
Durham E-Theses

A method for maintaining new software

Newton, Jennifer Louise

How to cite:

Newton, Jennifer Louise (1994) A method for maintaining new software, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5873/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5873/
 http://etheses.dur.ac.uk/5873/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Method for Maintaining New Software

Jennifer Louise Newton

M.Sc. Thesis 1994

Abstract

This thesis describes a novel method for perfective m<iintenaace of software which

has been developed from specifications using formal transformations. The list of applied

transformations provides a suitable derivation liistory to use when changes are made to

the software. The method uses transformations which have been implemented in a tool

called the Maintainer's Assistant for the purposes of restructuring code. The method uses

these transformations for refinement.

Comparisons are made between sequenticd transformations, refinement calculi and

standard proof based refinement techniques for providing a suitable derivation history

to use when changes are made in the requirements of a system. Two case studies are

presented upon which these comparisons are based and on which the method is tested.

Criteria such as scaleability, speed, ease, design improvements and software quality is used

to argue that transformations are a more favourable basis of refinement. Metrics are used

to evaluate the complexity of the code developed using the method.

Conclusions of how to develop different types of specifications into code and on how

best to apply various changes are presented. An approach which is recommended is to use

transformations for splitting the specification so that original refinement paths can still be

used. Using transformations for refining a specification and recording this path produces

software of a better structure and of higher maintainability. Having such a path improves

the speed and ease of future alterations to the system. This is more cost effective than

redeveloping the software from a new specification.

A Method for Maintaining New Software

Jennifer Louise Newton

M.Sc. Thesis

University of Durham

Computer Science Dept.

1994

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

2 8 OCT m

Acknowledgements

I wish to thank Prof. Keith Bennett for his supervision and Mum, Dad and David for

their endless support and encouragement.

Contents

1 Introduction 8

1.1 Problems of Maintainabihty 10

1.2 Techniques 12

1.2.1 Reverse Engineering 12

1.2.2 Restructuring 13

1.2.3 Reengineering 13

1.2.4 Metrics 14

1.2.5 The Use of A.I . in Software Maintenance 16

1.3 Critical Analysis of Moriconi's Papers 18

1.3.1 A Designer/Verifier's Assistant 18

1.3.2 Approximate Reasoning About the Semantic Effects of Program

Changes 22

1.3.3 Problems 23

1.4 Critical Analysis of Baxter's Paper 24

2

1.4.1 Design Maintenance Systems: A Summary 25

1.4.2 Problems 28

1.5 Conclusion from Papers 29

1.6 OutUne of Thesis 30

1.7 Summary 31

2 Maintainability 32

2.1 Analysis Activities 33

2.2 Design Activiries 33

2.3 Implementation Activities 35

2.3.1 Maintainable Software 35

2.4 Refinement 36

2.4.1 Program Transformations and Transformation Systems 38

2.4.2 The Maintainer's Assistant 41

2.5 Summary 44

3 A Method for Maintaining New Software 45

3.1 Ideas for Method 45

3.2 Techniques 48

3.2.1 Morgan's Refinement Calculus 48

3.2.2 IBM Hursley Park Method 50

3.3 Refinement via Transformations 52

3.3.1 Simple Strategies 53

3.3.2 Simple Transformations 54

3.3.3 Case Introduction 54

3.3.4 Introduction of Invariants 55

3.3.5 Embedding 55

3.3.6 Unfold/Fold 55

3.3.7 Introduce Recursion 56

3.3.8 Divide-and-conquer 56

3.4 Description of the Method 57

3.5 Summary 58

4 Integer Square Root Problem 59

4.1 Description 61

4.2 Refinement Using Transformations 61

4.3 Comparisons with Refinement Calculus 66

4.4 Application and Implication of Changes 68

4.4.1 Change to Cube Root 68

4.4.2 Change to real numbers 70

4.5 Summary 76

5 Library Case Study 77

5.1 Description 77

5.2 Refinement Using Transformations 79

5.3 Application and Implication of Changes 80

5.3.1 First Change 82

5.3.2 Second Change 83

5.3.3 Third Change 83

5.4 Comparisons with Z Refinement Method 84

5.4.1 Scaleability 86

5.4.2 Speed 87

5.4.3 Ease of Change 87

5.4.4 Design Improvements 88

5.4.5 Software Quality 88

5.5 Summary 89

6 Results 91

6.1 The Method 91

6.1.1 Computation Intensive 92

6.1.2 Data Intensive 94

6.2 Maintainability of Case Studies 97

6.3 Summary 100

7 Conclusions 101

7.1 Problems Encountered 101

7.2 Problems Solved 102

7.3 Application Of Method 106

7.4 Future Developments 108

7.4.1 The Tool 109

7.5 Summary 113

A W S L Syntax and Semantics 114

A . l Background 114

A.2 The Kernel Language 115

A.2.1 Syntax of Expressions 115

A.2.2 Syntax of Formulae 117

A.2.3 Syntax of Statements 117

A.3 WSL Syntax and Semantics 119

A.3.1 The First Level Language 120

A.3.2 Exit Statements 121

A.3.3 Action Systems 123

A.3.4 Procedures with Parameters and Local Variables 124

A. 3.5 Functions and Boolean Function 125

B Transformations 127

B.l Basic Groups 127

B.2 Transformations Used in Case Studies 133

B. 2.1 Integer Square Root 133

B.2.2 Library Case Study 134

"The copyright of tliis thesis rests with the author.

No quotation from it should be pubUshed without her

prior written consent and information derived from it

should be acknowledged".

Chapter 1

Introduction

Over the past few years it has become cost-effective for organisations to develop products

wliich can easily adapt to changes in the requirements. This has caused organisations

to re-address the question of software development and, in particular, that of software

maintenance. Maintenance is defined as the "modification of a software product after

delivery to correct faidts, to improve performance or other attributes, or to adapt the

product to a changed environment" [1]. It can be seen as work carried out upon a developed

system to keep up to date with any changes necessary. As the system ages, maintenance

develops into a continuing process and becomes a major concern for organisations as more

time and effort is needed to maintain the system.

Software mciintenance activities are often divided into four categories (see [2] [66] [73]):

1. corrective maintenance: performed when the software does not conform to its

specification (for example, iixing bugs discovered upon running a program).

2. adaptive maintenance: performed on a software system when its environment

changes (for example, a new version of the operating system is introduced).

3. perfective maintenance: needed when requirements of the software change (for

example, tax program changed to reflect new tax laws).

4. preventive maintenance: work carried out in anticipation of future malfunctions

and to improve maintainability. This differs from the other categories since it is not

a direct response to a user's request and some authors do not include it in this List

of categories (see [52] [78]).

Lientz and Swanson [51] quantified the amount of effort spent in each area. The distribu

tion is as follows:

Perfective 50%

Adaptive 25%

Corrective 21%

Preventive 4%

The large proportion attributable to perfective maintenance is mainly due to the fact

that, to maintain their competitive edge, companies release new products quickly without

thinking of the future possible changes in the requirements. Hence software cannot be

modified quickly, easily and reliably, resulting in serious delays to changes in the software.

Organisations must now focus on developing products which are easier to maintain, i.e.

products which are more maintainable. Maintainability is the quality which identifies how

maintainable software will be. Longstreet defines it as "the effort required to find and fix

or modify an error in operational software... the effects of software failure, cind ways to

minimize those effects" [55].

Maintainability is a very desirable quality in products where precision and correctness

are of prime importance. Safety-critical systems are examples of such products and the

need for accuracy in these cases has led to the use of formal methods. Formal methods

involve the specification of a system represented with strict mathematical notation and

the development of lower levels from this, so that code can be formally linked with its

specification.

The use of formal notation has provided a new means for producing accurate code and

has led to the evolution of a number of formal specification languages and development

techniques (e.g. Z, VDM). These methods have often focussed on carefully identifying

9

the requirements of the system and the first implementation of that system, but have

not considered the possible implications of changes in the requirements. Having spent so

much effort on the production of such accurate systems, it seems a waste to completely

re-develop a system according to requirement changes and necessary enhancements. It is

this idea which led to the research in this thesis.

The thesis describes a new method which formally specifies and implements code with

a view to future adaptations of the system (in other words, aimed at perfective mainte

nance). By producing software which is easy to change, industry can ehminate many costs

needed to reimplement a system and save a lot of time and effort. The method described

here uses program transformations for forming a refinement path which can be re-used

when necessary. A transformation is defined as the "formal step in which a program is

converted to an equivalent with identical semantics" [12]. The transformations used by

the method originate from Ward's thesis[82] and many have been implemented in a tool

called the Maintainer's Assistant [84] for the purposes of restructuring code. The method

uses these transformations for refinement, "a set of techniques to guide and control the

process of producing a piece of software from a description of it; an implementation from

a specification" [89]. Chapters 2 and 3 will provide further descriptions of these areas so

that the method itself can be understood. This chapter will identify general problems of

maintainabihty and cover basic techniques used in software maintenance which are also

connected to this particular research.

1.1 Problems of Maintainability

Problems associated with producing maintainable software have been outhned by Brooks

[21] and McDermid [58]. One of these is the complexity inherent within software due to

the need to interface complex engineered systems and social or organisational systems;

that is, the complexity is due to the complex systems it describes. Also, software can be

complex at times when no regular structure exists or a system is so large that no single

individual can understand it in its entirety.

Another problem lies in the difficulty of establishing and stabilizing requirements. This is

10

due to users not being able to:

1. know exactly what they want,

2. realize the full limitations and capabilities of computer systems,

3. effectively communicate their needs to the requirements analyst, and

4. provide the complete list of details to produce the system required.

Another cause of this problem is that often requirements need altering due to changes in

the environment and to users wanting functional enhancements of the system, even during

development.

A third problem lies in the fact that it is important to understand the thought processes

which went into writing a program and there are intellectual difficulties in establishing

the relationships between different views and perspectives of a program. This can be

called a problem of "invisibility" since the programmer's ideas and points of view are not

explicitly written down and there is no known way in which to retrieve this information.

This problem, like many in the area of software engineering, eventually reduces itself to

one of intuition and psychological understanding on behalf of the maintainer.

A further problem is caused by the malleability of software. It is deceptively easy to write

and change small programs but when these are part of a large system difficulties arise

due to the interaction between different parts of the system. A programmer might wish

to make changes to a program without realising the effect this will have on several other

programs within the system. This causes an inordinate amount of time and effort to be

spent making the necessary adjustments and then testing the software.

A final problem is that systems are often created in different problem domains; every

time a new system is developed in a new problem domain a new theory needs to be

established. While most engineering disciplines involve the application of existing theory

to the development of a new system, software engineering usually involves the development

of new theories.

Having analysed the problems that software can undergo, it Is evident that a key factor in

11

solving these problems (and ending the software "crisis") would be to find methods and

means to improve and maintain the maintainability of software when it is first written.

Issues concerning a possible solution to this will be discussed in later chapters.

1.2 Techniques

Most maintenance activities occur as a result of requests made by the user for alterations

to the developed system. There are a variety of strategies and techniques available which

can aid these activities. Areas of research involving these include reverse engineering,

restructuring, reengineering, metrics and artificial inteUigence.

1.2.1 Reverse Engineering

The word reverse engineering originates from the analysis of hardware. In a paper on

the reverse engineering of hardware, Rekoff defines it as "the process of developing a set

of specifications for a complex hardware system by an orderly examination of specimens

of that system" [74]. It is this usage of the term which has been directly translated for

software (for instance, Chikofsky [25]).

In software development, the term forward engineering has come to mean the process

of moving from the design of the system to its physical implementation. Hence reverse

engineering is defined as the opposite to this, that is as the "process of analyzing a sub

ject system to identify the system's components and their interrelationships and create

representations of the system in another form or at a higher level of abstraction" [25]. Con

trary to some people's behef, reverse engineering does not involve changing the system or

creating a new system from the reverse engineered system.

There are several subareas of reverse engineering, two of which are commonly referred to as

redocumentation and design recovery. Redocumentation is the simplest and oldest form of

reverse engineering and is defined as the "creation or revision of a semantically equivalent

representation within the same relative abstraction level" [25]. Tools which can perform

12

this include pretty printers, diagram generators and cross-reference listing generators.

According to Biggerstaff, design recovery "recreates design abstractions from a combina

tion of code, existing design documentation (if available), personal experience, and general

knowledge about problem and application domains" [13]. He goes further to insist that

design recovery must "reproduce all of the information required for a person to fully un

derstand what a program does, how it does it , why it does i t , and so forth."

1.2.2 Restructuring

The term restructuring comes from code-to-code transform that takes an unstructured

program and converts it into a structured form. It is defined as the "transformation from

one representation form to another at the same relative abstraction level, while preserving

the subject system's external behaviour (functionality and semantics)" [25].

Thus it is no longer confined to structuring code as it also covers the reshaping of data

models, design plans and requirements structures. A tool which can currently aid the

process of restructuring is the "Maintainer's Assistant", a transformation system developed

at the University of Durham where transformations are applied to unstructured code to

derive its equivalent in a structured form. This system will be described in more depth in

the next chapter.

1.2.3 Reengineering

The term reengineering is also known as renovation or reclamation and is often confused

with the previous terms since it actually involves a form of reverse engineering followed by

some form of forward engineering or restructuring. Reengineering is defined by Chikofsky

and Cross I I as the "examination and alteration of a subject system to reconstitute it in

a new form and the subsequent implementation of the new form" [25].

Another definition of reengineering can be found in Garnett and Mariani's paper on soft

ware reclamation and this states that "reengineering refers to the identification of compo-

13

nents within existing systems possessing reuse potential and quahfying them according to

some reuse-oriented specification technique" [36]. They go on to refer to reuse reengineer

ing as the "construction of new systems by reusing information from foregoing ones", aji

approach wiiich they also call "software reclamation".

1.2.4 Metrics

One important area of software maintenance is the use of metrics to provide a comparative

measure by which software can be made characteristically maintainable at each iteration

of the development process. Metrics integrate maintainability into developing software

by identifying high risk areas in the code. This is done by evaluating software according

to specific criteria and by producing a quantitative measure on a static scale. In other

words, metrics assess the complexity of a procedure by comparing it to other procedures

evaluated in the same manner.

Once problem areas are identified, actions are taken to reduce the complexity of the code

through further abstraction or reimplementation and to test high risk areas so as to uncover

existing errors. Metrics can be described as predictive, e.g. when they are used to foretell

the future by predicting costs, etc., or descriptive, e.g. the use of complexity measures.

According to Conte [27], metrics can be classified as either process or product metrics.

Process metrics will "quantify attributes of the development process and of the develop

ment environment" [27] while product metrics are "measures of the software product" [27]

and are the type of metric usually referred to.

In the method described in this thesis, product metrics are used to assess the maintain

abihty of the code which has been developed. There are three main forms of product

metrics:

1. code metrics

2. structure (or coupHng) metrics

3. hybrid metrics

14

Code metrics determine the complexity of a procedure by analysing the amount of infor

mation within a procedure or by assessing the logical complexity of the code [50] [43] [46].

Structure metrics examine the relationship between a section of code and the rest of the

system [43] [50]. These are also known as coupling metrics [46] or design metrics [10]. Hy

brid metrics combine the internal view of a procedure with the measure of communication

connections between that code and the rest of the system [50].

There are many different metrics but the research described here used only three types of

code metrics for the assessment of the maintainability of the code. These can be described

as follows:

1. Lines of Code

This is a measure of how many lines of code exist in a given procedure: the more

lines of code, the more complex the procedure [50]. A line of code is generally defined

to be "any line of program text that is not a comment or a blank line, regardless of

the number of statements or fragments of statements on the line" [27].

2. Halstead's Software Science

This is also known as Halstead's Effort Metric and was devised in 1977 [50] [43] [57]

[10] [78] [27]. This involves the count of operators and operands in a procedure and

the following initial values are established:

(a) n l = number of unique operators

(b) n2 = number of unique operands

(c) N l = total number of operators

(d) N2 = total number of operands

From these another set of values can be calculated:

(a) Vocabulary Size: n = n l + n2

(b) Length: = i V l + iV2

(c) Program Volume: V = N x log2(n)

(d) Program Level: L = (2 / r i l) x (n2/.'V2)

(e) Language Level: X = x V

15

(f) Effort: E=VIL

The Program Volume is a measure of the size based on the length of implementation

and the size of the vocabulary and the Program Level is an estimate of the level

at which an algorithm is implemented. This level is inversely proportional to the

program difficulty: the lower the level, the more difficult i t is to implement the algo

rithm. The Effort is a quantification of the effort required to generate implemented

code.

3. McCabe's Cyclomatic Complexity Number

This was described in McCabe's paper [57] [50] [43] [46] [78] [27]. It is a count of

independent logical paths through a procedure and is based on graph theory. That is,

the procedure is represented as a strongly connected graph from which measurements

are taken. Each node in the graph represents a sequential block of code and each

edge a logical branching point through the procedure.

From the graph, a calculation of the maximum number of linearly independent cir

cuits (i.e. the cyclomatic number) can be made:

V{G) ^ E- N + 2

where G is the graph, V(G) the cyclomatic number, E the number of edges and N

the number of nodes.

1.2.5 T h e U s e of A . I . in Software Maintenance

The use of Artificial Intelligence has been increasing in the field of software maintenance

over recent years. Techniques within this area promise great improvements in program

ming productivity and reliability and developments in knowledge representation and au

tomated reasoning have occurred through this. An excellent source for papers on this

subject is [75].

The main aim is to develop a form of automatic programming so that the user need only

say what he wants and the program would be developed automatically. An ideal solution

16

would be for the user to state requirements which could automatically be transformed into

formal specifications and from these specifications into code.

The most active area in developing such techniques is the field of program transformations.

Since this is such a large area and most of the work proposed by this report is based upon

the subject, i t wiU be described extensively in a later section. For other surveys of this

area see [69] [34].

Another active area of artificial intelligence research is in techniques for automatically

determining theorem proofs [15] [91]. There are two main forms of this: deductive program

synthesis and program verification.

Deductive program synthesis is "based on the observation that constructive proofs are

equivalent to programs because each step of a constructive proof can be interpreted as a

step of computation" [75]. Constructive proof aims to provide a method for finding an

output corresponding to any given input. At present i t is only possible to produce small

programs from specifications written in logical languages from deductive synthesis since

large programs involve large proofs which current theorem provers cannot as yet deal with.

Program verification uses theorem provers to verify that a program satisfies its formal

specification. Again this is limited by the fact that theorem provers cannot yet deal with

large proofs. Two approaches have been taken to deal with this. The first is that the

prover is given some knowledge about programming areas in the form of lemmas and the

second is to allow human interaction to guide the theorem prover.

Allowing human interaction has, in fact, assisted most applications of A . I . to software

engineering. Since automatic programming is still not possible, artificial intelligence tools

aim to provide assistance to the programmer rather than to replace them. Two of these

"assistants" are the Designer/Verifier's Assistant [60] and KBEmacs [87], which uses a

knowledge base of standard programming forms in programming construction.

The Designer/Verifier's Assistant was developed by Moriconi in 1979. Since i t investigates

changes made at a design and specification level in addition to program verification, a

detailed study of his work was made so that any useful ideas relating this to the work

presented by this thesis could be identified. The following section is a critical analysis of

17

the paper he wrote describing the Designer/Verifier's Assistant,

No work seems to follow on from this until Moriconi's second paper, published in the IEEE

Transactions on Software Engineering [61]. Since this also has implications involving the

thesis, a critical analysis wiU also be made of this paper.

A third paper related to the method is a very recent one by Ira Baxter [8]. This also

involves changes made at the design level and the approach illustrated is similar to that

described by this thesis. I t also deals with transformation systems and the tracing of

design paths from specification to code. The fact that this approach could be successful

and that a thesis was accepted on this topic validates and supports the work presented

here.

1.3 Critical Analysis of IVIoriconi's Papers

1.3.1 A Des igner /Ver i f i er ' s Assistant

This paper describes the first prototype of a system called the Designer/Verifier's As

sistant which reasons about changes to the design of a system. I t represents a theory of

Moriconi's concerning the development and maintenance of large formally verified systems.

The problem which he was trying to solve in 1979 still faces the computer industry today

and is the one which prompted the development of the method proposed by this thesis.

The solution which he proposed was novel but unfortunately the theory was impractical

and too vague for a fu l l system to be implemented at that time.

Moriconi recognized that specifications, programs and proofs involving a system gradually

build up and need frequent revision, so that "developing and maintaining formally verified

programs, especially large ones, is an incremental activity... Consequently, one is faced

not only with the problem of constructing this data, but also with the complex problem

of determining the effects of incremental changes to i t . "

His proposed solution was to develop a system which parses programs and specifications

18

1. Suggest fully defining ExchangeSort — ^ E x p l a i n

2. 1 — W h a t are the effects of fully defining ExchangeSort?

ExchangeSort may have additional V C s .

3. <— W h a t are the effects of changing the exit assertion of Va lueOfMax?

No effects on ValueofMax. T h e verification of other programs is not affected.

4. < — W h y ?

No effects on ValueofMax because it is for specifications only and does not have V C s . No external
effects because properties from ValueOfMax have not been used in proving any V C s .

5. <— W h a t are the effects of changing the exit of I sPerm?

No effects on I s P e r m . T h e verification of other programs is not affected if the formula

Changed exit specification all Z : IntArray, IsPerm{Z, Z)

is true. I f not, the change invalidates the verification of ExchangeSort.

6. < — W h y ?

No effects on laPerm because it is for specifications only and does not have V C s . Invalid verification
because a property from I s P e r m has been used in proving ExchangeSort # 1 .

7. 1 — Done

8. Suggest fully defining ExchangeSort — * E d i t

Figure 1.1: Illustration of dialog with Assistant

and could also generate and prove verification conditions, logical formulae used to ascertain

that a program is consistent with its specification. The system also needs an "understand

ing" of the kinds of structures which can be changed or added and the ways in which they

interact. It must be able to apply its "knowledge" to integrate new or changed information

into the model of the system so that previous work remains valid. To understand more

clearly what Moriconi means by "understanding" and "knowledge", a reproduction of his

description of an actual scenario from the middle of a session will be presented here.

The example used is a sorting program which is being "incrementally designed and ver

ified". A sequence is illustrated of three events which typically occur for each set of

revisions. First, the user converses with the Assistant to gain an understanding of the

effects of the changes which he might make. He makes these changes and fits them into

the current model while keeping intact previous work that remains valid.

Figure 1.1 shows how the system would appear just after the program ExchangeSort

has been partially defined and proved. The Assistant suggests completing the definition

of ExchangeSort but instead of following this suggestion, the user uses the Assistant to

see the effect of intended changes by typing "Explain".

19

9. Suggest fully defining ExchangeSort —>• Read Fi leOfChanges .Sort

function ExchangeSort{A : IntArray] : IntArray =
begin

entry N ge 1;
exit(aUI : int,

I in [1..N] Exchangesort{A)[I]
= ValueOfMax (ExchangeSort (A), 1,1))

and hPerm{A, ExchangeSort{A));
var B : IntArray := A;
var K : int :— N\
keep K in [l..N]\
loop

assertialll: int,Iin[K + 1..N] ^ Value Of Max {B ,1,1))
and K in [1..N] andIsPerm{A, B);

if K — I then leave end;
B Exchange{B, LocationOfMax{B,1, K), K);

^ K : = K - \ ;

end;
result := B;

end;

function ValueOfMax{A : IntArray; I, J : int) : int =
begin

" exit{allk : int,k in[I..J]and I in[l..N]and J in[l..N]
A[k]le ValueOfMaxiAJ, J)) and...;

end;

function IsPerm{X, Y : IntArray) : boolean =
begin

exit{allZ : IntArray, l3Perm{Z,Z))
and{allZ : IntArray,

IsPerm{X,Z) and IsPerm{Z, Y) =J> hPerm(X, Y));
end;

function Location Of Max (A : IntArray; I, J ; int) : int =
begin

entry I in [1..N] and J in [1..N] and I le J;
exit Location Of Max {A, I, J) in [I.-J]

and A[LocationOfMax(A,I, J)] = ValueOfMax{A,I, J);
pending

end;

function Exchange {A : IntArray; I, J : int) : IntArray — ...;

|_ functionIsExchanged{A,B : IntArray; I, J : int) : boolean = ...;

10. E x e c —>• Suggest

Figure 1.2: The changed function (changes are indicated by brackets).

20

11. Suggest generating new V C s for ExchangeSort — • $

Trac ing new path in loop

Assume loop assertion

(a « / # l : / A r T , / # l m [/ i r - h l . .Af]
= i > S [/ # l] = VaiueOfMax(B,l,I#l}]

and K in [1..N]

and I s P e r m (A , B)

Generat ing new verification condition ExchangeSor t#4

E n d of path

Unaffected V C s : E x c h a n g e S o r t # l , ExchangeSort#2 , ExchangeSort#3

12. Suggest proving V C called ExchangeSort#4 —>

Figure 1.3: Impact of changes on ExchangeSort.

After seeing the potential effects of different kinds of changes, the user types "Done" and

the user can invoke a text editor using "Edit". After the editing has finished, the Assistant

needs to verify the altered version of ExchangeSort. Figure 1.2 illustrates the new version of

the function, with brackets around the parts which have been changed. The user can then

see the impact of these changes (see figure 1.3) by accepting the Assistant's suggestions for

generating new verification conditions. The user can carry on the development by having

these new verification conditions proved.

As there are many directions which the development can follow, the Assistant has a mech

anism for providing reasonable suggestions for the next step in design and verification.

This suggestion mechanism assigns priorities to tasks and a scheduling policy chooses the

highest priority task and suggests i t to the user.

In addition to generating and proving verification conditions, the Assistant also builds a

model of the key parts of a program's design and verification and their relationships. This

model is a collection of three models for each task performed by the overall design and

verification; parsing and type checking, generating verification conditions and theorem

proving. Examples of these models can be seen in the paper. The general model for the

scenario displayed in figures 1.1 to 1.3 is also displayed.

Moriconi's paper concludes with experiences in using the Designer/Verifier's Assistant.

He maintains that both its utility and the amount of computational efficiency grow pro-

21

portionately with the size and complexity of the program being developed. However,

although the tool reasons at the appropriate level of detail, sometimes i t would be better

for analysis to take place individually rather than by category (as i t does now) and for

more structuring in explanations.

A method of change where the effort required to make the change is not proportional to

the size of the system would have an advantage over Moriconi's approach. The method

described in this thesis has that objective and will be described in more depth later.

1.3.2 Approx imate Reasoning About the Semantic Effects of Program

Changes

This second paper by Moriconi [61] describes a logic for finding the semantic effects of

changes through a direct analysis of the program. This logic is called approximate since

weak results are sometimes inferred. The approximation is based on the structural in

terpretation of the information-flow relationships among objects in the program. "Infor

mation flow" between objects x and y occurs i f a change in the value associated with

X changes the value associated with y. Reasoning about the semantic effects of changes

is based here on whether any information flows between objects (and not on how much

information flows).

The paper briefly describes the characteristics of this logic before comparing the work to

other work involving the semantic and structural analysis of programs. In 1972 Floyd [35]

described an imagined interaction between a programmer and formal verification system

which allowed the computer to maintain the consistency of specifications, programs and

lemmas following incremental changes.

Moriconi developed a technique from this in 1979 [60], as discussed earlier in section 1.3.1.

This, as are most verification systems, was based on Hoare logic (see [40]). A proof of

a program in Hoare logic is a sequence of steps where each step is either an instance of

a Hoare axiom, a Hoare sentence derived from a previous step by rule of inference or a

theorem in the underlying logic.

22

The remainder of the paper focuses on information-flow, which is outside the theme of the

thesis and so wiU not be described here. The main interest here is that work from Mori

coni's earlier paper is extended and that logic is being applied to software systems. The

application of formal mathematics to the development of systems is a major component

of the method and wiU be described later.

1.3.3 Prob lems

A Designer/Verifier's Assistant

As this work appears not to have been developed further, i t is important to assess those

problems which prevented this. This will help the development of the method described

in this thesis.

First, the Assistant deals with program specifications, a relatively new area at the time.

Not many formal methods had been devised and the notation used by this paper resembles

short sentences in natural English combined with Pascal. This specification language does

not have a rigorous mathematical basis which implies that reasoning is vague and no proofs

can be determined. The validity of these specifications is questionable.

Second, the specification language uses constructs found in Pascal which could cause

confusion during refinement stages. In fact, these stages cannot be determined exactly

since some of the specification can be directly translated from its "Pascal" format while

the rest needs to be converted from English to a programming language. This mixture

of accuracy and ambiguity does not provide a strong basis for deriving programming

languages.

Another problem is that the effects of change are determined by the setting of design

and verification flags. This was a popular method used in the past for verification work

which has become outdated. Although the flags provide some guide to impact analysis

(the investigation of how changes to variables affect other variables, functions, predicates

and modules), they do not provide any details of the variables, procedures, modules or

designs in question.

23

Finally, the paper needed more examples for illustrating the work. The examples which

Moriconi does provide are limited and do not adequately portray the abilities of the

Designer/Verifier's Assistant. I t is difficult to understand from the paper what sort of

examples would work with this tool and how the tool replies to questions in such clear

English.

Approximate Reasoning About the Semantic Effects of Program Changes

Moriconi's paper which has just been discussed ends with a description of further work

which would be to "evolve a genercd mathematical framework that explains how to build

and extend incremental systems, such as the Assistant". The work in this paper appears

to do just this but there are a few problems which can be found here as well.

A major problem is the introduction to the logic and the way in which i t fits into prior

work in information-flow. Pieces of information concerning the logic appear throughout

the opening sections with no apparent order. The inference rides are also presented in a

confusing manner since i t is only at the end of the paper that the main elements of the

logic are described.

However there are few real problems with this work and the examples of the use of the

logic at the end give a good grasp of how the logic can work. The main work in deducing

the effects of program changes lies in a form of impact analysis. To reason more accurately

about the changes i t would be necessary to extend this work so other changes can be made

(i.e. to functions and predicates as well). Reasoning about larger changes could just imply

a recursive extension to the logic or added features. The work in this thesis might be able

to involve this in some way.

1.4 Critical Analysis of Baxter's Paper

This analysis is of a paper written by Ira D. Baxter [8] which was published in April 1992

and is based upon a PhD thesis written by Baxter in November 1990. A description of

the paper will be given followed by any problems which can be identified. Conclusions as

24

to the applicability of the three analysed papers to the research detailed by the thesis will

follow this section.

1.4.1 Des ign Maintenance Systems: A S u m m a r y

This paper suggests that the main objective for the upkeep of systems is design mainte

nance rather than software maintenance, where design maintenance means the updating

of design information as changes are made to the system. The article sketches a basic

design for a design maintenance system which attempts to do this work.

The approach to a Design Maintenance System (or DMS) outlined here involves several

important factors. First, the software system must be formally specified as must be the

maintenance de/iasintegrated within i t . A maintenance delta is an expression representing

desired changes in the program functionality, performance and implementation technology.

Second, the implementation of a DMS must be derived from transformations which, ac

cording to Baxter, are the applications of transforms at certain places called locators. A

transform is any function which maps programs into programs while a locator is the place

in the program where the locator is applied. The denotation for a transformation with

transform t and locator / is t ' .

Other important factors are that a justification exists to prove that the implementation

truly solves the problem stated by the specification and that tools exist for modifying the

design justification. In summary, this approach needs to ensure that the design is correct

and that alterations can be made at this level rather than the implementation level, with

a set path of transformations producing code which corresponds to the design.

The application of transformations is controlled via a library of heuristic methods coded

in a Transformation Control Language (TCL). Each method formally relates a design plan

to a design purpose and a set of such methods can be used to decompose the specification

into solvable subproblems. Each subproblem will have its own specification and can be

solved by executing the plans from the methods chosen.

Design capture can take place given such a transformation system and a transformational

25

planning language such as TCL. The formal specification will describe what is intended

and can be captured easily, while the sequence of transformations will describe how the

generated program was constructed and can be captured as a linear derivation history. The

reason for applying each transformation is captured by storing a trace of the nonprocedural

unfolding of goals during the execution of the TCL methods. This trace is known as the

design history.

In Baxter's own words, the problem of design maintenance is of "updating the specification,

the derivation history, and the design history in a way consistent with any new desire,

stated as a maintenance delta". The implementation can then be generated by applying

the same sequence of transformations in the revised derivation history to the specification.

Maintenance deltas appear in two forms: specification deltas, which affect the problem

definition, and support deltas, which affect the implementation of the solution. Most

deltas are specification deltas and are denoted either as A / , for changes in the system

function, or as A G , for changes in the desired performance. These specifications deltas

are applied to the current specification to revise the specification component of design

information while support deltas are applied to the transformation system components.

A major problem is the one of integrating the maintenance delta into a design history. The

first design history is constructed by either running a transformational implementation on

a chosen specification or by reverse engineering such a history from an existing system.

It can then be revised according to the delta applied by rearranging and pruning the

derivation history and then pruning away the parts of the design history which are no

longer useful. The TCL methods can regenerate any incomplete part of the design history.

The derivation history is rearranged through two actions: a delay and a preserve ac

tion. I f a particular transformation in the derivation history cannot be preserved then

its application is delayed as long as possible. This is done by swapping it with the next

transformation, an action which depends upon the commutativity of the two transforma

tions; i.e. whether the effect of performing the first transformation followed by the second

is equivalent to that of the second transformation followed by the first. The "offending"

transformation continues to be swapped in this manner until i t is no longer commutative

with the next and has thus been delayed as far as possible.

26

Thus the derivation history is revised by scanning the original from beginning to end,

checking the delta for interference with each transformation. When the transformation

interferes with the desired change i t is "banished" (i.e. delayed as far as possible); oth

erwise i t is preserved. The scan stops when neither of the two actions can take place

and the derivation history is then truncated. The delta can then be applied and the

implementation finished using the transformation system itself.

The design history is revised by inspecting its relation to a certain delta and marking

those parts which conflict with the delta. Finding these conflicts depends upon the type

of delta involved and these parts are then removed from the design history, leaving i t

incomplete. The pruning of the design history involves removing all portions of the design

history which axe marked, every agenda item which depends uniquely on some pruned

agenda item and agenda items which are generated as descendants of those marked.

The pruned plan can be repaired by carrying out actions for incomplete agenda items

which could involve the generation of new agenda items. This involves choosing the earliest

incomplete agenda item, as determined by the ordering constraints in the design history,

and then executing i t according to a specific TCL action taken from some TCL method.

The main use for a DMS is the construction of an incremental maintenance system. Deltas

can be applied to only partially completed implementations and new deltas applied as the

implementation grows. A DMS can also be used as the foundation for a reusability system.

Implemented components can be stored in a library together with their specifications and

design histories and a maintainer can choose the component whose specification is near

to his desires. This component can be revised by applying the corresponding delta to the

stored history.

Work which is related to this includes the transformation systems PDS [24] and the Main-

tainer's Assistant [84]. PDS is a system which keeps derivation histories and rederives

components dependent on changed components. The Maintainer's Assistant maintains

existing software by reverse engineering existing concrete programs into abstract ones,

applying functional deltas to the abstract programs and reimplementing the abstract pro

grams.

27

1.4.2 Prob lems

Using design and derivation histories to maintain software is a novel idea and suggests a

useful new approach to solving the problem of software maintenance. Unfortunately the

description of this new technique remains a proposal. There is only one example of how

this might work, added as an Appendix, but this again provides a theoretical approach to

how this method might work rather than how i t actually works.

The method can apparently be used with any transformation system but a concrete ex

ample of how this can occur does not appear in the paper, suggesting that the method

remains theory rather than practice. It would be useful to test this method on an exist

ing transformation system to show its Vcdidity. As i t stands, the method remains simply

a "good idea" and much work needs to be done in order to validate i t scientifically or

evaluate i t from an engineering perspective.

This identifies another major problem with the described method. Transformation systems

vary greatly and the affirmation that this method can be used for any transformation

system needs proof. Work is needed to ascertain which transformation systems can be

involved and how the method must be adjusted in each case.

Another problem is that the method relies upon a design history already existing. This

is often not the case and the problem of recreating one for a specific system outweighs

the problem of changing the system: i t is probably more difficult to describe the system

using formal specifications and formally developing the design history than i t is to apply

formal changes to the system. The author should have attempted to tackle this problem

first before developing the method for change.

As i t stands, the method is a simple one of reusing the design history until i t is no longer

valid and banishing any transformations that are no longer useful, adding extra ones to

complete the derivation history. While this appears a good approach, i t is remains very

subjective, relying upon the maintainer to truncate the design history when transforma

tions are no longer valid and to reapply new correct transformations to complete the

implementation. There is nothing to guide the maintainer as to which transformations

should be banished or which should be introduced: i t remains entirely based upon his

28

judgement.

Furthermore, the method uses a strictly top-down approach. While this allows complete

records of both the derivation and design histories and eases alterations made to both, i t

does not always correspond with the thinking process behind software maintenance. When

making changes to a system, a maintainer might use a combination of a top-down and

bottom-up approach for altering the system more effectively. Unfortunately, the method

allows him only to work in the one direction and might involve more work on his behalf

when trying to introduce new transformations or banish unnecessary ones.

However, this allows for a more systematic maintenance of the system and for one which

is easier to trace as more changes are included and the system diverges from the original.

While a combination of top-down and bottom-up approaches might aid the maintainer

initially, eventually the maintainer might not be able to trace which steps allowed the cre

ation of the new system. I f he did, this information still remains unique to the maintainer

in question and other people might not understand how the new system was eventually cre

ated. This would become a major obstacle for others attempting to maintain the system,

especially i f the original maintainer were no longer accessible.

1.5 Conclusion from Papers

The three papers which were analysed provided ideas as to an original method for pro

ducing maintainable software, that is software which can be easily changed and updated

(this wil l be discussed in more detail in the next chapter).

Moriconi's first paper illustrated that knowledge based systems could be used to reason

about changes made to a design or specification. This supported the use of transformation

systems as a basis for a method of change. Also, the models he referred to help to describe

the relationship between sections of code and the specification. Ideas presented for the

Designer's half of the Assistant could be used to aid work in the development of a method.

The second paper provides ideas on the use of a logic for investigating the effects of program

changes. I t was initially hoped that the method could use a similar logic for determining

29

the semantic effect of changes, but i t was found that this approach was better suited for

changes of variables within the code rather than changes in the specification. The method

currently uses none of the ideas presented in this paper but i t is important to keep these

in mind for future developments.

Baxter's paper is the most relevant to this project since i t proposes a method for the

upkeep of systems based upon a design path built from transformations. However, this

method does not appear to have been tested on any real transformation system so its

claim to hold for any transformation system is not proved. In fact, i t does not hold

for the transformation system upon which the method described by this thesis is based,

the Maintainer's Assistant. Baxter's method of delaying and preserving transformations

proved of no consequence towards the maintenance of the case studies. I f a transformation

cannot take place at a certain point, then swapping i t with the next will not mean that i t

can hold later on.

1.6 Outline of Thesis

This thesis wi l l describe a method which assists the perfective maintenance of software

produced using a formal method and uses ideas from the papers described earlier. As the

method uses program transformations for refinement and for improving maintainability,

these wil l be discussed in Chapter Two of the thesis. This chapter looks at the maintain

ability of software and how activities in the software life cycle might improve this before

considering the applications of transformations to maintainability.

Chapter Three describes the method for producing maintainable software using trans

formations in a tool called the Maintainer's Assistant. A description of how these trans

formations can be used for refinement is provided and a comparison of different refinement

techniques given.

Chapter Four describes how the method could apply to a simple case study of finding

an integer square root. This problem was originally presented as an example of the use of

a refinement calculus in Morgan's book, [59]. The effect of changes to the specification is

30

investigated for this original development and is compared to the method.

Chapter Five describes how the method works with a larger case study which depends

more upon the organisation of data rather than the functionality of the code. Different

types of transformations are needed to refine this and a comparison is made between this

and the original development of the problem. This case study is the description of a library

system described using Z in a paper by King and Sorensen, From specification, through

design, to code: a case study in refinement [45]. How changes affect this development

are investigated in the chapter and compared with the development by transformation

approach. The latter will prove more favourable a refinement technique when considering

perfective maintenance.

Chapter Six revises what was learned from the case studies and provides an assessment

of the maintainability of the software in each case. An indication of how the method could

work for more complex case studies is provided.

Chapter Seven is the conclusion of the thesis. This investigates problems which were

encountered while doing the work and how the method will apply for more general situa

tions. Future work on applying the method to other case studies and the development of

a tool is described at the end.

1.7 Summary

This chapter gave a brief introduction to the field of software maintenance and described

general techniques used to deal with the problem of maintaining large systems. Critical

analyses were made of three papers which used some of these techniques and which pro

vided ideas for the method described in the thesis. The outline of the thesis concluded

the chapter.

31

Chapter 2

Maintainability

The maintainability of a software system is a term which describes how easy it will be to

maintain that system and can be determined before the system is implemented. Accord

ing to Longstreet, "maintainability examines the effects of software failure, and ways to

minimize those effects" [55]. Identifying all the future problems of a system is difficult

and so one can only hypothesize about the qualities that make a system maintainable.

Maintainability can be classed as either internal or external depending upon whether

attributes of the software product or those of the environment are being considered. Ex

amples of attributes of the product which make it more maintainable include modularity,

good documentation and structured code. Those of the environment include the skills of

the maintainers and the tools which are available.

In the next section, both types of attributes will be discussed as they figure in the various

stages of the software life cycle. The actions necessary for the production of maintainable

software wiU be identified as they occur within each stage of the life cycle. Although it

remains difBcult to decide which factors would enhance maintainability at such an early

stage, general guidelines for the way in which each activity should be carried out can be

determined.

It is also possible to examine qualities of the software itself and, judging from past maia-

32

tenance problems, rewrite the code so that it is more maintainable. Issues concerning

maintainable software wiU be discussed once the activities during the software life cycle

phases which may aid maintainability are considered.

2.1 Analysis Activities

During the analysis stage, a variety of activities enhancing software maintainability include

the development of standards and guidelines, the setting of milestones for supporting docu

ments, the specification of quality assurance procedures, the identification of likely product

enhancements, the determination of resources required for maintenance and preliminary

budget estimates [32] [27].

The costs of maintenance are difficult to estimate in advance as they vary depending upon

the specific application used. However, for large software systems, the actual maintenance

cost can be said to be approximately four times development costs [78] [10]. Boehm [16]

uses a formula for approximating the cost of software development but this depends upon

the existence of previous data.

According to Somerville [78], there are mainly five external factors which alfect the cost:

application support, staff stability, the program's lifetime, the external environment and

hardware stability. Maintenance costs are also governed by such internal factors as module

independence, programming language and style, program validation and the quality and

quantity of program documentation.

2.2 Design Activities

Design activities can be divided into two parts: architectural and more detailed design.

Architectural design is the "process of defining a collection of hardware and software com

ponents and their interfaces to establish a framework for the development of a computer

system" [1].

33

The first architectural design activity must be to ensure that the design is clear, modular

and easy to modify. By modular we mean that the design should comprise distinct com

ponents, enabling a change in one area of the design to not affect any other design arejis.

To achieve this ideal design, design concepts such as information hiding, data abstraction

and top-down hierarchical decomposition must be used.

Information hiding and data abstraction involve the suppression of information in some

form or other. Information hiding usually refers to modules in the system hiding the

internal details of its processing activities, especially design decisions that are likely to

change. Data abstraction is effectively a case of information hiding but involves hiding

the data structure, its internal linkage and the implementation details of the procedures

that manipidate i t .

Another activity could be to try to determine where changes or enhancements in the

design might possibly take place and to design the system so as to ensure the ease of these

alterations. This could be aided by the further activity of using standardized notations

such as data flow diagrams and structure charts to make the design easier to understand

and to verify for completeness and consistency.

More detailed design includes "specifying algorithmic details, concrete data representa

tions, and details of the interfaces among routines and data structures" [32]. Again, a

useful activity would be to utilize standard notations to specify algorithms, data struc

tures and interfaces. It would also be advantageous for each routine to be documented,

specifying possible side effects and exception handling (the dealing of events which suspend

normal execution of a program).

Finally, a call graph and cross-reference directory should be included; these can provide the

information which determines the routines and data structures affected by modifications

to other routines.

34

2.3 Implementation Activities

One of the main goals of implementation is to write source code and internal documenta

tion so that modification is eased; this can be aciiieved by making source code as clear and

straightforward as possible. Clarity is enhanced by structured coding techniques, good

coding style, good comments and general documentation.

More specifically, future maintenance wiU be easier if single entry, single exit coding con

structs are used, standard indentation of constructs observed and a simple, dear coding

style employed. It wiU also be improved by symbolic constructs to parameterize software,

by data encapsulation techniques, by margins on resources and by standard documentation

prologues for each routine.

These standard prologues should include details such as the author, date of development,

maintenance programmer and date and purpose of each modification. In addition to this,

one final improvement would be to follow standard internal commenting guidelines when

writing the source code. The following section will describe in more detail the various

implementation activities which will ensure that software is maintainable; i.e. written so

that future modification will be easy.

2.3.1 Maintainable Software

There are certain qualities which software should have to ensure its future maintainability.

If code can be written so that future changes can be implemented easily without drastic side

effects, then it can be termed "maintainable". According to Boehm et al [17], maintainable

software must have three characteristics: testability, modifiability and understandability.

All of these depend upon the system complexity and system modularity.

Complexity can either be computational, when it is difficult to prove the correctness of

the code, or psychological, when it is difficult to understand the code. To minimise these

forms of complexity, one can use high level languages, good documentation (meaningful

comments) and standard coding conventions. By following these guidelines, the code

should be easier to understand and hence alter.

35

Modularity involves the extent to which the system can be decomposed into smaller sec

tions. Software is more maintainable if it remains as independent as possible but yet

includes comprehensive links within itself which "glue" it together. Thus one aims to

provide minimum external coupling and maximum internal cohesiveness [26].

According to Longstreet [55], there are a number of constructs which must be avoided

within a section of code to determine its future maintainability. These are:

• Deeply nested DO loops,

• Excessive IF statements,

• Excessive use of global variables,

• Excessive GOTO statements,

• Embedded parameters, literals, constants,

• Self-modifying code,

• Excessive interaction between modules,

• Multiple entry-exit modules and

• Redundant modules.

Having attempted an assessment of what makes software maintainable by looking at it

through the various life cycle activities, it is now appropriate to consider the technique

which the method described by tliis thesis will use to ensure maintainability; refinement.

2.4 Refinement

Refinement is a technique for developing stricter definitions of specifications and programs

without losing any of the semantics. There are two different refinement processes: op

eration refinement and data refinement. Operation refinement involves the "refinement

of operations (or, more generally, of algorithms) to produce executable equivalents" [53

36

while data refinement involves the derivation of a "formal documentation of the relation

ship between abstract and concrete states" [72]. These two processes usually occur in

tandem but depend upon the refinement technique in question.

There are two forms of refinement technique: refinement methods and refinement calculi

[53]. Refinement methods involve the production of a more concrete version from the more

abstract and a demonstration that the concrete version meets the requirements of the

specification through a sequence of formal proofs. Refinement calculi are based upon the

successive application of provably correct transformation rules and do not require proofs

at each stage of the refinement.

The main refinement methods are the VDM refinement method [42], the IBM Hursley

Park method [45] and the rigorous refinement method for Z [62]. All three follow a sim

ilar approach: operation refinement is performed stepwise while data refinement involves

showing that the abstract and concrete views of the data are analogous. This is done

by defining a retrieve relation which describes the relationship between the two views in

mathematical terms.

There are several versions of a refinement calculus but the most popular is detailed in

Carroll Morgan's Programming from Specifications [59]. This is based upon the work of

Dijkstra, Hoare and Floyd and relies on a series of development steps which are dependent

upon a refinement law. AH refinement calculi use Dijkstra's guarded command language

[30] as the final product of the refinement process and the refinement steps are recdly

for mail sations of Dijkstra's ideas on program development [29].

Morgan's book provides a list of the possible refinement laws which can be used for devel

oping one program into another. It also presents some case studies where specifications

are refined into algorithms which can be easily translated into code. One of these will be

described later for illustrating how the method for implementing change could eventually

work.

A comparison of refinement techniques will be made when describing the method in the

next chapter. Since the method proposes to use transformations for refinement purposes,

these will be described next.

37

2.4.1 Program Transformations and Transformation Systems

Program development by the use of transformations is a "method of software develop

ment in which a program is derived from a formal problem specification by manageable,

controlled transformation steps which guarantee that the final product meets the initial

specification" [7]. In other words, program transformations involve the identification of

changes made to a program which leave it logically equivalent to its original.

Program transformations are useful in software maintenance research as they could identify

ways in which new software might be written so as to achieve ease in future maintenance

of the system. They can also be applied to software that has already been written so that

it can be transformed into a program that will be more easily maintainable or so that

maintenance problems regarding the program can be identified or solved.

Transformations do not necessarily apply to code alone; they can also be involved with the

specifications of the system. Specifications can be "transformed" into sections of code and

vice versa. The achievement of a tool which could do this would benefit maintainability

research immensely; viewing how changes to a specification affect the code could help to

establish a new method for transforming the code into a more maintainable form.

Transformation systems are tools which enable the programmer to transform sections of

code or specifications. The main goals of a transformation system include providing gen

eral support for program modification (for example, optimization of control structures),

generating a program from the formal description of the problem (that is, program syn

thesis), adapting the program to different environments and verifying the correctness of a

program [92].

There are many types of transformation systems; some of these will be discussed in their

chronological order.

Burstall and Darlington

BurstaU and Darlington were the first to work on program transformations in the mid

1970's [23] [92]. They produced two systems which are mainly automatic; i.e. the system

38

selects appropriate rules through the use of built-in heuristics or other strategic consider

ations.

The first system was based on a schema-driven method for transforming recursive programs

into imperative ones and used built-in rules such as recursion removal, the elimination of

redundant computations, unfolding and structure sharing. The main goal here was to

improve efficiency.

The second system was designed to manipulate applicative programs by using only six

basic rules: definition, instantiation, unfolding, folding, abstraction and data-structure

"laws". Other functions can be created by a combination of these rules or by a definition

from the user. The user can enter functions if they are written as a set of equations in a

restricted form of NPL, an applicative language for first order recursion equations.

Balzer

Balzer's work in the early 1980's [4] resulted in an implementation system for program

transformations. This system allowed a formal specification (written in GIST) to be sys

tematically converted into an implementation in three phases: explication, reorganisation

and representation selection.

The explication phase is an attempt to understand the algorithmic structure behind the

specification by converting implicit structures to explicit ones and dealing with any con

straints. The following phase involves the reorganisation of a program so as to mitigate

computational expense. The last phase is to choose a representation suitable for this

reorganized program.

CIP-S

This system derived from the Munich project CIP (Computer-aided Intuition-guided

Programming) which took place between 1976 and 1983 [7] [22] [68]. The main objec

tives of this project were to;

39

• produce a method for guiding the process of formal reasoning in program develop

ment,

• design a "wide-spectrum language" in which to write specifications and programs at

any level as weU as to carry out transformations,

• develop an interactive system for supporting the evolution of programs.

Thus a transformation system was developed in accordance with the CIP view of inferential

programming (see [7]) and involves the transformational manipulation of program schemes.

These schemes are produced by CIP-L (the wide-spectrum language) and are basically

algebraic specifications for introducing data types.

D R A C O

The DRACO system bases its software construction on the paradigm of "reusable soft

ware"; i.e. the reuse of a library program's design but not its code [92]. It is an interactive

system allowing the user to refine a problem written in a high-level language into a LISP

program and enabling the user to define his/her own level of abstraction.

T A M P R

The TAMPR (Transformation-Assisted Multiple Program Realization) system supports

Fortran programming at the Argonne National Laboratory [18]. The system performs

transformations within the Fortran language, aids in the translation of Fortran to Pascal

and transforms LISP programs into Fortran ones.

ZAP

The ZAP system and language was devised by Feather [33] and is based on the fold/unfold

work of Burstall and Darlington mentioned previously. The ZAP language is a language

for expressing transformation and developments but cannot express higher level means of

structuring developments; these need to be applied informally.

40

R E F I N E

REFINE is a programming environment which includes a high level executable specifica

tion language, a specification language compiler, an object oriented database, an editor

interface and tracing and debugging tools [65]. The tool converts code into design, provid

ing an electronic path between code and its corresponding design language. It also allows

the maintainer to edit the structure chart, cut and paste the code and generate high level

documentation to describe the code structure.

The work of Burstall and Darlington and the project CIP were the main influences on the

transformation system upon which this research is based: the Maintainer's Assistant

(described in the next section). Ideas which particularly led to the development of the

method for producing maintainable software are:

• the use of a system with built-in heuristics for transforming programs (Burstall and

Darlington)

• improving efficiency with a schema-driven method for transforming programs (Burstall

and Darlington)

• manipulating programs by combining rules or introducing new definitions (Burstall

and Darlington)

• developing a method for guiding formal program development (CIP)

• using a "wide-spectrum-language" to represent many levels of specification and pro

gram (CIP)

• using the above language for performing transformations (CIP)

• using an interactive system for "evolving" a program (CIP)

2.4.2 The Maintainer's Assistant

The Maintainer's Assistant is a system developed by a reverse engineering project

called ReForra which involved the University of Durham, Durham Software Engineering

41

Ltd and IBM. The project's aim was to provide a transformation system which could carry

out software maintenance work partially under the maintainer's control.

The main goals of the system are to:

1. increase the programmer's understanding of the program,

2. enable the programmer to re-express the program in terms which match the problem

being solved, and

3. discover and prove relationships between data structures in a program which would

be difficult to discover from the source code alone.

The architecture is best represented using a diagram of the relationships between the

components of the system (see figure 2.1). The tool can work with assembler code by

having an assembler to generate an assembler listing file. This is then translated into

equivalent low-level WSL statements with a lexical analyser. WSL represents the Wide

Spectrum Language used by the Maintainer's Assistant since it allows both high and low

level code. The tool's transformations act directly on WSL, whether it be equivalent to

specification or code. A description of WSL can be found in appendix A.

As displayed in figure 2.1, the maintainer is faced with an X-window or PC (menu based)

front end which is connected to the Browser Interface. Menu choices and mouse actions

from the front end generate ASCII commands for the browser interface. Commands which

concern information on the current program version are executed immediately by the

interface and returned as ASCII strings. The front end then updates its display. Any

other type of command is passed on to the structure editor or program transformer as

appropriate.

The Structure Editor executes movement and editing commands and is the only means

for manipulating the source code's internal representation. This allows the maintainer to

edit the program text and is the only way in which the code can be changed into a version

which is not logically equivalent to the original.

The Program Transformer executes the transformation commands. It contains a library

of proven transformations and a set of correctness conditions for each transformation.

42

Assembler to
WSL translator

/ Internal
Representation

\ ^ of WSL Code

Transformer Supporting Tools

History/
Future Database

Front End
(X-windows
or PC)

Browser
Interface

Structure
Editor

Program
Structure Database

o
The Maintainer

Program
Transformer

General
Simplifier

Figure 2.1: The Architecture for the Maintainer's Assistant

When the maint<dner selects a transformation, the appropriate transformation is recalled

from the library together with the applicability conditions. If the system is satisfied that

a transformation is applicable then a sequence of edit commands are sent to the structure

editor so that the transformation is applied at the selected piece of the program text.

There are a number of tools for assisting the Program Transformer. A History/Future

Database tool allows the maintainer to go back to earlier versions of the transformed

program. "Undo" is used for retrieving the previous version of the program and "Redo"

for undoing the last "Undo" command.

The Program Structure Database is accessed by the Program Transformer via a

Database Manager. When code is being transformed, questions about the program are

sent to the Manager. The Manager wiU go through the program structure, calculate the

answer and record this in the database before replying to the Transformer. When the

question is asked again, the database manager checks the database and returns the result

43

immediately.

The General Simplifler carries out symbolic calculations in mathematics and logic (for

example, + , -, *, / , Min, =) . It also accepts two commands: Simplify and Prove. The

first returns an expression in its simplest form and the second allows very simple algebraic

proofs,

The tool at present can apply numerous transformations to a section of code (rewritten

in WSL) so that it appears in a logically equivalent form. Appendix B lists the basic

transformations in the system and the next chapter illustrates how sequences of these

transformations from specification to code provide the basis for a method of producing

maintainable software.

2.5 Summary

This chapter focussed on the area of software maintenance which this research aims to

improve: software maintainability. Activities within the software life cycle which can

produce maintainable software were investigated. The method concentrates on design and

implementation activities and so more emphasis was placed on these stages of the life

cycle. An introduction to refinement and program transformations was provided along

with a survey of different transformation systems. The system with which the method

works, the Maintainer's Assistant, was described in the final section.

44

Chapter 3

A Method for Maintaining New

Software

3.1 Ideas for Method

The development of the Maintainer's Assistant involved building transformations for re

structuring code and for forward engineering. This indicated the possibility of using trans

formations for refinement purposes. A specification written in a formal language could be

developed into code through the sequential application of transformations, thus refining

the specification into its programmable form.

From this, ideas arose for a formal approach of developing code from a specification so

that changes are easier to make in the software. Each transformation could be recorded

in the sequence in which it was applied to the specification and the refined versions until

code was reached. As with Baxter's method [8] (described in chapter 1), this could be

recorded in a derivation history as follows:

5b A A 1)2 A Z?3 - Ci

where So represents the initial specification, Di, D2, D3 the different versions of the design

45

as the specification is transformed into code and Ci the first version of the implementa

tion. The arrows represent the application of transformations and a, b, c, d the different

transformations which are applied.

If requirements of the system change, these changes could be inserted at the specifica

tion level and the history used again to develop a new altered version of the code. The

derivation history might then appear as:

SI,^D[^D^^D^^ Ci

where 5o represents the altered version of the specification, D{,D2, the different altered

versions of the design as the specification is again transformed into code and C{ the altered

version of the implementation. The transformations a,b,c,d remain the same.

In some cases the derivation history might be extended for certain changes or only part

of the old one needs changing for minor changes. For instance, perhaps only part of the

design is affected and so the following new history would be:

Sl^^ Di-^ Ci

where 5o represents the new specification, D[, D2 the different altered versions of the design

but D3 and Ci remain the same as before. Alternatively, the specification might not be

altered but the lower levels changed instead and so:

So^Di^Dl^^D^^ Ci

would become the new version of the derivation history.

Obviously, some transformations might no longer be applicable due to the changes made.

It was found that Baxter's method of delaying and preserving transformations could not be

used for producing maintainable software since the fact that a transformation could not be

applied at a certain stage often implied that it could not be applied at all. Also, removing

that transformation from the sequence sometimes made the following transformations

redundant. More of this will be described when the results from the case studies are

presented.

46

From this, the idea of inserting extra transformations from the Maintainer's Assistant at a

certain stage of the derivation history and recording a new version of the derivation history

each time came about. For instance, the derivation liistory used before might become:

S^^ D{-^ D!,^ D^^ Ds^ C2^ C3

where e,f,g,h are new transformations needed to develop into code. The new ver

sions of the design and code corresponding to the changes which were made and the new

transformations used are I>4, -Ds, C'2, C3.

Another idea was initially to add transformations to the altered specification {SQ) until

there were two parts, one of which was identical to the original specification (5o). The

derivation history could then be applied to this second part, developing altered code (Ci)

as in the original, and new transformations could be applied to the first part. Referring

back to the original example, the path would appear something like:

5̂ - 5i A 52 A i)8 Cs

\ S o ^ Di-^ Ci

The new derivation history would involve the initial transformations which separated the

specification ix,y), the old derivation history (with transformations a,b,c,d) and the

additional transformations applied to the first part [n, o,p). These ideas will be expanded

upon in the section on the method.

I t was decided that an incremental case study approach should be adopted where the

effect of changes on the original refinement of the problem and upon the refinement by

transformation method could be investigated. Two case studies which provided a frame

work for the method wiU be described in the following chapters. One was refined by way

of Morgan's refinement calculus [59] and the other by the IBM Hursley Park method [45].

Refining each case study with transformations provided a good way of comparing the re

finement by transformation with a calculus and a method to test whether i t was indeed

valid to produce code in such a way. A brief description of this calculus and method is

given next.

47

3.2 Techniques

As mentioned before, there are two types of refinement technique: the use of a refine

ment calculus and a refinement method. A refinement calculus is based on the successive

application of provably correct transformation rules and does not require proofs at each

stage of the refinement. A refinement method involves the production of a more concrete

version from the more abstract and a demonstration that the concrete version meets the

requirements of the specification through a sequence of formal proofs. To promote the

use of transformations for refinement, descriptions of both must be made before these can

be compared to the transformation method. The calculus which will be used is Morgan's

refinement calculus while the method is the IBM Hursley Park method. These are used

for the case studies upon which the method was tested and wiU be compared in each to

the refinement by transformation method both for producing code and for making changes

in the requirements.

3.2.1 Morgan's Ref inement Calcu lus

Morgan's refinement calculus assumes a knowledge of predicate calculus and Dijkstra's

guarded commands (see [29]). Specifications are written in algebraic notation and are de

veloped into code by using various laws of refinement. Some of the basic laws of refinement

wil l be described here but for a more complete list, refer to Morgan's book [59].

A specification of a program describes its function and involves three main features:

1. a precondition which describes its initial states,

2. a postcondition which describes its final states, and

3. a frame for listing variables whose values might change.

I f the initial state satisfies the precondition then only the variables in the frame will change

so that the final state satisfies the postcondition. The form used here for illustrating a

48

specification with precondition pre, postcondition post and frame w is:

w : [pre,post].

An example of this could be the specification which assigns the square root of x to y,

provided x lies between 0 and 9:

y:[0<x<9,y^ = x].

A refinement of this could be:

J/ : [0 < a; < 9, ?/2 = a; A y > 0]

since the user now knows more about the final state without losing any information pre

viously given. This is known as strengthening the postcondition and is one of the main

techniques of refinement. I t can be expressed in a law as foUows:

strengthen postcondition If post' =j>^ post then

w : [pre,post] C w : [pre,post'].

where C means 'is refined by'.

Another refinement would be to weaken the precondition so that the old precondition stiU

implies the new. Wi th reference to the earlier specification, an example of this would be:

y :[0 < x,y^ = x /\y >0]

which can be described by a law as follows:

weaken precondition I f pre =J> pre' then

w : [pre,post] C w : [pre',post].

^ A =!> B means that 'for all states, if A is true then so is B'

49

A refinement which develops a specification into code is the law of refinement for assign

ments. An assignment can be written a.s w :- E and this changes the state so that w is

mapped to the value E. The law is as follows:

assignment I f pre =^ post[w \ E] then

w : [pre,post] Q w := E.

The formula post[w \ E] is obtained by replacing in post all occurrences of w by E. Using

this law, the refinement of the earlier example could appear as j / := s/x.

3.2.2 I B M Hurs l ey P a r k Method

The I B M Hursley Park Method uses the specification language of Z. This formal language

has developed over the last decade and is well described in the books, The Z Notation

[79] and An Introduction to Formal Specification and Z [72]. There are several ways for

developing Z specifications into programs but the IBM Hursley Park Method is the most

well known.

This method begins with the description of the abstract states of the system using Z,

as shown in figure 3.1. Schemas are drawn to represent the abstract elements and their

relationships to one another. Preconditions and postconditions are again represented but

usually in the form of schemas, with schema names as the frames in these cases.

The first step in the refinement of this abstract representation is to think of a more concrete

version of the system and to develop schemas using concrete (instead of abstract) elements.

Conditions relating the two versions of the system can be described in relations expressed

logically and these are put together in a schema known as Retrieve (see fig. 3.1). This

Retrieve schema relates all abstract states to concrete ones and can be used to refine all

the operations based upon abstract elements.

Besides using the Retrieve schema, some theorems need to be proved to show that the

refinement is correct. The three main theorems are as follows:

50

Identify Abstract States

Z Abstract Schemas

Identify Concrete States

Z Concrete Schemas

Relate with
Retrieve Schema

Proofs based upon
Retrieve Schema
(e.g. Applicability)

Figure 3.1: The I B M Hursley Park Method

1. Initial States Theorem

Every init ial concrete state corresponds under the retrieve relation to an initial

abstract state.

2. Applicability Theorem

Whenever the abstract operation is applicable in a given abstract state then the

concrete operation must be applicable in any concrete state representing the abstract

state.

3. Correctness Theorem

Proves that concrete operations behave correctly. This is done by proving that the

image of the concrete operation, as seen through the retrieve function, is consistent

with the abstract operation.

Further details on these theorems and examples can be found in [72] and [45]. Once these

theorems have been proved, rules of refinement similar to Morgan's laws of the refinement

calculus can be used for what is known as operation decomposition. These rules include

the introduction of local variables, reducing the frame, assignment to simple variables and

51

alternation. A combination of rules such as these are used to develop concrete schemas

into forms which can be implemented.

3.3 Refinement via Transformations

The idea of using successive transformations to develop an abstract specification into

an efficient program began in the 1970's with the works of Bauer and Griffiths. In 1973

Bauer presented a series of lectures which stressed the need for a unified conceptual basis of

programming [6]. Griffiths uses this as the basis for his technique of producing programs

with successive transformations [37] [38]. This technique usually involves identifying a

recursive version of the program but then eliminating the recursion to obtain an efficient,

iterative text. This is one of the refinement strategies which was used with the method

for producing maintainable software.

Since this early work, different transformations have been developed for different purposes

and implemented in various transformation systems. These were surveyed in chapter 2 so

this section wil l focus on the transformations used for this particular research and on how

these were used as a refinement technique.

The transformations used by the method originate from Ward's thesis [81] and many have

been implemented in a tool called the Maintainer's Assistant [82] for the purposes of

restructuring code. This tool was described in the section on transformation systems and

one of the aims of this research was to adapt the use of the tool to developing programs

from specifications.

The Maintainer's Assistant has a large library of transformations which are basic rules for

changing programs written in a wide spectrum language (WSL) while preserving semantics.

That is, i t contains a number of ways in wliich parts of programs can be rewritten without

altering their meaning. Programs which can be manipulated by the Maintainer's Assistant

must be written in WSL, a language designed to cover both low and high level constructs

and upon which Ward's transformations were built. For a fuU description of WSL see [83]

and appendix A of this thesis.

52

Using WSL and extending the set of transformations provided a way of refinement through

the use of program transformations. The application of transformations or sets of trans

formations can follow determined patterns known as strategies. It is particularly difficult

to categorise refinement strategies since they vary according to the technique of refinement

in use and to the particular aim of the strategy. At times several strategies might be used

together to form one large strategy, or only part of a strategy used at a particular moment.

It is also possible to say that refinement follows only one strategy: decomposing a problem

into subproblems, simplifying them and reassembling the implementable components in

an efficient manner.

An attempt wiU be made to list and categorise the main strategies used when refining

specifications with program transformations. This is a general list which has been com

posed from various texts upon the application of program transformations (see [67] [70]

[19]) and the use of the Maintainer's Assistant. Strategies used for refinement vary from

the application of particular laws to a defined set of actions which determine a particu

lar strategy. The following list will begin with the simplest strategies (based upon the

application of laws of logic and algebra), will be followed by basic transformations which

can be used as strategies and will conclude with complex strategies which might be used

(based upon compositions of transformations and/or algebraic laws).

3.3.1 Simple Strategies

The following strategies are simple algebraic laws used to refine program specifications:

• Laws about predicates. These are laws determined in predicate calculus such as

existential and universal quantification. Described in many introductory books to

logic and used with both refinement calculi and methods.

• Axiomatic Laws of Language Definition. Laws determined by axioms of the

particular specification or programming language used.

• Basic Set Theoretic Laws. Laws about sets (such as algebraic properties of set

operators).

53

• Axioms of Underlying Data Types. These are laws involving the data types

used by the specification.

3.3.2 S imple Transformations

These are simple strategies formed by the application of particular transformations to spec

ifications, code or intermediate refinement levels. There are many such transformations

(see Appendix B for those in the Maintainer's Assistant), but examples are:

• Simplification. Transformations used to write a simpler version of the specifica

tion/code or part of specification/code selected. The Maintainer's Assistant has a

specific transformation which does this, known as Simplify.

• Re-arrangement. Transformations used for changing the order in which specifica

tion/code is written. An example of this is the Maintainer's Assistant Swap-With-

Next transformation which swaps the next part with the selected part (whether that

"part" be a variable, name, action, definition, condition, expression or statement).

• Relations between Specification Constructs. Often parts of specifications can

be written in different ways which mean the same thing. An example from the Main

tainer's Assistant is when guarded commands are introduced by the transformation

Separate-Cases.

• Transformations for Conditional and Guarded Expressions. There are many

transformations for conditional and guarded statements. For example, the Main

tainer's Assistant has one for combining cases in a conditional statement, known

as Partially-Join-Cases. There are also ones for applying cases from conditions,

merging similar conditions and removing redundant conditions.

3.3.3 Case Introduct ion

This is often a basic strategy within several other strategies and usually involves the

Introduction of new variables and the application of properties of the basic data types.

54

The aim is to introduce cases so that the problem can be subdivided. In the Maintainer's

Assistant, this strategy would combine the use of the editor with the strategies in 3.3.1.

3.3.4 Introduct ion of Invariants

This strategy involves introducing a predicate which is always true. This is also often used

within other strategies and depends upon whether there is something which can be added

to a specification which is always true no matter what transformations are later applied.

The Maintainer's Assistant actually has a transformation to perform this strategy, known

as Insert-Invariant.

3.3.5 E m b e d d i n g

Embedding involves solving a more general problem with the original as a special case.

There a three possible classifications of this:

• Embedding of data types.

• Embedding of domain.

• Embedding of range.

A l l of these rely upon the user's knowledge and ability with the editor (for the Maintainer's

Assistant).

3.3.6 U n f o l d / F o l d

This is a larger refinement strategy which can incorporate some of the previous strategies.

Unfold means to replace a function call by the body of a function and to replace formal

parameters with the actual ones. Fold is the formation of a (recursive) call from an

expression which is the instance of a function body or i t can be the introduction of an

identifier for a certain expression. Strategies which can be used to do this include:

55

• Apply axioms and theorems of underlying data types.

• Introduce new fimction declarations (define).

• Evaluate function call for concrete values (instantiate).

• Introduce new name for expression (abstract).

The Maintainer's Assistant has a special facility for using this Unfold/Fold strategy.

3.3.7 Introduce Recurs ion

To simplify an expression i t is often a good strategy to introduce recursion, simplify the

problem as i t now stands and then to remove the recursion. This is one of the most common

refinement strategies and has been described already. The next chapter illustrates the use

of transformations from the Maintainer's Assistant for introducing recursion and removing

i t , although complex transformations do now exist for performing these strategies (Loop

—» Recursion , Recursion —> Loop, Remove - Recursion).

3.3.8 Divide-and-conquer

Divide-and-conquer is another general strategy which is very common. It often includes

the use of several other strategies which have already been mentioned. This involves

determining the type of function (identifying qualities such as monotonicity), deciding

where the function might be false and solving the problem for the part which is true.

That is, the bounds within which the problem is true are restricted and the problem is

solved for a smaller range. A good example of the use of this strategy is the first case

study for testing the method, the integer square root, described in the next chapter.

56

SPEC

TRANS
1 REFINEMENT

TRANS
2 REFINEMENT

SPEC
1 2

CODE

Figure 3.2: Sample derivation history

3.4 Description of the Method

The starting point is an abstract specification of the problem written in a formal language

such as Z. Successive transformations can be applied to this until an executable version is

achieved (see figure 3.2).

The developer has complete control over which transformation is next applied but can use

a variety of tactics. For instance, (s)he might wish to get an inefficient version of the imple

mentation quickly before making this niore efficient with the automatable transformations

from the Maintainer's Assistant.

A wide spectrum language (see Appendix A) is needed to express the specification, imple

mentation and intermediate forms so that these successive transformations can be applied.

The algebraic laws described in 3.3.1 will also be needed for stages in the development of

the executable. The combination of transformations and axioms, specification, executable

and intermediate forms make up the derivation history. This derivation history forms the

basis of the method and is continually updated when changes are needed.

Stated formally, the derivation history appears as described at the beginning of this chap

ter:

51) - A ^2 ^ I>3 - C i

where 5o represents the initial specification, Di, D2, D3 the different versions of the design

as the specification is transformed into code and Q the first version of the implementa

tion. The arrows represent the application of transformations and a, b,c,d the different

transformations which are applied.

The derivation history records each transformation applied in its sequential order from

specification to implementation. When a change in the requirements is requested, this

57

change is first made at the specification level or at some further point in the development,

depending upon how specific the change is. I f the change alters data from the specification

level, then the change must be applied at this level. I f i t does not affect data in the speci

fication, but only a specific case introduced in an intermediate stage between specification

and code, then the change can be applied at this stage instead.

Ideas of how the derivation history appears after diflferent types of changes were presented

at the beginning of this chapter. The method itself is based upon the re-use of this

derivation history. This is done by applying transformations to an altered specification

until the old derivation history can be applied to part of this specification (see section

3.1). It is difficult to describe the method without concrete examples and so the next two

chapters illustrate the application of the method to two case studies. These illustrate how

the method works with code intensive and then data intensive examples.

3.5 Summary

This chapter described how ideas for the method arose from the use of transformations for

restructuring in the Maintainer's Assistant and from the papers criticised in chapter 1.

The method was applied to two case studies originally developed through other refinement

techniques, so these techniques were summarised in this chapter. That is, basic ideas of

Morgan's refinement calculus [59] and the I B M Hursley Park method [79] [72] were pre

sented. The method uses Ward's transformations [82] for refinement and so a description

was provided of how this might work. The chapter concluded with a general description

of the method itself.

58

Chapter 4

Integer Square Root Problem

The method was first tested on a simple case study: the integer square root problem

described in the book [59]. This case study was selected because i t was a simple way in

which to test the method for a function based specification. That is, i t provides indications

of how the method should work on a small mathematical problem. The same tactics can

be used within larger scale specifications, such as the second case study of a library system.

Combining the approaches to these different types of specification provides a more general

method for producing maintainable software which can be tested on real specifications.

In the first case study, Morgan uses his refinement calculus to develop a specification of the

square root problem into executable code. The refinement steps are based upon concepts

of strengthening postconditions, weakening preconditions, compositions and invariants.

The main technique is to refine the specification until i t consists of composite statements

which can each be refined separately. These partial specifications are each developed and

the code is found by composing the bottom branches of the 'development tree' (see figure

4.1).

A description of the problem and the method by which i t was developed using Ward's

transformations are first described. So that this work can be understood better, descrip

tions of WSL and the transformations which can be used are provided in the appendices

to this thesis.

59

I

var r,s : N»

r : [true,r = [y/s\]

r : [true, r < -y/s < r + 1]

r : [true, < s < (r + 1)^]

var q : N»
q, r : [true, r^ < s < q'^ A{r -\-1) = q]

/ = r2 < s < g2 ,

q, r : [true, / A (r + 1) = g

I

g, r : [true, /] ,
q,r: I , IA {r-\-1) = q

I —

do r + 1 ^ q ^
q,r -.[r+l q,I,q - r < qo - ro]

od

1
q,r:^s-\-l,0

var p : A'̂ *
p -.[r-i-K q,r < p < q];

q,r :[r < p < q,I,q - r < qo - ro]

p :- {q -\- r) div 2
if s < p2 ^ g : [s < p2 A p < g, / , g < 5t,]

s > p'^ ^ r : [s > p'^ A r < p, I , ro < r]

9 := P
1

Figure 4.1: Morgan's refinement of the square root problem

60

4.1 Description

This is a simple problem for finding the greatest integer not exceeding the square root of

a natural number. Given a natural number s, say, one needs to find a natural number r

which win not exceed - y / s . The specification of this could be:

var r, s : N • r := [y^J

where we assume that neither ^ (defined as "the square root o f) nor [J (defined as "the

largest integer not greater than") is code. So the development of code from this would

involve removing these two symbols and producing a version of this specification which

might be executable. The application of Ward's transformations wiU be illustrated in

the following section through the use of the wide spectrum language, WSL, described in

appendix A.

4.2 Refinement Using Transformations

There are a variety of transformations which can possibly be used for the development

of code from the specification of this problem (see Appendix B). The method relies upon

selecting the fewest which wil l develop the specification into an executable and then using

additional transformations to make the code more efficient.

The first refinement stage is to use the definitions of the functions y and [J to rewrite

the specification as:

{ 5 e N } ; r := max { r e N | < s }

This done via the transformation Substitute-And-Delete which replaces a function with

its definition and removes the 'name' of the function.

The next stage is to set an upper bound so that the max function can be implemented.

61

Since (s -t- 1)^ > s for all s e N , the bounds for which r is true can be set (using the

Make-And-Use-Assertions transformation):

{ 5 e N } ; r := max { r 6 N | 0 < r < s A r 2 < s }

The transformation Make-loop can be applied to make the specification executable. This

implementation is as follows:

{ s G N }; r := 0;

for i := 1 to s do

if i^ < s then r := j ft od

Since this is executable, i t is possible to claim that the refinement is complete. However, at

this stage such a loop would involve s steps of calculation, which would be very inefficient

for large values of s. For more efficiency the number of calculation steps must be reduced

and extra transformations need to be applied in order to do this.

The best approach for reducing these steps is to minimise the search space. This is carried

out using a "divide and conquer" strategy where special cases are first removed, the search

space divided in two and a determination of which half contains the result made.

For the strategy to work, the precondition that the predicate involved is monotonic is

needed so that there is some cut-off value x when the predicate becomes false and remains

false for aU values greater than x. The predicate that we are dealing with is < s which

wiU be labelled as P{r) and its monotonicity implies that P{1) is true and P{h) is false for

some values /, h. Since P{0) can be proved true, 0 is represented by / in earlier versions

of the specification and a general form of the specification becomes:

SPECil, h)A{ l,heN Al < hA P{1) A ^P{h) } ; r := max { r 6 N I / < r < A P{r) }

where the first part is the new precondition based upon P{r) being monotonic.

62

The case h = / + 1 is taken out since this satisfies the first assertion and makes the

assignment of r trivial. That is, if A = / + 1 then the assignment to r would become r :=

max { r G N | / < r < / + l A F (r) which would mean that r = / and so the SPEC{1, h)

could simplify to r := /.

To set up this new case, an if statement is introduced out of nothing by using the trans

formation Add-Entire-Loop :

SPEC{1, h)»{l,he^/\l<hA P{1) A ^P{h) } ;

i f h = l + lth.enSPEC{l,h)

else SPEC{1, h) fi

where ss means "is transformed to".

If /» = / -f 1 then SPEC{1, h) becomes r := / and so the following is derived from the

transformation Apply-Condition-To-Next:

SPECil, / i) « { / , f t e N A / < / i A P{1) A ^P{h) } ;

i f h = / + l t h e n r := /

else SPEC{l,h)fi

The range is now divided into two by using the editor to introduce new variables m and m'

and the transformation Add-Entire-Loop:

SPECil, h)K {l,helSS Al <hA P{1) A - i F (/ j) } ;

i f h = l + l then r := /

else var m := m'.(l < m' < h) :

if P(m) ^ SPEC{m,h)

n^P{m) SPECil, m) fl end fi

To simplify the specification so that it can be implemented a commonly used technique is

performed of introducing a recursion, simplifying and then removing the recursion. First,

the specification is rewritten as a procedure so that recursion can now be included (using

63

the transformation Make-Proc):

SPEC « sp€c(0, s + 1)

where

proc spec{l, h)={l,heNM<hA P{1) A -^P{h) } ;

i f / i = / + 1 then r := /

else var m := m'.{l < m' < h) :

if P{m) —>• sp€c{m, h)

• -iP(m) $pec{l, m) fl end fi.

To reduce h-l as much as possible, the maximum values oih-m and m - / are minimised

by refining m := m'.{l < m' < h) to m := [(/ + h)/2\ and turning m into a global variable:

SPEC « var m : spec{0, s+1) end

where

proc spec{l, h)= if h = 1+ 1 then r := /

else ra := [il + h)/2] ;

if F(m) —>• spec{m,h)

• -.P(m) spec(l,m)fifi.

The parameters are replaced by global variables:

SPEC « var m,l := 0,h := s + 1 : spec end

where

proc spec = if h - I + 1 then r := /

else m := [(/ + h)/2\ ;

if P{m) ->• / := m; spec

• -iF(m) - * / ? : = m; spec fl fi.

64

This is a tail-recursion which is converted to a while loop (using the transformation

Loop -> While):

SPEC w var m, / := 0, /j := s + 1 :

while /? / + 1 do

m : = L(r + /i)/2j;

if F(m) then / := m

else / i := m fi od end

Removing / by using r to represent it (transformation Change-Local-Variable) , gives:

SPEC w var m, := s + 1 :

r := 0

while /i 5̂ r + 1 do

m : = L(r + ft)/2j;

if P (m) then r := m

else /» := m fl od end

and substituting < s for P{m) (transformation Replace-With-Value), produces the

executable code:

SPEC w var m, := s + 1 :

r := 0

while ft 7̂ r + 1 do

m : = L(r + ft)/2j;

if ra'^ < s then r :- m

else / i := m fl od end

This ends the refinement of the square root problem, producing an executable form of the

65

specification which can be calculated using log s steps instead of the s steps needed by the

code produced using the fewest possible transformations.

4.3 Comparisons with Refinement Calculus

The development of the square root specification using Morgan's refinement calculus is

illustrated in figure 4.1. The code produced using Ward's transformations is similar to

that developed using Morgan's refinement calculus, which, by collecting the bottom leaves

of figure 4.1, appears as:

I [var q :N •

q,r:=s + 1,0;

do r + 1 7̂ g —•

I [var p : N •

p : = (? + r)div2;

if s < p'^ -* q := p

s > p^ -* r := p

fl

] l
od

The refinement steps which produced tliis are based upon laws of logic applied sequentially

to the specification. Unlike our method which develops new versions of the software at each

transformation, the refinement calculus works on partial specifications. This means that

the specification is refined to the point at which various parts can be separated out and

refined individually. As displayed in figure 4.1, the general refinement process eventually

resembles a tree, with the development of the separate parts forming branches of that tree.

The final version of the code is formed by collecting the last leaves of these branches.

Figure 4.1 illustrates one of the problems with the refinement calculus. Separating parts

of the specification makes it eventually difficult to organise a derivation history of the

66

complete specification so that "steps" of the refinement might be listed. An attempt at a

derivation history would need to be organised in a tree format but this leads to problems

in understanding what the final version of the code actually is. Mistakes in 'collecting' the

final branches and assembling them into the code (as displayed above) can also arise. A

further problem is that developing branches of the specification restricts which refinement

rules can be applied at each point and makes the refinement of each branch independent

of other branches.

The method described by this thesis (i.e. using Ward's transformations for refinement)

does not involve developing branches in such a way and so is easier to automate, as the

derivation history is organised in a sequential order. Automation of the method is further

assisted by the fact that many of the transformations are already implemented in the

Maintainer's Assistant. There is no complete tool for automating Morgan's refinement

calculus.

Another advantage with using transformations is that additional transformations can be

added to the refinement path for more efficiency and maintainability. The development

of the square root with Morgan's refinement calculus illustrates that developing partial

specifications eventually leads to a dead end. There comes a point when a branch has been

developed as much as possible and no other refinement rules can be applied. Making the

code more efficient or maintainable would involve altering earlier stages of the development.

This could affect aU the lower parts of the branch and so reusing the refijiement path proves

difficult.

For instance, it is possible to calculate the value of the executable in less than half the log s

steps needed in section 4.2 if we use an estimate of the root to get a better upper bound

for the search using Ward's transformation approach. Transformations which involve this

can be applied at the end, thus extending the refinement path for efficiency purposes.

Morgan's refinement calculus does not allow for a similar extension to its development of

a problem.

A better comparison of the two techniques of refinement can be made by making changes

to the specification and investigating the effect this has upon the development of the code.

67

4.4 Application and Implication of Changes

Many changes were made to the specification of the integer square root problem to verify

whether the derivation history could be used again or if not, investigate the best method

for changing the history. The two which best illustrate the results are:

1. Change from the square root to the cube root of the natural number 5.

2. Find the greatest integer not exceeding the square root of a real number instead of

a natural number.

Hence the respective new versions of the specification will be:

1. var r , s : N • r := L-y/sJ.

2. var r : Z; s : R » r := [^\.

The first change examines how internal changes affect the refinement (changing the mean

ing of terms used within the problem) while the second involves external changes (altering

the range over which the problem acts). The following sections wiU describe the effect

that each change has upon the development of the specification using the two methods of

refinement.

4.4.1 Change to C u b e Root

Ward's Transformations

Changing the specification for cube roots instead of square roots has little effect upon the

development of the executable using the method. The specification to be used remains:

SPECil, h) A{ l,helS(Al < hA Pil) A -^Pih) } ; r := max { r e N | / < r < /j A P(r) }

only F (r) represents < s now. The case h - I + 1 can stiU be taken out using the same

transformations as before:

68

SPECil, h)K {l,helSi Al <hA Pil) A ̂ Pih) } ;

if /» = / -I-1 then SPECil, h)

else SPECil, h) fl

... and the same transformations used so that the search space is divided:

SPECil, / i) w { / , / i € N A / < / i A Pil) A ^Pih) } ;

if A = / + 1 then r := /

else var m m'.(/ < m' < h) :

if Pirn) ^ SPECim,h)

• -nP(m) ^ SPECil, m) fl end fl

The technique of introducing a recursion, simplifying and then removing the recursion can

again be followed (using the same transformations), so that the specification becomes:

SPEC w var m, / i := s + 1 :

r := 0

while /j # / + 1 do

m : = L(r + /i)/2j;

if Pim) then r :- m

else := m fl od end

The only difference is the last step, which involves the substitution of m'̂ < s for Pim)

(instead of < s):

SPEC « var TO, / i := s -I-1 :

r := 0

while hy^l+ldo

m:= [ir + h)/2j;

if < $ then r := m

69

else h := m fi od end

However, the same transformation is involved with this last step (Replace-With-Value)

and so the complete derivation history has been used again to transform the altered

specification into code. The change from square to cube root has affected the content

involved when substituting and removing P{r) but no new transformations are needed.

Morgan's Refinement

Morgan's refinement also involves a change of the definition of the function involving s.

It is still possible to introduce q and attempt to bring it close to r. The invariant changes

in this case so that now: I = < s < q^. The rest of the refinement carries on as before

until s < p^ and s > p^ is introduced. This involves rewriting some of the stages to adapt

to the change itself. Thus it requires a maintainer's knowledge of the change and his

ability to carry out the refinement based upon this knowledge. So for this example Ward's

refinement technique is much better for adapting to changes made to the specification

since all transformations can be applied in the same sequence (with only the value of P{r)

changing). Figure 4.2 illustrates the new version of the refinement path using Morgan's

calculus (with arrows pointing to the parts which needed to be changed).

4.4.2 Change to real numbers

Relaxing the restriction on the range from natural numbers to all real numbers affects the

way in which the specification of the square root is developed. Changing the specification

so that all real numbers can be involved greatly increases the range of values of s and r.

The nature of this change makes it difficult to apply Ward's transformations or Morgan's

refinement calculus immediately since the meaning of the square root function could be

drastically affected. Before analyzing any development of code, it is necessary to examine

the effect such a change has upon the specification itself.

Since <s is a real number, it could be a positive or negative integer, zero or a rational

70

-{>
var r, s : iV«

r :=

r : [true, r = [v^J]

r : [true, r < < r + 1]

-> r : [true, < s < (r + 1)̂]

- > var q : A'̂ t
: [true, < s < A (r + 1) =

1

I = < s < q^»
q, r : [true, / A (r + 1) = 9]

1

9,r : [true, /] ,
q,r:[I,lAir + l) = q]

do r + 1 7̂ g
5, r : [r + 1 / 9, / , g - r < go - ro]

od

g, r := s -f 1,0

var p : iV«
p:[r-^l<q,r<p<q];

q,r : [r < p < q, I, q - r < qo - To]

p iq + r) div 2 - t >
if s < p3 g : [s < p3 A p < g, / , 9 < go]

fl
I ~

q:=p r :=p

Figure 4.2: Change to Morgan's development of the square root problem

71

number. Positive integers are natural numbers anyway, so the specification and its devel

opment will remain the same as before for this case. If s was a negative integer, then r

would become the largest integer not more than ^/s by the definition of the floor function

and the y/s in this case would be a complex number with no real part to it (i.e. 0 + xi for

some X 6 R) . Thus r must be the largest integer < 0, i.e. 0 itself.

If s was a rational number then it can be described by a fraction. The square root of a

positive rational number is also a positive rational number, so r would still be the largest

integer not more than this rational number. The square root of a negative rational number

will again be a complex number with no real part, so again r must be 0. The same thing

would apply to other positive and negative reed numbers.

Hence a new version of the specification would be as follows:

var r : N; s : R • r := [-y^J

since we have deduced that r must be a natural number for all cases of s.

Ward's Transformations

Using what is known about the values of s and r, the specification is split into two cases:

var r : N; s : R • (s > 0 =̂ r := [v^J; s < 0 ^ r := 0)

Using Ward's syntax, the specification will appear as:

SPEC = { s e R A s > 0 } ; r : = [y/s\ ; { s e R A s < 0 } ; r : = 0

The same transformations used in 4.2.1 can be applied to the first half (i.e. { s 6 R A s > 0

}; r := [^sj) so that the following results:

{ s e N A s > 0 } ;

72

var m, h :- s + 1 :

r :=0

while /i 7̂ / + 1 do

m:= [ir + h)/2\;

if < s then r := m

else /j := m fl od end ;

{ s 6 N A s < 0 } ; r : = 0

Now the two assertions can be transformed so that there are two loops which are merged

together (using the Make-loop and Merge -»•-> transformations) to give:

var m,h := s + 1 :

if s > 0 then

r :=0

while l + l do

m:= [ir + h)/2\;

if < s then r :- m

else /z := m fl od

else r := 0 fl end

Finally a transformation which takes out the common assignment (the Take-Out

transformation applied to the complete if-then statement, followed by a Simplify trans

formation for removing the redundant loop) results in the following executable code:

var m, h := s + 1 :

r :=0

while /i7^/ + l A s > 0 d o

m:= [ir + h)/2\;

if < s then r := m

else /j := m fi od end

Thus the transformations used before are still apphed by splitting the specification into

two so that the first part was similar to the original specification and the rest required

simple transformations to integrate it with the original code. The method of re-using the

original derivation history is still applicable, only it applies to ordy the first part of the

specification. This application of the method is the idea referred to in section 3.1, where

the possibility of transforming the altered specification so that one part was identical to

the original specification was introduced. The original derivation history could be applied

to this part, new transformations to the other and a final set of transformations could

merge the two parts. This possibility was verified with this example and will be discussed

in the Results chapter (section 6.1).

Morgan's Refinement

Morgan's refinement of the problem is also dealt with in the same way. The specification

in this case could be written as:

var r : N; s : R •

r:[s>0,r=[^\];

r : [s < 0,r = 0];

Refinements can be carried out as before on the first two lines of the specification with the

only difference being the value of the pre-condition (instead of true it is now s > 0). This

does not affect the refinements since they rely on some pre-condition existing but do not

depend upon its value at all. Its effect is oidy seen when the statement q,r : [s > 0, /];

needs to be refined. Originally this was q,r : [true,/]; and was rewritten as q,r :-

s -I- 1,0 due to the value of I. In the new version, rewriting I in the statement gives us

g, r : [s > 0, < s < q^]. This can be refined to:

g,r : [s > 0,0 < s < q^];

r := 0

74

which can then be refined to:

q,r:[s>0,s<q^];

r := 0

Now since s > 0 then (s -f 1)^ > s so g can be assigned to s + 1 and the following is

derived:

{ ^ ' > 0 } ;

g := s + 1;

r := 0

However there is now a problem with the values which g can have. Initially, g was assigned

a value of r + 1 and so was obviously a natural number since r was a natural number.

By assigning g to s + 1, its range has been extended to cover real numbers since s is real.

This means that one must return to the earlier steps of the refinement and redefine g as

a real number.

This shows one of the advantages that the method has over the Morgan technique. Ward's

transformations do not depend so much upon the data type or upon the creation of local

variables for developing code. When using Morgan's refinement of the square root problem

again for changes to this problem, we need to review the definitions of any of the variables

defined during the development of the problem. This means that this technique would

be more difficult to apply to a changed problem than would be the case with Ward's

transformations.

In fact, at this point in the development of the code, we will need to return to a much

earlier stage of the development and redefine g as a real number. We will also need to

treat r as a real number due to the definition of g. This will create a number of other

problems in the development of the code, since r appears in every stage of the refinement.

The variable p will also need to be redefined as a real number.

75

Another advantage of the method highlighted by this example is that it is more difficult

to determine the impact of change with Morgan's refinement calculus. This is due to the

development of the specification following a tree format. When a change is made one must

be very careful to trace any branches which have been affected and collect all the refined

parts in a way which does not adversely affect the other ares of the code.

This is not a problem for the method of using transformations. If the specification is small

enough then transformations are applied to the complete specification and its intermediate

stages so the final product is a single block of code which directly implements the specifi

cation. For larger specifications, transformations are applied so that the specification can

be separated into smaller independent parts. Each part is transformed into code but then

transformations can unite the different parts together again and the whole specification

can be implemented.

4.5 Summciry

This chapter described how the method of using transformations for refinement of a simple

problem worked and the advantages of this for perfective maintenance. The simple problem

was a case study of finding an integer square root originally developed through a refinement

calculus in the book [59]. A comparison of refinement via transformations and refinement

via a calculus was made. Criteria for this comparison were the general advantages of the

transformation approach when changes needed to be implemented.

76

Chapter 5

Library Case Study

The library system is formally represented by a complex abstract state and a set of trans

actions involving this state. The specification which describes this system originates from

a technical paper by King and Sorensen, From specification, through design, to code: a case

study in refinement [45] and reference should be made to this for a complete description

of the library system and its transactions.

A brief description of the system and the transformations which were applied will be

provided before the application and implication of changes to this system are considered.

5.1 Description

The library case study involves a large abstract state which consists of people, books and

a database together with a number of transactions which are possible in the system. Basic

requirements are:

1. There are two types of user: members of staff and borrowers.

2. All copies in the library are available for check out or checked out.

77

3. No copy may be both available and checked out at the same time.

4. A user may not have more than a predefined number of books checked out at one

time.

5. Books can only be checked out to members of staff and borrowers.

Once these requirements have been included in a complete specification of the abstract

state of the library, the transactions which can take place are also specified. The Z

specification of this [45] includes nine transactions which can be described using schemas

based upon the abstract state of the library specification. These transactions can be

classified according to which type of person performs the operation and what parts of the

database are affected by the operation. A total of 18 schemas are used for describing the

abstract state and these possible transactions. Since most of these schemas are several

lines long and include other schemas by text inclusion, the complexity of the full problem

is high.

Due to this complexity, only one transaction was refined so that the method could be

tested. Consequently, our version of the refinement and application of the method are

also based upon this transaction. The operation in question is the Check out transaction.

This is performed only by members of staff when a user wishes to borrow a copy of a

book from the library. A requirement is that the copy must be available for loan; all

other requirements are inherent from the abstract state of the library. The result of this

operation is that the copy is removed from the list of books available for loan, the record

of checked-out books is updated and the new borrower is recorded as the last person to

check out the book.

This operation provides a good test for the method since it involves most aspects of the

library system which can possibly be altered and forms the basic characteristic of a library:

the main function of a library is to loan books out to users. Any change in the Check out

transaction affects the library as a whole and so a method which can apply changes to

this operation while minimising the side effects must be valid for perfective maintenance.

78

Abstract states represented by:

STATE =DF {{typel, type2...) \

predicates involving types }

Transactions represented by:

TRANS =DF [pre]] STATS'I STATE .post

Error conditions represented by:

ERROR =DF [pre]; \post]

Complete transactions represented by:

T^TRANS=DF [pre];
TRANS; SUCCESSn
ERRORiH
ERROR2 n . . .

Figure 5.1: WSL syntax for library specification

5.2 Refinement Using Transformations

Specifications using WSL are based upon atomic specifications ajid guard statements (see

[83]). The constructs used for this particular problem are illustrated in figure 5.1.

The WSL specification of the library case study is written according to these constructs

and is then refined using transformations. The first transformation which can be applied

is Multi-Move — w h i c h changes the order of the nondeterministic choice according

to the conditions to be met. The less complex conditions are placed first, ending with the

condition for success. Several transformations will be needed in order for the specification

to be properly rearranged, and even the first transformation relies upon some user input

(deciding the order for the conditions). As there is a wide variety of smaller transforma

tions which are applied to this case study, only the main objectives will be described here

within each stage of the refinement. Appendix B lists the main transformations which can

actually be used and classifies these under the stages described here. The first stage can

be called rearrange specification.

The next stage is rewrite preconditions, which removes the set operators such as e

and uses the definitions of the states to rewrite these to access parts of the sequences

79

involved. This is followed by rewriting the structure so that guarded commands replace

nondeterministic choice; this again is based on definitions involving structure. The re

maining stages necessary in the development in the implementation can be summarised

as:

• Introduction of Guarded Commands

• Introduction of Global Variables

• Introduction of Procedures

• Replacement of Atomic Specification

The individual transformations used are summarised in Appendix B (according to each

stage) and more on the development of this case study is detailed in the report [63]. A

simplification of the derivation history produced can be illustrated in figure 5.2. The

implementor can choose additional transformations to make this executable more efficient

but the transformations of interest for perfective maintenance are the few recorded in the

derivation history which wiU be affected when changes in the requirements arise.

5.3 Application and Implication of Changes

Three modifications are made to the specification of the check out transaction so that the

method can be tested. These are that:

1. Books can only be checked out to borrowers (not meinbers of staff).

2. Any number of books can be checked out.

3. Only some books can be checked out (the others are reference only).

The above modifications affect the basic requirements of the library as listed earlier. The

first change restricts reqmrement 5, the second negates requirement 4 and the last adds

new cases to requirements 2 and 3. Since requirement 1 afTects USERS only and Check out

80

T-D-Check-out = DF
[idl e PERSON A borl e PERSON A copyl e COPY A r! e REPORT];
{...check out trans; [r! = OK])n
{[id'! ^ staff-list]; [r! = unknown libmrian])r\
([6or? ^ domF_/j/e]; [r! = unknown borrower])r\
{[copy? ^ dom C_mc/ea;]; [r! = book not in stock])r\
{[status{C-file{C-index{copy'!))) = out]; [r! = book not available])r\
{[length{horrowed{P-file{bor1))) > maxbooks]; [r\ = too many books])

Rearrange specification

T-D-Check-out =DF
[idl e PERSON A borl e PERSON A copyl e COPY A r! G REPORT];
{[idl ^ staff-list]; [r! = unknown libranan])r\
{[borl ^ domP-file]; [r! = unknown borrower])r\
{[copy"! ^ dom C-index]; [rl = not in stock])n
{[status{C-file{C-index{copy?))) = out]; [r! = book not ot;o«7a6/e])n
{[length{borrowed{P-file{bor1))) > maxbooks]; [r! = too many books])n
{...check out trans; [rl = 0K\)

Rewrite preconditions

(... successive transformations and intermediate stages until executable ...)

T-D-Check-out C
begin var id, bor : PERSON, cpy : COPY, r : REPORT;
doMEMBER{id); BORROWED[bor); INDEX{cpy);

STATUS{cpy); LENGTH{bor); MAIN{bor, cpy)
od;
print rend
where proc MEMBER{x var x) = =

if member1{x, staff-list) then r := unknown librarian; exitfl.
proc BORROWED{x var x) = =

if P-file{x) = 0 then r := unknown borrower; exit fi.
proc INDEX{x var x) = =

if C-index{x) = () then r := 600̂ not in stock, exitfl.
proc STATUS{xvarx) = =

if status{C-file{C-index{x))) = out then r := book not available; exit fi.
proc LENGTH{x var x) = =

if length{borrowed{P-file{x))) > maxbooks then r := too many books; exitfi.
proc MAIN{x,y var x,y) -

...; r := OK; e^dt.
end

Figure 5,2: Derivation of Check-out operation in WSL

81

does not alter the USERS field, alterations to this are not tested. The modifications listed

above were selected for the variety of ways in which they affect requirements connected to

the Check out operation and appear in ascending order of complexity.

5.3.1 F i r s t Change

Restricting borrowed books to non-members of staff (alteration 1) can be dealt with by

altering some basic definitions involving USERS at the specification level. The set PER

SON is split into two new sets: STAFF and BORROWER, P-file is restricted to members

of BORROWER only and staff-list to members of STAFF only. The choice of carrying

out this modification in this way removes the need to add predicates to the specifica

tion. An advantage to changing only the declarations part of the specification is that

transformations can be carried out automatically as recorded in the original derivation

history.

The new version of the derivation history corresponding to this change is:

T-D-Check-out = DF

[idl 6 S T A F F A borrowerl e B O R R O W E R A copyl € COPY A r! € REPORT];

{...check out trans; [r! = OK]) n

(\idl ^ staff-list]; [rl = unknown librarian]) •

Rearrange specification

T-D-Check-out - DF

[idl e S T A F F A borrowerl G B O R R O W E R A copyl 6 COPY A r! 6 REPORT];

{[idt ^ staff-list]; [r\ = unknown librarian]) f l

. . . n

{...check out trans; [r! = 0K\)

82

Rewrite preconditions

(... successive transformations and intermediate stages until executable ...)

T-D-Check-out C

begin var id : S T A F F , bor : B O R R O W E R , cpy : COPY, r : REPORT;

doMEMBER{id); BORROWED{bor); INDEX{cpy); STATUS{cpy);

LENGTH{bor); MAIN{bor, cpy)od;

...as original code

5.3.2 Second Change

The second change causes more implications but is also easy to trace. Negating require

ment 4 by removing a l imit on the number of books which can be borrowed merely implies

that there is no longer a need for that restriction. The declaxation of the value maxbooks

can be removed from the specification, as can any predicate which refers to maxbooks.

The error condition corresponding to too many books being checked out can be removed

altogether from the specification.

A l l transformations can be applied automatically from the derivation history, producing

a new version of the code as they did with the first change. The only difference is the

removal of the introduction of the LENGTH procedure for the introduce procedure

transformation, but this wil l not be carried out automatically since the predicate leading

to this was removed from the specification.

5.3.3 T h i r d Change

The final change is the most complex. Making certain library books reference only means

that library requirement 2 is changed to "all copies in the library are available for check

out, are checked out or are reference books only". Requirement 3 is changed to "no non-

reference copy can be both available and checked out at the same time". The result is

that most predicates concerning the database are altered in the specification.

83

A new section of the COPY record is created to identify the sort of book involved. A copy

being checked out must now have sort "available" and must not be registered as checked

out. The error condition corresponding to a book of sort "reference" being checked out

is added to the specification. The new version of the specification will therefore have an

extra precondition to the check out operation, declaring that the book must have sort

"available", and an error condition when this is false among the other error conditions.

The derivation history can now be used for developing a corresponding altered version of

the code. Transformations are applied in the same way as before: rearranging the choice

{D-Book-is-ref appears after D-Book-not-available), rewriting preconditions (checking

the sort becomes an access to part of the sequence by definition, as in the other error cases),

changing to guarded commands, adding initial declarations, introducing procedures and

replacing the atomic specification.

The only difference lies in the introduction of procedures. The user needs to add the

procedure for checking the sort of book being checked out. This wUl test whether the

book is a reference copy and output the corresponding error report i f i t is. If not, the next

error case can be tested for and the MAIN procedure remains exactly the same. Hence

the transformations can be automated as far as introducing procedures, where the user

adds the extra case, and then automated to the end. The new version of the code will

correspond to the change which has taken place.

5.4 Comparisons with Z Refinement Method

The effect of changes on the refinement by transformation method of this problem gives an

indication as to the benefit of this method for developing maintainable code. A complete

examination must include some measure for comparison. The same changes were applied

to the Z specification and its refinement and the effect of these examined as well. The

residts of this can be compared with the conclusions from the previous section to test

whether this method is better when changes in requirements arise. The criteria used

for this comparison includes scaleability, speed of refinement, ease of refinement, design

improvements and software quality. For quick reference, a paper was published on this in

84

the proceedings from the IEEE Conference on Software Maintenance 1993 [64].

First, a general description of the method of Z refinement used in the library example

of the paper is given. The Z specification is based upon a number of schemas which are

related to one another by reference to states or some "inheritance". This means that when

changes are made, all initial schemas need to be considered and the effects traced down

to the Check-out transaction stage.

The refinement of the specification involves an immediate conversion into a form which

includes variables, return codes, procedures and conditionals which do not appear at the

specification level. The user must prove that this form is equivalent to the earlier schemas

before (s)he can be satisfied that this is a correct refinement. Similarly, other refinements

involve the direct conversion from schemas to a "code-like" form with procedures, Boolean

return codes and conditionals. Assignments are brought in, with no link provided with

earlier stages. The user must prove that each case is equivalent by regarding the semantics

of each stage.

The code produced from the Z refinement of the Check-out transaction is displayed in

figure 5.3. The lack of connections between this code and the Z specification is reflected by

problems when changes are needed. The user must start from the first schemas presented,

making changes where necessary, but following through each schema as the effects of

the changes are felt. Even when the complete Check-out specification is altered, each

refinement stage must be modified where the user feels i t is necessary and a proof of the

semantic equivalence of each stage to the original schemas must be made.

This highlights a basic difference with the refinement by transformation method. The

Z refinement is proof-based and a record of the transition from specification to code is

difficult to establish. Refinement by transformation, however, relies upon mathematically

proven steps which gradually develop the specification into an executable form. These

steps and intermediate stages of the specification are all recorded in a derivation history.

Changes in requirements can be made at the specification level and the transformations

recorded in the history used again for producing a new version of the code. These new

versions of the specification, code and intermediate stages are recorded in the updated

derivation history. Thus a complete record of the derivation of the code and its alterations

85

T-D-Check-out C
r l , r2, r3 : Boolean;
c-tkn : TEN;
member {staff-list, idt, r l) ;
domlookup{P-file, borrower!, r2);
dirlookup{C-index, copyl, c-tkn, r3);
if-I rl —>• r\ := unknown librarian
• - 1 r2 —> r! := unknown borrower
• - 1 r3 —> r! := book not in stock
• r l A r2 A r3 ^

PR: P-RECORD;
CR: C-RECORD;
r4, r5 : Boolean;
filelookup{C-file, c-tkn, CR, r4);
pflookup{P-file, borrower!, PR, r5);
lengthdll{PR.borrowed, I);
if CR.status ^ m —>• r! := book not available
• / > maxbooks —> r! := too many books
• CR.status = in -* ...

A / < maxbooks
fi

Figure 5.3: Code developed from Z library specification

is always present and there is no need to prove semantic equivalence for each stage due to

the mathematical correctness of the transformations in use.

5.4.1 Scaleabil ity

Looking in more depth at the differences between the two approaches, the first quality to

be tested is scaleability, or the size of effort needed by each method for refinement and

change as the specification grows. There are fewer stages of refinement with the Z method,

but each stage involves a proof that the new version is equivalent to the previous one. This

proof could be lengthy and adds extra work to the refinement which cannot be qualified

nor automated. Modifications must be applied both at specification and implementation

levels, with new proofs needed each time. As the specification grows, so wiU the size of

the proof.

86

Our method involves more stages of refinement but each stage is produced by a mathe

matically proven transformation, implying that the new version is semantically equivalent

to the previous one. Once these stages and the transformations used have been recorded

in a derivation history, modifications to the specification are quicker to implement and

there wiU be no need for further proofs. Changes can be made to the specification and

the history used and updated to produce corresponding versions of the code.

A conclusion from this is that the transformation method is an improvement on the Z

method as regards scaleability of the refinement and of the application of change.

5.4.2 Speed

Due to the lack of proofs, the speed of the refinement is improved with our method since

the transformations are the only element involved which have already been proved. The

speed in which changes can be made is even better since at this stage, the history of

transformations can be applied to the altered specification to produce new code. The

influence of tools which automate this procedure wiU also make the use of a derivation

history quicker for reflnement and change.

5.4.3 E a s e of Change

The method of refinement used in the library example paper [45] depends upon the user's

intuition and there are no mathematical steps taken. This makes the problem harder to

refine and change. Wi th a set of possible transformations available for specifications, the

user has some choice as to what refinement steps to take at which point. Although the

nature of the refinement is still reliant on the user's intuition, (s)he has some guidelines

to follow.

Once the user has made a decision on a refinement path this is recorded and can be used

again when changes are needed. This list of possible transformations eases the application

of change. The user can just alter the specification (or simpler still, a definition) and then

run through the list of transformations until code is reached or an extra transformation

87

might be needed. Keeping track like this of the refinement makes any change infinitely

easier to implement than with the Z refinement procedure, where reason and proof is

required at every stage of refinement.

5.4.4 Design Improvements

Unfortunately, the simple notation available with WSL at specification level means that

the appearance of the specification is more complex and harder to understand than Z

schemas. A Z schema shows clearly what declarations and predicates are involved and

text inclusion simplifies lengthy schemas. WSL specifications are very basic in form and

so more difficult to understand.

However, the simplicity of the language is a benefit when refining via transformations since

one can immediately access the parts of the specification which are being refined. This

makes a step-wise, automatable production of code easier to achieve rather than relying

upon the user to define new stages of the refinement which depend upon knowledge of the

system and understanding of the Z specification.

I t is also an advantage when changes are needed. Since the states involved appear directly

in the specification, one can alter the necessary items in the specification and then refer to

their definitions to see where these are different. With Z schemas, one needs to trace back

through all the included schemas to find wliich states are involved and where. In fact, i t

is easier to write out the complete schema (expanding any other included schemas) to see

where changes can be applied. This fuU schema looks much more complicated than the

WSL version!

5.4.5 Software Qual i ty

The quality of the software produced using either method is good since refinement from

specification makes the code itself much more compact and well-structured. I t is difficult

to assess which one has the best quality since there are many factors determining software

quality and their importance depends upon the needs of the customer.

Factors which determine software quality include correctness, reliability, efficiency, flexi

bility and reusability. Maintainability can also determine software quality, but since this

is our objective, i t will be discussed separately in the next section. The above factors can

be measured with a number of software metrics but the true quality of the software in

question is invariably subjective.

If a simple metric like LOG (Lines Of Code) [27] is applied to the derived code {not to

the Z or WSL), one could say that refinement via transformation is better since there

are fewer lines of code. Using Halstead's Software Science metric [39], the refinement via

transformation code is also superior. Values of 224 for the program length, 12320 for the

program volume and .041 for the program level are recorded for the code produced from Z

refinement. The respective values for the code produced from our method are 194, 970 and

.022. On the other hand, McCabe's cyclomatic complexity [57] is 6 for the code produced

from Z and 8 for that produced from WSL, indicating that the first is less complex.

The code produced using the Z refinement is a single block with two conditional statements

(one inside the other). The code produced through transformations has a set of variable

declarations, a loop which makes calls to each procedure imtil one is satisfied and a print

out of the report at the end. The latter is much easier to understand and to modify but

the first is simpler. Since modification is the priority in this example, code produced with

transformations can be judged as having better quality.

Issues regarding the maintainability of the code will be discussed in the Results chapter

of this thesis.

5.5 Summary

This chapter investigated the use of the method for a larger case study based upon the

organisation of data rather than the functionality of the code, as described in the first case

study of the integer square root. This case study was the specification and implementation

of a library system which was originally developed through the use of the IBM Hursley Park

method in the paper [45]. A comparison of the transformation approach to this method

89

could be made, based upon the success of perfective maintenance in each case. Criteria

for evaluating this success was scaleability, speed, ease of change, design improvements

and software quality. Metrics were used as a measurement for this last criterion.

90

Chapter 6

Results

This chapter draws conclusions on how the method should work for specifications based

on computation and for those based on the arrangement of data. This foDows from the

results found by applying the method to the case studies as described in chapters 4 and 5

and the Appendices.

6.1 The Method

Applying the method to case studies has indicated that there is a different approach

needed when dealing with specifications involving functions than with those reliant upon

the organisation of data. Most real cases will involve a combination of these two and so

the method must finally combine the two approaches which were adopted.

The following sections describe how the method should work in general for computation-

based specifications and specifications based on data organisation. The differences in

the approaches lie in how the refinement path is originally built and how changes in the

requirements are dealt with.

91

6.1.1 Computat ion Intensive

There are two stages to the method: developing a derivation history from the refinement

of the specification into an implementation and dealing with changes in the requirements

of the system. The first part involves the identification of strategies to follow according to

the specification involved.

Strategies which were found useful for producing maintainable software from specifications

based on functions are as follows:

1. Expand functions and definitions.

2. Introduce bounds.

3. Introduce cases (if possible).

4. Divide problem so that part of i t is trivial.

5. Repeat steps 2,3,4 as necessary.

6. Introduce Recursion, Simplify, Remove Recursion.

Most of these steps could be carried out with a single transformation or with a collection

of transformations from the Maintainer's Assistant and so the derivation history could

be produced automatically i f the user knew which transformations corresponded to each

strategy. Due to the differences between each specification of this type, the user must have

some idea of what he is aiming for. For instance, step 2 above depends upon the values

that the user chooses to enter for the bounds which depends upon his understanding of

the type of function which he is dealing with.

Referring to chapter 4, the set of strategies described above were useful for such a small

code intensive specification as the integer square root. The transformations in the order

in which they were applied can be listed as:

1. Expand the definition of ^ .

2. Expand the definition of [} .

92

3. Use (s -I- 1)^ > s to set upper bound.

4. Introduce assertion based upon the monotonicity of P{r).

5. Take out case h = I + 1 since this is trivial. This can be done by introducing an if

statement and simplifying.

6. Divide the range into two parts.

7. Introduce recursion.

8. Minimise search space through simplification.

9. Replace parameters by Global Variables.

10. Convert to while loop.

11. Use r to represent 1.

12. Substitute < s for P{m).

Once a refinement path had been built from the transformations which were used, i t

was necessary to investigate i f this could be used again for dealing with changes in the

requirements. The results from these experiments were described in Chapter 4 and from

these the best approach could be identified for problems of a computational nature. The

following sequence of actions is suggested:

1. Make change at the highest possible abstraction level (usually the specification it

self).

2. Separate this level so that part of i t is identical to the earlier version (using strategies

described above).

3. Use path recorded earlier for developing the part of the specification which is the

same.

4. Use refinement strategies for developing the different part of the specification.

5. Use restructuring transformations for merging the two parts which have been devel

oped.

93

6. The new refinement path is recorded.

The transformations currently present in the Maintainer's Assistant are mainly for re

structuring purposes and these can be used upon the code which is developed for making

i t simpler or more efficient. These can always be included at the end of the recorded

refinement path in the sequence in which they are applied.

The new path referred to in step 6 will consist of those transformations needed to separate

the altered specification (in the sequence in which they were applied), followed by the

original refinement path, followed by the transformations used in step 4, followed by the

transformations used in step 5. I f this new path were applied automatically to the altered

specification then a correct altered specification would be produced. Future changes to

the specification wiU involve a referral to this new refinement path.

While the refinement path looks long when constructed in such a way, in reality i t is not,

since many of the above steps will involve only 2 or 3 transformations which will need to

be recorded. Also, i t is not always necessary to separate the specification as described in

step 2 since the type of change might still allow an implementation to be developed using

the old refinement path. There are no strict rules which can be followed here but the best

suggestion is to t ry using the old path first. I f this fails to produce an implementation,

then steps 2 and 3 should be followed. Step 4 might not be needed as i t might be a case of

restructuring what is now available (step 5), but again this depends on the problem and

change in question.

6.1.2 D a t a Intensive

When dealing with specifications which rely upon the organisation of data, different re

finement strategies and changes are involved. Chapter 5 described such a specification,

the library system. Work on developing a refinement path and making changes to the

requirements was described and from this general conclusions on working with data in

tensive specifications could be drawn. The following approach was useful for developing a

refinement path for a specification involving many parts of a system:

94

1. Replace abstract states with concrete ones (look at the system from a different

perspective).

2. Write specification for complete operation in a concrete style.

3. Rearrange so that general precondition is followed by error conditions and finally

the successful case.

4. Rewrite conditions to involve sequences.

5. Introduce guarded commands.

6. Create variable declarations (to replace inputs and outputs).

7. Make loop.

8. Introduce procedures (exit out of loop if a procedure is successful).

9. Rewrite conditions in the successful case.

Most of these steps involve single transformations which can be ordered in the sequence

in which they are applied. This will form the refinement path, or derivation history.

Referring back to the transformations which were used to refine the library specification

(as described in Chapter 5), these could form the following specific refinement path:

1. Select operation to be refined.

2. Represent complete operation in a concrete specification.

3. Rearrange parts of this specification using transformations such as Move.

4. Use definitions to expand specification.

5. Represent conditions as sequences.

6. Replace nondeterministic choices by guarded commands.

7. Introduce global variables.

8. Represent input with variables.

9. Represent output as assignments to a variable and the printing of this variable.

95

10. Make loop around body of operation.

11. Represent each conditional branch as a procedure.

12. Simplify so that a satisfactory condition causes an exit from the loop.

13. Use the Separate transformation so report only printed at end.

14. Rewrite atomic specification with assignments to the newly represented parts.

15. Introduce separate database which is updated each time a transaction takes place.

Having constructed a refinement path, the elTects of changes in the requirements of the

library system could be investigated. These changes were selected according to the effects

they had on the very basic requirements of the system and on the check out specification

in particular. The results are described in Chapter 5 and from these a general procedure

for dealing with changes to similar types of specifications can be deduced.

It is difficult to draw up a step-by-step approach to dealing with changes to a specification

of a data intensive nature since the effect of changes varies very much from case to case.

However, the nearest approximation of such an approach for the library system is as

follows:

1. Identify the basic data types altered by the change.

2. If other parts of the specification are unaffected, introduce or remove a data type

to accommodate this change. That is, the data type can be used to represent the

change if this is independent at the highest level of abstraction.

3. If step 2 is possible, follow the method suggested for the computation intensive

situation.

4. If step 2 is not possible, investigate whether it is possible to change one of the

conditions independently of the rest.

5. If the above is possible, make the change and remove all transformations pertaining

to this condition. Use the transformations in the order in which they are now found

and add extra transformations to the end of the path.

96

6. If step 4 is not possible, link all conditions affected by the change and rewrite these

according to the new requirements. Remove all the transformations linked to these

particular conditions and add extra transformations to the end of the refinement

path to develop new code corresponding to these conditions.

The above is very general and only covers simple alterations to the data types or conditions.

It is impossible to investigate any further since the problem itself is only an example and

not a true indication of the more particular problems found in real cases. For this reason,

the problem of the storage control interface was chosen to test the method for both data

and computation intensive specifications. However, the range of changes which can be

carried out in the real case is wide and has quite far-reaching consequences. This means

that parts of the method need extending and a full set of conclusions from this work cannot

be drawn up at present since several months will be needed for working on this problem.

Initial results indicate that the basis of the method is good, however, and that it is usually

possible to use the refinement path again for small changes.

6.2 Maintainability of Case Studies

Having experimented with the use of a refinement path when changes are made to a

specification, the last results involved assessing the maintainability of the software for the

integer square root and library examples. Ideally the success of the method could be

ascertained by evaluating the maintainability of the WSL specification, the intermediate

refinement stages and the code which was produced. This "maintainability factor" could

be used to compare this approach with standard refinement techniques such as Morgan's

refinement calculus and the IBM Hursley Park Method.

Unfortunately there are no standard metrics for assessing maintainability at higher levels

which makes the above mentioned evaluation impossible. As with software quality, it is

difficult to quantify maintainability but an examination of the code can provide insights

into which maintainability factors exist. Factors which have been recognized to contribute

towards the maintainability of software include modularity, complexity, consistency and

expandability. Each of these can be examined for the code generated when using the

97

method with the integer square root and library case studies.

Modularity refers to the extent to which a system can be decomposed into smaller sections.

To be maintainable, software must remain as independent as possible but include enough

comprehensive links to bind the code together. Comparing the code produced for the

integer square root, the WSL code has the same modularity to the code produced from

Morgan's refinement calculus. However, the development of the code using transformations

is more modular since it is easy to add or remove transformations in the refinement path to

develop code with different efficiency. Morgan's refinement calculus involves a dependency

on earlier stages of the development and so one cannot remove and extend sections of the

path without drastically altering the code which is produced.

Looking at the library system, the code produced from transformations is more modular

than the code developed from Z since it has several distinct procedures which are inde

pendent from one another yet linked in a sequence in the loop. The benefit of this is

that procedures can be altered, removed or added without affecting the rest of the code

drastically. This is an improvement on the Z refined code where half the code is reliant

on the results of the earlier section. This code does not consist of several independent,

cohesive modules and any change to a part of this software could cause a side effect.

Maintainable software must be as simple as possible; the complexity must be minimised.

Evaluating the complexity of the integer square root problem through the use of metrics

did not provide much of a fulcrum for comparing the transformational approach with the

use of the calculus. For instance, the LOC metric [27] gives values of 6 and 11 respectively

for the code produced from transformations and the calculus. This would indicate that

the method does produce code of a minimum complexity. However, this is very much a

matter of how the code is actually written. If the code produced from the calculus was

written in WSL syntax, then its complexity would be 7 and ordy slightly more complex

than the code produced using the method.

The metrics described in chapter 5 provide a better indication of the differences between

the two pieces of code as far as complexity is concerned since the library problem is larger

and less dependent on variations in syntax. However, it was stUl found that neither is

more complex than the other since the values of complexity differ according to the measure

98

being used. On the other hand, the code produced using transformations is simpler for

the purposes of modification.

Consistency involves the use of some standards and conventions so that the format of

modvdes is similar. This makes the understanding of the program much easier. Since the

refinement by transformation method involves writing all constructs from specification to

code in WSL, there is a great deal of consistency. Users need only acquaint themselves

with the standard document on the syntax and semantics of WSL [83] (see Appendix A)

and from this understand any of the code, specifications and intermediate stages generated

from the method. Again, this is an advantage over the refinement calculus or Z refinement

method since although there are standard formats for the specification level, the code can

be represented in any language.

The last measure for maintainability to be discussed here is expandability, the ease with

which the code can be added to. This is reflected by some of the changes discussed

earlier, and it was found that the refinement by transformation method produced code

which was easier to adapt and expand on. The work carried out on the integer square

root problem illustrated this point. It was easy to refine the problem using four simple

transformations and produce some basic code. However, to make the code more efficient,

extra transformations could be added for more specific code. At earlier stages of this

development it was easy to separate parts of the specification and use transformations to

expand different sections in different ways. The refinement calculus relied upon a more

standard approach which was less flexible and involved dependencies on earlier stages of

the development of the code. This made it difficult to expand on the software.

For the library system example, each procedure can be added to without affecting the

main body of the software and extra procedures can be added at any stage prior to the

MAIN procedure. Code which does not involve testing for conditions can be added after

the do loop. Again, transformations can be used in different orders and different emphases

making the software easier to expand upon than with the Z refinement method.

A conclusion from this is that the method produces software which is modular, consistent,

of low complexity and easily expandable. Tliis combination of qualities makes for software

which is maintainable. A more quantitative approach is stiU not possible for the specifi-

99

cation levels but the possibility of applying function points to test the maintainability of

different levels of the software is currently being investigated.

6.3 Summary

This chapter summarised results from the application of the method to case studies reliant

upon computation and the organisation of data and described conclusions on the general

approach to similar problems. The maintainability of the case studies was assessed.

100

Chapter 7

Conclusions

This chapter will summarise the problems which were encountered and solved while re

searching the new method. The way in which the method works for general problems

of both a mathematical and organisational nature will be discussed with reference to a

third case study which is currently being worked on. Conclusions to the thesis include

future developments of this research; the application of the method to further case studies

and the development of a tool based upon the Maintainer's Assistant for automating the

method.

7.1 Problems Encountered

The main aim of this research was to produce a method for maintaining new software. The

first problem, therefore, was deciding which areas of software engineering to address. The

fact that the Maintainer's Assistant vi!LS being developed by the University of Durham and

hence readily available made transformational programming and refinement focus areas.

While the tool was aimed at restructuring, the transformation set could be extended to

specification levels and so the possibility presented itself of using the transformations for

refinement.

101 f \ . \ ,

Once these initial decisions had been made there were a number of problems which were

encountered while working on this project. Some of these were:

1. how to use WSL to represent formal specifications.

2. which refinement strategies to use when building a refinement path.

3. which extra transformations to implement.

4. identifying the types of changes which could be made to a system.

5. identifying the qualities of "maintainable software".

6. how to produce an automated method involving the "Maintainer's Assistant".

Such problems could not be solved without using concrete examples. It was necessary to

select some examples of specifications, refine these into code and see the effect that changes

in the specification had upon the development of the code. The only way in which the

effectiveness of a method could be judged was by selecting problems which had already

been refined using different methods. These could supply suitable comparisons for the

development of refinement paths and for the maintciinability of the software which was

produced.

7.2 Problems Solved

The first step towards tackling the problems listed above involved selecting suitable case

studies. The first decision was to choose examples which had utilised different methods

of refinement so that the idea for using Ward's transformations (and extensions of these)

for refinement could be justified. The two best representatives of the opposing refinement

calculi and refinement methods were deemed to be Morgan's refinement calculus and the

IBM Hursley Park Method of refinement. So two case studies involving these needed to

be selected.

Morgan's refmement calculus is well defined in his book, Programming from Specifications

[59] and there are a number of case studies described where he applies the calculus to a

102

formal specification and develops an implementable algorithm from this. A very simple

one, the integer square root, was selected as a good representative of how to refine a

mathematical function. This was a good starting point since it could help to form the

basics of the method when functionality alone was important.

The first problem identified earlier, using WSL to represent formal specifications, was

easily solved since this formal specification was based on algebraic notation which was

already defined in the WSL language. However, deciding upon how to refine this particular

case study (item 2) was problematic.

Initial transformations are obviously based upon expanding the functions involved accord

ing to their syntactic definitions and introducing bounds to the problem. At this stage

a simple transformation which introduces a loop can make the problem implementable.

However, the code is not very efficient and changes in its requirements would involve

many extra steps of calculation. So it is necessary to extend the refinement path and

extra refinement strategies were identified to do this. These included the "divide and

conquer" strategy and a strategy of introducing recursion, simplifying and removing re

cursion. These are recognized strategies when transformations are used for refinement but

had not been practised in Morgan's treatment of the integer square root problem.

This work gave some indication of which extra transformations needed to be implemented

but identified a further problem. The development of a program from a specification

sometimes uses algebraic axioms and definitions. As these are quite extensive and not

implemented in the Maintainer's Assistant, the method would need to rely upon an addi

tional tool for pure logical reasoning (such as the Boyer-Moore tool). This was the first

indication of hindrances in solving problem 6.

Returning to problem 4 however, identifying the types of changes was very dependent on

the specification itself. After investigating the effect which a number of changes in the

specification had upon the refinement into code, only two categories were identified for

this particular example. The first involved the aspects of the function itself and the second

the bounds of the actual problem. All other changes were variations and combinations of

these and so it was only necessary to standardise the approach to changes representative

of these two categories.

103

Viewing the effect that changes had on the development of the code indicated whether the

refinement by transformation approach was suitable for producing maintainable software.

From this, qualities determining maintainability could be identified. Software is easier to

change when it is modular, consistent, expandable and of minimum complexity. Having a

formal development path ensured that this was the case and allowed changes to be made

at higher levels. This eliminated the need to investigate the interactions between sections

of code and maintainability became more of a specification issue.

Having identified a method for producing maintainable software based upon a functional

specification, it was then necessary to investigate possibilities for larger specifications

which relied upon the organisation of data within the system. It was also time to compare

the transformation approach with the IBM Hursley Park Method. A case study of a

library system which had been developed from its Z specification using this method was

thus selected.

Returning to the list of problems to be solved, the first proved quite difficult to solve for

this case study. WSL has a very limited set of constructs for higher level specifications. As

everything relies upon atomic specifications and guard statements (see [83] and Appendix

A), attempting to present an equivalent to Z schemas was a major problem. Constructs for

representing abstract data types and relationships between parts of a complex specification

are not present in WSL.

This problem was solved by defining a subset of WSL for representing the library specifi

cation based upon how the Z had been originally used. Syntax for abstract and concrete

states and operations was developed for testing out the method on this particular case

study. The result was quite complex and indicated a further need to define new constructs

in WSL. The problem of how to produce a general WSL specification language into which

all major specification languages can be translated is still being addressed.

The types of constructs used greatly affected which transformations could be used for the

development of the code. As comparing the transformation approach to the Z Method

was essential, it was necessary to begin from the same levels of abstraction so that later

changes could be made at these levels. Many of the early transformations are ones also used

for restructuring code and are already automated in the Maintainer's Assistant. These

104

were of the form of rearranging sections of the specification and joining parts together.

Transformations not present in the tool involved those which interpreted the meaning

of the newly defined high level constructs and rewrote these using different syntax and

introducing more specific cases.

Again, this work indicated some extra transformations to be implemented but identified

further problems. The syntax and semantics of the specification greatly affects the trans

formations which can be applied. Does this imply that new transformations need to be

built into the Maintainer's Assistant each time a new system is being maintained?

The types of changes which might be made to the library system could again be categorised

but differed greatly from those of the integer square root. Changes within the library came

under three categories:

1. a change in the refined operation which affects only this operation.

2. a change in the refined operation affecting other operations.

3. a change in a basic data element of the system.

As expected, these changes were in ascending order of complexity and altered the devel

opment of the code in a variety of ways. They were selected for the effect that they each

had on the requirements of the system and further changes proved again to be special

combinations of these. These changes proved that the development of the system had

been carried out with a view to maintainability and in some cases caused a revision of

this development. In fact, the refinement path described for developing the check out

operation of the library system is an edited version of the original (such as reordering the

conditions in the specification was added as an early transformation to make it easier to

reuse the path).

While qualities of modularity, complexity, consistency and expandability are still impor

tant for maintenance, this case study illustrated that the order in which parts of the system

were described and the aspects which determined the definition of these parts both af

fected the maintainability of the software. However the order of the transformations as

applied to the specification was not always that important unless cases, bounds and pro-

105

cedures were being introduced. That is, many steps in the refinement path are purely for

rearrangement so that a transformation which imports new detail and knowledge can be

carried out.

The idea that there is no ideal refinement strategy or path makes automation of the method

even more difficult. Having decided that the Maintainer's Assistant is not sufficient due

to laws of logical reasoning and definitions which need to be used in a refinement path,

producing a tool to automate the method is further complicated by the fact that new

transformations can be defined for each different system and refinement paths can be

constantly altered according to the needs of the user. A tool must enable the user to decide

what refinement strategy to use, to define new transformations if needed, to rearrange the

order of transformations in a refinement path and to change transformations within this

path. Such a tool is not impossible but could be inadvisable! Further ideas of how the

method could be automated are described in the section of future developments, after an

attempt to generalise the method is made.

7.3 Application Of Method

The work on the case studies has provided indications of a general method for produc

ing maintainable software for a formally specified system which combines mathematical

functions with the organisation of data. This method is currently being tested on a Z

specification of a real system. This case study involves a storage control interface which

was developed by IBM but followed no real method for its refinement. The formal Z spec

ification was provided together with the code which was produced but linking the two has

been extremely difficult. This has provided the scope for developing a refinement path

from transformations without following any current trends.

With such a wide horizon of possible refinement paths, work is still being carried out on

this case study and no ideal refinement path has been identified. In fact, the way in which

this problem was specified is still being questioned and further syntax for the WSL is being

defined. However, it has been possible to see whether a combination of the approach taken

to the two case studies can be used for systems which combine mathematical functions

106

with data arrangement. The size of the case study makes its presentation difficult and so

only the conclusions of what the general method actually is and the results from applying

it will be described.

The method basically combines the approach used for the first case study with that for

the second. The refinement strategy used for the library system is initially followed and it

is only when the specification takes the form of procedural code that the need for refining

mathematical functions arises. So a very crude description of the refinement strategy

needed for producing code from a large WSL specification of the Z model is as follows:

1. Identify operation to be refined into procedural code.

2. Write specification for complete operation based on concrete states.

3. Rearrange so that like postconditions can be assembled together.

4. Expand on any definitions to produce extra postconditions.

5. Substitute concrete for abstract (if possible).

6. Combine and simplify conditions where possible.

7. Rearrange conditions so that general precondition is followed by error conditions

and the successful case is last.

8. Rewrite conditions to involve sequences.

9. Introduce guarded commands.

10. Create variable declarations (to replace inputs and outputs).

11. Make loop.

12. Replace sections with more specific definitions.

13. Introduce procedures (exit out of loop if a procedure is successful).

14. Add assignments and delete assertions where possible.

15. Expand functions where necessary.

16. Introduce bounds.

107

17. Introduce cases.

18. Divide-and-conquer (for more efficiency).

19. Introduce Recursion, Simplify and Remove Recursion (if necessary).

20. Use additional refinement-by-transformation strategies (where necessary).

This a very generalised form of any refinement strategy which might be used but illustrates

how it is first essential to deal with the way in which data is organised and re-interpret this

before working upon the actual functions. So the general approach is to use the method

for refining the library followed by that for refining the square root.

The way in which changes should be implemented is not as straightforward. The types of

changes described in the square root case study obviously take eflFect in the lower levels

of the development of the storage control interface. Changes involving mathematical

functions rely solely upon pinpointing where the function occurred and dealing with the

change from that point onward in a similar manner as suggested for the problem of the

square root.

Changes which affect the data or operation involved have a much larger effect on the

refinement path since the higher levels are affected here. Again, this can be dealt with

as with the library case study but causes a lot more work in redeveloping and changing

the refinement path. Changes in the data parts themselves usually require a new set of

transformations and reusing the path becomes much more difficult. Problems of locating

where a change is best made and incorporating new transformations in the middle of a

refinement path are still being tackled. There is no ideal solution but whether there is an

optimal one is stiU difficult to foresee with such a real situation.

7.4 Future Developments

Future developments include applying the method to further case studies to test it on

problems not originally specified using Z. Once the method has been successful with a

single specification it can be extended to systems where many interconnected specifications

108

exist. That is, there are components within these systems which can each be specified but

may affect each other in some way. For instance, the library system discussed previously

includes specifications of checking books out, returning books, adding and removing books

from the shelves, producing lists of borrowed books and finding the last borrower. If a

restriction is placed so that members of staff cannot borrow books, then not only is

the specification for checking books out affected but so is that of the last borrower and

borrowed books.

Some database needs to be developed so that any similarities between the specifications

are connected in some way; alterations in one specification can influence the other. This

requires the use of tree structures so that links between specifications can be established.

The original method will be applied to the first altered specification and then this tree

structure should indicate where the method can be applied to other specifications.

Thus the method is dependent upon three things: transformations developed already for

the Maintainer's Assistant, a history of the transformations and changes which have taken

place and a tree structure for linking specifications and their changes. With so many

details involved, an automation of the method should be attempted. Ideas for a tool are

described in the next section. The tool will be directly linked to the Maintainer's Assistant

and a tool for algebraic reasoning.

7.4.1 The Tool

There wiU be two separate versions of the tool. The first will consist of a single inde

pendent specification and changes made to i t , while the second will extend this idea to

systems where many specifications exist and are interrelated. Both will involve the use of

a transformation editor and change editor and wiU consist of three windows at the basic

level: a refinement window, a descriptive window and a history window.

The refinement window will illustrate the specification throughout its refinement stages

and should highlight each change to the original specification. The descriptive window

will have two sections: one describing which transformations have taken place during the

last refinement and the other describing the current stage of refinement with some English

109

text. The history window draws a new box for each refinement and highlights the current

situation compared to the history of events. The function of these windows will be easier

to understand in the ensuing descriptions of the tool.

A brief description of how the tool might appear in its initial stages of development follows.

Initial Stages

The first screen will consist of three different sections: the refinement window, descriptive

window and history window, as mentioned previously. The refinement window will consist

of the specification itself while the descriptive window will remain blank as far as listing

transformations are concerned but contain the words: "Original Specification" under the

English text section. The history window will include a single highlighted box to illustrate

that no refinement has as yet taken place. An illustration of how this screen will appear

for a computation-based specification is as follows:

History Description

Spec

1)

2) Original Specification

< size, row, col > / <> .LTS

There are three options possible at this point. The user can select LTS and request its

definition, select the whole specification and request a first refinement of it , or select the

whole specification and request a change. Requesting the change requires the change

editor and is a fairly complex process which will be developed and explained later. First,

examples of defining and refining this specification will be illustrated.

110

I f tiie user selects LTS using the mouse and clicks on the menu option Define, then the

following screen wil l result:

History

Spec

Description

1)

2) Definit ion of LTS

< size, row,
true^square(size, row, coi)A

(V size', row', col'.{true—square{size', row', col')

size' < size))
J

Selecting the truesquare predicate and requesting its definition will further result in a

screen as follows:

History Description

1)

2) Definit ion of true_square
Spec - D e f ~t

Ill//
u/TI/

1)

2) Definit ion of true_square

1)

2) Definit ion of true_square

<r si7P milt ml / <r-^ /.T.*?

true—squareisize, row, col)A 1
(V {size > 0) A (1 < row < m) A (1 < col < n)

A{size < row) A {size < col)A
(V i,j.{row — size < i < row A col — size < j < col)

b[i,j] = true

This is the furthest that we can get as far as definitions are concerned (and clicking on

the Define option on the menu will result in nothing occurring) and we must return to

the original specification so that refinement or change can be illustrated. This is done by

selecting the option Back on the menu. The screen which results is as follows:

i l l

History

wm D e f H Defl

Description

1)

2) Original Specification

< size^ row, col > / <> .LTS
CLICM-K

Define

Refine

Cliaiige
Back

Previous

Trans

Reform

To the right of the screen is a picture of how the menu might appear. The various options

listed can be described as follows:

Define provides definitions of abbreviated terms i f these exist.

Refine suggests a refinement strategy using transformations from the Maintainer's As

sistant.

Change invokes the change editor so that changes to the specification can be made.

Back displays the original specification.

Previous displays the previous screen.

Trans displays a list of the transformations used for refinement of the current specifica

tion.

Reform requests the use of the Maintainer's Assistant.

There wi l l be other possible options but until the tool is implemented i t is difficult to

decide how these wil l appear. The ideas described in this section have given an outline to

how the tool could appear. Decisions of how i t will actually automate the method can be

made once work on the storage control interface case study (and possibly others) has been

completed and the application of the method to real problems has been standardised.

112

7.5 Summary

This chapter provided the conclusion of the thesis. Problems which were encountered dur

ing the research are described, followed by those which were actually solved. Conclusions

on how the method applies for real examples which combine computation and data were

described. Initial results from applying the method to such a real case were provided.

Future developments for this work involve the application of the method to further case

studies and the development of a tool based upon the Maintainer's Assistant foi automat

ing the method. Ideas of how such a tool should be built are presented at the end of the

chapter.

113

Appendix A

W S L SyntEix and Semantics

This Appendix briefly defines the syntax and semantics of the Wide Spectrum Language,

WSL, as detailed in the document [83].

A . l Background

A wide spectrum language is one which includes both low-level programming constructs

and high-level abstract specifications wit l i in a single language. Such a language forms an

ideal tool for developing methods for formal program development.

The language is defined in a series of stages or levels, with the lowest level being an

extremely simple and tractable "kernel" language whose syntax is based on infinitary

logic, and whose semantics is defined denotationally. In contrast to other work, a purely

applicative kernel is not used; instead, the concept of state is included, using a specification

statement which also allows specifications expressed in first order logic as part of the

language, thus providing a genuine wide spectrum language.

Fundamental to the approach is the use of infinitary first order logic both to express the

weakest preconditions of programs [29] and to define assertions and guards in the kernel

114

language.

A program S is a piece of formal text, i.e. a sequence of formal symbols. There are two

ways in which to interpret this:

1. Given a structure^ M for the logical language C from which the programs are con

structed, and an initial state space (from which a suitable final state space is con

structed), a program can be interpreted as a function / (a state transformation)

which maps each initial state s to the set of possible final states for s. A program

can therefore be interpreted by itself as a function from structures to state transfor

mations.

2. Given any formula R (which represents a condition on the final state), the formula

W P (S , R) (the weakest precondition of S on R) can be constructed. This is the

weakest condition on the initial state such that the program S is guaranteed to

terminate in a state satisfying R i f it is started in a state satisfying W P (S , R) .

A.2 The Kernel Language

A.2.1 Syntax of Express ions

Expressions include variable names, numbers, strings of the form 'Hext...", the constants

N , R , Q, Z, and the following operators and functions: (in the following ei, 62 etc.

represent any valid expressions):

Numeric operators: ei + 62, ei - 62, ej + 62, e i / e2 , e^^ ej +* €2, ei mod 62, ei div 62,

frac(ei), abs(ei), sgn(ei), max(ei, 62,...), min(ei, 6 2 , . . .) , with the usual meanings.

Bit operators: (these are used in ReForm in translating Assembler code): ei V 62,
bit bit bit

ei V 62, ei ® 62, - 1 e j . The following implement floating point, decimal and

structure for a logical language C consists of a set of values, plus a mapping between constant
symbols, function symbols and relation symbols of C and elements, functions and relations on the set of
values.

115

Constant Functions: Ka is the constant function with value a, Ko(2;) = a for any x.

An identity element of ® is denoted id®. The function seq- maps any value to the

corresponding singleton sequence: seq-(2;) = seq a;.

Map: The map operator * returns the sequence obtained by applying a given function to

each element of a given sequence: (/ + seq fli, 02, • • - j On) = (/ (o i) , / (a 2) , • • •,f{an))-

A map to a set can also be applied in the obvious way.

Reduce: The reduce operator / applies an associative binary operator to a list and returns

the resulting value: (®/ seqai, 0 2 , . . . , a„) = ai ® 02 ® . . . ® o„. So, for example, i f s

is a list of integers then +/s is the sum of all the integers in the list, i f q is a list of

lists then +/{i * q) — ^ { concat q) is the total length of all the lists in q.

Projection: The projection functions T T I , 7r2,. . . are defined as a;, j /)) = x,'K2{{x,y)) —

y, and more generally, for any sequence s: 7r,(s) = s[«].

A . 2 . 2 Syntax of Formulae

In the following Q , Q i , Q 2 , etc. represent arbitrary formulae and ei, 62, etc. arbitrary

expressions:

Relations: ei = 62, ei ^ 62, ei < 62, ei < 62, ei > e2, ei > 62, equal(ei, 62) , eq(61,62),

even?(ei), odd?(ei);

Logical operators: - iQ, not(Q), Q i V Q2 , Q i A Q2;

Quantifiers: V v . Q , 3t;.Q.

A .2 .3 Syntax of Statements

The kernel language consists of four primitive statements, two of which contain formulae

of infinitary first order logic, and two compound statements. Let P and Q be any formu

lae, and X and y be any non-empty sequences of variables. The following are primitive

statements:

117

1. Assertion: {%} is an assertion statement which acts as a partial skip statement. I f

the formula Q is true then the statement terminates immediately without changing

any variables, otherwise i t aborts (abnormal termination and non-termination are

treated as equivalent, so a program which aborts is equivalent to one which never

terminates);

2. Guard: [Q] is a guard statement. It always terminates, and enforces P to be true

at this point in the program without changing the values of any variables. It has the

effect of restricting previous nondeterminism to those cases which will cause P to be

true at this point. I f this cannot be ensured then the set of possible final states is

empty, and therefore all the final states will satisfy any desired condition (including

P);

3. Add variables: add(x) adds the variables in x to the state space (if they are not

already present) and assigns arbitrary values to them;

4. Remove variables: remove(y) removes the variables in y from the state space (if

they are present).

There is a rather pleasing duality between the assertion and guard statements, and the

add and remove statements.

The compound statements are as follows, for any kernel language statements Si and S2,

the following are also kernel language statements:

1. Sequence: (S i ; S2) executes S i followed by 83;

2. Nondeterministic choice: (S i n S2) choses one of S i or S2 for execution, the

choice being made nondeterministically;

3. Recursion: (fxX.Si) where X is a statement variable (taken from a suitable set

of symbols). The statement S i may contain occurrences of X as one or more of its

component statements. These represent recursive calls to the procedure whose body

is S i .

This very simple kernel language is all that is needed to construct the wide spectrum

language, for example an assignment such as a; := 1 is constructed by adding x and

118

restricting its value: add((a;)); [a; = 1]. For an assignment such as a; := a; + 1 the new

value of X must be recorded in a new variable, x' say, before copying i t into a;. So a; := a; -|-1

can be constructed as follows: add((x')); [a;' = x + 1]; add((a;)); [a; = a;']; remove(a;')

Three fundamental statements can be defined immediately:

abort =£)ir {false} null =DF [false] skip =DP {true}

where true and false are universally true and universally false formulae, defined as:

true —DF y x.{x = x) and false =DF -iVa;.(a; = x).

A statement whose set of final states may be empty is called a "nuH statement". An

example is the guard, [false], which is a "correct refinement" of ony specification what

soever. While any null statement, and guard statements in general, cannot be directly

implemented, they are nonetheless a useful theoretical tool. Only null-free statements can

be implemented, so i t is important to be able to distinguish easily which statements are

nuU-free. This is the motivation for the definition of the specification statement.

The notation x := x'.Q is defined where x is a sequence of variables and x' the corre

sponding sequence of "primed variables", and Q is any formula. This assigns new values

to the variables in x so that the formula Q is true where (within Q) x represents the old

values and x' represents the new values. I f there are no new values for x which satisfy Q

then the statement aborts. The formal definition is:

X := x'.Q ^nF ({ 3 x ' . Q } ; {add{x'); ([Q]; {add{x); ([x = x']; remove{x'))))))

An important property of this specification statement is that i t is guaranteed null-free.

A.3 WSL Syntax and Semantics

The kernel language is extended by defining new constructs in terms of the existing ones

using "definitional transformations". A series of new "language levels" is built up, with

the language at each level being defined in terms of the previous level: the kernel language

119

is the "zero level" language which forms the foundation for all the others.

A.3.1 T h e F i r s t Leve l Language

The first level language consists of the following constructs:

1. Sequential composition: The sequencing operator is associative so the brackets can

be eliminated:

S i ; S 2 ; S 3 ; . . . ; S n =£)f (.. . ((Si ; S2); S3); . . . ; S n)

2. Deterministic Choice: Guards can be used to turn a nondeterministic choice into a

deterministic choice:

if B then S i else S2 fl ^DF (([B] ; S I) n (h B] ; S2))

3. Specification statement: This was discussed in Section A.2.3:

X := x ' .Q ^DF ({ 3 x ' . Q } ; (acirf(x'); ([Q]; (add(x); ([x = x']; remove{-s!))))))

4. Simple Assignment: I f Q is of the form x' = t where t is a list of terms which do

not contain x' then the assignment is abbreviated as follows:

X := t -DF X := x'.(x' = t)

I f X contains a single variable, a; := (i s written for {x) := (t).

5. Nondeterministic Choice: The "guarded command" of Dijkstra [29]:

i f B i ^ S i =iPir({Bi V B 2 V . . . V B n } ;

• B2 - S2 (. . . (([B i] ;S i)n

([B2];S2))n

• B n ^ Sn fi . . .))

120

6. Deterministic Iteration: A while loop is defined using a new recursive procedure X

which does not occur free in S:

while B do S od =pf {iiX.{{[B]; S) n [-B]))

7. Nondeterministic Iteration:

d o B i - V S i =nF while fBi V B? V . . . V Br,) do

• B 2 ^ S2 i f B i ^ S i

• B 2 ^ S2

• Bn -> S n o d

• Bn Snflf id

8. Local Variables: These should be properly initialised, for example by using the

scheme in [29]:

begin x : S end =£)f {add{x.); (S; remot;e(x)))

9. Initialised Variables:

begin x := t : S end =DP {add{x); {[x = t]; (S; nemot;e(x))))

10. Counted Iteration. Here, the loop body S must not change i, b, f or s:

for i:=btof step s do D od = jjf begin i := b : while i < f do

S; «• := J + s od end

A.3 .2 E x i t Statements

The programming language includes statements of the form exit(n). where n is an integer,

{not a variable) which occur within loops of the form do S od where S is a statement.

They are "infinite" or "unbounded" loops which can only be terminated by the execution

of a statement of the form exit(n) which causes the program to exit the n enclosing loops.

121

To simplify the language exits which leave a block or a loop other than an unbounded

loop are not allowed. More formally, the notion of a simple statement is defined:

Definition A.3.1 A simple statement is any first level language statement apart from:

(1) a sequence, (2) a deterministic or nondeterministic choice, and (3) a do .. .od loop.

A simple statement in the body of an action may not have an action call as a component

or subcomponent. A simple statement may not have an exit (A:) statement as a component

unless i t occurs within k or more nested do . . .od loops. Note that do . . .od loops and

action systems are allowed as components of a simple statement, but no simple statement

apart from call can affect the value of action and no simple statement apart from exit

can affect the value of depth.

The interpretation of these statements in terms of the first level language is as foUows (but

see the next section for the fuU interpretation when action systems are also involved):

There is an integer variable depth which records the current depth of nesting of loops.

At the beginning of the program the assignment depth := 0 is inserted and each exit

statement exit(fc) is translated: depth := depth-/? since i t changes the depth of "current

execution" by moving out of k enclosing loops. To prevent any more statements at the

current depth being executed after an exit statement has been executed, aH statements

are surrounded by "guards" which are if statements which will test depth and only allow

the statement to be executed i f depth has the correct value. Each unbounded loop do S

od is translated:

depth := n; while depth = n dfi guardn(S) od

where n is an integer constant representing the depth of the loop (1 for an outermost loop,

2 for double nested loops etc.) and guardn(S) is the statement S with each component

statement guarded so that i f the depth is changed by an exit statement then no more

statements in the loop will be executed and the loop will terminate. The important

property of a guarded statement is that i t will only be executed i f depth has the correct

value. Thus: {depth ^ n } ; guardn(S) w {depth ^ n} ; skip. So for example, the

122

program:

do do last := iiem[z];

i := i + 1;

i f 2 = n + 1 then write{count); exit(2) fl;

if «fem[«] ^ last then tDn^ef count): exit (l)

else count := count + number[j] fi od;

count := number[?] od

translates to the following:

depth := 1;

while depth = 1 do

depth := 2;

while depth = 2 do

last := item[?];

i := i + 1;

Hi = n + 1 then t£)nfe(count); depth := depth - 2 fl;

if depth = 2

then if item[i] ^ last then lynie(count); depth := depth - 1

else count := count -|- number[i] fl fi od;

i f depth = 1 then count := number[«]

A .3 .3 Ac t ion Systems

An Action Systemis a set of parameterless mutually recursive procedures together with the

name of the first action to be called. A program written using labels and jumps translates

directly into an action system. Note however that i f the end of the body of an action is

reached, then control is passed to the action which called i t (or to the statement following

the action system) rather than "falling through" to the next label. The exception to this

is a special action called the terminating action, denoted Z, which when called results in

the immediate termination of the whole action system.

123

Definition A.3.2 An action is a parameterless procedure acting on global variables. It

is written in the form A = S where A is a statement variable (the name of the action)

and S is a statement (the action body). A set of (mutually recursive) actions is called an

action system. The difference between actions and ordinary procedures is that an action

system may include calls to the special action name Z which has no definition. A call to Z

causes termination of the whole action system even if there are unfinished recursive calls.

An occurrence of a statement call X within the action body refers to a call of another

action. It should be noted that an action system is a statement (in fact a simple statement

as defined above) which can form a component of compound statements—including other

action systems. A simple statement (apart from an action system) may not contain action

calls.

An example of an action system is:

actions A i :

A i = S i .

A 2 = S2.

An = Sn- endactions

(where statements S i , . . . , SQ must have no exit(fc) statements within less than k nested

loops). More details on how this is defined using the kernel language can be found in [83].

A.3 .4 Procedures wi th Parameters and L o c a l Variables

Recursive procedures and action systems are similar in several ways, the differences are:

• There is nothing in a where statement which corresponds to the Z action: all

procedures must terminate normally (and thus a "regular" set of recursive procedures

could never terminate);

• Procedure calls can occur anywhere in a program, for example in the body of a

while loop: action calls cannot occur as components of simple statements.

124

An action system which does not contain calls to Z can be translated to a where clause

(the converse is only true provided no procedure call is a component of a simple statement):

actions A i :

A i = S i .

A2 = S2.

An = Sn. ^ffidftgtiipfliS

is equivalent to:

begin

A i

where

procAi = Si [Aj/callAj]. .

procA2 = S2[Ai/csUAi].,

procAn = Sn[Ai/callAi].

end

A.3 .5 Funct ions and Boolean Funct ion

A where clause may also include functions and boolean functions with parameters. These

are defined in terms of their "procedural equivalent" (a procedure which stores the result

of the function in a given variable) and they are allowed to use local variables and have

side effects (using the [S; ej notation for expressions with side effects). For the purposes

of this transformation system we have decided to assume that all expressions, functions

and Boolean functions are side-effect free and non-recursive: in other words, all side effects

must be made explicit as statements. This simplifies the design of many transformations

without adding significantly to the complexity of translators into WSL. Note that the

implementation of the transformation system (which wiU be largely written in WSL)

may use functions with side effects (particularly in the data table system), however, the

125

specification of these functions must be as pure functions. In other words, the side effects

are purely for implementation efficiency and any user of the functions can assume they

are pure functions.

126

Appendix B

Transformations

This appendix wiU describe some of the very basic transformations used by the Main

tainer's assistant and wil l list the ful l set of those used by the case studies described in

this thesis.

B . l Basic Groups

The transformations implemented in the Maintainer's Assistant can be classified into nine

groups which represent the type of action which the transformation performs. The groups

and some of the main transformations which compose them can be described as follows:

1. M O V E .

Transformations in this group involve the movement of selected parts within a speci

fication, code or intermediate level. Examples of these include Multi - Move,

Separate — S w a p - W i t h - N e x t , Swap-With-Previous. As their names sug

gest, they all involve swapping sections of code or specification i f the semantics

remain the same. The arrows indicate which direction this move will take place.

The following illustrates an example of this:

127

var a:=0 ;

actions: M A I N :

M A I N = = if (a<5) then a:=4; a := (a+ l)

else a : = (a + l) fl.

end-actions end

TRANSFORMATION = Separate

(The code in bold face is the part which has been selected for transformation. This

transformation should puU the assignment a :=(a+l) out of the loop, leaving a re

dundant else...)

var a:=0 ;

actions: M A I N :

M A I N = = if (a<5) then a:=4 else skip fl; a :=(a+l) .

end-actions end

2. J O I N .

These transformations involve combining sections of code or specification. Exam

ples of these include Absorb, Merge Join-Adjacent-Cases, Forward-

Expand-Cond, Put-Into-Next-Loop. Again, the names are representative of the

fimction of the transformation and the following illustrates a simple example of one

of these:

i f (a>5) then a:=6 fi; if (a<=5) then a:=4 fi

TRANSFORMATION = Merge

(This wil l include the highlighted statement in the previous statement so in this case

there is only one main conditional statement which can easily be simplified.)

if (a>5) then a:=6 ; if (a<=5) then a:=4 fl elseif (a<=5) then a:=4 fl

128

3. U S E / A P P L Y .

These traasformations involve using values or conditions within the selected part to

simplify other parts of the specification/code. Examples include Apply Use,

Apply-Assignment-Forwards. An illustration of the use of the last transforma

tion is:

a: =8;

b:=5;

i f (a>5) then b:=(a-5); a:=(a-l); b:=(b+2);

while (a>5) do b:=(a-5); a:=(a-l); b:=(b+2) od fi

TRANSFORMATION = Apply-Assignment-Forwards

(Rewrites the i f statement, using the assigned value of a.)

a:=8;

b:=5;

b:=(a-5);

a:=(a-l);

b:=(b+2);

while (a>5) do b:=(a-5); a:=(a-l); b:=(b+2) od

4. R E O R D E R .

The REORDER group of transformations rearranges the order of specification or

code (as long as the semantics are not affected). Transformations in this group in

clude Take — Out — R e o r d e r - C o n d i t i o n , Invert-Loop, FuUy-Factor-While.

An example of one of these is:

var a:=0 ;

actions: M A I N :

M A I N = = do if (a>=5) then a:=8; exi t (l) else a:=(a-|-2) fi od.

end-actions end

TRANSFORMATION = Reorder-Condition

129

(Changes the order of the conditional statement so that a < 5 is first tested.)

var a:=0 ;

actions: M A I N :

M A I N = = do if (a<5) then a:=(a+2) else a:=8; exi t (l) fi od.

end-actions end

5. R E W R I T E .

These transformations replace the selected part of the specification with something of

the same semantics but different syntax. Examples include Change-Action-Name,

Else -* Elsif, Cond-Abort -» Assert, While -> Proc, Expand-Proc-Call . An

illustration of this last transformation is:

var a:=0;

begin main(var);a:=8 where proc main(var)= =

while (a<5) do a:=(a+2) od. end end

TRANSFORMATION = Expand-Proc-Call

(This replaces the procedure caU with the procedure itself.)

var a:=0;

begin while (a<5) do a:=(a-|-2) od; a:=8

where proc main(var)==wliile (a<5) do a:=(a-t-2) od. end end

6. I N S E R T .

The INSERT transformations will introduce new constructs such as loops, invariants,

assertions and comments. The transformations in this group include Add-Assert ,

Add-Comment , Add-New-Deflnition, Add-Invariant-After, Include-Dummy-

Else , Add-Entire-Loop. The example of code transformed in the REWRITE

description can be further transformed with an INSERT transformation:

var a:=0;

begin while (a<5) do a:=(a+2) od; a:=8

where proc main(var)==while (a<5) do a:=(a+2) od. end end

130

TRANSFORMATION = Add-Entire-loop

(This makes a loop around the expanded procedure call so that is self-contained.)

var a:=0;

begin do while (a<5) do a:=(a-|-2) od; a:=8 od

where proc main(var)==while (a<5) do a:=(a-|-2) od. end end

7. S I M P L I F Y / D E L E T E .

These transformations remove redundant statements or replace expressions with

simpler forms. They include Collapse-While, Delete, Prune-Loop, Remove-

Assignment, Remove-Redundant-Proc, Simplify, Use-Condition-In-If. The

example of code transformed with an INSERT transformation (above) can be further

transformed by:

var a:=0;

begin do while (a<5) do a:=(a-|-2) od; a:=8 od

where proc main(var)==while (a<5) do a:=(a-|-2) od. end end

TRANSFORMATION = Remove-Redundant-Proc

(The procedure is removed since i t is no longer called.)

var a:=0;
do while (a<5) do a:=(a-f 2) od; a:=8 od end

8. M U L T I P L E .

This is a group of transformations which carries out many of the above transfor

mations in one step. Examples of these are Delete-All-Assertions, Expand-All-

Cal ls , Merge-All-Assignments, Replace-All-Values, Simplify-All-Expressions.

MULTIPLE Transformations involve selecting all the specification or code and per

forming the same transformation many times.

9. C O M P L E X .

131

This last group of transformations involves combining several types of transformation

for a particular purpose. These transformations are really strategies (see chapter 3)

for refining or simplifying specifications or code, but can be selected as options i f the

user has a particular objective in mind. Examples of COMPLEX transformations

are Collapse-Action-System , Expand-And-Factor , Fully-Parameterise ,

Loop Recursion, Proc-Body Action-System, Remove-Recursion ,

Substitute-And-Delete, Remove-Tail-Recursion-1.

An illustration of this last transformation is:

var a:=0;

begin main(var) where proc main(var)==if (a<5) then a:=(a+2);

main(var) fl. end;

a:=8 end

TRANSFORMATION = Remove-Tail-Recursion-1

(This is so as to convert the basic recursive statement into an iterative one; i.e.

if-then statement becomes a while statement)

var a:=:0;

begin main(var) where proc main(var)==

while (a<5) do a:=(a4-2) od. end; a:=8 end

132

B.2 Transformations Used in Case Studies

A list of transformations is given for each case study (followed by the group each trans

formation is in , as described in section B . l) . This list is the set of transformations which

were first applied to the specification to produce the code and hence form part of the

derivation history for each case study.

B.2 .1 Integer Square R o o t

1. Remove-Redundant-Function (S I M P L I F Y / D E L E T E) This is used to replace

^ and [J with the definitions of these functions.

2. Substitute-And-Delete (C O M P L E X)

3. Make-And-Use-Assertions (C O M P L E X)

4. Add-Entire-Loop (I N S E R T)

5. Apply-Condition-To-Next (U S E / A P P L Y)

6. Add-Entire-Loop (I N S E R T)

7. Make-Proc (R E W R I T E)

8. Change-Local-Variable (R E W R I T E)

9. Replace-With-Value (R E W R I T E)

10. Remove-Parameter (R E W R I T E)

11. Loop ^ While (R E W R I T E)

12. Simplify (S I M P L I F Y / D E L E T E)

13. Change-Local-Variable (R E W R I T E)

14. Replace-With-Value (R E W R I T E)

133

B.2 .2 L i b r a r y Case Study

1. Multi-Move (M O V E)

2. Expand-Funct-Cal l (R E W R I T E)

3. Simplify (S I M P L I F Y / D E L E T E)

4. Add-New-Guarded-Clause (I N S E R T)

5. Expand-General-Case (R E W R I T E)

6. Make-Assign-Before (I N S E R T)

7. Make-Into-Parameter (R E W R I T E)

8. Add-New-Definition (I N S E R T)

9. Simplify (S I M P L I F Y / D E L E T E)

10. (Transformations 6 to 9 repeated for each variable)

11. Insert /Assert (I N S E R T)

12. Add-Loop-Body (I N S E R T)

13. Prune-Loop (S I M P L I F Y / D E L E T E)

14. Els i f_True Else (R E W R I T E)

15. Make-Proc (R E W R I T E)

16. Make-Proc-Cal l (R E W R I T E)

17. (Transformations 14, 15 and 16 repeated to introduce each of the six procedures

within a loop)

18. Separate ^ (M O V E)

19. Prune-Cond (U S E / A P P L Y)

20. Use-Assertion (U S E / A P P L Y)

21. Brackets (R E O R D E R)

134

22. Add-New-Definition (I N S E R T)

23. Add-Assign (I N S E R T)

24. Replace-And-Simplify (S I M P L I F Y)

25. Add-New-Deflnition (I N S E R T)

26. Substitute-And-Delete (S I M P L I F Y)

27. (... and a sequence of transformations 22 through to 26 for each type)

28. Make-Funct-Call (R E W R I T E)

29. Simplify (S I M P L I F Y)

Chapter 5 describes the refinement of the library case study. To simplify this description,

only stages of the derivation history were listed, rather than the individual transformations.

The above list provides more detail on these transformations and the correspondence

between this list and the stages is as follows:

• Rearrange specification = Transformation 1 (performed several times)

• Rewrite preconditions = Transformations 2,3 (performed several times)

• Introduction of Guarded Commands = Transformations 4,5

• Introduction of Global Variables = Transformations 6 - 13

• Introduction of Procedures = Transformations 14 - 20

• Replacement of Atomic Specification = Transformations 21 - 29

135

Bibliography

[1] ANSI/IEEE., IEEE Standard Glossary of Software Engineering Terminology.

ANSI/IEEE Std 729, 1983.

[2] Arnold, R.S. and Parker, D.A., The dimensions of healthy maintenance. Proceedings

of the 6th International Conference on Software Engineering, 1982, pp 10-27.

[3] Babich, W.A. , Software Configuration Management: Coordination for Team Produc

tivity. Addison-Wesley Publishing Company, 1986.

[4] Balzer, R., Transformational Implementation: An Example. IEEE Trans. Software

Eng., vol.SE-7, no. l .

[5] Back, R. J. R., Correctness Preserving Program Refinements. Mathematisch Centrum,

Mathematical Centre Tracts 131.

[6] Bauer, F.L., A Philosophy of Programming. Lecture Notes in Computer Science.,

vol.46. Berlin-Heidelberg- New York: Springer 1976, pp 194-241.

[7] Bauer, F.L., MoUer, B., Partsch, H. and Pepper, P., Formal Program Construction

by Transformations - Computer-Aided, Intuition-Guided Programming. IEEE Trans.

Software Eng., vol.15, no.2, pp 165-180.

[8] Baxter, I .D. , Design Maintenance Systems. Communications of the ACM, April 1992,

vol.35, no.4, pp 73-89.

[9] Bersolf, E.H., Henderson, V.D. and Siegel, S.G., Software Configuration Management:

An Investment in Product Integrity. Prentice-HaU, Inc., N.J., 1980.

10] Bennett, K.H. , NATS Procurement Strategies for Highly Maintainable Software. Cen

tre for Software Maintenance Ltd. , 1991.

136

[11] Bennett, K .H. , The Software Maintenance of Large Software Systems: Management,

Methods and Tools. Reliability Engineering and System Safety, vol.32,1991, pp 135-

154.

[12] Bennett, K .H. , Cornelius, B., Munro, M . and Robson, D., Software Maintenance, In:

McDermid, J. (ed.). Software Engineer's Reference Book. Butterworth-Heinemann

Ltd, 1991, pp 20/1-18.

[13] Biggerstaff, T.J., Design Recovery for Maintenance and Reuse. Computer, July 1989,

pp 36-49.

[14] Bergeretti, J.F. and Carre, B.A., Information-flow and data-flow analysis of while-

programs. ACM Trans. Program. Lang. Syst, vol.7, no. l , pp 37-61.

[15] Bledsoe, W. and Loveland, D. (ed.). Automated Theorem Proving: After 25 Years.

American Mathematical Society Contemporary Mathematical Series, 1984.

[16] Boehm, B., Software Engineering Economics. Prentice-HaU, NJ, 1981.

[17] Boehm, B., Brown, J., Kaspar, H., Lipow, M . , MacLeod, G., Merritt, M . , Character

istics of Software Quality. North-Holland Publishing Company, Amsterdam, 1987.

[18] Boyle, J.M., Lisp to Fortran - Program Transformation Applied, In: Pepper, P. (ed.)

Program Transformation and Programming Environments. Report on a Workshop

directed by F.L.Bauer and H.Remus. NATO ASI Series F: Computer and System

Sciences, vol.8. Springer-Verlag, 1984.

[19] Boyle, J .M. and Muralidharan, M.N. , Program Reusability through Program Trans

formation. IEEE Transactions on Software Engineering, vol.SE-10, no.5, 1984, pp

574-588.

[20] Brooks, F.P., Towards a Theory of the Comprehension of Computer Programs. In

ternational Journal of Man-Machine Studies, vol.18, 1983, pp 543-554.

[21] Brooks, F.P., No silver bullet: essence and accidents of software engineering. Com

puter, vol.20, no.4, 1987, pp 10-19.

[22] Broy, M . , Algebraic Methods for Program Construction: The Project CIP, In: Pep

per, P. (ed.) Program Transformation and Programming Environments. Report on a

137

Workshop directed by F.L.Bauer and H.Remus. NATO ASI Series F: Computer and

System Sciences, vol.8. Springer-Verlag, 1984.

[23] Burstall, R.M. and Darlington, J.A., A Transformation System for Developing Re

cursive Programs. Journal of the ACM, vol.24, 1977, pp 44-67.

[24] Cheatham, T.E., Jnr., HoUoway, G.H. and Townley, J.A., Program Refinement by

Transformation. Proceedings of the Fifth International Conference on Software Engi

neering, San Diego, Calif., March 1981, pp 430-437.

[25] Chikofsky, E.J, and Cross I I , J.H., Reverse Engineering and Design Recovery: A

Taxonomy. IEEE Software, vol.7, no. l , 1990, pp 13-17.

[26] Constantaine, L.L. , Stevens, W.P. and Myers, G.J., Structured Design. IBM Systems

Journal, vol. 2, pp 116-139, 1974.

[27] Conte, S.D., Dunsmore, H.E. and Shen, V.Y. , Software Engineering Metrics And

Models. The Benjamin/Cummings Publishing Company, Inc., 1986.

[28] Denning, D.E., A lattice model of secure information flow. Commun. ACM, vol.19,

no.5, pp 236-242.

[29] Dijkstra, E.W., A Discipline of Programming. Prentice Hall, 1976.

[30] Dijkstra, E.W., Guarded commands, nondeterminacy and formal derivation of pro

grams. Commun. ACM, vol.18, no.4, pp 453-457.

[31] D T I and NCC, The STARTS Guide. NCC, 1987.

[32] Fairley, R.E., Software Engineering Concepts. McGraw-Hill Book Company, 1985.

[33] Feather, M.S., A System for Assisting Program Transformation. ACM Transactions

on Programming Languages and Systems 4, (!)• Jan. 1982, pp 1-20.

[34] Feather, M.S., A Survey and Classification of Some Program Transformation Ap

proaches and Techniques. IFIP Working Con/, on Program Specification and Trans

formation, Bad Tolv Germany, Apri l 1986.

35] Floyd, R.W., Toward interactive design of correct programs. Proc. IFIP Congress '71,

1972, pp 7-10.

138

[36] Garnett, E.S. and Mariani, J.A., Software reclamation. Software Engineering Journal,

May 1990, pp 185-191.

[37] Griffiths, M . , Program Production by Successive Transformation. Lecture Notes in

Computer Science., vol.46. Berlin-Heidelberg- New York: Springer 1976, pp 125-152.

[38] Griffiths, M . , Development of the Schorr-VVaite Algorithm. Lecture Notes in Computer

Science., vol.69. Berlin-Heidelberg- New York: Springer 1979, pp 464-471.

[39] Halstead, M.H. , Elements of Software Science. New York, Elsevier North-Holland,

1977.

[40] Hoare, C.A.R., An Axiomatic Basis for Computer Programming. Communications of

the ACM, vol.12, 1969.

[41] Horwitz, S., Reps., T. and Binkley, D., Interprocedural slicing using dependence

graphs. Proc. ACM SIC PL AN 88 Conf. Programming Language Design and Imple

mentation, Atlanta, GA, June 1988, pp 35-46.

[42] Jones, C.B., Systematic Software Development using VDM. Second Edition. Prentice

HaU, 1990.

[43] Kafura, D. and Reddy, G.R., The Use of Software Complexity Metrics in Software

Maintenance. IEEE Trans. Software Eng., vol.SE-13, pp 335-343.

[44] Kenning, R., Configuration Management : State of the Ar t . Technical Report.

[45] King, S. and S0rensen, 1., From specification, through design, to code: a case study

in refinement. I B M United Kingdom Laboratories Ltd , 1988.

[46] Leach, R.J., Software Metrics and Software Maintenance. Software Maintenance: Re

search and Practise, vol.2, pp 133-142.

[47] Lehman, M . M . , Programs, life cycles, and laws of software evolution. Proceedings of

IEEE, vol.19, pp 1060-1076.

[48] Lehman, M . M . and Belady, L.A., A model of large program development. IBM Sys

tems Journal, vol.15, pp 225-252.

[49] Letovsky, S., Cognitive Processes in Program Comprehension, In: Soloway, E. and

Iyengar, S.(eds.) Empirical Studies of Programmers. Ablex, Norwood, 1986.

139

[50] Lewis, J.A. and Henry, S.M., On the Benefits and Difficulties of a Maintainability

via Metrics Methodology. Software Maintenance: Research and Practise, vol.2, pp

113-131.

[51] Lientz, B. and Swanson, E.B., Software Maintenance Management. Addison-Wesley,

1980.

[52] Lientz, B., Swanson, E.B. and Tompkins, G.E., Characteristics of application software

maintenance. Communications of the ACM, 21, 1978, pp 466-471.

[53] Litteck, H.J. and Wallis, P.J.L., Refinement methods and refinement calculi. Software

Engineering Journal, May 1992, vol.7, no.3, pp 219-229.

[54] Littman, D.C., Pinto, J., Levovsky, S. and Soloway, E., Mental Models and Software

Maintenance, In: Soloway, E. and Iyengar, S.(eds.) Empirical Studies of Programmers.

Ablex, Norwood, 1986, pp 80-96.

[55] Longstreet, D., Software Maintenance And Computers. IEEE Computer Society

Press, 1990.

[56] Mair, P.A., IPSE: State of the Art Report. NCC Ltd. , 1986.

[57] McCabe, T.J., A Complexity Measure. IEEE. Trans. Software Eng., vol.SE-2, no.4,

pp 308-320, 1976.

[58] McDermid, J., Introduction and Overview to Part I I , In: McDermid, J. (ed.), Software

Engineer's Reference Book. Butterworth-Heinemann Ltd, 1991, pp 1-15.

[59] Morgan, C , Programming from Specifications. Programming Research Group, Uni

versity of Oxford, 1990.

[60] Moriconi, M . , A designer/verifier's assistant. IEEE Trans. Software Eng., vol.SE-5,

pp 387-401.

[61] Moriconi, M . , Approximate Reasoning About the Semantic Effects of Program

Changes. IEEE Trans. Software Eng., vol.16, no.9, Sept.1990.

[62] Neilson, D., Hierarchical refinement of a Z specification. In Nori, K.V. (ed.): Foun

dations of Software Technology and Theoretical Computer Science '87. Lect. Notes

Comput. Sci. 287, 1987, pp 376-399.

140

[63] Newton, J., Library Specification, Refinement and Change in Z and WSL. University

of Durham, 1993.

[64] Newton, J. and Bennett, K., Designing Systems for Future Maintainability: A Case

Study. Proc. IEEE Conference on Software Maintenance 1993, Sept. 1993, pp 272-

280.

[65] Oman, P., Maintenance Tools. IEEE Software, May 1990, pp 63.

[66] Parikh, G., Techniques of Program and System Maintenance. Winthrop Pubfishers,

1982.

[67] Partsch, H. , Specification and Transformation of Programs. Springer-Verlag, 1990.

[68] Partsch, H., The CIP Transformation System, In: Pepper, P. (ed.) Program Transfor

mation and Programming Environments. Report on a Workshop directed by F.L.Bauer

and H.Remus. NATO ASI Series F: Computer and System Sciences, vol.8, Springer-

Verlag, 1984.

[69] Partsch, H. and Steinbruggen, R., Program Transformation Systems. ACM Comput

ing Surveys V15 No.3, 1983, pp 199-236.

[70] Partsch, H., Transformational Program Development in a Particular Problem Do

main. Science of Computer Programming, Vol. 7, No.2, 1986, pp 99-248.

[71] Perry, D.E., Software interconnection models. Proc. 9th Int. Conf Software Engi

neering, Monterey, CA, Mar.1987, pp 61-69.

[72] Potter, B., Sinclair, J. and T i l l , D., An Introduction to Formal Specification and Z.

Prentice Hall, 1991.

[73] Pressman, R.S., Software Engineering: A Beginner's Guide. McGraw-Hill Book Com

pany, 1988.

[74] Rekoff Jr., M.G., On Reverse Engineering. IEEE Trans. Systems, Man, and Cyber

netics, March 1985, pp 244-252.

[75] Rich, C. and Waters, R. (ed.). Readings in Artificial Intelligence and Software Engi

neering. Morgan Kaufmann Publishers, Inc., 1986.

141

[76] Shneiderman, B. and Mayer, R., Syntactic Semantic Interactions in Programming

Behaviour: A Model. International Journal of Computer and Information Science,

vol.8, 1979, pp 219-238.

[77] Simon, A. , Requirements for a .Software Maintenance Support Environment. MSc

Thesis, Centre for Software Maintenance, University of Durham, October 1991.

[78] SommerviUe, I . , Software Engineering. Addison-Wesley Publishing Company, 1985.

[79] Spivey, J.M., The Z Notation - A Reference Manual. Programming Research Group,

University of Oxford, December 1989.

[80] Terry, B. and Lodge, D., Terminology for Software Engineering Environment and

Computer-Aided Software Engineering. Software Engineering Notes, Vol.15, No.2, pp

83-94.

[81] Ward, M . , Proving Program Refinements and Transformations. Oxford University,

DPhil Thesis, 1989.

[82] Ward, M.,The Architecture of the "Maintainer's Assistant". Centre for Software

Maintenance, University of Durham, 1989.

[83] Ward, M . , WSL Syntax and Semantics. Centre for Software Maintenance Ltd, 1993.

[84] Ward, M . , Calliss, F.W. and Munro, M . , The Maintainer's Assistant. Proceedings of

Conference on Software Maintenance, Miami, Florida, October 1989, pp 22-29.

[85] Ward, M . , Calliss, F.W. and Munro, M . , The Use of Transformations in "The Main

tainer's Assistant". Centre for Software Maintenance, University of Durham.

[86] Ward, M.,The Largest true Square Problem. Centre for Software Maintenance, Uni

versity of Durham, Apri l 1990.

[87] Waters, R., The Programmer's Apprentice: A Session with KBEmacs. IEEE Trans.

Software Eng., Vol.11, N o . l l , pp 1296-1320, November 1981.

[88] Weiser, M . , Program Slicing. IEEE Trans. Software Eng., vol.SE-10, pp 352-357, July

1984.

89] Whysall, P., Refinement, In: McDermid, J. (ed.). Software Engineer's Reference Book.

Butterworth-Heinemann Ltd , pp 1-15, 1991.

142

[90] Wordsworth, J.B., A Z Development Method. IBM United Kingdom Laboratories Ltd,

July 1987.

[91] Wos, L. , et al, Automated Reasoning: Introduction and Applications. Prentice-Hall,

1984.

[92] Yang, H. , How Does The "Maintainer's Assistant" Start? Centre for Software Main

tenance, University of Durham.

143

