced which can only interchange whole mappings 

between IFSs. There are also many alternate schemes for progeny generation in 

EP. Perhaps one of the most promising is meta-EP (Fogel 1991) in which the need 

for scaling functions for the variance terms to be specified a priori is removed. 

A further area in which the performance of the evolutionary algorithms may 

be improved is in the 'survival of the fittest' strategy which is adopted. Many 

methods of solution selection have been suggested including: stochastic remain­

der sampling without replacement, stochastic universal sampling (Baker 1987), 

fitness scaling, fitness windowing (Grefenstette 1984) and steady-state replacement 

(Syswerda 1989). 

An additional means of improving the absolute performance of the evolution­

ary algorithms may be possible by combining them with other forms of search 

algorithm, e.g., hill-climbing. From the above discussion it can be clearly seen that 

there are many alterations which may result in improvements to the performance of 

the evolutionary algorithms discussed in this thesis. A specific framework in which 

these should be considered is difficult to specify (due to possible interactions), but 

the above discussion has provided some general considerations. 

It is clear that there is a great deal of research involved in addressing the research 

directions suggested at the start of this section. 



(See Giles 1990; Fogel 1992a.) 

Allele — An alternative form of a gene that occurs at a given site on a chromosome 

(locus). 

Attractor - The limit point of an iterated function system. 

A U R A I D — A speech recognition aid for use by deaf students in lectures which is 

currently being developed at the University of Durham. 

Behaviour — The response of an organism to the present stimulus and its present 

state. It is the total sum of behaviours of an orga.nism which define the fitness 

of the organism to its present environment and is thus the operative function 

against which selection operates. 

Chromosome — Bodies within a cell which contain the hereditary units of genes. 

Collage — The name given to any shape specific set of contraction mappings the 

union of which is equal to the shape itself. 

Crossover — An operator on the population of a genetic algorithm which ex­

changes information between solutions. 

D E — An abbreviation for Dialogue Element, a constituent part of a. DSM, which 

is a factor that influences and controls the structure of the dialogue. 
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Dialogue — The rich interaction between two or more participants, where 'rich 

interaction' is taken to include features such as sub-dialogues, interruptions 

and complex shifts in focus. 

Discourse - A set of sentences which are related to each other both linguistically 

and contextually (an interaction between participants is not a requirement 

for a discourse). 

D S M — An abbreviation for Dialogue Structure Model, a schema which contains 

all of the information that can be expected to be relevant in a particular 

dialogue situation, and thus can be used to guide the generation of language 

to suit that situation. 

EP - An abbreviation for Evolutionary Programming. 

ES - An abbreviation for Evolution Strategy. 

G A - An abbreviation for Genetic Algorithm. 

Gene - A unit of heredity located on a chromosome and composed of DNA 

(deoxyribonucleic acid). 

Genotype - The sum of inherited characters maintained within the entire re­

producing population; often also used to refer to the genetic constitution 

underlying a single trait or set of traits. 

IFS - An abbreviation for Iterated Function System, a set of contraction map­

pings on a metric space which when applied iteratively to any subset of the 

space always produce the same subset in the the limit (the attractor). 

L O L I T A - An acronym for Large scale, Object based, Linguistic Interactor, 

Translator and Analyser, a natural language processor which is currently 

being developed at the University of Durham. 

M P P - An abbreviation for Minimum Point Plotting Algorithm, used for ob­

taining the attractor of an iterated function system. 
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Mutation - A genetic change. 

Natural selection — The result of competitive exclusion as organisms fill the 

available finite resource space. 

Phenotype - The behavioural expression of the genotype in a specific environ­

ment; the realised expression of the genotype; the functional expression of a 

trait. 

Pleiotropy — The effect of a single gene affecting several phenotypic traits. 

Polygeny — A single phenotypic effect being determined by the interaction of 

many genes. 

Shape — Defined to be any compact subset of the Euclidean plane. 

Species - A group of similarly constructed organisms that are capable of inter­

breeding and producing fertile offspring. 
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Appendix A 

This appendix describes A l g o r i t h m 1 which can be used to choose a,b,c,d 6 
( — 1,1) such that they satisfy: 

a + d± sj{a - d)2 + Abe 

2 ' 

The selection algorithm consists of two parts. The first chooses a, b, c and d such 
that the value inside the square root is negative. The second chooses values which 
ensure the value is positive. Since only one of these two parts is needed, probabili­
ties for the selection of each part are required. These are calculated by examining 
the number of valid combinations of a, b, c and d which have yj(a - d)2 + Abe > 0 

and the number which have ^J(a — d)2 + Abe < 0 for a given acc. 

The table below shows the probabilities which should be used when deciding 
whether to use P a r t 1 or P a r t 2 of A l g o r i t h m 1. 

acc 0.2 0.1 0.05 0.02 
P ( P a r t 1) 
P ( P a r t 2) 

0.337 0.364 0.376 0.383 
0.663 0.646 0.624 0.617 

A l g o r i t h m 1 

P a r t 1 — a, b, c and d are to be such that (a — d)2 + Abe < 0. 

Then since \x ± i\Jy\ — \ A ' 2 + y for y > 0, Equation AL becomes: 

0 < sj(ad - be) < 1. 

< 1. (Al) 
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Choose a £ ( — 1,1) and d £ ( — 1,1); b and c then need to be selected such that 
they satisfy: 

— 1 + ad < bc< ad. 

1. I f ad > 0 then require — 1 - f ad < be < ad. Choose b £ ( — 1,1), then: 

(a) i f £> = 0 choose c 6 (—1,1), 

(b) i f b > 0 choose c £ ( m a x { - l , = ± ^ } , m i n { l , f ^ ) , 

(c) i f b < 0 choose c £ ( m a x { - l , f } , m i n { l , ^4^}). 

2. I f ad < 0 then require —1 < be < ad so wi th uni form probabili ty either: 

(a) choose b £ ( —l,ac/) then choose c £ [ y , 1), 

(b) choose b £ (—ad, 1) then choose c £ ( — 1 , y ] . 

W i t h probability 0.5 exchange the values of b and c. 

P a r t 2 — a, fe, c and r/ are to be such that (a — d)2 - f 4&c > 0. 

Then f rom Equation Al both of the following must hold: 

-2-a-d < yj{a- d)2 + Abc < 2-a-d -2+a+d < yj{a - d)2 + Abe < 2+a+d. 

But (a - df + Abe > 0 so yj{a - d)2 + Abe > 0 and since —2 — a — d < 0 and 
—2 - f a + c ? < 0 V a , c/ £ ( — 1 , 1) the above equations become: 

0 < y/(a-d)2 + 4bc < 2 - a - d 0 < yJ{a-d)2 + Abc < 2 + a + d. 

These give: 

0 < (a - df + 46c < (2 - a - d)2 ~(a ~ dY < & c < ( i _ a ) ( j _ ^ 

0 < (a - d)2 + Abe < (2 + a + </)2 =» - ( a ~ r f ) < k . < ^ + ^ + ^ 

Therefore since both of the above must hold: 
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—- <bc< m i n { l . (1 - a ) ( l - rf), (1 + a ) ( l + d ) } . 

Choose a £ ( - 1 , 1 ) , d 6 ( - 1 , 1 ) and be ( - 1 , 1 ) then: 

1. i f b = 0 choose cG ( - 1 , 1 ) , 

2. i f 6 > 0 choose c 6 ( m a x { - l , ^ ^ } , r n i n { l , ( 1 ~ a M 1 - r f ^ ( 1 + a H 1 + d > } ) , 

3. i f b < 0 choose c 6 ( m a x { - l , ( 1 ~ a H l - r f ) ; ( i + ' W + ' O } , m i n { l , = i s ^ } ) . 

W i t h probability 0.5 exchange the values of b and c. 



This appendix describes A l g o r i t h m 2 which can be used to choose values of e and 
/ (for given a,b,c and d satisfying the constraints of Sections 6.4 and 6.6) such 
that: 

1. the l imi t point of the transformation lies in the bounding box, 

2. no edge of the transformed bounding box lies entirely outside the bounding 
box. 

That is to choose e and / such that they satisfy: 

—X < e ( l - d) + bf < X -Y < f ( l - a ) + ce<Y (Bl) 

ee[-Cl,Cl] fe[-C2,C2] 

where X = ((1 — a ) ( l — d) — bc)Xrnax and Y = ((1 — a ) ( l — d) — bc)Ymax, and 
where C l and C2 are constants which are the allowed ranges of e and / respectively 
(calculated in Section 6.6). 

As can be seen f rom Equations Bl the problem is to choose e and / so that they 
lie in both the parallelogram and the rectangle defined. The algorithm presented 
ensures that every valid e and / can be selected, but each possibility does not 
have an equal probability of selection. Furthermore, the algorithm selects e first 
and then / — this order of selection can easily be reversed by making suitable 
substitutions. 

A l g o r i t h m 2 

Calculate the vertices of the parallelogram by finding the points of intersection 
of ; r ( l — d) + by = X w i th y(l — a) + cx — —Y and w i t h y(l — a) + cx = Y , 
and call these P° = ( P ° , P°) and Pv = (P*,Py). Note that these must exist since 
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7^ ^ f - (see Section 6.5). The remaining two vertices are then P2 = — P° and 
pa = _ p i 

Calculate the number, A r i , and positions 7°, 7 1 of the points of intersection of 
the line f rom P° to Px w i t h the box defined by the vertices ( C l , C2), (C ' l , - C 2 ) , 
( — C l , —C2) and ( — C l , C2). Similarly calculate, the number, N2, and the positions 
I 2 , 7 3 , of the points of intersection of the line f rom P° to P3 w i th the box. 

I f either Ni = 0 or yV2 = 0 (but not both) then: 

1. I f Ni = 0. Calculate Ix = m a x { | 7 2 | , | 7 3 | } then choose e such that e 6 
[ - J i , Jx] . 

2. I f A r

2 = 0. Calculate Ix = m a x { | 7 ° | , |7.J|} then choose e such that e £ 
[—7a', 7a;]. 

Otherwise, calculate Px = m a x { | P ° | , |PJ |} , then choose e such that: 

e € [ m a x { — C l , — T'a-}, m i n { C l , Px}] 

Given that an e has been chosen, e say, a range of possible values for / now 
needs to be calculated. Either: 

1. 6 = 0 — parallelogram has two sides vertical. 

Calculate points of intersection of x = e and y{\ — a) + cx — ± V and call 
these 7° = (7°, 7°) and 7 1 = (7^, Then choose / such that: 

/ e [ m a , x { - C 2 , 7 ^ } , m i n { C 2 , 7 ; } ] 

where i and j are such that V > Py. 

2. 6 ^ 0 . 

Calculate the points of intersection of x = e wi th i / ( l — a) + cx = ±Y and 
x(l - d) + by = ±X and call these 7 ° , 7 \ 7 2 , 7 3 w i th P = ( / £ , / * ) . Choose 
i,j,k,l E { 0 , 1 , 2 , 3 } such that i f j ± k ± l and Py < Py < 7* < l'y. Then 
choose / such that: 

/ € [ r n a x { - C 2 , ^ ' } , m i n { C 2 , / „ * } ] . 


