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Abstract 

According to the Royal National Institute for Deaf people there are nearly 

7.5 million hearing-impaired people in Great Britain. Human-operated machine 

transcription systems, such as Palantype, achieve low word error rates in real-time. 

The disadvantage is that they are very expensive to use because of the difficulty in 

training operators, making them impractical for everyday use in higher education. 

Existing automatic speech recognition systems also achieve low word error rates, 

the disadvantages being that they work for read speech in a restricted domain. 

Moving a system to a new domain requires a large amount of relevant data, for 

training acoustic and language models. 

The adopted solution makes use of an existing continuous speech phoneme 

recognition system as a front-end to a word recognition sub-system. The sub­

system generates a lattice of word hypotheses using dynamic programming with 

robust parameter estimation obtained using evolutionary programming. Sentence 

hypotheses are obtained by parsing the word lattice using a beam search and con­

tributing knowledge consisting of anti-grammar rules, that check the syntactic in­

correctness of word sequences, and word frequency information. On an unseen 

spontaneous lecture taken from the Lund Corpus and using a dictionary containing 

"2637 words, the system achieved 83.5% words correct with 15% simulated phoneme 

error, and 73.1% words correct with 25% simulated phoneme error. The system 

was also evaluated on 113 Wall Street Journal sentences. 

The achievements of the work are a domain independent method, using the anti-

grammar, to reduce the word lattice search space whilst allowing normal sponta­

neous English to be spoken; a system designed to allow integration with new sources 

of knowledge, such as semantics or prosody, providing a test-bench for determin­

ing the impact of different knowledge upon word lattice parsing without the need 

for the underlying speech recognition hardware; the robustness of the word lattice 

generation using parameters that withstand changes in vocabulary and domain. 
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Chapter 1 

Methodological Introduction 

This chapter presents a clarification of some methodological issues in relation to the 

position of this research in the current field of computer science. This is followed 

by a discussion of the criteria for success of the research and a description of the 

logical progression of the thesis. 

1.1 Methodological Issues 

This section introduces the methodological framework within which the research 

described in this thesis was undertaken. This work is in the branch of computer 

science known as artificial intelligence. The particular area of research is in natural 

language engineering. The discussion of methodological issues is presented in gen­

eral terms in this introductory chapter. Specific methodological issues that arose 

during the progress of this work are described in chapters 5 and 6. 
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1.1.1 Ar t i f i c i a l Intelligence 

There are many definitions of artificial intelligence (AI) . One definition states that 

A I is 

... the field of research concerned with making machines perform 
tasks which are generally thought of as requiring human intelligence. 

[Beardon, 1989] 

in other words, simulating human behaviour from an external view. This could be 

further refined to simulating successful human behaviour because it is unlikely that 

we want, for example, a machine that stutters or makes spelling mistakes. In fact, 

circumstances do exist when imperfect behaviour might be required, for example 

when deliberately trying to fool a human into believing that a computer system is 

another human, as is the goal for the "Turing test" competition. 

A distinction has to be made between A I and cognitive science. Cognitive sci­

ence is the study of the human cognitive process, in other words internal human 

behaviour, using computer programs as an experimental test-bench. The distinc­

tion is that A I aims to achieve a simulation of human behaviour by any available 

technique, not by only modelling the human cognitive process. For example, an 

A I approach to computer vision may make use of radar and sonar, whereas the 

cognitive science approach would model the human vision mechanism. There is, 

therefore, no obligation to simulate external human behaviour using only human 

mental techniques, although analysis of the cognitive approach to a particular prob­

lem may give a better understanding of that problem, or provide a possible starting 

point for developing alternative solutions. 

More often than not, simulating intelligent human behaviour involves achieving 

at least as good a performance as a human. In some cases, however, it may be pos­

sible for a computer to improve on human performance. For example, a computer 

vision system may perform better in darkness than the human vision system, or a 

computer may react to audio stimuli that are outside the range of human hearing. 
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1.1.2 Natura l Language Engineering 

The research described in this thesis has been developed according to the princi­

ples of Natural Language Engineering (NLE). This is a new approach to natural 

language processing, with respect to the traditional computational linguistics one, 

and has been acknowledged by the EEC in their LRE programme as the approach 

most likely to bring substantial benefits in the medium term to end users. 

NLE has been described in the Technical Background Document of the Linguis­

tic Research and Engineering European Programme (LRE) as follows 

Linguistic Engineering (LE) is an engineering endeavour, which is 
to combine scientific and technological knowledge in a number of rele­
vant domains (descriptive and computational linguistics, lexicology and 
terminology, formal languages, computer science, software engineering 
techniques, etc.). LE can be seen as a rather pragmatic approach to 
computerised language processing, given the current inadequacies of the­
oretical computational linguistics. 

[EC, 1991, page 7] 

NLE is a pragmatic approach characterised by a readiness to use any means 

in order to build serious speech and language processing programs: this means 

taking ad van tageof existing linguisticand logic theories where they exist and "are 

suitable, and then developing localised theories, using knowledge bases, statistical 

and adaptive methods, and even ad hoc solutions where everything else has failed. 

A definition of computational linguistics is as follows: 

Research in computational linguistics (CL) is concerned with the 
application of a computational paradigm to the scientific study of human 
language ... 

[Ballard and Jones, 1990, page 133]: 

The traditional computational linguistics approach has been to seek an understand­

ing of the entire process of natural language comprehension and develop a unified 
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theory of language understanding. A common criticism of applications developed 

using this approach is the inability to process realistic material: 

Computational linguistics research in practice tends to revolve round 
little "toy" subsets of artificially simple linguistic forms, in the hope that 
systems which succeed in dealing with these may eventually be expanded 
and linked together until they cover entire languages. 

[Sampson, 1987, page 17] 

The goal of NLE is to produce systems which are large in scale, allow easy 

integration and expansion, are feasible both in terms of speed and of memory, are 

maintenable, robust and such that the intended users are able and willing to use 

them. 

There is at present a large community, of both academics and people from indus­

try, that is interested in the pragmatic approach of NLE and its potential benefits. 

Research using the NLE paradigm is also being undertaken at the Universities of 

Edinburgh and Sheffield. The European Community predicts that the market for 

NLE products will be 10 million users in the next few years, and has launched 

several large programmes (EURO-TRA, LRE). The American Defence Research 

Agency, ARPA, is investing heavily in a programme for text scanning (MUC), 

and-several national governments-have similar progrMflmes. The commercial mar­

ket is predicted to grow rapidly [Ovum, 1991] and the traditional engineering and 

computer science organisations are showing great interest in NLE. A forthcoming 

conference on Applied Natural Language Processing (ANLP-94), the fourth in a 

series sponsored by the Association for Computational Linguistics, aims to bring 

together researchers and developers, who collectively use a wide range of language 

engineering techniques, to focus on the application of natural language processing 

to real problems. Cambridge University Press have recently launched the Journal 

of Natural Language Engineering, whose principal aim is to bridge the gap between 

traditional computational linguistics research and the implementation of practical 

applications with potential for real world use. 



Chapter 1: Methodological Introduction 5 

1.1.3 Symbolic and Sub-Symbolic Processing 

The traditional approach to artificial intelligence involves the construction of repre­

sentational formalisms and the development of corresponding search mechanisms. 

The guiding principle of this representational methodology is the physical symbol 

hypothesis, which states: 

A physical symbol system has the necessary and sufficient means for 
general intelligent action. By "necessary" we mean that any system 
that exhibits general intelligence will prove upon analysis to be a phys­
ical symbol system. By "sufficient" we mean that any physical symbol 
system of sufficient size can be organized further to exhibit general in­
telligence. By "general intelligent action" we wish to indicate the same 
scope of intelligence as we see in human action: that in any real situ­
ation behaviour appropriate to the ends of the system and adaptive to 
the demands of the environment can occur, within some limits of speed 
and complexity. 

[Newell and Simon, 1976] 

The physical symbol hypothesis is only a hypothesis, it cannot be proved or dis­

proved on logical grounds, so it must be subjected to empirical validation. Com­

puters are a perfect medium for this experimentation. 

The most significant challenge to the symbolic approach came from the adaptive 

approach to machine intelligence, initially through parallel distributed processing. 

The two major branches of adaptive or sub-symbolic processing are the statisti­

cal approach, based upon Bayesian statistics, and the machine learning approach, 

based upon the principle of evolution or the principle of neural processing. A sub-

symbolic approach to knowledge representation is one in which the emphasis is 

not on the use of symbols to represent objects and relations, but instead on the 

collective behaviour produced by the interaction of a number of simple interacting 

components. 

Evidence supporting the sub-symbolic approach to A I does not necessarily in­

validate the symbolic approach — there is often more than one way to accomplish 

a task. Indeed, under the principles of natural language engineering, a hybrid 
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solution combining both symbolic and sub-symbolic approaches may be adopted, 

rather than arguing for one approach over the other in all possible applications: 

... it is widely believed that there are some activities of intelligence 
(e.g. recognition of multidimensional patterns) where an approach oper­
ating at some lower level than a level of description in symbols is more 
appropriate than the traditional logical-symbolic approach. 

[Calmet and Campbell, 1993] 

To pursue a solution to a problem purposefully using only one approach (sym­

bolic or sub-symbolic) is not really an attempt at finding the best possible solution, 

rather, it is to research the limits of the approach being used. Having an open mind 

as to which techniques are better suited to particular problems is the method of 

investigation adopted in this thesis. 

Consider as an example the game of chess. How would we teach a machine 

to play a good game of chess? The sub-symbolic approach would be to allow the 

machine to learn how to play well from the experiences of playing many games of 

chess. The symbolic approach would be to take advantage of the many centuries 

of experience gained by chess masters over the years, represented by rules: for 

example, standard opening and endgame scenarios, controlling the centre of the 

board, and optimum positioning for key pieces. In reality, the leading chess playing 

computers-of-today do contain a vast amount of standard knowledge accumulated 

by chess experts, yet incorporate a certain amount of adaption to the particular 

characteristics of their opponent. 

Another example would be learning to drive a car. When we first learn to drive 

a car there are a number of rules that must be learnt (symbolic): for example, the 

highway code and leaving the car in neutral while waiting at traffic lights. However, 

to develop into a good driver it is necessary to drive in many diverse situations, 

learning from different sensory experiences, learning to drive in sympathy with the 

car and the like (sub-symbolic). 

The approach that we take is to use the symbolic approach where acceptable be­

haviour in a reasonable time is achieved, and make use of appropriate sub-symbolic 
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techniques at other times. 

1 . 2 Criteria for Success 

The criteria for the success of the work described in this thesis can be described in 

terms of the goals of natural language engineering: 

Scale : the system should be a large scale system that has a large vocabulary; a 

large vocabulary is one that contains over 1000 words; 

Robustness : the system should be robust enough to handle general spoken En­

glish in the form used in university lectures; it should demonstrate domain 

independence; some preparation is allowed, for example in vocabulary selec­

tion; 

Integration : the system should allow ease of integration with other sources of 

knowledge; 

Feasibility : hardware requirements should not be too high, execution speed 

should be acceptable; 

Maintenability : the system should be useful over a long period of time, and 

be flexible to changes in functionality (adaptive maintenance); 

Usability : the system should be useful to deaf people studying at university, 

and achieve an acceptable level of recognition in a reasonable time; 

Techniques : the system should use existing theories, or where none exist, use 

newly developed theories, in addition to any other technique (such as statis­

tical) from the fields of engineering and artificial intelligence. 

These criteria are the goals for an ideal NLE system. The work in this thesis does 

not in any way claim to provide a complete solution to the problems of automatic 

speech recognition. As such, an improvement, towards the goal of an automatic 
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speech recognition system that can aid deaf students, in any of these categories 

over current approaches or current systems can be termed a success. For this work, 

the three most key criteria are scale, robustness and usability. 

1.3 Logical Progression of the Thesis 

The thesis is organised according to the following plan. 

Chapter 1 address some important methodological issues in relation to the 

position of the work within the field of computer science; followed by a discussion 

on the criteria for the success of the research; and finally the organisation of the 

thesis. 

Chapter 2 introduces the concept of human-machine communication and ex­

plains the problem being addressed in this thesis: decoding a sequence of phonemes 

into words, using as little domain specific information and imposing as few restric­

tions on the speaker as possible; the problem is defined using the taxonomy outlined 

in chapter 3. The need for a solution and the potential benefits to deaf students 

are also discussed. 

Chapter 3 "describes "a typical automatic speech recognition system; followed 

by a discussion of the current trends in the field of automatic speech recognition 

research; and a taxonomy is introduced for describing speech recognition systems. 

The chapter concludes with a look at some possible future trends in automatic 

speech recognition research. 

Chapter 4 outlines the capabilities of existing systems for automatic recogni­

tion of continuous speech, and of existing systems used by the deaf community for 

real-time machine transcription of speech. 

Chapter 5 outlines the general solution adopted to the problem described in 

chapter 2: phoneme recognition, word lattice generation and word lattice parsing. 

The novelty of the solution is also addressed. 
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Chapter 6 describes in detail the solution outlined in chapter 5: phoneme 

recognition using a simulation and also the AURIX and CU-CON systems; word 

lattice generation using dynamic programming with robust parameter estimation 

obtained using evolutionary programming, and the system dictionary; and word 

lattice parsing using a beam search and contributing knowledge such as the anti-

grammar and word frequency information. A detailed discussion of the anti-

grammar is presented. The software engineering aspects of the test-bench are 

also addressed with reference to integration of new knowledge sources and main-

tenability of the underlying representations. 

Chapter 7 outlines the framework in which the work described in this thesis 

is evaluated. Addressing in particular: phoneme recognition assessment, word 

lattice quality, the suitability of the anti-grammar, word recognition assessment, 

execution times and readability issues. The problem of evaluating spontaneous 

speech recognisers is also discussed, and a case for developing a new measure for 

assessing such recognisers is presented. A brief mention is made of the early work 

in this area. 

Chapter 8 gives details of the data that was used for evaluation purposes and 

presents results for the areas outlined in chapter 7. 

Chapter 9-will-eonelude the thesis by checkingif this work has met its criteria 

for success; discussing future research directions; and describing what this work 

can offer researchers in the field of automatic speech recognition and also what it 

can offer the deaf community. 

Appendix A lists the anti-grammar rules used as contributing knowledge dur­

ing word lattice parsing. 

Appendix B shows the recognition output of the system on the first 31 sen­

tences of the Lund corpus lecture and the first 40 WSJ sentences that were used 

for evaluation purposes. 

The guiding methodological paradigms have now been described. The progres-
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sion of the remainder of the thesis follows the order: problem definition, current 

state of the art, general solution, detailed solution, evaluation framework, results 

and conclusions. 



Chapter 2 

Analysis of the Problem 

This chapter introduces the concept of human-machine communication and ex­

plains the problem being addressed in this thesis: decoding a sequence of phonemes 

into words, using as little domain specific information and imposing as few restric­

tions on the speaker as possible. The need for a solution and the potential benefits 

to deaf students are also discussed. 

2 . 1 Introduct ion to Communication 

2.1.1 Human Communication 

Animals use all five senses (hearing, seeing, smelling, tasting and touching) as well 

as body language to communicate with each other. This can range from aggression 

towards an incoming predator, to tenderness during the mating season. For their 

level of communication needs, however, hearing is no more important than any of 

the other methods. 

In contrast, human communication, which often involves the transfer of very 

complex information, relies heavily on speech and hearing. Although writing too is 

11 
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important, and has the advantage of lasting longer (i.e. something written can be 

repeatedly read at different times), it is not as uniformally used or as immediate 

as speech. For humans, speech is the output channel that achieves the highest rate 

of communication, yet hearing is not the best input channel. The best channel for 

human reception of information is vision. 

2.1.2 Human-Machine Communication 

Human-machine communication is dominated by typing; not for the reason that 

producing words by means of fingers is better but because of the inability of ma­

chines to understand speech. Three methods of possible human-machine commu­

nication are described below: 

T Y P I N G : Typing is a very accurate method of communication; errors that occur 

are caused by the typist. Skilled typists can work at 100-150 words per 

minute, an unskilled typist can work at 10-25 words per minute. Becoming a 

skilled typist requires a considerable amount of training. What can be typed 

is limited by the design of the keyboard. Modern software packages utilise 

multiple key-presses and mouse control to select certain functions, but these 

only slow down operating rates. 

W R I T I N G : Handwriting is a more universal skill than typing, however it is 

a slow means of communication with a speed of only about 25 words per 

minute. Machine recognition of handwriting is complicated by the fact that 

it is so non-uniform: no two people have the same handwriting. Although 

suffering from many of the disadvantages associated with speech, it is a much 

slower method of communication. 

S P E A K I N G : Speaking rates vary from about 120 to 250 words per minute 

making this potentially the fastest form of human-machine communication. 

Speech is easily learned as a child and is the most natural form of human 

communication. 
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A D V A N T A G E S 

o Most natural form of communication 
between people — familiar, convenient 
and spontaneous. 

o Requires no training — people can sp­
eak, but not in all cases can they type 
or write efficiently. 

o Human's highest capacity output chan­
nel. 

o Allows simultaneous methods of com­
munication — hands and voice, for ex­
ample. 

o Allows simultaneous communication to 
humans and machines. 

a Possible in darkness, around obstacles 
and for the blind or handicapped. 

« Permits the verification of a speaker's 
identity. 

e Requires no panel space, displays or 
complex apparatus. 

o Possible at a distance and at various 
orientations. 

e Permits simultaneous use of hands and 
eyes for other tasks. 

e Permits telephone to serve as a com­
puter terminal. 

Figure 2.1: The Advantages and Disadvantages of Using Speech Recognition for 
Human-Machine Communication 

Speech, therefore, is potentially the best method for a human to communicate 

to a machine and visual display should be used for a machine to communicate to a 

human. It is interesting to note that machine-machine communication using speech 

would be extremely inefficient. The bounds of machine-machine communication 

are being pushed further and further to their potential maximum limit. Recent 

advances in optical technology mean that machines can communicate at speeds 

much faster than those allowable by voice, or even electrical means. 

A summary of the advantages and disadvantages of human-machine communi­

cation by speech recognition are outlined in Figure 2.1 [Lea, 1980, Page 5]. 

D I S A D V A N T A G E S 

o Natural, yet unrecognisable sentences 
may be spoken. 

o Need to constrain utterances to those 
recognisable by machine — dependent 
on the application. 

o Speaking rate is slowed down by pauses 
or unfamiliarity. 

e Could confuse computer by speaking 
something to another human. 

o Lack of privacy if other humans are 
present. 

o Sensitive to dialects and differences in 
pronunciation. 

o Interfering "noise" can make accurate 
recognition difficult. 

o Microphone must be worn or held (clo­
sely to avoid "noise"). 
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2 o 2 The Basic Problem of Automatic Speech 

Recognition 

It is useful to remind ourselves of the complexity of the task by con­
sidering our own human performance. We are Olympic standard talkers 
(never mind the content), and when we need to be, we are expert lis­
teners. We exchange concepts and meanings (semantics) about various 
topics (pragmatics), using a spoken language which consists of known 
words in accepted orders (syntaxes). We can break words down into 
sub-units such as syllables (morphemics). We have a knowledge of the 
basic sounds of our language, and we can describe or label them (pho­
netics). We also have knowledge of acoustics — "Madonna has a clear, 
high pitched voice". In exchanging thoughts, we use all this knowledge 
at all times, and we need to, since the data at every one of these levels 
is variable for any concept. We express the same concept in multiple 
ways, using different sentences of different words. Also, any given word 
is pronounced differently each time we use it, depending on its place in 
a sentence and on the speaker, resulting in different acoustic streams 
for the same word. Spoken language is full of starts and restarts, 'urns' 
and 'ahs', and incomplete sentences. Yet we are able to decode this 
single-goal variable data in each instance and can use the variability to 
identify speakers and styles of speaking. When in doubt, we can ask 
questions for clarification. 

[Fallside, 1989] 

There can be no doubt that automatic speech recognition is one of the most 

difficult "human-impersonation" tasks demanded of a computer. The ideal scenario 

is of any person, talking about anything, into an unobtrusive microphone, under 

any conditions (for example over the phone, at a railway station or with a cold), 

having their exact words immediately recognised. What happens after this step is 

a further problem, but could include a visual or typed reproduction, or result in 

some action being taken in response. The latter will involve some understanding 

of what is spoken. 

The current reality of existing systems for automatic speech recognition is very 

different, and this is described in detail in section 4.2. 
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2 o 3 Description of the Problem 

The problem that we are addressing in this thesis is that of decoding a sequence 

of phonemes into words, using as little domain specific information and imposing 

as few restrictions on the speaker as possible. The intention is to create a general 

purpose sub-system for reducing the large search space involved in automatic speech 

recognition. This sub-system can be used in isolation or in combination with other 

knowledge sources (such as semantics) for word recognition. 

Research into the phoneme recognition system, used as a front-end to the word 

decoding sub-system, does not fall within the scope of this thesis. Phoneme recog­

nition results of systems suitable for use as a front-end to this research are described 

in section 4.2. These results demonstrate the feasibility of this approach — high 

phoneme recognition rates can be achieved, making the results obtained in this 

work realistic. 

The framework within which this sub-system has been built is that of developing 

an automatic speech recognition aid for use by deaf students in university lectures. 

The style of the speech encountered is that of monologue, and although a certain 

amount of question and answering between a lecturer and the students does occur 

in lectures, i t is beyond the scope of this research. 

The problem will be described using the taxonomy developed in section 3.2. 

2.3.1 The Speaker 

The problem of speaker dependence is the responsibility of the phoneme recog-

niser. The research described in this thesis makes no assumptions in this area. I t is 

usually the case that a speaker dependent system performs better than a speaker 

independent one, although the problem of enrolment has led to more speaker in­

dependent systems being developed. It would not be too inconvenient if a speaker 

dependent system were developed in this case, as after a single short enrolment 
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period, each lecturer would use the system many times. 

2.3.2 The Connectedness of Speech 

The connectedness of speech used in this research is continuous speech. Within the 

framework of normal university lectures, a speaker addresses a group of students 

at the normal rate of human speech. Any system that is to aid deaf students must 

be usable in normal university lectures, so no impositions can be made upon a 

lecturer, apart from the wearing of a headset microphone. During the analysis of 

some lectures within the Durham corpus, it was calculated that the upper level on 

the average number of words spoken per minute is 100. 

2.3.3 The Speaking Style 

The speaking style used by lecturers lies somewhere between read and spontaneous 

speech. It is neither completely spontaneous, because a lecture is a prepared mono­

logue, nor is it completely read, because a lecture although prepared is not scripted 

word for word. 

2.3.4 The Unit of Speech 

The unit of speech, in other words the interface between the acoustic-phonetic unit 

and the word lattice generation unit, is the phoneme. Choosing a lower level unit 

(such as allophone) would have meant more research into the field of phonology, of 

which the author has little experience. Choosing a higher level unit, for example 

words in the form of a word lattice, might have been suitable. This was not 

adopted for two reasons. Firstly, word lattices were not a common intermediate 

data structure when this research began. This made it difficult to find a group 

able to build a suitable system. Secondly, such a system would have been very 



Chapter 2: Analysis of the Problem 17 

inflexible to use because it would have required a huge amount of training data for 

each given domain. 

The choice of the phoneme as the unit of speech allows us to change domain 

and vocabulary easily without the need to retrain the underlying speech recognition 

hardware. 

2.3.5 The Language 

The language used by lecturers lies somewhere between restricted and unrestricted 

(see section 3.2.5), tending more towards unrestricted. In general, fragments of 

grammatically correct English will be used interspersed, because of the speaking 

style, with speech repairs. Studies into the nature of university lectures have shown 

that 32% of spoken sentences contain repair [Johnson et a/., 1994a]. 

This has an effect on the type of grammar that we are able to use during the 

recognition process. A formal grammar of (written) English is not appropriate 

because of the unrestricted nature of the speech being recognised in the lecture 

scenario. Nor is it possible to collect a large amount of lecture data in order to 

train an n-gram language model, because of the spontaneity of the speech. 

2.3.6 The Level of Recognition 

The level of recognition required by this research is one of the constraints that has 

been relaxed in an attempt to obtain a useful and working system. Experience 

in the development of Palantype (see section 4.3.1 showed that a 75% correct 

transcription was very useful to well motivated deaf people. The level of recognition 

that it is hoped will be achieved is at least 75% words correct. 
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2.3.7 The Vocabulary 

The vocabulary size of the current system is approximately 2600 words. This is 

an arbitrary figure and could be much higher, with a corresponding reduction in 

performance. During the analysis of some lectures within the Durham corpus, it 

was calculated that one lecturer used only 1100 unique words during the whole of 

a two lecture course fragment. 

2.3.8 The Speed of Recognition 

Clearly, the speed of recognition needs to be on-line so that a deaf student may 

"keep up" with the topic at any point in a lecture. This is at the cost of a lower than 

verbatim level of recognition. Should the purpose of transcription be note-taking, 

it could be possible that a second, off-line, attempt is made at the recognition to 

try and construct a more accurate record of a lecture. Off-line recognition has not, 

however, been developed in this thesis. 

2 o 4 The Need for a Solution 

j 

According to the Royal National Institute for Deaf people (RNID) there are nearly 

7.5 million people in Great Britain with some degree of hearing loss. From this 

figure it is possible to estimate the number of hearing impaired people who at­

tend universities around the country. A further significant proportion of hearing 

impaired people are prevented from attending higher education because of a lack 

of support facilities. Hearing aids are only really effective in quiet environments 

when used close to the person speaking. A hearing aid cannot replace the damaged 

ear's ability to discriminate speech and consequently many people with severe and 

profound losses hear speech but cannot understand i t . 

The most common form of communication between a hearing person and a deaf 
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person is lip-reading. Unfortunately this is not possible when more people become 

involved. It may be possible to employ an interpreter to act as an intermediary 

between one or more hearing people and several deaf people. But there are several 

methods of communication employable by an interpreter (British Sign Language, 

American Sign Language, Sign Supported English, for example), and each inter­

preter would have their own particular style of signing which would take time to 

adjust to, possibly causing a deaf person to miss some information. It would also 

be impossible for a deaf person to make notes on what is being said whilst carefully 

watching the interpreter. 

Machines that can recognise and display speech would be beneficial to deaf 

people. The profoundly deaf may be interested in such a machine in situations 

where lip-reading is difficult, for example over the telephone. Other possible uses, 

which would also benefit the hard of hearing, are at church services, public meetings 

or lectures. In recent discussions on technology, deaf and hard of hearing people 

indicated three major areas in which they hope to see automatic speech recognition 

applied: telephone communication, face-to-face communication, and captioning of 

television and films [Harkins, 1988]. More than 24 million people in the United 

States are deaf or hard of hearing. The idea of a "little black box" that will recognise 

and display all speech, although desirable, is certainly not achievable within the 

next five years, despite huge technological advances-in computing during'the past 

decade. 

At a recent symposium [RNID, 1990], Ross Trotter, from the National Associa­

tion for Deafened People, outlined a deaf user's ideal requirements of an automatic 

speech recognition system. These have been enlarged upon below. 

1. SPEED 

The system should produce a visual display of what is spoken in real-time. 

Within five seconds is acceptable, but 15 seconds is too long; by this time the 

speaker may have changed topic, making any questions by the deaf person 

out of place, or the deaf person may experience difficulty following displayed 

slides, or in lip-reading, if the system is not displaying what the speaker is 
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currently saying. 

2. C L A R I T Y 

The displayed text should consist of English words with phonetics, or "sound-

spelled" words, kept to a minimum. Many born-deaf people do suffer from En­

glish comprehension difficulties, and cannot possibly cope with non-English 

words. The system should thus show a level of approximately 90% word 

accuracy. 

3. S P E A K E R - I N D E P E N D E N C E 

The system should be as speaker-independent as possible; although for some 

applications a minimal enrolment period would be acceptable. 

4. O P T I O N A L D E T A I L 

The system should include some means to spell a word letter by letter to 

achieve detail when important, for example, when using proper names. 

5. S P E A K E R - L A B E L L I N G 

The system should make some visual distinction between different speakers. 

6. N O N - S P E C I A L I S T E Q U I P M E N T 

The system should be implemented on an easily obtainable computer system, 

for example an I B M PC or compatible, and produce its visual output on 

a standard monitor; although additional viewing facilities, such as a large 

television screen, or an overhead projector are desirable. 

7. H A R D - C O P Y 

It should be possible to produce a printout of a transcription. This would be 

of great benefit to deaf people, who often find note-taking impossible whilst 

concentrating on a speaker, even more so with the addition of a visual display 

to watch. 

8. COST 

The system should be reasonably priced, under £2000, and hopefully around 

£300 in the future. 
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Two further problems are more difficult to overcome. A speaker often does not 

want to see their exact words transcribed, but rather what they meant to say, with 

all pauses, mumbles, stutters, repetitions and examples of bad English removed! 

Communication is more than the written word; it is very difficult to convey expres­

sion and feeling accurately. An automatic speech recognition system would replace 

face-to-face communication by person-to-machine-to-person communication. In 

the particular context of a university undergraduate lecture, an automatic speech 

recognition system would have to transcribe the speech of a single lecturer over a 

sixty minute period. 

The emphasis is clearly on developing usable speech recognition systems that 

offer some help to deaf people in certain situations. 

The domain of this research is university lectures. Experiences in America, 

where real-time classroom captioning is routinely provided at some institutions, 

have shown that hearing-impaired students can benefit a great deal from the printed 

display of speech. Hearing-impaired students at the Rochester Institute of Technol­

ogy are benefiting from the use of "RapidText", a stenotype-based computer aided 

transcription system (see section 4.3.1). According to Victor Galloway, director of 

the National Center on Deafness at California State Northridge 

This changes the waydeaf'people will receive information. It helps 
students in a classroom who are able to lip-read but who may be seated 
too far away. 

[Mackey, 1989] 

Classroom captioning, known as real-time graphic display (RTGD), is routinely 

provided in some courses. Students reported a higher mean level of understanding 

of lectures through reading the lectures in real-time on the television screen (RTGD) 

than from watching the interpreter. Asked which support service they would choose 

if only one were available, the students responded with the following [Miller, 1990]: 

Display on T V 

Printout 

32% 

30% 
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Interpreter 21% 

Note-taking 

Tutoring . . . 

16% 

1% 

It is clear then that deaf students at university would benefit from the visual display 

of speech during a lecture. 

It is evident that the real-time printed display of speech, together with 
the printout that also becomes available, have considerable potential for 
many deaf students and particularly those in mainstreamed programs. 

As will be seen in the following chapter, human-operated machine transcription 

systems achieve exceptionally low word error rates in real-time. The disadvantage 

of such systems is that they are very expensive to use, because of the difficulty 

in training operators. This high cost makes them impractical for everyday use 

in higher education, but does allow their use i f the teaching of hearing impaired 

students is centralised (as at Rochester). 

Existing large vocabulary automatic speech recognition systems also achieve 

low word error rates, the disadvantages being that they work only for read speech 

in a very restricted domain. Moving a particular system to a new domain requires 

a huge amount of training data relevant to the new domain, both for training 

acoustic models and language models. This is clearly impractical for use as an aid 

to deaf students in university lectures. 

What is required, therefore, is a domain independent real-time automatic speech 

recognition system that performs to an acceptable level of recognition. 

[Miller, 1990] 



Chapter 3 

Trends in Aetomat ic Speech 

Recognition 

This chapter contains an overview of each of the main stages of a typical auto­

matic speech recognition system and a description of the current trends in speech 

recognition research. Many of these trends are independent and can be described 

as the dimensions of speech recognition, and form a taxonomy for describing au­

tomatic speech recognition systems. These dimensions almost completely form the 

design space-for-automatic speech recognition "systems, but other factors do play 

a part. The dimensions that will be examined are: the speaker; the connected­

ness of speech; the speaking style; the units of speech; the language; the level 

of recognition; the vocabulary and the speed of recognition. Other trends that 

will be examined are: prosodic factors; speech corpora; performance measures and 

the integration of speech recognition and natural language processing techniques. 

The chapter will conclude with a look at some possible future trends in automatic 

speech recognition research. 

23 
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SPEECH -0> 
LOW L E V E L 

PROCESSING 

L E X I C A L 

ACCESS 

SYNTACTIC 

CHECKING 

SEMANTIC 

CHECKING -5s> ACTION 

Figure 3.1: Typical Stages in an Automatic Speech Recognition System 

3 o l A n Overview of Automatic Speech Recog= 

ni t ion Research 

The stages of a typical automatic speech recognition system are shown in Figure 3.1. 

Each of these stages is described below. 

3.1.1 Low Level Processing 

The speech signal must first be filtered, to isolate those frequencies in the range of 

human hearing, then-converted-from an-analogue-to a digital~forfri; It is very im­

portant that the information provided in the speech signal is extracted accurately, 

because errors made at this early stage of processing can easily propagate to other 

areas of the recognition process. Too much emphasis on high level techniques and 

poor quality low level (segmenting and then labelling) processing has been blamed 

for the weak performance of several of the speech recognition systems developed 

during the mid 1970s as part of the Advanced Research Projects Agency (ARPA) 

sponsored program of research and development. A good overview of the ARPA 

speech understanding project may be found in [Klatt, 1977]. 

The first step, speech analysis, is common to all approaches to automatic speech 

recognition. The speech analysis stage provides a spectral representation of the 
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characteristics of the speech signal in the form of a compact set of parameters. 

The two most common methods of speech analysis are filter bank analysis and 

linear predictive coding. During filter bank analysis, the speech signal is passed 

through a bank of several bandpass filters whose coverage spans the frequency 

range of interest (100-3000Hz for telephone quality speech, 100-8000Hz for broader 

signals). The individual filters overlap in frequency. Each filter processes the speech 

signal independently to produce a spectral representation at a particular frequency. 

Alternatively, during linear predictive coding (LPC), the speech signal is broken 

into a series of discrete frames. LPC spectral analysis produces a vector of LPC 

parameters that represent the signal spectrum over the time of the frame of speech. 

The parameters may then be converted to various other formats depending on the 

exact information that is required. One important set of parameters that can be 

derived are known as cepstral coefficients. 

The second step, known as feature detection, converts the spectral measure­

ments into a set of features that describe the broad acoustic properties of the 

different phonetic units. These features would include such things as nasality, frica-

tion, formant locations, voiced/unvoiced classification, energy ratios and pitch. A 

set of feature detectors would work in parallel and make a decision as the presence, 

absence or value of a particular feature. 

The aim of the third step, segmentation and labelling, is to identify stable 

regions where features change very little over time. These segmented regions are 

then labelled according to how well the features match those of individual phonetic 

units. Typically, the result of segmentation and labelling is a sequence of the most 

likely phonemes. Some systems go further and pass a phoneme lattice on to the 

lexical access stage. A phoneme lattice is a two-dimensional structure giving the 

n most likely phonemes at each point in time. Each phoneme in the lattice would 

have a score associated with it according to to the quality of the matching features 

within a segment. 
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3.1.2 Lexical Access 

The lexical access stage typically results in a word lattice structure representing 

the most likely sequences of words given the phoneme output from the previous 

stage. The speech recogniser would have associated with it a lexicon or vocabulary 

containing all the words known to the system and their phonetic representation. 

Other information in the lexicon might include the syntactic part(s) of speech for 

each word, for example noun, verb, adjective and the like. Each word in the lattice 

is scored against the phoneme sequences and the best matching ones are recorded 

in a word lattice. 

3.1.3 Syntactic Checking 

The role of the syntactic checker is to check the syntax of all of the possible paths 

through the word lattice. This stage makes use of the parts of speech information 

contained within the lexicon and any special grammar associated with the task 

that the speech recogniser is being used for. The lexical access stage and the 

syntactic checking stage are often combined into a single deterministic stage by 

only comparing syntactically allowable words against the phoneme sequence, this 

has the effect .of-substantially reducing the-matching- and checking"space. 

3.1.4 Semantic Checking 

Once the search space has been reduced by the syntactic checking component, 

the semantic checking stage assesses the semantic correctness of the remaining 

sentence hypotheses. This may also make use of pragmatic knowledge by taking 

into consideration the particular context of the task the speech recogniser is being 

used for. 
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3.1.5 Action 

The resulting action of the speech recogniser may be to simply display the best 

recognised sequence of words onto a visual display unit, or it may be to pass a 

query onto a database, or it may be to return a suitable response to the speaker 

and undertake a dialogue, in which case there wil l be several more components in 

the system. 

3 c 2 Dimensions of Automatic Speech Recogni-

t ion 

This section introduces the major dimensions along which automatic speech recog­

nition systems vary. Taken collectively, the dimensions form a taxonomy for de­

scribing automatic speech recognition systems. 

3.2.1 The Speaker: Dependent vs. Independent 

Human speech varies not only between speakers, but also within an individual 

speaker; words can vary in loudness, pitch, stress and pronunciation rate, even 

different words may sound similar. Automatic speech recognition systems are ei­

ther speaker dependent (they work best with one particular speaker) or speaker 

independent (they achieve an acceptable recognition rate with anyone). Speaker 

dependent systems invariably demand a large amount of training data (in other 

words, samples of speech) from a speaker. Most training takes the form of re­

peatedly speaking sentences or words known to the system. The duration of the 

training is generally proportional to the size of the lexicon, though more recent 

systems are trained on a set of phonetically "rich and balanced" sentences that are 

independent of the task domain. 

Segmenting the speech signal into word units has several consequences when it 
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comes to training a system. Each word has to be trained individually and repeat­

edly. If the lexicon contains a large number of words, this is a great inconvenience 

for a speaker. Extending the vocabulary would also be difficult. A speaker depen­

dent system is said to be robust if recognition rates for new speakers (who haven't 

trained the system) are not too poor. 

Speaker independent systems are trained on speech collected from a variety of 

sources. Speaker dependent systems will generally achieve a higher rate of recog­

nition than speaker independent systems, though they are clearly not as versatile. 

Speaker adaptive systems are trained on speaker independent data, yet require each 

new speaker to repeat a small number of training samples; providing, in effect, an 

easier to prepare speaker dependent system. 

The success of speaker independent (and speaker adaptive) systems depends on 

the availability and quality of sampled speech in order to build up an imaginary 

picture of the "average" speaker. The availability and variety of speech corpora is 

discussed in section 3.4. 

3.2.2 The Connectedness of Speech: Isolated vs. Contin­

uous 

One of the biggest problems faced by an automatic speech recogniser is detecting 

the gaps between the words in a passage of speech. Early systems avoided this by 

only accepting individual words; these are known as isolated word recognisers. More 

recent research has concentrated on the problems of continuous speech, spoken at 

the normal speed of the human speaker. Three of the special problems caused by 

continuous speech are that: 

o word boundaries are not clearly marked; 

a words are "shrunk" (reduced) in order to achieve a faster speaking rate. For 

example, the word "solicitor" is often actually pronounced as "slisster". Short 
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words such as "of", "the", "in", "a" and the like almost disappear; 

o words become assimilated, for example, "did you" is often actually pro­

nounced as "diju". 

Speech recognition systems have to overcome the problems of coarticulation 

when recognising continuous speech. Coarticulation occurs when one spoken sound 

is affected by either the previous or the following spoken sound. In other words, the 

context of the spoken sound needs to be taken into account. This happens not only 

between words, but also within words at the phoneme level. Word pronunciations 

are different when the words are uttered in isolation from when they are uttered 

in continuous speech [Giachin et ai, 1990]. Many of the algorithms based on 

pattern matching that were successful for isolated word systems cannot cope with 

the variations caused by continuous speech. 

3.2.3 The Speaking Style: Read vs. Spontaneous 

The speaking style used for communicating with a speech recognition system is of 

vital importance. There is a vast difference between read speech and spontaneous 

speech, that of disfluency. Disfluencies are irregularities of speech such as filled 

pauses, repair (including repeated words) and lost sentence structure. Filled pauses 

are strange sounds (for example "erm" and "err") used to f i l l silence while a speaker 

is thinking. Repair takes place when a self-correction occurs in speech and may or 

may not include cue words, part words and filled pauses, for example: 

I want a vanilla no I mean a strawberry ice cream please. 

I am so thir hungry. 

I think I will have some vege err no some err cheese pie please. 

During spontaneous speech, sentence structure often breaks down completely as 

a speaker tends to ramble on adding more and more information without completing 

the sentence that they originally started. This is made worse by filled pauses and 
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repair. Recent research has been undertaken into automatic analysis and correction 

of repair [O'Shaughnessy, 1992], and also in labelling speech repair [Bear et ai, 

1993]. 

3.2.4 The Units of Speech: Whole-Word vs. Sub-Word 

After segmentation, each segment must be labelled as some unit. Words would 

seem a natural choice as a unit of speech: they are the typical outcome of any 

recognition. Word models can also take within-word pronunciation differences into 

account. I f the unit chosen is the word, then the recognition process simply relies 

on pattern matching against stored word templates. Although time is saved during 

labelling (no complex sub-word identification algorithms are required), scanning for 

templates to find the best match in a large lexicon (allowable words) can be very 

time consuming. Substantially more training data would be required to train the 

word models, compared to sub-word models; and extending the system vocabulary 

would require further training data. 

Syllables are not a suitable unit: syllable boundaries in words are difficult 

to detect and there are so many possible syllables. Diphones are vowel-consonant 

sequences. They contain a lot of acoustic information as the diphone is taken across 

two sounds, so it contains much of the coarticulation information not present in 

other units, yet their main disadvantages are their large number, and the difficulties 

in representing words by sequences of diphones. 

Phonemes are used by phoneticians as a convenient unit to represent speech 

sounds. The letter ' i ' , for example, is pronounced differently in the word "give" 

than in the word "hive", this would be reflected in their phonetic transcriptions: 

give : / g I v / 

hive : / h a i v / 

Table 3.1 shows three different machine readable phonetic alphabets: ARPA-
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bet, an American standard; the representation used in the Oxford Advanced Lea­

rner's Dictionary (see section 3.4.11; and SAM-PA, an European standard [Barry 

et a/., 1989]. The relative frequencies of each phoneme are calculated from a recent 

British English pronunciation dictionary (BEEP), containing 96,279 pronuncia­

tions. 

Although the set of phonemes use in each language may be different, in prac­

tice, most are very similar because all humans share a similar speech apparatus. 

There are 44 phonemes in the English language. Each phoneme can be repre­

sented by several allophones. These classify speech sounds in terms of the way 

they are produced. Again, there would be many thousands of allophones for any 

given language. Acoustically defined sub-word units have also been used in speech 

recognition systems [Blomberg, 1989] [Svendsen et al., 1989]. These units need 

not have a one-to-one correspondence with existing linguistic units. Segmentation 

of the speech signal in terms of these units can easily be done using well defined 

acoustic criteria. The difficulty then lies in generating a word lexicon based upon 

these acoustically defined sub-words. 

One of the most successful methods of phoneme modelling, and the foundation 

of most recent automatic speech recognition systems, is hidden Markov modelling. 

A tutorial on hidden Markov models may be found in [Rabiner, 1989]. Hidden 

Markov models may be used at the segmentation and labelling level (as in the 

triphone model, for example) or at the syntactic level (known as the language 

model, or grammar). 

Using Bayes' rule, 

P{Model\Observed Features) = ^Observed Features]Model) • P(Model) 
PyObserved Features) 

but this simplifies to 

P(Model\Observed Features) oc P(Observed Features]Model) • P'(Model) 
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ARPA-bet OALD SAM-PA Example Relative Frequency 

P P P put 3.1% 
b b b but 2.3% 
t t t ten 6.8% 
d d d den 4.1% 
k k k can 4.7% 
m m m man 3.1% 
n n n not 6.5% 
1 1 1 like 5.5% 
r r r run 5.4% 
f f f full 1.8% 
V V V very 1.2% 
s s s some 6.6% 
z z z zeal 3.6% 

hh h h hat 0.8% 
w w w went 0.9% 
g g g game 1.3% 
ch tS tS chain 0.5% 
jh dZ dZ Jane 0.8% 
ng N N long 1.6% 
th T T thin 0.3% 
dh D D then 12.2% 
sh S S ship 1.2% 
zh z z measure 0.1% 
y j J yes 0.8% 
iy i i bean 1.4% 
aa A A barn 0.9% 
ao 0 0 born 1.0% 
uw u u boon 1.0% 
er 3 3 burn 0.7% 

_ i h — I - I - -pit 10.0% 
eh e E pet 2.4% 
ae k { pat 2.5% 
ah V V putt 1.5% 
oh 0 Q pot 1.6% 
uh u u good 0.4% 
ax @ @ about 7.2% 
ey el el bay 2.0% 
ay al al buy 1.6% 
oy ol ol boy 0.2% 
ow @U @U no 1.5% 
aw aU aU now 0.4% 
ia I@ I@ peer 0.7% 
ea e@ e@ pair 0.2% 
ua U@ U@ poor 0.2% 

Table 3.1: Three Machine Readable Phonetic Alphabets 
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as P(Observed Features) is constant and independent of any model. 

P(Observed Features\Model) is known as the acoustic model. Each model is 

composed of a series of states and arcs between states. Each arc has an associated 

transition probability; in other words each state t depends on the previous state t -

1. One model would be used for every word in the lexicon; or in the case of sub-word 

modelling, for every (context dependent or context independent) phoneme model. 

Word models can be made from concatenating phoneme models (see Figure 3.2). 

A speech recogniser that uses phonemes as the sub-word unit must also take 

into account silence. For example, "sweet sheep" might be transcribed as 

/ s i l s w i t s i l S i p s i l / 

but taking left and right context into account, to produce triphones, this would be 

transcribed as 

/ ( ) s i l ( s ) (sil)s(w) ( s ) w ( i ) ( w ) i ( t ) ( i ) t ( s i l ) . . . 

. . . ( t ) s i l ( S ) ( s i l ) S ( i ) ( S ) i ( p ) ( i ) p ( s i l ) ( p ) s i l ( ) / 

The unit ( w ) i ( t ) is distinct from the unit (S ) i ( p ) even though they have 

the same "main" phoneme. Therefore, instead of 45 context independent phoneme 

models (including silence) being used during labelling of the speech signal, 453 

(91125) context dependent triphones would be required. Context dependent phoneme 

modelling performs better than context independent phoneme modelling because, 

for example, they model the coarticulatory effects which different contexts have 

upon the realisation of phonemes [Schwartz et a/., 1985]. The models have their 

associated probabilities calculated from training samples of speech. The more train­

ing information that is available, the more accurate will be the models. Sub-word 

based hidden Markov models can be trained on vocabulary independent and task 

domain independent samples. Vocabulary independent systems do not require new 
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Suppose that a speech recognition system has a lexicon containing one word: "audience". Four 
pronunciations of "audience" could be written (using context independent phonemes) as: 

/0 d i E n s / 
/0 d I E n s / 
/0 dZ E n s / 
/0 dZ n s / 

This could be represented as a Markov model, each state representing one phoneme, and each 
arc having a probability associated with it. 

dZ 

0 . 2 5 0 . 7 5 

Traversing the arcs can only result in the four pronunciations above; multiplying the probabilities 
along the way gives a resultant probability for each pronunciation occurring. 

/ O d i E n s / 0 . 7 5 * 0 . 7 5 * 1 * 1 * 1 = 0.5625 
/0 d_I E n s / 0 JB * 0.25 * 1. * - l * 1 = 0-18-75-
/0 dZ E n s / 0.25 * 0.75 * 1 * 1 = 0.1875 
/0 dZ n s / 0.25 * 0.25 * 1 = 0.0625 

Each phoneme (state, in the above model) would be associated with a model of its own in which 
each state would consist of a vector of numbers representing features of a speech signal. In a 
more complicated example with many more words, the probabilities associated with each arc 
would be considerably smaller. 

Figure 3.2: An Example of a Word Markov Model 



Chapter 3: Trends in Automatic Speech Recognition 35 

speaker enrolment or training when the recognition task is changed [Hon and Lee, 

1991]. 

Although word based, context independent phoneme based and context de­

pendent phoneme based, speech recognition systems are capable of vocabulary 

independent recognition, their performance is dependent upon the quality of the 

available training data. In order to ensure that all the models in a system are 

fully trained, it is necessary that each occurs frequently and in different contexts 

in the training data. In practice, many of the models never occur, and for those 

that do occur it may be difficult to observe enough samples in the training data, 

even for vocabulary dependent systems, to produce accurate estimates of those 

speech features present. Much recent research has concentrated on reducing the 

number of models to a more manageable figure [Rabiner et ai, 1989] [Sagayama, 

1989]. The Sphinx speech recognition system [Lee, 1988] uses a clustering proce­

dure to combine similar triphone contexts into clusters of generalised triphones. 

For example, in the ARPA Resource Management database, there are 2381 intra-

word triphones, this rises to 7057 triphones when inter-word triphones are also 

considered. In Sphinx, this figure is reduced from 7057 models to 1,000 generalised 

triphone models. For vocabulary independent recognition, decision tree techniques 

have been used to produce a general set of context sensitive models [Hon and Lee, 

1990] [Downey and Russell, 1992]. Work has also been undertaken that exploits 

some important features of speech which are apparent at the sub-phonemic level, 

by using sub-phonemic units originally developed for speech synthesis [Downey, 

1993]. Initial results show that this approach is at least as good as the triphone 

approach. 

The three fundamental units, whole word, phoneme-like and acoustic segment 

units, have been compared in [Lee et ai, 1989a]. The conclusions that were reached 

are that a hybrid approach based on a combination of both whole word and sub-

word models should be used. Whole word models should be used for short function 

words that are acoustically more variable; phoneme like models are useful for con­

structing word models not observed during training; and acoustic models maintain 
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consistency during unit modelling and generation of acoustic representations of 

words in the lexicon. 

Other, knowledge based, approaches have concentrated on simulating the ex­

pertise of spectrogram readers [Zue, 1985] [Guzy and Edmonds, 1986] [Hatazaki et 

a/., 1989] [Lamel, 1993]. A speech spectrogram is a graph showing the frequency of 

the speech signal against time. Trained readers can achieve up to 90% correct pho­

netic decoding when tested against phonetically labelled sentences. This approach 

encounters difficulties in translating the visual cues used by the expert readers into 

rules that can be applied on a numeric representation of the speech signal. 

3.2.5 The Language: Restricted vs. Unrestricted 

Perplexity is an important measure in specifying the degree of sophistication in 

a recognition task, it is often called the average word branching factor of the 

language model [Rabiner and Juang, 1993]. Perplexity is roughly calculated as 

the average number of allowable words at any given point in the recognition pro­

cess [Sondhi and Levinson, 1978]. So, clearly, i f no language model were to be 

used, in other words each word in the lexicon is equally likely to occur, then the 

perplexity would be equal to the number of entries in the lexicon. Conversely, 

a system that could only recognise the sentence " A l l sheep are sweet" will have 

a language model of perplexity one, as only one word is allowable at any given 

point during the recognition. Perplexity does not take into account any acoustic 

similarities between words in the lexicon. The Hearsay-II system [Engelmore and 

Morgan, 1988, Part I] developed at Carnegie Mellon University, for example, used 

(in common with several other systems) a semantic template grammar to restrict 

the solution set of possible utterances. A semantic template is a set of semanti-

cally type-equivalent phrases. These are stored as the nodes of a network, and 

any path through the network forms an acceptable sentence. One path might be 

"tell X about Y" where X and Y are semantic type templates. X might represent 

the set {me, us, him, her} and Y the set {ships, planes, submarines, helicopters}. 
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If a recogniser would only accept spoken input in this form, the perplexity of the 

system would be (1 + 4 + 1 + 4)/4 = 2.5. In this application the semantic 

template can be used to hypothesise the form of the sentence in a top down manner 

and other stages in the recognition process, such as acoustic/phonetic, can be used 

to choose among the alternatives. This is clearly too restrictive. 

Most existing speech recognition systems use large amounts of data to train 

statistical (Markov model) language models. This data can be used to determine 

probabilities of word sequence likelihoods, known as n-grams, where n is typically 

two (bigram) or three (trigram). For example, in business correspondence the 

most likely word to occur after the word "Dear" would be "Sir". Using Markov 

models for the language model has several disadvantages: each word occurring 

in the lexicon must also occur frequently in the training samples in order for the 

language model to be at all complete and accurate; the training samples need to 

be relevant (in other words, realistically close) to the actual speech likely to be 

encountered — for example, it would be no use training the language model of an 

airborne reconnaissance reporting speech recognition system on training samples 

of people speaking poetry. 

3.2.6 The Level of Recognition: Verbat im vs. Meaning 

All automatic speech recognition systems can be categorised by the amount of 

speech understanding that takes place during recognition [Linggard, 1988]. At one 

end of the scale are the speech transcription systems that attempt to reproduce 

verbatim (in other words a transcript) what is spoken; at the other end are the 

speech understanding systems that respond to what is spoken either in the form of 

an answer or an action. It therefore follows that speech understanding systems can 

relax the requirement for 100% accurate recognition of speech, if the same meaning 

can be conveyed with, say, 80%-90% accuracy. Speech understanding involves the 

integration of speech recognition techniques with the techniques of natural language 

understanding. The speech recognition component of a system would hypothesise a 
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set of words or sentences, and the semantic component, incorporating knowledge of 

natural language understanding, would choose the most likely hypothesis [Makhoul, 

1989]. Section 3.6 discusses this in more detail. Methods of evaluating automatic 

speech recognition systems are described in section 3.5. 

3.2.7 The Vocabulary: Small vs. Large 

The lexicon, or dictionary, contains the vocabulary of the speech recognition sys­

tem. Each word contained in the lexicon is represented either as an averaged tem­

plate estimated from several (different) spoken repetitions for pattern matching 

systems; or as a sequence of phonemes (or other unit) for sub-word based systems. 

There may be more than one phonetic representation to account for different pro­

nunciations according to context. The lexicon may also include some syntactic 

information concerning the type of word, for example, noun. 

The size and content of the vocabulary can play a large part in the success 

of every speech recognition system. For small vocabularies of 100-200 words, it 

may be possible to reduce potential confusion by deliberately not including similar 

sounding words. As the size of the vocabulary grows, the possibility of confusion 

between words grows, increasing the complexity of the task. Medium sized vocab­

ularies have from 300-1,000 words, large vocabularies have between 1,000-5,000 

words, and very large vocabularies have over 5,000 words. 

3.2.8 The Speed of Recognition: Off-Line vs. On-Line 

For some systems speed of recognition is not essential. It is possible to imagine, 

for example, that a manager dictating a letter into an office speech recognition 

system might not require the letter until later in the day. On the other hand, a 

pilot controlling part of an aircraft flight system by voice would need immediate 

recognition to avoid a potential accident. 
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3.3 Prosodic Factors 

Most automatic speech recognition systems do not take prosodic factors into ac­

count even though prosody is critical to human speech perception. Prosodic factors 

that need to be considered include pitch, intensity, rhythm and duration. 

[Waibel, 1988] puts forward the view that prosodic knowledge can contribute at 

various stages during the speech recognition process. At the lexical level, prosodic 

knowledge can provide an alternative way of hypothesising words to matching a 

series of phonemes or matching templates. For example, distinguishing between the 

words "did" and "deed" is quite difficult as the centre phonemes in each word are 

very similar ( / I / and / i / ) , however, the distinction may be made if the duration 

of the centre phoneme is taken into consideration. In the area of repair, work has 

been undertaken to identify false starts, by using word duration and fundamental 

frequency [O'Shaughnessy, 1992]. 

Prosodic knowledge is important and can be used in addition to semantic knowl­

edge to recognise a sentence by understanding its meaning. Compton writes that 

the 

... rise and fall of the voice in speech is another important factor 
in conveying meaning. This again is one of the speaker's unconscious 
devices for making the sense clear to the listener with the least effort 
on either's part. 

[Compton, 1947, page 145] 
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I don't know where he is (statement of fact) 
I don't know where he is (someone else may) 
I don't know where he is (contradiction) 
I don't know where he is (but I can guess) 
I don't know where he is (he has quite disappeared) 
I don't know where he is ( I know where the others are) 
I don't know where he is ( I know where he was) 
I don't know where he is? (why, of course I do!) 

Figure 3.3: An Example of the Importance of Stress in Speech Comprehension 

An example of what he means is given in Figure 3.3; this is taken from [Comp-

ton, 1947, page 146]. 

Some prosodic factors, such as energy (intensity), duration and fundamental 

frequency (pitch) are measured at the acoustic-phonetic level of processing. 

3c4 Speech Corpora 

The recent availability of high quality recorded speech corpora has seen a plethora 

of domain specific, very restricted grammar, high accuracy speech recognition sys­

tems. JVlost of the speech. corpora available were-initiated by ARPA, and the 

increasing complexity of the domain they represent, and of the speaking style, is 

an indication of the increasing performance of speech recognisers. This section will 

also look at several natural language corpora and dictionaries that have some rele­

vance for speech recognition systems. Further information may be found in [Taylor 

et al., 1991] and [Souter and Atwell, 1994]. 

The role of speech corpora has been to provide specific tasks for researchers 

to assess their speech recognisers. The speech corpora contain a large amount 

of high quality recorded speech that can be used for training and testing speech 

recognisers. Sub-word models and language models may be trained on a specific 

portion of the data available. The remaining data within a corpus may be used 
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for evaluation purposes. The use of recorded data eliminates the variability that 

may be introduced into the evaluation process: a text-based parser will repeatedly 

produce the same output for a given sequence of words, but a speech recogniser, on 

the other hand, is likely to be very sensitive to the smallest of variations in speaking 

style, background noise and the like, and is unlikely to repeatedly produce the same 

output for a given input. The use of recorded data also allows many different speech 

recognisers to be evaluated on the same test data, and the results compared against 

each other. 

One disadvantage of training a speech recogniser on high quality recorded 

speech, from a speech corpus for example, is that the speech is recorded in an 

artificial (laboratory) environment. The consequence of this is that the perfor­

mance of the recogniser in a real environment deteriorates substantially [Spitz, 

1991]. The majority of the difference in performance can be accounted for by the 

acoustic models for silence, in other words the quiet laboratory environment used 

for collecting the speech data is far from the noisy office environment into which 

the recogniser is to be released. 

3.4.1 T I M I T 

The T I M I T corpus was developed to train and evaluate speaker independent ph­

oneme recognition systems [Lamel et al., 1986]. It consists of 630 speakers (441 

male), each saying 10 sentences. 

3.4.2 R M 

The ARPA Resource Management (RM) corpus for continuous speech recogni­

tion [Price et a/., 1988] was developed under the Strategic Computing Speech 

Recognition Programme. The corpus represents over 21,000 recorded utterances 

from 160 speakers with a variety of dialects, and is separated for training and test­

ing purposes. The utterances consist of read speech and are made up of database 
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queries, for example: 

how many long tons is the average displacement of ships in bering strait 

list the cruisers in persian sea that have casualty reports earlier than jarrett's 
oldest one 

The Resource Management corpus uses a vocabulary of 1,000 words and can be 

used with three different language models, with perplexities 9, 60 and 1,000 (no 

grammar). 

3.4.3 ATIS 

The Air Travel Information System (ATIS) corpus serves as one of the com­

mon tasks for ARPA spoken language system research and development (see sec­

tion 4.1.1. The corpus was collected by six different organisations in the United 

States (Texas Instruments, AT&T, BBN, Carnegie Mellon University, MIT and 

SRI), and includes over 14,000 utterances from over 430 speakers [Hirschman et 

al., 1993]. Three types of system tests may be performed: spontaneous speech 

recognition tests, natural language understanding tests and spoken language un­

derstanding tests. Like the RM corpus, the ATIS corpus consists of database 

queries, for example: 

please list the flights from Pittsburgh to baltimore that will be made by six 
seat airplane on june twentieth 

list the number of first class flights available on delta airlines 

The perplexity of the language models used in the ATIS corpus ranges from 17 to 

35, depending on the query classification. 
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3.4.4 WSJ 

The Wall Street Journal (WSJ) continuous speech recognition (CSR) corpus will 

improve upon the ATIS domain by providing ARPA with its first very large vo­

cabulary, high perplexity, general purpose natural English corpus. The corpus 

is available in speech and text forms and will contain 400 hours of speech data 

and forty seven million words of text data and allows the integration of speech 

recognition and natural language processing in a highly practical application do­

main [Phillips et ai, 1992]. This corpus is currently under development at several 

sites in the United States. 

The WSJ corpus can be used with variable size large vocabularies (5,000, 20,000 

words and larger), variable perplexities (80, 120, 160, 240 and larger), speaker de­

pendent and speaker independent training with variable amounts of data, including 

equal portions of verbalised and non-verbalised punctuation (to allow dictation and 

non-dictation applications), variable microphones, variable noise levels and equal 

numbers of male and female speakers [Paul and Baker, 1992]. The majority of the 

recorded speech is read speech which is prompted by newspaper text paragraphs, 

though a small amount of the utterances consist of spontaneous dictation [Bernstein 

and Danielson, 1992]. 

3.4.5 SCRIBE 

The SCRIBE corpus is the British English speech database. It consists of a va­

riety of phonetically 'compact' and 'rich' sentences, a two minute accent sensitive 

passage, ten 'free' speech sentences, fif ty 'natural' task-specific sentences and fifty 

'synthetic' task-specific sentences. Seventy one talkers with four regional accents 

were used, recording a total of over 10,000 sentences. 
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3.4.6 Durham 

The Durham Lecture corpus contains texts that are prepared but unscripted single 

speaker oration. The main bulk of the texts are undergraduate lectures recorded 

and transcribed at the University of Durham, a BBC television lecture is also 

included. The lectures were on a number of topics, performed by male and female 

speakers whose age, experience in speaking to an audience, and background all 

varied, although each has an academic background. The transcriptions were made 

as accurate as possible by including part words, sentence repair and filled pauses. 

This corpus is currently under development. 

3.4.7 Brown 

The Brown corpus was compiled in the early 1960's at Brown University in the 

United States. It contains 500 text samples of some 2,000 words each, representing 

fifteen categories of American English texts printed in 1961 [Francis and Kucera, 

1979]. The corpus is available in a number of versions, with and without part of 

speech tagging. 

3.4.8 LOB 

The Lancaster-Oslo/Bergen (LOB) corpus was compiled in the 1970's at the Uni­

versities of Lancaster (England) and Oslo (Norway). It is a British English counter­

part of the Brown corpus and contains 500 text samples of some 2,000 words each, 

representing fifteen categories (identical to the Brown corpus) of British English 

texts printed in 1961 [Johansson et al., 1978]. The corpus is available in a number 

of versions, with and without part of speech tagging. 
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3.4.9 L U N D 

The London-Lund (LUND) corpus contains 100 spoken English texts of some 5,000 

words collected and transcribed at the Survey of English Usage, University College 

London, and computerised at the University of Lund (Sweden) [Svartvik, 1992]. 

The texts in the corpus are transcribed orthographically, with detailed prosodic 

marking. They represent a range of text categories, such as spontaneous conver­

sation, spontaneous commentary, spontaneous and prepared oration, and the like. 

Five of the Lund texts are prepared but unscripted single speaker oration. It is not 

clear if any post-processing of the transcriptions has taken place; some of the tran­

scriptions look too "clean" to be actual spontaneous speech. The LUND corpus 

does not contain any part of speech tagging. 

3.4.10 SEC 

The Lancaster/IBM Spoken English corpus (SEC) contains approximately 52,000 

words, representing eleven categories of contemporary spoken British English [Tay­

lor and Knowles, 1988]. The majority of the texts of the corpus were obtained from 

the BBC. The material is available in orthographic and prosodic transcription ver­

sions, and in two versions with part-of- speech tagging. 

3.4.11 O A L D 

The machine-readable form of the Oxford Advanced Learner's Dictionary (OALD) 

contains over 70,000 entries and was derived originally from the Oxford Advanced 

Learner's Dictionary of Current English, third edition, published by the Oxford 

University Press in 1974. It contains all of the headwords and subentries, includ­

ing their inflected forms, from the original dictionary, to which were added 2,500 

proper names [Mitton, 1992]. Each entry includes an orthographic spelling, a pho­

netic spelling (pronunciation) with an indication of primary and secondary stress, 
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possible parts of speech with rarity indicators, the number of syllables, and, for 

verbs, the sentence structures in which the word can occur. 

3.5 Performance Measures 

Performance is generally measured in terms of accuracy of recognition, and speed 

of recognition. These figures, though, must be taken relative to the size and per­

plexity of the grammar, as well as the level of speaker dependency and the speaking 

rate [Pallett, 1985] [Hunt, 1988]. 

In assessing the accuracy of a speech recognition system, care must be taken 

to examine the kind of word errors: deletions, insertions or substitutions of words. 

Deletions occur when something was spoken, but nothing recognised; insertions 

occur when nothing was spoken, but something was recognised; and substitutions 

occur when a word is recognised in place of another. 

Evaluation of automatic speech recognition systems is discussed in detail in 

chapter 7. Simple metrics include calculating the percentage of correct words and 

the percentage of substitution, insertion and deletion errors. The existence of 

speech corpora allows different systems to be evaluated on the same data. 

3.6 The Integration of Speech Recognition and 

Natural Language Processing Techniques 

Unfortunately, many of the techniques for parsing text-based (typed) natural lan­

guage do not adapt well to speech specific problems [Young et a/., 1989]. 

© Probability Measures 

Typed input is accurate; whereas the result of each stage in an automatic 

speech recognition system involves some form of probabilistic estimation. 
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o Identifying Words 

Several words are hypothesised for each actual word. 

o Phonetic Ambiguity of Words 

Many words sound identical, and can only be correctly identified when context 

is taken into account. 

o Syllable Omissions 

Words are often missed out to achieve higher speaking rates, or successive 

words are assimilated. 

o Missing Information 

The automatic speech recognition system may completely fail to recognise a 

correctly spoken word. 

o Ungrammatical Input 

Whereas natural language understanding systems have to handle mis-typing, 

speech systems have to cope with mis-spoken words, inserted pauses and 

noises. Natural speech is also more likely to be ungrammatical. 

Rather than use the power of fu l l natural language processing (NLP) systems, 

speech recognition researchers have only made use of parsing and some semantics 

in order to achieve tEeir aims. Much research has concentrated on the area of 

robust or partial parsing [Ward, 1991b] [Stallard and Bobrow, 1992] [Baggia and 

Rullent, 1993]. This has been combined with frame-based semantics for robust 

speech processing in the ATIS domain. For example, working in the ATIS domain, 

a speech recognition system would use partial parsing and semantic frames on the 

following sentence: 

i want a flight uh that arrives in boston let's say at 3pm 

to extract the information flight, arrive, Boston, 3pm, and ignore the irrelevant 

parts of the sentence. These techniques are suited to information retrieval appli­

cations but not for the more sophisticated speech understanding tasks. 
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Sentence Log Likelihood of Model Sentence 
Acoustic Language 

T H E LOW WAS E L E V E N OH NINE POINT OH E IGHT -24424.82 -794.52 
T H E LOW WAS E L E V E N OR NINE POINT OH E I G H T -24494.42 -733.35 
T H E LOW WAS E L E V E N OWN NINE POINT OH E IGHT -24441.68 -786.91 
T H E LOW WAS E L E V E N O W N E D NINE POINT OH EIGHT -24447.09 -792.71 
T H E LOW WAS A L I T T L E KNOWN NINE POINT OH EIGHT -24537.12 -706.06 
T H E LOW WAS E L E V E N 0 . NINE POINT OH E IGHT -24424.82 -841.33 
T H E LAW WAS E L E V E N OH NINE POINT OH E IGHT -24495.23 -775.93 
T H E LAW WAS E L E V E N OR NINE POINT OH E IGHT -24564.83 -714.76 
T H E LAW WAS E L E V E N OWN NINE POINT OH E IGHT -24512.09 -768.32 
T O T H E LOW WAS E L E V E N OH NINE POINT OH EIGHT -24392.35 -890.53 

Table 3.2: The N-Best Output of a Speech Recogniser on a WSJ Sentence 

A common interface between speech recognition and natural language process­

ing systems is the n-best sentence list. This represents the most likely sentences 

according to the speech recognition system, usually taking into account acoustic 

information and a t r igram language model. The role of the NLP system is to then 

select the most likely sentence f rom the list, making use of a deeper grammatical 

analysis i n addition to semantics and pragmatics, and perform some action. This is 

a suitable method for overcoming the "short-sightedness" of the t r igram language 

model. A n example of the n-best (n = 10) output of a speech recognition system 1 

is shown in Table 3.2. 

3o7 Future Trends In Automatic Speech Recog­

ni t ion Research 

As the next chapter w i l l show, existing automatic speech recognition systems have 

achieved very good recognition wi th very large vocabularies on restricted domain 

(Wall Street Journal for example) read speech. Substantial amounts of training 

data are used to train acoustic and language models. These systems cannot be 

Generated using The HTK Large Vocabulary Speech Recognition System developed by Steve 
Young, Phil Woodland, Julian Odell and Valtcho Valtchev from the Speech Vision and Robotics 
Group, Cambridge University Engineering Department. 
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improved much more in this kind of scenario. The major challenges facing the 

speech recognition community in the fu ture are in developing domain independent 

large vocabulary systems, in i t ia l ly for read speech. Subsequent efforts should be 

aimed at handling spontaneous speech. 

More integration w i l l take place w i t h large-scale natural language processing 

systems, as serious applications beyond word recognition and into spontaneous 

speech understanding are demanded by users. 



Chapter 4 

Existing Systems 

This chapter describes the most recent ARPA speech recognition evaluations (De­

cember 1993) [ARPA, 1994] and outlines the capabilities of existing systems for 

automatic recognition of continuous speech, and of existing systems used by the 

deaf community for real-time machine transcription of speech. 

4.1 Recent A R P A Speech Recognition Evalua­

tions 

Over the years, ARPA (formerly known as D A R P A ) have organised many com­

petit ive evaluations of sites that they support financially, who research into speech 

and language. More recently, invitations have been extended to several European 

groups to evaluate their systems for comparison. 

50 
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4.1.1 A T I S 

The Ai r Travel Information System (ATIS) evaluation assessed speech recognition 

(SPREC), natural language database query ( N L ) , and their integration, spoken 

language understanding (SLS). The ATIS corpus is described in section 3.4.3. The 

task was to solve air travel planning scenarios using a 46-city relational database 

of air travel planning information. 

The ATIS corpus moves on f r o m just evaluating speech recognition performance 

and reflects the recent advances made in the recognition of spontaneous speech and 

the importance of actually doing more than recognising words by evaluating any 

subsequent actions. When the ATIS task was developed in 1990 [Price, 1990], l i t t l e 

work had been done on formal evaluation of understanding for natural language 

interfaces. I n the absence of a generally accepted semantic representation, the 

ARPA spoken language system community focussed instead on generating "correct" 

database queries. Evaluation was then based upon a comparison between canonical 

database answers and system answers [Pallett, 1991] [Pallett et a/., 1992]. Correct 

answers are classified as being context independent ( A ) , context dependent (D) 

and un-evaluable ( X ) . Queries w i t h un-evaluable answers are only used for SPREC 

evaluation. 

The results of the 1993 ARPA evaluation are summarised in Table 4.1. The 

term °/,WE refers to the percentage word error made by a system, and the term 

%UE refers to the percentage utterance ( in other words, sentence) error made by a 

system. 

4.1.2 CSR ( S P R E C ) 

The ARPA continuous speech recognition evaluation was performed on parts of 

the Wall Street Journal Corpus (WSJ) , described in section 3.4.4. The evaluation 

consisted of two 'hub' tests, and nine 'spoke' tests, these are shown in Table 4.2. 

Each test had a primary condition (P0), in which any acoustic data or language 
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System 
' SPREC (%WE) NL (%UE) SLS (%UE) 

System A D X A D A D 
AT&T 8.6% 9.6% 15.5% 7.4% 14.2% 22.1% 28.0% 
BBN 3.0% 4.0% 7.2% 9.6% 21.8% 13.8% 22.5% 
CMU 3.0% 3.9% 7.3% 6.0% 13.8% 8.9% 19.1% 
C R M 6.3% 7.2% 15.0% 14.7% 29.2% 23.7% 34.5% 
MIT-LCS 4.3% 4.9% 10.0% 10.0% 16.0% 11.8% 17.5% 
SRI 3.9% 5.5% 8.0% 14.3% 32.3% 16.5% 36.3% 
UNISYS 3.6% 4.9% 10.1% 28.6% 63.1% 33.5% 65.2% 

Table 4.1: Summary of the ARPA 1993 ATIS Evaluation Results 

model may be used, and several contrastive tests ( C X ) , in which some conditions 

were fixed to allow comparison between systems. A l l sites were required to evaluate 

on one of the Hub tests, the spoke tests were optional. The H1-P0 condition was 

the premier test of the evaluation. The spoke tests advanced research in several 

directions: adaptation of the language model ( S i and S2); adaptation to the speaker 

(S3 and S4); compensation for channel variabil i ty (S5 and S6); compensation for 

noise (S7 and S8); and spontaneous dictat ion (S9). Recognition t ime was not 

measured in the ARPA CSR evaluation; indeed some systems took several hours 

to recognise each sentence. 

Results for the H1-P0 (any grammar), H l - C l ( t r igram), H2-P0 (any grammar) 

and H2-C1 (bigram) tests are summarised in Table 4.3. Several groups entered 

more than one system, differences between systems are described below under each 

individual group's details. Only one site ( B B N ) competed in the S9, spontaneous 

speech recognition, test. On S9 data, their S9 system achieved 19.1% word error 

and their H l - C l system achieved 24.7% word error, indicating, as expected, that 

spontaneous speech is harder to recognise than read speech. 



C h a p t e r 4: E x i s t i n g Sys tems 53 

Test Description Vocabulary 
HI Read WSJ Baseline 64K 
H2 Read WSJ Baseline 5K 
SI Language Model Adaptation Unlimited 
S2 Domain Independence Unlimited 
S3 SI Recognition Outliers 5K 
S4 Incremental Speaker Adaptation 5K 
S5 Microphone Independence 5K 
S6 Known Alternate Microphone 5K 
S7 Noisy Environments 5K 
S8 Calibrated Noise Sources 5K 
S9 Spontaneous WSJ Dictation Unlimited 

Table 4.2: ARPA 1993 CSR Evaluation Tests 

4c2 Existing Systems for Automatic Recogni­

t ion of Continuous Speech 

This section first describes each of the systems that entered the ARPA ATIS /CSR 

evaluations, and then three other systems of note. 

4.2.1 A T & T 

The A T & T ATIS system [Bocchieri, 1994] used a natural language understanding 

system provided by C M U ; the interface was the single best sentence provided by 

the recogniser. In the speech recognition component, 998 context independent 

phone models were used, and the acoustic model was trained on 14,000 ATIS 

sentences. The language model used a probabilistic finite state grammar; 18,000 

ATIS sentences were used to t ra in a bigram model, wi th a perplexity of 25. The size 

of the lexicon was 1433 words, one pronunciation per word. The search algori thm 

used a standard forward beam search. Recognition took approximately two minutes 

on an SGI R4000 computer. 
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System 
HI - 64 K H2 - 5K 

System PO C I PO C I 
BBN 12.2% 14.2% 
BU (1) 15.7% 6.7% 11.6% 
BU (2) 14.3% 5.4% 10.3% 
BU (3) 14.5% 5.8% 10.8% 
CMU (1) 13.6% 
CMU (2) 13.9% 
CU-CON 13.5% 
CU-HTK (1) 12.7% 
CU-HTK (2) 4.9% 8.7% 
CU-HTK (3) 12.5% 
DRAGON 19.0% 
ICSI 17.7% 
LIMSI (1) 11.7% 
LIMSI (2) 5.2% 9.3% 
M I T - L L 16.8% 18.6% 
PHILIPS (1) 9.2% 12.3% 
PHILIPS (2) 14.8% 6.4% 
SRI 14.4% 

Table 4.3: Summary of the ARPA 1993 CSR Evaluation Results 

4.2.2 B B N 

The B B N Systems and Technology H A R C (Hear A n d Respond to Continuous 

speech) -spoken language systemTntegrates a speech recognition sub-system, By-

blos, and a natural language understanding sub-system, Delphi [Stallard, 1994] 

[Zavaliagkos et ai, 1994] [Bates et a/., 1993] [Bates et a/., 1992] [Kubala et a/., 

1992] [Bobrow et a/., 1992]. Byblos uses a multi-pass search strategy designed 

to use progressively more detailed models on a correspondingly reduced search 

space. The output is an n-best list of hypotheses which is then re-ordered by sev­

eral knowledge sources. The top choice in the list is used for results on Byblos 

alone; the entire list is passed to the language understanding component for fur­

ther re-ordering and interpretation. For the ATIS evaluation, the acoustic model 

was trained on a large number of ATIS sentences; the language model was trained 

on 30,000 ATIS sentences; the lexicon contained 2600 words. For the CSR evalu­

ation, the acoustic and language models are trained on WSJ data, and the n-best 
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output of Byblos was re-scored using a segmental neural network. On the CSR 

spontaneous WSJ dictation (spoke 9) test, B B N used their H1-P0 system w i t h the 

addition of 1000 new words to the lexicon, and 8000 spontaneous WSJ dictation 

sentences for language model training. 

The natural language component, Delphi, uses an agent-based chart parser, 

w i t h scheduling based on the measured statistical likelihood of grammatical rules. 

The system allows for semantic interpretations of input which has no valid global 

syntactic analysis, by the use of a fallback component in which statistical estimates 

play an important role. 

The basic interface between Byblos and Delphi in H A R C is an n-best list. I n 

evaluating H A R C on the ATIS test set, n was set to five. In i t ia l ly Delphi applies the 

f u l l parsing strategy to each of the sentences in the list passed to i t f r o m Byblos. 

I f none of these results are acceptable, Delphi makes a second pass through the 

hypothesis list using the fallback strategy. 

4.2.3 B U 

The Boston University ATIS system combined the B B N Byblos speech recogniser 

w i t h the-Boston -Stochastic Segment Model (SSM) recogniser [Ostendorf et ai, 

1994]. The interface between the two systems was an n-best sentence list (n = 

100). In Table 4.3, the BU(1) system is the baseline version of Byblos shown 

for comparison, this is different to the B B N system described above which uses 

a segmental neural network (SNN) to re-score the n-best output of the Byblos 

recogniser. The BU(2) system re-scored the n-best output of Byblos using H M M 

log-likelihood; SSM log-likelihood; SNN log-likelihood; n-gram word sequence prob­

abil i ty; language model scores; and phoneme, word and silence counts. The BU(3) 

system is similar to the BU(2) system but does not make use of the H M M and 

SNN log-likelihood scores. In each of the systems, the lexicon used is identical to 

that used by the B B N Byblos system under the corresponding conditions. 
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4.2.4 C M U 

Research at Carnegie Mellon University is focussed around the Sphinx speech recog­

ni t ion system. Sphinx uses phonetic hidden Markov models which are trained on 

task dependent data [Lee et ai, 1989b] [Lee et a/., 1990]. Generalised triphones 

are used to model coarticulatory effects; similar triphones are merged to improve 

the trainabil i ty of the models and the probabilities smoothed to improve robust­

ness. Recently, the performance of the Sphinx system was greatly improved, w i th 

the new system being called Sphinx-II [Huang et ai, 1993] [Alleva et a/., 1992]. 

These improvements have been made using additional dynamic features, speaker 

normalised features, semi-continuous hidden Markov models, sub-phonetic mod­

elling, vocabulary independent and adaptive speech recognition, speaker adaption, 

efficient search and language modelling. A three pass search strategy was used: 

left-to-right beam search w i t h bigram, right-to-left beam search w i t h bigram, and 

an A* search wi th a t r igram language model. 

For the ATIS task, the Sphinx-II speech recognition system produced a single 

best hypothesis for the spoken input which is then passed to the Phoenix natu­

ral language understanding system which uses flexible parsing to cope w i t h novel 

phrasings and mis-recognitions [Isaar and Ward, 1994] [Ward et al., 1992] [Ward, 

1991a]. The system_used a 3207 word-lexicon. The acoustic model was-trained 

on 22,000 ATIS sentences, and the language model was trained on 26,000 ATIS 

sentences. 

For the CSR task, the C M U systems used a lexicon of 19,979 words. The 

C M U ( l ) system used a t r igram language model provided by M I T - L L . The CMU(2) 

system used an adaptive language model that combined the conventional t r igram 

language model w i th mutual information models (bigram, tr igram and a long dis­

tance bigram model), in addition to a "rare words only" unigram cache, and a 

bigram cache. 
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4.2.5 C R I M 

The Centre de recherche informatique de Montreal ( C R I M ) ATIS system used 

a large vocabulary spontaneous speech recogniser to generate a list of sentence 

hypotheses, the best of which was passed to a natural language component for 

interpretation [Normandin et a/., 1994]. For each sentence, 100 hypotheses were 

produced for each of two acoustic models (male and female), these are then re-

scored using cross-word triphone models, followed by bigram and t r igram language 

models. The perplexity of the language models was 18 (bigram) and 9 ( t r igram). 

The final score for each sentence was obtained using a weighted sum of these 

three scores. N-best lists were then produced using a two-pass beam search and a 

bigram language model. The recognition dictionary contained 1863 entries. Only 

one sentence is sent to the natural language module, which makes use of a chart 

parser and semantic frame classification, for interpretation. 

4.2.6 C U E D ( C U - C O N ) 

Cambridge University Engineering Department's Connectionist group (GU-CON) 

used a hybr id connectionist-HMM speech recognition system for the ARPA CSR 

evaluation_[Robinson eUal, 1-994] [Hoehberg-ei- al., 1994]. A recurrent net was used 

to map acoustic vectors to probabilities of phone classes. The maximum likelihood 

phone or word string is then extracted using Markov models. The acoustic training 

data consisted of 84 speakers uttering a total of 7200 sentences. The lexicon, 

provided by Dragon, contained the standard WSJ 5K words. The language model, 

provided by M I T - L L , was the standard bigram language model. 

4.2.7 C U E D ( C U - H T K ) 

The second Cambridge University Engineering Department system ( C U - H T K ) was 

a large vocabulary continuous speech recogniser bui l t using H T K , an H M M toolkit 
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[Woodland et al., 1994a] [Woodland et al., 1994b]. H T K has a unique generalised 

parameter sharing mechanism that allows H M M systems to be constructed that are 

balanced between acoustic model complexity and parameter estimation accuracy 

for a given training corpus. The C U - H T K ( l ) system used gender independent 

triphone models and was trained on 7193 WSJ utterances (14 hours of speech). 

Word recognition was performed using a static network decoder w i t h a 5K bigram 

language model. The C U - H T K ( 2 ) system used gender dependent triphone models, 

and was trained on the same amount of data. Word recognition was performed 

using a dynamic network decoder and the same 5K bigram language model. The 

CU-HTK(3) system used gender dependent triphone models and was trained using 

36,515 WSJ utterances (66 hours of speech). Word recognition was performed 

using a dynamic net decoder wi th 5K bigram and 20K tr igram language models. 

Dynamic network decoding required approximately ten minutes per sentence using 

a 20K lexicon. C U - H T K systems gave the lowest word error rates in three out of 

the four ARPA tests entered, and the second lowest word error rate on the four th 

test. 

4.2.8 D R A G O N 

The Dragon large vocabulary speech recognition-system was _an HMM-based sys­

tem [Scattone et al., 1994] [Roth et al., 1993] [Baker et al., 1992]. I t used context 

dependent, gender dependent, triphone models and was trained on 26,000 WSJ 

utterances. Gender determination was performed before recognition. Word recog­

nit ion was performed using a single pass dynamic programming algorithm w i t h the 

standard tr igram language model, provided by M I T - L L . 

4.2.9 I C S I 

The International Computer Science Insti tute used a hybrid H M M and multi-layer 

perceptron system for the ARPA CSR evaluation [Morgan et al., 1994]. This 
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system was a pilot system scaled up f rom ICSI's Resource Management system. I t 

made use of context independent, gender independent, phone models, trained on 

7200 WSJ utterances. The standard bigram language model and 5K pronunciation 

lexicon were used. 

4.2.10 LIMSI 

The L I M S I continuous speech dictation system was an HMM-based system that 

used context dependent, gender dependent, phone models [Gauvain et al, 1994a] 

[Gauvain et al., 1994b]. The acoustic model was trained using 37,518 WSJ sen­

tences f r o m 284 speakers. For word recognition, a two pass beam search was used: 

the first pass used the standard bigram language model to generate a word lattice, 

and the second pass used a t r igram language model to search the word lattice. The 

L I M S I ( l ) system used a 20K pronunciation lexicon, and the LIMSI(2) system used 

a 5K pronunciation lexicon. 

4.2.11 M I T (MIT-LCS) 

The Massachusetts Insti tute of Technology Laboratory for Computer Science-spo­

ken language system couples the Summit speech recognition system w i t h the Tina 

natural language understanding system [Zue et a/., 1992] [Seneff, 1992]. The system 

used a lexicon of 2460 words. There are three major components in the Summit sys­

tem: acoustic-phonetic; pronunciation network; and linguistic decoder [Zue et al., 

1990]. The phonetic recognition subsystem of Summit takes as input the speech 

signal and produces as output a network of phonetic labels w i th scores indicat­

ing the system's confidence in the segments and in the accuracy of its labels. A 

pronunciation network is established for each entry in the system's vocabulary. 

This contains the possible different pronunciations for each word, determined by 

a phonological expansion system, and their associated likelihoods. The linguistic 

decoder produces an n-best list of candidate word sequences in decreasing order of 
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total path score. I t makes use of an A* search algorithm during alignment of the 

phonetic network wi th the lexical word pronunciation network. 

The Tina natural language system was developed for applications involving 

speech recognition tasks [Seneff, 1989]. The parser used a best first strategy, w i th 

probabilities obtained automatically f r o m a set of example sentences. The grammar 

was entered as a set of simple context free rules which are automatically converted 

to a shared network structure. Tina parsed the n-best word sequence hypotheses 

provided by Summit, and, for the best parse, generated a set of query functions 

which were passed to the back end for response generation [Hirschman et ai, 1991]. 

4.2.12 M I T (MIT-LL) 

The Massachusetts Insti tute of Technology Lincoln Laboratory large vocabulary 

continuous speech recognition system is a stack decoder-based H M M system [Paul, 

1994] [Paul and Necioglu, 1993]. The system used gender dependent triphone 

models, and was trained on 37,000 WSJ utterances (82 hours of speech). A stack 

decoder is used to control the acoustic and language model search by applying 

a fast match routine to f ind a small number of potential words which are then 

evaluated using a more expensive detailed match [Paul, 1992]. The standard 20K 

t r igram language model was used. 

4.2.13 P H I L I P S 

The Philips large vocabulary continuous speech recognition system is an H M M -

based system that uses gender independent triphone models [Aubert et ai, 1994]. 

P H I L I P S ( l ) was trained on 7200 WSJ utterances f rom a total of 84 speakers, and 

used the 5K lexicon provided by L I M S I . PHILIPS(2) was trained on 37,200 WSJ 

utterances f r o m a total of 284 speakers, and uses the 20K lexicon provided by 

Dragon. For word recognition, both systems formed a word lattice using a left-to-

right beam search incorporating a bigram language model. The word lattice was 
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then re-scored by incorporating an additional t r igram language model. 

4.2.14 S R I 

Decipher is SRI's hidden Markov model based speaker independent continuous 

speech recognition system [Murveit et ai, 1993a] [Digalakis et ai, 1994]. The 

system used gender dependent triphone models. For word recognition, a two pass 

progressive search strategy was used. The first pass generated a word lattice using 

a bigram language model, the second pass re-scored the lattice wi th more complex 

H M M models to generate an n-best list of sentence hypotheses. For the CSR C l 

test, the standard WSJ t r igram language model was used to re-score and re-order 

the n-best list. 

A natural language processing system, known as SRI Travelogue, was inte­

grated w i t h Decipher for use w i t h the ATIS corpus [Moore et ai, 1994] [Appelt 

and Jackson, 1992]. The acoustic component of Decipher was trained on 19,854 

ATIS utterances. The lexicon consisted of 1665 words. The n-best output of De­

cipher was re-scored using a parser-based language model. The Travelogue system 

consists of a template matching sentence analysis mechanism together w i t h a con­

text handling mechanism and a database query generation component. 

4.2.15 U N I S Y S 

The Unisys ATIS system consisted of the B B N speech recognition system com­

bined wi th a natural language processing system [Dahl et a/., 1994]. The interface 

between the two systems was an n-best list of sentence hypotheses. The N L com­

ponent used robust parsing techniques to re-score the n-best list. The list was then 

re-ordered and the remaining part of the N L system (using semantics) used to fi l ter 

out unacceptable hypotheses. This was achieved wi th varying success: results for 

SPREC showed a significant increase in sentence error; results for SLS were slightly 

improved. 
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4.2.16 B R A 

The Armada system was produced as part of the A R M (Airborne Reconnaissance 

Mission) project being undertaken at the Speech Research Uni t at the Defence 

Research Agency ( D R A ) . Armada was a medium sized vocabulary, speaker depen­

dent, continuous speech recognition system. W i t h a (null) grammar of perplexity 

540, Armada achieved a word correct rate of 94.3%, and a word accuracy of 82.0%. 

W i t h a grammar of perplexity six, the word correct rate was 99.5% and the word 

accuracy was 99.2%. [Ponting and Russell, 1989] [Parry, 1990] [Russell et ai, 1990a] 

The texts of the A R M reports were created using an automatic sentence gen­

erator based on a f ini te state syntax and a 497 word vocabulary. This syntax was 

based on existing airborne reconnaissance reports and had a perplexity of approx­

imately six. Each report was recorded by two male and one female speakers i n a 

sound proof room using a head mounted microphone. Recordings were sampled 

at 20kHz to produce 100 frames per second. Orthographic annotation was done 

semi-automatically and then checked manually; some non-speech sounds occurring 

between sentences were also labelled. A dictionary containing a single phonemic 

transcription of each word in the A R M vocabulary was created for each speaker. 

The system was first trained on one or two hand labelled A R M reports at the 

context independent phoneme level. These models were„ then optimised using_37-

training reports. The context independent phoneme hidden Markov models were 

then used as in i t ia l estimates of the associated triphone model parameters. These 

were then optimised on the same 37 report set. 

Armada was based on sub-word hidden Markov models i n which the basic unit 

was the triphone. Three classes of hidden Markov models were used in the Armada 

system: triphone models (approximately 1500), in which each triphone was mod­

elled using a three state hidden Markov model; word level models (6), in which short 

words, such as "air", "at" etc, were modelled explici t ly rather then as a sequence 

of triphones; non-speech models (4), in which non-speech sounds, such as "silence", 

"short noise" and the like, were represented by single state hidden Markov models. 



C h a p t e r 4: E x i s t i n g Sys tems 63 

Two syntaxes have been used to assess the performance of Armada. In the word 

syntax, triphone sequences were constrained to be consistent in that the centre 

and right context phonemes of a particular phoneme had to be identical to the left 

context and centre phonemes of the following triphone, as well as producing a valid 

word sequence according to the Armada dictionary. The additional restrictions 

of the f u l l syntax were that the word sequence must be consistent w i t h the A R M 

syntax. 

More recently a speaker independent recogniser has been developed for the A R M 

task [Russell, 1992b]. This system was trained on three recordings of complete 

A R M reports f r o m each of 61 male speakers. The assessment of the f inal system 

was done on a test set consisting of three reports each f r o m 80 male speakers, none 

of whom were in the training sets, giving a total of around 13,000 words. Wi thou t 

using any explicit syntactic constraints, the system achieved a word correct rate of 

84.1%, and a word accuracy rate of 74.1%. 

4.2.17 C S T R 

The Centre for Speech Technology Research at Edinburgh University developed a 

real-time domain dependent, speaker dependent, speech recognition system known 

as Osprey [Clery, 1989]. I t was based on readily available, off the shelf digi tal 

technology and plugged into an I B M - A T compatible personal computer. The vo­

cabulary was l imi ted to 300 words. A f ini te state transition grammar wi th a typical 

branching factor (perplexity) of 3 to 5 words was used. Osprey was divided into 

three layers: the technology pla t form, the algorithmic layer and the applications 

layer [Sutherland et a/., 1989]. 

The technology pla t form described the hardware basis and processing require­

ments for the system. I t was required to be flexible, so that changes to the pro­

cessing or recognition algorithms caused minimal disturbance to the hardware; 

available, so that the hardware and software used are easily obtainable by other 

people; affordable, costs were kept to a min imum in order to increase availability; 
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and fast, the recognition process had to operate in real-time. Speech was input 

through a close speaking microphone. After analogue to digital conversion, the 

signal, sampled at 10kHz, was passed to the digital signal processor board, the 

output from which was passed onto the Inmos transputer board, containing four 

transputers, which performs the hidden Markov model processing, lexical access 

and syntactic processing [Sutherland et ai, 1990]. The algorithmic layer handled 

the division of processes between transputers. 

The Osprey design took scalability into account, for example, if a larger vocabu­

lary was employed, additional transputers may be used to handle the data. The sys­

tem modelled 44 phonemes; first time training involved reading 200 sentences. The 

flexibility of the system allowed function dependent and context sensitive models 

to be added. The application layer was airport ground movement control command 

monitoring, this required a certain amount of speech understanding. A knowledge 

base contained an up to date state of the airport, in other words the state and 

locations of the various aircraft. This knowledge base did not play any part in the 

recognition process; it was only accessed during the intermediary stage between 

the recognition of a phrase and the reaction of the system. 

4.2.18 I B M 

IBM are working on automatic speech recognition of continuously read sentences 

from a naturally occurring corpus: office correspondence. Their recognition system 

combines features from their previously developed isolated word and continuous 

speech recognition systems. It consists of an acoustic processor, an acoustic channel 

model, a language model, and a linguistic decoder. Some new features in the 

recogniser, relative to the isolated word speech recognition system, include the 

use of a "fast match" to rapidly prune, to a manageable number, the candidates 

considered by the detailed match; multiple pronunciations of all function words; and 

modelling of inter-phoneme coarticulatory behaviour. The test data consisted of 

50 sentences from ten male speakers drawn from spontaneously generated memos 
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covered by a 5000 word vocabulary. The perplexity of the test sentences was 

calculated to be 93. Preliminary speaker dependent recognition results yielded an 

average word correct rate of 89.0% [Bahl et al., 1989]. 

Training was performed by ten male speakers reading training scripts of 2000 

sentences fully covered by a 20000 word vocabulary. The first 500 sentences were the 

same for each speaker, while the remaining 1500 were different from each speaker to 

speaker. The average sentence length was 16.4 words. It took each speaker approx­

imately one week to record the necessary speech. The acoustic processor extracts a 

vector of 20 spectral features from the speech signal, and codes each feature vector 

as one of 200 possible prototype classes. The acoustic channel model describes, in 

a probabilistic fashion, the way in which words are realised as sequences of pro­

totypes produced by the acoustic processor. The fast match produces a shortlist 

(thirty on average) of words that match the prototype string. 

The language model estimates the probability of the next word in the sentence 

given the previously hypothesised words. This is the standard I B M trigram model 

which is based on an interpolation of relative frequencies of trigrams, bigrams 

and unigrams collected from a 200 million word text database. Each word in the 

vocabulary has one or more pronunciations associated with i t , known as lexemes. 

Each lexeme is made up of a series of phonemes selected from a phonetic alphabet 

of size 64. In addition to this phonetic acoustic model, I B M also uses a contextual 

allophonic acoustic model in which each of the 64 phonemes is realised by a variety 

of allophones. Each lexeme is then represented by a series of allophones, which in 

turn are represented by a series of Markov models. 
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4 » 3 Existing Systems Used By The Deaf Com­

munity For Real-Time Machine Transcrip­

t ion Of Speech 

This section outlines those systems, already in use by the deaf community, that 

provide machine transcription of speech in real-time. 

4.3.1 Palantype 

The Palantype shorthand machine has been used for some time as a transcription 

aid for the deaf. Speech is recorded on a 29 key chord (i.e. several key presses are al­

lowed at the same time) keyboard in a special phonetic form, one syllable at a time, 

and without indicating word boundaries. The original Palantype transcription sys­

tem was built of standard digital hardware; the output of the system was phonetic 

codes and hence not very easy to read. Since then, modern computer technology 

has been used to enhance the system both in terms of the quality of the output and 

its flexibility. In 1979 the original system was replaced by a microcomputer-based 

version with a dictionary of approximately 1400 words. The system achieved ap­

proximately 70%~correct word spelling'; those words not appearing in the dictionary 

were represented by their phonetic spellings. 

The system was further improved, with the commercial environment in mind, 

by increasing the vocabulary size to 10,000 and adding a facility for personalising 

the dictionary both for individual palantypists and subjects. The applications for 

the hearing impaired were not forgotten; and care was taken to ensure that the 

system could work in real-time and thus produce a simultaneous transcript when 

required. A large screen projection television was added specifically for this use. 

The improved quality of the output script meant that anyone with normal read­

ing skills could understand the output, and thus a much larger range of hearing 

impaired people could benefit from the system [Newell and Brooks, 1985]. Subse-



Chapter 4: Existing Systems 67 

quent use of editing and file handling facilities allowed a perfectly spelt verbatim 

report of a meeting to be prepared. The current Palantype computer aided tran­

scription system, marketed by Possum Controls Ltd., has a vocabulary of 15,000 

words and the performance achievable by a trained operator is normally over 95% 

words correctly spelt [Newell et ai, 1988]. 

The main drawback of the Palantype system is the length of training required 

for the stenographers (chord keyboard typists): one to two years. Trained stenog­

raphers, though, can achieve transcription rates of up to 200 words per minute. 

The average delay between a word being spoken and it being displayed on a visual 

display unit has been measured at 1.9 seconds. 

The American Palantype system, Stenotype, uses a 23 key chord keyboard, 

thus requiring a different phonetic coding method. A slightly simpler transcrip­

tion system, known as Velotype, produces direct (i.e. not processed by computer) 

output. A 37 key syllable chord keyboard is used. Proficiency with Velotype can 

be achieved after six months, with speeds of up to 120 words per minute. [RNID, 

1990] 

4.3.2 H I - L I N C 

Hi-Linc is a visual text system for conferences developed at Bristol University. It 

allows pre-prepared text to be simultaneously displayed with a video image on a 

television screen as the speaker talks. The speaker can interrupt the system at any 

time to add additional text. Al l on screen text is stored and a typed transcript may 

be subsequently made. Speaker pre-defined abbreviations may be used to further 

increase the speed of the system. [RNID, 1990] 
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4.3.3 Speed Typing System 

The Speed Typing System developed at the Open University is aimed at providing 

sufficient accuracy of transcription at sufficient speed. The text that appears on 

screen is interpreted and not verbatim. In trials, the system has been shown to 

provide 60%-70% of information items present in the original. A user with only ten 

minutes training can achieve a high degree of accuracy. This system also directly 

addresses the requirement of clarity (see page 20): the interpreted summary is in 

correct English; this may be at a more suitable linguistic level for born-deaf people 

than a verbatim transcription. [RNID, 1990] 



Chapter 

General Solution 

This chapter outlines the general solution adopted to the problem described in 

chapter 2: phoneme recognition, word lattice generation and word lattice parsing. 

The novelty of the solution is also addressed. The system that has been developed 

is known as A U R A I D . Chapter 6 outlines the detailed solution and gives evidence 

for the claims made in this chapter. 

5 o l Methodology Revisited 

Before a description of the general solution is given, it is important to reiterate 

the methodological approach that has been adopted. The work described in this 

thesis is guided by the principles of artificial intelligence and natural language 

engineering. The aim of artificial intelligence research is to simulate successful 

intelligent human behaviour by any available techniques, not just by modelling 

human mental behaviour. Natural language engineering is a pragmatic approach 

to building speech and language processing computer systems. The emphasis is on 

using current best solutions to solve practical problems. It is desirable for these 

solutions to be theoretically complete, but it is not essential. Use may be made 

of local theories, knowledge bases, statistical methods, adaptive methods and even 
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ad hoc solutions. The goal is to produce practical and usable systems. Should 

new theories be developed that replace existing solutions, the natural language 

engineer would take a pragmatic approach and use them where possible, rather 

than dogmatically holding on to old ideas. 

5 o 2 Phoneme Recognition 

Front-end processing of the raw speech signal is to be performed by a continuous 

speech phoneme recognition system. Research on this has been undertaken in col­

laboration with two groups, the Defence Research Agency (DRA), and Cambridge 

University Engineering Department (CUED). In addition, a computer program to 

simulate the performance of such a front-end has been written. This produces a 

realistic corruption of a phoneme data stream, to a degree specified as a parameter. 

The phoneme was chosen as the interface between the underlying speech recog­

nition hardware and the language processing component for two main reasons. 

Firstly, it is as high a recognition unit as can possibly be achieved using the least 

amount of domain dependence. Secondly, it is the most common unit of speech 

between the acoustic and the word level. Nearly all of the speech recognition sys­

tems deseribed-in seetion-4-2"Use either context-dependent (triph'ones^fOT"example)" 

or context independent phoneme models. There are only 44 phonemes in English, 

making it very easy to train a phoneme recogniser using large corpora and still 

retain domain independence. Using lower units than the phoneme would introduce 

unnecessary complexity, and reduce the choice of underlying speech recognition 

hardware. Using higher units than the phoneme would introduce unnecessary do­

main dependence because of the pre-dominance of statistically trained word recog­

nition systems. 

For development purposes, using a simulation is justified because it reduces 

development time by allowing work on the underlying speech recognition hardware 

and the word recognition algorithms to be undertaken in parallel at different insti-
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tutions. A simulation also provides reproducible input for testing purposes. The 

question that needs to be asked is does the simulation provide a valid model of 

a continuous speech phoneme recognition system? We argue that i t does because 

the recognition error probabilities were obtained from an existing continuous speech 

recognition system; there is a random factor; and the corruption rate is tunable 

to allow testing of the robustness of the word recognition algorithm to changes in 

phoneme recognition accuracy. A further reason that demonstrates the indepen­

dence of the word recognition algorithm from the simulation is that the dynamic 

programming parameters, used for generating a word lattice, are determined using 

an adaptive algorithm. A near optimal solution is found automatically for a given 

set of acoustic-phonetic conditions. This process is described later in this chapter. 

5 c 3 Word Lattice Generation 

An appropriate data structure that may be built prior to generating sentence hy­

potheses is a word lattice [Murveit et ai, 1993b] [Baggia et ai, 1992] [Ljolje and 

Riley, 1992]. A word lattice contains the set of word hypotheses produced by the 

phonemic matching stage. Each word hypothesis is characterised by the start and 

end points of the spoken utterance portion against which it has been matched, and 

a score representing its likelihood of occurrence. The word lattice contains many 

more word hypotheses than the number of actual spoken words and word hypothe­

ses may overlap one another. A simplified example of a word lattice is shown in 

Table 5.1. 

5.3.1 Dynamic Programming 

Dynamic time warping is a technique that compensates for variability in the rate 

at which words are spoken. It is based on a more general computational technique 

known as dynamic programming. Dynamic programming is used to match each 

word in the dictionary with a series of phonemes in order to build a lattice of spoken 
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spoken 
input 

this course is on software maintenance 

spoken 
phoneme 
form 

D I s k 0 s I z Q n s Q f t w e@ r m e l n t O n O n s 

recognised 
phoneme 
form 

D s k 0 I z Q s Q f t 1 e© r m e l n t <3 n n @ s 

word 

lattice 

this course is on software maintenance 
word 

lattice 

earth ask us loss off tell room an to known as word 

lattice 
these call saw law may ten nice 

word 

lattice carry soft air main 

word 

lattice 
courses | meant 

Table 5.1: A Simplified Example of a Word Lattice 

word hypotheses. Dynamic programming is a mathematical concept that has been 

used for many years for multi-stage optimal decision calculation. In the field of 

speech recognition it was used initially in isolated word recognition systems for 

comparison of segments of speech with stored word templates. This was extended 

to continuous word recognition by storing each template as a series of frames which 

were then compared to the segments of speech. A detailed description of dynamic 

programming for speech recognition can be found in [Silverman and Morgan, 1990]. 

By assuming a continuous stream of phonemes as its input, A U R A I D does not deal 

with frames or segments-of the-speech-signal. -However,dynamic programming can 

be used to match stored template words, made up of a series of phonemes, with the 

input phonemes. Each word is given a score representing its likelihood of matching 

a particular sequence of input phonemes. 

Dynamic programming has become the standard lexical access algorithm for 

matching dictionary entries against phoneme sequences. Different approaches to 

using dynamic programming do exist, but they reduce to essentially the same algo­

rithm. One important choice to be made at this stage of processing is whether vari­

ous sources of knowledge should be incorporated. Many of the systems described in 

section 4.2 use a multi-pass strategy for word recognition, initially incorporating a 

cheap (in terms of computational expense) language model, such as a bigram, into 
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the dynamic programming matching routine to reduce the search space. Further 

passes bring in more sophisticated, yet expensive, techniques. 

The choice that we have made is to separate the dynamic programming algo­

rithm from the contributing knowledge. This has been done for several reasons. 

Firstly, it is envisaged that many different knowledge sources may be used dur­

ing the recognition process. Use is already made of syntax and word frequency, 

additional knowledge could be semantics, prosody and repair. Determining the 

optimal serial combination of these knowledge sources is a very complex task, i f 

achievable at all. I t is more likely that they will need to operate in parallel, in­

dependently of each other, so that each knowledge source contributes positively 

and negatively when assessing competing sentence hypotheses. The second reason, 

therefore, is that knowledge sources may give bonuses as well as penalties when 

judging the relative merits of different sentence hypotheses. A sentence hypothesis 

that is penalised by the grammar may be given a bonus by the semantic knowledge 

source — a balance needs to be achieved between pruning the large search space 

and ensuring that the correct hypothesis is not eliminated too early. I t may be 

that certain knowledge sources can be brought within the dynamic programming 

algorithm leading to an improvement in performance. 

So, our choice has been to use dynamic programming for building a lattice of 

word alternatives, and then to use different sources of knowledge during word lattice 

parsing. The effect of each knowledge source can be clearly identified and various 

strategies for combining the different knowledge contributions can be developed. 

This disadvantage of using dynamic programming for generating a word lattice 

is that the time involved is proportional to the size of the dictionary being used: 

each phoneme of each word in the dictionary is matched against the phoneme 

input. This effect could be reduced by exploiting the fact that this task could 

be performed in parallel with, for example, a portion of the dictionary on each 

of several processors. A further problem is that out of vocabulary words are not 

handled at all, they are simply mis-recognised. 
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5.3.2 Robust Parameter Est imation 

The typical method of determining the likelihood of a word is to collect a corpus 

of recorded speech for a particular domain and determine a priori probabilities 

for each word or sub-word (i.e. phoneme) pronunciation. The disadvantages of 

this approach are that the likelihood scores need to be re-calculated for each new 

domain, this involves collecting a new corpus of recorded speech. In addition, it is 

unlikely that the acoustic models generated will be robust enough for vocabulary 

and domain independence. 

The approach outlined in this thesis is to use evolutionary algorithms to gener­

ate the required parameters for word lattice generation. This involves assessing the 

quality of a word lattice generated by a given set of parameters. The evolutionary 

algorithm converges towards a near-optimum parameter solution set for a small set 

of data (225 words). The advantages of this approach are that the parameters are 

robust enough to withstand changes in vocabulary and domain. In fact the only 

dependence is on the performance of the underlying continuous speech phoneme 

recognition system. Should this be improved, then the evolutionary algorithm may 

be re-run to automatically generate a new set of parameters. 

It is not possible to set these parameters by hand. The use of an adaptive algo­

rithm allows near-optimal values to be determined automatically without "the need 

for a general theory concerning any inter-dependence between the parameters. An 

adaptive algorithm is the current best solution to this particular problem. Evolu­

tionary programming was chosen as a suitable adaptive algorithm after initial tests 

showed it out-performed a genetic algorithm. 

5.3.3 Dict ionary 

The dictionary used by AURA1D currently has approximately 2600 words. This 

comprises approximately 1600 words contained within four lectures from the Du­

rham Lecture Corpus, and made up to 2000 words by merging with the most 
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commonly occurring words from the LOB Corpus that weren't present in the four 

lectures. For the processing of the LUND Corpus lecture, 600 words were added to 

the system dictionary. For each word, the system dictionary contains a phoneme 

pronunciation and one or more syntactic categories, both obtained from the Oxford 

Advanced Learner's Dictionary. 

For practical use, the system dictionary clearly needs to be larger than 2600 

words, 5000 words would be a more suitable size, but 2600 words is adequate for 

development. As an illustration, the first two lectures of a second year course on 

software engineering contained 1300 unique words, and the first two lectures of a 

third year course on software engineering contain 1100 unique words. A limitation 

of current approaches to speech recognition dictionary construction is that they are 

required to explicitly contain each word that could be recognised. A more sensible 

approach would be to list only root words, and allow inflected forms and plurals 

to be generated automatically. 

5 . 4 Word Lattice Parsing 

The word lattice generated by the dynamic programming stage contains many 

paths "representing possible-interpretations of a spoken sentence. For example, two 

possible paths through the lattice given in Table 5.1 are 

this courses loss off tell air main to known as 

these call us on soft law room an ten nice 

A beam search is used to expand likely sentence hypotheses from left-to-right 

across the word lattice; a wider beam, resulting in more expansions, is used initially. 

The sentence hypotheses are scored using various knowledge sources, and the most 

promising are expanded by another word. In addition to the phonemic match 

score determined during word lattice generation, the score of a sentence hypothesis 

is made up of a grammatical "incorrectness" penalty, word frequency information 
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and a guess of the remaining penalty likely to be incurred during the expansion of 

this hypothesis. Other knowledge sources such as semantics, prosody and repair 

could be included at this stage with little inconvenience. 

Rather than use a probabilistic grammar for scoring sentence hypotheses, a 

set of rules were developed that can be used to check the syntactic incorrectness 

of sequences of words. These rules are collectively known as an "anti-grammar" 

because the rules are used to penalise certain syntactic constructs rather than 

identify syntactically correct sequences. 

There are two main alternative strategies that could have been chosen at the 

syntactic checking stage of processing: statistical language models (bigram or t r i -

gram), or conventional parsing techniques. In the context of developing a domain 

independent speech recogniser, we feel that a wholly statistical approach is invalid. 

It is not possible to build a domain independent n-gram language model simply 

because, by their inherent nature, statistical language models are only valid in the 

domain in which they have been trained. It is possible, however, to obtain some 

domain independent statistical information: the 500 most common domain inde­

pendent words, for example, could be determined by analysing word frequencies 

from a variety of different corpora. More detailed information, though, would be 

too domain specific. 

Conventional parsing techniques could not be used in the framework of this 

research because of the errors contained in spontaneous speech. A parser used for 

written language processing would not be able to handle repair and filled pauses 

for example. Approaches to spontaneous speech recognition using partial parsing 

are suitable for extracting information, such as semantic frame filling in the ATIS 

domain, but not for word recognition. For recognition of read speech, for example 

in the WSJ domain, conventional parsing techniques could be used. Conventional 

parsing is computationally expensive, and so would not be an appropriate technique 

to use on the large search space contained within a word lattice. The approach 

to take in this situation would be to generate a word lattice, cut down the search 

using a statistical language model to generate an n-best list, and then use a full 
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parse to determine the most likely sentence hypothesis in the list. 

The main limitation of using an anti-grammar to reduce the search space is that 

the correct hypothesis is not always the first choice. Rather than select the most 

likely hypothesis, the anti-grammar rules out many incorrect hypotheses. Further 

sources of knowledge may be necessary in order for the actual spoken hypothesis 

to emerge as the most likely candidate. 

Work has recently begun on incorporating a semantic analysis knowledge source 

into the word lattice parsing stage based on semantic selection [Short et a/., 1994a] 

[Hirst, 1987]. This work is not yet at a level sufficient to be included in this 

thesis, but is mentioned here for completeness. Semantic selection is the use of the 

meaning of concepts to prune impossible interpretations of a possibly ambiguous 

input. Consider, for example, the sentence "green ideas sleep". The adjective 

"green" cannot be applied to the noun "idea", it is only applicable to concrete 

concepts and "idea" is abstract. The verb "sleep" requires an animate subject, this 

is not satisfied by the word "idea". In order to perform ful l semantic selection, a 

semantic analyser would first require a ful l grammatical parse of a sentence in order 

to build a semantic representation. As was mentioned in section 5.4, conventional 

parsing is computationally expensive, and is not an appropriate technique to use 

on the large search space contained within a word lattice. 

What is required, therefore, is a form of weak semantic selection, in other words, 

a fast method of partial semantic selection. Two simple observations of English 

form the basis of this heuristic. Firstly, that adjectives tend to precede the noun to 

which they are to be applied. Secondly, that the subject and object of a verb tend 

to be nearby in lexical terms; furthermore, the subject tends to precede the verb 

and object tends to succeed. Clearly there are exceptions to these observations, 

but even so, a form of weak semantic selection could be used to penalise certain 

sentence hypotheses during word lattice parsing. 
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5 o 5 Novelty of the Solution 

78 

There are several novel aspects to the work described in this thesis. Firstly, the 

major original contribution in this thesis is that rather than use a probabilistic 

grammar for scoring sentence hypotheses, anti-grammar rules are used to check the 

syntactic incorrectness of sequences of words. This has the effect of reducing the 

large search space, represented as a word lattice, whilst at the same time allowing 

normal spontaneous English to be spoken. This inverted method of modelling 

follows naturally from the fact that it makes sense to keep the size of the model 

to a minimum for efficiency reasons. For a constrained task i t is efficient to model 

the few legal sentences, but once the balance changes, so that there are more legal 

sentences than illegal ones, i t is more efficient to model the smaller set of illegal 

sentences. 

Secondly, the system has been designed to allow ease of integration with new 

sources of knowledge, such as semantics, prosody or repair, in effect, providing 

a test-bench for determining the impact of different knowledge upon word lattice 

parsing. 

Thirdly, the use of evolutionary programming to determine near-optimal robust 

parameters for word lattice creation removes the need for retraining word acoustic 

models on large corpora of data each time the vocabulary or domain changes. 

Instead, the only dependence is on the performance of the underlying continuous 

speech phoneme recognition system; the parameters are robust. 

The next chapter gives more detail on the ideas mentioned in this chapter and 

also provides further evidence for the claims made in this section. 



Chapter 6 

Detailed Solution 

This chapter describes in detail the solution outlined in chapter 5: phoneme recog­

nition using a simulation and also the AURIX and CU-CON systems; word lattice 

generation using dynamic programming with robust parameter estimation obtained 

using evolutionary programming, and the system dictionary; and word lattice pars­

ing using a beam search and contributing knowledge such as the anti-grammar and 

word frequency information. A detailed discussion of the anti-grammar is pre­

sented. The software engineering aspects of the test-bench are also addressed with 

reference-to integration of new knowledge sources and maintenability of the under= 

lying representations. 

6» 1 Phoneme Recognition 

The raw speech signal is first processed by a continuous speech phoneme recognition 

system. The two groups with whom collaborative research has been undertaken 

are the Defence Research Agency (DRA), and Cambridge University Engineering 

Department (CUED). Performance details of such systems are mentioned in sec­

tion 4.2. The phoneme recognition systems under development by these two groups 

are described below. For the development of the research outlined in this thesis, a 
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computer program was written to simulate the front-end phoneme recogniser. 

6.1.1 The A U R I X System ( B R A ) 

AURIX is a speech recognition system configurable for many different applications. 

In this research, it is used as a real-time continuous speech phoneme recognition 

system. I t is based on work by the DRA as part of their Airborne Reconnais­

sance Mission (ARM) continuous speech recognition project. The aim of the ARM 

project is the accurate recognition of continuously spoken airborne reconnaissance 

reports [Russell et ai, 1990b]. The project uses a speech recognition system based 

on phoneme-level hidden Markov models, and is described in section 4.2.16. A large 

corpus of speech was collected in order to support future work on task independent 

and large vocabulary speech recognition [Browning et a/., 1991] and this was used 

as training data for AURIX [Russell, 1992a]. 

The current version of AURIX yields approximately 40% phoneme recognition 

accuracy and is not yet suitable for providing a front-end for the remainder of the 

research described in this thesis. Recognition is performed in real-time, however, 

and the equipment is in place ready for an improvement in the phoneme modelling 

software. 

6.1.2 The C U - C O N System (CUED) 

CU-CON is a speaker independent speech recognition system developed at CUED 

being developed for the ARPA Speech Recognition Evaluations, described in sec­

tion 4.2.6. Recently, collaborative work has been undertaken between Durham 

University and CUED on producing a British English pronunciation dictionary 

(BEEP) for use by CU-CON and other researchers. In addition, CU-CON can be 

configured to recognise phonemes. 

Phoneme recognition performance using British English has not yet been calcu-
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Words (Text) 

Phoneme 
Recognition r Recognition 
Simulator 

Corrupted 
Phonemes 

Figure 6.1: The Phoneme Recognition Simulator 

lated, however on American English, CU-CON achieved phoneme recognition rates 

of 73% on the T I M I T acoustic-phonetic continuous speech corpus [Robinson et ai, 

1994] [Robinson, 1992]. In the intervening time since these results were published, 

the system has been trained on a large amount of American English speech data 

for the ARPA evaluations, and also a parallel version is being developed for British 

English. Phoneme recognition rates for both of these systems are expected to ex­

ceed 75%1. Direct connection with the CU-CON phoneme recogniser has not yet 

been attempted because of hardware requirements. 

6.1.3 Simulation 

In order to develop the word lattice generation and parsing components in iso­

lation from the main phoneme recognition hardware,, a program, written in PERL, 

was constructed for simulation purposes (see Figure 6.1). The purpose of the pro­

gram is to corrupt a sequence of phonemes to a specified degree. This is an off-line 

process, and independent of word lattice generation and parsing. Although the 

corruption is performed with a certain amount of randomness, it is based on the 

kinds of errors made by existing phoneme recognition systems, in that particu­

lar classes of phonemes are easier to recognise than others, and substitution of 

one phoneme for another usually occurs within classes, in other words vowels are 

mainly confused for vowels, and plosives for plosives [Browning et a/., 1990]. The 

phoneme classes are shown in Table 6.2. Corruption is evenly spread throughout 

the phoneme input, and a maximum rate of corruption for a word can be specified. 

Personal communication with A .J . Robinson, the primary researcher involved. 
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An example of the corruption produced by the simulation program is given below. 

Words for this lecture we're going 
Original Phonemes f 0 r D I s 1 E k tS © r w I@ r g @U I N 
Corrupted Phonemes f U@ r D I s 1 E k tS r w U l r d g @U I N 

Words to be looking at maintenance models 
Original Phonemes t ® b i 1 U k I N { t m el n t @ n i n s m Q d 1 z 
Corrupted Phonemes t @ b i 1 U g I N { t el n @ n @ m s m el d z 

Details of the phoneme corruption: 

Number of phonemes: 44 

NUM SUBS DELS INS 
p l o s i v e s = 8 1 1 1 
a f f r i c s = 1 0 0 0 
s t r f r i c s = 3 0 0 0 
wkfr i c s = 2 0 0 0 
l i q u i d s = 7 0 1 0 
nas a l s = 7 1 1 0 
vowels = 16 2 1 1 

TOTALS 4 4 2 
TOTALS ('/,) = 9.1 9.1 4.5 

(10) 
(22.7) 

After corruption, the example sentence contains 22.7% phoneme error, consist­

ing of 9.1% substitutions, 9.1% deletions and 4.5% insertions. I t must be made 

clear that although wordJbreaks. are used by the phoneme corruption program, they 

are invisible to the word recognition system which treats the corrupted sequence 

as a continuous stream of phonemes. 

6.2 Word Lattice Generation 

A word lattice is a data structure that holds detailed information resulting from 

the lexical matching (word hypothesis) routine of a speech recognition system (see 

Figure 6.6). Informally, a set of words are each compared with acoustic/phonetic 

data. Each word is assigned a score indicating the closeness of match to a particular 

portion of data. Paths may be traced (parsed) though the word lattice by joining 
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up words that span consecutive portions of data to form sentence hypotheses. 

6.2.1 Am Example Word Lattice 

The essential components of an entry in a word lattice are 

o a word reference, either the actual word string or a pointer to a dictionary-like 

list; 

o the start point of this particular entry; 

o the end point of this particular entry (if the data being matched is phonemes 

rather than acoustic data, this could be inferred from the phoneme length of 

the particular word); 

G a score indicating how close the word matches a particular portion of acous­

tic/phonetic data. 

Words may appear more than once in a word lattice, by, for example, starting at 

the same point in the lattice but spanning different amounts of acoustic/phonetic 

data. 

Table 5.1 is a high-level diagrammatical view of a word lattice. I t shows how 

words span portions of the phoneme data. The position of the words on different 

levels in this simplified lattice is not too significant, in reality each word in a box 

would have associated with it a score representing how well it matches the phonemes 

spanned by the box. Several paths can be traversed through the lattice from the 

beginning to the end in addition to the correct path, for example, "this courses loss 

off tell air main to known as", or "these call us on soft law room an ten nice". A 

more detailed example is given in Table 6.1. This shows the word lattice generated 

for the part-sentence "the word", which is represented in phonemes as D 0 w 3 d. 

For readability, there is some redundancy in the amount of information that is 

presented. Each field is described below. 
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1 2 3 4 5 6 7 

frame = 1 

the ADV Pu s t a r t = 1 end = 2 s c o r e = 0.0 

1. This field contains the frame at which subsequent word entries begin. In our 

work, each frame represents an individual phoneme. 

2. This field contains the actual word that has been matched against a portion 

of acoustic/phonetic data. 

3. This field represents the broad grammatical category of the word, possible 

values are article (ART), conjunction (CONJ), pronoun (PRON), preposition 

(PREP), noun (NOUN), verb (VERB), adverb (ADV), adjective (ADJ) and 

interjection (INTERJ). 

4. This field contains the OALD part of speech (POS) code, representing a finer 

grammatical categorisation than the previous field. 

5. This field contains the start frame of the data that this entry has been 

matched against. 

6. This field contains the end frame of the data that this entry has been matched 

against. 

7. This field contains the score obtained by matching the phoneme representa­

tion of the word against a portion of the data (see section 6.2.3). 

6.2.2 Why Make Use of a Word Lattice? 

A word lattice is a convenient intermediate data structure between the construction 

of word-level hypotheses and the construction of sentence-level hypotheses. A word 

lattice summarises the information obtained from the acoustic-phonetic and word 

hypothesis stages. In addition, the quality of a word lattice can be determined (see 

section 7.2). During development, word lattice generation and word lattice parsing 
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frame = 1 
the ADV Pu s t a r t = 1 end = 2 score = 0. 0 
the ART R- s t a r t = 1 end = 2 score = 0. 0 
the ADV Pu s t a r t = 1 end = 1 score = 5. 0 
the ART y R- s t a r t = 1 end 1 score = 5J. 0 

they PRON QN s t a r t = 1 end = 1 score = 5. 0 
though ADV Pu s t a r t = 1 end = 1 score = 5. 0 
though CONJ V- s t a r t = 1 end - 1 score = 5 0 
e i t h e r ADJ OA s t a r t = 1 end = 2 score = 5 0 

frame = 2 
a ART S- s t a r t = 2 end = 2 score = 0 0 

away ADJ OA s t a r t = 2 end = 3 score = 1 7 
away ADV P+ s t a r t = 2 end - 3 score = 1 7 
away ADJ OA s t a r t = 2 end = 4 score = 1 7 
away ADV P+ s t a r t = 2 end = 4 score = 1 7 

an ART S- s t a r t = 2 end = 2 score = 5 0 
frame = 3 

word VERB HO s t a r t = 3 end = 5 score = 0 0 
word NOUN K6 s t a r t = 3 end = 5 score = 0 0 

words VERB Ha s t a r t = 3 end = 5 score = 2 5 
words NOUN Kj s t a r t = 3 end = 5 score = 2 5 
world NOUN K6 s t a r t = 3 end = 5 score = 2 5 
were VERB Gc s t a r t = 3 end = 4 score = 3 3 
were VERB I c s t a r t = 3 end = 4 score = 3 3 
word VERB HO s t a r t = 3 end = 4 score = 3 3 

frame = 4 
heard VERB Jc s t a r t = 4 end = 5 score =- 3 3 
heard VERB Jd s t a r t = 4 end = 5 score = 3 3 
t h i r d NOUN K6 s t a r t = 4 end = 5 score = 3 3 
t h i r d ADJ OA s t a r t = 4 end = 5 score = 3 3 

frame = 5 
add VERB JO s t a r t = 5 end = 5 score = 5 .0 

d NOUN Ki s t a r t = 5 end = 5 score = 5 .0 
day NOUN M6 s t a r t = 5 end = 5 score = 5 .0 
die VERB 15 s t a r t = 5 end = 5 score = 5 .0 
die NOUN K6 s t a r t = 5 end = 5 score = 5 .0 
do VERB G5 s t a r t = 5 end = 5 score = 5 .0 
°do VERB J5 s t a r t = 5 end = 5 score = 5 .0 
do NOUN K6 s t a r t = 5 end = 5 score = 5 .0 

i ' d VERB Gf s t a r t = 5 end = 5 score = 5 .0 

Table 6.1: An Example Word Lattice 
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Class Name Phonemes 
0 Plosive p b t d k g 
1 Affricative tS dZ 
2 Strong Fricative s z S Z 
3 Weak Fricative f v T D h 
4 Liquid/Glide 1 r w j 
5 Nasal n m N 
6 Vowel i I E { A Q 0 U u 3 V © 

a l e l o l aU <3U 10 e<3 U@ 

Table 6.2: Phoneme Classes used by A U R A I D 

can be investigated in isolation, saving much time, by using a word lattice as an 

intermediate representation, stored in a file. 

Towards the end of recognition, many systems make use of an n-best list, in 

other words a list of the best scoring n sentences, this is described in more detail in 

section 3.6. The two representations are equivalent, an n-best list can be reduced to 

a word lattice, and an n-best can be created by tracing paths (sentences) through 

a word lattice. 

6.2.3 Dynamic Programming 

There are three main approaches to using dynamic programming for continuous 

speech recognition: the two level algorithm [Sakoe, 1979], the level building algo­

rithm [Myers and Rabiner, 1981], and the one pass algorithm [Bridle et al., 1982]. 

Although each differs in detail, the two basic stages involved in each algorithm are 

word level analysis and phrase level analysis. In word level analysis, each word in 

the dictionary is matched against all possible (consecutive) sequences of the input 

phonemes. Phrase level analysis determines the best scoring sequence of words 

that spans the entire phoneme input. These two stages comprise the two level 

algorithm, the others being optimisations that integrate the two stages. 

In A U R A I D a word level analysis using dynamic programming is undertaken, as 
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described above, but a beam search is used for the phrase level analysis. The word 

level analysis algorithm models explicitly the kinds of errors which may occur, both 

within words and between words. That is inserted phonemes, deleted phonemes 

and substituted phonemes. The distance or similarity score between phonemes can 

depend on a variety of factors, and varies from algorithm to algorithm. Most algo­

rithms group phonemes into classes according to their confusability. The phoneme 

classes used by A U R A I D are based on manner of articulation and are shown in 

Table 6.2. The distance between phonemes within the same class is then less than 

that between phonemes from different classes. This can be measured, for example, 

by absolute values or logarithms of the probability of confusing one phoneme for 

another based on experimental data. It was found that long words are unduly 

penalised because of their length. To overcome this inadequacy the distance scores 

are normalised according to the length of the word being considered. The equations 

used in the word level analysis algorithm are: 

, .\ • r insjpen subjpen(w.\,t) . , w , . ... 
M ) = n»n{ - j f f c - + + m , n { 5 ( r , N(r),t - 2)}; 

del .pen subjpen(w,l,t) . r„, , r , „ 
HW- + - + tf* " ( r ) - M - 1)};.. 
2'° I f f ' " + " M f f " - ! . ' ) + m i n { S ( r , N { r ) - 2, ( - 2)} } 

N(w) N(w) reR1 v v ' ' n J 

<~.i c . x • r ins .pen sub.pen{w,2,i) 
S(w, 2, t) = min{ — f — + p K ; 1 > + S(w, 1, < - 2 ; 

subjpeniw,2,t) 
N(W) + g ( " . M - i ) ; (6-2) 

del .pen sub_pen(w,2,t) . , „, 
A T , , + A „ ' ' + min{5(r , N(r),t - 1 }; 

2.0 x del.pen sub.pen(w,2,t) . n i , s _ , 
/ + \ t , ^ + m n{5(r , A r(r) - 1, < - 2 } } 

W(to) N(w) reRv v ' w ' ; J J 
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cr q 4\ • r ins-pen sub_pen(w,3,t) 
S(w, 3, t) = min{ - ^ - j - + — + S(w, 2, * - 2); 

subjpen(w, 3, t) 
— + % , V - i ) ; (6.3) 

deljpen subjpen(w,3,t) 

2.0 x deljpen subjpen(w,3,t) . 

JVH + —m—+™{(r' (r)>")}} 

ins-pen sub.pen(w,p,t) 
5(w,p, t = m i n { . . . v + 777 ^ + S ( u ? , p - l , < - 2 ) ; 

/V(it?) TV (to) 
su&.pen(w,p,£) 

— + S(u ; ,p - l , t - 1); (6.4) 
deljpen subjpen(w,p,t) 
- r f r + , ^ + 2,< - 1 ; 

TV (it?) N{w) 
2.0 x deljpen subjpeniw.pA) „, , 

N(u?) N(it>) K ' 3 

where S(w, p, t) represents the score for phoneme p of word w when matched against 

input phoneme t, R is the set of words in the dictionary used by A U R A I D and 

N(r) is the length in phonemes of the r ' th word. The three penalties, insjpen, 

deljpen and subjpen each return absolute values. For insjpen and deljpen, this is 

independent of the particular phoneme being considered, subjpen is divided into 

two separate cases: the first of these cases penalises substitutions in which the 

phonemes are of the same class; while the second case allows a different penalty to 

be used for phonemes which were substituted with ones of a different class. There 

are, therefore, four penalty values to be chosen. In previous work [Collingham 

and Garigliano, 1993] these settings were selected by hand and this approach to 

phoneme distance calculation produced better results than using logarithms which 

used the probability of confusing one phoneme for another. A further problem with 

using logarithms is that it necessitates a detailed assessment of the performance of 

the underlying phoneme recogniser to determine phoneme confusion likelihoods and 
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the like. In the next section an automatic approach to determining near-optimal 

settings for these parameters is presented. The data structure resulting from the 

dynamic programming stage is called a word lattice. 

Equation 6.4 is the general equation used for dynamic programming matching, 

equations 6.1, 6.2 and 6.3 being for words of phoneme length 1, 2 and 3 respectively. 

In the general equation, a minimum score choice is taken between: the previous 

input phoneme being an insertion error; the current input phoneme being correct or 

a substitution error; or a deletion of the previous phoneme of the current word. In 

addition, the last line of each equation represents the occurrence of two consecutive 

deletion errors. Consecutive insertion errors are not modelled because they are not 

produced by the simulated phoneme recogniser, although this would only require 

a simple extension to the equations. For short words, the first three equations 

perform the same calculation as the general equation but look back at previous 

words to determine what, if any, error has taken place. Finally, for each input 

phoneme the end score for each word is adjusted to represent the local score for 

that word if it were to end at that point in the input. 

It is possible to analyse the performance of the word lattice generation algo­

rithm in a variety of different phoneme error situations. There are three possible 

single phoneme error situations — deletion (D), insertion (I) or substitution (S). 

Extending this to two consecutive phoneme errors gives a further nine possible dou­

ble phoneme error situations — DD, DI , DS, ID, I I , IS, SD, SI, SS. This is reduced 

to seven possible situations because a deletion followed by an insertion (DI) and 

an insertion followed by a deletion (ID) are equivalent to a single substitution. We 

can examine the initial fragment of the word lattice to ensure that the word lattice 

generation algorithm handles the ten error situations sufficiently. 

In the following paragraphs, lattice is generated for each of the ten error situ­

ations described above in addition to the "no error" situation. The input will be 

various corrupted forms of the word "best", which is made up of the phonemes 

b E s t . According to the Oxford Advanced Learner's Dictionary, "best" can be 

a transitive verb (code HO), a superlative adjective (Os), an adverb (Pu) or a pro-
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noun (Qx). The parameters used for this analysis are set as follows: 10.0 for an 

insertion, deletion or within-class substitution error, and 50.0 for an out-of-class 

substitution error. The values of the parameters have been chosen for simplicity to 

demonstrate the word lattice generation algorithm. The word score is calculated 

by dividing any penalty by the length of the word (in phonemes). 

Other factors, such as estimated word frequency, are also taken into account 

before the word lattice is parsed. Common words are brought nearer the top of 

the lattice, and rare words are pushed nearer the bottom of the lattice. This is not 

shown here for simplicity, but is described in section 6.3.4. 

No Errors 

Phoneme input: b E s t 

frame = 1 
b e s t VERB HO s t a r t = 1 end = 4 s c o r e = 0 0 
b e s t ADJ 0s s t a r t = 1 end = 4 s c o r e = 0 0 
b e s t ADV Pu s t a r t = 1 end = 4 s c o r e = 0 0 
b e s t PRON Qx s t a r t = 1 end = 4 s c o r e = 0 0 

Delet ion Er ror 

Phoneme input: b s t 

frame = 1 
based VERB He s t a r t = 1 end = 3 s c o r e = 2 5 
based VERB Hd s t a r t = 1 end = 3 s c o r e = 2 5 
b e s t VERB HO s t a r t = 1 end = 3 s c o r e = 2 5 
b e s t ADJ Os s t a r t = 1 end = 3 s c o r e = 2 5 
b e s t ADV Pu s t a r t = 1 end = 3 s c o r e = 2 5 
b e s t PRON q x s t a r t = 1 end = 3 s c o r e = 2 5 

Inser t ion Er ro r 

Phoneme input: b E z s t 
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frame = 1 
b e l l s VERB Ha s t a r t = 1 end = 3 s c o r e = 2 5 
b e l l s NOUN Kj s t a r t = 1 end = 3 s c o r e = 2 5 
b e s t VERB HO s t a r t = 1 end = 5 s c o r e = 2 5 
b e s t ADJ Os s t a r t = 1 end = 5 s c o r e = 2 5 
b e s t ADV Pu s t a r t = 1 end = 5 s c o r e = 2 5 
b e s t PRON Ox s t a r t = 1 end = 5 s c o r e = 2 5 

Subst i tu t ion Er ro r 

Phoneme input: b i s t 

frame = 1 
b NOUN K i s t a r t = 1 end = 2 s c o r e = 0 .0 

be VERB G5 s t a r t = 1 end = 2 s c o r e = 0 .0 
be VERB 15 s t a r t = 1 end = 2 s c o r e 0 .0 

based VERB He s t a r t = 1 end = 4 s c o r e = 2 .5 
based VERB Hd s t a r t » 1 end = 4 s c o r e = 2 .5 
b e s t VERB HO s t a r t = 1 end = 4 s c o r e = 2 .5 
b e s t ADJ Os s t a r t = 1 end = 4 s c o r e = 2 .5 
b e s t ADV Pu s t a r t = 1 end = 4 s c o r e = 2 .5 
b e s t PRON Qx s t a r t = 1 end = 4 s c o r e = 2 .5 

Delet ion-Delet ion E r r o r 

Phoneme input: b t 

frame = 1 
beat VERB J5 s t a r t = 1 end = 2 s c o r e = 3 3 
beat VERB J c s t a r t = 1 end = 2 s c o r e = 3 3 
beat NOUN K6 s t a r t = 1 end = 2 s c o r e = 3 3 
beat ADJ 0q s t a r t = 1 end = 2 s c o r e = 3 3 

l e l e t e d ) 
b a t t l e VERB 12 s t a r t = 1 end = 2 s c o r e = 5 0 
b a t t l e NOUN M6 s t a r t = 1 end = 2 s c o r e = 5 0 

b e s t VERB HO s t a r t = 1 end = 2 s c o r e = 5 0 
b e s t ADJ Os s t a r t = 1 end = 2 s c o r e = 5 0 
be s t ADV Pu s t a r t = 1 end = 2 s c o r e = 5 0 
b e s t PRON Qx s t a r t = 1 end = 2 s c o r e = 5 0 

Delet ion-Subst i tut ion Er ror 

Phoneme input: b z t 
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frame = 1 

(11 l i n e s 

b NOUN K i s t a r t = 1 end = 1 s c o r e = 5 0 
be VERB G5 s t a r t = 1 end = 1 s c o r e = 5 0 
be VERB 15 s t a r t = 1 end = 1 s c o r e = 5 0 

i l e t e d ) 
based VERB He s t a r t = 1 end = 3 s c o r e = 5 0 
based VERB Hd s t a r t = 1 end = 3 s c o r e = 5 0 
be s t VERB HO s t a r t = 1 end = 3 s c o r e = 5 0 
be s t ADJ Os s t a r t = 1 end = 3 s c o r e = 5 0 
be s t ADV Pu s t a r t = 1 end = 3 s c o r e = 5 0 
b e s t PRON Qx s t a r t = 1 end = 3 s c o r e = 5 0 

Insert ion-Insert ion Er ro r 

Phoneme input: b E z s s t 

frame = 1 
b e l l s VERB Ha s t a r t = 1 end = 3 s c o r e = 2 5 
b e l l s NOUN Kj s t a r t = 1 end = 3 s c o r e = 2 5 

b NOUN K i s t a r t = 1 end = 1 s c o r e = 5 0 
be VERB G5 s t a r t = 1 end = 1 s c o r e = 5 0 
be VERB 15 s t a r t = 1 end = 1 s c o r e = 5 0 

j l e t e d ) 
beams VERB J a s t a r t = 1 end = 3 s c o r e = 5 0 
beams NOUN Kj s t a r t = 1 end = 3 s c o r e = 5 0 
b e s t VERB HO s t a r t = 1 end = 3 s c o r e = 5 0 
b e s t ADJ Os s t a r t = 1 end = 3 s c o r e = 5 0 
b e s t ADV Pu s t a r t = 1 end = 3 s c o r e = 5 0 
b e s t PRON q x s t a r t = 1 end = 3 s c o r e = 5" 0 

Inser t ion-Subst i tut ion Er ro r 

Phoneme input: b E i z t 

frame = 1 
b NOUN K i s t a r t = 1 end = 1 s c o r e 

be VERB G5 s t a r t = 1 end = 1 s c o r e 
be VERB 15 s t a r t = 1 end = 1 s c o r e 

(16 l i n e s d e l e t e d ) 
beams VERB J a s t a r t = 1 end = 4 s c o r e 
beams NOUN Kj s t a r t = 1 end = 4 s c o r e 
b e s t VERB HO s t a r t = 1 end = 5 s c o r e 
b e s t ADJ Os s t a r t = 1 end = 5 s c o r e 

= 5.0 
= 5.0 
= 5.0 

5. 
5, 
5. 
5, 
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b e s t ADV 
be s t PRON 

Pu 
Qx 

s t a r t 
s t a r t 

end = 5 
end = 5 

s c o r e = 5.0 
s c o r e = 5.0 

Subst i tut ion-Delet ion Er ror 

Phoneme input: b i t 

frame = 1 
b NOUN K i s t a r t = 1 end = 2 s c o r e = 0 .0 

be VERB G5 s t a r t = 1 end = 2 s c o r e = 0 .0 
be VERB 15 s t a r t = 1 end = 2 s c o r e = 0 .0 

beat VERB J5 s t a r t = 1 end = 3 s c o r e = 0 .0 
beat VERB J c s t a r t = 1 end = 3 s c o r e = 0 .0 
beat NOUN K6 s t a r t = 1 end = 3 s c o r e = 0 .0 
beat ADJ Oq s t a r t = 1 end = 3 s c o r e 0 .0 
beam VERB JO s t a r t = 1 end = 2 s c o r e = 3 .3 
beam NOUN K6 s t a r t = 1 end = 2 s c o r e 3 .3 

d e l e t e d ) 
b a t t l e VERB 12 s t a r t = 1 end = 3 s c o r e = 5 .0 
b a t t l e NOUN M6 s t a r t = 1 end = 3 s c o r e = 5 .0 

b e s t VERB HO s t a r t = 1 end = 3 s c o r e = 5 .0 
b e s t ADJ Os s t a r t = 1 end = 3 s c o r e = 5 .0 
b e s t ADV Pu s t a r t = 1 end = 3 s c o r e = 5 .0 
b e s t PRON qx s t a r t = 1 end = 3 s c o r e = 5 .0 

Subst i tut ion-Inser t ion Er ro r 

Phoneme input: b i z s t 

frame = 1 
b NOUN K i s t a r t = 1 end = 2 s c o r e = 0 0 

be VERB G5 s t a r t = 1 end = 2 s c o r e = 0 0 
be VERB 15 s t a r t = 1 end = 2 s c o r e = 0 0 

beams VERB J a s t a r t = 1 end = 3 s c o r e = 2 5 
beams NOUN Kj s t a r t = 1 end = 3 s c o r e = 2 5 
beam VERB JO s t a r t = 1 end = 2 s c o r e = 3 3 
beam NOUN K6 s t a r t = 1 end = 2 s c o r e = 3 3 

j l e t e d ) 
based VERB He s t a r t = 1 end = 5 s c o r e = 5 0 
based VERB Hd s t a r t = 1 end = 5 s c o r e = 5 0 
b e s t VERB HO s t a r t = 1 end = 5 s c o r e = 5 0 
b e s t ADJ 0s s t a r t = 1 end = 5 s c o r e = 5 0 
b e s t ADV Pu s t a r t 1 end = 5 s c o r e = 5 0 
b e s t PRON q x s t a r t = 1 end 5 s c o r e = 5 0 
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6.2.4 Robust Parameter Est imation 

Over the past 30 years, three main streams of evolutionary algorithm have been in­

dependently developed: genetic algorithms [Holland, 1975], evolutionary program­

ming [Fogel et a/., 1966] [Fogel, 1992], and evolutionary strategies (recent review 

by [Back et a/., 1991]). Each of these has been inspired by the search processes 

of biological evolution, and have led to robust optimisation techniques that have 

been successfully applied to a wide range of problems. 

A well known general purpose heuristic search algorithm such as hill climbing 

can encounter difficulties with parameter optimisation. 

... hill climbing suffers from various problems. These problems are 
most conspicuous when hill climbing is used to optimize parameters. 

[Winston, 1992] 

One of the typical problems is with an optimal point that turns out to be a local 

maximum rather than a global maximum. 

By maintaining a population of solutions, an evolutionary algorithm is able to 

exploit those that are promising while exploring other regions of the search space. 

In this way a parallel search is achieved. Over successive iterations, new solutions 

are produced as variations of those that have survived to that point in time, and the 

worst solutions are probabilistically pruned using a "survival of the fittest" strategy 

(analogous to natural selection). In this way, the population evolves toward optimal 

solutions. 

Genetic algorithms and evolutionary programming, though both inspired by the 

search processes of natural evolution, each place a different emphasis on what is 

believed to be driving the evolutionary process. Genetic algorithms model specific 

genotypic transformations while evolutionary programming emphasises phenotypic 

adaptation. The genotype being the underlying representation used to encode 

a possible solution, while the phenotype is its realisation. For example, the in­

formation contained in human genes is the genotype, and the human form the 
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corresponding phenotype. 

When using genetic algorithms (GAs), solutions are usually represented as bi­

nary strings. The underlying hypothesis of GAs is that by combining subsections of 

solutions, short highly fit segments of each binary string are propagated throughout 

the population, and combine to form larger fitter segments of each binary string. 

This is known as the building block hypothesis [Goldberg, 1989], and is a fun­

damental principle of GAs. The evolutionary programming (EP) perspective of 

the evolutionary process is very different from the bottom up approach of GAs. 

By determining how well solutions are performing in the current environment, 

improvements are made via a flow of information from the environment back to 

the underlying genotypic representation. The emphasis is, therefore, on phenotypic 

adaptation rather than genotypic transformation. In this way a top-down approach 

to solution improvement is adopted as opposed to the bottom-up approach of GAs. 

Previous applications of evolutionary algorithms to natural language processing 

problems have shown early success [Nettleton and Garigliano, 1994]. The approach 

offers the adaptability which is often absent from purely symbolic approaches, 

while at the same time attempting to make the most of well constructed theories 

[Garigliano and Nettleton, 1994]. The work presented in the remainder of this 

section considers the application of EP to the problem of finding the required 

dynamic programming parameters for word lattice generation (see Figure 6.2), and 

is part of a paper written by the author and a colleague [Nettleton and Collingham, 

1995]. 

Holland [Holland, 1975] identifies the following four components of an adaptive 

system: an environment of the system; a set of structures; a measure of the per­

formance of each structure; an adaptive plan. How these concepts are mapped is 

discussed in the remainder of this section. 

The environment is a continuous stream of phonemes from which a word lattice 

is generated according to the algorithms discussed above. Each solution is repre­

sented by four floating point numbers which are constrained to be in the range 
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Figure 6.2: The Dynamic Programming Parameter Optimiser 

[1,256] — each of these corresponds to the penalties discussed in section 6.2.3. I n 

practice i t isn't necessary to restrict the parameter range, but this was done in 

order to allow for fu ture comparison w i t h GAs. 

A fitness measure is needed in order to determine the fitness of each solution 

wi th in the current environment. This takes into account the average rank of correct 

words — this measure is explained in detail in section 7.2. Fitnesses were calculated 

according to the formula: 

10.0 x rankl + 10.0 x rank2 
fitness = 

J 2.0 

where rankl and rank2 are the average rank of the correct words in the lattice for 
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the two different data sets used to estimate the dynamic programming parameters. 

Each parent solution in the population is mutated by an amount governed by 

its fitness to produce a child solution. Fi t ter solutions must be less likely to be 

mutated to the same degree as less f i t parents, and so each component, Xi, of a 

solution X, is mutated according to the formula: 

x\ = X i + ^ntness(X) • N(0,1) i e { l,...,4} (6.5) 

where fitness(J^) is the fitness of solution X and A^(0,1) is a standard normal 

random variable. The above formula was selected since i t allows for solutions wi th 

a poor fitness to be mutated by a large amount, while at the same t ime reducing 

the chance that the mutated parameters fa l l outside of the permit ted range [1,256]. 

Should a mutat ion result in a parameter fa l l ing outside of this range then i t is set 

to the nearest allowable value. A tournament means of selection is then used to 

probabilistically prune the worst solutions. 

The following is an outline of the evolutionary program used. 

1. Randomly initialise a parent population of solutions. Each solution is rep­

resented using 4 floating point numbers which are constrained to the range 

[1,256]. 

2. Evaluate each member of the parent population using the fitness function 

discussed. 

3. Mutate each member of the parent population, by an amount related to its 

fitness, to give a member of the child population. 

4. Evaluate each member of the child population. 

5. For each member of the child and parent populations: 



C h a p t e r 6: D e t a i l e d S o l u t i o n 98 

(a) Select at random a number, T O U R N , of solutions f r o m the parent and 

child populations. 

(b) Count the number of these solutions whose fitness is less than or equal 

to that of the current selected solution. This number is the score for the 

selected solution. 

6. Rank the scores of the solutions. 

7. Select the solutions which rank in the top half of the list and replace the 

parent population w i t h these solutions. 

8. I f the termination criteria is not met then go to step 3. 

Comparison tests between genetic algorithms and evolutionary programming for 

parameter optimisation have been performed in detail [Nettleton and Collingham, 

1995] and are described below. For both the G A and EP a population of 50 was 

used, and each was executed over 50 generations. The tournament size for EP was 

set at three. For each of the GA and EP, 11 trials were carried out using 20% 

phoneme corruption, and 31 trials for each of 30% corruption and 40% corruption. 

A n analysis of the results showed that the evolutionary programming algori thm 

outperformed the genetic algorithm, but statistical tests showed that the differences 

were not significant. 

C o m p a r i s o n o f G e n e t i c A l g o r i t h m a n d E v o l u t i o n a r y P r o g r a m m i n g 

This section presents the results of applying a GA and EP to the problem of 

estimating the penalties of equations 6.1-6.4. Other than variations in solution 

representation and the details of the EP's mutat ion operator (discussed below), the 

GA and EP used are identical to those described in the standard texts mentioned 

above. The problem used a data set of 113 words corrupted to varying degrees and 

a dictionary of 1984 words. 

In implementing the GA, the subsymbolic representation adopted is that of 

a binary string. Each of the penalties is encoded as a binary string of length 
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eight, and these are concatenated together to fo rm one string. Since there are four 

penalties to be encoded the size of the subsymbolic representation's search space 

is 256 4 R ; 4 X 10 9. 

In applying EP to the penalty optimisation problem a real-valued subsymbolic 

representation is adopted. Each of the penalties are stored as real numbers (six 

decimal places), and are constrained to the range [1,256]. A child is produced f r o m 

a parent by mutat ing each parameter X{ according to equation 6.5 described above. 

For both the GA and EP a population of 50 was used, and they were executed 

over 50 generations. The tournament size for EP was set at three. For each of the 

GA and EP, 11 trials were carried out using corrupt20, and 31 trials for each of 

corrupt30 and corrupt40. The fitness of the best solution found in each of the 

runs is shown in Table 6.3 together w i t h the generation at which the best solution 

was discovered (in parenthesis). The mean and standard deviation of each set of 

results is also given. 

The Figures 6.3, 6.4 and 6.5 each show the online and offline performance of the 

median run of the GA and EP for the data corrupt20, corrupt30 and corrupt40 

respectively. The offline performance is the average fitness of all of the solutions i n 

a particular generation, while the online performance is the average fitness of al l 

solutions that have been generated up to a certain generation. 

The results of the trials conducted wi th corrupt20 showed that in each t r ia l 

both the GA and EP found opt imal or near opt imal solutions. No difference in 

performance was observed. 

A comparison of the performance of the GA and EP for corrupt30 indicate 

that EP outperformed the GA. The result was not statistically significant (t = 1.04 

with DF = 52 gave P > 0.1) unless the EP outlier (2.3) and the GA outlier (2.0) 

were removed (t = 2.36 w i t h DF = 56 gave P < 0.05). 

W i t h corrupt40 the results obtained showed that EP outperformed the GA. 

The result was not statistically significant (t = 1.31 wi th DF = 59 gave P > 0.1) 
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unless the EP outlier (2.9) was removed (t = 2.17 wi th DF = 54 gave P < 0.05). 

The statistical test that was applied was a Smith-Satterthwaite modified one 

tailed t-test, DF indicates the number of degrees of freedom [Weiss and Hassett, 

1991]. 



C h a p t e r 6: D e t a i l e d S o l u t i o n 101 

Table 6.3: The best solutions found by each the GA and EP for various levels of 

phoneme corruption. Each algorithm was run 31 times (except for the data fi le 

corrupt20 which was run 11 times) and the generation at which the best solution 

was found is shown in parenthesis. 

Corruption 20% 30% 40% 
Algor i thm EP G A EP G A EP G A 

1.1 (0) 1.1 (0) 1.4 (21) 1.4 (42) 2.3 (22) 2.6 (25) 
1.0 (30) 1.0 (2) 1.4 (38) 1.5 (3) 2.5 (44) 2.4 (6) 
1.1 (0) 1.1 (0) 1.6 (23) 1.5 (18) 2.4 (17) 2.4 (26) 
1.1 (0) 1.1 (0) 1.6 (48) 1.4 (15) 2.6 (30) 2.2 (2) 
1.1 (0) 1.0 (27) 1.5 (37) 1.6 (8) 2.4 (14) 2.4 (8) 
1.1 (0) 1.0 (11) 1.4 (34) 1.5 (15) 2.9 (48) 2.3 (1) 
1.0 (5) 1.1 (0) 1.4 (11) 1.5 (28) 2.3 (35) 2.4 (18) 
1.0 (4) 1.1 (0) 1.5 (16) 1.6 (5) 2.3 (8) 2.4 (19) 
1.0 (42) 1.0 (6) 1.5 (9) 1.5 (6) 2.4 (49) 2.6 (4) 
1.0 (4) 1.0 (21) 1.4 (8) 1.5 (5) 2.4 (8) 2.4 (24) 
1.0 (12) 1.0 (3) 1.6 (25) 1.5 (6) 2.3 (9) 2.4 (26) 

2.3 (28) 1.5 (9) 2.3 (47) 2.6 (1) 
1.4 (30) 1.4 (19) 2.3 (25) 2.1 (16) 
1.5 (39) 1.7 (8) 2.3 (15) 2.2 (2) 

Fitness of 1.4 (49) 1.6 (8) 2.3 (30) 2.6 (0) 
best solution 1.4 (15) 1.4 (14) 2.2 (0) 2.2 (0) 

found 1.4 (49) 1.5 (16) 2.3 (13) 2.2 ( I * ) 
1.5 (46) 1.5 (32) 2.3 (24) 2.4 (12) 
1.5 (0) 1.5 (0) 2.3 (10) 2.5 (17) 
1.4 (8)- -1T5 " (9) 2.3 (7)- 2.4 ( I T 
1.5 (17) 1.6 (0) 2.4 (36) 2.4 ( i i ) 
1.7 (26) 2.0 (7) 2.1 (49) 2.2 (37) 
1.4 (6) 1.7 (0) 2.3 (38) 2.4 (9) 
1.4 (40) 1.5 (12) 2.3 (37) 2.4 (18) 
1.4 (7) 1.5 (1) 2.2 (34) 2.4 (9) 
1.6 (44) 1.6 (6) 2.2 (44) 2.4 (39) 
1.4 (20) 1.5 (33) 2.4 (31) 2.4 (21) 
1.4 (1) 1.5 (0) 2.3 (19) 2.5 (10) 
1.6 (13) 1.6 (10) 2.3 (16) 2.4 (19) 
1.5 (21) 1.5 (4) 2.4 (10) 2.6 (11) 
1.4 (14) 1.5 (8) 2.4 (15) 2.3 (20) 

Mean (2 d.p.) 1 .05 1. 05 1 50 1 54 2 35 2 39 
SD (3 d.p.) 0. 052 0. 352 0. 172 0. 114 0. 139 0. 133 
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Figure 6.3: Online and offline performance for the median t r ia l of the GA and 

EP w i t h the data file c o r r u p t 2 0 . 
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Figure 6.4: Online and offline performance for the median t r ia l of the G A and 

EP wi th the data file corrupt30. 
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Figure 6.5: Online and offline performance for the median t r ia l of the G A and 

EP wi th the data file corrupt40. 
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6.2.5 Dict ionary 

The dictionary chosen for this research was the machine-readable f o r m of the Ox­

ford Advanced Learner's Dictionary ( O A L D ) , described in section 3.4.11. The role 

of the dictionary is to provide, for each word in the system vocabulary, one or 

more pronunciations ( in phoneme form) and one or more syntactic categories. For 

example: 

computer 

control 

course 

k@mpjut@r 

k@ntr@Ul 

kOs 

K6°/„ 

H4'/„,M64/. 

J2$,M6* 

The three fields are word, pronunciation ( in phonemes) and syntactic categories. 

I n this example, the syntactic categories K and M represent nouns, and H and J rep­

resent verbs; the $ and * characters indicate normal, rare and common frequency 

of occurrence. 

On reflection, i t would have been helpful i f a more modern syntactic classifi­

cation system had been used at the beginning of this research, such as that used 

by the SEC corpus and the CLAWS system. Ult imately, i t was the convenience 

of having the relevant information provided by the same source that was the main 

selection criteria. A small number of syntactic codes, in addition to those pro­

vided by the O A L D , were added to the system dictionary by hand. These covered 

possessive nouns and accusative/nominative pronouns. 

6.3 Word Lattice Parsing 

The aim of word lattice parsing (see Figure 6.6) is to produce the best sequence 

of words that spans (a portion of) a word lattice according some criteria. A simple 

method of parsing would be to start at a definite word boundary, for example either 

at the beginning of a sentence (or the end of a sentence) or when a pause in speech 
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Figure 6.6: A Block Diagram of the A U R A I D System 

occurs, and work forwards (or backwards) through the lattice, at each stage taking 

the best scoring word f rom the lattice that fits just after (or before) the current 

best word. Repeat this process un t i l the end (or beginning) of the sentence is 

reached. This, essentially, is the method used, w i th the addition that contributing 

knowledge affects the choice of words f r o m the lattice, so that i t is not always the 

best scoring word that is selected. 

6.3.1 Parse In i t i a t ion 

The word lattice produced by the dynamic programming stage needs to be broken 

into chunks of manageable size for the parsing stage. Each chunk must finish at 

the end of a word. A t certain points during the processing, ends of words can be 

identified, either by pauses in the speech, or by "common consent" of best words 

at different input phonemes, an example of this latter case is shown in Table 5.1. 

A word end must definitely exist at the "z" recognised phoneme because no word 

in the lattice that spans this phoneme does so in any position other than at the 

word end. 
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6.3.2 Sentence Hypotheses 

During word lattice parsing, an ordered list of sentence hypotheses is maintained. 

A sentence hypothesis consists of 

o a field indicating the frame at which this sentence hypothesis ends; 

o a score indicating how good this sentence hypothesis is according to the 

criteria used; 

o a list of words (and their associated information) that make up the sentence 

hypothesis. 

The word information consists of 

o the word string itself; 

o the phoneme representation of the word; 

o a field indicating the frame at which this word ends; 

o a field indicating the frame at which this word starts; 

o the local word score determined during word lattice generation; 

o the broad syntactic class of the word; 

o the O A L D syntactic classification of the word; 

o a pointer l ink to the next word in the list; 

As the parse progresses, sentence hypotheses are added to and removed f rom the 

hypothesis list. 
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6.3.3 Beam Search 

Ini t ia l ly, all possible starting words are added to the sentence hypothesis list. A 

number of these are then expanded as determined by their score and the score of the 

lowest scoring word. For the first three expansions of the sentence hypothesis list, 

all sentence hypotheses that are wi th in 30% of the best scoring sentence hypothesis 

are expanded. In subsequent expansions, only those hypotheses that are wi th in 20% 

of the best scoring sentence hypothesis are expanded. To keep the search space to 

a manageable level, any sentence hypothesis whose score is not w i th in 50% of the 

best scoring sentence hypothesis is pruned. 

This type of extended best-first search is know as a beam search. During the 

word lattice parse, the wid th of the beam is broader in the in i t ia l stages of the 

search, and narrower later on, taking on the shape of a pyramid. 

A pure best-first search would expand only the best sentence hypothesis at each 

stage. This would be an acceptable approach i f the phoneme error rate was very 

low as i t is likely that the (partial) correct sentence would be expanded ahead of 

all other candidates. When the phoneme error rate is high, however, more sentence 

hypotheses need to be expanded at each stage during the search through the word 

lattice to give other sources of knowledge, such as syntax and semantics, a chance 

of recovering the poorly matching correct sentence. Under these circumstances, 

selecting only the best matching sentence would lead to a very poor level of word 

recognition. 

The beam search also makes use of guesses about the score incurred by each 

sentence hypothesis over the remaining portion of the sentence being processed. 

These guesses are in the fo rm of underestimates [Winston, 1992]. Each sentence 

hypothesis in the sentence hypothesis list is a recognition for part of the sentence 

being processed. The hypotheses all start at the same point but reach to different 

parts of the sentence being processed. An underestimate score is calculated for 

each sentence hypothesis based on the remaining amount of the sentence being 

processed mult ipl ied by some constant determined empirically. 
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A simple extension of the search thus described would produce a search tech­

nique known as A*. The A* search is a best-first (or beam) search that makes use 

of underestimates of distance remaining as described above, but also discards re­

dundant paths. In other words, i f several paths reach the same node in the search, 

only the best scoring of these paths is kept alive, the others being removed f r o m 

the search space. The knowledge (described in the next section) that we use to 

aid the word lattice parse can result i n sentence hypotheses being given a bonus 

or a penalty. This is consistent w i t h [Paul, 1992], who states that the A* is only 

suitable for word lattice parsing (stack decoding) when a no-grammar or unigram 

language model is used. 

For example, given two sentence hypotheses P, consisting of words p ! , p 2 , P 3 , 

and Q, consisting of words qi,q2, both hypotheses stretching to node n in the word 

lattice and w i t h scores 20 and 25 respectively. Using the A* algorithm, we would 

prune Q because i t has a worse score than P — we only keep the best sentence 

hypothesis that reaches a particular node. I f we were to extend P by one more 

node by adding word w to span the phonemes between node n and node n + 1, P 

may now have a score of 30 at node n + 1. I f we had kept Q in list of sentence 

hypotheses i t may have a lower score even though i t would have been extended 

by the same word, w, because of the grammar penalties (or bonuses) incurred for 

the new hypotheses P, consisting of words p1,p2,p3,w, and Q, consisting of words 

<7l,<?2,™. 

A short-circuit condition is buil t into the beam search that we use, in order that 

a particularly un f ru i t fu l parse of a port ion of a word lattice may be aborted. This 

is activated when the parse repeatedly fails to extend the best sentence hypotheses 

beyond a particular point in the word lattice. The search is aborted and the current 

best sentence hypothesis is displayed. This short-circuit condition is essential to 

avoid the possibility of long delays during recognition. 

During our earlier studies [Collingham and Garigliano, 1992] [Collingham and 

Garigliano, 1993], the word lattice parsing algorithm could handle phonemes that 

had been inserted into and deleted f rom the input by allowing a particular sentence 
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hypothesis to ignore ("skip") a phoneme, or by allowing a phoneme to be "shared" 

by two different words (co-articulation). This would incur a small penalty. I n 

the first example below, a phoneme has been incorrectly inserted between the two 

words, and in the second example a phoneme has been incorrectly deleted between 

the two words. 

j u s t to 

dZ V s t k t @ 

ju s t to 

dZ V s t © 

I n the first example, the word lattice would contain the word j u s t spanning the 

first set of phonemes, and the word to spanning the last set of phonemes, and 

probably a word like s t i c k spanning the "s t k" phonemes. This was handled by 

allowing the parsing algorithm to skip over the inserted phoneme. In the second 

example, the word lattice would contain the word j u s t spanning the "dZ V s t " 

phonemes, and the word to spanning the " t @" phonemes. This was handled 

in AURAID by allowing the parsing algori thm to parse the " t " phoneme twice, 

enabling both words to span i t . 

However, a recent analysis of the performance of the individual components of 

the word lattice parsing algorithm have shown that the performance gain is neg­

ligible compared to the great cost of incorporating the skip and share algori thm 

[Johnson et ai, 1994b]. The skip algorithm was successful in one aspect in par­

ticular and that was in allowing the word lattice parse to skip over part word 

disfluencies and fi l led pauses, for example 

. . . the qu the answer . . . 

. . . the er first thing . . . 

However, this s t i l l did not make the skip algori thm worth retaining. Further 

work is being undertaken on extending the skip algorithm and in other areas of 
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speech repair [Garigliano et a/., 1993b] [Johnson et ai, 1994a] [Johnson et ai, 

1994c]. 

Several sources of knowledge may be incorporated into the word lattice parsing 

stage. Two that have been successfully implemented are the anti-grammar rules 

(dealt w i th in the next section), and the word frequency information. 

Word Frequency 

A portion of the dictionary used in this research, extracted f r o m the O A L D , is 

shown on page 105. The final column contains word frequency information. In the 

O A L D , word frequencies are divided into three classes: common (about 200 differ­

ent words), normal (the vast ma jo r i ty of words) and rare (a few "hand-selected" 

words). The frequencies (or rar i ty codes) are attached to tags rather than to words 

because a word can be common in one use and rare in another. For example, 

"course" is common as a noun and rare as a verb. 

The phonemic match score of a word, determined during the word lattice gen­

eration stage, is decreased i f the associated frequency is common, and increased i f 

the frequency is rare. This does improve the recognition performance of the system 

[Johnson et a/., 1994b]. The O A L D rari ty tags are very broad; i t is believed that 

introducing more, accurate, classes would substantially benefit recognition perfor­

mance. This has to be done w i t h care, because the more rari ty codes that are 

introduced, the more domain dependent the system becomes. 

6.3.4 Contr ibut ing Knowledge 
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6 o 4 A n t I~ Grammar 

6.4.1 Introduction 

Many speech recognition systems restrict what may be spoken by use of a gram­

mar (or statistical language model). Spontaneous speech, in other words naturally 

spoken English, is very rarely completely grammatically correct, however an anal­

ysis of the data we have collected shows that people do not speak in a completely 

ungrammatical way [Garigliano et al., 1993b], and that speech is not necessarily 

broken into distinct sentences but more often than not multiple sentences without 

pauses, or partial sentences (or individual words and part words) that link pieces 

of speech together. A further problem within pieces of speech is that of repair, in 

other words the correction of previously spoken words. This leads us to the conclu­

sion that it is not possible to define a complete grammar for spontaneous speech in 

the same way that a grammar is used for written (and "clean" spoken) English, or 

in the same way that a statistical language model is trained for recognition using 

read speech. 

Instead, we have taken the opposite approach by developing a set of rules that 

can be used to check the syntactic incorrectness of sequences of words. We call 

these-syntactic rules an "anti-grammar'' as most of the rules are used to penalise 

certain syntactic constructs rather than identify syntactically correct sequences. 

This inverted method of modelling follows naturally from the fact that it makes 

sense to keep the size of the model to a minimum for efficiency reasons. For 

a constrained task it is efficient to model the few legal sentences, but once the 

balance changes, so that there are more legal sentences than illegal ones, it is more 

efficient to model the smaller set of illegal sentences. 

The anti-grammar is really an extreme case. It could be possible to have varying 

degrees of penalties and bonuses so that some grammatical constructs are heavily 

penalises indicating that they never occur, some are given smaller penalties indi­

cating a certain amount of rarity, some are given no penalty indicating a neutral 
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occurrence, some are given a small bonus indicating a certain amount of common­

ness, and some may be given a large bonus indicating that they are very common 

constructs. It should be possible to derive these penalties from a corpus, given the 

future availability of a large spontaneous speech corpus labelled with the appropri­

ate grammatical categories. 

It is appropriate to mention several other unconventional grammatical con­

straint models which are similar to the anti-grammar. The TAGGIT program was 

used to tag the Brown corpus [Marshall, 1987]. It made use of both positive and 

negative context frame rules for word tag disambiguation. The constraint gram­

mar and formalism and tagger/parser developed at Helsinki University also uses 

both positive and negative rules or constraints, involving words and tags (and their 

combinations), to eliminate incompatible candidate analyses [Karlsson et a/., 1995]. 

Karlsson also details some of the advantages of hand-crafted constraints over purely 

probabilistic tagging systems. 

6.4.2 Details 

Currently, the anti-grammar is made up of four parts. 

• 116 simple rules concerning sequences of particular syntactic categories, for 

example: 

ADJECTIVE ARTICLE ADJECTIVE 

• more complicated rules concerning sequences of syntactic categories in addi­

tion to particular forms of words, for example: 

ARTICLE VERB(not ' i n g ' fo rm)" 

• rules concerning words that behave in a strange manner, for example, not 

and very 

e common constructs of spoken English are given an advantage, for example, 
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to VERB 

very ADJ 

The ful l annotated list of rules can be found in appendix A. 

Initially the word lattice parsing unit was developed without the aid of any con­

tributing knowledge. It became clear that the word sequences that were selected 

by the parser were the closest match phonemically to the corrupted phoneme in­

put. Many of the word sequences were, however, ungrammatical. Initially, the 

anti-grammar rules were developed in an ad hoc fashion in response to ungram­

matical output from the word lattice parser. It soon became clear that this would 

not provide a complete enough solution and would certainly take some time to 

develop and test. Subsequent development of the anti-grammar occurred in three 

stages. Firstly, rules were constructed using the author's knowledge of the English 

language, taking into account the vagaries of spontaneous speech. This and the ad 

hoc approach yielded approximately 70 rules. 

The second development phase involved semi-automatically tagging two of the 

lectures from the Durham lecture corpus (see section 3.4.6). This involved the use of 

the Xerox public domain part of speech tagging program [Cutting et ai, 1992]. The 

data was firstly tagged by the program, then any words that were clearly tagged 

incorrectly were amended by hand. A second -tagging, using the program, then 

took these hand tagged words into account and produced much more accurately 

tagged data. N-gram frequency counts were then calculated for successive part of 

speech tag sequences (of length 1-4 tags); rarely occuring sequences were removed. 

This list was then "inverted" to determine which tag sequences did not occur 

in the data, and normalised to remove any duplication (for example, only a 2-tag 

sequence that occured within a 4-tag sequence would be retained). This resulted in 

a more complete list of anti-grammar rules, or constructs that do not occur much 

in everyday spoken English. This list was checked against the hand-built rules, 

resulting in an updated list of approximately 120 anti-grammar rules. During this 

process, note was taken of particular tag sequences that did occur very frequently 

in the data, these were added to the anti-grammar as rules that gave a bonus 
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score to a sentence hypothesis containing the sequence, rather than the more usual 

penalty. 

The third development phase involved a revision of the anti-grammar rules 

containing verbs and adverbs. It was felt that the existing rules were too general, 

and needed restricting by taking into account more information on the particular 

verbs and adverbs being used (such as modal verbs). The rules were therefore 

adjusted using more detailed grammatical information on verb constructs [Hardie, 

1992] [Sinclair, 1990]. 

6.4.3 Analysis 

The questions that needs to be asked are: which knowledge source actually benefits 

the system and how do the different knowledge sources cooperate to achieve the 

overall goal of the system? An investigation of each knowledge source used by the 

system has been undertaken. Each knowledge source was investigated to identify 

the advantages and disadvantages of using it and the effect on the system's overall 

performance when the knowledge source is used. The original word lattice parsing 

system was modified so that several versions of the system could be easily created. 

Each version processed ten test sentences and measurements were taken on the 

search space generated during each run and performance of each system. This 

allows the best system to be identified and the bottom line performance of each 

individual knowledge source, both alone and in co-operation with other knowledge 

sources, to be identified. The aim of the analysis was to decrease the search space of 

the system, thus increasing the time performance, without diminishing the accuracy 

of the system. 

The data used in the analysis presented in this section was taken from a single 

lecture on software engineering given as the first introductory lecture for second year 

computer science students. The lecture contained 4903 words and 382 sentences, or 

part sentences, with an average of 12.84 words per-sentence. From this lecture ten 

representative sentences were selected. They were representative in sentence length 
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System 
Switch 1 2 3 4 5 

Skip/Share X X X X 

Word Frequency X X X X 

Anti-Grammar X X 

500 Words X X X X 

2000 Words X 

Table 6.4: System Configuration During Knowledge Source Analysis 

and speech disfluencies: five of the sentences contained repairs. Two dictionaries 

were used in the analysis. The first contained 528 words of which 354 were from the 

LOB corpus and 146 were category words which are important to the general field 

of lectures. The second contained 1985 words and was used to test the system's 

performance on a more,realistically-sized vocabulary. 

The switches that were built into the original system to allow different versions 

to be easily created were: 

o Skip and share algorithm 

o Word frequency information 

o Anti-grammar rules 

© 500 word dictionary 

© 2000 word dictionary 

The combinations of the switches which made up the six systems can be seen in 

Table 6.4. The first three knowledge sources are described elsewhere in this chapter. 

The data collected on each run included: system time; elapsed times; position of 

the right hypothesis (RH) in the hypothesis list (HL); hypothesis score of the RH; 

error rate; word accuracy; words correct; the percentage position of the RH from 

the top of the HL (for example, 10% from the top of the list) and the percentage 

difference between the score of the top hypothesis and the score of the RH. 
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It must be noted that in identifying the position of the RH (the actual input) 

within the HL the type (VERB, etc.) of the word was used as well as the word 

itself along with the exact phoneme location. This makes the details very accurate 

and the figures seem lower than those systems whose performance is measured on 

word identification alone. 

The results were compared to see if the included knowledge source had any 

effect and whether the effect, in combination with other knowledge sources, was 

beneficial to the system as a whole. 

Results 

The introduction of skip and share processing made very little difference to the 

overall performance of the system. I t did not increase the systems performance 

though it did show promise in overcoming one of the problems of repair by bridg­

ing a part word, but the resulting string had such a low score that it was never 

expanded. 

Word frequency information gave a definite increase in system performance for 

both system time and position of the RH. Though not producing a completely 

satisfactory result it did go some way towards moving the RH to the top of the 

hypothesis list. 

A combination of skip and share processing and word frequency information 

showed a slight increase in performance over the word frequency information alone 

but this was mainly a time increase rather than a performance increase. This 

system, with a combination of skip and share processing and word frequency in­

formation, was taken as the basis for the rest of the analysis. 

The systems using anti-grammar rules worked much better than the other sys­

tems as the RH was generally higher in the hypothesis list, though it was not 

necessarily top of the list. This is not a major problem to this work as the ac­

curacy of the measurements are such that a higher position in the list is more 
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Sentence 
System 

Sentence 1 2 3 4 5 
1 69.2 53.8 53.8 61.4 46.1 
2 46.1 61.5 61.5 53.8 53.8 
3 46.1 46.1 53.8 46.1 46.1 
4 66.6 58.3 58.3 66.6 50.0 
5 75.0 75.0 75.0 83.3 83.3 
6 58.3 50.0 50.0 75.0 50.0 
7 100 91.6 91.6 100 91.6 
8 54.5 72.7 63.6 72.7 54.5 
9 63.6 54.5 54.5 54.5 54.5 
10 70.0 70.0 70.0 80.0 80.0 

Table 6.5: Percentage Word Accuracy Obtained for each System During Knowledge 
Source Analysis 

desirable as it shows that the extra knowledge source is, in fact, being beneficial. 

The performance of the system using a more realistic vocabulary of 1985 words 

was acceptable. The systems performance did not decrease as would be expected 

but increased for all sentences. The changes in system time fluctuated across the 

test sentences (some increased and some decreased) but the position of the RH in 

the list of hypotheses generally increased. 

System Performance 

Generally the system showed an increased performance both in system time and 

position of the RH when knowledge sources were combined. As well as this in­

formation word accuracy for each system was also calculated. This measure of 

accuracy was not deemed as important as the HL measurements as this research 

was interested in the progress of the RH when knowledge was added to the system. 

Table 6.5 shows the word accuracy for each of the systems that were tested. Fur­

ther information on this analysis will be contained in [Johnson, to appear 1995]; it 

consists of several hundred pages of data, and is available for inspection from the 

authors. 
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6 o 5 Software Engineering Aspects-of the Test-

Bench 

6.5.1 The Word Lattice Generator 

The word lattice generator uses the SAM-PA machine readable phoneme represen­

tation. Should this underlying representation need to be changed, i t will have little 

impact on the generator, nor on the parameter optimiser. Each only requires the 

knowledge of how the phonemes are grouped together into classes. 

6.5.2 The Word Lattice Parser 

The word lattice produced by the word lattice generator can be viewed as a starting 

point for linguistic constraint researchers so that syntactic and semantic constraint 

models (and others) may be researched without the need for speech recognition 

hardware. The basic word lattice parsing algorithm has been designed to incorpo­

rate different types of knowledge in a modular fashion. 

The algorithm used during word lattice parsing is as follows. 

1. Construct initial list of sentence hypotheses from the words that start at the 

first phoneme. 

2. WHILE we haven't reached the goal 

(a) Extend each sentence hypothesis by each of its possible successor words 

obtained from the word lattice to create a list of new sentence hypothe­

ses. 

(b) Score each new sentence hypothesis for each knowledge source. 

(c) Sum the individual knowledge source scores for each new sentence hy­

pothesis and add it to the sum of the (acoustic match) word scores; this 
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total score becomes the sentence hypothesis score. 

(d) Add the new sentence hypotheses to the old sentence hypothesis list. 

(e) Sort according to the sentence hypothesis score. 

(f) Prune any high scoring sentence hypotheses from the list. 

3. ENDWHILE 

4. Return the best scoring sentence hypothesis. 

Step 2(a) in this algorithm demonstrates the modular interface: each new sen­

tence hypothesis is passed to each knowledge source available in the system; the 

knowledge source simply returns a score. Currently, the individual scores for each 

knowledge source are summed with equal weighting. One drawback of this ap­

proach is that i t doesn't allow manipulation of the sentence hypothesis list. One 

situation where this might be required is in the detection and correction of repair: 

the repair knowledge source may identify a possible repair in a sentence hypoth­

esis and may then want to add a corrected sentence hypothesis onto the sentence 

hypothesis list. 

The type (in C) of each knowledge source is therefore of the form 

f l o a t knowledge_source (sentence_hypothesis sh) 

although in practice, each knowledge source may require additional information 

such as the value of the goal, or the words of the previously recognised sentence 

for context. 

The anti-grammar knowledge source makes use of the syntactic category infor­

mation present in the dictionary. Should this underlying representation need to be 

changed, it will have little impact on the knowledge source because the syntactic 

information is not embedded in the anti-grammar rules but has been abstracted 

into a series of predicates — functions that take a particular syntactic category as 

a parameter and return a boolean result. For example, the function (in C) to check 

whether or not a word is in the third person singular would be: 
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i n t is_3rd_pers_sing(wr) 
word_rec *wr; 

{ 

i f (wr == NULL) 
return (1); 

i f (wr->c2 == 'a') 
return ( 0 ) ; 

e l s e 
return ( 1 ) ; 

Once these low-level predicates have been altered to take into account any new 

syntactic category representation, the anti-grammar knowledge source will require 

no more alterations. 



Chapter 7 

Evaluation Franiework 

This chapter outlines the framework in which the work described in this thesis is 

evaluated. Addressing in particular phoneme recognition assessment, word lattice 

quality, the suitability of the anti-grammar, word recognition assessment and read­

ability issues. The problem of evaluating recognition of spontaneous speech is also 

discussed, and a case for developing a new measure for assessing speech recognisers 

that handle spontaneous speech is presented. A brief mention is made of the early 

work in this area. 

7.1 Phoneme Recogni t ion Assessment 

In order to put the word recognition rates of an automatic speech recognition 

system into context, it is important to know the phoneme recognition rate of the 

underlying acoustic-phonetic recogniser. In other words, all things being equal 

(such as language model, vocabulary size and the like), it is less impressive to 

achieve 80% word recognition given, say, 100% phoneme recognition than, say, 

50% phoneme recognition. 

Methods of evaluating phoneme recognition accuracy are similar to those for 

122 
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determining word recognition accuracy, with the addition that group figures are 

also calculated. For the purposes of this research, phonemes have been grouped 

by manner of articulation, see Table 6.2. It is also useful to construct confusion 

matrices to show substitution errors. This is easier to do at the phoneme level than 

at the word level because of the limited number of phonemes, which is independent 

of vocabulary size. 

Caveat — determining a phonemic transcription for a portion of speech by 

hand is a non-trivial task, especially when it comes to labelling vowel sounds. For 

this reason, when phoneme accuracy is measured, a machine-generated phoneme 

transcription is compared against a standard pronunciation dictionary-generated 

transcription. 

The phoneme recognition assessment described in this section is guided by the 

phonetic analysis performed in [Browning et ai, 1990]. We use the following defi­

nitions: 

number of phonemes in correct transcription = p 

number of phoneme substitution errors — s 

number of phoneme deletion errors — d 

number of phoneme insertion errors = i 

% phoneme substitution errors = 100 s (7.1) 

% phoneme deletion errors = 100 

P 
d 

(7.2) 
P 

% phoneme insertion errors = 100 i (7.3) 

% phoneme error = 100 

P 
s + d + i 

(7.4) 

% phoneme accuracy = 100 • 

% phonemes correct = 100 

P 
p-(s + d) 

P 
p - (s + d + i) 

(7.5) 

(7.6) 
P 

Equivalent figures may be obtained for phoneme groups by first calculating p, 
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s, d and i for each group. 

7 o 2 W o r d Lat t ice Qua l i ty 

The quality of a word lattice may be evaluated by determining the positions within 

the lattice of the actual spoken words. We define the average word rank for a word 

lattice to be 
1 n 

average word rank = — J ^ r , (7-7) 
n i=i 

where n is the number of spoken words and rt- is the rank in the word lattice of 

the i ' th spoken word at its correct start position. Within a lattice, equal scoring 

word hypotheses are given the same rank. The aim of any word lattice generation 

algorithm is to get this measure as near to 1 as possible. 

Referring to the word lattice shown in Table 6.1, for the sentence fragment "the 

word", with "the" spanning frames 1-2, and "word" spanning frames 3-5. The 

rank of "the" at its correct start frame (1) is 1, and the rank of "word" at its 

correct start frame (3) is 1. The average word rank for this lattice is therefore 1. 

Average word rank was used as the measure of fitness during the parameter 

estimation described in section 6.2.4. 

7 , 3 Su i tab i l i ty of the Anti= G r a m m a r 

7 . 3 . 1 Perplexity 

Perplexity is a measure of the constraint imposed by a grammar or language model, 

and is often called the average word branching factor, in other words the average 

number of alternative words at each point in the recognition. Perplexity is described 
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in more detail in section 3.2.5. Perplexity is defined as 

perplexity = P(wi, w 2 , . . . , wn) " (7.8) 

where P(wi, w2,..., wn) is the probability of occurrence of a sentence contain­

ing the words Wi, w 2 , . . . , wn, given the language model or grammar of the speech 

recognition system. For statistical language models, such as trigram, which are 

generated from a large corpus of data, this probability is straightforward to com­

pute. For the anti-grammar used in this research, the probability of a sentence 

occuring has to be estimated empirically, as follows. 

1. Randomly generate q (q is large) sentences of length n words, using a vocab­

ulary of size v; 

2. Test each sentence for inclusion in the language covered by the language 

model, giving / legal sentences (/ < <?); 

3. The maximum number of possible sentences is given by vn; 

4. The approximate number of legal sentences allowed by the language model is 

approximate number of legal sentences = - . v n 

5. The probability of a given legal sentence is therefore given by 

P(wi,w2,...,wn) 
1 

- . v n 

v 
— n 

6. The perplexity of the language model is therefore 

- i 

perplexity — ( - . v 
n n V 

n 
V 

- 1 
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= v . 
n 

7.9 

It must be pointed out that this section is concerned with measuring the per­

plexity of the language model and not of the task. In cases where a language model 

is determined statistically from a large corpus of data for a given task, the perplex­

ity of the language model and the perplexity of the task are identical. The work 

presented in this thesis is not tied to any specific task and so no large collection 

of data is available for any of the domains used for evaluation. It is expected that 

the perplexity of the domains used for evaluation would be much lower than the 

perplexity of the language model. 

I t is useful to calculate the perplexity of the language model to determine the 

amount of restriction imposed upon a speaker, compared to the word recognition 

rate that is achieved. 

7.3.2 Coverage 

A useful measurement for evaluating the generality of the anti-grammar is to see 

what proportion of correct (or actually spoken, but not correct) sentences are 

rejected by the anti-grammar. This can be measured by checking whether or not 

sentences (tagged with their parts of speech) violate any of the anti-grammar rules. 

Several corpora exist that contain tagged data, however, the data tends to be text 

based (written English), or transcripts of read speech. There is very little tagged 

data in existence for spontaneous speech. 

7 . 4 W o r d Recogni t ion Assessment 

Word recognition measurements were introduced in 3.2.6. The definitions given 

in this section are suitable measures for read speech. Their use for measuring 
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recognition performance on spontaneous speech is not so clear. They are presented 

here for completeness, and will be used for assessment purposes on the assumption 

that it is "good" to obtain a high percentage of words correct and a high word 

accuracy. The last section in this chapter, section 7.6, discusses this in more detail 

and presents the case for developing a new measure for assessing speech recognisers 

that handle spontaneous speech. 

We use the following definitions for word recognition assessment: 

number of words in correct transcription 

number of word substitution errors 

number of word deletion errors 

number of word insertion errors 

% word substitution errors 

% word deletion errors 

% word insertion errors 

% word error 

% words correct 

% word accuracy 

7,5 Readability 

A measure that must be taken into account is the readability of the speech recog­

nition output. This cannot be measured simply in terms of the number of correctly 

recognised words, because spontaneous speech contains many disfluencies. 

Many methods have been developed for measuring the readability of text. In 

most cases, the objective has been to grade texts for teaching purposes in schools. 

Many of these methods are based upon a statistical analysis of samples of text, de-

w 

s 

d 

— i 

100 

100 

100 

100 

100 

100 

w 
d_ 
w 
i 

w 
s + d + i 

w 
w — (s + d) 

w 
w — (s + d + i) 

w 

(7.10) 

(7.11) 

(7.12) 

(7-13) 

(7.14) 

(7.15) 
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termining for example, the number of words per sentence, the number of syllables 

or letters per word, or the number of words containing more than two syllables. 

These statistics are then combined in some form to give a reading age correspond­

ing to the difficulty of the text. These measures have received much criticism 

because there is no neat correlation between sentence or word length and reading 

difficulty. Nor are they applicable for measuring the readability of the output of a 

speech recognition system, for two reasons, firstly because the lack of punctuation 

in spontaneous speech makes the measures incalculable, and secondly, errors of 

recognition such as word insertion and deletion, may confuse the formulae giving 

inaccurate results. Instead a direct test that assesses how easily someone can read 

and comprehend a text is required. 

For many years, comprehension tests have been used in schools to measure 

reading ability. A comprehension test consists of reading a passage of text and 

then answering questions on i t . The disadvantages of comprehension tests are that 

they are difficult to construct, lengthy to administer, and the questions are often 

answerable using a person's prior knowledge rather than knowledge gained from 

reading a particular passage. They also do not test comprehension of the complete 

passage, since the questions that are asked cover only a small subset of the text. 

A test known as the Cloze procedure was developed in 1953 to measure read­

ing comprehension [Taylor, 1953]. Instead of preparing a passage with associated 

comprehension questions, every n'th word is removed from the passage, where n 

is typically five. The number of correct words guessed by a reader is then used 

as a measure of his or her understanding. An example of a Cloze passage (with 

answers) is given in Figure 7.1. 

For measuring readability, the most accepted way to form a Cloze passage is to 

select one or more paragraphs that total 250-300 words, then with the exception of 

the first few sentences which remain unaltered, remove every f if th word [Bormuth, 

1966]. Each removed word is replaced by a gap or ruled line of uniform length. 

Much debate has surrounded the applicability of the Cloze procedure for measuring 

reading ability, however its use for measuring the readability of a passage is widely 
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A car bomb exploded outside the Cabinet Office in Whitehall last night, 
100 yards (1) 10 Downing Street. Nobody (2) injured in 
the explosion (3) happened just after 9pm (4) the corner 
of Downing (5) and Whitehall. Police evacuated (6) area. 
First reports suggested (7) the bomb went off (8) a 
black taxi after (9) driver had been forced (10) drive to 
Whitehall. The (11) was later reported to (12) burning 
fiercely. 

Answers: 

(1) from (2) was (3) which 
(4) on (5) Street (6) the 
(7) that (8) in (9) the 
(10) to (11) taxi (12) be 

Figure 7.1: An Example of a Cloze Passage 

accepted. Even so, research has continued to evaluate the Cloze procedure as 

a suitable measure of readability. For example, removing every f i f th word in a 

passage is quite mechanical, other studies have examined different values of n, 

and the balancing of the types (nouns, adjectives and the like) of words that are 

removed (known as "lexical Cloze"). Examination of the scoring process of the 

Cloze procedure has also taken place. In its purest form, answers are either right 

or wrong, in a more sophisticated form, a semantic score is used, with answers 

that have a similar meaning to the removed word scoring, say, half a mark. For 

the assessment of readability, all of this analysis has not led to any enhancements 

to the Cloze procedure that offer significantly improved results [Robinson, 1981], 

hence the simplest form of the Cloze procedure is used in this analysis. 

7»6 Measurement of Meaning 

In our heads we all have a notion of how words and concepts relate to each other. 

Each of us makes use of this information when we listen to someone speak or read 

a page in a book. In a pub, for example, there is often a lot of background noise, 
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either chat or music, yet when someone speaks to us we can tell what they have 

said despite not hearing each and every word that they spoke. We can use our 

knowledge of grammar to determine the kinds of words that f i l l the gaps in our 

guess as to what was actually spoken, we can use our knowledge of semantics to 

know what would make sense based on the context of previously spoken sentences. 

Indeed we could get the gist of a conversation by hearing only a few key words. 

As discussed in section 3.2.6, the existing metric that is used to assess speech 

recognisers is to simply count the number of words correctly recognised. No ac­

count is taken of the importance of the words that are incorrectly recognised, nor 

the understandability of the resulting output of the recogniser. Research is being 

undertaken into a new metric provided by semantic distance to assess the meaning 

content of a text. To provide this measurement the algorithm does not rely on sta­

tistical means, such as counting word co-occurences. Instead a deep representation 

of meaning is used; semantic distance is derived from the structure of the data in 

this representation. 

There are at least five key areas in which research into a measure of semantic 

distance will make an impact: 

• assessment of speech recognition systems; 

® use of domain knowledge to aid speech recognisers; 

9 summarisation and content scanning of text; 

a topic spotting; 

9 assessment of machine translation. 

No suitable metric for measuring semantic distance exists in any of these fields. 

The first area is discussed below as it is concerned with speech recognition evalua­

tion, the other areas are briefly mentioned in section 9.2. 
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Assessment of Speech Recognition Systems 

The existing metric that is used to assess the performance of automatic speech 

recognition systems is to simply count the number of words correctly recognised. 

No account is taken of the importance of the words that are incorrectly recognised, 

nor the understandability of the resulting output of the recogniser. Research is 

being undertaken to develop a metric that takes this into account, and would, for 

example, be able to say that a spoken text is recognised with 75% words correct 

and 85% of the original meaning [Short et ai, 1994b]. Although this work has not 

progressed far enough to be included in this thesis, future research by the author 

will develop this metric further. 

This may appear to be an irrelevant measure to develop because the ultimate 

goal of automatic speech recognition is to achieve 100% word recognition. This 

may be true of "clean" speech that contains no errors, such as read speech, but is 

not true for natural spontaneous speech which contains many filled pauses, part 

words and sentence repair. For example, given the spoken input: 

I err want the err ti time of the err first tr no the last train to err Newcastle 

we would prefer our speech recogniser to come up with.something like: 

I want the time of the last train to Newcastle 

which could be said to have a word accuracy of 50% and a meaning measure 

of 100% compared to the original spoken input. A measure of semantic distance 

should assist in the determination of which "errors" in the recognition are unim­

portant. 



Chapter 

Results 

This chapter gives details of the data that was used for evaluation purposes and 

presents results for the areas outlined in the previous chapter. 

8.1 Da ta Prepara t ion 

Two small sets of data were used for word lattice generation parameter estimation. 

These data sets were portions of (accurately) transcribed lectures given to under­

graduate students in computer science at the University of Durham. The data sets 

consisted of 113 and 112 words respectively and are shown below. The sequence of 

characters < . > indicates a pause. 

Parameter Estimation Data: evoldatal 

for this lecture we're going to be looking at <.> <.> maintenance models 
what we're going to do is < . > < . > is to be looking at <.> <.> this in a 
historical context looking back in the literature and find out what various 
people think software maintenance is about and how they model the process 
<.> <.> it's quite useful to find this out to give us some sort of view on 
why certain ideas in maintenance have grown up <.> <.> so what this 

132 
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lecture is is a series of models devised by various people and then what 
we're going to do in the next lecture is take one of those models apart and 
look into it in a lot more detail 

Parameter Estimation Data: evoldata2 

now <.> <.> the first <.> <.> thing to tell you <.> <.> is the book 
the recommended book for this course <.> <.> is that <.> <•> software 
engineering the third edition don't get the first or the third however cheap 
it is it's awe they're awful < . > < . > it's this book here < . > <. > it's eighteen 
or nineteen pounds <. > <. > but you've all got plenty of money so you can 
all afford it <. > <. > what i < .>< .> try to do on the course is that i don't 
<.> <.> exactly follow what's in that book you should see this book as 
supplementary reading i assume that you're reading the relevant sections 
and occasionally i will point out the chapter you should read that i don't 
have time to cover 

A previously unseen lecture taken from the Lund corpus was used for evaluation: 

text number 12.6, described as a "popular lecture" and given by a male builder in 

1972. The lecture did not contain any indication of pauses, so these were added by 

hand. The lecture was converted to phoneme form using pronunciations from the 

OALD. The lecture consisted of 5057 words, an extract is given below. 

Evaluation Data: lunddata 

well rather than give a talk about the history of stoke poges <. > < . > i felt 
it might be a little more interesting to you all < .>< .> to hear about my 
own life <.> <.> lived and growing up in this wonderful village of stoke 
poges < . > < . > i attended stoke school and < . > < . > i must say < . > < . > i 
was taught very thoroughly the three rs < . > < . > funnily enough my father 
went to the same school <.> <.> and he was one of the first pupils <.> 
<. > before that <. > <. > he used to go to the school next door to here 
<. > <. > and pay a penny a week <. > <. > along with all the other village 
boys for his education < .><.> considering his schooling must have stopped 
at about fourteen years <.> <.> his beautiful copperplate writing and his 
reading with understanding was really remarkable <.> <.> i lived in my 
early life in wexham street < . > < . > it was a semi detached house < . > < . > 
built by my father and uncle with their own hands <.> <.> and we lived 
we were a family of five <.> <.> there were three children <.> <.> two 
sisters and myself < .>< .> we had a very big garden <. > <. > and we used 
to have to produce the produce from the garden < . > < . > the potatoes < . > 
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<. > the root crops <. > <. > store them keep them for the use of us during 
the whole of the winter <. > < . > we also kept < . > < . > as everyone in the 
village at that time kept chicken < . > < . > we kept a goat <.> <.> rabbits 
and occasionally we used to keep a pig <.> <.> the chickens was looked 
after by my sisters 

To the existing dictionary of 1984 words were added 653 new words to give a 

system dictionary of 2637 words for the lunddata evaluation. 

A collection of 113 previously unseen sentences taken from the Wall Street 

Journal corpus were used for a second evaluation. These sentences were used for 

the 1993 ARPA CSR evaluations. The sentences did not contain any indication 

of pauses, and none were added. This data set contains no disfluencies and is 

included to demonstrate the recognition ability of the system on read data. The 

sentences were converted to phoneme form using pronunciations from the OALD. 

The sentences consisted of 1923 words, an extract is given below. 

Evaluation Data: wsjdata 

bell canada enterprises incorporated said it plans an offering in europe of 
one hundred and fifty million dollars Canadian of notes. 

the five year ten percent notes were priced at one oh one. 

lead underwriter is union bank of Switzerland securities limited proceeds 
will be used to refinance short term debt. 

bell canada enterprises is a telecommunications energy printing and real 
estate concern. 

not surprisingly the davis zweig report has become more bearish dropping 
to a twenty five percent bond position around mid april. 

yesterday it called for a complete move out of bonds and into money market 
funds. 

meanwhile the bond market rallied sharply for the day. 

it also would bar foreign companies from becoming primary dealers in US 
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government securities unless their governments give US companies the 
same right in their countries. 

it is aimed at japan. 

the federal reserve board recently accepted two japanese firms as primary 
dealers. 

To the existing dictionary of 1984 words were added 404 new words to give a 

system dictionary of 2388 words for the wsjdata evaluation. 

8*2 Phoneme Recogni t ion Assessment 

In the absence of a suitable front-end recogniser, the simulation program described 

in section 6.1.3 was used to generate corrupted phoneme input for the word lattice 

generator and parser. Corruption rates of 15% and 25% were simulated on the 

data used for evaluation. The files were corrupted as follows: 

F i l e : evoldatal.p. cl5 NUM SUB DEL INS 
Words : 113 plosives = 82 4 4 4 
Number of phonemes: 387 a-f-f-ri-e-s = 4 0 0 0 

s t r f r i c s = 36 2 1 2 
wkfrics = 28 2 2 1 
liquids = 48 2 2 1 
nasals = 44 4 4 1 
vowels = 145 11 7 4 

TOTALS 25 20 13 (58) 
TOTALS (*/.) = 6.5 5.2 3.4 (15.0) 

F i l e : evoldata2.p.cl5 NUM SUB DEL INS 
Words : 112 plosives = 81 4 4 4 
Number of phonemes: 369 a f f r i c s = 8 1 0 0 

s t r f r i c s = 25 1 1 1 
wkfrics = 37 2 3 2 
liquids = 40 2 2 1 
nasals = 33 3 3 1 
vowels = 145 11 7 4 

TOTALS 24 20 13 (57) 
TOTALS (*/.) = 6.5 5.4 3.5 (15.4) 
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F i l e : evoldatal.p.c25 NUM SUB DEL INS 
Words : 113 plosives = 82 7 7 7 
Number of phonemes: 387 a f f r i c s = 4 1 0 0 

s t r f r i c s = 36 3 2 3 
wkfrics = 28 3 4 2 
liquids = 48 3 3 2 
nasals = 44 7 6 2 
vowels = 145 19 11 7 

TOTALS 43 33 23 
TOTALS ('/.) 11.1 8.5 5.9 

F i l e : evoldata2.p.c25 NUM SUB DEL INS 
Words 112 plosives = 81 7 7 7 
Number of phonemes: 369 a f f r i c s = 8 1 0 0 

s t r f r i c s 25 2 2 2 
wkfrics = 37 4 5 3 
liquids = 40 3 3 2 
nasals = 33 5 5 1 
vowels = 145 19 11 7 

TOTALS = 41 33 22 
TOTALS ('/.) = 11.1 8.9 6.0 

F i l e : lunddata.p.cl5 NUM SUB DEL INS 
Words : 5057 plosives = 3257 177 167 160 
Number of phonemes: 17206 a f f r i c s = 342 36 12 0 

s t r f r i c s = 1266 65 42 55 
wkfrics = 1682 107 126 74 
liquids = 2313 90 99 58 
nasals = 1763 172 145 40 
vowels = 6583 507 299 175 

(99) 
(25.6) 

(96) 
(26.0) 

TOTALS 1154 890 562 
TOTALS ('/.) = 6.7 5.2 3.3 

F i l e lunddata.p.c25 NUM SUB DEL INS 
Words : 5057 plosives = 3257 _291 275 268 
Number of phonemes: 17206 a f f r i c s = 342 63 19 15 

s t r f r i c s = 1266 109 75 90 
wkfrics = 1682 174 207 125 
liquids = 2313 150 161 97 
nasals = 1763 284 245 67 
vowels 6583 839 495 293 

(2606) 
(15.1) 

TOTALS 
TOTALS (*/.) = 

1910 1477 955 (4342) 
11.1 8.6 5.6 (25.2) 
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F i l e wsjdata.ci5 NUH SUB DEL INS 
Words 1923 plosives = 1770 96 91 88 
Number of phonemes: 8006 a f f r i e s = 144 16 4 3 

s t r f r i c s = 690 36 25 29 
wkfrics = 574 37 43 26 
liquids = 869 34 38 22 
nasals = 961 95 81 22 
vowels = 2998 232 137 81 

TOTALS = 546 419 271 
TOTALS ('/.) = 6.8 5.2 3.4 

F i l e wsjdata.c25 NUM SUB DEL INS 
Words 1923 plosive = 1770 159 152 147 
Number of phonemes: 8006 a f f r i c = 144 26 7 5 

s t r f r i c = 690 59 41 48 
wkfric = 574 61 72 43 
liquids = 869 56 63 36 
nasals = 961 158 135 37 
vowels 2998 387 228 135 

TOTALS 906 698 451 
TOTALS ('/.) = 11.3 8.7 5.6 

(1236) 
(15.4) 

(2055) 
(25.7) 

8 o 3 W o r d La t t i ce Qua l i ty 

The word lattice generation parameters were optimised using the two data sets 

described above using the pre-evaluation dictionary containing 1984 words. The 

evolutionary programming algorithm (as described in section 6.2.4) with a popu­

lation of 100 was executed over 100 generations using a tournament size of five. 

The best solution found had the following settings (to 1 d.p.) for the acoustic 

parameters: 

Corruption 

Rate 

insjpen deljpen subjpen Corruption 

Rate 

insjpen deljpen 

(same class) (different class) 

15% 97.6 92.4 84.1 218.3 

25% 96.7 95.1 94.7 214.8 

These parameters were then used to generate further word lattices for the two 

training data sets and the Lund lecture using the evaluation 2637 word dictionary, 

and also the WSJ sentences using the evaluation 2388 word dictionary. Average 

word ranks were calculated for each of the twelve word lattices and the results 
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Word Phoneme Dictionary Average 
Filename Count Error Size (Words) Rank 

evoldatal 113 15.0 1984 1.2 
evoldata2 112 15.4 1984 1.3 
evoldatal 113 25.6 1984 1.7 
evoldata2 112 26.0 1984 2.0 
evoldatal 113 15.0 2637 1.3 
evoldata2 112 15.4 2637 1.4 
lunddata 5057 15.1 2637 1.5 
wsjdata 1923 15.4 2388 2.2 
evoldatal 113 25.6 2637 1.7 
evoldata2 112 26.0 2637 2.2 
lunddata 5057 25.2 2637 2.2 
wsjdata 1923 25.7 2388 6.6 

Table 8.1: Average Word Ranks for the Training and Evaluation Data 

presented in Table 8.1. These figures show that despite increasing the size of the 

dictionary by 35%, the parameters are robust and produce good average word rank 

figures for the training data sets. 

A useful experiment to perform upon the word rank data is to calculate cumu­

lative word scores. This would reveal the proportion of words occurring at a given 

rank or better, and allows the observation that 95% of the spoken words occur at, 

for example, rank 15 or better. I f this information were used to prune the word 

lattice of any words occurring at a rank worse than this, then the search space 

examined during word lattice parsing would be much reduced. Figure 8.1 shows 

cumulative word ranks at 15% phoneme error and Figure 8.2 shows cumulative 

word ranks at 25% phoneme error, on the two training data sets and the Lund lec­

ture, with a dictionary of 2637 words, and on the WSJ sentences with a dictionary 

of 2388 words. 
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Figure 8.1: Cumulative Percentage of Words at each Rank at 15% Phoneme Error 
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Figure 8.2: Cumulative Percentage of Words at each Rank at 25% Phoneme Error 
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8 o 4 Su i tab i l i ty of the A n t i~ Grammar 

8.4.1 Perplexity 

The perplexity of the anti-grammar was calculated according to the method given 

in section 7.3.1. 50,000 sentences (q) of length 12 words (n) using a vocabulary 

of 1984 (v) words were randomly generated. Using Equation 7.9, perplexity was 

calculated to be 1470. This experiment was repeated for a vocabulary of 2637 

words, perplexity was calculated to be 1913. This information is summarised in 

Table 8.2. 

Vocabulary 
Size (v) 

Number of 
Sentences (q) 

Sentence 
Length (n) 

Number of 
Legal Sentences (I) Perplexity 

1984 50,000 12 1375 1470 
2637 50,000 12 1064 1913 

Table 8.2: Estimated Perplexity of the Anti-Grammar 

8.4.2 Coverage 

The anti-grammar was tested for coverage on the SEC corpus. This highlighted 

several problems of inadequate modelling: compound nouns (or other multiple 

noun sequences) and numbers are not handled very well. For example "Hong 

Kong teenagers" and "two hundred thousand tons". Other problems that were 

encountered were mainly with the different part of speech labelling schemes lead­

ing to incorrectly tagged words being passed to the anti-grammar; sentences were 

also long and although containing many implicit pauses these were not explicitly 

marked. On the lectures contained within the Durham lecture corpus, most prob­

lems concerning coverage were caused by isolated examples of severe speech repair. 
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8=5 W o r d Recogni t ion Assessment 

Word recognition figures were calculated for the two training data sets and for 

the Lund lecture, with a 2637 word dictionary, and for the WSJ sentence with a 

2388 word dictionary. Results are presented with and without the anti-grammar to 

demonstrate the effectiveness of the language model. As well as an improvement 

in recognition rates, using the anti-grammar to reduce the search space has the 

effect of improving execution times by 30-40%. Recognition results are presented 

in Table 8.3, and in graph form in Figure 8.3 and Figure 8.4. Word recognition 

assessment was carried out using a dynamic programming scoring package supplied 

by CUED, based on the ARPA speech recognition evaluation software. Examples 

of system recognition are given in appendix B. 

At a phoneme error rate of 15%, the anti-grammar improved the percentage 

words correct by 1.5%—5.9%, and at a phoneme error rate of 25%, the anti-grammar 

improved the percentage words correct by 6.2%—18.7%. The conclusion is therefore 

that the anti-grammar is more helpful at higher rates of phoneme error, but that 

it still brings an improvement in word recognition at lower rates of phoneme error. 

Recognition times for the Lund lecture are given in Table 8.4. This table shows 

that with 15% phoneme error, word recognition occured at approximately 8 seconds 

per word, and with 25% phoneme error, word recognition occured at approximately 

11 seconds per word. The execution times in the table were obtained using a 

multi-user SUN SparcCenter 2000. The results demonstrate that using the anti-

grammar has little overhead on recognition times, yet still achieves an increase in 

word recognition. 
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Filename 
Word 

Count 
Phoneme 

Error (%) 
Words 

Correct (%) 
Word Error (%) Word 

Accuracy (%) Filename 
Word 

Count 
Phoneme 

Error (%) 
Words 

Correct (%) Ins Sub Del 
Word 

Accuracy (%) 
evoldatal 113 15.0 79.6 0.9 15.9 4.4 78.8 
evoldata2 112 15.4 86.6 3.6 9.8 3.6 83.0 
lunddata 5057 15.1 83.5 2.7 12.9 3.7 80.7 
wsjdata 1923 15.4 82.3 2.9 13.6 4.1 79.5 
evoldatal 113 25.6 76.1 5.3 21.2 2.7 70.8 
evoldata2 112 26.0 81.2 3.6 16.1 2.7 77.7 
lunddata 5057 25.2 73.1 5.0 21.0 5.8 68.2 
wsjdata 1923 25.7 70.1 7.3 20.9 9.0 62.8 
evoldatal (no ag) 113 15.0 76.1 1.8 20.4 3.5 74.3 
evoldata2 (no ag) 112 15.4 81.2 2.7 14.3 4.5 78.6 
lunddata (no ag) 5057 15.1 77.6 3.0 17.7 4.7 74.6 
wsjdata (no ag) 1923 15.4 80.8 3.3 13.9 5.3 77.5 
evoldatal (no ag) 113 25.6 69.9 6.2 18.6 11.5 63.7 
evoldata2 (no ag) 112 26.0 62.5 7.1 33.0 4.5 55.4 
lunddata (no ag) 5057 25.2 64.8 5.9 27.8 7.4 58.9 
wsjdata (no ag) 1923 25.7 59.3 6.9 25.4 15.3 52.4 

Table 8.3: Word Recognition Rates with a 2637 Word Dictionary 
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Figure 8.3: Word Recognition Rates for the Training Data at 15% Phoneme Error 
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Figure 8.4: Word Recognition Rates for the Evaluation Data at 25% Phoneme 
Error 
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Lecture 
File 

Word 
Count 

Time (Minutes) Lecture 
File 

Word 
Count 15% Phoneme Error 25% Phoneme Error 

lunddata. parti 239 30 41 
lunddata.part2 254 42 32 
lunddata.part3 252 29 29 
lunddata.part4 244 31 43 
lunddata. part5 253 30 51 
lunddata. part6 253 27 38 
lunddata.part7 257 39 54 
lunddata. part8 258 36 37 
lunddata.part9 255 39 55 
lunddata.partlO 246 29 43 
lunddata.partll 244 31 43 
lunddata.partl2 263 38 58 
lunddata.partl3 274 38 58 
lunddata.partH 255 35 55 
lunddata.partl5 253 39 44 
lunddata.partl6 254 32 57 
lunddata.partl7 261 38 50 
lunddata.partl8 260 43 47 
lunddata.partl9 256 36 54 
lunddata.part20 226 27 47 
Totals 5057 689 936 
Average Seconds Per Word 8.2 11.1 
Lecture 
File 

Word 
Count 

Time (Minutes) Lecture 
File 

Word 
Count 15% Phoneme Error 25% Phoneme Error 

lunddata.parti.noag 239 32 30 
lunddata.part2.noag 254 36 32 
lunddata.part3.noag 252 28 24 
lunddata. part4.noag 244 '33 31 
lunddata.part5.noag . 253 28 48 
lunddata.part6.noag 253 27 42 

-lunddat-arpart-7-noag — -257 - -40- 47 
lunddata.part8.noag 258 34 47 
lunddata.part9.noag 255 39 65 
lunddata.part 10.noag 246 30 45 
lunddata.partll.noag 244 29 44 
lunddata.part 12.noag 263 35 35 
lunddata.part 13.noag 274 36 56 
lunddata.part 14 .noag 255 32 68 
lunddata.partl5.noag 253 39 43 
lunddata.part 16.noag 254 28 47 
lunddata.part 17.noag 261 45 53 
lunddata.part 18.noag 260 39 49 
lunddata.part 19.noag 256 35 55 
lunddata. part20. noag 226 28 42 
Totals 5057 673 903 
Average Seconds Per Word 8.0 10.7 

Table 8.4: Word Recognition Execution Times on the Lund Lecture Using a 2637 
Word Dictionary (wi th and without the Ant i -Grammar) 

http://lunddata.part2.noag
http://lunddata.part5.noag
http://lunddata.partl5.noag
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8 0 6 Readability 

Cloze readability tests were given to fif teen recent graduates in computer science. 

Two texts were given to each participant: part of a transcribed lecture on software 

engineering, and part of the Lund corpus lecture. One of the texts was in its original 

fo rm, and the other text was system output at 25% phoneme error (simulated). 

The instructions to each participant are given in Figure 8.5. The four texts 

are given in Figure 8.6, Figure 8.7, Figure 8.8 and Figure 8.9, and the answers 

in Figure 8.10 and Figure 8.11. The results of the Cloze test are summarised in 

Table 8.5. 

Although i t is diff icul t to make any judgement on the meaning of absolute Cloze 

test scores because of the wide variabil i ty in textual material, Bormuth gave some 

general indications that may be used [Robinson, 1981]. He stated that a Cloze 

test score of less than 37% indicates that a reader would f ind a text frustrat ingly 

diff icul t ; a score of over 57% indicates that the reader can reasonably be expected 

to understand the text. 

The test results are lower than expected, indicating that even the original lec­

tures, w i th mean Cloze test scores near Bormuth's borderline, are not very readable. 

One possible reason for this is that there is a certain amount of redundancy . 'mspo-

ken English: because i t is so informal , the same thing can be said in many different 

ways; and also the spontaneous nature of spoken English is confusing when wri t ten 

down. In addition the wr i t t en fo rm does not contain prosodic information, and the 

reader does not have the context of the speech, for example the location or any 

gestures made by the speaker. The results for the system output were always going 

to be worse than the original, because of the high amount of word error. These 

results possibly invalidate the use of the Cloze procedure for measuring the output 

of speech recognisers at such high word error rates; on reflection the test should 

perhaps have been tried on system output of texts wi th 15% phoneme error. 
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Number of Mean Best Worst 
Text Blank Words Score Score Score 

1. software engineering lecture (original) 50 31.4 38 15 
2. Lund corpus lecture (original) 50 30.4 33 28 
3. software engineering lecture 50 15.9 22 9 

(ASR output , 25% phoneme error) 

4. Lund corpus lecture 50 18.5 22 13 
(ASR output, 25% phoneme error) 

Table 8.5: Cloze Readability Assessment Results 

The exercises contained in this test are known as "cloze exercises". A 
cloze exercise consists of the presentation of a passage from which a 
number of words have been deleted. The task is to attempt to guess the 
deleted words. The aim of the test is to measure the readability of the 
passages, not your language ability. 
Having made your choice, don't be tempted to start filling the blanks too 
soon. First, read through the passage to the end, to get the general sense 
of it, how it is structured, where the topics seem to change, etc. Then 
go through it again, trying to fill each blank with just one word (i.e. not 
a phrase oftwo~o7~more words). 
Abbreviations ( U N E S C O ) , contractions (I'd or we're), hyphenated forms 
(half-baked) and dates (13th or 1978) count as one word. 
In choosing your response, you will need to look very carefully at the 
grammar of the construction, to see what kinds of words might fit; you 
will need to consider the meaning of the word; and you will have to decide 
what kind of style is used in a passage. The length of the line indicating a 
blank is constant and in no way related to the length of the missing word. 
Each of the passages comes from an accurately transcribed undergraduate 
lecture in computer science, complete with all speech disfluencies. For 
this reason, any punctuation in the passages has been added by hand as 
accurately as possible. Some of the passages are the output from a speech 
recognition system. 

Figure 8.5: Instructions for the Cloze Readability Assessment 
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That just to say what the course is in case you're confused. Course on soft­
ware maintenance. We've got nine lectures, it's not very much time to say 
very much about this subject. Very briefly (1) syllabus is as follows. 
(2) may or may not (3) exactly to this. This lecture is going 
to be (4) introductory scenario. If I (5) figure out where 
the (6) switches are. That will (7) . This, this lecture is 
(8) to be an introduction. (9) going to tell you (10) 
bit more about maintenance (11) I told you last (12) . Then 
I'm going to (13) a lecture or two (14) about models of the 
(15) process, and there are (16) different types of models. 
Starting, it's almost, you can (17) it's an historic, an (18) 
review of models, bringing (19) right up to date with current thinking. 
Erm, then (20) going to, no we're (21) , then we're going to 
(22) at least one lecture (23) how do we measure what happens 
in software maintenance. (24) we measure old software (25) 
say we should throw (26) away. We should do (27) to it, we 
should (28) that to it. Quite (29) interesting subject but not 
(30) much work has been done on it. 
Then we'll (31) at the subject that's (32) reverse engineering. 
Now what (33) been doing, what we (34) last year in software 
(35) can be termed forward (36) , ie we go through (37) 
design etc and produce (38) software at the end. (39) reverse 
engineering is about, (40) simply, is to take (41) all these 
developers leave (42) with and to try get back to what (43) 
think may be the (44) or specifications is about. (45) , there 
is quite a (46) of research going on (47) reverse engineering, 
to try and capture the knowledge that's (48) in current systems. This 
(49) probably the most interesting (50) of the course. 

Figure 8.6: Cloze Passage Text 1: Software Engineering, Original 
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Well rather than give a talk about the history of stoke poges, I felt it might be 
a little more interesting to you all (1) hear about my own (2) 

Lived and growing up (3) this wonderful village of (4) 
poges. I attended stoke (5) and I must say (6) was taught 
very thoroughly (7) three Rs. Funnily enough my father (8) 
to the same school, (9) he was one of the first pupils. Before that 
(10) used to go to (11) school next door to (12) 
and pay a penny (13) week, along with all (14) other village 
boys for (15) education. Considering his schooling (16) have 
stopped at about fourteen years, his beautiful copperplate (17) and 
his reading with (18) was really remarkable. 
I (19) in my early life (20) wexham street. It was a semi 
detached house, built (21) my father and uncle with their own hands. 
And (22) lived we were a (23) of five, there were three children, 
two sisters and (24) . We had a very (25) garden, and we 
used (26) have to produce the (27) from the garden. The 
(28) . The root crops. Store them for the use of (29) during 
the whole of (30) winter. We also kept (31) everyone in 
the village (32) that time kept chicken, (33) . kept_a goat, 
rabbits, (34) occasionally we used to (35) a pig. The chickens 
(36) looked after by my (37) . The goat I had (38) 
milk myself. And that (39) _ how we used to (40) . 
My mother was a (41) industrious woman, used to (42) all 
the jam and (43) to last us throughout (44) year. She found 
time (45) make my fathers shirts, (46) all our jerseys, for 
that's what we wore, all (47) socks for the children. (48) I 
remember she used (49) make my suits up (50) the age of 
about twelve. 

Figure 8.7: Cloze Passage Text 2: Lund Lecture, Original 
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That just to say what the course is in course you're confused. Cause on 
software maintenance. We've got nine lectures, it's not very much time to 
say favourite much about this subject. Very briefly (1) syllabus is as 
follows. (2) may or may not (3) exactly to this. Directories 
going to be (4) introductory scenario. If I (5) of figure 
out way air the (6) switches are. At will (7) . This, this 
lecture is up (8) to be an introduction. All (9) going to tell 
you (10) bit more about maintenance (11) I told you last 
(12) . Then I'm go in to (13) a lecture or two (14) 
about models of the (15) process, and air are (16) different 
I'd place of models. Starting, built so least, you'd can (17) an historic, 
month (18) day few of. Bringing (19) at up today up refer 
a. Erm, then (20) go it, a no while (21) , of then we're 
going to (22) at least one later (23) how do do we my she 
iterate open means in software main got a man a. (24) we I'm sure 
old software (25) say we should throw (26) away. We should 
do (27) to it, we should (28) fact to it. Quite (29) 
interesting subject but not (30) much one has been company. 
Of then why (31) the subject that's (32) reverse engineering. 
Now what (33) been studying, what we (34) '. last were in 
software (35) can be termed forward (36) , ie we gave 
through you (37) doesn't etc and produce (38) software at 
the end. Air (39) 1 _ engineering is about, (40) '. simply, is to 
take (41) all these developers leave (42) with and today tried 
get bad to what (43) think may be the (44) or specifications 
is about. (45) , though required to (46) of researching on 
(47) reverse engineering, to plan capture the knowledge it's (48) 
in grants systems. This (49) probably them interesting (50) 
of the course. 

Figure 8.8: Cloze Passage Text 3: Software Engineering, System Output 
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Well rather than give a talk about the history of stoke age is, I felt it might 
be a little interest to you all (1) her about my own (2) . 
Already and growing up (3) this wonderful following of (4) 
poges. I attended stoke (5) and i'm asked say (6) what not 
very thoroughly (7) three Rs. Funnily enough my father (8) 
to the aim school, (9) he was one. Before at (10) used ago 
to (11) school next or to (12) and pay a penny (13) 
week, along now with all (14) other village boys or they (15) 
education. Considering his school in (16) have stopped at about forty, 
if his beautiful copperplate (17) and his read with (18) was 
real air remarkable. 
I (19) in my early live (20) wexham street. It was assuming 
detached house, bill (21) my father and tackle where own hands. And 
(22) early poured we worry (23) , there worthwhile children, 
two sisters and (24) . We had a very (25) garden, and we 
used (26) though have to reproduce the (27) from the good. 
The (28) . The right crops. Is story more the u of (29) during 
the whole of (30) winter. We also kept (31) everyone in the 
fill each (32) the got time kept chicken. (33) kept a got, 
rabbits, (34) occasionally we used to (35) a. The chickens 
(36) looked after by my (37) . The go but I had (38) 
milk my. Add at (39) how we used to (40) . 
My mother was a (41) industrious woman, used to (42) all the 
jam and (43) to last us throughout (44) year. She found too 
i'm (45) make my are a, (46) it all hours is, for the its what 
we where, all (47) socks for the children. (48) I remember 
she used (49) may my suits up (50) the age of about twelve. 

Figure 8.9: Cloze Passage Text 4: Lund Lecture, System Output 
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(1) the (2) I (3) stick 
(4) ail (5) can (6) light 
(7) do (8) going (9) it's 
(10) a (11) than (12) year 
(13) spend (14) talking (15) maintenance 
(16) various (17) say (18) historic 
(19) you (20) we're (21) not 
(22) have (23) on (24) can 
(25) to (26) i t (27) this 
(28) that (29) an (30) very 
(31) look (32) called (33) we've 
(34) did (35) engineering (36) engineering 
(37) requirements (38) some (39) what 
(40) very (41) what (42) us 
(43) we (44) design (45) and 
(46) lot (47) into (48) embodied 
(49) is (50) part 

Figure 8.10: Answers to Cloze Passage Texts 1 and 3 

(1) to (2) life (3) in 
(4) -Stoke (5) school (6) I 
(7) the (8) went (9) and 
(10) he (11) the (12) here 
(13.) . . . . a (14) -the (-15) -his 
(16) must (17) writing (18) understanding 
(19) lived (20) in (21) by 
(22) we (23) family (24) myself 
(25) big (26) to (27) produce 
(28) potatoes (29) us (30) the 
(31) as (32) at (33) we 
(34) and (35) keep (36) was 
(37) sisters (38) to (39) is 
(40) manage (41) very (42) make 
(43) preserves (44) the (45) to 
(46) knit (47) our (48) and 
(49) to (50) to 

Figure 8.11: Answers to Cloze Passage Texts 2 and 4 



Chapter 9 

Coeclosiomis and Fnutuire Work 

This chapter concludes the thesis by checking i f this work has met its criteria for 

success; discussing fu ture research directions; and describing what this work can 

offer researchers in the field of automatic speech recognition and also what i t can 

offer the deaf community. 

9.1 Conclusions 

The criteria for the success of the work described in this thesis were given in 

section 1.2. The system w i l l be evaluated according to each of these criteria. The 

project was unable to deliver a f u l l working system as appropriate "off-the-shelf" 

speech recognition toolkits were not available (at least not unt i l the end of the 

research period). 

Scale : the system has a large vocabulary, currently containing over 2600 words; 

vocabulary size was discussed in section 3.2.7, large vocabulary was defined 

to be 1,000-5,000 words; 

152 
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Robustness : the system was developed and evaluated on substantially different 

sets of data, demonstrating domain independence; the system proved to be 

robust on different input data and also when the vocabulary was increased 

by 35%, without requiring retraining (section 8.3); 

Integration : the system has been designed to allow other sources of knowledge, 

such as semantics, repair or prosody, to be easily integrated into the word 

lattice parsing process; section 5.4 described the use of anti-grammar and 

word frequency knowledge, and discussed the integration of further sources 

of knowledge, giving the use of weak semantics as an example; the software 

engineering aspects of integration were described in section 6.5; 

Feasibi l i ty : the system runs quickly on a multi-user SUN SparcCenter 2000, 

taking approximately 8 seconds to recognise each word (section 8.5); 

Maintenabi l i ty : the system is flexible enough to allow changes in word fre­

quency information (section 6.3.4) and grammatical categorisation (section 

6.2.5), which would bring benefits; the software engineering aspects of main­

tenance were described in section 6.5; 

Usabi l i ty : the system currently only uses a simulated continuous speech phon­

eme recognition system, and awaits connection to a suitable hardware front-

end; a useful level of word recognition (73.1%) is achieved at the level of 25% 

phoneme error, a substantially higher recognition rate (83.5%) is achieved at 

the 15% phoneme error level (section 8.5); experience in the development of 

Palantype showed that a 75% correct transcription was very useful to well 

motivated deaf people. 

Techniques : the system makes use of a variety of techniques: symbolic (anti-

grammar rules), adaptive (word lattice generation parameters), statistical 

(word frequency information) , heuristic (word lattice parsing) and corpus-

based (anti-grammar rules and evaluation). 

The achievements in the areas of scale and robustness have been achieved wi th 

the most success; usability has partially been ful f i l led due to the word recognition 
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rates that are achieved, although f u l l usability has not been achieved because the 

system makes use of a simulated phoneme recognition system. 

9«2 Future Research Directions 

There are several lines along which the research presented in this thesis should 

progress. 

Phoneme Recognit ion 

Work wi l l continue on developing a phoneme recognition front-end in collaboration 

w i t h the D R A and C U E D . Accuracy of the f ront end needs to be at least 75% 

correct phoneme recognition. Integration between the phoneme recogniser and the 

word lattice generation software can then take place. 

W o r d Frequency 

The accuracy of the system would increase substantially i f the word frequency 

information were improved by extending the number of frequency categories f r o m 

three (very common, normal, very rare). This has to be done w i t h care as the 

finer the level of granularity that is used, the more domain specific the information 

becomes. 

W o r d Categories 

The method of grammatically categorising each word, currently using the O A L D , 

should be changed to use a more informative notation such as that in the SEC 

corpus and the CLAWS part of speech tagger. 
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Act ive V o c a b u l a r y 

A "window" analysis of the text of a lecture, in other words dividing a lecture 

into, say, 20 sections and calculating word frequencies, indicates some interesting 

possibilities for future work. The one most l ikely to increase accuracy would be 

to implement some kind of active (or cache) vocabulary, in other words, a list of 

most recently recognised words is kept and these are given a preference over other 

words. This would have to be done at various levels because the most common 

words in English require special treatment as they occur every two or three words 

in a sentence. 

O t h e r Sources of Knowledge 

Work has already begun on incorporating fur ther sources of knowledge into the 

word lattice parsing stage. This includes work on repair — identifying repair in 

sentence hypotheses, correcting the repair and re-scoring the corrected hypothesis; 

semantics — using "weak" semantics to give a semantic likelihood score to the 

co-occurrence of verbs, nouns and adjectives in a sentence hypothesis; and prosody 

— analysing the prosodic properties of a portion of speech to bui ld a "prosodic 

template" that can be matched against sentence hypotheses to give a prosodic 

score. 

A further source of knowledge might be to use "weak" n-gram statistics for 

word (or part of speech) sequences. These are weak in the sense that they are 

few in number and only cover the most common constructs. The anti-grammar 

contains only a small number of "bonus" rules, this could be expanded and would 

help improve the accuracy of the system. Before this takes place, an evaluation 

study comparing the performance of an n-gram word or part of speech language 

model to that of the anti-grammar. 
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Genera l i sed T e s t - B e n c h 

Further work may be pursued to generalise the test-bench even more to provide a 

generic toolki t for linguistic constraint researchers so that syntactic and semantic 

constraint models could be researched at other sites wi thout speech recognition 

hardware. 

Integration wi th L O L I T A 

When a sufficiently high level of word recognition is achieved, say 85-90%, then 

the intention is to integrate the speech recognition system w i t h the L O L I T A nat­

ural language understanding system. This could then open up many branches of 

research as the L O L I T A system provides many possible applications such as query, 

dialogue, summarisation and translation. 

Measurement of Mean ing 

The u t i l i t y of a meaning measurement was introduced in section "f* £ 

and five areas which could benefit were briefly mentioned. Speech recognition 

assessment was discussed in detail. The four remaining areas are described below: 

use of~d"omain knowledge to aid speech recognisers; summarisation and content 

scanning of text; topic spotting and assessment of machine translation. 

Automatic speech recognition systems are growing in vocabulary size day by 

day, w i th this comes the increased likelihood that words are going to be confused 

for each other during the recognition process, for example: " I t is hard t'o recognise 

speech" could easily be recognised as: " I t is hard to wreck a nice beach". 

Increasingly, speech recognition systems are making use of domain specific 

knowledge in order to s implify the recognition task. In the example just given, 

we could imagine a scenario of a lecturer talking about art if icial intelligence to 

a group of students and clearly the first sentence makes sense. The second in-
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terpretation is completely out of context, and this could be detected i f we had a 

measurement of semantic distance. The solution is not quite as simple as that, 

however, as a counter example to this use of semantic distance would be when 

a lecturer introduces an analogy using several out of context words. This prob­

lem could be overcome by a semantic clustering technique: the presence of several 

semantically related yet out of context words would not be penalised during the 

recognition process [Short et a/., 1994a]. Again, this relies on a measure of semantic 

distance. 

In a world containing vast amounts of electronic information, summarisation 

and content scanning tools are becoming more and more desirable. In America, 

a large amount of ARPA funding is dedicated to the M U C (Message Understand­

ing Conference) project in which several groups compete annually to produce a 

computer system that can extract relevant information f r o m newswire articles on 

specific subjects, such as terrorism. 

I t is quite possible to build a very shallow system that could parse the newswire 

articles at the surface level, looking for special keywords for example, that would 

achieve quite a good level of performance. This kind of system would, however, 

f a i l completely i f i t were given a completely new subject domain. Typical prob­

lems faced by such shallow systems are those of negation, t ime and distance. A 

measure of semantic distance can be used to identify the crucial parts of a text , 

such that i f certain information is missing, the meaning is completely altered. For 

example, "not gui l ty" is changed to "gui l ty" , "100 miles f r o m London" is changed 

to " in London", or "the week after next" is changed to "next week". To be more 

successful, a deeper syntactic and semantic analysis must take place, a task which 

is well suited to the L O L I T A system being developed here at Durham [Garigliano 

et a/., 1993a]. To make such a system even more general purpose w i l l require a 

measure of semantic distance. 

Topic spotting is a mechanism that is often needed before the summarisation 

or content scanning process can take place. I t involves spotting pieces of text that 

are relevant to a particular topic or subject. Again, i t is quite possible to produce 



C h a p t e r 9: Conclus ions and F u t u r e W o r k 158 

a superficial domain specific system that uses a pattern matching approach, but 

for a more general system that can work in a variety of domains wi th the min imum 

of initialisation, a measure of semantic distance w i l l be required. 

Currently, the only way of assessing the performance of machine translation 

systems is to use a human knowledgeable in both source and target languages. A 

piece of text in one language could be converted into it 's semantic representation 

and compared using a semantic distance measure to the semantic representation of 

the translated text in the second language. 

9o3> Impact on the Field of Automatic Speech 

The work described in this thesis has three main contributions to make to the field 

of automatic speech recognition: 

© the most important contribution is the use of anti-grammar rules to check the 

syntactic incorrectness of sequences of words, providing a domain independent 

method of reducing the large search space, represented as a word lattice, 

whilst at the same t ime allowing normal spontaneous English to be spoken; 

e a system designed to allow ease of integration w i t h new sources of knowl­

edge, such as semantics, prosody or repair, i n effect providing a test-bench 

for determining the impact of different knowledge upon word lattice parsing 

without the need for the underlying speech recognition hardware. 

a the use of evolutionary programming to determine near-optimal robust pa­

rameters for word lattice creation, making the system dependent upon only 

the performance of the underlying continuous speech phoneme recognition 

system; the parameters being robust enough to withstand changes in vocab­

ulary and domain; 

Recognition 
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9o4 Impact on the Deaf Community 

This research has not fu l l y met the deaf user's ideal requirements of an automatic 

speech recognition system, outlined in section 2.4. However, the research satisfies 

some of these requirements and provides an in i t ia l stepping-stone for fu ture work 

to satisfy those that remain. When the system is fu l ly connected to a continuous 

speech phoneme recognition system, then f u l l user evaluation may take place. The 

ul t imate aim of a "talkwriter" is s t i l l many years away, but this research offers 

some interesting results that can contribute towards producing a useful system for 

deaf university students. 



Appendix A 

Amti-Grammar Rules 

This appendix lists the anti-grammar rules used by the system. These can be 

categorised into rules that give a bonus to a sentence hypothesis containing a 

particular structure; simple rules that give a penalty to a sentence hypothesis 

containing a particular structure; and complicated rules that give a penalty to a 

sentence hypothesis containing a particular structure. 

Rules That Give a Bonus 

very ADJ 

very ADV 

PREP(to) VERB(to_verb_word) 

VERB ADV("not") VERB VERB 
s p e c i f i c a l l y : modal + "not" + be + present p a r t i c i p l e 

modal + "not" + be + past p a r t i c i p l e 
modal + "not" + have + past p a r t i c i p l e 

VERB VERB ADV(not "not") VERB 
s p e c i f i c a l l y : modal + "be" + ADV + present p a r t i c i p l e 

modal + "be" + ADV + past p a r t i c i p l e 
modal + "have" + ADV + past p a r t i c i p l e 

VERB VERB VERB VERB 

160 
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s p e c i f i c a l l y : modal + "have" + "been" + present p a r t i c i p l e 
modal + "have" + "been" + past p a r t i c i p l e 

VERB VERB VERB 
s p e c i f i c a l l y : modal + "be" + present p a r t i c i p l e 

modal + "be" + past p a r t i c i p l e 
modal + "have" + past p a r t i c i p l e 
"have" + "been" + present p a r t i c i p l e 
"have" + "been" + past p a r t i c i p l e 

Simple Rules That Give a Penalty 

AD J ADJ ART 
AD J ADV ART 
ADJ ADV NOUN 
ADJ ART ADV 
ADJ CONJ NOUN 
ADJ PREP CONJ 
ADJ PREP PREP 
ADJ PRON ADJ 
ADJ PRQN ART 
ADJ PRON CONJ 
ADJ PRON NOUN 
ADJ PRON PREP 
ADJ PRON PRON 
ADV ART ADV 
ADV CONJ NOUN 
ADV NOUN ADJ 
ADV NOUN ADV 
ADV NOUN ART 
ADV NOUN CONJ 
ADV NOUN PRON 
ADV PRON ART 
ADV PRON CONJ 
ADV PRON PREP 
ART ADJ ADV 
ART ADJ ART 
ART ADJ PREP 
ART ADJ PRON 
ART ADJ VERB 
ART ADV ADV 
ART ADV ART 
ART ADV CONJ 
ART ADV NOUN 
ART ADV PREP 
ART ADV PRON 
ART ADV VERB 
ART ART 
ART CONJ 
ART PREP 
ART PRON 
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CONJ ADJ ADV 
CON J ADV CONJ 
CONJ ART ADV 
CONJ CONJ ADJ 
CONJ CONJ ADV 
CONJ CONJ ART 
CONJ CONJ CONJ 
CONJ CONJ NOUN 
CONJ CONJ VERB 
CONJ NOUN ADV 
CONJ NOUN ART 
CONJ PREP ADV 
CONJ PREP CONJ 
CONJ PREP PREP 
CONJ PREP PRON 
CONJ PRON ART 
CONJ PRON CONJ 
NOUN ADJ ART 
NOUN ADJ PRON 
NOUN ART ADV 
NOUN PREP CONJ 
NOUN PRON ART 
NOUN PRON CONJ 
NOUN PRON PREP 
PREP ADJ ADJ 
PREP ADV CONJ 
PREP ADV NOUN 
PREP CONJ ADJ 
PREP CONJ ART 
PREP CONJ CONJ 
PREP CONJ NOUN 
PREP CONJ PREP 
PREP CONJ VERB 
PREP PREP ADV 
PREP PREP CONJ 
PREP PREP PREP 
_PREP_ _PREP. _PRON 
PREP PRON ART 
PRON ADJ ADV 
PRON ADJ ART 
PRON ADJ CONJ 
PRON ADJ PRON 
PRON ADV NOUN 
PRON ART ADV 
PRON CONJ ADJ 
PRON CONJ ART 
PRON CONJ CONJ 
PRON CONJ NOUN 
PRON CONJ PREP 
PRON NOUN ADJ 
PRON NOUN ADV 
PRON NOUN ART 
PRON NOUN CONJ 
PRON PREP ADV 
PRON PREP CONJ 
PRON PREP PREP 
PRON PREP PRON 
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PRON PRON ADJ 
PRON PRON ART 
PRON PRON CONJ 
PRON PRON PREP 
VERB AD J ADJ 
VERB CONJ NOUN 
AD J ADJ 
NOUN NOUN NOUN 
PRON NOUN NOUN 

Complicated Rules That Give a Penalty 

ADJ(not pre_determiner_word) ART ADJ 

ADJ(not pre_determiner_word) ART NOUN 

ART ADV(not "not" and not adv_modifies_adj) 

ART VERB(not present p a r t i c i p l e and not past p a r t i c i p l e ) 

CONJ(normal) CONJ(normal) 

PREP PRON(nominative) 

PREP PRON(relative and " t h a t " ) 

PREP(not t o ) VERB(not present p a r t i c i p l e ) 

PRON(interrogat ive) PRON(interrogat ive) 

PRON(relative) PRON(relative) 

VERB ADV( not " t o " ) VERB 
except f o r : modal verb + ADV + baseform 

do verb + ADV + baseform 
be verb + ADV + present p a r t i c i p l e 
be verb + ADV + past p a r t i c i p l e 
have verb + ADV + past p a r t i c i p l e 

VERB ADVC'not") ADV(not "not" and not " t o " ) VERB 
except f o r : modal verb + ADV + ADV + baseform 

do verb + ADV + ADV + baseform 
be verb + ADV + ADV + present p a r t i c i p l e 
be verb + ADV + ADV + past p a r t i c i p l e 
have verb + ADV + ADV + past p a r t i c i p l e 

VERB ADVC'not" or "to") VERB VERB 
except f o r : modal verb + ADV + "be" + present p a r t i c i p l e 

modal verb + ADV + "be" + past p a r t i c i p l e 
modal verb + ADV + "have" + past p a r t i c i p l e 
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VERB PRON(nominative) 

VERB VERB ADV(not "not" and not " t o " ) 1 
except f o r : modal verb 

modal verb 
modal verb 

VERB VERB VERB VERB 
except f o r : modal verb 

modal verb 

+ "be" + ADV + present p a r t i c i p l e 
+ "be" + ADV + past p a r t i c i p l e 
+ "have" + ADV + past p a r t i c i p l e 

+ "have" + "been" + present p a r t i c i p l e 
+ "have" + "been" + past p a r t i c i p l e 

VERB VERB VERB 
except f o r : modal verb + "be" + present p a r t i c i p l e 

modal verb + "be" + past p a r t i c i p l e 
modal verb + "have" + past p a r t i c i p l e 
"have" + "been" + present p a r t i c i p l e 
"have" + "been" + past p a r t i c i p l e 

VERB VERB 
except f o r : do verb + baseform 

modal verb + baseform 
be verb + present p a r t i c i p l e 
be verb + past p a r t i c i p l e 
have verb + past p a r t i c i p l e 

"a" w o r d _ w i t h _ i n i t i a l _ v o w e l 

"a" plural_word 

"an" H o r d _ w i t h o u t _ i n i t i a l _ [ v o H e l , h ] 

"an" plural_word 

very(ADJ) not (ADJ or ADV) 

ADJ VERB(not l i n k . v e r b ) 

NOUN ADJ ADV(not "not") VERB 

NOUN(not s i n g u l a r ) NOUN 

NOUN(singular) VERB(non_anomalous and not 3rd_person 
and not past p a r t i c i p l e and not present p a r t i c i p l e ) 

PREPC'to") VERB(not verb_that_can_follow.to) 

g e n i t i v e not (NOUN or ADJ) 



Appendix B 

Example System Recognition 

This appendix shows system recognition for the first 31 sentences of the LUND 

lecture and the first 40 sentences of the WSJ sentences that were used for evalua­

tion. In addition to the original sentence, system output is given for 15% and 25% 

phoneme corruption rates. 

L U N D Lecture 

o r i g i n a l 
15'/i c o r r u p t i o n 
25*/, c o r r u p t i o n 

w e l l r a t h e r than give a t a l k about the h i s t o r y of stoke poges 
w e l l r a t h e r than give a t a l k about the h i s t o r y of stoke poges 
1 rather than give a t a l k about the things t r u e of stoke 
each i s 

o r i g i n a l 
15'/, c o r r u p t i o n 
25'/, corruption 

o r i g i n a l 
15'/, corruption 
25'/, co r r u p t i o n 

i f e l t i t might be a l i t t l e more i n t e r e s t i n g t o you a l l 
i've f e l t i t ni g h t be a l i t long more i n t e r e s t i n g t o you a l l 
i t o 

to hear about my own l i f e 
t o hear about my own l i f e 
era out my own l i f e 

o r i g i n a l 

15'/. c o r r u p t i o n 

25'/, c o r r u p t i o n 

: l i v e d and growing up i n t h i s wonderful v i l l a g e of stoke 
poges 

: l i v e damn growing up i n t h i s wonderful v i l l a g e of stoke 
poges 

: l i v e do and grown r e a l up i n t h i s wonderful v i l l a g e of 
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stoke poges 

o r i g i n a l 
15'/. c o r r u p t i o n 
25'/, c o r r u p t i o n 

o r i g i n a l 
16'/, c o r r u p t i o n 
25% c o r r u p t i o n 

o r i g i n a l 
15'/. c o r r u p t i o n 
25'/, c o r r u p t i o n 

o r i g i n a l 
15'/, c o r r u p t i o n 
25'/, c o r r u p t i o n 

o r i g i n a l 
15% c o r r u p t i o n 
25% c o r r u p t i o n 

o r i g i n a l 
15% c o r r u p t i o n 
25% c o r r u p t i o n 

i attended stoke school and 
i o attended stoke school and 
i attended t a l k school and 

i must say 
i'm j u s t say 
i'm s t a t e 

i was taught very thoroughly the three r s 
i was taught very thoroughly the three rs 
i was t a l k very thoroughly the three r s 

f u n n i l y enough my f a t h e r went t o the same school 
f u n n i l y enough my f a t h e r went t o the say school 
f u n n i l y enough my my other went t o the say and 

and he was one of the f i r s t p u p i l s 
and he was one of the best p u p i l s 
he was one of the f i r s t p u p i l s 

before t h a t 
before t h a t 
before t h a t 

o r i g i n a l : he used t o go t o the school next door t o here 
15% c o r r u p t i o n : he used t o goat others c o l l e c t e d or t o here 
25% c o r r u p t i o n : he used t o go together complexity door t o here 

o r i g i n a l 
15% c o r r u p t i o n 
25% c o r r u p t i o n 

o r i g i n a l 
15% c o r r u p t i o n 
25% c o r r u p t i o n 

o r i g i n a l 

15% c o r r u p t i o n 

25% c o r r u p t i o n 

and pay a penny a week 
and pay a penny a week 
add pay a penny away week 

along w i t h a l l the other v i l l a g e boys f o r h i s education 
along w i t h although other v i l l a g e boys f o r how i s education 
along w i t h a l l the other v i l l a g e r s f o r h i s education 

considering h i s schooling must have stopped at about 
fourteen years 
are considering h i s schooling must have stopped at about 
fourteen years 
considering h i s schooling must have stop at about thought 
emu' s 

o r i g i n a l 

15% c o r r u p t i o n 

25% c o r r u p t i o n 

o r i g i n a l 
15% c o r r u p t i o n 
25% c o r r u p t i o n 

his b e a u t i f u l copperplate w r i t i n g and h i s reading w i t h 
understanding was r e a l l y remarkable 
h i s b e a u t i f u l copperplate w r i t i n g and h i s reading w i t h 
understanding was r e a l l y remarkable 
i s b e a u t i f u l top pay r i g h t inadequate t h i n g w i t h 
understanding was r e a l l y remarkable 

i l i v e d i n my e a r l y l i f e i n wexham s t r e e t 
i l i v e i n mileage l i f e i n wexham s t r e e t 
i l i v e d i n ray earl y wife i n wexham s t r e e t 

o r i g i n a l i t was a semi detached house 
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15'/, corruption : i t was a semi detached how 
25'/, corruption : i t was a semi detached face 

o r i g i n a l 
15'/, c o r r u p t i o n 
25'/, corruption 

o r i g i n a l 
15% c o r r u p t i o n 
25°/, co r r u p t i o n 

o r i g i n a l 
15'/, c o r r u p t i o n 
25'/, c o r r u p t i o n 

o r i g i n a l 
15'/, c o r r u p t i o n 
25'/, c o r r u p t i o n 

o r i g i n a l : 
15'/, c o r r u p t i o n : 
25'/, c o r r u p t i o n : 

b u i l t by my f a t h e r and uncle w i t h t h e i r own hands 
b u i l t by my f a t h e r and some c l i f f thrown hands 
b u i l t by my ra t h e r second uncle w i t h t h e i r own hands 

and we l i v e d we were a f a m i l y of f i v e 
and we l i v e d we were a f a m i l y of f i v e 
and w e ' l l of day we where a f a m i l y of f i v e 

there were three c h i l d r e n 
there were three c h i l d r e n 
there were reach c h i l d r e n 

two s i s t e r s and myself 
two show s i s t e r s and myself 
two s i s t e r s and myself 

we had a very b i g garden 
we had a very b i g hard 
we had a very b i g garden 

o r i g i n a l and we used t o have t o produce 
15'/, c o r r u p t i o n and we used t o have t o produce 
25'/, c o r r u p t i o n and we used t o have t o produce 

o r i g i n a l the potatoes 
15'/, c o r r u p t i o n the potatoes 
25'/, c o r r u p t i o n the potatoes 

o r i g i n a l the root crops 
15'/, c o r r u p t i o n the r i g h t crops 
25'/, c o r r u p t i o n the room crops 

o r i g i n a l 

15'/, corruption 

25'/, c o r r u p t i o n 

store them keep them f o r the use of us during the whole of 
the winter 
store them might keep them f o r the use of us during the 
whole of the winter 
show storey them keep then f o r the yes of us during the 
whole of the winter 

o r i g i n a l 
15'/, corruption 
25'/, c o r r u p t i o n 

o r i g i n a l 
15'/, co r r u p t i o n 
25'/, corruption 

o r i g i n a l 
15'/, co r r u p t i o n 
25'/, corruption 

o r i g i n a l 
15'/, corruption 
25'/, corruption 

we also kept 
w e ' l l so kept 
we also kept 

as everyone i n the v i l l a g e at t h a t time kept chicken 
as everyone enough v i l l a g e at t h a t time kept chicken 
as everyone i n the o f f v i l l a g e at at time kept chicken 

we kept a goat 
we kept ago 
we kept about 

r a b b i t s and occasionally we used to keep a p i g 
read but sound occasionally we used t o keep a p i g 
a l l r a b b i t s add occasionally we use t o keep a p i g 
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o r i g i n a l : the chickens was looked a f t e r by my s i s t e r s 
15°/, c o r r u p t i o n : the chickens was looked a f t e r by my s i s t e r s 
IS'/, c o r r u p t i o n : the chicken was looked a f t e r by my s i s t e r s 

WSJ Sentences 

o r i g i n a l : b e l l Canada e n t e r p r i s e s incorporated s a i d i t plans an 
o f f e r i n g i n europe of one hundred and f i f t y m i l l i o n d o l l a r s 
Canadian of notes 

15% c o r r u p t i o n : b e l l Canada e n t e r p r i s e s incorporated s a i d i t p l a n s an 
o f f e r i n g in.europe of one he under a damn day f i t t i n g 

25'/, c o r r u p t i o n : b e l l Canada e n t e r p r i s e s incorporated shed i t s p l a n s another i n 

o r i g i n a l : the f i v e year t e n percent notes were p r i c e d at one oh one 
15'/, c o r r u p t i o n : the f i v e year done percent notes were p r i c e d a t one oh one 
25'/, c o r r u p t i o n : the f i v e year t e n a cent notes were p r i c e d at one one 

o r i g i n a l : l e a d underwriter i s union bank of S w i t z e r l a n d s e c u r i t i e s 
l i m i t e d proceeds w i l l be used to r e f i n a n c e short term debt 

15% c o r r u p t i o n : lead underwriter i s union bank of S w i t z e r l a n d s e c u r i t i e s 
l i m i t e d proceeds w i l l be way used to r e f i n a n c e s h o r t term 
debt 

25'/, c o r r u p t i o n : o l d under i c o u n t r i e s you on back of S w i t z e r l a n d s e c u r i t i e s 
l i m i t e d proceeds quick be used t o r e f i n a n c e short term t h a t 

o r i g i n a l : b e l l Canada e n t e r p r i s e s i s a telecommunications energy 
p r i n t i n g and r e a l e s t a t e concern 

15'/, c o r r u p t i o n : able Canada e n t e r p r i s e s i s a telecommunications them any 
p r i n t i n g and r e a l l y s t a t e concern 

25% c o r r u p t i o n : b e l l am a day a m e n t e r p r i s e s i s a t e l l i n g communications 
energy p r i n t i n g 

o r i g i n a l : not s u r p r i s i n g l y the d a v i s zweig r e p o r t has become more 
b e a r i s h dropping to a twenty f i v e percent bond p o s i t i o n 
around mid a p r i l 

15% c o r r u p t i o n : not s u r p r i s i n g l y the d a v i s zweig r e p o r t has become more 
b e a r i s h dropping to i d e n t i f y percent bond p o s i t i o n around 
i n d u s t r i a l 

25'/, c o r r u p t i o n : not s i d e p r i c e only the day h i s zweig r e p o r t has become more 
b e a r i s h dropping to a present i f of percent by o p p o s i t i o n 
around made a p r i l 

o r i g i n a l : yesterday i t c a l l e d f o r a complete move out of bonds and 
into money market funds 

15'/, c o r r u p t i o n : yesterday i t c a l l e d f o r a complete out of bonds and i n a 
money market funds 

25'/, c o r r u p t i o n : yesterday i t c a l l e d f o r a complete out of bonds should i n t o 
money market funds 

o r i g i n a l meanwhile the bond market r a l l i e d s h a r p l y f o r the day 
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15'/, corruption : on meanwhile the bond more i t r a l l i e d sharply f o r the day 
25'/. c o r r u p t i o n : meanwhile the bond market r a l l i e d chart l i k e or the day 

o r i g i n a l : i t also would bar f o r e i g n companies from becoming primary 
dealers i n US government s e c u r i t i e s unless t h e i r governments 
give US companies the same r i g h t i n t h e i r countries 

15'/, corruption : i t also would bar f o r e i g n companies from becoming primary 
dealers i n you best government s e c u r i t i e s unless t h e i r 
governments give US kemp gives others summarise i n t h e i r 
countries 

25'/, c o r r u p t i o n : i t also would bar f a r a ??? US government you're i n t o h i s a 
more less t h e i r governments give US companies the seemed 
white i n t h e i r countries 

o r i g i n a l : i t i s aimed at japan 
15'/, c o r r u p t i o n : i t i s aimed at japan 
25'/, c o r r u p t i o n : i t i s and at japan 

o r i g i n a l : the f e d e r a l reserve board r e c e n t l y accepted two japanese 
f i r m s as primary dealers 

15'/, co r r u p t i o n : the f e d e r a l reserve go board r e c e n t l y accepted two japanese 
f i r m s as primary dealers 

25'/, c o r r u p t i o n : the f e d e r a l reserve k i n d r e c e n t l y accepted two japanese 
f i r m s as primary dealers 

o r i g i n a l : dayton hudson f e l l one t o f i f t y i n a c t i v e t r a d i n g 
15'/, co r r u p t i o n : dayton hudson f e l l one t o f i f t y i n a c t i v e t r u e being 
25'/, c o r r u p t i o n : dayton hudson f e l l what a f i t t i n g enough give t r a d i n g 

o r i g i n a l : a f t e r the market closed the minnesota l e g i s l a t u r e passed an 
a n t i takeover b i l l aimed at thwart i n g d a r t group's i n t e r e s t 
i n a c q u i r i n g the minneapolis based r e t a i l e r 

15'/, co r r u p t i o n : a f t e r the market closed the minnesota l e g i s l a t u r e past a 
nin e t y takeover between at th w a r t i n g a r t group's i n t e r e s t i n g 
a c q u i r i n g the minneapolis based r e t a i l e r 

25'/, c o r r u p t i o n : a f t e r the market closed the minnesota l e g i s l a t u r e passed a 
man cut ever became pat th w a r t i n g doubt group's i n t e r e s t i n 
acq u i r i n g the minneapolis best r e t a i l e r 

o r i g i n a l : but i t wasn't immediately cl e a r i f the b i l l would end 
takeover speculation about dayton hudson 

15'/, corruption : but i t wasn't immediately c l e a r i f the able would end 
takeover speculation about dayton hudson 

25'/, corruption : at but i t wasn't immediately c l a r i f y the b i l l would end 
takeover speculation about pay turned hudson 

o r i g i n a l : analysts said some traders i n raw m a t e r i a l markets continue 
t o s e l l out t h e i r commodity p o s i t i o n s t o ra i s e money t o meet 
margin c a l l s on t h e i r stock holdings 

15'/, corruption : analysts set some traders i n raw m a t e r i a l markets continue 
t o s e l l out t h e i r commodity po s i t i o n s t o r a i s e money t o meet 
margin c a l l s on a i r stock though ol d things 

25'/, corruption : analysts sets somebody's i n raw m a t e r i a l markets continue t o 
s e l l out a i r commodity p o s i t i o n s to r a i s e money t o manage i n 
c a l l s on t h e i r stock holdings 
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o r i g i n a l 

15'/, c o r r u p t i o n 

25% c o r r u p t i o n 

as a r e s u l t of the stock market's recent severe v o l a t i l i t y 
brokerage houses have been demanding more cash or other 
c o l l a t e r a l from investors who have bought stock w i t h 
borrowed money 
as a r e s u l t of the stood market's recent severe v o l a t i l i t y 
brokerage houses everybody making more cash or other 
c o l l a t e r a l from investors who have bought stock w i t h the 
borrowed money 
as a r e s u l t of the stock making have ??? bought stock w i t h 
bottom something 

o r i g i n a l 
15% c o r r u p t i o n 
25% c o r r u p t i o n 

the stock market however d i d undergo a rebound yesterday 
the top market however d i d undergo a rebound yesterday 
the stock market however d i d undergo american yesterday 

o r i g i n a l 

15% c o r r u p t i o n 

25% c o r r u p t i o n 

mr z i e g l e r said the company earned about t h i r t y seven cents 
a share i n the f o u r t h quarter 
mr z i e g l e r said the company earned about o f f t h i r t i e s even 
sets american the f o u r t h quarter 
miss are z i e g l e r said the components about t h i r t i e s even 
cents a share i n the f o u r t h quarter 

o r i g i n a l 

15% c o r r u p t i o n 

25% c o r r u p t i o n 

i n the year ago period the company earned two poi n t three 
m i l l i o n d o l l a r s or t h i r t y two cents a share 
i n the year ago period cannot company earned two poi n t three 
m i l l i o n d o l l a r s or t h i r t y two cents a share 
i n the year ago or could the come a thursday two set i gets 
a share 

o r i g i n a l : f o u r t h quarter sales rose t o about n i n e t y m i l l i o n d o l l a r s 
from seventy two poi n t two m i l l i o n d o l l a r s i n the f o u r t h 
quarter of nineteen eigh t y s i x 

15% c o r r u p t i o n : f o u r t h quarter sales rose t o about nine t y m i l l i o n d o l l a r s 
from seventy two poi n t two m i l l i o n t o d o l l a r s i n the f o u r t h 
quarter of nineteen basics 

25% c o r r u p t i o n : f o u r t h q u i t e are sales rose t o about nine t y mid claim do 

o r i g i n a l : bearings incorporated authorized the purchase of as many as 
six hundred thousand shares or about twelve percent of i t s 
common stock 

15% c o r r u p t i o n : bear incorporated over eyes the purchase of as any as s i x t y 
hundred thousand shares or boy about twelve percentages 
common stock 

25% c o r r u p t i o n : bearings incorporated around the purchase of as many as s i x 
funds around of thousand shares or about twelve percent of 
you i t s common stock 

o r i g i n a l : the company said i t may buy the shares i n the open market or 
i n negotiated t r a n s a c t i o n s from time t o time depending on 
market conditions 

15% c o r r u p t i o n : the company said i t may buy the shares i n the open market or 
i n negotiated transactions f r i g h t e n i n g t o time depending on 
market conditions 

25% c o r r u p t i o n : e i t h e r company d i d may buy the shares i n the open market or 



Appendix B: Example System Recognition 171 

i n negotiated transactions from time t o get i'm depending on 
mid conditions 

o r i g i n a l : shares acquired w i l l be held f o r corporate purposes 
i n c l u d i n g b e n e f i t plans and stock option plans 

15°/, c o r r u p t i o n : shares acquired w i l l be held or incorporate purposes 
i n c l u d i n g b e n e f i t plans and stock o p t i o n plans 

25'/, co r r u p t i o n : shares acquired while be h e l l f e e t corporate purposes us 
inc l u d i n g b e n e f i t l i n e and stock o p t i o n plans 

o r i g i n a l : the banking concern hopes t o complete the sale w i t h i n two 
weeks the sources said 

15% c o r r u p t i o n : the banking concern hopes t o complete the sale w i t h i n two 
weeks the sources shed 

25% c o r r u p t i o n : the banking concern hopes t o computers sale w i t h i n two weeks 
these sources said 

o r i g i n a l : the t r a n s a c t i o n i s expected t o produce an estimated gain of 
one hundred and f o r t y m i l l i o n t o a hundred and f i f t y m i l l i o n 
d o l l a r s f o r the f i r s t quarter 

15% c o r r u p t i o n ': the transactions expected t o produce an estimated gain of 
one hundred and f o r t y m i l l i o n t o a hundred and f i f t y m i l l i o n 
d o l l a r s f o r they've f i r s t water 

25% c o r r u p t i o n : the t r a n s a c t i o n expected produce an estimated gain of one 
understand f o r t y men t o a hundred and f i f t y m i l l i o n d o l l a r s 
f a r the f i r s t quarter 

o r i g i n a l : the schwab u n i t has a book value of about seventy m i l l i o n 
d o l l a r s and bankamerica has made a c a p i t a l loan of about 
f i f t y m i l l i o n d o l l a r s t o the operation 

15% c o r r u p t i o n : others while u n i t as a book value of about seventeen alone 
d o l l a r s and bankamerica has made a c a p i t a l low of about 
f i f t y m i l l i o n d o l l a r s together operation 

25% c o r r u p t i o n : the schwab u n i t has ago c a l l you of a doubt seventy w i l l 
u n t i l i s and bankamerica high as makers c a p i t a l l i n e of 
about he f o r t y alone d o l l a r s t o the operation 

o r i g i n a l : ne i t h e r bankamerica nor mr schwab would comment 
15% c o r r u p t i o n : ne i t h e r bankamerica or mr schwab would comment 
25% c o r r u p t i o n : never up bankamerica near mr schwab would comment 

o r i g i n a l : i t seems t h a t few people have anything good t o say about the 
recent budget compromise 

15% c o r r u p t i o n : i t seems t h a t few people of having nothing good t o say about 
the recent budget compromise 

25% c o r r u p t i o n : i t seems at few people have anything by good t o say about 
the recent budget compromise 

o r i g i n a l : neither do i but i t should be pointed out t h a t the 
compromise i s r a t h e r good by h i s t o r i c a l standards 

15% c o r r u p t i o n : e i t h e r do i but should be pointed out t h a t the compromise i s 
rather good by h i s t o r i c a l standards 

25% c o r r u p t i o n : my e i t h e r do i but i t each should be pointed out at the 
compromise i s r a t h e r good by h i s t o r i c a l standards 

o r i g i n a l f i r s t keep i n mind t h a t the l e v e l of government spending i s 
a l l t h a t matters as f a r as our economy i s concerned 
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15'/, c o r r u p t i o n : f i r s t key i n mind t h a t the l e v e l of government found t h i n g 
i s although adding matters as f a r as our economy i s 
concerned 

25'/, co r r u p t i o n : f i r s t keep i n mind t h a t the l e v e l of government spending i s 
a l l t h a t matters as f a r as our economy i s concerned 

o r i g i n a l : whether i t i s financed by taxes or by a d e f i c i t which i s 
j u s t postponed taxes i s i r r e l e v a n t 

15'/, c o r r u p t i o n : whether i t i s financed by taxes or by a d e f i c i t which i s 
j u s t postponed taxes i s i r r e l e v a n t 

25'/, c o r r u p t i o n : whether i t i s financed b i g taxes or by a d e f i c i t which i s 
j u s t postponed taxes i r r e l e v a n t 

o r i g i n a l : thus our only concern should be t o reduce government 
spending and i f t h a t can be achieved only by r a i s i n g taxes 
simultaneously so be i t 

15'/, c o r r u p t i o n : t h i s e i t h e r only concern c h i l d beat a reduce government 
spending adding f a c t can be achieved only by r a i s i n g taxes 
simultaneously so be i t 

25'/, c o r r u p t i o n : also our only up concerned beat a r i p p l e you government 
heading and f i f t h t h a t can be a t only by r a i s e e taxes 
simultaneously so be i t 

but the new agreement would narrow the wage r i s e i n the 
f i r s t year t o t h i r t y f i v e cents an hour from the o r i g i n a l 
f i f t y cents an hour 
but the new agreement would narrow the wage reason the f i r s t 
year t o t h i r t y f i v e cents an our i f ra t h e r o r i g i n a l f i f t y 
cents an our 
but the new agreement would now rat h e r way r a i s e i n the 
f i r s t year t o t h i r t y f i v e cents a near from the worry j o i n 
l e f t extension our 

second and t h i r d year wage increases would be t i e d t o the 
consumer p r i c e index w i t h a cap of t h i r t y f i v e cents an hour 
as second and heard year wage increases would beat i ' d 
together consumer p r i c e inadequate cap of t h i r t y f i v e cents 
an our 
second add o f f t h i r d year way june classes would beat i ' d t o 
the consumer be p r i c e i n does w i t h a cap of t h i r t y f i v e sets 
a near 

as a r e s u l t over three years the wage increases would t o t a l 
about seven percent down from eight percent under l a s t 
week's agreement 
as a r e s u l t over three years the increases would t o t a l a 
bought seven percent down from eight percent under l a s t we 
agreement 
as a r e s u l t over e years the which increases looked l i t t l e 
about seven percent down from eight percent under l a s t you 
week's agreement 

o r i g i n a l : domestic revenue gained twenty percent to two zero seven 
point s i x one b i l l i o n yen helped by japan's expanding 
economy 

15'/, c o r r u p t i o n : domestic revenue good twenty percent t o two zero seven 
points t a l k s one b i l l helped by japan's expanding economy 

o r i g i n a l 

15°/, c o r r u p t i o n : 

25'/, c o r r u p t i o n : 

o r i g i n a l : 

15'/, c o r r u p t i o n : 

25'/. co r r u p t i o n : 

o r i g i n a l 

15'/, co r r u p t i o n : 

25'/, c o r r u p t i o n : 
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25'/, c o r r u p t i o n : domestic revenue great went percent t o two zero seven points 
s i x one b i l l i o n new how helped by japan's expanding economy 

o r i g i n a l : 

15'/, c o r r u p t i o n : 

25'/, c o r r u p t i o n : 

o r i g i n a l 
15'/, c o r r u p t i o n 
25% c o r r u p t i o n 

o r i g i n a l 

15'/. c o r r u p t i o n 

25'/, c o r r u p t i o n 

o r i g i n a l 

15'/, c o r r u p t i o n 

25'/. co r r u p t i o n 

o r i g i n a l 

15'/, c o r r u p t i o n 

25'/, c o r r u p t i o n 

i n t e r n a t i o n a l revenue rose f i v e p o i n t nine percent t o s i x 
hundred and f o r t y one point t h i r t y e i g h t b i l l i o n yen 
i n t e r n a t i o n a l revenue rose f i v e p o i n t i n t o cent tasks 
hundred and f o r t y one po i n t t h i r t y e i g h t b i l l i o n when 
i n t e r n a t i o n a l reason you're as f i v e p o i n t name a cent t o s i x 
t h i s hundred 

the strong yen encouraged more Japanese t o t r a v e l abroad 
the strong yen encouraged or Japanese t o t r a v e l abroad 
the strong yen encouraged 

consumer c r e d i t which grew at a robust ten p o i n t one percent 
annual r a t e i n august i s l i k e l y t o show a slower growth pace 
f o r September 
consumer c r e d i t which grew at a robust t e n point one percent 
annual r a t e i n v e s t o r s l i k e l a t e r show a slow r i g h t growth 
p a t i e n c e f o r September 
consumer c r e d i t which great across t e s t i n g p o i n t one percent 
annual way t u r n august i s l i k e l y t o show a slower great f o r 
September 

s o f t r e t a i l spending as evidenced by the recent chain store 
sales r e p o r t plus somewhat lower auto sales may c o n t r i b u t e 
t o the c r e d i t decline 
s o f t r e t a i l spending as evidenced by the recent chain store 
sales r e p o r t plus somewhat lower auto sales may c o n t r i b u t e 
t o the c r e d i t decline 
s o f t r e t a i l spending as evidenced by the recent chain 
s t o r i e s r e p o r t less somewhat low a white sales may 
con t r i b u t e t o the read i t decline 

the consensus c a l l s f o r a f o u r b i l l i o n d o l l a r increase i n 
September compared with a g a i n of f i v e p o i n t f o u r b i l l i o n 
d o l l a r s the previous month 
the consensus c a l l s f o r before b i l l i o n d o l l a r increase i n 
September compared with a g a i n of f i v e point or b i l l i o n 
d o l l a r s the previous month 
the consensus c a l l s f o r a f o u r b i l l i o n d uring across i n 
September compared with a gain of f i v e point of f a u l t along 
close the previous month 
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