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Abstract of Thesis for Ph.D.,
“Chemical Dynamics Using Wavepacket Methods.”
Abigail J. Dobbyn, Durham University, September 1993.

This thesis is concerned with studying chemical dynamics using time-dependent quan-

tum mechanics and in particular using the Fourier method.

Various ways of implementing the Fourier method are described, both for calculations

in one dimension and for those in many dimensions.

The Fourier method is then used to simulate time-resolved femtosecond and picosecond
pump-probe experiments, which investigate the B state of the sodium trimer. The simu-
lation is divided into three stages: the initial wavefunction is generated by modelling the
effect of the pump laser pulse on the ground state wavefunction of the X state of the sodium
trimer; the wavepacket now on the B state is propagated in time; the observables are ex-
tracted from the time-dependent wavefunction. The calculations are carried out initially
in two dimensions, corresponding to the bending and asymmetric stretch normal modes,

and then in three dimensions, i.e. including the symmetric stretch normal mode.

The simulation of the time-resolved experiments produced physically plausible results.
The correspondence with the experimental results was only fair, but this could be mostly
accounted for by the poor quality of the potential energy surfaces used. Thus, even the
relatively simple model used to simulate the time-resolved experiments is useful to gain
both a qualitative explanation of the results of these experiments and an insight into the

dynamics of systems which are in non-stationary states.
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1: Introduction

In order to understand the mechanisms by which chemical reactions occur, it 1s nec-
essary to consider the motion of nuclei and electrons within reacting species. This is the
subject of chemical dynamics calculations. Chemical dynamics can be investigated using
quantum mechanical methods in a variety of ways. These methods can be crudely divided
into time-independent methods, e.g. diagonalising the Hamiltonian matrix or solving the
coupled channel equations, and time-dependent or wavepacket methods, which solve the

time-dependent Schrodinger equation.

The time-dependent Schrodinger equation (T.D.S.E.):

) 2
zhﬁ = HY, (1)

can be solved by finding the initial state of the system under consideration, i.e. the wave-

function at zero time, and then propagating this in time.

Apart from these quantum mechanical methods, classical trajectory calculations and
semiclassical methods, which are also time-dependent, can be used. There is a variety of
these time-dependent semiclassical methods or Gaussian wavepacket methods, e.g. those us-
ing frozen Gaussians or thawed Gaussians [1]. One major advantage of the time-dependent

quantum mechanical method over the semiclassical methods that have been developed so

far is that potentials of arbitrary complexity can be treated.

Chemical reactions have a beginning and an end that are separated in time. Thus
they are a time-dependent phenomenon. It would seem natural then to study chemical
dynamics within this framework. However, it is only in the recent past that time-dependent
methods have become popular. This is mainly because of the large computational resources
required for the calculations, as well as the difficulty in relating the results to spectroscopic

observables.

Early studies used an implicit time propagator to numerically integrate the time-
dependent Schrédinger equation; the finite-difference method was used, which defines the
wavefunction on a grid, to calculate the spatial derivatives in the Hamiltonian operator [2].
Later an explicit time propagator, using second-order differencing, was introduced [3]. This
improved the scaling of the method from O(N?) to O(N), where N is the number of grid
points used. The use of the finite-differencing algorithm, which has very poor convergence
with respect to grid size, meant that only qualitative results were produced. Other early

attempts to study chemical dynamics problems in the time domain involved the expansion
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of the initial state in terms of the stationary state solutions, which can be propagated
analytically [4].

In 1983 Kosloff introduced the Fourier, or Pseudospectral, method [5]. In this method
the spatial derivatives in the Hamiltonian operator are calculated by the use of forward
and backward discrete Fourier transformations of the wavefunction. The wavefunction 1s
defined on a grid in the same way as in the finite-difference method. The Fourier method
produces results of very high accuracy, due to the exponential convergence of the method
with respect to grid size. The use of Fast Fourier Transforms makes this method extremely
efficient, scaling as O(N log N). Subsequently, the method has been enhanced even further,

particularly with the introduction of a variety of new propagators [6].

Advances have also been made in methods to obtain observables from time-dependent
calculations. In 1978 Heller introduced a formula for the total photodissociation cross
section [7], which is simply related to the absorption spectrum. This stated that ‘the total
photodissociation cross section is given by a Fourier transform of the overlap between the
propagated and unpropagated initial vibrational wavefunction times the transition dipole’.
Later a strategy was introduced for calculating the partial cross sections [8]. This was done
by projecting the propagated wavefunction, once it had reached the asymptotic regions
of configuration space, onto simple asymptotic outgoing states. This formalism has been
extended to a variety of different applications in all areas of chemical dynamics. More
recently a new method for the calculation of partial cross sections has been developed [9)].
This method analyses the propagating wavepacket at a particular cut in configuration space

and then uses the results of this analysis to form the partial cross sections.

It is not the intention here to give a complete review of the various physical problems
to which time-dependent methods have been successfully applied. Some of these include:
photodissociation on a single two-dimensional potential energy surface, e.g. HaS [9] and
ICN [10] (this study also explicitly treats the absorption process); photodissociation on a
single three-dimensional surface, e.g. O3 [11]; predissociation on a single three-dimensional
adiabatic surface, e.g. Van der Waals molecules [12]; predissociation in three dimensions
using vibronically coupled surfaces, e.g. HCN™ [13]; atom-molecule scattering, e.g. a model
implementation for inelastic collisions [14]; reactive scattering, e.g. two-dimensional studies
on HD + H — Hy +D [15] [16] as well as three-dimensional studies on F + Hy — HF + H
(17] which use an extension to the theory derived for atom-molecule elastic scattering [18];
and gas-surface scattering, e.g. Hy from flat or corrugated surfaces (19] [20]. Some reviews
exist, including one on time-dependent wavepacket calculations of molecular scattering from
surfaces [21], and another on quantal wavepacket calculations of reactive scattering [22].

Recently there has been a thematic issue of Computer Physics Reports on time-dependent
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methods for quantum dynamics [23]. What follows, instead of a comprehensive review, is
a brief discussion of some areas in which time-dependent methods show a large advantage
over time-independent methods, so that their application is particularly useful. Also, some

of the methods that have been introduced to extend the use of the Fourier method are

included in this discussion.

Consider first those chemical reactions which are difficult to study with time-
independent methods because these methods are only used to solve two-point boundary
value problems. Such chemical reactions include those which have multiple continua, i.e.
those reactions whose final products consist of three or more fragments, making the con-
struction of boundary conditions impossible, because of the practical difficulty in parti-
tioning the kinetic energy between the fragments. The time-dependent method allows a
simple treatment of continua and of the rearrangement problem in reactive scattering, be-
cause this method solves initial value, rather than two-point boundary value, problems. An
example is the study of the dissociation dynamics of vibrationally excited Van der Waals
clusters: I3XY — I + X + Y (X,Y = He, Ne) [24] and other similar systems [25]. How-
ever for problems of this sort, i.e. double continuum processes, the wavefunction explores
a large volume in configuration space, making exact quantum methods prohibitively ex-
pensive to apply. A class of approximation methods has arisen which deals with this, and
other computationally intractable problems. These are the time-dependent self-consistent
field (T.D.S.C.F.) schemes [26]. In this approximation the wavefunction is represented by
a product of one-dimensional wavefunctions associated with each quantum mode (or di-
mension). The wavefunction is then substituted into the T.D.S.E. and a set of coupled
single-mode S.C.F. field equations is obtained. The potential for each mode in these equa-
tions is the total potential for the system averaged over the other modes. This potential
allows energy to be transferred between different modes, and is time-dependent. A vanety
of these schemes exist, including single-configuration T.D.S.C.F., configuration interaction

T.D.S.C.F., and those which treat one or more of the modes semiclassically or classically.

Now consider those chemical reactions which are difficult to study with time-
independent methods because the calculations with these methods are computationally
too intensive. Obviously, this will apply to very large problems, where many states or
dimensions have to considered. The time-dependent method is useful here because it can
be in many cases computationally more efficient. This can come about in two ways. The
first arises because a wavepacket can correspond to a wide range of energies, so that a
single calculation can yield results for many energies. Thus the columns of the S-matnx
corresponding to the states of interest, e.g. those most directly corresponding to the ex-

periment, can be found from one calculation. A good example of this is the calculation
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of partial photodissociation cross sections for all photon energies by a single calculation.
That a single calculation can provide all the information of interest about a system has
been shown explicitly for the calculation of the partial cross sections of HsS [9]. It has

also been shown for the calculation of the partial cross sections of reactive scattering, in

particular for the reaction F + H, — HF + H [27].

The second reason why time-dependent calculations can be computationally more effi-
cient is because the computational scaling laws can be favourable. For example, the compu-
tational effort in time-dependent methods scales as the number of grid points squared (N 2),
in contrast to time-independent coupled channel methods in which the computational effort
scales as the number of channels cubed (N3) [28]. These advantageous scaling laws have
made the solution of several problems possible, e.g. the scattering of atoms and molecules
from surfaces, where very many dimensions must be considered for even the simplest study
[11][19][29]. The difficulties involved with generalising the Fourier method to coordinate
systems other than Cartesian are avoided in these calculations since for these calculations a
good coordinate system to use is Cartesian. Also, the periodic nature of the Fourier trans-
form can be used to great advantage to match the surface unit cell. Calculations which
aim to extend these studies further and to study the energy transfer between the surface
and the incoming molecule have been carried out. These have to use some approximations
in order that the computation is feasible. T.D.S.C.F. calculations have been used, where
the surface and molecule motions are separated [21]. In another related method, the sur-
face is modelled using the stochastic generalised Langevin equation formalism. With this
method the surface is treated as heat bath, and is modelled using a chain of atoms coupled
together with harmonic forces [30] [31] [32] [33]. The parameters used to describe the chain
are derived from considering autocorrelation functions and their relation to the spectral
density of the solid; the spectral density is often taken to the Debye model spectrum. In
order to model a heat bath it would be necessary to use an infinite chain of atoms. This is
not computationally possible, so simple fictional damping and white noise terms are added
to the equations of motion for the last atom in the chain [34]. The motion of the surface
atoms is then solved classically. The motion of the surface atom or the ‘top’ atom in the
chain is used as a parameter in the potential for the equations of motion of the molecule

approaching the surface.

As well as these computational advantages, the algorithms used in time-dependent
methods are highly vectorisable, which is particularly important since modern computers
gain their speed from parallel and vector type architectures [6][35]. In particular, for multi-

dimensional problems, many mutually independent Fourier transforms may be performed
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in parallel [36]. This has been demonstrated on both the S.I.M.D. and M.LM.D. { type
parallel processing computers. For machines with distributed memory, the implementation
is not as obvious as initially appears, due to necessity of transposing the wavefunction
which can involve a great deal of time consuming message passing [37]. For the S.I.M.D.
architecture, it has been shown that almost every step of the grid algorithms can be executed

concurrently for each grid site, and for those steps which cannot excellent parallel schemes

exist for their execution [38].

The numerical advantage gained by time-dependent calculations is particularly obvious
when the ‘events’ of interest in the system are fast, e.g. photodissociation which occurs via
a direct mechanism, so that the T.D.S.E. has only to be propagated for relatively few, short

timesteps.

It is clear then that the time-dependent method is important in studying chemical
reactions because of certain advantages in the structure of the method, i.e. it is an initial
value problem with favourable scaling laws. Now consider the advantage that the time-
dependence gives to these calculations. First, the results, i.e. the wavefunction at a series
of timesteps, can easily be interpreted to give direct insight into a reaction’s mechanism.
Secondly, problems with an explicit time-dependence, i.e. a time-dependent Hamiltonian,

can be treated straightforwardly.

The study of photodissociation is a good example of a physical process where the re-
sults of time-dependent calculations are particularly useful in understanding the reaction
mechanism. The results of time-dependent calculations, obtained recently for a series of
molecules of the type RNO, have shown how much physical insight can be gained. These
calculations are a systematic study of the dissociation of RNO molecules, using accurate ab-
initio potential energy surfaces. They have shown how the dissociation dynamics changes
from being fast and direct in the case of FNO(S;) to slow, occurring by vibrational predis-
sociation, in the case of CH3ONO(S;), depending on the topology of the potential energy
surface [39]. In the first case, the wavepacket on the excited state moved quickly from the
Franck-Condon region, where it was initially promoted by a laser pulse, down a repulsive
surface to form the free fragments. In the second case, the wavepacket on the excited state
was at least partially trapped by a well in the surface in the Franck-Condon region and

only managed to escape after several periods of vibrational motion.

The pictures of the wavefunction at a series of timesteps can lead to a variety of ways
of describing the dynamics on the potential energy surface, and so help to substantiate

general theories of unimolecular reactions. One description of the dynamics could be in

1' These are single instruction multiple data and multiple instruction multiple data architectures.
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terms of energy flow through the bonds of a molecule, i.e. intramolecular redistribution of
vibrational energy (I.V.R.) from one mode, or bond, to the rest of the molecule. Consider
the extensive study of the overtone excitation in CHX3 molecules (X = D, F, Cl, Br, CF3).
An overtone of the CH bond stretching motion is excited and due to its coupling to the
bending motion, i.e. Fermi resonance, energy is transferred from the stretch to the bend,
and so to the rest of the molecule [39]. For the CHF3 molecule, to take one example, the
transfer of this energy has been studied by following a wavepacket in two dimensions on
an anharmonic potential energy surface [40]. For short times, less than 70 fs, there is a
quasiperiodic motion in the stretch, but for later times the wavepacket spreads out over the
whole of the space, and apart from some recurrence phenomena, the wavepacket remains
delocalised. Studies of this type on the dynamics of unimolecular reactions can help to
categorise the reaction in terms of R.R.K.M. or non-R.R.K.M. (e.g. Slater) like behaviour,
i.e. whether or not the energy is almost instantaneously distributed to all bonds in the

molecule.

Another area of study, which is connected to theories of unimolecular reactions, is that
of quantum chaos and the dynamics of a pair of coupled non-linear oscillators. These have
been studied in a time-dependent frame by examining the variation in the autocorrela-
tion function of the wavefunction [41]. For example wavepacket dynamics on the Hénon-
Heiles potential has been studied. In this study, the phase space volume over which initial
wavepackets spread was taken to be a measure of chaos [42]. The study of quantum chaos
is particularly interesting because of the ease with which the results of time-dependent cal-
culations can be compared to those from classical trajectory calculations, which can lead
to a better understanding of quantum/classical correspondence, especially concerning the

origin of classical chaos.

The study of .V.R., R.R.K.M. and chaos can be seen to be closely related. If .V.R. 1s
found to be fast, i.e. the rates can be described by R.R.K.M. theory and the wavefunction
is quickly delocalised over all of the available phase space (and thus chaotic), then rate
constants will be found to depend only on the energy of the initial state, and not on any

other detail of the state.

Thus, the detailed understanding of chemical reaction mechanisms, which the results
of time-dependent calculations can supply, gives rise to/dashes the hope of controlling the
outcome of unimolecular reaction by exciting particular modes in specific ways [43]. An
excellent example of this is the systematic study of the dynamics of photodissociation in
H,0 and then in HOD. This enabled a two-photon scheme, by which the branching ratio (H
+ OD)/(D + OH) could be controlled, to be presented [44]. However, more general schemes

have also been suggested. Consider a reaction which occurs on a ground electronic state,
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and which has two possible asymptotic channels, corresponding to two different reaction
products. It has been shown that promoting a wavepacket to an excited state using a pump
laser pulse, leaving it to evolve for a specified time delay and then using a dump laser pulse
to return the wavepacket to the ground state in a particular configuration, or channel, can
influence product formation [45]. Thus it is hoped that by optimising the parameters of the
dump laser pulse, e.g. the field amplitude, laser carrier frequency, phase and pulse duration,
i.e. laser shaping, as well as by optimising the length of the time delay between the pump
and dump lasers, the progress of a reaction can be controlled. Variational schemes to
optimise these parameters have been formulated [46]. Another scheme has been proposed
(47, which employs a series of ultrashort infrared laser pulses with analytical shapes, either
Gaussian or sine squared. Each pulse selectively induces a vibrational transition. The whole
series yields the desired sequence of transitions, from the ground state of the reactants via
a transition state to a vibrationally excited product state. The final transition stabilises
the products, from a vibrationally highly excited state to a lower level. In this scheme the
molecule remains in the ground electronic state throughout. This scheme has been used to
show the possible control of the isomerisation of organic molecules, e.g. the semibullvalenes

[48]. It has also been used to show isotopomer selective isomerisations and bond-fissions in

organometallic compounds [49].

The detailed time-dependent study of the dynamics of chemical reactions is no longer
only of theoretical interest. Experiments that study molecular reaction dynamics in real
time have recently been introduced. Information about the detailed mechanism can be
obtained, which cannot be inferred from the more usual study of the rovibrational distn-
butions of the product fragments. This is in direct analogy to the fact that time-dependent
calculations can give substantially more insight into mechanisms than time-independent
calculations. In these experiments the system is prepared in a particular state, by a pump
laser pulse, or a combination of such pulses. The time evolution of the state is followed
by a probe laser pulse, which produces either multiphoton ionisation or laser induced flu-
orescence, so that the population on the excited state can be monitored. The experiment
is repeated many times for different known time delays between the pump and probe laser

pulses. Thus the results are the magnitude of a signal at various delay times.

The first experiments of this type used picosecond lasers. These experiments have
been used extensively to study I.V.R. and related phenomena in isolated large polyatomic
molecules in supersonic beams [50]. Some of these studies were of: quantum beats and
coherence spectroscopy of, amongst others, anthracene, stilbene and pyrazine; laser induced
isomerisation in e.g. stilbene, going from the cis to the trans isomer, and hydrogen bonded

systems, such as salicylate, where a hydrogen atom is transferred; lastly, I.V.R. was followed
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explicitly by selective chromophore excitation in suitable molecules, e.g. Anthracene-CH»-

CH,-CHj3-Aniline where the anthracene is excited and then fluorescence from the aniline is

monitored.

However experiments are now possible using femtosecond laser pulses. These pulses are
shorter (10 — 100 femtoseconds) than even the fastest of vibrational motions or dissociation
reactions, ensuring that all these motions can be resolved, and the dynamics is followed
in real time [51]. The ultrashort laser pulses can be obtained by compressing the pulses
produced by ‘a colliding-pulse mode-locked ring dye laser’.

Experiments using femtosecond laser pulses were first introduced in the study of tran-
sition states during direct dissociation reactions, e.g. in the study of ICN* — [I.- .CN]t* —
I + CN [52]. In these experiments the fragments are followed in two ways [53}. In the first
the probe laser is set at a frequency corresponding to the energy required to promote one of
the completely separated fragments to an excited state (it is on-resonance). The fragment
in its excited state can then be detected, and in the case of CN this is done by monitoring
fluorescence from an excited electronic state. The signal at different time delays shows,
after an initial lag, a steady rise which eventually levels off. This is equivalent to ‘clocking’
the reaction, and the time delay at which the signal is turned on gives a measure of the
time to break the bond. In the second case the probe laser is set at various frequencies
corresponding to lower energies (it is off-resonance), so that the fragment will be excited
while still interacting with the other fragments. This signal shows a steady rise but later
decreases. The rise and fall in the signal occurs as the fragment enters the region where the
probe laser can promote it to the excited state, but then at greater time delays leaves it.
Analysis of these signals gives information about the potential energy surface in the region
of the transition state [54]. In the case of direct dissociation there are no oscillations or

recurrences in the signals since the potential surfaces are purely repulsive.

Since these early experiments the use of femtosecond laser pulses has been extended
to the study of a variety of different systems, and a few examples follow. In reactions
where more than one degree of freedom is involved, either vibrational or electronic, the
adiabatic potential energy surface may not be purely repulsive and wells may exist leading
to complex dissociation mechanisms, i.e. there are resonances. The dissociation of alkali
halides, NaX* — [Na.--X]™ — Na + X, (X =L, Br), occurs by such a complex mechanism,
due to the crossing of the ionic ground state and the covalent excited state [55). The on and
off-resonance time-delay signals have been measured, using laser induced fluorescence from
the Na atom. The on-resonance signal was similar to that for direct dissociation initially,
but instead of levelling off, the signal then increased in a series of progressively smaller

steps. The off-resonance signal was again similar to that for direct dissociation initially,
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but after the decrease, then proceeded to increase and decrease in a series of oscillations.
The results confirmed the complex dissociation mechanism, i.e. that some of the molecules
were being trapped in a well formed by the avoided crossing of the two adiabatic potential
energy surfaces. Analysis of the results gave the time to traverse the well, together with the
probability of escaping from this well, and hence the coupling between the two surfaces [56].
The dissociation of Hgl, also takes place via a complex mechanism: IHgl* — [IHgl]* —
Hgl + 1. For this reaction, this occurs because it is necessary to consider two coordinates,
which are symmetrical, giving rise to a potential energy surface (P.E.S.) which has a saddle
point. The results, although more complicated than for the alkali halides, show similar
features [57]. The predissociation of a Rydberg state of CHsl, into CHj3 and I, has also
been studied. Here the probe pulse ionises the iodine fragment, thus the IT mass signal,
as a function of delay time, has been analysed to gain information about the crossing from

the Rydberg bound state to the continuum [58].

In systems with bound potential energy surfaces, wavepacket motion can be viewed
directly, e.g. for I [59]. In this experiment a pump laser prepares a coherent superposition
of a few vibrational states. This gives rise to a wavepacket moving on the bound P.E.S. A
probe laser is then used to excite the molecule to an upper fluorescent state. For a probe
laser at a particular frequency the transition is only resonant when the molecule is in a
certain configuration, or the wavepacket is in a particular position on the P.E.S. Thus the
time-delay signal is oscillatory with a period depending on the motion of the wavepacket

and so on the details of the P.E.S., which can be obtained from these results.

Bimolecular reactions are much more difficult to study experimentally due to the dif-
ficulty of defining a zero of reaction time. This is because although the reactants can be
prepared at a particular time by using ultrafast laser pulses it is not possible to say how
long it takes for the reactants to ‘meet’, and so to have the opportunity to start to react.
In order to surmount this problem ingenious experimental methods have been developed.
These methods involve the formation of a Van der Waals cluster of the reagents. For exam-
ple for the reaction H + COy — HO + CO, the complex HI- - -COj; is formed in a supersonic
beam. The Hl is then dissociated by a femtosecond pump laser which establishes the zero of
time. This is possible since the reactants are now so close that there is no time lapse before
they meet. The reaction complex so formed can now be studied using the same methods
as previously described [60]. Similiar studies have been carried out on the reaction Br +

I, — Brl + I, where the Van der Waals complex formed is HBr- - I [61].

The study of more complicated systems is now being attempted, e.g. surface chemistry,

chemistry in solution, hydrogen atom transfer and isomerisation reactions [62].
New techniques have been introduced to complement these experiments [51]. One
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involves the use of phase-locked pulses, so that the two laser pulses used, separated by a
time delay, have definite a phase relative to each other [63]. Therefore these experiments
involve the preparation and quantum interference of two nuclear wavepackets. The result
of this interference is detected by measuring the fluorescence from the excited state. Thus
it was demonstrated that by varying the relative phase of the two pulses and/or the time
delay between them it was possible, for I3, to control the prepared wavepacket on the
excited potential energy surface. Another technique aims to obtain the time and frequency
resolved response of a molecule, in just one experiment, by monitoring the spectrum of the
probe laser after it has passed through the sample [64].

There has been a great deal of theoretical work done on modelling these ultrafast
pump/probe experiments. The modelling of these experiments involves finding methods
to describe the effect of the laser pulses. The laser pulses have been described using first
or second order perturbation theory [65], i.e. assuming a weak field limit. This method of
modelling the experiments has been used successfully for a variety of different systems, e.g.
the dissociation of ICN [66] and of Nal [67]. Obviously the explicit time dependence of the

problem makes the use of time-dependent methods imperative here.

From the above it can be seen that the time-dependent approach to studying chemical
dynamics is a useful tool for studying reactions. Practical methods have been developed
to solve the T.D.S.E., which have been used widely in many applications. The approach
has many advantages, perhaps the most important of which is the ability to see a reaction

proceed in time, particularly since the development of experiments which can do the same!

This thesis is divided into seven chapters. The first chapter has been a short intro-
duction to chemical dynamics using wavepacket methods, including the history and a brief
survey of the applications of the wavepacket method, as well as a discussion of some rele-
vant experiments. The second chapter gives an introduction to the Fourier method. The
third chapter investigates some of the various ways of implementing the Fourier method.
The fourth chapter shows how this method can be extended to problems with more than
one dimension. The fifth and sixth chapters are a theoretical study of the wavepacket
dynamics of the sodium trimer and include a comparison with the results of femtosecond
pump/probe experiments carried out by Gerber’s group in Freiburg, and the picosecond

experiments carried out by Woste’s group in Berlin. The final chapter is a summary and

conclusion of the thesis.
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The Method

2.1

Solving the time-dependent Schrodinger equation can be divided into three parts. The
first involves selecting an initial wavefunction; this is not always straightforward. The

second or spatial part requires the Hamiltonian operator:

A~ A2 ~
g=2 vy (2)

2m
and its operation on ¥, HY¥, to be calculated. The third or temporal part is the propagation
of the wavefunction in time.

In the Fourier method, both the first and the second stages of the solution of the
T.D.S.E. rely on the discretisation of coordinate space. That is the wavefunction and the
operators are represented on a regular grid, with sampling points z; = (j —1)Az. Although
the use of a grid apparently implies no connection with basis set methods, this is in fact
a pseudospectral method, in which an implicit basis is used. This implicit basis is used to
represent the kinetic energy on the grid; it is necessary because of the non-local nature of
the kinetic energy operator. For a grid with N points, the N implicit basis functions used

are:

_ (N/2-D)r x
R YRRy v (3)

so that there is also a discretisation of momentum space. There is a great deal of erudite

gr(z) = explikz],

discussion in the literature about the representation of the wavefunction and the operators
in such a discretised space [6], but it need only be of concern here in the most practical
of ways. Consider first the representation of the wavefunction and the potential operator
on a finite grid. In order that this grid can properly represent the wavefunction and the
potential operator, it must be ensured that the grid is large enough to include all the
important parts of the potential and wavefunction. Consider next the representation of
the kinetic energy operator by a finite number of implicit basis functions. Here in order
that the kinetic energy operator can be properly represented, it must be ensured that the
highest energy componé;ts of the wavefunction can be included. This will be discussed
later.

The third stage relies on discretisation in time. It will be seen later that this has

implications for the stability and accuracy of the propagation methods.

The Initial Wavefunction
The T.D.S.E. is a first order differential equation. Hence the initial state, for a given

potential energy surface, determines completely the subsequent time evolution. Thus, it is

2: The Method
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obviously important to determine this as accurately, and as suitably, as possible.

The choice of the initial wavefunction depends on the purpose of the calculation. Usu-
ally, a Gaussian wavepacket can be used for the translational degree of freedom. The width
of the packet will determine the range of energies to be considered, the narrower the packet
the wider the energy range. For example, in the simulation of a gas-surface collision, the
width can be chosen to match the energy spread of the experimental supersonic beam.
For vibrational and rotational dimensions, it is customary to choose an eigenstate of some
zeroth-order problem as the initial state. The total initial wavefunction will then be a

product of the terms for each of the dimensions [68].

However, various other ways of chosing the initial state have been used. For example,
it has been found that, for certain applications, chosing an initial wavefunction which has
the same symmetry as the Hamiltonian under consideration will enable states of particular
symmetry to be isolated and so increase the accuracy of the solutions [36]. Another example
is the study of the long-time decay of a particular metastable state. Here, it is obviously
most appropriate to consider an initial state as similar to this metastable state as possible.
An example of this is the study of the fragmentation of NeCly [12]. In this study, the
lifetime of the cluster, for a particular vibrational level of the chlorine molecule, e.g. v = 9,
is to be calculated. Thus, the initial state is chosen to be one of the stabilised eigenvectors
of the Hamiltonian corresponding to this state. It is interesting to note that in this case
it is not necessary to have a highly accurate initial wavefunction, because although it is
helpful to have an initial state near to the state being considered, it is still possible to
obtain useful information when the state differs slightly. This is because the state being
considered is metastable, i.e. it will be longer living than any other states which may be
present in the initial state. Thus, if the initial transitory behaviour is ignored, and the
wavepacket at later times analysed, a true picture of the dynamics will emerge, regardless

of the exact nature of the initial state.

2.2 The Spatial Part
The Hamiltonian is partitioned into two parts, the potential part and the kinetic part:

H=T+V. (4)

The potential part of the Hamiltonian, which is calculated theoretically or by fitting of

experimental measurements, is local in coordinate space, and therefore its operation is

simply a multiplication of ¥(z;) by V(z;) [6].
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2.3 The Fourier Method
The kinetic part of the Hamiltonian cannot be calculated so simply because it is a
non-local operator in coordinate space [5]. The solution is then to transform the wave-
function into momentum space, in which the operator is local, and its operation is then a
multiplication by the kinetic energy spectrum:

_ BR?

T(k) = (5)

2m ’

where k is given by the relation p = hk. The transformation into (and out of) momentum

space is achieved using a Fourier transformation [69):

U(z) < ¥(k), (6)
which means,
U(k) = /_ e *U(a)de (7)
¥(z) = %/_i %2 (k) dk. (8)
So that, \
T (z) = 51; f : ike {%\F(k)] dk. 9)

To summarise, the kinetic energy operator is calculated by transforming the wavefunction to
momentum space by a forward Fourier transformation, multiplying by T'(k), and performing
an inverse Fourier transformation back to coordinate space.

This series of operations can be understood from a purely mathematical point of view.
The kinetic energy operator requires the calculation of the second derivative of ¥(z) with

respect to z:

~h? d?
= G & (10)
Let ¥(z) < ¥(k), as before, and
d*¥(z)
122 = ‘I’z(k) (11)
Writing this out explicitly:
o .. d2¥(z)
k) = / -kl 22 g 12
W)= [~ et s, (12)
which can be integrated by parts successively to give:
Wa(k) = (—ik)¥(k), (13)
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provided ¥(z) — 0 as ¢ — oo, which it must do in order to be square-integrable (a

requirement for all wavefunctions). Therefore,

d*¥(z % .
;;(2 ) % [t ke ak, (14)

and the calculation of T¥(z) becomes obvious.

The Discrete Fourier Transform

All the above applies to continuous space, whilst the space to be considered in numerical

calculations is discrete. This means that a discrete Fourier transformation must be used:

U(z;) <= ¥(k)), (15)
which means,
N-1
U(kj)= Y. e~ 2 /Ng(z)) Az (16)
1=0
1 N-1
Y(z)) ~ 5= Z ek = /N g (k) Ak, (17)

where N is the number of grid points, A:c is the spacing between the points of the grid in

coordinate space and Ak is the spacing in momentum space.

Consider the position/momentum phase-space. It extends a distance NAz along the
position axis and from —pmax t0 pmax along the momentum axis, so that the volume of the
space is 2pmax NAz. Phase space is divided up into cells each of volume h, i.e. §z6p = h
[70]. It can be shown that phase space can be accurately represented with as little as one
point per unit volume [6]. Thus, since there are N points on the grid, the maximum volume

of phase space that can be represented is Nh. Equating these two volumes:
Nh = 2ppaxNAz,

gives pmay equal to h/2Az. Therefore kmax equals 7/Az, as p = hk, and the range of k 1s
or/Az; Ak is 2r/(NAz). It can be seen that the discretisation of coordinate space leads
to a maximum value for the kinetic energy that can be represented.

Now consider this problem in a slightly different way. The implicit basis functions used
are of the form exp[ikz]. Obviously these are just combinations of sine and cosine functions.
Thus the functions which are represented are of the form sin kz and cos kz. Another way
of writing these is as sin7n/(NAz) and cos 7n/(NAz), where n is an integer. Thus k is
equal to mn/(NAz). In order to accurately represent sin 7n/(NAz), or cos 7mn/(NAz), on
a grid of N points, the maximum value that n can takeis N, 1.e. N points are needed to

represent N functions. Thus the maximum value that k can have, kmax, 1s m/Az.
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The question then arises as to the accuracy of this approximation, i.e. using a phase
space whose volume is bounded (this is a consequence of using a discretised space). One
way to consider this is to think about the range of kinetic energies which have to be
accommodated on the grid. Given a spacing in coordinate space of Az then the maximum
kinetic energy that can be accommodated is ﬁzkrzna_x /2m, where kpyax 1s given above. This
means that the wavefunction must be bounded in momentum space or equivalently the
Fourier transform of the wavefunction must be band limited, in order to ensure the accuracy
of the approximation.

What then is the consequence if the wavefunction is not bounded in momentum space?
Consider the following sampling theorem. For any sampling interval At , there is a special
frequency f., called the Nyquist critical frequency, given by:

1

= (18)

fe

(In this case the phase space considered is energy/time, and E = hf.) If the function g(t)
is band-width limited to frequencies smaller in magnitude than f, i.e. G(f) = 0 for all
|f| > fe, then the function g(t) is completely determined by its sample g(t;). This would
correspond to a wavefunction whose maximum kinetic energy was less than that allowed
on the grid. However, if the function is not band-width limited to less than the Nyqust
critical frequency, then all of the power spectral density which lies outside of the frequency
range —f. < f < f. is spuriously moved into that range. This is called aliasing, and will
obviously occur in the case under consideration if the kinetic energy of the wavefunction is
too large to be accommodated on the grid {71].

It is not always possible to know at the outset of a calculation what the maximum
kinetic energy will be, so it is necessary to monitor the Fourier transform to ensure that
it is small at the edges of the grid in momentum space. It is important to try to obtain
an optimum grid spacing because this will minimise the computational effort, i.e. it will
minimise the number of grid points required, whilst still ensuring the accuracy of the Fourier
transform.

There is another problem with using the discrete Fourier transform. Consider a finite
grid, zj,5 = 0,1,...,(N — 1). When carrying out Fourier transforms, one tacitly assumes
that ¥(z) is periodic, with zo and zx_; + Az being the same point. This means that
wavepackets can spuriously come out one end of the grid and enter the other end. If the
potential is very large at the edges, e.g. for a harmonic potential, then this will not be a
problem since the wavefunction will be very small in this region. However, in this case it
is then possible to get reflection at the boundaries, that is if the potential is very large at

2o, there may be reflection at zy_;. There are two ways to deal with this problem [72].
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First, use a large enough grid so that significant reflection does not occur within the time of
the propagation; this will be computationally expensive. Secondly, an absorbing boundary
can be used so that the outgoing amplitude is effectively destroyed before it reaches the

boundary; this will be discussed later.

The Fast Fourier Transform

In practice, the discrete Fourier transform is carried out using a Fast Fourier Transform
(F.F.T.)[71]. Thisis an algorithm which can be computed in O(N log, N) operations rather
than O(N?) which is required by the more traditional methods. The sequence used here
is called a decimation-in-time or Cooley-Tukey F.F.T. algorithm [71]. It is the use of this
algorithm which makes the Fourier Method, and so the time-dependent methods, viable.

Two-Dimensional Fourier Transforms

A wavefunction which depends on more than one spatial variable, say two, has a many-

dimensional, say two-dimensional, Fourier transform:
Uk, by) = [ [ e e (a,y) dady. (19)
—00 v—0O0

The two-dimensional Fourier transform ¥(k;,ky) can be viewed as two successive one-

dimensional transforms. The last equation can be written as:

U(ky, ky) = /oo e tkvy [/w e k=2 (g, y) dz] dy. (20)

—00 —00

Note that the term in brackets is simply the one-dimensional Fourier transform of ¥(z,y)

with respect to z, that is,

U(ks,y) = [ ¥ et gz, y) da. (21)

—00

Using this, equation (19) can be rewritten as:
Wk ky) = [Tk, y) dy. (22)
—00

Thus ¥(k,, ky) is the one-dimensional transform of ¥(kz,y) with respect to y.
Now consider the discrete Fourier transform:
M-1 N-1
U(kgi, kyj) = Z e~ vkvsu/M Z e—'k"z”/N\Il(a:p,yl) AzAy, (23)
=0 p=0

where N and M are the number of grid points in the z and y directions respectively. The
term in brackets is a one-dimensional discrete Fourier transform of ¥(zp,;), and has to
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be calculated M times, i.e. for each value of y;, to produce ¥(kz;,y;), which in turn will be
Fourier transformed N times, i.e. for each value of k;;, to produce ¥(kz;, ky;).

Hence, it is clear that the two-dimensional Fourier transform can be interpreted as two
successive transforms, and so the methods used to calculate the one-dimensional transforms
can be extended for use with two-dimensional transforms.

Similar results apply to the inverse Fourier transforms. Thus it is clear that the appli-
cation of the Fourier method to two and more dimensions is quite straightforward.

It can be seen that the algorithm for the two-dimensional discrete Fourier transform is
highly parallelizable since the M Fourier transforms in the first stage are independent of

each other, as are the N Fourier transforms in the second stage.

The Temporal Part

The time-dependent Schrodinger equation is:

Lo

In the last section it was seen how H¥ can be calculated using the Fourier method. This
will now be used in the time-dependent Schrédinger equation to propagate the wavefunction

in time. The solution of the T.D.S.E. can be written in the form:

. A —7 ft.
¥(t) = U(t)¥(0) = Texp H /0 Hdt’} ¥(0), (25)
where 7 is the time-ordering operator.
The various methods for propagating the initial wavefunction can be divided into two
groups [6]:
1. The short-time propagators, which propagate the wavefunction using a series of short

timesteps, and can be used for both time-dependent and time-independent Hamiltom-

ans. This is equivalent to dividing U(t) into short segments:

U(t) = Aﬁl U((n + 1)At,n At), (26)

n=0
where At = t/N. If these timesteps are short enough that the Hamiltonian does not
change significantly in At then the time ordering operator can effectively be ignored,

even for time-dependent Hamiltonians. This is the first Magnus approximation [73]. In

each short segment the time-evolution operator U((n + 1)At,n At) used is of the form:

. —q1 p(n+1)At | . .
U((n + 1)At,n At) ~ exp 7/M Ht)dt'|. (27)
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If the time segments are so short, i.e. they are short compared to any time-dependence
in the Hamiltonian, that the Hamiltonian does not change significantly in At then the

time-evolution operator is simply:

[((n+ 1)At,n At) x exp [—_ﬁif](t) At (28)

This is the form of the propagation operator which will be used throughout the work
which follows.

Alternatively, if the timesteps are not short enough that the Hamiltonian does not
change significantly in At, i.e. if the Hamiltonian is strongly time-dependent, it may be

necessary to use the second Magnus approximation, where the time-evolution operator

used is of the form:

U((n + 1)At,n At)

—i pln+D)AL 7 (n+1)At . .
~ — H(t"Ydt' — — dt’ / H( t")dt"| .
exP [ h [;At (*) 2h? -/1;At nAt[ (t), H(t)]dt

(29)

From this it becomes clear that in the first Magnus approximation it is the assertion
that the commutator [H(t'), H(t")] is approximately zero which determines how short
the timestep used must be.

The global propagators use a polynomial expansion of U(t), where the form of the

time-evolution operator is given by:
¥(t) = U(t)T(0) = exp [%’Ht] T(0), (30)

so that either, H is time-independent or, the time over which the propagator is used is
very short compared to any time-dependence of the Hamiltonian, ensuring that the time-

ordering operator can be ignored, as for the short-time propagators discussed above.

An expansion of the type:
A N A
U(t) = Y pePu(—iHt/R), (31)
k=0

is used. These propagators divide into two groups, low-order and high-order polynomial
approximations. Essentially, the first group use short timesteps and the second long
timesteps. This implies that high-order polynomial approximations can only be used
for time-independent Hamiltonians, (i.e. 7 can be omitted regardless of how long the
timestep used in the propagation is), whilst the low-order approximations can be used
for both time-dependent and independent Hamiltonians.
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2.5 Global Propagators
The question which must be addressed i1s: what is the optimal choice of polynomial
expansion? The aim is to find the best form for the polynomials Py used in the expansion
of the time-evolution operator [74]. In general any function can be approximated using the

Newtonian formulation of the interpolation polynomial [75]:
N k—1
Fl)=Y o [[(z - =;), (32)
k=0  j=0

where aj are the divided difference coefficients and z; are the interpolation points. A
similar expression can be given for the approximation of the time-evolution operator by an

interpolation polynomial. This interpolation polynomial is a function of the Hamiltonian

operator: :
1. N k-1 — .
F (—HAt) =Y ] (—HAt - :c,-I) . (33)
h k=0 j=0 h

In this expansion, if the interpolation points are chosen in the region where the eigenvalues
lie,1.e. the z; are the eigenvalues of —iHAL /R, then the convergence of the above expression
will be greatly improved [74]. This can be proved by showing that this problem reduces
to approximating the scalar function X by the polynomial expansion, where )’ belongs
to the domain which includes all the eigenvalues of the operator —iHAt/h. This can be
understood by recalling the definition of a function of an operator:

ePb; = i (34)

where B has the eigenvector b; with eigenvalue b;.
The error in an interpolation polynomial is given by:

N

E(z) = ans1() [[ (= - 5). (35)
7=0

One method by which this error can be minimised takes no account of its relative magnitude
in the interval, i1.e. the error is minimised regardless of how important the error at z; is
relative to the error at z;. This can be done by choosing the interpolation points z; such
that ]’[;vzo(a: — z;) is minimum for arbitrary z in the interval. The Chebyshev polynomials
have uniform magnitude across the interval, i.e. Hf_’__o(z — ;) is a minimum. Hence if
these polynomials are used E(z) is minimised. Thus, the Chebyshev polynomials are used
in this expansion because they provide an approximation which is almost as good as the
best approzimation, or minimax polynomial, which has the smallest deviation from the
true function. An important aspect of this minimisation is that the error is uniformly
distributed over all the range of eigenvalues.
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In solving the T.D.S.E. the time-evolution operator is applied to an initial wavefunction,
¥(0). Thus it might be better to try to minimise the error in U(¢)¥(0) rather than in U(2).

This error can be written as:

R=anu ( HAt) ljj ( At - z,l) ¥(0). (36)

Full minimisation of R is extremely complicated due to dependence of ay,; on —;—‘f{ At.
Thus only the minimisation of (:hif'IAt — 2;1)¥(0) is considered. It has been shown that
the polynomials generated by the Lanczos recurrence scheme satisfy this condition [73].
Another method of minimising the error can be used which assumes a functional form
for aN+1(°TiﬁAt) and then does a full minimisation of R [73]. For both these minimisa-
tions of R, the error will not be uniform across the range of eigenvalues. This however
may not be a disadvantage. This algorithm tailors the polynomial approximation to the
particular wavefunction which is to be propagated. It can be thought of as putting the
interpolation points most densely in the areas of the domain where they are most needed,

1.e. those corresponding to the eigenvalues of the predominant eigenvectors which make up

the wavefunction.

The Chebyshev Propagator
This propagator expands the time-evolution operator using the complex Chebyshev
polynomials [76] [77]. These polynomials are a complex version of the Chebyshev polyno-

mials and are defined as:
r(w) = (' Te(—iw),  we [, (37)
and the T} are the Chebyshev polynomials and are defined as:
Ti(z) = cos(k arccos(z)). (38)
The ¢, are orthogonal on the imaginary interval [—i,1] with respect to the following inner

= —i/i fwlg'@) 4, (39)
TP

The Chebyshev polynomials can be calculated using the recurrence relation:

product:

Ti(z) = 22Tj—1(z) + Te—s(z) (40)

with
To(z) =1, Ti(z) = =. (41)
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A related recurrence exists for the complex Chebyshev polynomials.

In order to use these polynomials the Hamiltonian must be scaled and shifted. This
is necessary because the complex polynomials are only defined on the range [—1,%]. It was
stated previously that an interpolation polynomial will have the best convergence when
the interpolation points are in the region of the eigenvalues. Thus, it would be useful to
scale and shift the Hamiltonian so that its eigenvalues fall in the range [—%,3], i.e. in the
region of the interpolation points. To do this the range of eigenvalues of —iHAt/h must
be calculated. This can be done as follows. The maximum kinetic energy that can be
represented on the gnid is h2k2 kl ,./2m where kpq, is w/Az. If then Viin and Vipe, are
the minimum and maximum of the potential represented on the grid, the range of the
eigenvalues of H is:

n2h?

A Vmin;vma.z revreci B 42
€ +2m(A:z:)2 (42)

so that the range of —iHAt/h is —iAAt/h. A normalised Hamiltonian can now be defined:

- HAt - (R+G)
Hnorm = s 4
£ (13)
where
8¢ (Vinee + gkt = V)
2
and
G = AtVipin. (45)

Here A has not been explicitly included in the definition of ffno,m, equation (43), since as

it is present in both the numerator and the denominator, it will cancel. Thus,
exp [%HAt] = exp [—iffno,mR/h] exp [~i(R + G) /4], (46)
and the term exp [—if{no,mR/h} will be approximated using the Chebyshev expansion:
N
exp [~iHaormR/B| = k;ak (R/R)éx(—iHnorm)- (47)

The coefficients ai(R/k) are now needed,

1 exp [ 1HnormR/h] ¢k( norm) L2
(R/h) ./—t \/1 - |Hnorm| d(—lHnorm) (48)
= ctJu(R/R), (49)
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where ¢ = 1 for k = 0, ¢ = 2 for k > 0, and Ji(R/R) are Bessel functions. Now

substituting these coeficients into the Chebyshev expansion:

A N A~
exp [—iHnormR/h] ~ Z Cka(R/h)d’k(_iHnorm)- (50)
k=0

Hence the time-evolution operator can be approximated as:

— 1 ~ N -~

exp [ ZHAY ~ exp[—i(R+ G)/8]) X cuJu(R/K) (=i Haorm). (51)
k=0

This then requires the evaluation of R and G, and so f{norm; which is then used in the

recurrence relation (given above) to calculate the Chebyshev polynomials. In fact the

calculation is actually of U/(¢)¥(0) so that the recurrence becomes:
b1 (—i Hyorm ) ¥(0) = 2(—i Hyorm )k—1(—i Hnorm ) ¥(0) + ¢ _a(—iHuorm ) ¥(0)  (52)

with
bo(—iHuorm )¥(0) = U(0),  é1(—iHuorm)¥(0) = —i Hnorm ¥(0). (53)

The Bessel function coefficients, Ji(R/h), are calculated for k = 0 and 1 using, depend-
ing on the magnitude of R/k, either a polynomial expansion or rational functions of their
argument R/h. For k > 1 a recurrence relation upward on k from Jp and Jp is used, but
will only remain stable whilst k < R/k. For k > R/k, Miller’s algorithm is used 71]. This
involves applying the recurrence downward from some arbitrary starting value and making
use of the upward-unstable nature of the recurrence to put the value of the function onto
the correct solution. Whilst this recurrence downward is carried out, the value of Ji(R/k),
i.e. the required value of the kth Bessel function, is saved. Once Jg is reached, Jy(R/h) is
normalised with the sum accumulated along the way [71]. This normalisation is done using

the following summation:

1 = Jo(R/R) + 2J2(R/K) + 2J4(R/R) + 2J6(R/B) + - - (54)

The number of expansion terms, N, needed for convergence is determined by the size of
R/k, or more precisely the size of the time-energy phase space. When k > R/h the Bessel
functions Ji(R/h) decay exponentially, so that the number of terms in the expansion, N,
has only to be slightly larger than R/k. The amount by which N exceeds R/ will determine
how accurate the calculation will be. This means that, in a practical implementation, the
number of expansion terms, N, can be chosen such that the accuracy of the summation is

dominated by the accuracy of the computer. The total number of terms is usually taken
to be aR/k where a = 1.3.
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One drawback of the global evolution is that information about intermediate results is
not obtained. There are two ways to remedy this, though for both it must be realised that
the practical lower limit of the number of terms in the Chebyshev expansion is of the order
of 40 [6]. The reason for this lower limit, or minimum number of terms, is that the extra
terms above k = R/h which are needed to converge the sum begin to dominate, making

the approximation inefficient. The two methods are then:

1. In equation (51), consider that only the expansion coefficients are time dependent,
i.e. Jy(R/k), since R/h depends on At. The Chebyshev polynomial operations,
¢k(—iﬂnorm)\IJ(O), which require most of the calculation effort, are time independent.
This means that the expansion coeflicients Jy(R/k) can be recalculated for many inter-
mediate times. This method is probably the most accurate of the two, but the repeated
calculation of the coefficients can be computational expensive, and the method is very
unstable when an imaginary potential is introduced. This then is a high-order polyno-
mial approximation, i.e. the total timestep which is propagated is very long requiring a
large number of terms in the polynomial expansion.

2. The other method is simply to split the propagation into smaller intervals, so that in
some ways the propagator becomes like a short-time propagator though the timestep
used has no limit. It is this method which is particularly sensitive to the lower limit of
the number of terms in the Chebyshev expansion. This is because the extra computa-
tional effort required to calculate the terms above aR/k becomes prohibitive when re-
peated for many timesteps. This is a lower-order polynomial approximation. Whether
or not it will actually be a low-order polynomial approximation, with which a time-
dependent Hamiltonian can be used, will depend on the particular problem and the

shortest reasonable timestep that can be used without the calculation becoming too

expensive.

2.5. 2 The Short Iterative Lanczos (S.I.L.)
This propagator expands the time-evolution operator using a basis of polynomials which
are generated with the Lanczos recursion [6][78]. This expansion is not done explicitly as
for the Chebyshev propagator. However, a M dimensional Krylov basis set is constructed,

using the Lanczos recurrence scheme. This is initialised using:

go = ¥(0)
; (55)
Hgqo = aoq0 + Boq1
and the recurrence formula used is:
Hg; = Bj-19j-1 + agj + Bjgj+1, (56)

2: The Method




24

where

aj = (g;|H|g;) (57)

and

Bi—1 = (gj-11Hlgj). (58)

(B; is obtained by the normalisation requirement (g;+1|g;41) = 1.) Thus, the polynomials
g;j, which form an orthogonal basis, are constructed using this scheme. The matrix of the
Hamiltonian operator is then formed using these polynomials. In this basis the Hamiltonian

operator is tridiagonal and so its diagonalisation is relatively easy, i.e. it does not scale as

O(M?3):

a Bo O -0 .- 0
Bo @ B 0 .- 0
0 a 0 0
Hy=| 0 O A ; (59)
0 woo wer oo Bys am_z Bu_s
0 wov eee e 0 Buyes am-;

The Hamiltonian matrix, Hps, is diagonalised in this basis to yield a set of eigenvalues and
eigenvectors which describe the diagonal matrix, Dps, and the matrix of the eigenvectors,
Z. These are then used in the propagation of the wavefunction.

The propagation scheme is then:

1. The Krylov basis i1s constructed; the matrix Hps formed, and then diagonalised.

2. The wavefunction is transformed into the space described by the eigenvectors of the
Hamiltonian, using the matrix Z. These eigenvectors will be simple combinations of
the Krylov basis functions.

3. The transformed wavefunction is then propagated using the diagonal time-evolution

operator, exp(:hiDMAt). Since the Hamiltonian is diagonal in the space described by

its eigenvectors, the propagation is as simple as for any eigenfunction of a Hamiltoman.
4. The propagated wavefunction is then back-transformed as a reverse of the second step.

Thus, the time-evolution operator can be expressed as:
U(Aat) = 2t exp(%zDMAt)Z, (60)

so that the time-dependent wavefunction can be written as:

: M-1
—1
v(At) = 2T exp(fDMAt)ZQO = ) ungi, (61)

1=0
from which it is clear that the time-evolution operator can be expressed as an expansion

in the polynomials generated by the Lanczos recursion.
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It can be seen that at zero time the wavefunction 1s given by the zeroth-order vector in
the Krylov basis set. As time evolves amplitude will be transferred to higher-order vectors.
The error in this time-evolution propagator occurs because amplitude in the last vector

gm -1 cannot escape to the next vector gps, as the basis set has a limited size. This error

is given by the expression [79]:

€ITOr ~

——— 11 B (62)

(At/ﬁ)M—l M-2 1/2
S el

Thus the accuracy depends on the order of the expansion and the length of the time step.
If a calculation is required to a particular accuracy equation (62) can be used to decide on a
suitable time step and size of the Krylov basis. Certain situations may minimise this error,

e.g. when the initial wavefunction is an approximate eigenfunction of the Hamiltonian [80).

However, other errors do arise from the scheme used to obtain the orthogonal vectors.
For this reason the method must have a limited size of basis set and so a limited time step

[78]. Thus this propagator is the Short Iterative Lanczos.

Short-Time Propagators

Short-time propagators are conceptually much easier to understand than global prop-
agators, since they do not rely on any complicated expansions of the time-evolution oper-
ator. Also, it is essential to use them in certain physical situations, where time-dependent
Hamiltonians are used, e.g. motion in laser fields, motion under thermal agitation, or
the T.D.S.C.F. (time-dependent self-consistent field) approximation. There are two main
propagators, The Second-Order-Differencing Scheme (S.0.D.) [5](6], and The Split Time
Propagator Scheme (Feit and Fleck) [36](81].

The Second-Order-Differencing Scheme (S.0.D.)

For the S.0.D. scheme, the time-evolution operator is expanded in a Taylor series.
However, this cannot be done without considering time reversal, since if it is ignored the

expansion is not stable. Thus consider the symmetric relation:
U(t + At) - $(t — At) = (exp [~iHAt/h] — exp [iHAL/R]) (2); (63)
and then the expansion of the exponential terms in a Taylor series:
U(t+ At) ~ U(t — At) — 265AtHU(t)/h; (64)

this is the second-order-differencing scheme.
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This propagating scheme, however, is only stable for timesteps smaller than the stability

limit, At,:
k
At, = —, (65)

Enax
where Ep.. can be calculated in a similar way to R and G in equations (44) and (45),

so that Emax = (2R + G). This stability limit can be thought of as arising from the

time-uncertainty principle, and obviously affects the way in which time is discretised.
This scheme rigorously preserves both norm and energy, so that error accumulates in

the phase:
AtEn)?
(AtEm) (66)

error X —mMm——.
h3

It can be seen that the error is worse at higher eigenvalues, in contrast to the Chebyshev
propagator which has its error evenly distributed across the range. Propagating N times,
this error accumulates N times. This means that the error can be minimised by choosing
a smaller timestep and propagating for longer times. For example, it is usual to choose a
timestep five times smaller than the stability limit, and to propagate for 5N timesteps. In
this way the error is reduced by a factor of 5/5% = 1/25, (compared to the propagation
at the longer timestep), and allows longer times for propagation before errors in the phase
become appreciable. It is also possible to shift the energy by adding a constant to the
Hamiltonian, so that the energy range for which there is minimum error can be chosen to
coincide with the most appropriate energy range for the calculation being done. Another
way to increase the accuracy of the calculation, without reducing the timestep, is to use
a bounded potential. For example, at very small displacements a Morse potential will be
very large, so that At, will be very small. However, the wavefunction does not penetrate
far into this region, so that if the potential is cut-off at some value At, will be increased,
without affecting the wavefunction unduly. Besides improving the accuracy, the speed of

the calculation can also be improved, since the number of timesteps can be reduced.

Consider again the S.0.D. scheme; it can be seen to require the wavefunction at two
previous timesteps. At the start of the propagation only the initial wavefunctionis available.
Thus the propagation of the first step is done using a second-order Runge-Kutta scheme,
which only requires one previous value of the wavefunction [71]. This scheme is an extension

of the Euler method, which estimates the next point on a curve simply as:

d
Yntl R Yn t+ _y"gz_n)'dz (67)
T

In the second-order Runge-Cutta scheme, a trial point is considered:

1 dy(zy,) dz
y(zn + ’é‘dz) X Yn t+ y—d(m'l—z‘) (68)
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and then the required point is calculated using the derivative of the curve at this trial point:

dy(z, + idz
Yn+1 = Yn + %dz (69)

Thus in the case of the time propagation:

U(At) ~ ¥(0) — %fI\II(At/2)At, (70)

where .
T(At/2) ~ ¥(0) — %f{II’(O)At/Z (71)

since 5u() Y
5 =~ H¥(0) (72)

The Split Time Propagating Scheme

For this propagation scheme, the Hamiltonian is split into its constituent parts:
H=T+V, (73)

so that the time-evolution operator can be approximated as:

—ifHAt]  [-iTAt —iVAt —iT At (4
exp - X exp exp : exp | —r— - )

Thus the time-evolution operator is symmetrically split in a way which can be shown be
of second-order accuracy [81].

This propagator is intrinsically stable, so there is no restriction on the magnitude of
the timestep on these grounds. However, it has been suggested that if the timestep exceeds
the stability limit, At, given above, the results become meaningless because the phase of
the propagation operator is greater than 2r. However, if only eigenstates below a certain
energy bound are required, e.g. when bound states are of interest, it is possible to choose a
timestep governed by this bounded energy range, rather than considering the entire energy
range supported on the grid. Thus in the example given, the time step would be chosen
according to the binding energy. In this way the bound states would have the correct phase,
whilst the continuum states would be out of phase.

The errors which arise in the split time propagator are due to the fact that the operators

T and V do not commute. Hence the error is given in terms of the commutators of these

operators:

eror = max | i A 17 2] iy [P 22,91 (75)
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where P? = 2mT.

The norm of the wavefunction is rigorously preserved so that the error accumulates in
both the phase and the energy of the wavefunction. As with the S.0.D., the errors are of
O(At®). Again as with the S.0.D., the timestep can be reduced to reduce the error, and
the degree to which this is done depends on the accuracy required. Also, the error is not
distributed uniformly, and can be expected to be worst in the region of the most rapidly
fluctuating potential.

Consider now how this propagation is carried out. The right-hand side of equation (74)
is equivalent to free-particle propagation over a half timestep. This free-particle propaga-
tion is carried out by transforming the wavefunction into momentum space by a F.F.T.
procedure and then multiplying each grid point by exp [—i(klz/2m)(At/2fz)]; the wave-
function is then transformed back to coordinate space by an inverse F.F.T. procedure. The
next term in equation (74) corresponds to a phase change from the action of the potential
applied over the whole timestep. This phase change is carried out simply by multiplying
the wavefunction by exp [—iVj(At/k)]. Finally the last term corresponds to an additional
free-particle propagation over a half timestep. This propagation is carried out in the same
way as the first.

If the propagation is applied many times in sequence, which is likely because prop-
agations of long time intervals are nearly always required, pairs of half-step free-particle
propagations combine into full-step propagations. The computation thus proceeds as a
succession of full-step propagations, applied in momentum space, alternating with phase
changes of the wavefunction executed in coordinate space. The exceptions to this rule are
the half timesteps applied at the beginning and end of the calculation, and at those inter-
mediate times where the wavefunction is required, e.g. when studying the mechanism of a

reaction not only the final wavefunction is of interest.

Aside—The Calculation of Eigenvalues and Eigenfunctions

The wavefunction at zero time can always be written as a combination of the eigen-

functions, u;, of the Hamiltonian, since the eigenfunctions will form a complete basis, so

that:
N
¥(0) = ) _ aiui, (76)
1=1

and in general the time-dependent wavefunction can be written as:
N .
Y(t) = 3 ae Eitlhy, (77)
=1

where E; is the eigenvalue corresponding to the eigenfunction u;. If the autocorrelation
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function is formed:

(T (0)[®(2)) = Zla et Bt/ (78)

and then Fourier transformed, an energy spectrum is produced:

N
P(E)=3 |ai|*6(E — E;). (79)

i=1
This gives then the eigenvalues weighted by the coefficients |a;|2 [36]. If the autocorrelation
function does not die off significantly, so that the time for which the wavefunction is prop-
agated, T, cannot be taken to be infinite, it may be necessary to use windowing functions
[36][71]. If these are not used and the function is cut off in such a way that the function
is no longer periodic then the spectrum produced by the Fourier transform will have many
unphysical artifacts.

The eigenfunctions can be found by considering the expansion of the wavefunction in
two ways. The first method, which is only suitable to find the ground state, propagates the
wavefunction in imaginary time. It can be seen from equation (77) that ¥(t) will converge
to the ground state at a rate depénding on the difference between the ground state energy
and the other eigenvalues [74].

The second method, which in theory may be used to calculate all the eigenfunctions,

involves taking the Fourier transform of ¥(¢):
U(t) <= Y(E) = Za,u, E - E) (80)

so that at E equal to E,, ¥(E) will be proportional to u, [36]. The above implies that
T can be taken to be infinite and that there no overlapping resonances. If this is not
the case the use of lineshaping techniques will be necessary in order to calculate all the
eigenfunctions. For the resolution of eigenfunctions, which have eigenvalues separated by
an amount AE (in atomic units), it is necessary to propagate the wavefunction (t) for a

time T of at least 7/AE.

Absorbing Boundaries

As was hinted at earlier in this chapter, problems of wrap-around and reflection can
arise at the edge of the grid. In essence these occur because a finite grid is used. Obviously,
in real physical situations space is not bounded in this way, and so the problem can be
thought of as trying to imitate infinite space. The mechanism by which the boundary effects
occur is through the use of the F.F.T., which discretises both coordinate and momentum
space with periodic boundary conditions.
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The problem can be approached in two ways: either to use a very large grid; or somehow
to achieve an absorbing boundary so that the outgoing amplitude is effectively destroyed
before it arrives at the boundary. The first of these two methods is simple, but computa-
tionally expensive. The second is less straightforward, but more efficient. Again this can

be done in two ways:

1. At regular time intervals the wavefunction is damped down, from a point suitably far

from the edge R,ps [12]. Thus a function of the following type:

‘I’(R) - ‘IJ(R), R < Rabs

¥(R) - ¥(R)exp [~a(R— Raps)?], R > Ras, (81)

1s used. The parameters R,p; and a, can be altered depending on the frequency with
which the function is applied, for example, if it is applied after every timestep, rather
than say every thousandth, a need only be quite small.

2. An imaginary potential can be included in the Hamiltonian. The sign of this potential
will be negative. The magnitude will be zero for R < R,ps. The introduction of an
imaginary potential will have the same effect as the damping described above, but is
carried out during every timestep, i.e. each time the Hamiltonian is used. The total

potential of the system becomes:
V(R) = Vo(R) — iVi(R). (82)

However, a CAREFUL choice of a time integration scheme is required to ensure nu-
merical stability [72]. The reason for this warning is that most of the propagation
schemes previously described are for Hamiltonians which are Hermitian, which will not

be the case when an imaginary potential is included. This last point will be discussed

in greater detail later.

2.8. 1 Imaginary Potentials

The question now arises as to the form and magnitude of the imaginary potential
required.

It has been suggested that the magnitude of the imaginary potential required can be
estimated by the following relation [82]:

KE?/(ARV8m) < |Vig| < (ARVEmE?)/A, (83)

where FE is the translational energy of the system, AR is the length of the part of the

grid which is being used as the absorbing boundary, m the mass of the system under
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consideration and Vjp is the magnitude of the potential at the very edge of the grid. The
strengths of the inequalities in equation (83) have been investigated using the semiclassical
J.W.K.B. approximation [83].

Two different forms of the potential have been suggested, linear [82] or with exponential

terms [72]. For a linear imaginary potential one form which has been used is:

Vi = VIBR_—Aijm; Raps <R < Redge: (84)
0, otherwise.
For an imaginary potential with exponential terms, one form which has been used is:
Vis
‘/I — { COShZI(Redse—R)/Q], Rabs S R S Redge, (85)
otherwise.

?

i.e. inverse of a squared hyperbolic cosine. Another form is the inverse of a non-squared

hyperbolic cosine:

cosh [(Redge—R)/a] !
, otherwise.

Here a is adjusted depending on the value of AR.

Vip '
VI — { Rabs S R S Redge’ (86)

Recently an investigation into the best form of the imaginary potential has been carried
out, again using the semiclassical J.W.K.B. approximation. This recommended that a
complex absorbing potential of the form V(z) = —iAexp(—B/z) be used. Also a scaled
version of the Schrodinger equation was derived, ensuring that the optimised parameters
obtained under particular conditions could be scaled, and so be suitable for use under

different conditions [84] [85].

Aside—The Interaction Picture

Another completely different approach to the problems caused by the use of a finite grid
1s to use the interaction picture [86]. This picture is in between the Schrodinger picture
and the Heisenberg picture. In the Schrodinger picture the dynamical variables or the
operators are constant in time except for an explicit time dependence, but the state vector
or wavefunction changes in time (this is the picture utilised here). In the Heisenberg picture
the wavefunction is constant in time, but the operators change. The interaction picture, in
which both the operators and the wavefunction have some time dependence, can be used
so that the movement or spreading of the wavepacket in time is minimised, and the size of

grid required is minimised too. The wavefunction will be given by:
¥ () = exp [iflot/A] ¥s(2), (87)

where Hy is the kinetic part of the Hamiltonian, i.e. 7. This implies the wavefunctions in

the two different pictures are the same at time zero. The last equation can be rewritten as:
(t) = exp [iHot/h| exp [—iHt/h] ¥5(0). (88)
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The physical meaning of this is that ¥y(t) is obtained by propagating the wavefunction
from time zero to time ¢ under the action of the full Hamiltonian, and then propagating
backwards to ¢ = 0 under the action of the free Hamiltonian. Thus, the difference between
U;(t) and ¥g(t) at time ¢ will be purely due to the dynamical influence the system expe-
riences from time zero through ¢. Therefore, the use of this picture eliminates effects such

as spreading and oscillation.

In the interaction picture the T.D.S.E. becomes:

O (t)
Bt

ik = Hy9(2), (89)

where

Hj(t) = exp [iffot/h] V exp [—iflot/h] , (90)

and ¥y(t) has been defined previously.

For some calculations this may be very useful. For example, consider the calculation
of the S matrix elements. The elements are independent of the picture and so there is
no need to transform back to the Schrédinger picture to obtain the required information.
Also, in general, in scattering calculations the interaction picture will be useful because
there are large parts of the grid where the potential is very small, which this picture can

treat efficiently.

Summary

In this chapter the Fourier method for studying one-dimensional problems has been
introduced. The nature of the initial wavefunction to be used has been discussed. It has
been shown how the Hamiltonian and its operation on the wavefunction can be calculated,
and then used to propagate the wavefunction in time. Several different methods for the
propagation of the T.D.S.E. have been described. Various types of absorbing boundaries
have also been described. The use of these different propagation schemes, and different

types of absorbing boundaries, will be investigated in the next chapter.
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Topics Investigated

3.1.

3.1

There are many methods that can be used for propagating the T.D.S.E., and various
different forms of imaginary potentials that can be used to set up an absorbing boundary.
It was felt that a systematic investigation of these was necessary to make informed decisions

about which methods were suitable for the applications of interest in the present work.

Propagating Schemes

All the propagation schemes described in the previous chapter were investigated, with
the exception of the Short Iterative Lanczos. Recently a comparison of different propagation
schemes has been reported in the literature [78]; this is a thorough investigation into the

accuracy, numerical efficiency and stability of all the propagation schemes described in

Chapter 2.

Method

In order to investigate the various propagators, a simple problem was set up whose so-
lution was known analytically. The problem used was that of an eigenfunction propagating
in a harmonic well. The solution was obtained using the propagators and then compared to

the analytical solution. Atomic units are used throughout this chapter; these are described

in Appendix A.

A purely harmonic potential was used,
1 2
V(z) = Ek(z ~a) (91)

with values of the parameters, k and a, appropriate for the hydrogen molecule. The force
constant k can be calculated from the frequency of vibration of the hydrogen molecule,
v= (1/27r)\/k/_m; a is the equilibrium bond length of the hydrogen molecule.

A variety of different initial wavefunctions was used, corresponding to the eigenfunctions
of this potential. For n = 0, the initial wavefunction was a Gaussian centred at the

equilibrium bond length of hydrogen:

al/? 2 2
¥n=o(2,0) = —7g exp [—a (z —a) /2] ; (92)

where a* = mk/k%. The higher eigenfunctions were described by the product of this
Gaussian with an Hermite polynomial, Hp(az) (given in table 1), where n is the index of
the energy level.
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Table 1. Hermite polynomials.

Ho(oz) =1
Hi(oz) = 20z

Hy(az) = 4(az)? -2

H3(az) = 8(az)® — 12az

Hy(az) = 16(az)? - 48(az)? + 12

The error in the propagation was estimated by the deviation from the analytic solution:

error(t) = / |Wanal(z,t) — ‘Ilca_l(:c,t)|2da:, (93)

where the analytical solutions, W), are simply the initial wavefunctions multiplied by a

phase factor:

VUanal n(2,t) = ¥n(z,0)exp [—i(n + 1/2)wt], (94)

where w 1s the angular frequency of the hydrogen bond vibration. The S.0.D. and Cheby-
shev propagators can have their error estimated in this way. However, for the Feit/Fleck
propagator error accumulates in both energy and phase so that this method is not com-

pletely reliable [6].

As well as this error, the norm:
norm(t) = /‘Il(:c,t)*\I’(:c,t)dz (95)

and the energy:
energy(t) = /‘Il(z,t)*ff‘ll(:c,t) dz (96)
were monitored. These should, of course, stay constant. Since, for the specific case of the

harmonic oscillator, the eigenfunctions are invariant to the Feit/Fleck propagator, a good

method to test the error is to follow the energy deviation from the initial value [6].
The computer time used for the calculations was recorded.

A grid of 64 points was used in the calculation, with Az = 0.031250 A, so that the grid
ranged from z = 0.010 A to z = 2.01 A, with a = 0.74144 A. The total propagation time
was T = 207, where 7 is the period of vibration of Hz and is equal to the reciprocal of the
vibrational frequency of Hy. The timestep, At, was varied. To keep the total propagation
time constant, the total number of propagation steps, N, was varied accordingly. The
ratio of the timestep used to the stability timestep defined in Chapter 2, was denoted by
R (this is not the same R as was used in the discussion of the Chebyshev propagator):
At

At,

R (97)
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Thus, in order to vary the timestep, the calculations were carried out for different values
of R. This is only relevant for the short-time propagators.

In fact, the grid used here is not particularly efficient. The range of kinetic energy
available on the grid is much larger than the range of potential energy. Whilst in certain
situations this might be useful, in this case a harmonic oscillator is being considered, which
is known to have equal amounts of average kinetic and potential energy. Thus, a grid which
was better balanced would be more suitable in this case. However, this in no way affects

the comparison of the different time propagators.
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3.1. 2 Results

The results for the computer time, the norm, the energy deviation, and the error are

presented for each propagator.
Time
Consider the computer time taken to propagate the eigenstate n = 4 for a total prop-

agation time of T with R = 0.21 on a Sun Sparcstation IPC workstation. The computer

times for each propagator are shown in table 2.

Table 2. Timings for the various propagation schemes.

Propagation Scheme | Time/s
S.0.D. 1622.08

Feit /Fleck 2010.15
Chebyshev-stepping | 254.55
Chebyshev-global |3315.27
Chebyshev-globalt | 707.71

t—No intermediate results obtained.

First, it is immediately obvious that the Chebyshev-stepping method is superior to
the Chebyshev-global propagator if intermediate results are required. It appears that the
substantially longer times for the calculations using the Chebyshev-global propagator arise
because of the limited RAM on the machine on which the calculations were carried out.
The Chebyshev-global propagator requires that many functions be held in the memory.
Another factor could be the necessity of calculating very many time-dependent coefficients,

1.e. Bessel functions, for the global version of the Chebyshev propagator.

Secondly, it can be seen that the short-time propagators are a great deal slower than
the Chebyshev-stepping propagator for the value of R used. A small value of R was chosen
since this gives comparable accuracy for the various propagators; a value any higher would
have made the comparison meaningless. The reason for the disparity in propagation times
becomes obvious when the number of calls to the Hamiltonian, N¢, is considered. For the
S.0.D., as for all short-time propagators, the number of calls to the Hamiltonian is equal
to the number of timesteps, Np. Thus, as Np x At =T

Nex At=T. (98)

Now, At is restricted, due to the constraints of stability and accuracy, by the relation (in

atomic units):

= Aty = — (99)
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since AE is equal to Enax here, so that:

R
At = o= (100)
Thus
T TAE
N = =
T (R/AE) R (101)

For the Chebyshev scheme, the number of calls, N¢, is equal to the number of terms in the

polynomial expansion:

Ng = AE2x T

where the value 1.3 refers to the factor by which the minimum number of terms in the expan-

x 1.3, (102)

sion must be multiplied in order to obtain machine accuracy. (This discussion concerning
the number of calls to the Hamiltonian does not change when the Chebyshev propagator

is used in a stepping manner.) Therefore, the ratio of N¢ for the two propagation schemes

is:

Ratio = (103)

1.3x R
which in this case gives Ratio & 7.3, which compares well to a value of 6.3 (that is comparing

S.0.D. and Chebyshev-stepping) obtained above. The discrepancy is probably due to the

neglect of the time required for the calculation of the Bessel coeflicients.

Norm
Analysis of the conservation of the norm revealed nothing interesting.
The norm was conserved better for the short-time propagators than the global propa-
gator because the former are unitary transformations, but the norm was still conserved to
8 decimal places for the Chebyshev propagator. However, when R approaches 1 the S.0.D.

propagator becomes unstable and the norm becomes extremely large.
Error

Now consider the error as defined above in equation (93). The results for the various
propagators are shown in figures 1 — 10.

For the S.0.D. propagator the error may be clearly seen to increase with both R, i.e.
At, and n, i.e. energy (figures 1 — 2).

Given the way error accumulates for the Feit/Fleck propagator, i.e. in both phase and
energy, the results here for that propagator may be only of limited significance for use in
comparison with the other propagators. However it can be seen that the error increases
with R, i.e. At (figures 3 — 6).

For the Chebyshev propagators (figures 7 — 10) the error does not depend on n as
expected, in fact the error seems to decrease as n increases. The global propagator ap-

pears to be more accurate than the stepping propagator. Since error accumulates for each
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timestep, for the stepping propagator and all short-time propagators, the greater accuracy

of the global propagator is expected.

It also can be clearly seen that for all except the lowest values of R and n, the Chebyshev

propagator is the most accurate of all the propagation schemes. In any calculation of

significance there will be a wide range of energies involved, thus it can be seen that in

general the Chebyshev propagator will yield the most accurate results.

Energy

Energy was conserved better for the S.0.D. propagator than the Chebyshev propagator,

while R was small, but the opposite was true as R approached 1. There was not a significant

difference in the results at different values of n. For both, the deviations showed little need

for concern.

Table 3. The dependence of the error in the Feit/Fleck propagator on R and n.

Initial energy = 0.0099861127453796 E}, ,

n=2_0

R

Deviation of energy/E,

0.21

—0.0000000000001960

0.95

—0.0000000000000476

1.14

—0.0000000000000425

4.20

—0.0000000000000039

8.40

—0.0000000000040607

Initial energy

= 0.049930563726905 E}, ,

n=2

R

Deviation of energy/E;,

0.21

—0.000000000001075

0.95

—0.000000000000241

1.14

—0.000000000000195

4.20

—0.000000000000007

Initial energy

= 0.089875014711377 E},

n=4

R

Deviation of energy /Ej

0.21

—0.00000000003137

0.95

—0.00000000000778

1.14

—0.00000000000276

3.80

—0.00000000061170

7.60

—0.00000022168605
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For the Feit/Fleck propagator the energy conservation deteriorated when R was very
large, but appeared to be best for intermediate values of R (see table 3). For the Feit/Fleck
propagator it is not necessary for R to be less than 1 in these calculations; this is in
contrast to the requirements for the S.0.D. propagator. This is because a wavepacket with
considerably less energy than the total available on the grid is being propagated. Thus,
although the phase of higher energy wavepackets would become meaningless, the phase of
the low energy wavepacket used in this calculation is not affected by such errors, until a
particular limiting value of R is reached.

The results are not those expected since the error, which is taken here to be the error
in the energy, is for this method proportional to At3. Hence the error should increase with
R. In fact it appears as if the error increases with the number of steps propagated, i.e.
inversely proportional to R for a constant total propagation time.

The dependence of the error on the energy, or n, has been reported to be linear in the
quantum number n [6]. It is not completely clear in the work done in this chapter what
the dependence is, though there is certainly a marked increase at n = 4, so maybe this is
an indication of the error being proportional to the energy, although this is more likely due
to the limiting value of R having been reached. It appears that using the conservation of

energy as a measure of the error for this propagator is not particularly useful.

The results obtained here for the performance of the various propagators are mostly those
expected from a consideration of the properties of the propagators, which were discussed
in the last chapter, as well as extensively in the literature [6]. At this stage it appears that,
on the grounds of conservation of energy and accuracy the Chebyshev-stepping propagator

is the ‘best’ for our purposes.
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Harmonic potential, n=0
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Harmonic potential, n=4
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Fig. 2. Graphs of error against time for the second-order differencing propagator, forn = 4.
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3.2 Imaginary Potentials

The optimal magnitude and functional form of imaginary potentials, required for use
as absorbing boundaries, were investigated. Also, the stability of the various propagators

with non-Hermitian Hamiltonians was investigated.

Method

In order to investigate the use of imaginary potentials a moving Gaussian was set up
on a grid with a potential barrier. The motion of the wavepacket after contact with the
barrier, as it approached the edge of the grid, was monitored.

A square potential barrier was used. The barrier height was 2 x 10* cm~! (9.13 x 1072
E;) and its width was five grid points on a grid of 64 points. The barrier started at grid
point number 40.

The initial wavefunction was a moving Gaussian, i.e. it was of the form:
¥(z,0) = e keea’(=—0)/2, (104)

where a determines the initial position of the Gaussian (at approximately grid point 12)
and a determines its width (the values for Hy, given earlier in this chapter, were used for
these two parameters). The wave vector k determines the speed with which the Gaussian
moves. A value for k must be chosen which can be represented on a grid with the spacing

Az = 0.0625 A; in this case a value of —10.5 a.u. was used.

The transmitted probability of the wavepacket through the square potential barrier, or
total flux, was obtained from the flux j(z,t) at a particular point = z [82]. The point
z; must be beyond the potential barrier, but not too near the boundary; in this case it is

at grid point number 48. The flux is given by:

1 A dv*
j(zf,t):—(‘ll*——\ll ) X
dz dz 2=z,

(105)

This flux was integrated over time to give the total flux. If there is no absorbing potential
at the boundary, then the total flux will initially increase as the wavepacket passes through
the potential barrier, but will then decrease as the wavepacket is reflected back by the

boundary. However, if there is a suitable absorbing boundary then the total flux will reach
a maximum value and will then remain constant.

The magnitude of the imaginary potential required and the best functional form were
investigated using the Feit/Fleck propagator which is stable for non-Hermitian Hamilton-

ans. The magnitude of the potential was varied within the range:

Vi < |ViB| < V3, (106)
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where V4 and V2 were defined in the last chapter in equation (83). The value for |V;p| 1s
given by:
[Vig| = Vi + My (V2 — V1), (107)

so that the parameter My is altered in order to vary the magnitude of the imaginary
potential. Several different functional forms for the imaginary potential were investigated,
e.g. with linear or with exponential terms. These were described in Chapter 2 in equations
(84), (85) and (86).

In these examples the absorbing potential was applied over approximately 10% of the
grid so that Ry, from equations (84), (85) and (86), is at grid point number 58. The
value of a in the exponential form of the imaginary potential was set to 1/2. The total
propagation time was 207, where T was defined earlier in this chapter; for the short-time

propagators the value of R used was approximately 0.25.

3.2. 2 Results
The optimal magnitude and form of the imaginary potential

The results of the calculations for the different magnitudes and forms of the imaginary
potential are shown in figures 11 — 12.

It can be seen from these figures that the imaginary potential should be slightly above
the bottom of the range, My =~ 0.03, to get full absorption. Even potentials well above the
range do not cause significant reflection from the potential itself (see figures 11d, 12d, 12h).
There is very little difference between the various functional forms, that is the linear and the
exponential (both the inverse squared and non-squared hyperbolic cosine forms), since they
both appear to need the same magnitude of imaginary potential to be effective. (Note that
in the figures, the potentials with the exponential terms are referred to as the exponential
and the squared exponential for the inverse hyperbolic cosine and inverse squared hyperbolic

cosine forms respectively.)

It has been suggested by Child [83] that the strengths of the inequalities in equation
(83) are such that My would need only to be very small to achieve complete absorption.
This agrees well with the result obtained here. However, it also implies that the value of
My should perhaps have been varied by much smaller amounts to investigate properly the
magnitude of imaginary potential required for full absorption.

It has been reported by Neuhauser and Baer [82] that the linear form of the imaginary
potential is more efficient than the other forms used here. It has also been reported [84]
[85] that the form of the potential can be an extremely important factor in determining

the efficiency of an absorbing potential. This is not what has been found here. The reason
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for this could be that the magnitude of the imaginary potential was varied too rapidly to

see the effect that the form can have on the efficiency of absorption.

The effect of an imaginary potential on the propagators

Consider first the S.0.D. propagator (see figures 13a — d). For very small values of
My the propagation is stable but for for My > 0.02 this is no longer true. It was found
that as the time of the propagation increased the instability worsened (see figure 13c). For
the S.0.D., in general, if the timestep is reduced, and the number of propagation steps
increased to compensate, the error is reduced. Thus here the propagation was done with
the timestep halved and N7 doubled. The results were effectively the same. This means
that the instability introduced by the imaginary potential is linear in the timestep, and in
the number of timesteps. The above makes it difficult to see how this propagator could be

used effectively in real problems, when an imaginary potential is used.

Now consider the Chebyshev propagator. (Note that the imaginary potential has to
be included in the shifting and scaling necessary in the use of the Chebyshev propagation
scheme.) First, consider this propagator when it is used in its truly global sense (see
figures 14a,b). Effectively, the propagation is completely unstable.- This is because the
polynomial expansion in the Chebyshev polynomials is only stable while the imaginary
part of the eigenvalues is kept very small. However, in a global calculation of this type the
eigenvalues are continually becoming more and more complex in nature. Second, consider
the Chebyshev stepping propagator (see figures 15a — f). Even for quite large values of the
imaginary potential the propagation is stable, though for My very large the propagation
scheme does break down (see figure 15¢). This need not be of concern since the absorbing
boundary is effective for quite small values of My . However, in this case if the timestep
was doubled then the propagation became unstable for quite small values of My (see figure
15f). There exists a complex relationship therefore between the length of each timestep
and the amount of imaginary potential which can be allowed without causing instability.
This relationship was investigated but no clear pattern was found. This probably is not
of great concern since the effect is obvious when it does occur, and should not therefore
produce uncertainties in the results of a propagation.

There is very little, if any, warning in the literature about the instability of many of

the propagators when an imaginary potential is included in the Hamiltonian.
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Fig. 11. Graphs of total flux against time for the linear form of the absorbing potential over
10% of the grid, using the Feit/Fleck propagator.
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Fig. 12. Graphs of total flux against time for the exponential form of the absorbing potential
over 10% of the grid, using the Feit/Fleck propagator.
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Fig. 13. Graphs of total flux against time for the exponential form of the absorbing potential

over 10% of the grid, using the S5.0.D. propagator.
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Fig. 14. Graphs of total flux against time for the exponential form of the absorbing potential
over 10% of the grid, using the Chebyshev global propagator.
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Fig. 15. Graphs of total flux against time for the exponential form of the absorbing potential
over 10% of the grid, using the Chebyshev stepping propagator.
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3.3 Conclusions

The Fourier Method of studying time-dependent quantum mechanics has been investi-
gated. The various propagators, i.e. the Chebyshev, S.0.D. and Feit/Fleck, have all been
applied to a simple one-dimensional problem. It was found that the Chebyshev propagator
is the most accurate and efficient, especially when used as a stepping rather than a truly
global propagator. However care is needed when using imaginary potentials, so that in
some cases it may be preferable to use the Feit/Fleck propagator. Although these tests
were carried out in one dimension, the results apply to two or more dimensions. However,
it is not always straightforward to use the Feit/Fleck propagator with the Fourier/Basis set
method for solving multi-dimensional problems (see later), so that the stability advantage
that this propagator shows for imaginary potentials cannot always be exploited.
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Multi-Dimensional Problems

4.1

In order to gain some insight into chemical processes it is usually necessary to consider as
many degrees of freedom as is computationally feasible. Thus it is very important that any
method of studying chemical dynamics can be extended easily to multi-dimensional prob-
lems. This chapter is concerned with ways in which the one-dimensional Fourier method

can be extended for use with multi-dimensional problems.

A Simple Extension
The simplest generalisation of the Fourier method to many dimensions uses a multi-
dimensional regular grid and calculates the kinetic energy of the wavefunction using a

multi-dimensional Fourier transform.

In Cartesian coordinates the kinetic energy operator is separable:

D 2
[ = ;—Z% (108)
i=1 <7 0T,
where D is the total number of dimensions. Thus the kinetic part of the Hamiltonian is
simply the sum of the kinetic energy in each dimension [6). In Chapter 2 it was seen that
the kinetic energy is easily calculated with the use of Fourier transforms:

T9(e) = o [ o [%w(k)] dk. (109)

T 2o

When more than one dimension is to be considered in a calculation, the multi-dimensional

Fourier transform is used, and the kinetic energy is again easily calculated:

2m

. 2 o o o [hYKk2+ k2
TU(z,y) = (51;) /_Z /_w ek gikyy [—(L")q’(k,,ky)J dk,dk,. (110)

The use of multi-dimensional transforms was discussed previously and it was seen that their
use is just a simple extension of the one-dimensional transform.

However, the above only applies to Cartesian coordinates, in which regular grids are
used. In other coordinate systems, such as polar or spherical coordinates, the effect of
the kinetic energy operator is not as easily calculated. This is because the Laplacian is
not simply in terms of the second derivatives of the functions, with respect to the various
coordinates, but can be a combination of first and second derivatives. Other problems
which present greater difficulties are the singularities which exist at certain points in space,
and in some coordinate systems the non-periodic nature of particular coordinates, e.g. § in
spherical coordinates.
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The use of reduced wavefunctions can help in certain coordinate systems. In the case

of polar coordinates the Laplacian can be simplified by using a modified wavefunction such

that:

v 6
¥(r,0) = 2nn0) (111)
T
so that the Laplacian,
2 1d 1 &
Vie 4l o
P R R dg?’ (112)
becomes equal to:
1 d2 1 4
(113)

w2t
A wavefunction normalised with integration measure drdf, rather than rdrdf, is then
consistent with the original wavefunction. Similarly in Jacobi coordinates it is useful to

use a modified wavefunction such that:

Yn(R,r,0)

Rr ) (114)

¥(R,70) =

so that the radial momentum operators become Cartesian-like, and are given by —id/dr

and —id/dR, and the wavefunction is normalised with integration measure sin 6 d6drdR

12].

A Test Case
In order to investigate (and check) calculations carried out in more than one dimension,
a test case very similar to the one-dimensional case was used. A two-dimensional harmonic
oscillator with the parameters of the hydrogen molecule was used. The results are shown
in figure 16, for the S.0.D. propagator. Although the error appears to be very small it
must be noted that the propagation time was short because of the long times necessary to

run the program, but it can be seen that the calculation is producing reasonably accurate

results.

Different Approaches
Another very different approach to multi-dimensional problems is to consider the use
of different transforms, i.e. the use of different implicit basis functions [6]. Consider the

kinetic energy operator in spherical coordinates:

P -#[1d ,d 1 d . ,d 1 4
—_— = — —sinf— +

L el — 2 115
9m  2m |r2dr dr i r2 sin 6 df d6  r2sin’ 6 dg? (115)

This can be divided into radial and angular parts.
For the radial part of the Laplacian, if a reduced wavefunction (similar to those de-

scribed above) is used, the Bessel function Jy/(kr) is a solution, i.e. an eigenfunction
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Fig. 16. Graph of error against time for §.0.D. propagator for a two-dimensional harmonic
oscillator.

with eigenvalue —k%. This means that the wavefunction can be transformed, using the
Fourier-Bessel (or Hankel) transform of order 1/2, into a space where the radial part of the
Laplacian is now a local operator with the spectrum —k?. This is very similar to the one-
dimensional case using the Fourier transform. A fast Hankel transform has been described
by Bisseling and Kosloff [87]. For polar coordinates a similar method can be used for the
radial part of the Laplacian; in this case the Bessel function of order 0 is a solution, so that
a Hankel transform of order 0 is used. The use of the Hankel transform can be extended to

Hamiltonians with centrifugal terms, m/r?, by the use of a transform of order m, for polar

coordinates, and m + 1/2, for spherical coordinates.
For the ¢ variable the Fourier method is applicable, though care must be taken to avoid

the singularity in sin § at 0 and 7 by suitable choice of the grid points in the 6 variable [29].

For the § part of the Laplacian, i.e. the second term, the Legendre polynomials,

Py(cos §), are eigenfunctions with eigenvalues I(I +1). Thus, it has been suggested that a
discrete variable representation with Gauss-Legendre quadrature points is appropriate, i.e.
a Legendre transformation [11]. For Hamiltonians which have centrifugal terms, K 2/sin? 6,

a basis of spherical harmonics, Yix (8, ¢ = 0), could be used. Another way in which these
4: Multi-Dimensional Problems
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centrifugal terms have been treated is the use of a modified wavefunction such that [88]:
¥ = (sin 6)K@,,. (116)

Unfortunately there is no fast Legendre transform reported in the literature. This has led
to a variety of other methods to treat this coordinate being used. In several [29][88], the
product is differentiated generating two terms, one in the first derivative of 8, the other
in the second derivative. These derivatives are then calculated directly using the Fourier
method. This has two disadvantages: first, four F.F.T. are required, forward and backwards
for each derivative; secondly, the grid has to be artificially extended to include all § values
from 0 to 27 (rather than 7). The reason for the latter is that in the Fourier method the
coordinate is assumed to be periodic, and in this case the period of the coordinate is 2.

Recently a method which uses a fast cosine transform has been described which overcomes

these two disadvantages [89].

Fourier Method/Basis Set Expansion

The Fourier Method can be used in conjunction with a more standard basis set expan-
sion. This is sometimes called the close coupled wavepacket (C.C.W.P.) method. Given
the complications which can arise when non-Cartesian coordinates are used (see above),
the extensive development of this hybrid method is not unexpected. In this method the
time-dependent wavefunction is expanded in a basis set of functions in one or more of the
coordinates. This wavefunction is substituted into the T.D.S.E. to derive a set of coupled
equations. The solution of this set of coupled equations produces the time evolution of the
coefficients in the expansion. The basis functions used are usually eigenfunctions of the

part of the Hamiltonian which describes the particular coordinate.

Obviously this method will be best suited to problems where there is only a weak
coupling to the coordinate described by the basis set, ensuring that only a few functions
are required to model the system accurately. An excellent example of this is given by the
study of the dissociation of Van der Waals molecules, where a diatomic molecule is only
weakly bound, by the very nature of such molecules, to another atom. An expansion in the
coordinate which describes the internal motion of the diatomic molecule will only require
a few functions, since this coordinate will be only very weakly coupled to the dissociation
coordinate [12][90] [91]. Gray and co-workers have done three-dimensional calculations
on the fragmentation of halogen molecules weakly bound to rare gas atoms. In these
calculations the wavefunction was expanded in functions which described the vibration and
rotation of the halogen molecule within the complex, and the coupled channel equations

were solved to obtain the evolution of a wavepacket in the dissociation coordinate.
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Although computationally more expensive, the C.C.W.P. method has been found to
work very successfully for problems which require very many expansion functions, rather
than just a few, to model the system. The long-lived resonance states in molecule-surface
scattering have been extensively studied by Mowrey and Kouri, with a rotational basis set as
well as a basis set in the translational motion parallel to the surface [19][20]. Atom-diatom
scattering has been studied by this group using similar methods [14]. The photodissoci-
ation of very many different molecules has also been studied using this method, using an
expansion in the functions which describe the angular momentum of one of the fragments
[92].

In all of the above applications the major advantages of the Fourier method are retained.
In particular, the motion in the key coordinate(s), i.e. the movement of the wavepacket,

can still be easily visualised to obtain an insight into the reaction mechanism.

An Example Problem

In order to investigate the use of this method a simple two-dimensional problem was
studied, i.e. the fragmentation of a Van der Waals molecule. The expansion of the wave-
function using a specific basis set and the use of a particular Hamiltonian means that the
set of coupled equations derived in the following are only relevant to the specific problem

under consideration [12]. The Van der Waals fragmentation reaction to be studied is:
XBC(v) — X + BC(v") v=v-1v-2, ...

where v denotes some metastable initial state of the Van der Waals complex, in which the
molecule BC is vibrationally excited, which fragments to form a rare gas atom, X, and a
halogen molecule, BC, in vibrational state v'.

If the XBC system is constrained at a T-shaped geometry, so that the rotational motion

1s not included, the Hamiltonian is given by:

ﬁ—P§+i’3+V (r) + V(R,r) (117)
—2# om BC\T T

where p is the reduced mass of the whole cluster and m is the reduced mass of the BC
molecule. The coordinates are defined so that R is the distance between X and the centre
of mass of BC and r is the BC internuclear distance, i.e. Jacobi coordinates are used. As
was suggested previously in this chapter, a modified definition of ¥ is used (equation (114))

so that Pg and Pr have simple Cartesian forms.

W(t) is expanded in a basis set as follows:
U(t) =D Cou(R, t)py(r) (118)
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where the functions 9,/ represent the BC vibrational states, and are solutions of:

A2 .
(211‘:; + VBC(")) Yo = u'ﬁbv("') (119)

Inserting H and ¥ into the T.D.S.E,, left-multipling both sides by 7., and integrating
over r leads to the coupled equations:

2,60,,:(}2, t)

j)2
ot N iC,,I(R,t) + EyCor(R,t) + Z(v"lV(R,r)lv')C,,n(R,t). (120)

o
This set of equations describes the evolution of the channel wavepackets Cyi(R,t), the
appropriate weighted sum of which determines the full wavepacket ¥(t). Thus once the
initial states for each channel, C,/(R,0), are found the set of equations is used to propagate
the channel wavepackets in time using the methods described in Chapter 2. The only
unfamiliar aspect to this equation is the potential part which requires a sum over the
matrix elements (v"|V(R,r)[v') for each channel. This is the essential part of any coupled
channel method. The matrix elements can be calculated using a Gauss-like quadrature

scheme [93] so that,
N
W) = 3 o)V B3 o5 (121)

The abscissae, r;, are the zeroes of a high vibrational wavefunction for the potential curve

concerned, and the weights, w;, are defined so that integrals over low-order wavefunctions
are evaluated exactly.

For multi-channel problems, the Feit/Fleck or split propagator method becomes cum-
bersome to use because of the need to diagonalise the potential at each grid point [6]. For
the Chebyshev method, some thought is needed to decide the range of the eigenvalues, re-
quired for the calculation of the number of terms in the polynomial expansion. The range
of the eigenvalues must include a term for the vibrational energy, E,_,.. The maximum
of the potential part, i.e. the matrix elements of the potential operator, is found from the
spectral radius of the matrix; this is calculated by computing the sum of the moduli of the

matrix elements in each row for each grid point and choosing the maximum [20].

The initial state
The initial state used in the Van der Waals predissociation problem is a metastable
state of the Hamiltonian given above (equation (117)). It can be thought of as the specific
state under investigation, e.g. a particular vibrational state of the BC molecule in the
Van der Waals complex, so that the decay of this particular state can be studied. These
metastable states are not the true stationary states of the Hamiltonian since the energy

regime of interest is in the continuum, and the true stationary states are scattering states.
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The initial state, ¥,,, is expanded as follows:
Um(R,7) =Y apntbo(r)xa(R), (122)
v,n

where the functions ¥,(r) were defined above and x,(R) are effective Van der Waals stretch-

ing eigenfunctions, and are given by the solutions of:

P2
[ﬁ + IA/R(R) Xn(R) = Ean(R)) (123)

2p

where VR(R) is a suitably chosen potential, and in this case is V(R, re) where 7, is the

equilibrium value of ». This wavefunction, ¥p,, and the Hamiltonian are substituted into

the S.E. equation, HY = EV, to give:

B
5[ 2+ 4 et + V(R )| oot R) = E (124)

This is then left-multiplied on both sides by ¥%(r)x./(R) and integrated over R and r to

give:

j)?. i)2 . .
Z avn('ﬂbv’Xn'l 2R + 5 = 4 VBC(”') + V(R:T)Idjvxn) = Z Ev',n’av’n’sv,v’ n,n'- (125)
7,n # m o,n

¥

This can be expressed as:

(H-EL)a=0, (126)
where
H = (x| HoXn), (127)
and
Hv’n’,vn = Ev‘sv’v,n’n + Engu’v,n’n + ('Sbv’Xn"V(RaT) - VR(R)I¢‘UX11)' (128)

Hence in order to find apn, and so ¥, the matrix A must be diagonalised. Therefore
the matrix elements of the Hamiltonian must be calculated; in order to calculate these
matrix elements it is necessary to solve equations (119) and (123) to find Ey, Eq,%» and
xn. This just involves solving the one-dimensional S.E. and can be done using Cooley’s
method (Numerov integration) [94]. The matrix elements of the potential part involve a
double integration; the integration over r is done using the Gauss-like quadrature described
above, whilst the integration over R is done using the trapezium rule (the anharmonicity

in this variable makes it inappropriate to use the Gaussian quadrature scheme).
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The potentials
For the BC molecule potential, VBC(T), a Morse function is used. For the interaction
potential, V(R, ), a pairwise-additive function is used, i.e. two Morse functions are added

together, one for X-C and one for X-B. A long-range attractive tail region may be included.

Extracting observables from the wavepackets

It is useful at this point to describe the experiment which the theory hopes to model.
The cluster is prepared in a supersonic beam in the state [v, = n, = 0), where v, is an
effective vibrational quantum number for BC in the X electronic state and n, denotes
an effective Van der Waals stretching quantum number. A narrow-frequency band laser,
with frequency w, i1s applied to the system. This frequency corresponds to an electronic
transition from the X state to an excited electronic state, B. In general the molecule BC
in the electronically excited cluster will also be vibrationally excited so that v, is equal
to v. The excited cluster, which has a resonance energy depending on v, then dissociates
with a particular lifetime, into a certain product distribution of the halogen molecule; all

of these variables can in principle be determined experimentally.

These experimental observables, i.e. the resonance energy, the lifetime and the product
distribution, have then to be extracted from the time-dependent wavefunction. The infor-
mation of main interest here is the lifetime of the cluster, though the resonance energy and
the product distribution of the halogen molecule after fragmentation can also be obtained.
The extraction of the observables from the time-dependent wavefunction can be done using
either Fourier Analysis or the MUSIC frequency estimator [95]. The second method can
yield more information given a shorter time of propagation because it assumes a certain

model and then, given a data sample of limited duration, determines the best fit to this
model.

For the dissociation of many Van der Waals clusters, it can be assumed that only one
resonance dominates the dynamics of the cluster and so the lifetime, 7, can be inferred
as the reciprocal of the slope of a plot of In [(¥(0)|¥(¢))|? against ¢. The autocorrelation
function 1s easily calculated from the channel wavepackets as the sum of the squares of the

autocorrelation functions of the packets; this is because the ‘weighting’ functions, ,, are
orthonormal.
Test cases

The C.C.W.P. method was used to investigate the fragmentation of both NeCl; and
Hel,. Figures 17 and 18 show the In(A.), where A, is the square modulus of the autocor-

relation function, against time.

Consider first the system NeCly. This problem has been studied in three dimensions

4: Multi-Dimensional Problems



76

0.0 timestep =39atu

] bounded potential

Trttrrrrryrrygrryryryrryrrryrrrrr
8 9 0 N 2 13 ¥ B ¥ 7 B W9 20

VIBRATIONAL PERIOD X2
> TIME

L] 1
0 1 2 3 4 5 6 7

timestep =3.9atu

. unbounded potential

_0'07-1|1|1II—[nll[l|l||]||l|l||11|||1|||||||1|
0 1 2 3 4 5 6 7 8 9 1 ® 12 13 1K 1B ® 17 B 19 20
;D VIBRATIONAL PERIOD X2
TIME

Fig. 17. a). In(A.) against time for the dissociation of NeCl, v = 11, using the bounded
potential and the longer timestep. b). In(A.) against time for the dissociation of
NeCl; v = 11, using the short timestep.
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by Gray et al. [12]. In order to check that the calculations done in this work yield sensible

results, these were compared to those obtained by Gray et al. As an aside it is interesting to

note some points in their implementation of the C.C.W.P. method, which were also utilised
in this work:

1. A bounded potential is used which enables the use of a longer timestep for the S.0.D.
than would be allowed by the stability limit, if an unbounded potential was used. Figure
17a,b shows two graphs of the In(A.) against time, obtained for the two-dimensional
calculations described earlier, one with a short timestep and the unaltered potential

and the other with the longer timestep and the bounded potential. They look identical.

2. The energies of the vibrational channels are taken relative to the initial channel, i.e.
relative to the chosen vibrational state of the BC molecule in the excited cluster, or
V.. This shifts the region where minimum error occurs, hence improving the accuracy
of the calculation.

The figures 17a, b suggest a lifetime of approximately 70 ps, (the vibrational period of

Cl; is 0.245 ps). This is smaller than the three-dimensional value, given by Gray as 120

ps. (Note the potential referred to as surface 2, with initial vibrational level v = 11, is

being used). This is not the expected result, which is that the T-shaped molecule should
be less likely to fall apart than the molecule free to rotate, but it does not give rise to great

concern.

Consider next the system Hel,. Again the results obtained in this work were compared
to those reported in the literature in order to check the reliability of the calculations
done here. Two-dimensional studies on Hel; have been done which help to make the
comparison of results more meaningful. One of these studies by Gray [96] uses a periodically
forced oscillator model (P.F.0O.) and the wavepacket method. Although this is only a one-
dimensional study, it is suggested that ‘the P.F.O. model is indeed typical of the original
2D problem’. The graphs presented in the paper are of In(P,) against ¢ where P, is the
survival probability. The definition of P;:

Ps(t) = Z I(anq’(t»lz) (129)

n
differs from the observable used in the present work, which is the square modulus of the
autocorrelation function. However, in the calculations done in the present work, the mag-
nitude of the wavefunction in the v — 1 and v — 2 channels is small compared to that in
the v channel, so that the autocorrelation can be approximated by [(Cy(R,0)|Cy(R,?))|;
also the initial wavefunction corresponds almost exactly with n = 0 in the Van der Waals
stretching mode. This implies that C,(R,0) = xo(R), and so the autocorrelation function
can be given by |(xo(R)|Cy(R,t))|. In the Gray paper the dominant contribution to P, is
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thought to originate from Py, i.e. from the wavefunction in the n = 0 mode. This implies
that Py(t) = |(xo|¥(t))|>. Given these analyses of the observables used in each of the calcu-
lations, the observable used in the Gray work, i.e. Py, can be seen to correspond reasonably
well to the observable used in this work, i.e. the square modulus of the autocorrelation
function. Figures 18a,b show two graphs for v = 20 and v = 30. They reproduce those
shown in the Gray paper quite well, although the slopes are too steep by approximately

15%.

Conclusions
The extension of the Fourier method to multi-dimensional problems has been described.
It was seen that there are many different approaches possible, some of which are similar to

the one-dimensional Fourier method, others of which are quite different.

The C.C.W.P. method has been used to describe the fragmentation of Van der Waals
molecules. It was seen that the derivation of the set of coupled equations was straightfor-
ward. The solution of the equations and the extraction of observables from the channel
wavepackets was no more complicated than for the Fourier method. Thus it can be seen
that this hybrid method of the Fourier method with a more standard basis set expansion
provides a useful tool for multi-dimensional calculations. The two test cases described have
been shown to produce results which are not at odds with those reported in the literature.

Thus, there can be some confidence in the accuracy of the calculations done in this work.
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Fig. 18. a). In(A.) against time, for the dissociation of Hel, v = 20. b). In(A.) against

time, for the dissociation of Hel, v = 30.
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5: The Sodium Trimer

5.1 Introduction

The equilibrium geometry of the sodium trimer is not, as might at first be thought,
an equilateral triangle. In the ground electronic state, as well as in some of the excited
electronic states, there is an unpaired electron in a degenerate electronic orbital. This leads
to a Jahn-Teller (or pseudo-Jahn-Teller) distortion away from the equilateral geometry
towards an isosceles triangle geometry. In many of the electronic states there i1s only a
small barrier between the various acute and obtuse angled isosceles triangle geometries,
and the molecule will change from one geometry to another with relative ease. This is

sometimes called pseudorotation.

The spectroscopy of Nas has received considerable attention over the past few years,
both theoretically and experimentally. There are two main reasons for this interest. First,
a study of small metal clusters is important because a knowledge of their basic properties,
e.g. geometry, bond strength and reactivity, is an aid to understanding the nucleation and
growth of small metal particles and eventually the build-up of the metallic state. Secondly,

their optical, chemical and catalytic properties can be utilised in a variety of ways.

The small number of vibrational modes makes the analysis of the nuclear dynamics
interesting on theoretical grounds because studies can be detailed without becoming too
cumbersome. In particular, there has been great interest in the sodium trimer because of
the ability to study, in some detail, the changes in its structure and dynamics due to the
approach or intersection of several Born-Oppenheimer potential surfaces. There is a grow-
ing interest in this field, particularly with respect to the Jahn-Teller effect [97] and Berry’s
geometrical phase [98] in molecular systems. A recent review has summarised the theory
related to the geometric phase, in a suitable form for molecular systems, and suggested pos-
sible consequences which could be compared to experiments {99]. Recently, the results of
several spectroscopic experiments have been analysed using the Jahn-Teller effect, e.g. the
resonant two-photon ionisation spectrum of triptycene [100] and the stimulated emission

pumping spectrum of the methoxy radical [101].

Time-dependent experiments and calculations have been carried out on the Najp sys-
tem [102] [103]. These demonstrated the usefulness of the time-dependent approach in
understanding vibrational wavepacket motion and also helped to identify the various ion-
isation pathways present in the system. The present work extends these studies to the

sodium trimer. The use of time-dependent methods to study the sodium trimer, both ex-
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perimentally and theoretically, is particularly interesting since it gives a direct insight into
multi-dimensional wavepacket motion on a potential energy surface and leads to a greater

understanding of the dynamical aspects of molecular multiphoton ionisation.

Background
The spectroscopy of the sodium trimer has now been the subject of several investigations
in which, with the help of molecular beams and lasers, individual vibronic levels have been
resolved and analysed. Experiments have been carried out to investigate the electronically

excited states as well as the ground state.

The techniques

A variety of spectroscopic techniques is available to study small metal clusters, includ-
ing: two-photon ionisation; ion-depletion experiments; and stimulated emission pumping
spectroscopy (S.E.P.). The analysis of hot bands in the results of the two-photon ionisation

experiments can lead to information about the ground state.

In both the two-photon and the ion-depletion experiments the Naj molecules, which
are produced in a molecular beam, are excited electronically with a tunable laser w;. In
the resonant two-photon ionisation scheme the excited molecules are ionised with a second
laser wy. The photoions formed are detected with a quadrupole mass spectrometer. In the
depletion spectroscopy experiment, which is used for probing the Naz dissociative states, an
ultraviolet laser wsy directly ionises Nag molecules in the ground state and, by detecting the
photoions, monitors the remaining population in the molecular beam. In this experiment
whenever the laser w, is on resonance with an excited state the population of Nag molecules
in the molecular beam decreases. Thus, there are fewer molecules which can be ionised by
the ultraviolet laser w3, and so there is a depletion in the photoion signal. Hence spectral
resonances are recorded as depletion in the signal. The lasers w; and w; are applied
simultaneously.

S.E.P. is also a two-photon excitation process [104]. The first photon excites the molec-
ule to an intermediate level of an electronically excited state, whose population is monitored
in some way, e.g. by detecting undispersed side fluorescence. The second photon is then used
to stimulate emission from the intermediate level. If there is a decrease in the population
of the intermediate level then the second photon is on resonance. Thus the energy levels
to which the molecule is transferred during the stimulated emission can be investigated
by varying the frequency of the second photon. The two photons can be applied simulta-
neously or sequentially. The S.E.P. experiment on Nag [105] [106] uses the ion-depletion
technique to monitor the population of the intermediate level. The Na3 molecules, pro-

duced in a molecular-beam apparatus, are excited to an intermediate level of the C state by
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a first laser w;. A second laser ws is then used to induce two competitive processes in the
excited trimers: (1) direct photoionisation and (2) stimulated emission down to vibronic
ground-state levels. The Naj ion signal is detected using a quadrupole mass spectrometer,
as a function of wy. That is, the population of the intermediate level, which is proportional
to the ion signal, is measured as a function of wy. At resonance the second process is much
more likely than the first, by a factor of 102-10%, and so a dip will occur in the ion signal
for each transition to a ground-state level. The C state is used as the intermediate state in
this experiment because the vibronic levels of this state have been extensively studied, and
an assignment of them exists, so that it is possible to identify the particular intermediate
level used.
The experiments

The excitation spectrum of Na3 has been systematically investigated from 700 to 330
nm, both by two-photon ionisation (T.P.I.) experiments and by depletion experiments
[107][108].

Four band systems are observed: A, B, C and D. The B state, which is bound, is of
interest here (see figure 43). Among the most important characteristics of the richly banded
system are: first, a long progression composed of nearly equally spaced bands (w =~ 128
cm™!) appears to be split into doublets; secondly, a series of closely spaced bands fanning
out from the doublet and increasing steadily in breadth accompanies each member of the
main progression; thirdly, a much weaker pattern of levels accounting for all remaining
bands fits to a harmonics series with w = 137 cm™!. This spectrum has been explained in

terms of the pseudorotational motion of the sodium trimer.

The vibronic structure of the Najz ground state has been investigated both by stimu-
lated emission pumping spectroscopy and by the analysis of hot bands in the two-photon
1onisation spectra.

The analysis of the hot bands is a straightforward extension to the two-photon 1onisation
experiment on the excited states [109]. The B system exhibits a clear hot-band structure.

The hot band structure can be interpreted to give X state vibrational frequencies, which

1

are for the symmetric stretch 139 cm™!, and for the bend/asymmetric stretch 50 cm™! and

87 cmm~!. Similar results are obtained for the other states.

In the S.E.P. experiment numerous resonances are observed in the spectrum in the
150-1000 cm™! range, which indicates that the molecule is particularly deformable. A
strong and simple pattern found in the low-resolution spectrum can again be interpreted
by the three zeroth-order normal frequencies (for the symmetric stretch 139 cm™!, and for

the bend/asymmetric stretch 49 cm™! and 87 cm™!).
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Time-resolved experiments

The aim of the present work is to reproduce the results of time-resolved femtosecond
pump-probe experiments on the Nag system, being carried out in Freiburg, as well as the
results of similar experiments being carried out in Berlin using picosecond lasers. It is hoped
that by doing so a full explanation, and thus a greater understanding, of the experimental
results will be obtained. It is also hoped that these calculations will give an insight into
the dynamics of systems in non-stationary states.

In the femtosecond experiment [110] [111] the Nag is prepared in its ground electronic
state in a supersonic beam. The same laser is used for both the pump and the probe, which
has a central frequency, weentral, €qual to 620 nm (16129 cm™!). The time profile of the pulse
is roughly Gaussian with a temporal full-width of approximately 70 fs. The spectral width
of the laser pulse has been measured (figure 19); it is not the same as the value implied
by its temporal width. The molecules in the beam are excited with the femtosecond laser
pulse (the pump) to an electronically excited state, the B state, of Na3. The pump laser
has only sufficient energy to populate the lowest 250 cm™! of the B state. After a given
interval of time the second femtosecond laser pulse (the probe) is used to ionise the Naj.
There is only just enough energy in the probe pulse to ionise the Naj to Na;. The 10ns
that are produced are then detected. This is done using time-of-flight spectroscopy, which
determines the masses and released kinetic energy of the ionic fragments, as well as the
energy distribution of the ejected electrons. The experiment is repeated for many different
pump-probe delay times, i.e. the interval of time between the application of the pump and
probe laser pulses, for up to a maximum of approximately 12 ps. This variation in the
pump-probe delay time gives rise to a varying Naj signal. The results show an ion signal
that takes a few femtoseconds to appear and then oscillates, though not back to zero, with
a principal period of 320 fs, corresponding to a wavenumber of 105 cm™!. The signal decays
exponentially with a lifetime of approximately 2 ps. The Fourier transform of the ion signal
shows peaks at 12(m), 19(m), 34(w), 50(m), 73(m), 105(vs), 90(s), 123(w) and 141.5(w)
cm~! and higher frequencies (w = weak, m = medium, s = strong, vs = very strong).

At the same time the zero kinetic energy electrons which are ejected on ionisation are
detected. The time-dependent signal is similar to that of the Naj, and the same frequencies

are obtained in the Fourier transform.

The pump laser pulse produces a wavepacket on the B state, which moves about the po-
tential energy surface. When the probe laser pulse is applied, the position of the wavepacket
on the B state will vary, i.e. the molecule will be in different molecular configurations, de-
pending on the pump-probe delay time. The probability of the probe laser ionising the Nas

depends on the position of the wavepacket on the potential surface. Thus, the oscillations in
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the Naj signal are due to the motion of the time-dependent wavefunction on the potential
surfaces of the B and X electronic states of Naz. The X state frequencies occur because the
pump laser can produce a wavepacket on the ground state by a 2-photon excitation via the
B state, and the probe laser can ionise it by another 2-photon process. The contribution
of the X state frequencies to the total ion signal becomes less significant at lower powers.
This in principle allows the frequencies to be assigned to the two different states, though
the procedure is experimentally difficult.

The frequencies have tentatively been assigned as follows [111]: 12, 19 cm™! are pseu-
dorotation frequencies on the B state; 50 cm™!, an asymmetric stretch on the X state; 73
cm™!, a bending frequency on the B state; 90 cm™!, a bending frequency on the X state;

105 cm™!, a symmetric stretch on the B state; 141.5 cm™!, a symmetric stretch on the X

state.

ectrsl Intensity

3

605 60 g5 20 25 (OM]

Fig. 19. The spectral intensity of the laser pulse in the femtosecond experiment. The full line
is the experimental measurement, and the dashed line shows the spectral intensity

expected from Heisenberg’s uncertainty principle for a laser pulse with a 70 fs

temporal width.

Transient two-photon ionisation experiments are also being carried out on the sodium

trimer, using picosecond pump-probe techniques followed by mass-selective detection [112]
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[113] [114] [115]. Again, the same laser is used for both the pump and the probe, with
Weentral €qual to 619.7 nm (16136 cm™!). The time profile of the pulse is roughly Gaussian
with a temporal full-width of approximately 1.3 ps. The spectral width of the laser pulse
has been measured and is found to have a value double that implied by its temporal
width. When the first photon is resonant with some vibrational level of the B state, the
time-dependence of the Naj signal shows a distinct beat structure, with a 3 ps period of
oscillation, corresponding to a wavenumber of 11 cm™!; the signal decays exponentially,
with a decay time of about 6 ps. This experiment has been repeated with weentral equal to
617 nm (16207 cm™!), 620 nm (16129 cm™!) and 625 nm (16000 cm™!), as well as other
frequencies; the results are reported to be essentially the same. For non-resonant excitation

photons no oscillation is observed.

The Coordinates
The complete nuclear permutation inversion group of the sodium trimeris D, (M). It is
necessary to use the complete nuclear permutation inversion group due to the ‘floppy’ nature
of the sodium trimer, which ensures that all nuclear permutations, P, and permutation-
inversions, P*, are feasible [116]. D;,(M) is isomorphic to the Dj) point symmetry group.
It is a straightforward matter to find the normal mode vibrations of this molecule using
group theory. They are found to belong to the irreducible representations aj and e’ of the

D3}, point symmetry group, and can be described as:

Q: = \/% [—:cl + (%932 + \/751/2) + (%1:3 ~ ‘/;yg)} , (130)

where Q, is the bending vibration and z;,y; are the Cartesian coordinates of each atom 3;
1| V3 1 Vi 1]

= Yl -2 A 131

Qy \/5 -yl + ( D) T2 2y2) + ( D) 3 2?/3)- ) ( )

where @ is the asymmetric stretch;

Qs = \/Lg _—:::1 + (%22 - —\g—gyz) + (%23 + —\g—gys)_ , (132)

where Q, is the symmetric stretch. Q. and @y are the two components of the normal e-type

displacements. @, is obviously the normal a)-type displacement, but will not be considered
at present, since the totally symmetric displacement, while affecting the potential, does not
change its symmetry [117]. The definitions of @, and @y vary throughout the literature.
This is evident in many ways. First, the symbols @, and Q, can be reversed, so that Qy
represents the bend and Q. represents the stretch, and secondly, @ as defined here can be
called an asymmetric stretch, and @y a bend. In particular the assignment of frequencies
as bends or asymmetric stretches must be considered carefully to ensure the correct mode,
i.e. @z or Qy, is chosen.
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Qs QX QY

Fig. 20. The normal mode vibrations of the sodium trimer.

Consider now a Cartesian space in @, and Q. At the origin of this space the sodium
trimer has an equilateral geometry. For a displacement in the positive Q. direction the
molecule will have an acute isosceles triangle geometry, whilst for a displacement in the
negative Q. direction the molecule will have an obtuse isosceles triangle geometry. At
other positions around the origin the molecule will be either an obtuse or acute isosceles
triangle. The molecule can change from one obtuse isosceles triangle to another without
going through the equilateral geometry, but through an acute isosceles geometry. This
change in configuration looks at first to be a rotation of the molecule and is sometimes
called a pseudorotation.

The wavepacket calculations are initially carried out in two dimensions, which corre-

spond to Q. and Q. Q. and @y can be expressed in terms of r and ¢, where
P =(Q1+Q2), tang=0Qy/Q.. (133)

The angle ¢ is often described as the pseudorotation coordinate. This is because as the
origin of this space is circled following ¢, the molecule undergoes the pseudorotational
motion. The calculation is performed using r and ¢.

Using these coordinates, i.e. polar coordinates, and introducing a reduced wavefunction

such that:

¥(r,¢) = lpi\/:_:ﬂ, (134)

the kinetic energy operator is:
. K1 4 1 &
T —

=5 4_1‘7+E1:2—+.1‘—2w (135)
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Fig. 21. The pseudorotation of the sodium trimer.

5.3 Potentials

The theory used to describe the effect of Jahn-Teller distortions on the potential energy
surface of the ground state, and the excited states, of Naj has been discussed at length in the
literature. However, a brief summary is necessary here in order to establish a consistent
notation for both the ground state and the electronically excited states. The notation
varies in the literature both in the symbols given to the various vibronic coupling constants
and in the use of various definitions of the dimensionless constants that are extensively
used as altermatives to the vibronic coupling constants. In the following, dimensionless
constants will not be used and the connection between the constants described here and
the dimensionless alternatives used in some of the literature will be discussed in Appendix

C. The adiabatic theorem, the various coupling constants and the derivation of an adiabatic

potential are discussed in Appendix B.
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5.3. 1 The Ground State
This state can be understood to be the result of £ ® e mixing of the components of a
degenerate electronic state. That is the components of the electronic state of symmetry £

are mixed by a vibration of symmetry e.

Consider an E' electronic state in a molecule belonging to the D3; symmetry group,
e.g. the ground state of Naj.

The two electronic wavefunctions of the E' term, at the equilateral geometry, are de-
noted 1,[151 and 1/)51; these are not functions of the nuclear coordinates, @, but only of
the electronic coordinates, g.. The potential, V(ge, @), which describes the interaction be-
tween the electrons and the nuclei, as well as the internuclear repulsion, is then expanded
using a Taylor expansion about the equilateral geometry. Complex combinations of the
normal modes (given above) and degenerate electronic components are now used such that
QF = Qo +iQy =re, Q7 =Q,—iQy=re™, yF = ypF +ipf and y~ = 9F —igy.
Then the following linear and quadratic vibronic coupling constants, which are matrix

elements of the coefficients in the potential expansion, can be defined:

_ {4+ (8 - —(ut o’y -
re=(v|(5ge) Jo7): 00 = (v (o), ) oo
Also, Kg, a force constant, can be defined:
_ 6V 3
Kg = /¢+ (W) ot dr. (137)

The secular determinant, using a basis of the purely electronic wavefunctions, ¥+ and ¥,

is then (as a function of » and ¢):

%KE'I‘Z —€ Frre'® + Ggrie= 24 /2 _0 (138)
Fgre " 4+ Gprie®?/2 %KE’I‘Z —€ ’
thus the adiabatic potential 1s:
1 GE 2 1/2
s(r,8) = 5Kpr? £ | F§ + FEGpr cos(3¢) + (T) 1'2] , (139)

The lower surface is often described as a warped ‘Mexican hat’; along the bottom of the

trough of the ‘Mexican hat’ three wells occur, alternating regularly with three humps. The

extremal points of the surface (rg, ¢o) are:

+Fg nr
= = - =0 1 5 140
T0 KE - (—1)“GE, ¢0 3 y T P ) 1Y, ( )

the upper and lower signs corresponding to cases Fg > 0 and Fg < 0 respectively. If
(Fg x Gg) > 0 then the points at which n = 1,3,5 are saddle points and the points at
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which n = 0, 2,4 are minima, whereas for (Fg X Gg) < 0 these two types of extremal points
are interchanged. The depth of the trough, relative to the point where the two electronic

components are degenerate at 7 = 0, i.e. the Jahn-Teller stabilisation energy, is given by:

By, = Fg (141)
' 2(Kg - |GEl)
and the (minimum) barrier height Ej,. between the minima is:
2E,|G FIG
Eoe = sl El = El El (142)

(Kg +IGel) ~ (K3 - |GE[?)
This barrier height Fj, is often described as the barrier to pseudorotation.

The two wavefunctions, 1!, , which are the eigenvectors of the secular equations, are:

W = \%(ei(nmw _ i(=0/2)y-y (143)
1. .
Pl = E(et(n/'é’)dﬁ + =2y -y, (144)
where _ .
tan () — Fgsing — |Gg|rsin(2¢)/2 (145)

~ Fgcos¢ + |Gg|rcos(2¢)/2
An interesting point to notice in this equation is that  acts qualitatively like ¢, when
Fg > |GEg|r, but acts qualitatively like —2¢ when Fg < |Gg|r. Thus, for the portion
of space given by r < Fg/|GEg|, the electronic wavefunction has to do two circuits of
parameter space (i.e. = 0 — 4x) before it returns to its initial value, while if just one
circuit is done the electronic wavefunction will change its sign. In order then that the total
wavefunction be single valued on one circuit of parameter space, the nuclear wavefunction
must also change its sign on doing a circuit of parameter space. This will give rise to
fractional quantisation of the quantum numbers associated with the nuclear motion. This
is sometimes referred to as the adiabatic sign-change theorem. This is a special case of
Berry’s geometrical phase which has been discussed extensively in connection with E @ e
Jahn-Teller systems [118], and has been used to explain (though probably mistakenly, see
below) the spectrum of the B state of the sodium trimer [108].

Generalised valence bond and configuration interaction calculations have been done
that characterise the ground state (and the excited electronic states) of Naz [119]. For the
ground state, the stabilisation energy is given as 669 cm™!, the localisation energy is 131
cm~! and the dimensionless coupling constants corresponding to Gg and Fg (g and K in
the notation of ref. 119) are —0.108 and 3.72 respectively. The symmetric stretch frequency
is 135 cm™! and wg is 86 cm™!, where wp is defined to be the vibrational frequency for

the motion along the radial displacement coordinate. The minimum in the potential in the
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radial direction, rq, is at —0.59 A (i.e. it is an obtuse isosceles triangle) and the equilibrium

value of the symmetric stretch displacement, Q,,, is 3.63 A.

However, the fit to the absorption spectrum, to obtain the correct line intensities, yields
different parameters for the ground-state surface to those given above [120]. The dimen-
sionless coupling constants corresponding to Gg and Fg are —0.076 and 5.456 respectively,

and wg is 87 cm~!. This corresponds to a stabilisation energy of approximately 1400 cm™!

1

and a localisation energy of approximately 199 cm™". The value of 7y 1s approximately

—0.74 A (i.e. it is an obtuse isosceles triangle). This is the potential surface used here. The
value of @, is taken to be 3.63 A and the symmetric stretch frequency is taken to be 135
cm™?!, using the values from the above theoretical potential.

An ab initio configuration-interaction study has been done on the potential energy
surface of the ground state of Naj [121]. The most striking feature of the surface is its
extreme flatness. The molecule can pseudorotate from the obtuse-triangle minimum to
the saddle point with an energy expenditure of 2.1 kJmol™' (175.4 cm™!); this is the
localisation energy. The transformation from obtuse to acute via the equilateral form
requires an activation energy of only 6.7 kJmol™? (559.7 cm~!); this is the Jahn-Teller
stabilisation energy. Even substantially larger excursions are relatively effortless. A linear
symmetric conformation lies only 12.5 kJmol™! (1044.2 cm™!) above the minimum. The
normal mode frequencies calculated in the ab initio configuration-interaction study are:
symmetric stretch 147 cm™!; bending 84 cm™!; asymmetric stretch 89 cm™!. The value of

Qs 1s given as 3.5 A. An analytic representation of this potential has been presented [122].

Despite some differences between the potential obtained from the fit to the experimental
spectrum and those calculated theoretically, they all have the same general features, i.e.
very flat with a conical intersection at the equilateral geometry. As well as this qualitative
agreement, there is also some quantitative agreement, e.g. the frequency for the radial
motion (or bending frequency at small distortions) compares well in all the potentials.
The ab-initio potential reproduces the barrier to pseudorotation quite well (175.4 cm™!
compared to the experimental value of 199 cm™!), though the potential obtained from the
generalised valence bond calculations underestimates the value substantially (131 cm™).
Both the theoretical potentials underestimate the Jahn-Teller stabilisation energy. The
values of @,, and of the symmetric stretch frequency given by the theoretical potentials

agree quite well, so that it appears to be reasonable to use the values obtained from the

generalised valence bond calculations in the potential used here.

The eigenstates and eigenvalues

In order to understand the dynamics of a system it is often helpful to have some
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The Potential for the X surface of Na_3
In units of milli Hartrees

Q y2.0

-2.0

Fig. 22. Contour diagram of the potential of the ground state used in this work (1 mE,
~ 219 cm™1).

knowledge of the eigenstates and corresponding eigenvalues.

Consider first the linear Jahn-Teller effect, where the quadratic coupling constant Gg
is zero, and there is no barrier to pseudorotation. The potential for the lower surface will
be of the form:

1

V(r) = §KE"‘2 - rFE, (146)

which can be expressed as

V(r) = %KE(T — 7o) — E,, (147)

where g is equal to Fg/KEg and E, is equal to F%/2Kg. This potential, which is harmonic
about rg, is radially symmetrical and obviously is not dependent on ¢.

Thus, the motion on the potential can be described by free ‘rotations’ along the trough
together with radial vibrations to and fro across the trough [123]. The eigenfunctions can

be approximated as a product of angular motion and radial motion:

\I’u,j _ exp[ijd)]NuHu[a(T - 7'0)] exp[—a(r - 7'0)2], (148)

2rr
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where j is a ‘pseudorotational’ quantum number for the angular motion and u is a vi-
brational quantum number for radial motion. The constant a is equal to mK E/h2 and
Hyla(r — 7o)] is a Hermite polynomial of order u, with normalisation constant Ny. The
quantum number 7 will be half integral due to the adiabatic phase change explained above.
This approximate description of the eigenfunctions is valid at low energies when the molec-
ule is assumed to have a constant moment of inertia, i.e. the rotations are at r fixed at
0.

Also, the energy levels can be described approximately by these two quantum numbers
u and j:

Eyj = (u+ 3wk + A5, (149)

where A is a pseudorotational constant, which can be given by:

A or A= (hwE)2

- 2mrd 4E, ’ (150)

A

where wg is the vibrational frequency of the degenerate modes, which is related to Kg,

and m is the reduced mass of the modes (in this case just the mass of a sodium atom).

This description of the energy levels is for Gg equal to zero. For small Gg it will
continue to be a good description, but as Gg gets larger and the wells in the ‘trough’
become deeper, it will no longer be even approximately correct. The quadratic coupling
constant Gg couples together the radial motion and the angular motion through terms
in the potential. This means that the motion in the radial direction will depend on the
angular motion. The extent to which this occurs can be measured by the circularity of the
potential. The circularity of the potential describes how much the value of r, along the
minimum energy path around the ‘trough’ of the P.E.S., varies with ¢. For the functional
form of the potential described here, this will depend on the value of the quadratic coupling
constant, which also determines the barrier to pseudorotation. A fundamental problem with
the functional form used for the potential here may be the linking together of the circularity

and the barrier to pseudorotation.

The B Excited State
The generalised valence bond and configuration interaction calculations that have been
done on the excited electronic states of Na3 indicate that the B state involves a complicated
mixing between an electronic state with E' symmetry and an A} state, in which coupling
between the A and the E' state dominates the usual coupling between E' components
(119]. This has been supported both by an analysis of the vibrational spectrum [120] and
by recent rotationally resolved experiments [124] [125].
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Consider an E’' electronic state, with corresponding wavefunctions at the equilateral
geometry, 1[15" and '¢f’, at energy egr, close in energy to a A} electronic state with cor-
responding wavefunction at the equilateral geometry, 1/)‘4’1, at energy ey, in a molecule
belonging to D3, symmetry group, e.g. the B state of Nag [119][120]. Again these elec-
tronic wavefunctions are functions only of the electronic coordinates. As described above
it 1s a straightforward matter to find the normal mode vibrations of this molecule using
group theory; they are found to belong to the irreducible representations a} and e'. Only
the €' vibrations will be considered at present since the a} vibration does not change the
symmetry of the adiabatic potential. The secular determinant that must be solved, again
using complex combinations of the normal modes and degenerate electronic components
such that Q* = Q. +1Qy = re*®, Q™ = Q. — iQy = re ¢, Yt = 1,&5’" + izﬁfl, and
YT = ¢f’ — i't/)fl, is then:

%KE’I‘z +€epr — € Fgre'® + (Gg/2)r’e™%® Pre™* + (f/2)7‘2€2i¢
Fpre™*¢ + (GE/2)1'2 e2i¢ %KE’I‘Z +ep —¢€ Pre'® + (.j’/2)'r'2<a_2"""s =0, (151)

Pre® + (f/2)r2e 24 Pre=* 4 (f/2)r?e?¢ 3Kar® + €41 — €
where Fp and GEg are the linear and quadratic vibronic coupling constants within the E
state, and P and f are the linear and quadratic vibronic coupling constants between the

| and E' state. These coupling constants are again the matrix elements of the coefficients

in the potential expansion.

A number of approximations are now made in order to obtain a reasonably simple
solution [119]. These are, first, that Fg and Gg are set equal to zero, implying that there
is no interaction within the E state; secondly, that the force constants in the two states
are the same, i.e. K = Kg = Ky4; and finally, that |Pr/K| = 1% > |ep — eArll, which is

the case for large distortions. The adiabatic potential obtained is:

2
€ = K; (152)
211/2
€4 = K2r2 + 7 |2P% + 2P fr cos(3¢) + (%) ] : (153)

The lowest surface e_ has three-fold symmetry using these approximations, with equivalent

minima (— sign) and saddle points (+ sign) defined by:

—cos(3¢0) = £1, 1o =V2P/(K £V2|f]), (154)
with ) \
__ P _ 2V2If|P? (155)

Ea ) Eloc - b)
(K —V2|fl) (K% -2f?)
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where E, is measured from €g:. An interesting point to notice here is the similarity in
the expressions obtained above for two-state and three-state interactions, equations (139)
and (153); with a change in definition v/2 f = Gg and v/2 P = Fg the expressions become
identical.

The B state corresponds to the lowest of these three surfaces, i.e. e—. The eigenstates of
this potential can be approximated in a similar way to that described for the X state. The
energy levels of this potential can also be expressed in terms of two quantum numbers, u
and j, using equation (149), provided that the quadratic coupling constant f is very small.
However, in this case there is not a conical intersection at the origin so that the quantum
number j is integral. Thus the assignment of the vibrational spectrum using half-integral

7 is not correct [108].

From the above mentioned generalised valence bond calculations, the stabilisation en-
ergy of the B state is given as 1073 cm™?!, the localisation energy is 72 cm™! and the
dimensionless coupling constants corresponding to f and P are —0.035/+/2 and 4.90/v/2
respectively. The symmetric stretch frequency is 110 cm™! and wy is 86 cm~!. The value

of 79 is —0.66 A (i.e. it is an obtuse isosceles triangle) and Q,, is 3.99 A.

However, the fit to the absorption spectrum again yields different parameters for this
surface [120]. For this state the parameters are in fact quite different from those ob-
tained from the generalised valence bond calculations, giving different values for the radial
frequency and the barrier to pseudorotation. The dimensionless coupling constants corre-
sponding to f and P are —0.0063/+/2 and 4.34/+/2 respectively, and wp is 127 cm ™. This
corresponds to a stabilisation energy of 1196 cm™! and a localisation energy of 15 cmL,
The value of rg is approximately —0.48 A (i.e. it is an obtuse isosceles triangle). This is the
potential surface that is used here. The value of @,, 1s taken to be 3.7 A, because there

is relatively little excitation seen in this coordinate in the static spectroscopy, so that the

equilibrium value of this coordinate must be similar to that of the ground state (3.63 Ay.

! using the value from the gener-

The symmetric stretch frequency is taken to be 110 cm™
alised valence bond calculations, since it appears to compare well with the value obtained
from the femtosecond experiments.

The B state has been found from the experimental excitation spectrum to be 625 nm

(16000 cm™!) above the ground state, i.e. in T.P.I. experiments the origin of the 0 —0 band
for the B state is at 625 nm.

The Cation—Naj
The ground state of NaJ is not subject to Jahn-Teller distortions, because Naji has a
doubly occupied fully bonding orbital (1a}), whereas the neutral species has an additional
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The Potential for the B surface of Na_3
In units of milli Hartrees
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Fig. 23. Contour diagram of the potential of the B excited state used in this work (1 mE,
~ 219 cm™1).

singly occupied antibonding orbital (1le'); this also means that the bond energy of the
cation is expected to be greater than that of the neutral trimer [126]. It has been suggested
that the surface is very similar to that of the neutral species, apart from effects due to the
conical intersection, i.e. it is very flat [127] [128]. An ab-initio potential surface for Naj has
been calculated and presented in an analytical form [129]. On fitting to the anharmonic

1

spectrum the normal frequencies were calculated to be: symmetric stretch v; = 142 cm™";

and doubly degenerate bend v = 101 cm~!. The value of Q,, is calculated to be 3.443 A.

The ionisation energy of Naj, found from experiments, is approximately 4 eV (32261

cm™1) [130].

5.4 The Wavefunctions

The ground-state vibrational wavefunction of Na3, which is used as the initial state in
the wavepacket calculation, and the ground-state wavefunction of Naj, which is used in
calculating the ion signal (see later), are calculated from their potentials {120] [129] using
Tennyson’s variational method [131]. The program TRIATOM [132] [133] is used with
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The Potential for the X surface of Na_3"+
In units of milli Hartrees
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Fig. 24. Contour diagram of the ab-initio potential of the ground state of the ion (1 mE,
~ 219 cm™!).

Jacobi, or scattering, coordinates for both systems.

The wavefunctions are expressed as products of Legendre polynomials, ©;(6), (for

Jiot = 0), and Morse oscillator-like functions, Hy(r):

Ui(ry, 72, ¢ Z ]mn@ (0)7‘1 n(r1)ry YHon(r2), (156)

jmn

where H,, and H, are given by:

Holr) = B2 Nog exp(~ syl ™D/ L (), (157)
with
4D, | 1/2 .
y = Aexp[—B(r—re)], where A= , B = we ( ) , and o = integer(A).
We 2D,
(158)

The parameters g, 7e, we and De can be associated with the reduced mass, the equilibrium
bond length, the energy of the fundamental vibration and the dissociation energy of the

bond. These parameters are optimised by minimising the energy of the ground state, using
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a basis set which is a subset of the full set used for the calculation of the wavefunction.
The values used in the present work are listed in table 4. L$ is an associated Laguerre
polynomial, with a normalisation constant Ny,. In the systems under consideration, be-

cause of the parameters used, the values of a are very large, making normalisation of these

functions computationally intricate.

Table 4. Optimised parameters for Nag and Naj basis sets.

5.5

5.5. 1

coordinate | u/a.m.u. |re/ag | De/En | we/Ep
Naz,r; ]22.98977 |8.27710.016081 | 0.0005566
Naz,ro |22.98977 14.723 10.017705 {0.0007180
Nat,r; |[22.98977 [6.487 {0.050770 | 0.0005214
Naj,r; |[22.98977|5.661 |0.086270 | 0.0005081

The coefficients, dg-mn, are found using TRIATOM and then used in equation (156) to
determine the appropriate wavefunction.

The wavefunctions in both cases are found to be approximately Gaussian, centered at
the equilibrium geometry of the molecule. Thus, the wavefunction of the X state of Nag
was found to be approximately Gaussian at (Q, = —0.74 A,Qy = 0.0) with an energy of
136.6 cm™! above the bottom of the ‘trough’. The wavefunction of the X state of Naj was
found to be approximately Gaussian at (Q, = 0.0,Q, = 0.0) with an energy of 150.4 cm™!
above the bottom of the well.

The Simulation of the Experiments

As stated previously, the time-dependent or wavepacket method is used to model the
time-dependent experiments on the sodium trimer. This method can be divided into three
distinct parts. First, the initial state must be defined. Secondly, the wavepacket must be
propagated. Thirdly, the observables must be extracted.

The Preparation of the Initial State

Before the pump laser is turned on the Najz is in its ground vibrational state in its
ground electronic state. When the pump laser is turned on the Naj is promoted to various
vibrational states in its B electronic state. Thus, the pump laser prepares the initial
wavepacket on the B state which is to be propagated in time and then probed by a second

laser pulse.

Therefore, what is required is to model the effect of the pump laser and so the creation

of the initial wavepacket on the B state from an initial wavepacket on the X state. To
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The Ground State Wavefunction of Na3.
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Fig. 25. Contour diagram of the ground-state wavefunction of Nags.

describe the short pulse excitation process, i.e. the effect of the laser pulse, time-dependent

first-order perturbation theory is used [134]. The wavefunction can be written as:
t
Wp(t) =i [ Un(t - ¢){usx B(E)Ux(t)2x(0) e (159)

where ¥ x(0) is the initial wavefunction on the X state, Up and Ux are the time evolution
operators used to propagate the wavefunctions in time on the appropriate surfaces. Here,
Ux(t') is simply e—Ext where Ex is the energy of the ground vibronic state of the X
state beneath the ground vibronic state of the B state ( —16000 cm™'), since ¥ x(0) is
stationary, i.e. is an eigenfunction of the ground-state Hamiltonian. The transition dipole

function, pgy, is approximated to a constant in the present work. The electric field due

to the laser is of the form:

E(t) = Eof(t)e™™", (160)
where Ej is the electric field vector and f(¢) describes the temporal shape of the laser pulse,

which has a Gaussian profile in this case, and w is the central frequency of the pulse.

In physical terms this can be considered in the following way. The laser pulse, although

short, is not a & function of time. (If the laser pulse were a § function the wavepacket on the

5: The Sodium Trimer



99

The Ground State Wavefunction of Na3/+.
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Fig. 26. Contour diagram of the ground-state wavefunction of Naj .

ground state would be moved vertically up onto the upper state since the complete certainty
in the time of the pulse would lead to complete uncertainty in its energy, hence it would
be equivalent to ‘white light’.) Thus, the initial wavefunction will not be promoted to the
excited state instantaneously. The part of the wavefunction which has not been promoted
will evolve on its own surface (for a time equal to t'), until the time when it is promoted
(at time equal to t'), after which it will evolve on the excited state potential surface (for
a time equal to t — ¢t'). What this means in terms of the actual wavepacket generated on
the excited electronic state has been considered in detail in a series of papers by Williams
and Imre [135] [136] [137]. They showed that each of the parts of the wavepacket promoted
onto the excited state has a particular phase. Once on the excited state its phase will
begin to vary depending on the energy which the wavepacket was given by the laser pulse
(how much it is detuned from the zero of energy on the potential energy of the excited
state) and the Hamiltonian of the state. Parts of the wavepacket which arrive subsequently
will interfere with the wavepacket already on the excited state either constructively or
destructively depending on how much the phase of the wavepacket on the excited state has

changed from when ‘it arrived’. Williams and Imre showed that for certain laser pulses
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the norm on the excited could initially increase, but then show a decrease, in the case of
destructive interference occurring on the excited state.
The calculation is carried out by discretising the time integral and then relating the

wavefunction at time ¢ + At to the wavefunction at ¢ to give:
Up(t + At) = Ug(At)Up(t) + iAtf(t + At)e W+EX)+A0g 4 (0), (161)

where ¢ is measured from the beginning of the pump laser pulse. The At in equation (161)
must be chosen to be small enough for the excitation process to be properly described. The
calculations were repeated at shorter timesteps in order to check that the calculations were

converged with respect to this At.

Propagation of the Wavepacket
The time-dependent Schrodinger equation is used to propagate the wavefunction in
time. There are several methods for propagating the initial wavefunction, which have been
discussed previously. Here a global propagator carries out the propagation. This type of
propagator uses a polynomial expansion of U(t), where the form of this operator 1s given
by: .
¥(t) = U(t)T(0) = exp [%’H dt] ¥(0). (162)

Thus an expansion of the type:
N
U(t) ~ Z kak(—iHAt/ﬁ), (163)
k=0
is used, where P; are complex Chebyshev polynomials.

The potential used for the calculation (i.e. V) is that for the B excited state. The zero
of energy is taken to be at the bottom of the ‘trough’, plus a constant which corresponded

to an approximate zero point energy of the surface. This zero point energy is approximated

using:

Thus the zero of energy is the stabilisation energy, E,, less the approximate zero point

energy, Ezp, beneath the energy of the equilateral geometry.

5.5. 3 Extracting the Observables

The Naj signal

The quantity that is measured in the experiments is the N af signal. The Naf is created
by the probe laser promoting the wavepacket on the B state to the ground electronic state

of the ion.

5: The Sodium Trimer



101

Therefore, what is required is to model the effect of the probe laser and so the creation
of a wavepacket on the ground ionic electronic state from the time-evolving wavepacket on
the B state. The effect of the probe laser is modelled in a similar way to the effect of the
pump laser. There is an added complication in this case, since the state formed is ionic [138].
The electron, which is ejected on formation of the Naj, can have a range of energies and
a calculation must in principle be done corresponding to each of these energies. However,
in the present work it is assumed that the kinetic energy of the departing electron is
approximately zero. This can be done because the zero kinetic energy signal of the electron
is very similar to that of the Naj signal [111]. Thus the wavefunction on the potential
energy surface of the ground state of the cation can be calculated, using the wavefunction
on the B state, to be:

Ux+(tp,t2 + At) =Uy+(At)¥ x+(tp, t2)

HiALf(ty + At)e 2+ A Rty + 1y + At)¥p(tp = 0). (164)
tp 1s the time delay between the pump and probe lasers, i.e. the time between the centre
of the pump and probe laser pulses. ¢ is a measure of the time for which the probe laser
has been on, i.e. a measure of the time for which the probe laser has created probability
density on the X state of the ion, and is varied between —t;q4 and t;4. The probe and
the pump laser pulses are each assumed to be centred at a time of ¢,,;q from the time when
they are switched on. Thus, the calculation is done until the probe laser has died off to
zero, at a time ¢3 = £4,;q, 1.e. until the norm of the wavefunction on the X state of the ion
becomes constant. The pump and probe laser are taken not to overlap temporally in this
calculation, so that for values of tp of less than 2 x t5;4 no calculation is done.

Again the transition dipole function for ionisation, g x+ g, is taken to be constant. Also
f(t) is again taken to have a Gaussian profile.

The Naj signal is taken to be the norm of the wavefunction on the X state of the ion,
1.e.

5(tp) = (¥x+(tD,tmia)| ¥ x+(tD, tmid))- (165)

Values of S(tp) are not obtained for tp less than 2 x 4, because of the requirement
that the pump and probe laser pulses do not overlap. This function is Fourier transformed

to give a spectrum which contains frequencies characteristic of the motion on the B state

potential energy surface:

S(w) = / > S(tp)e*™ o dt = 2R /0 ” S(tp)e’™'p dt. (166)

— 00
The last equality arises because the frequency spectrum is always real. The magnitude of

this function is used to represent the power density spectrum.
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An approximate method

To treat the probe laser exactly is computationally expensive, and can only be done
for the femtosecond experiment. Therefore an attempt is made to approximate the ob-
servable, the Na7 signal. An assumption is made that the only state of the ion which is
populated by the probe laser pulse is the ground vibrational state. The justification of this
assumption, for the femtosecond experiment, is that the energy available in the probe laser
is restricted, so that only the ground state can be reached energetically. Thus the Naj
signal is thought of as the time-dependent square modulus of the overlap of the wavepacket

with the wavefunction of the ground state of Naj .

The square modulus of the overlap function, A(tp), is given by:
. 2
Altp) = | [ [ ¥xs/(0)" ¥a(t0) dQ2d0, (167)

where ‘I’(X(}L) 1s the ground-state wavefunction of the ionised state, and the delay time, tp,
is the time measured from the centre of the pump laser pulse. (Both the wavefunctions
depend on the two coordinates.) Another assumption made is that \Il( x;) can be considered
to be essentially independent of time, 1.e. at the same energy as the zero of the calculation,
which implies that the ionisation potential of the B state is equal to the central frequency
of the laser pulse. The Fourier transform of this overlap function (over a time from the end
of the pump laser pulse to the end of the propagation) is used to give the power density
spectrum.

In the picosecond experiments where laser pulses with various different central frequen-
cies are used 1t may be appropriate to overlap the wavepacket on the B state with different
vibrational eigenfunctions of the ionic state. For these experiments, if the zero kinetic
energy signal of the electron can also be assumed to be similar to the ion signal, the ap-
proximation can be expected to work particularly well. (There is no experimental evidence
to support this at present.) This is because the laser pulse has a very narrow energy spread
and because vibrational levels in the ionic state are widely spaced. This implies that, if the
departing electron has negligible kinetic energy, only one vibrational state of the ion will
be populated.

It is interesting to compare these results, i.e. those obtained using the overlap function
and giving an approximate ion signal, to those which are obtained by the previous method,
which treats explicitly the effect of the probe laser. Thus, for the femtosecond experiment
the quality of this approximation can be judged, and a decision made on whether the
approximation should be used with the picosecond experiments. The use of the modulus
of the autocorrelation function has also been suggested as an approximate ion signal [115].

This was suggested because for the picosecond experiments the largest signal is obtained
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at zero time delay, implying that the best conditions for ionisation were described by the

initial wavefunction. However, this proposition seems physically unreasonable.

Other observables
Besides the experimental signal and the pictures of the wavefunction at each timestep,
some observables were calculated, in order to gain a better understanding of the chemical
dynamics of this system. In particular the study of these can help to elucidate the coupling

between the radial and angular motion.

The norm and energy were calculated:
norm(t) :-/'I’B(t)*‘IJB(t) dr, (168)

where t is measured from the beginning of the pump laser pulse, and

Rty HYp(t)dr

= TR s dr (169)

ET(t)

It was particularly interesting to note how the norm varied whilst the pump laser was still
‘on’. The normalisation is required since the norm of the B state changes whilst the pump
laser pulse is still on.

An attempt was made to calculate the energy in each mode, that is the energy in the
radial mode and the energy in the angular mode, so that the transfer of energy between
modes could be followed. This was done by splitting the Hamiltonian into radial-like and
angular-like parts. This was not entirely straightforward since the potential is a complicated

mixture of both coordinates. The Hamiltonian for the radial motion was approximated as:

K21 d?
B~ |35 * 3]

" T om |4r? ' dr? 170
N ,',ZK B P,r . lflrz _ .]:-flz,r:i lfl‘irs _ gflar‘i ( )
2 2 2 P 8 PB 8 P2 |’

where P' = /2 P and f' = /2 f, and the Hamiltonian for the angular motion was approx-

imated as:

¢ “om |RaF

3 13,4
et () 122 o308 (2)]

K21 42
i

The average values of r and cos ¢ were also calculated:

_ JUp(t)r¥p(t)dr
O = Fepresmar 72)
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and
_ J¥p(t)" cos $¥p(t)dr
(cos @(t)) = ETOET O (173)

The autocorrelation function
In Chapter 2 it was shown how the autocorrelation function could be used to obtain
information about the eigenvalues of a system. In the present work, the overlap between the
wavefunction created on the B state at the end of the pump laser pulse, and propagating

wavefunction was calculated:
C(t) = (5(2 X tuia)|¥5(1) (174)

The Fourier transform of the autocorrelation function (over a time from the end of the
pump laser pulse to the end of the propagation) contains information on the energies of the
eigenstates of the surface that are present in the wavepacket. In the case of the femtosecond
experiment, the pulse laser has a wide energy range, so that the wavepacket produced will
be made up of many different eigenstates. Thus the frequency spectrum produced by
the femtosecond calculation is nearly equivalent to the spectrum obtained from the time-
independent experiments on the B state of the sodium trimer. The energy levels should be
identical, but the relative magnitudes of the peaks will differ. If a laser pulse equivalent
to ‘white light’ is used the spectrum obtained would correspond exactly to the absorption
spectrum. In the case of the picosecond experiment, the pulse laser has a narrow energy
range, so that the wavepacket produced will be made up of very few eigenstates. The
frequency spectrum obtained from these calculations will be less useful to compare to the

time-independent experiments, but will give information about the eigenstates that are

present in the wavepacket.

As mentioned above, that it has been suggested [115] that the ‘autocorrelation function’
be used to model the ion signal. This was because in the picosecond experiments the largest
jon signal was found for zero delay time, i.e. the wavefunction at zero time delay described
the best conditions for ionisation. Thus, the suggestion is that the ion signal be modelled
by the function formed by the overlap of the wavefunction at zero delay time, i.e. at a time
corresponding to the middle of the pump laser pulse, and the propagating wavefunction.
Here, this is not the true autocorrelation function; it is just another overlap function, which

will be called the zero time delay overlap function:

_ (¥s(tp = 0)|¥5(tp)) 175
) V/(¥5(tp)|¥5(tD)) )

Thus it has been suggested that the modulus of this function could be used to model the

Cr(tp

ion signal.
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5.6 The Results

5.6.

Calculations were done to simulate both the femtosecond and the picosecond time-
dependent experiments. That is the calculations were done several times: once for a laser
pulse of width 70 fs (F.W.H.M.), centred at a time of 120 fs, with central frequency, w, of
16129 cm™!; once for a laser pulse of width 1.3 ps (F.W.H.M.), centred at a time of 2.4
ps, with central frequency of 16136 cm™!, and then again with the same pulse width but
with central frequencies of 16207 cm™!, 16129 cm ™! and 16000 cm™?; the calculations were

also done assuming a laser pulse of ‘white light’, i.e. the initial wavefunction was moved

vertically from the X state to the B state.

The Initial Wavefunction

Several graphics programs have been written, utilising the Uniras and graPHIGS graph-
ics subroutine libraries, to visualise the motion of the wavepackets in the (r, ) plane. The
formation of the initial wavefunction on the B state from the wavefunction on the X state
was followed by taking ‘snapshots’ of the wavefunction at intervals in time, while the pump
laser pulse was ‘on’.

The simulations of the two time-resolved experiments, i.e. the femtosecond and the
picosecond, produce very different initial wavefunctions. For both simulations at the be-
ginning of the pump laser pulse the wavepacket produced is very similar to the ground-state
wavefunction on the X state. Initially, the molecule ‘thinks’ that the laser pulse is ‘white
light’, i.e. the wavefunction on the ground state is moved vertically to the B state. However,
as the laser pulse stays on, the wavepacket produced begins to show the characteristics of
the frequency of the laser pulse, the true width of the laser pulse and the potential energy
surface on which the wavepacket is evolving. This comes about as the different parts of
the wavepacket, which ‘arrived’ at different times, interfere with each other to produce the
‘final’ wavepacket.

The pictures that demonstrate these results for the femtosecond experiment are shown
in figure 27. The time in this figure is measured from the beginning of the pump laser
pulse.

In the femtosecond experiment, there is a fairly large energy spread in the laser pulse,
approximately 300 cm™!, so that the wavepacket produced is a superposition of very many
different eigenfunctions of the B state. Thus, the wavepacket produced in the simulation
is expected to be in some ways similar to the wavepacket produced by vertical excitation.
This means that the wavepacket will be radially excited as the positions of r¢ are different
on the X and B surfaces (by approximately 0.27 A). As suggested above, at the beginning

of the pump laser pulse the wavepacket on the B state is very similar to the ground-state
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Table 5. Eigenfunctions present on the B surface in the picosecond experiment.

Laser Wavelength| Eigenfunctions Present
625 nm vu=0,7=0,1,2
620 nm u=1,5=0,1,2
619.7 nm u=135=0,1,2
617 nm u=13=45 v=0,7=8

wavefunction on the X state. However, it can be seen that by the middle of the laser pulse
the wavepacket has moved substantially towards the equilibrium value of r, i.e. the rg for
the B surface. By the end of the pulse the wavepacket has moved away from its equilibrium
radial value towards the equilateral geometry. In doing so it has ‘hit’ the curved potential
wall near the origin of the coordinate space and has spread out angularly, as well as moving

towards slightly larger values of r.

The pictures that demonstrate these results for the simulation of the picosecond exper-

iments at different laser frequencies are shown in figures 28 — 31.

In the picosecond experiment there is very little energy spread around the central
frequency of the pulse, approximately 15 cm™!. Thus it is expected that in this case the
wavefunction produced in the simulation will almost be an eigenstate of the B state. As
in the simulation of the femtosecond experiment the wavepacket produced initially is very
similar to the ground-state wavefunction, i.e. there is a great deal of radial excitation.
However, due to the very limited spread of frequency in the laser pulse, by the time the
laser pulse has stopped there are a few eigenfunctions present, now with very little radial
excitation. These eigenfunctions can be identified easily, both by their angular form and
by a knowledge of the energy levels around the excitation frequency of the laser pulse
[120]. The eigenfunctions present on the B surface in the simulation of each picosecond

experiment are listed in table 5.

The Propagating Wavefunction

In the simulation of the femtosecond experiment, after the wavepacket has been created
by the pump laser pulse, it starts to vibrate along the radial direction. This is expected
since the equilibrium position in the radial direction on the B state differs from that on
the X state. After a very short time (less than a hundred femtoseconds) the wavepacket
starts to spread out. Then motion on the surface appears to become largely disorderly, with
the wavefunction spreading out over the whole of the angular space, whilst still vibrating

backwards and forwards across the ‘trough’.
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In the picosecond experiment, after the wavepacket has been created by the pump laser
pulse, it moves very little. This is not unexpected since it has already been stated that the
wavefunction produced is almost an eigenstate. However, it is not completely stationary
and the motion appears to be the result of the beating of two or three eigenstates. This
beating shows itself as a slow movement of the maximum of the wavefunction from one

side of the potential energy surface to the other, i.e. the wavefunction moves around the

‘trough’.
5.6. 3 The Observables

5.6. 4 The Femtosecond Experiment

The other observables

The results of the calculation of the various observables are shown in figures 32. The
norm of the wavefunction rises very rapidly during the pump laser pulse, and subsequently
stays constant. The energy decreases during the pump laser pulse as the high energy
components, present initially, interfere destructively and so disappear; after the pulse stops
the energy stays constant. The energy in the radial mode decreases rapidly during the
pulse, for the same reasons that the total energy decreases, i.e. the very highly excited

components in the radial direction have died out.

After the laser pulse has stopped there is a strong oscillation in the radial and angular
energy (it is a little difficult to see the radial energy oscillation due to the scale, which
includes the large variation while the laser pulse was on); by the time this oscillation has
damped down energy has been transferred between the radial mode and the angular mode.
Over the same time the amplitude of the radial motion is strongly damped and the average

value of cos ¢ has approached zero, showing that the wavefunction has spread out.

At first this large oscillation in the energies of the radial and angular modes seems a
little surprising, as does the damping of the motion in the radial direction. However, the
initial wavefunction is not separable, i.e. it cannot be written as a product of the functions
in the radial mode and the functions in the angular mode. Therefore, even if there is no
potential coupling (i.e. if the quadratic coupling constant is set to zero), the motion of
the wavepacket on the potential surface is not separable, so that there is a flow of energy
between the two modes. Also, the wavepacket produced initially on the B state is displaced
a certain amount from the equilibrium position in the radial direction. This displacement
will not, however, be the amplitude of the radial motion on the B surface. The wavepacket
which is promoted from the X state has a width associated with that surface. However,

once on the B state the characteristics of the wavepacket, i.e. its width and amplitude, will
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change until they ‘fit’ the potential on the B state.

After this initial period the oscillation in the energy in the two modes becomes less
pronounced; the average value of r oscillates about its equilibrium value, in a way indicative
of wavepacket motion, and is only slightly damped; the average value of cos ¢ oscillates
around an average value of zero, with a changing period of oscillation, implying that the

motion on the surface is disorderly.
A short investigation into the initial strong damping of the radial motion

Figures 33 — 35 show how the observables change, from a time after the laser pulse
has finished, for the simulation of the femtosecond experiment, for the vertical excitation
of the laser pulse from the X state to the B state, and lastly for the simulation of an altered
femtosecond experiment with the temporal width of the laser pulse set to approximately

41 fs (all with the quadratic coupling constant set to zero).

For all three figures it can be seen that initially the wavepacket has a large displacement
from the equilibrium in the radial direction. However, the wavepacket quickly changes, with
the amplitude of the motion in the radial direction decreasing with each oscillation in the
wavepacket. During this period there is also a large oscillation in the energies in the radial
and angular modes. Eventually the wavepacket appears to reach an equilibrium situation,

after which the amplitude of the motion in the radial direction remains fairly constant.

The wavepackets created on the B state with the three different laser pulses, described
above, differ from each other. The higher the energy of the laser pulse, or spectral width
of the laser pulse, the more high states there are in the wavepacket, and the larger the
initial displacement from the equilibrium position in the radial direction. However despite
this, after this initial period when the wavepacket motion in the radial direction is damped,
the amplitude of the oscillation in the radial direction does not give an indication of the
energy in the radial mode. For example, in the case of the vertical excitation the eventual
amplitude of the radial motion is low, although there is a greater energy in the radial mode
compared to the other two cases.

Now consider the effect of the potential coupling on this initial damping of the radial
motion. Figures 36 and 37 show how the various observables change, from a time after the
laser pulse has finished, for the femtosecond experiment with the dimensionless quadratic
coupling constant set to —0.0063/+/2 (as used usually) and —0.01/+/2. Figure 33 shows

the same information for the coupling constant set to zero.

It i1s interesting to note that increasing the magnitude of the quadratic coupling con-
stant, which increases the barrier to angular motion, decreases the initial damping in the

radial motion. The larger the magnitude of the quadratic coupling constant the larger the
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amplitude of the motion in the radial motion after the fast initial damping.

For larger times the increase in the magnitude of the quadratic coupling constant
gives rise to an increased oscillation in the energies in the radial and angular modes. The
amplitude of the motion in the radial direction is steadily damped (though not to the
same extent as during the initial damping of the radial motion), the more so the larger the

magnitude of the quadratic coupling constant.

The Naj signal

The Naj signals calculated using both the exact and the approximate methods are
shown in figures 38 and 39 for the femtosecond experiment, together with their Fourier
transforms. Figure 40 shows the Fourier transform of the exact signal, the approximate
signal and the modulus of the zero time delay overlap function. Both the ion signals have
large peaks at 127 cm~!. There appear to be few other frequencies present in any of the
spectra. The agreement between the exact method of calculating the ion signal and the
approximate method appears to be good. The zero time delay overlap function shows more

structure than the other signals.

The large peak in the spectrum at 127 cm™! is expected. The cation has an equi-
lateral geometry, thus in order to be ionised the Nag must move towards the equilateral
geometry. Therefore the frequency which corresponds to the motion to and fro across
the ‘trough’, towards and away from the equilateral geometry, i.e. the radial frequency, is
strongly represented in the ion signal. Given that the ground vibrational state of the ion is
approximately a Gaussian centred at the origin it expected that the overlap will be largest
when the wavepacket moves in towards the equilateral geometry. The average value of r
shows a strong relation to the calculated ion signal. When the value of r is at its minimum,
the ion signal is at its maximum and vice versa. That few other frequencies are present with
any significant magnitude is not entirely unexpected. The time dependence of the total ion
signal in pump-probe experiments has been investigated by Engel for a generalised system
(138], and it was stated that the ion signal may not necessarily yield much information
about the molecular dynamics within an intermediate electronic state. In the simulation
of the femtosecond experiment done here, the energy restriction in the probe laser ensured
that some information, e.g. regarding the radial frequency, was obtained. However the
energy spread associated with the laser pulse meant that the smaller frequencies, i.e. those

corresponding to the pseudorotational motion, were not present in the ion signal.

The autocorrelation function

The autocorrelation function calculated for the femtosecond experiment is shown in

figure 41 together with its Fourier transform. The energy levels correspond well with the
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static spectroscopy.

The autocorrelation function, calculated for the vertical excitation of the wavepacket
from the X state to the B state, and its Fourier transform are shown in figure 42. Figure 43
shows the experimental spectrum together with the Fourier transform of the autocorrelation
function for vertical excitation. The energy levels of course again correspond well with the
static spectroscopy, but in this case the intensities also show a fair correspondence with
the experimental results. The potential used for the propagation, i.e. the B state, was
obtained from a fit to the energy levels observed in the static spectroscopy [120]. Also, the
potential used to describe the X state, and so consequently the ground-state wavefunction
of the X state, was obtained from a fit to the intensities of the energy levels in the static

spectroscopy [120]. Hence the good agreement of both the energy levels and the intensities

is to be expected.

5.6. 5 The Picosecond Experiments

The other observables

The results of the calculation of the various observables are shown in figures 44 — 47.
The results for the three lowest excitation frequencies are similar. The norm rises gradually
to a constant value over the time of the pump laser pulse. The energy rises rapidly initially,
as the wavepacket produced on the B surface ‘thinks’ that it is being vertically excited from
the ground state. However, the destructive interference between the high energy parts of
the wavepacket soon reduce the energy, which then remains constant. The energy in the
radial and angular modes shows a similar reduction. After the laser pulse has finished
there is a small oscillation in the angular energy, but the corresponding oscillation in the
radial mode is too small to see. The average value of r shows a decrease while the laser
pulse is still ‘on’ but then remains nearly constant, showing a very small oscillation. The
average value of cos ¢ oscillates slowly throughout the propagation; this oscillation appears
to correlate with the small oscillation in . This gradual variation in the value of ¢ was
noticed whilst discussing the propagating wavefunction and the slow movement of the
wavefunction around the ‘trough’. It can be seen that there is a small coupling between

the radial and angular modes in these experiments.

The results for the calculation at 16207 cm~! show an interesting difference. The norm
increases initially but some time after the middle of the pulse it decreases. The energy
of the laser pulse above the zero-point energy of the B surface is large. This means that
the phase of the ‘wavepackets arriving’ on the surface are changing rapidly with respect to
those which are already on the surface. The different ‘sets of wavepackets’ will interfere

with each other, and in this case because their phases are so different the interference will
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be destructive so that the norm of the wavefunction on the surface will decrease. The
variation in the observables after the laser pulse has finished is then similar to the other

picosecond experiments.
A short investigation into the radial and angular coupling

If the quadratic coupling is set to zero, the coupling between the radial and angular
modes should disappear. This is the case for the picosecond experiments since the initial
wavefunction is approximately separable, as only one vibrational state in the radial mode
is excited (with the‘exception of the 16207 cm ™! picosecond experiment). Figures 48 — 50
show the change in the observables, from a time after the laser pulse has finished, for the
16136 cm™! picosecond experiment, with the dimensionless quadratic coupling constant set
to 0.0, —0.0063/+/2 and —0.01/+/2. (The variation in the quadratic coupling constant will
affect the energy levels slightly and the wavepacket produced will be a little different. This
makes it difficult to separate out completely the various different factors which alter the

observables as the wavepacket propagates in time.)

Figure 48 shows that the coupling between the two modes does indeed disappear when
the potential coupling in the Hamiltonian is removed, though the average value of cos ¢
still oscillates, with a large amplitude, as the angular modes present beat together. For
non-zero values of the quadratic coupling constant the energy in the radial and angular
modes oscillate. The average values of » and cos ¢ also oscillate.

An increased value of the magnitude of the quadratic coupling constant increases the

amplitude of the oscillations in the energies of the radial and angular modes. It does not

increase the amplitude of the oscillation in 7, but this may be because the wavepacket

formed is different.
The Naj signal

The NaJ signal is only calculated using the approximate method for the picosecond
experiment, due to difficulties involved in the computation of the exact Naj signal; these
difficulties were mainly to do with limitations of computer time and memory. These results
are shown in figures 51 — 54.

For the simulation of all the picosecond experiments the overlap with the first excited
vibrational state of the bend was used. At least for the simulation at 16000 cm™!, if not
for those at the higher frequencies, it would be expected that the overlap with the ground
vibrational state would be appropriate (on energetic grounds) to model the ion signal.
However, it was found that the overlap with the ground vibrational state showed little, if
any, structure.

For the picosecond experiments the oscillation in the ion signal arises from the beating
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together of the various pseudorotational modes. This beating gives rise to a time-dependent
wavefunction which moves in an angular manner on the P.E.S., so that the wavefunction
moves around the ‘trough’ of the potential. As the wavepacket moves around the trough,
i.e. as the average value of cos ¢ varies, it will also move slightly into and away from the
equilateral geometry, i.e. the average value of = will vary, depending on the circularity of

the potential which is measure of the extent of the potential coupling.

The B state potential used here is almost perfectly circular, i.e. the value of r around
the trough is almost constant. This is a consequence of the fact that the barrier to pseu-
dorotation is thought to be low. Given that the potential is almost circular, the wavepacket
as it moves around the trough will have an almost constant value of 7, so that the overlap of
this wavepacket with the ground vibrational state of the ion, which depends largely on the
variation in the radial displacement, will be almost constant. Thus, in order to compensate
for the potential, which is thought to be ‘too’ circular, the overlap is formed with the first
excited vibrational state of the bend, which is not angularly symmetrical as is the ground
vibrational state.

The results for the lowest frequency (16000 cm™!) show an oscillation with a period of
approximately 2.6 ps. The results for the calculations at 16129 cm~! and 16136 cm ™! show
an oscillation with a period of approximately 2.1 ps. The ion signal for these simulations
grows steadily from zero delay time, and then oscillates without any decay. These signals
arise from the beating together of the j = 0, 1, and 2 pseudorotational levels. These energy

! corresponding to a period of

levels will give beat frequencies of approximately: 3.5 cm™
9.5 ps; 12.6 cm™?, corresponding to a period of 2.6 ps; and lastly, 16.1 cm™!, corresponding
to a period of 2.1 ps. The second of these frequencies appears to be dominant in the results
for the calculation at 16000 cm™!, whilst the last of these beat frequencies appears to be
dominant in the signal for the calculations at 16129 cm™' and 16136 cm~!. The results
for the calculation at 16207 cm™! show a small oscillation with a period of approximately
1.0 ps. The ion signal at this frequency is largest soon after zero delay time, but after
the initial decay the signal does not steadily decrease. This signal arises from the beating
together of the u = 1,5 = 4,5 and u = 0, = 8 pseudorotational levels. The u = 1,5 =5
and the u = 1,5 = 4 levels differ in energy by approximately 32 cm™!, which corresponds
to a period of 1.0 ps. The u = 0,j = 8 level is approximately 8 cm~! abovetheu=1,5 =4
level; this frequency corresponds to a period of 4.1 ps. This period is not seen in the overlap
function.

The autocorrelation function and the zero time delay overlap function

Figures 55 — 58 show the zero time delay overlap function and the Fourier transform

of the autocorrelation function for the picosecond calculations. The modulus of the zero
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time delay overlap function shows all the beating frequencies described above, though as
for the overlap function some frequencies are dominant. The value of the function is largest

soon after zero delay time, but shows no steady decay at greater times.

The Fourier transform of the autocorrelation function confirms that the energy levels

that were identified in the initial wavefunction are in fact those present in the propagating

wavefunction.

Conclusions

The static spectroscopy was successfully modelled using the potential of the B state
and initial wavefunction of the X state. Thus, there can be a certain amount of confidence
in these.

The initial wavepacket created by the femtosecond laser pulse is made up of many states,
which are excited both in the radial mode and in the angular mode. This wavepacket has
a large amplitude motion in the radial direction. The angular motion appears to be mostly
disorderly. The oscillation of the wavepacket in the radial direction gives rise to an ion

signal which oscillates with the frequency of the radial motion.

The initial wavepacket created by the picosecond laser pulse is made up of very few
states, which are excited in the angular mode, but are in one particular radial state. The
angular states present interfere with each other to produce a wavefunction which moves
angularly. The small coupling of the angular and radial modes, through the quadratic
coupling constant, means that as the wavepacket moves angularly it moves radially as well.
This small radial motion gives rise to an ion signal which oscillates with the beat frequencies
of the angular modes.

The approximate method of calculating the ion signal for the femtosecond simulations
appears to give satisfactory agreement with the exact method of calculation. This means
that for the picosecond experiments the calculation of the 1on signal can be carried out using
this approximation. However, it may be more appropriate for a variety of reasons to use
vibrational states, other than the ground state, to form the overlap function. In fact, for the
picosecond experiments the modulus of the zero time delay overlap function shows slightly
better agreement with the experiment than the square modulus of the overlap function.
A useful implication of the success of the approximate method is that the calculations
can be extended to three dimensions, i.e. including the symmetric stretch. In the three
dimensional calculations, it would not be possible to calculate the exact ion signal with the
present computational resources, so that it is necessary to have some approximate method

to calculate the ion signal.
The calculation using the femtosecond laser pulse shows poor agreement with the ex-
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perimental results. The experimental spectrum shows a small peak at 123 cm™! which
possibly corresponds with the radial frequency of 127 cm™!. Superficially, the poor agree-
ment can be attributed to the dominance of the results by the symmetric stretch frequency.
However, the static spectroscopy appears to show very little, if any, excitation in the sym-
metric stretch frequency. This makes the results of the femtosecond experiment rather
difficult to understand.

The picosecond experiments at 625, 620, and 619.7 nm show some agreement with the
experimental results. The oscillations though are not with a time period of 3 ps but of
approximately 2 ps. The results at 617 nm show less similarity to the reported experimental
results. The ion signal oscillates with a long time period of approximately 4 ps, which can
be compared to the experimental value of 3 ps, but there is also a short time period in the
oscillation of approximately 1 ps, which has no corresponding value in the experimental ion
signal. However, it is possible that on a better potential surface the energy gap between the
u=0,7 =8 and the u = 1,7 = 4 levels could widen slightly so that the beating between
these two levels could yield the required frequency. The u = 0,5 = 8 level is not resolved
in the static spectroscopy, so it is not possible to gain information about its true energy
from the stationary spectrum.

It is not expected that the calculation in three dimensions will greatly alter the results
of the picosecond calculations at 625 nm; however with a symmetric stretch frequency of
110 cm™!, extra energy levels in the regions excited by the laser pulses at 620, 619.7 and
617 nm may effect the results of the calculations.
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The Creation of a wavepacket on the B state fs expt.
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Fig. 27. ‘Snapshots’ of the wavefunction evolving in time during the femtosecond exper-

ment.
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The Creation of a wavepacket on the B state 16000 cm-1 ps expt.

Q_yz 0] Q_yz0] Q_yzo]
irs 154 1 5]
3
1 0+ 104 1.0+
o]
T 1T T T T TYTT T T T T TTYTT T T
20 15 10 o0 05 10 5 20 20 05 10 15 20 10 15 20
ANGSTROMS ANGSTROMS ANGSTRCMS
3 Q_x Q_x _x
10 10+ 104
-1 54 1 54 -1 54
-20—1: ~70—3 -20-
WAVEFUNCTION AFTER 2360 fs WAVEFUNCTION AFTER 2560 fs WAVEFUNCTION AFTER 2760 s
THE NORM IS  2.20271E+10 THE NORM IS 3.52375E+10 THENORM IS  4.88821E+10
Q_yz 0 Q_yz0- Q_yz04
1 5 1 5 156+
10 1 D-: 1} 0:
26 a5 e Qo‘ i e X"iussré.g;s 20 a5 a0 uf) o 1o ',':;GST;'&S 20 a5 a0 \ ai‘j}' "o 'inss’r'é'oo;s
| Q_x 3| Q_x Q_x
104 10-: 104
-1 54 1 5 1 54
-20- 20 20
WAVEFUNCTION AFTER 2960 fs WAVEFUNCTION AFTER 3160 fs WAVEFUNCTION AFTER 3360 fs
THE NORM IS 6.07897E+10 THE NORM IS  6.92287E+10 THE NORM IS 7.43280E+10
Q_yz0 Q_y20 Q_yz0
1 s—: V5 1 51
+ 0 |o-:‘ 1.0+
Q._x _Xx

WAVEFUNCTION AFTER 3560 fs
THE NORM IS 7.69622E+10
Q_yz 0+

WAVEFUNCTION AFTER 3760 fs
THE NORM IS 7.81362E+10
Q_y20

WAVEFUNCTION AFTER 4160 fs
THE NORM IS 7.87403E+10

experiment.

WAVEFUNCTION AFTER 4360 fs
THE NORM IS  7.87833E+10

WAVEFUNCTION AFTER 3860 fs
THE NORM IS  7.85893E+10
Q_yz0+

WAVEFUNCTION AFTER 4560 fs
THE NORM IS  7.87837E+10

Fig. 28. ‘Snapshots’ of the wavefunction evolving in time during the 16000 cm™! picosecond
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The Creation of a wavepacket on the B state 16129 cm-1 ps expt.
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Fig. 29. ‘Snapshots’ of the wavefunction evolving in time during the 16129 cm™! picosecond

experiment.
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The Creation of a wavepacket on the B state 16136 cm-1 ps expt.
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Fig. 30. ‘Snapshots’ of the wavefunction evolving in time during the 16136 cm™! picosecond

experiment.
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The Creation of a wavepacket on the B state 16207 cm-1 ps expt.
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Fig. 31. ‘Snapshots’ of the wavefunction evolving in time during the 16207 cm™! picosecond

experiment.
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Results for fs expt.
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Fig. 32. Graphs showing the variation of the observables over the entire propagation time

for the femtosecond experiment.
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Results for fs expt., {=0.0
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Fig. 33. Graphs showing the variation of the observables over the time after the pump laser

pulse has finished for the fs expt., with the quadratic coupling constant set to zero.
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Results for vertical excitation, f=0.0.
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Fig. 34. Graphs showing the variation of the observables over the propagation time for the

vertical excitation, with the quadratic coupling constant set to zero.
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Results for altered fs expt., £=0.0
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Fig. 35. Graphs showing the variation of the observables over the time after the pump laser

pulse has finished for the altered fs expt., with f set to zero.
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Results for fs expt.
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Fig. 36. Graphs showing the variation of the observables over the time after the pump laser

pulse has finished for the fs expt., with f set to —0.0063//2.
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Results for fs expt., f=-0.01
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Fig. 37. Graphs showing the variation of the observables over the time after the laser pulse
has finished for the fs expt., with f set to —0.01/v/2.
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Results for fs expt.
Na_3+ signal, together with its Transform.
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Resuits for fs expt.
Approx. Na_3+ signal, together with its Transform.
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Results for fs expt.
Transform of Approx. Na_3+ signal.
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Resuits for fs expt.
Transform of Autocorrelation function, showing energy levels.
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Fig. 41. Graphs showing the autocorrelation function and its Fourier transform for the fem-

tosecond experiment.
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Results for vertical excitation.
Transform of Autocorrelation function, showing energy levels.
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Results for vertical excitation.
Transform of Autocorrelation function, showing energy levels.
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Fig. 43. Graphs showing the experimental spectrum and the Fourier transform of the auto-

correlation function for vertical excitation.
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Results for 16000 cm-1 ps expt.
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Fig. 44. Graphs showing the variation of the observables over the entire propagation time

for the 16000 cm™! picosecond experiment.
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Results for 16129 cm-1 ps expt.
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Fig. 45. Graphs showing the variation of the observables over the entire propagation time

for the 16129 cm™! picosecond experiment.
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Results for 16136 cm-1 ps expt.
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Fig. 46. Graphs showing the variation of the observables over the entire propagation time

for the 16136 cm™! picosecond experiment.
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Results for 16207 cm-1 ps expt.
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Fig. 47. Graphs showing the variation of the observables over the entire propagation time
for the 16207 cm ™! picosecond experiment.
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Results for 16136 cm-1 ps expt., f=0.0
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Fig. 48. Graphs showing the variation of the observables over the time after the laser has

finished for the 16136 cm™! ps expt., with f set to zero.
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Results for 16136 cm-1 ps expt.

au. au.
1.0°10" w ]
uw - Q
g 1 g 510"
€ o] z B
8 7.5°10 ] ‘tg 410"
@ H w N
w - I
= o = 3°10°
> 5.0°10" 5
3 ] & 2110°
- g
.40 4
S 25°10° v
w ] W10
I
(= 'l_: 4
0.0°10 IS B S0 B0 20 B0 0 B S0 S0 0 B [ 0020 A I A L 2 e 0'1U~mmhﬂmﬂ-mﬁ-n
5 6 7 8 g 10 1 12 13 14 15 s 6 7 8 ] 10 1" 12 3 1 15
*10°FEMTOSECONDS *10’FEMTOSECONDS
TIME TIME
"10%a.u *10%a.u.
w b W
o B O 8.0
o] B s _
= § o
2 -
X 57154 g 4
(=) 7 2.
< E [0] -
5 i g 7.5_
w B < 7
E s w
z ] =
% ] 5740:
& 5 705 g 1
W 5.705 T A
w b z A
w 3 W g5
T 4 w4
= 1 I
L LELSLAELER LS S B ) B B N S (2w v B A L e B B B 2 O B | L T
5 6 7 8 9 10 " 12 13 14 15 5 6 7 8 9 10 1" 12 13 14 15
*10°’FEMTOSECONDS *10'FEMTOSECONDS
TIME TIME
a.u. a.u.
0.687 T 3
@ 3 @ 027
5 om0 8 3
@ 0.886 — [&] B
B w E
3 ] 6 o0
< ! w -
> 0885+ = B
w 3 Fq E
(0] 4 > 0.254
< B B
@ 0.884 - ol E
i B 3
4 E < 1
z ] ‘é 0.5
wi > 3
E 0.883 x 3
3 T o7
0.682 o
L0 B S
5 6 7 8 9 10 1" 12 13 14 15 S L] 7 8 8 10 1A 12 13 14 15
*10°FEMTOSECONDS *10°FEMTOSECONDS
TIME TIME

Fig. 49. Graphs showing the variation of the observables over the time after the laser has

finished for the 16136 cm™! picosecond experiment.
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Results for 16136 cm-1 ps expt., f'=-0.01
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Fig. 50. Graphs showing the variation of the observables over the time after the laser has

finished for the 16136 cm™! ps expt., with f set to 0.01/v/2.
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Results for 16000 cm-1 ps expt.
Approx. Na_3+ signal, together with its Transform.
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Fig. 51. Graphs showing the approzimate Nai signal as a function of ¢p and its Fourier
transform for the 16000 cm™! picosecond experiment.
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Results for 16129 cm-1 ps expt.
Approx. Na_3+ signal, together with its Transform.
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Fig. 52. Graphs showing the approzimate Naj signal as a function of tp and its Fourier

transform for the 16129 cm™! picosecond experiment.
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Results for 16136 cm-1 ps expt.
Approx. Na_3+ signal, together with its Transform.
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Fig. 53. Graphs showing the approzimate Na] signal as a function of tp and its Fourier
transform for the 16136 cm™! picosecond experiment.
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Results for 16207 cm-1 ps expt.
Approx. Na_3+ signal, together with its Transform.
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Results for 16000 cm-1 ps expt.
Transform of Autocorrelation function, showing energy levels.
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Results for 16129 cm-1 ps expt.
Transform of Autocorrelation function, showing energy levels.
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Results for 16136 cm-1 ps expt.
Transform of Autocorrelation function, showing energy levels.
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Results for 16207 cm-1 ps expt.
Transform of Autocorrelation function, showing energy levels.
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Fig. 58. Graphs showing the zero time delay overlap fn. over tp and the Fourier transform

of the autocorrelation fn. for the 16207 cm™! ps expt.
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6: Three Dimensions

The previous chapter is concerned with two-dimensional calculations on the sodium
trimer, i.e. the effect of the symmetric stretch has not been taken into account. This mode
is usually considered to be less important because it is of a} symmetry, so that distortion in
this coordinate does not change the symmetry of the potential. However, there is evidence

that the coupling between the symmetric stretch and the other two vibrational modes may

be significant [117][119].

The question of interest for the femtosecond experiments, which calculations in three
dimensions can address, is concerned with the very strong intensity of the symmetric stretch
frequency compared to the pseudorotational-radial frequency in the experimental spectrum
of the ion signal. The dominance of the results by this frequency implies that the molec-
ule 1s highly excited in the symmetric stretch coordinate. This means that there is a
wavepacket on the B state which moves towards and away from the equilibrium geometry
of the symmetric stretch coordinate for the ion (Qsp = 3.443 A), with a high amplitude
motion. However, the static spectroscopy shows little, if any, excitation in the symmetric
stretch coordinate. This implies that the wavepacket produced on the three dimensional B

state surface would not be highly excited in the symmetric stretch coordinate, and that the
lon signal would not be dominated by the symmetric stretch frequency. In the last chapter
1t was seen that the wavepacket produced on the B state surface was highly excited in the
radial direction, i.e. it moved backwards and forwards across the ‘trough’ with a high am-
plitude motion. Thus, it would be expected that the ion signal would reflect this strongly
varying radial displacement, i.e. the results would be dominated by the radial frequency.

For the picosecond experiments the questions of interest are: first, whether the extra
energy levels due to the symmetric stretch frequency will be populated to any extent and
so affect the beating frequencies seen in the ion signal; and secondly, whether a coupling of

the (@2, @y) and the @, vibrational modes can explain the rapid decay in the ion signal.

The Hamiltonian in three dimensions is:

K21 42 1 2] _p? g2
Tom |2 T HE TR T V(r,6,Qs). 17
2m | 4r? * dr? R rl d¢2 om dQE + (7' ¢ Qa) ( 6)

In the following, when the radial direction is mentioned, this refers to the radial mode

in the pseudorotational space and does not refer to the symmetric stretch mode.
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6.1 The Potential—V(r, ¢,Q,)

The three-dimensional potential is divided into two terms:
V(": @, Qa) = VQ.(Q:) + VC(7'> é, Qa)- (177)

The first term Vg, (@,) only depends on the Q, coordinate, and the second term Ve(r, ¢, Q,)
couples together all three coordinates. An harmonic potential is used for Vp,(Q,):

Ko .AQ?
Vo.(Q.) = *Qsz Q’, (178)
where AQ; is the distortion in the symmetric stretch coordinate away from its equilibrium
position (when there is no coupling), @,,. The force constant, Ko, is derived from the

symmetric stretch frequency, wp, :
Kgq, = (27)%wh m, (179)

(the reduced mass of the mode is in this case the mass of a sodium atom).

Now the potential which couples all three vibrational coordinates, Vg (r, ¢,Q,), must
be introduced. A form for this potential has been suggested by Meiswinkel and Koppel
[117}; this potential takes into account the influence of the totally symmetric mode on the
E ® e Jahn-Teller effect. Here, an implicit extension of this potential is used, to describe
the influence of the totally symmetric mode on the pseudo-Jahn-Teller effect, (as for the B
state of the sodium trimer, described previously). The potential can be expressed in the

following form:
Kr? fr 21/?
Va(r,$,Qu) = - 7 | 2P + bAQ,)? + 2(P + bAQ,)r cos(34) + (E) J  (180)

where P, K and f have been defined previously (in Chapter 5) and b represents the bilinear
coupling constant involving both vibrational modes (¢' and a}). Ve(r,d, Q,) is taken to be
V_(r,¢,Q,). Comparing this potential to that defined previously, equation (153), it can
be seen to be analogous except that the linear coupling constant P is replaced by the term
P +bAQ,. It is assumed that the bilinear coupling constant is of comparable magnitude
to the normal quadratic coupling constant [117].

The positions of the minima and saddle points depend on the signs of the coupling

constants in a similar way to that described in the last chapter; thus, the surface is char-

acterised by the following extremal points (rg, ¢o, AQ,,,):

V2P
(K ~2(8/Kg) VA IF)’ (181)
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and

2P(b/Kq,)
(K —2(8%/Kq,) £ V2I£])’

where AQ),, , is the amount by which the position of the minimum and saddle points in the

(182)

AQ’:,O =

symmetric stretch coordinate are shifted from the equilibrium position when there is no
couphing (Qs,). The Jahn-Teller stabilisation energy and the localisation energy are given
by:

E P g 2V2|f|P?
T(K-28/Ko,) - V2IF]) T (K —2(8/Kq, ) — 2f7

(183)

The Simulation of the Experiment in Three Dimensions

The inclusion of the third dimension, i.e. the symmetric stretch, can be achieved by
the use of the coupled channel method, which was discussed in Chapter 4, or by a simple
extension of the methods used in the two-dimensional case. In either case the simulation
of the experiments was carried out in the same way, 1.e. the pump laser produces the
initial wavepacket on the B state, this is propagated in time, and then the observables are
extracted from the time-dependent wavefunction.

The simulation of the experiment using the full three dimensional calculations, i.e.
rather than using the coupled channel method, was achieved by taking advantage of the
implicit parallelism in the problem. This was described earlier (in Chapter 2) w.r.t. the

multi-dimensional Fourier transforms, and the fact that these transforms can be calculated

in several independent stages.

Coupled Channel Method
This method involves an expansion of the wavefunction in a suitable basis set, and
is essentié.lly exact provided sufficient basis functions are used. The wavefunction is then

substituted into the T.D.S.E. to produce a set of coupled differential equations.

In this case the wavefunction is expanded in a basis set as follows:
‘pB(t) = Z“b(B,v')(r; ¢7t)Xv’(QJ)) (184)
vl

where the functions x(Q,) represent the Q, vibrational states, and are solutions of:

32 g
<2—:1-_d% + VQ, (Qa)) Xv(Qa) = Eva(Qa)- (185)

As stated above a harmonic potential is used for Vo,(Qs) so that E, is equal to hwg,v,

and x,(Q,) are harmonic oscillator functions. As for the two-dimensional calculations, the

6: Three Dimensions
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zero-point energy is subtracted from the potential, thus the value of E, does not include a
hwq, /2 term.
Inserting A and ¥ into the T.D.S.E., left-multiplying both sides by Xy~ and integrat-

ing over @), gives:

. a¢(B,v”)(T7 @, t) —h? 1 d? 1 d2 ,
? = 2T 73 T 33 B (r o t)
ot 2m (4r2  dr?  r2d¢ (186)

+Ev”¢(B,v”)(r7 ¢, t) + Z(‘U",V(T, ¢, Q,)fv')zb(B,,/)(r, ¢, t).

The only difference between this equation and those propagated previously is the potential,
which requires a sum over matrix elements (v"[V(r, , Q,)[v') for each channel. Once these

matrix elements are calculated, the same method as described in Chapter 5 can be used to

propagate the wavefunction in time.

The Initial Wavefunction for the Coupled Channel Method

The full three dimensional initial packet on the ground state can be expanded in the
basis given above; the coefficients will be the initial packets in each channel:

‘PX(Tv ®, Qa) = Z ‘I’(X,v)(r’ ¢)X0(Qd)' (187)

Thus, the full three dimensional packet on the ground state, ¥ x(r, ¢,@,), obtained from
TRIATOM, as was described in Chapter 5, is projected onto the basis functions to produce

the initial packet in each channel:
‘I’(X,v)(ra ¢) = (v|¥x(r, 4, Qs))- (188)

The pump laser is treated as before, using first-order time-dependent perturbation theory,
so that ¥p(t) is produced from the initial packet on the ground state. However, in this
case the pump laser is exciting the initial packet to several different ‘channels’, each with

energy E,, and a different wavepacket is formed in each ‘channel’.

6.2. 3 The Observables

The Naj signal

The calculation of the Na7 signal was not done by explicit inclusion of the probe laser.
This 1s because the full treatment of the probe laser would have been extremely computa-
tionally intensive. Thus the Na; signal was calculated in the approximate way described
in the previous chapter, i.e. using the square modulus of the overlap of the time-dependent
wavefunction with the ground-state wavefunction of the ion. For the picosecond experi-

ments the Na; signal was calculated using the overlap of the time-dependent wavefunction
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with another wavefunction of the ion, i.e. the wavefunction for first excited vibrational state
of the bend. The reasons for this were discussed in Chapter 5. The zero time delay overlap

function was also used to model the ion signal.

Other observables

6.3

The norm and energy were calculated. The energy in each mode was calculated ap-

proximately. The Hamiltonian used for the radial motion was:

2 2
H —_ﬁ_{L;d_}

T 2m 472 ' dr2
2 12,3 14,5 13,4
+TK—P'r+lf'r2—l fer _:_l f*r __2_ f*r
2 2 2(P'+VAQ,)  8(P +VAQ,* 8 (P'+¥AQ,)?

(189)
where P' = /2P, f' = /2 f and b = v/2b. The Hamiltonian for the angular motion was

approximated as:

gL
*~ om r? d¢?

12,3 13,4
+ [—f’ﬂ cos? (%) + é-——(P, _{ b'rAQ,) cos?(3¢) + g(P’ -f:fb’rAQ,)z (2 cos (32—¢) )J :
(190)
These are very similar to those used in the last chapter, equations (170) and (171), except
that P' is now replaced by (P' + ' AQ,) (apart from the second term in the potential part
of H;). The Hamiltonian used to describe the motion in the @, coordinate is:

_ -k [AQK,,
Ho, = - [dQEJ . [ : -bAQ,J. (191)

The average values of 7, ¢ and AQ, were also calculated, as well as the autocorrelation

function and the zero time delay overlap function.

The Calculations

As in the last chapter, the calculations were done to simulate both the femtosecond and
the picosecond experiments, so that the calculations were done several times with different

parameters for the laser pulses, which were given in the last chapter. The calculations were

also done assuming the laser pulse was ‘white light’.

The Femtosecond Experiment
In order to try to resolve the apparent paradox concerning the intensity of the symmetric
stretch frequency in the results of the femtosecond experiments, various parameters of the

three-dimensional potential of the B state, and of the femtosecond laser pulse, were altered
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to investigate their effect on the time-dependence of the ion signal. The calculations at the

various different parameters were also carried out with a ‘white light’ laser pulse in order

to investigate their effect on the static spectroscopy. The parameters which were varied
were:

1. The position of the minimum in the symmetric stretch coordinate, @,, (with the bilinear
coupling constant b set to zero). It is expected that if the value of Qs differed greatly
between the X and B states, there would be a great deal of excitation in the Q, mode,
and the wavepacket would oscillate along this coordinate giving rise to an ion signal
dominated by this frequency. However, it is also expected that if the value of Q@so
differed greatly between the X and B states, the static spectroscopy would show many
lines corresponding to the symmetric stretch mode. The calculations were carried out
for values of Q,, of 3.7 A, 3.8 A and 3.9 A. These calculations were done simply to

confirm the apparent contradiction between the results of the femiosecond experiments

and the static spectroscopy.

2. The value of the bilinear coupling constant b. The calculation was done using a dimen-
sionless bilinear coupling constant, corresponding to b, equal to 0.012/+/2,0.048/1/2,
0.086/+/2,0.1/4/2 and 1.5/4/2. The value of @5, the equilibrium position of the sym-
metric stretch coordinate when there is no coupling, was set to 3.7 A. Again the effects

on the time-dependence of the ion signal and the static spectroscopy were monitored.

3. The temporal width of the femtosecond laser pulse (with @,, set to 3.7 A, and b set
to zero). The spectral width of the laser pulse is not particularly well described using
a laser pulse with a temporal width of 70 fs. This is because, as was seen in the
last chapter, the spectral width of the laser pulse is not completely determined by its
temporal width (see figure 19). Thus, in order to model the spectral width of the laser
pulse, the temporal width was decreased to approximately 41 fs. A laser pulse with
this temporal width has a spectral width of approximately 500 cm™!. It was seen in
the last chapter that the narrower the pump laser pulse that was used, the stronger the
initial damping of the amplitude of the radial motion. Obviously, if the radial motion
1s initially strongly damped then the ion signal will show less dependence on the radial

frequency and the symmetric stretch frequency will appear stronger.

.3. 2 The Picosecond Experiments
For the picosecond experiments, the calculations were carried out initially for b equal
to zero (with @, set to 3.7 &), to investigate the effect of the introduction of extra energy
levels, and then with different values of b, to investigate the effect of the coupling between
the symmetric stretch mode and the other two modes. The calculation was done using
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a dimensionless bilinear coupling constant, corresponding to b, equal to 0.012/v/2 and
0.048/+/2.

6.4 The Results

6.4. 1 The Femtosecond Experiment

The effect of the variation of Q,,

As expected an increase in Q,, away from the value on the X surface (3.63 A), produced
much larger oscillations in @Q,. This can be seen in figures 59 and 60, which show the
calculated observables over the propagation time for Q,, equal to 3.7 A and 39 A It
can also be seen from these figures that the zero coupling between the symmetric stretch
and the other modes gives rise to a motion which is completely separable, i.e. there is
no change in the energy in the @, mode, and the observables for the radial and angular
modes are similar to those for the two-dimensional calculation. Figures 61 and 62 show
the ion signal and its Fourter transform for the different values of Q,,. It can be seen that
as @,, increases, the intensity of the peak in the Fourier transform at 110 cm™!, which
corresponds to the symmetric stretch frequency, increases compared to the intensity of the
peak at 127 cm™!, which corresponds to the radial frequency. Other frequencies observed
in the spectra, with varying intensities, are: 17 cm™!, which corresponds to a beating
frequency between the radial motion (127 cm™!) and the symmetric stretch (110 cm™?);
34 cm™!, which corresponds to a beating frequency between the first overtone of the radial
frequency (254 cm™') and the first overtone of the symmetric stretch (220 cm™1); 93 cm~?,

* which corresponds to a beating frequency between the radial motion (127 cm™!) and the
first overtone of the symmetric stretch frequency (220 cm™!); 144 cm ™!, which corresponds
to a beating frequency between the first overtone of the radial frequency (254 cm™!) and
the symmetric frequency (110 cm™!); 220 cm™!, which corresponds to the first overtone of

the symmetric stretch; and 254 cm™!, which corresponds to the first overtone of the radial
frequency.

The experimental spectrum, of the Fourier transform of the ion signal, shows frequencies
at 12(m), 19(m), 34(w), 50(m), 73(m), 105(vs), 90(s), 123(w) and 141.5(w). It seems
then that increasing Q,, produces an ion signal which shows a fair correspondence the
experimental results.

However, the results of the calculations for the vertical excitation of the laser pulse
(figures 63 and 64), i.e. those which correspond with the static spectroscopy, show that

as Q,, increases, the intensity of the peaks in the energy spectrum which correspond to

the symmetric stretch frequency also increase (note that the resolution of these spectra
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are lower than for the two-dimensional case since the propagation was done for half the
length of time). This does not correspond well with the results obtained for the static

spectroscopy, which show little, if any, excitation in the symmetric stretch.

Thus, it appears that the value of Q),, for the B state must indeed be similar to that
for the X state. Therefore, other parameters must be investigated if an ion signal, which

corresponds well with the experimental one, is to be obtained.

The effect of the variation of b

Figures 65 and 66 show the observables calculated over the propagation time, for two-
values of b (0.012/+/2 and 0.086/+/2). It can be seen that increasing b shifts the position of
the equilibrium position on the B surface, away from Q,,, by an amount AQ,, (see equation
(182)), which increases as b increases. This shift in the minimum on the surface gives rise
to a motion in the symmetric stretch with a different amplitude than for the b = 0.0 case.
As well as this shift in the equilibrium and change in the amplitude of the motion, the
oscillation in @, can now be seen to depend not only on the symmetric stretch frequency,
but also on the radial frequency. The reason for this is, of course, that the eigenstates of
the potential are no longer separable into those depending on @, only, and those depending
on r and ¢ only. Thus the vibrational modes in @, will now be weakly dependent on r and
¢. Also the vibrational modes in » (which are also weakly depend on ¢) will now be weakly
dependent on @,. This can be seen from the figures: the motion in = is now also dependent
on the symmetric stretch frequency. As well as the effect on the oscillation in each mode,
it can be seen that energy is exchanged between these modes. Thus energy is transferred
from the radial mode, which was initially highly excited, to the symmetric stretch mode,

which initially has only a small amount of excitation.

The question then is how this coupling effects the ion signal. Figures 67 and 68 show
the ion signal and its Fourier transform for the two values of b. It can be seen that as b
is increased the relative intensity of the symmetric stretch frequency increases a little, but
also that the spectrum becomes much more ‘irregular’, i.e. there are very many peaks in
the spectrum. Since the increase in b changes the oscillation in @, and also makes the
motion in r depend on this frequency, the increase in the intensity of the symmetric stretch
frequency is not unexpected. However, the motion on the surface is much more complicated

giving rise to a signal with many different frequency components.

Figures 69 and 70 show the corresponding results for the vertical excitation, i.e. the
static spectroscopy, for the two values of b. The lines in the spectra are expected to become
broader as bincreases, because the energies of the various zeroth-order eigenstates (i.e. those

corresponding to the completely uncoupled potential) will be broadened, as the states mix
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together. (The experimental spectrum does show some width to each peak, but this is
mostly likely explained by the lack of rotational resolution.) However, there is not much
evidence for this broadening in the spectra of the simulated static spectroscopy, though the

energy levels corresponding to the excited symmetric stretch states seem to be less distinct.

Thus, although increasing b does in some way increase the correspondence of the ion
signal to the experimental one, the other factor associated with this increase is not totally

acceptable, 1.e. the irregularity in the spectrum of the ion signal.
The effect of the variation of the temporal width

Figure 71 shows the observables calculated over the propagation time (for the femtosec-
ond experiment with the narrower laser pulse); compared to figure 59 (for the femtosecond
experiment) the amplitude of the radial motion can be seen to be smaller. Also the am-
plitude of the motion in the symmetric stretch is slightly larger. Figure 72 shows the
approximate ion signal (for the femtosecond experiment with the narrower laser pulse).
Compared to figure 61 (for the femtosecond experiment) the symmetric stretch frequency
has increased its intensity relative to the radial frequency. Thus, an explanation for the
poor agreement of the calculations done here with the experimental results could be the

inadequate modelling of the pump laser pulse by a single Gaussian whose spectral width is

determined only by its temporal width.
Correlation with the results of Gerber’s experiments

The Freiburg experiments produced a time-dependent Na7 signal, together with the
Fourier transform of this, which gave a spectrum containing frequencies characteristic of
motion on the B surface. As stated previously, the spectrum contains many frequencies
including the symmetric stretch frequency (105 cm™!) and the radial frequency (123 cm™!).
The intensity of the symmetric stretch frequency is much stronger than that of the radial
frequency.

The results obtained here also show a symmetric stretch frequency (110 cm™!) and a
radial frequency (127 cm™!). The frequencies appear to agree well. The other frequencies
in the experimental spectrum may arise from the beating together of these two frequencies
and their overtones. However, in order that the results obtained for the static spectroscopy
continued to agree well with the experimental results, parameters for the potential were
used that gave the intensity of the symmetric stretch frequency to be much less than the
radial frequency. In order to obtain a better agreement with the experimental results, it
was necessary to use a laser pulse which had a larger spectral width than that implied by
the experimental temporal width.

Even at best, the correlation with the experimental results cannot be expected to
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be very good because there have been many approximations involved in obtaining the

calculated results. Some of these are:

1. The quality of the potential surfaces used, particularly the approximate treatment of
the coupling of the (@, @Qy) and the Q, vibrational modes.

2. The approximate method by which the Naj signal for the three-dimensional calculations
was obtained. Uncertainty concerning the ionisation potential of the sodium trimer

makes the assessment of the reliability of this assumption difficult.

3. The modelling of the laser pulse by one pulse with a Gaussian time profile, whose
spectral width is determined by its temporal width.

4. The neglect of the coupling between the B and X states. The X state should be in-
cluded in the time-dependent part of the calculation because the pump can produce a
wavepacket in the X state by two-photon excitation via the B state, and the probe can

ionise it via another two-photon process.

6.4. 2 The Picosecond Experiments

The effect on the beating frequencies

The Fourier transform of the autocorrelation function for all the picosecond experiments
showed that the same energy levels were populated as in the two-dimensional calculations,
with small differences in the relative intensities. The ion signals (approximated using both
the overlap function and the zero time delay overlap function) obtained for the picosecond
experiments showed no difference to those obtained in the two-dimensional calculations,
except that the ion signal for the 16207 cm ™! picosecond experiment had a larger amplitude
of oscillation. Therefore, the extra energy levels (corresponding to the symmetric stretch
mode) are not populated and consequently there is no effect on the beating frequencies
seen in the ion signal. For the 16000, 16129 and 16136 cm ™! experiments this is possibly
because the spectral width of the laser pulse 1s not great enough to excite the lowest excited
symmetric stretch level at 16110 cm~!. For the 16207 cm™! picosecond experiment, it
seems likely that the laser pulse would be able to excite the energy level at 16220 cm™!
(the second excited state of the symmetric stretch). However, this is very close in energy
to the u = 1,7 = 5 energy level so that the beat frequencies would change little, making
the effect of this excitation difficult to see, unless the excitation was very large, which is
unlikely since it has already been noted that the equilibrium position of the symmetric

stretch mode on the B surface is very similar to that on the X surface.

The effect of the variation of b
Figure 73 shows the variation in the observables calculated over the propagation time
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for the 16207 cm ™! picosecond experiment. It can be seen that the radial and angular modes
have been coupled to the symmetric stretch mode. There is now a small amplitude motion
in the symmetric stretch, and there is a flow of energy between all three modes. Figure 74
shows the ion signals obtained for the simulation of the 16207 cm™! picosecond experiments
for b set to 0.048/v/2. The ion signal now contains a faster oscillation corresponding to
the symmetric stretch frequency. The picosecond experiments at other frequencies showed

similar behaviour.

The introduction of the coupling between the symmetric stretch and the other two

modes did not produce a decaying ion signal for any of the picosecond experiments.
Correlation with the results of Woste’s experiments

The inclusion of the symmetric stretch frequency has not improved the correlation of
the calculated results to the experimental results. As was discussed at the end of Chapter
5, the picosecond experiments at 625, 620, and 619.7 nm show some agreement with the
experimental results. The oscillations though are not with a time period of 3 ps but of
=~ 2 ps. The results at 617 nm show less similarity to the experimental results. The ion
signal oscillates with a long time period of approximately 4 ps, which can be compared
to the experimental value of 3 ps, but there is also a short time period in the oscillation
of approximately 1 ps, which has no corresponding value in the experimental ion signal.
None of the ion signals obtained for the picosecond experiments show the fast decay that

1s found in the experimental results.

As for the femtosecond experiments, it is not expected that the correlation between the
results obtained here and the experimental results will be very good. Some of the reasons
for this poor comparison are the same as for the femtosecond experiment. However, there

are some other reasons in the case of the picosecond experiments:

1. The quality of the potential surfaces used. In particular the linking together of the
barrier to pseudorotation and the circularity of the potential, through the quadratic

coupling constant, ensuring that, because the barrier to pseudorotation is thought to

be small, the potential is almost circular.

2. Uncertainity over the spectral width of the laser pulse. The laser pulse is said to have a
spectral width double that implied by its temporal width. It is thought that this may
be due to imperfect mode locking in the dye laser. This may affect the particular levels
excited by the laser pulse, and so the frequency with which they beat together.

3. The accuracy with which the excitation energy between the X state and the B state
is known, which due to the narrow spectral width of the laser pulse becomes very

important. If the B state is placed at an energy which is slightly incorrect this may
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cause the laser pulse to be off resonance, which will clearly have a large effect on the
results. There is only a small uncertainty in this excitation energy: a value of 16000
cm™! is used here, whilst the most reliable experiments report a value of 15996 cm™!
(108]. It is possible that this 4 cm™! difference may be significant for a laser pulse with

a spectral width of 15 cm™!, as used for the picosecond experiments.

6.5 Conclusions

The 1nitial wavepacket that is created by the femtosecond laser pulse is, as in the two-
dimensional calculations, made up of many states, which are excited in the radial, angular
and symmetric stretch modes. This wavepacket has a large amplitude motion in the radial
direction, and a small amplitude motion in the symmetric stretch coordinate. However,
this is at odds with the experimental femtosecond results which imply that the wavepacket
has a small amplitude motion in the radial direction and a large amplitude motion in
the symmetric stretch. In order to create a similar wavepacket in the simulation of the
experiment, a better model of the laser pulse will have to be developed, which allows the
spectral width of the pulse to be determined independently of its temporal width.

The picosecond experiments can be simulated in two dimensions. The inclusion of the
extra dimension adds no extra insight into the results of these experiments. As in the two-
dimensional calculations, the oscillating ion signal arises because of the beating together
of various pseudorotational modes. In order to gain more than the qualitative idea of the
experiments given here, it will be necessary to obtain a potential which correctly describes

both the energy levels of the pseudorotational modes and the coupling between the radial

and angular modes.
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Results for fs expt. Q_s0=3.7A, b=0.0
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Fig. 59. Graphs showing the variation of the observables over the entire propagation time
for the femtosecond experiment, with b = 0.0, Q,, = 3.7 A.
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Results for fs expt. Q_s0=3.9A, b=0.0
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Fig. 60. Graphs showing the variation of the observables over the entire propagation time

for the femtosecond experiment, with b = 0.0, Q,, = 3.9 A.
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Results for fs expt. Q_s0=3.7A, b=0.0
Approx. Na_3+ signal, together with its Transform.
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Fig. 61. Graphs showing the approzimate Na] signal and its Fourier transform for the fem-
tosecond experiment, with b = 0.0,Q,, = 3.7 A
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Results for fs expt. Q_s0=3.9A, b=0.0
Approx. Na_3+ signal, together with its Transform.
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Fig. 62. Graphs showing the approzimate Naj signal and its Fourier transform for the fem-
tosecond experiment, with b = 0.0,Q,, = 3.9 A.
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Results for vertical excitation Q_s0=3.7A, b=0.0.
Transform of Autocorrelation function, showing energy levels.

a.u.

10.0

IS S W G I W W O

N
wn
1

Lt 1 |

o
=}
1

1

1

IAUTOCORRELATION FUNCTIONI
S
w
{ 1

L1 i1

o
[

IllIIIll!llIll[lI|l[I|ll|ll‘l’llIllIlllTl[lIlITllll['

0°10° 1"10° 2°10° 3*10° 4°10° 5°10° 6*10° 10 810’ 9°10° 1°10°
FEMTOSECONDS
TIME

a.u.

150 —

- 125

g 4

= -

[&] .

P4 |

po]

U 100

S R

< i

I;L.] —

; —

w 75-

(@] -

s .

= -

o

2 4

2 504

( -

@ .

z

T i

E -

ey -

T 25

o}

w -

w

) l]llIl’]’T!lllllli'llll]llll]'llllIIYllllll]lTTIIIIII"IIlllllII‘I’!II]I!‘IIIIIYUIIX'T‘]’
152 153 154 155 156 157 158 159 160 161 162 163 164 165 186 167 168

*10'M-1
WAVENUMBER

Fig. 63. Graphs showing the autocorrelation function and its Fourier transform for vertical

excitation, with b = 0.0,Q,, = 3.7 A.
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Results for vertical excitation Q_s0=3.9A, b=0.0
Transform of Autocorrelation function, showing energy levels.
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Fig. 64. Graphs showing the autocorrelation function and its Fourier transform for vertical
excitation, with b = 0.0,Q,, = 3.9 A.
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Results for fs expt. Q_s0=3.7A, b=0.012
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Fig. 65. Graphs showing the variation of the observables over the entire propagation time
for the femtosecond experiment, with & = 0.012/v/2, Q,, = 3.7 i
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Results for fs expt. Q_s0=3.7A, b’=0.086
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Fig. 66. Graphs showing the variation of the observables over the entire propagation time
for the femtosecond experiment, with b = 0.086/v/2, @Q,, = 3.7 A
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Results for fs expt. Q_s0=3.7A, b=0.012
Approx. Na_3+ signal, together with its Transform.
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Fig. 67. Graphs showing the approzimate Naj signal and its Fourier transform for the fem-
tosecond experiment, with b = 0.012/v/2,Q,, = 3.7 i
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Results for fs expt. Q_s0=3.7A, b’=0.086
Approx. Na_3+ signal, together with its Transform.
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Fig. 68. Graphs showing the approzimate Na7 signal and its Fourier transform for the fem-
tosecond experiment, with b = 0.086/v/2,@Q,, = 3.7 A.
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Results for vertical excitation Q_s0=3.7A, b’=0.012.
Transform of Autocorrelation function, showing energy levels.
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Fig. 69. Graphs showing the autocorrelation function and its Fourier transform for vertical

excitation, with b = 0.012/v/2, Q,, = 3.7 A.
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Results for vertical excitation Q_s0=3.7A, b’=0.086.
Transform of Autocorrelation function, showing energy levels.
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Results for altered fs expt. Q_s0=3.7A, b=0.0
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Results for altered fs expt. Q_s0=3.7A, b=0.0
Approx. Na_3+ signal, together with its Transform.
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Fig. 72. Graphs showing the approzimate Naj signal and its Fourier transform for the al-
tered femtosecond experiment, with b = 0.0,Q,, = 3.7 A.
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Results for 16207 cm-1 ps expt. Q_s0=3.7A, b'=0.048
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Fig. 73. Graphs showing the variation of the observables over the entire propagation time

for the 16207 cm™! picosecond experiment, with b = 0.048/v/2, Q,, = 3.7 A
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Resuits for 16207 cm-1 ps expt. Q_s0=3.7A, b=0.048
Approx. Na_3+ signal, together with its Transform.
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Fig. 74. Graphs showing the approzrimate Naj signal and its Fourier transform for the 16207
cm™! picosecond experiment, with b = 0.048/v/2,Q,, = 3.7 A.
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7: Summary and Conclusions

This thesis is concerned with studying chemical dynamics using time-dependent quan-
tum mechanics and in particular using the Fourier method. The advantages of studying

chemical reactions in the time domain were discussed in Chapter 1.

In Chapter 2, the Fourier method for studying one-dimensional problems was intro-
duced. The nature of the initial wavefunction to be used was discussed. It was shown how
the Hamiltonian and its operation on the wavefunction can be calculated, and then used
to propagate the wavefunction in time. Several different methods for the propagation of

the T.D.S.E. were described. Various types of absorbing boundaries were also described.

In Chapter 3, some of the various propagators that were introduced in Chapter 2 were
investigated, as was the use of imaginary potentials. It was found that the Chebyshev
propagator was the most accurate and efficient, especially when used as a stepping rather
than a truly global propagator. However care is needed when using imaginary potentials,
since the Chebyshev propagator can become unstable with non-Hermitian Hamiltonians,

so that in some cases this may make it preferable to use the Feit/Fleck propagator.

In Chapter 4, the extension of the Fourier method to multi-dimensional problems was
described. It was seen that there are many different approaches possible, some of which
were similar to the one-dimensional Fourier method, others of which were quite different.
The coupled channel wavepacket method was used to describe the fragmentation of Van
der Waals molecules. It was seen that the derivation of the set of coupled equations was
straightforward. The solution of the equations and the extraction of observables from
the channel wavepackets was no more complicated than for the Fourier method. Thus it
was seen that this hybrid method of the Fourier method with a more standard basis set
expansion can provide a useful tool for multi-dimensional calculations. The two test cases
described were shown to produce results which were not at odds with those reported in the

literature. Thus, there could be some confidence in the accuracy of the calculations done.

In Chapter 5, two-dimensional calculations were carried out to simulate time-resolved
femtosecond and picosecond two-photon ionisation experiments on the sodium trimer. In
Chapter 6, the corresponding three-dimensional calculations were carried out, i.e. the sym-
metric stretch mode was included in the calculations. The simulation of these experiments
was divided into three parts:

1. The creation of the initial wavefunction on the B state from the ground-state wave-
function of Naj. This was done by modelling the effect of the pump laser pulse using
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first-order time-dependent perturbation theory.
2. The propagation of the wavefunction in time using the Chebyshev propagator.

3. The extraction of observables from the time-dependent wavefunction. One of the most
important observables was the Naj signal, which was measured in the time-resolved

experiments. This was modelled in three different ways:

1. The first was almost exact, i.e. it modelled the effect of the probe laser pulse us-
ing first-order time-dependent perturbation theory. This first method made the

assumption that the electrons ejected during ionisation had no kinetic energy.

2. The second method was approximate. It modelled the ion signal as the overlap of
the time-dependent wavefunction with the ground-state vibrational wavefunction of
the ion. The second method assumed that there was only just enough energy in the

probe laser pulse to ionise the molecule.

3. The third method was also approximate. This method modelled the ion signal as
the overlap of the time-dependent wavefunction with the wavefunction which was
present on the B state half way through the pump laser pulse. The third method
assumed that the wavefunction present on the B state half way through the pump

laser pulse gave the best conditions for ionisation.

The simulation of the time-resolved experiments produced physically plausible results.
The correspondence with the experimental results was only fair, but this could be mostly
accounted for by the poor quality of the potential energy surfaces used. Thus, even the
relatively simple model used here to simulate the time-resolved experiments is useful to
gain both a qualitative explanation of the results of these experiments and an insight into

the dynamics of systems which are in non-stationary states.

As well as simulating the time-resolved experiments the static spectroscopy was also
modelled by using a laser pulse equivalent to ‘white light’, which moved the wavefunction
on the X state vertically to the Bstate. This simulation of the static spectroscopy was fairly
successfully. Thus, there could be a certain amount of confidence in both the potential of

the B state and initial wavefunction of the X state, which were used in the calculations.

In the two-dimensional calculations, the initial wavepacket created by the femtosecond
laser pulse was made up of many states, which were excited both in the radial mode and in
the angular mode. This wavepacket had a large amplitude motion in the radial direction.
The angular motion followed no easily discernible pattern. The oscillation of the wavepacket
in the radial direction gave rise to an ion signal which oscillated with the frequency of the
radial motion. In the three-dimensional calculations, the initial wavepacket was similar to

that created in the two-dimensional calculations, but the wavepacket now contained states
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which were excited in the symmetric stretch mode. Thus the wavepacket also oscillated
in the symmetric stretch coordinate. The oscillation of the wavepacket in both the radial
and symmetric stretch coordinates gave rise to an ion signal which oscillated with both
the frequency of the radial motion and of the symmetric stretch, as well as with the beat
frequencies between the two.

In the two-dimensional calculations, the initial wavepacket created by the picosecond
laser pulse was made up of very few states, which were excited in the angular mode, but
were in only one radial state. The angular states present interfered with each other to
produce a wavefunction which moved angularly. The small coupling of the angular and
radial modes, through the quadratic coupling constant, meant that as the wavepacket
moved angularly it moved radially as well. This small radial motion gave rise to an ion
signal which oscillated with the beat frequencies between the angular modes. In the three-
dimensional calculations, the initial wavepacket was almost identical to that created in the
two-dimensional calculations.

For the two-dimensional simulation of the femtosecond experiment, the second method
of calculating the ion signal, which was approximate, appeared to give satisfactory agree-
ment with the first method of calculation, which was almost exact. This meant that for
the picosecond experiments the calculation of the ion signal could be carried out using this
approximation. However, it proved more appropriate for a variety of reasons to use vibra-
tional states, other than the ground state, to form the overlap function. In fact, for the
simulation of the picosecond experiments, the third method of calculating the ion signal
showed slightly better agreement with the experiment than the second method. A useful
implication of the success of the approximate methods was that the calculations could be

extended to three dimensions, i.e. including the symmetric stretch.

The two-dimensional simulations of the femtosecond experiment showed poor agree-
ment with the experimental results. Superficially, the poor agreement could be attributed
to the dominance of the results by the symmetric stretch frequency. The three-dimensional
simulations showed some agreement with the experimental results, with the values of the
frequencies observed in the calculated spectrum being similar to those in the experimental
spectrum. However, the very high intensity of the symmetric stretch frequency relative to
the radial frequency was difficult to explain. In order to produce a simulated spectrum
which is dominated by the symmetric stretch frequency, a better model of the laser pulse
will have to be developed, which allows the spectral width of the pulse to be determined
independently of its temporal width.

The picosecond experiments at 625, 620, and 619.7 nm showed some agreement with

the experimental results. The results at 617 nm showed less similarity to the reported
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experimental results. The calculated ion signals oscillated with frequencies which were
similar to those found in the experimental results, but no steady decay of the ion signal
was seen. The inclusion of the extra dimension added no extra insight into the results of
the picosecond experiments; in particular, it did not lead to an ion signal which showed a
fast decay. In order to gain more than the qualitative idea of the experiments given here,
it would be necessary to obtain a potential which correctly describes both the energy levels

and the coupling between the radial and angular modes.

There is much work that can be done in the future to improve the simulation of these
time-tesolved experiments. In particular, a great deal of work can be done to improve the
modelling of the laser pulses, so that both the temporal width and spectral width of the
experimental pulses can be reproduced. It is hoped that in the future better potential
surfaces will be available so that any uncertainty regarding the ground-state wavefunction
of Nag, the energy levels of the B state and the coupling between the modes in the B state
will be removed. It is also hoped that as more powerful computers become available it will
be possible to: first, calculate the ion signal exactly by the explicit treatment of the probe
laser pulse for all the simulations, i.e. for the picosecond and femtosecond experiments in

both two or three dimensions; and secondly, include the coupling between the X and B

states.
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This is a system of units which is natural on the atomic scale. The units are defined in

the following way:

me = 1
e=1
h=1
4meg = 1.

The unit of energy is the Hartree, E}, and its value is:
mee?

h= o33

4h €9

The unit of distance is the Bohr radius, ao:
h2eq

TMee

ag =

The unit of time is:

h
r=—=x~24x10"s.
h

~ 4.359 x 10718]J.

>~ 5.29 x 107 m.

(192)

(193)

(194)

(195)

Thus, to convert to atomic units from S.I. units is quite straight forward. For example

to convert a force constant:

2
a
koo =k '_0_.
a.u S.I. ,Eh,
To convert a distance:
ZSs.I1.
Za.u. =
|ao|
To convert a time:
ts.I.
ta.u < 1
|7]

To convert a reduced mass:

etc.

Other useful conversions are:

leV = 8065.47 hcem ™,

and

(196)

(197)

(198)

(199)

wavenumber (cm_l) x hc/Eyp — energy in Hartrees (Ey).
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Appendix B: Theoretical Background

One of the most important assumptions involved in trying to solve the Schrodinger
equation is the separation of the nuclear and electronic motions. This is justified by the
large differences in the masses of the electron and nucleons. What follows is an investigation
into some of the consequences of the breakdown of this assumption, and ways in which the

theory can be extended to take some account of the deficiences of this assumption [139].

Adiabatic theorem
The separation of the nuclear and electronic motions mentioned above is called the
Adiabatic Theorem.

The Hamiltonian can be divided into three parts:
H=H,+Hy+V(r,Q) (200)

where 7 and Q are the electronic and vibrational coordinates respectively. H, is the elec-
tronic component of the Hamiltonian, including the kinetic energy of the electrons and the
interelectronic electrostatic interaction, Hg is the kinetic energy of the nuclei, and V(r, Q)
is the energy of interaction between the electrons and nuclei and the internuclear repul-

sion. The potential can be expressed in a Taylor series about some chosen ongin, the point

Qa = QaO =0
ov 1

/ gV .
V(r,Q)=V(r,0)+ ; (aQa)oQa + 5% (m)oQaQﬁ +... (201)

If the first term of this expansion is regarded as the potential energy of the electrons in the

field of fixed nuclei, the electronic part of the Schrodinger equation can be solved:

H, + V(r,0) — & #4(r) = 0, (202)

and a set of energies €} and wavefunctions ¢x(r) can be obtained for the given nuclear
configuration corresponding to the point Qao0-

In order to solve the full Schrodinger equation, and to see how these electronic wavefunc-

tions vary under nuclear displacements, the wavefunction is expanded in these electronic
wavefunctions:
¥(r,Q) = Y xx(@)x(r), (203)
k
and then substituted into the Schrodinger equation, which is left multiplied by @},(r) and

integrated over r to give:

[HQ - Ek(Q) - E} Xk(Q) + Z ka(Q)Xm(Q) =0 (204)

m#k
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where W(r,Q) = V(r,Q)—V(r,0) and (Q) = € + Wir(Q), and is a first order approxima-
tion to the adiabatic potential in the absence of electronic degeneracy or pseudodegeneracy.
If Wim(Q) is set to zero, then the wavefunction is simply separable, ¥(r, @) = xx(Q)dx().
This is called the simple adiabatic or Born-Oppenheimer approximation. Here it is of in-
terest to consider the effect on the wavefunction if some terms in Wi, (Q) are included in
equation (204). In order to limit the complexity of the problem, only harmonic terms in

W (r,Q) will be included. W(r, Q) can then be written in terms of normal mode coordi-

nates, r,:

av 1 oV
W(r = E + = § -
( ’Q) T, ( )0 QI‘-, 2 (aQI‘.,laQr-,z)o qulQr-,z (205)

aQI‘~, I'yily2

Vibronic coupling constants

Consider the first term in the expansion of W(r, Q) in equation (205). The matrix
elements of the coefficients of Qr_, <F2%>0 , are the constants of vibronic coupling or
linear coupling constants. They measure the coupling between the electronic structure and
nuclear displacements, i.e. the measure of the influence of the nuclear displacements on the
electronic distribution and conversely the effect of the changes in the electronic structure

upon nuclear dynamics. This constant is then (for non-degenerate states):
Fnte= [ d 2
én(r) (355 ). (206)

From group theory it can be seen that Fr"‘r" will only be non-zero if 'y ® Iy € T. If
Tk, T'm or both are degenerate electronic states then a set of linear vibronic constants will
exist appropriate to all the components vy, and 4 of the two representations I'm and T.
(Note—This set can be calculated easily if one takes into account the fact that the matnx
elements within a degenerate term differ solely in numerical coefficients, their values being
known.)

The diagonal constant of the linear coupling Fin Imlm = FIF ™ has the sense of the force
with which the electrons in state [',, affect the nuclet in the direction of symmetrised
displacement Q.. For non-degenerate states FII:"‘ will be zero, except for T = Ay, in
which case the electrons can distort the nuclear configuration only in the direction of the
totally symmetric displacements, and the symmetry of the system does not change. If
I'sm is a degenerate electronic state then Fg"‘ may be non-zero for I' # A;. In this case
[ may not be totally symmetric, and under the influence of the electrons the nuclear
configuration undergoes appropriate distortions which are not totally symmetric. This is

sometimes known as the Jahn-Teller effect.
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Now consider the second term in equation (205). In order to investigate this, further

group-theoretical transformations are introduced. The tensor convolution of the coefficients

(CAIN o)
BQP16QF2 0 I"__y

is introduced, which means the linear combination of second derivatives, with respect to the

of this term:

Qr,, and Qr., coordinates, transform according to the component ¥ of representation I' €
['; ®T;. Similarly, the appropriate tensor convolution for the coordinates is {@r, ®QI‘2}I‘.?,

so the second term in equation (205) becomes:

1 5%V
5 g erQl‘z { <6eraQr2)0}rﬁ {er ® Qrz}f;’ ' (208)

Consider now the matrix elements of the coefficients of this term. For a degenerate
state there will be a set appropriate to the lines ym and 73 of the two representations I'my
and ' and their combinations.

The totally symmetric part of the diagonal matrix elements of these second deriva-
tives (i.e. second term in equation (205)), form the curvature of the adiabatic potential
or the force constants (in the equilibrium position). The remaining terms and the non-
diagonal matrix elements contain the quadratic vibronic constants, K gl-?:_’r", which must be
distinguished from the force constants.

Consider the diagonal matrix element, Kgl-?;r m = Kgli’; As for the linear coupling
constants, for the diagonal matrix element is to be non zero then the representation I' €
T, ® [y can only be totally symmetric for nondegenerate states, 1.e. ' = A,, while for
degenerate states ' can be both totally symmetric and nontotally symmetnc.

These non-symmetric quadratic vibronic constants influence the potential functions
of the nuclei. However, in this case the potential function is even, since these vibronic
constants are the coefficients of, crudely, Q2?; hence the instability that arises is dynamic,

rather than static (as for the Jahn-Teller effect), and is called the Renner-Teller effect.

Adiabatic potentials
From the above it can be seen that if information on the stable configuration, the
dynamics, and energy spectra of molecules with degenerate electronic states is required,
then more consideration must be given to their adiabatic potential surfaces, (beyond the
simple adiabatic approximation described initially).
This involves solving the electronic part of the Schrodinger equation, including the
terms in the potential, V(r, @), which vary with the internuclear displacement, i.e. W(r, @).
To do this:
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o First separate out the totally symmetric part of the diagonal matrix elements of the
vibronic interactions, which give rise to the force constants K, since these terms do
not change the symmetry of the system,;

o Secondly, choose the initial configuration of the system at the point Qr, = 0, where

the adiabatic potential without vibronic interactions has a minimum;

e Thirdly, assume that only linear and quadratic vibronic constants need be included, i.e.
proper anharmonicity may be neglected.
This will give an adiabatic potential, for a degenerate electronic state, well separated

from other states, i.e. where there is no pseudo-degeneracy:

Qr7 ZKFQqu + € (Q]_"’), k =0,1,...,f (209)

where f is the degree of degeneracy of the electronic state and €}(Qr, ) are the roots of the

secular determinant:

=0, 7ma7:n =12,.. '!f (210)

I ‘ Tm 'Ym

in which, unlike in equation (205), the diagonal matrix elements W7 _, do not contain the
totally symmetric part of the quadratic terms used in the force constant formation, and

are simply combinations of the linear and quadratic vibronic force constants.
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Appendix C: Dimensionless Constants and Displacements

All the force constants, coupling constants and coordinates used in the equations to describe
the potentials of the sodium trimer have been expressed in the literature, and are used in this
work, in dimensionless form [119]. Consider the coordinates and the vibronic coupling constants
described in Chapter 5. A dimensionless radial displacement is used such that:

2 r’Kg
hwp
It is possible to find K from wg (140] (wo is the radial vibrational frequency on the lower

(211)

adiabatic surface):

Kg = (2r)2wim (212)
and
@Wo
W = —— (213)
y1-IGEl
hence,
(27)*w}
Kgp = ———m. 214
P (g (234
Also,
G
wg =wE X3 ‘—2—E—l, (215)

where wy is the vibrational frequency of the motion perpendicular to the radial. The vibronic

coupling constants can be expressed similarly in dimensionless form:

GE Fg
Gg = — d Fp = ———. 216
=y, w4 FE=Ums . (218)

If the displacement and vibronic coupling constants are used in their dimensionless forms, then
the potential is measured in multiples of hwp. Similar expressions are used to find dimensionless
constants for P and f, which are often quoted as P x /2 and f x v/2. With the inclusion of

the symmetric stretch, dimensionless Q, and b are also used:

2
2 __ QJKQJ
Qa - ﬁwo (217)
and
b
(218)

b= ——.
KeKqg,
In other parts of the literature, other dimensionless constants are used {117] [120], such that
the potential is measured in multiples of hwg. The definitions of the dimensionless displace-
ments and coupling constants are then altered to take account of this. Thus, the dimensionless

coupling constants of Cocchini and co-workers [119] differ from the dimensionless coupling con-

stants of Meiswinkel and Koppel [117] [120].
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Appendix F: Conferences and Seminars Attended

The following information is included in compliance with the requirements of the Board

of Studies in Chemistry.

Conferences Attended

1.

=~

Annual conference of the High Resolution Spectroscopy Group with C.C.P.6, ‘Wide
amplitude motions: experiment and theory.” University college London, 16-18 December
1990.

‘Chemical Dynamics in the Time Domain’, organised by C.C.P.6 and M.B.D.G. Oxford
University, 21-22 March 1991.

C.C.P.6 workshop on parallel computing. Durham University, 17 December 1991.
Annual conference of the High Resolution Spectroscopy Group with The Spectroscopy
Group of the Institute of Physics, ‘Novel Spectroscopic Techniques for High Resolution
Spectroscopy.” Heriot Watt University, 18-20 December 1991.

European Meeting on Photons, Beams and Chemical Dynamics. University of Paris XI
at Orsay, 8-10 July 1992. Poster presented: ‘Chemical Dynamics Using Wavepacket
Methods.’

Physics Computing 1992, 4th International Conference on Computational Physics.
Prague, 24-28 August 1992.

MOLEC IX, Ninth European Conference on Dynamics of Molecular Collisions. Prague,
30 August-4 September 1992. Poster presented: ‘Time-dependent Calculations and

Experiments on the Sodium Trimer.’
M.B.D.G. Spring Meeting. University of Birmingham, 22nd Aprl 1993.

4th Annual Informal Northern Universities Chemical Physics Meeting, 15th July 1993.
Paper presented: ‘Wavepacket Calculations on the Sodium Trimer.’

Appendix F: Conferences and Seminars Attended



198

Seminars Attended
Durham and Newcastle Theoretical Atomic and Molecular Physics Group

1. November 5th, 1990  Dr. G. Balint-Kurti, Bristol University, ‘Time dependent Quan-
tum Dynamics of Molecular Photodissociation and Reactive Scattering’

2. November 21st, 1990  Dr. J. F. McCann, Durham University, ‘Photodissociation of
Diatomic Molecules by Intense Lasers’

3. December 10th, 1990  Dr. K. Janda, University of Pittsburgh, ‘Structure and dynam-

ics of a series of noble-gas—chlorine Van der Waals complexes’

4. December 10th, 1990 Dr. Z. Bacic, New York University, ‘Calculating vibration-
rotation energy levels for loppy molecules’

5. November 5th, 1991  Dr. A. Dalgarno, Harvard, ‘Molecules in the Universe’

6. March 18th, 1992  Dr. J. Tennyson, University College, London, ‘Rovibrational States
of HY - Chaos, Jupiter and the Universe’

7. February 17th, 1993 Dr. C. Leach, Southampton University, ‘How close is close

enough? The impact parameter dependence of a chemical reaction’

The following pages contain lists of the seminars in the chemistry department from 1990-

1993. Those marked with an asterisk were attended.
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1ST AUGUST 1990 TC 31ST SULY 1991

ALDER, Dr. B.J. (Lawrence Livermore Labs., California)  13th January, 1991

Hydrogen in all its Glory

<0f. T. (SUNY, Stonev Brook, U.S.A.) 14th November, 1990

cri onal Molecuiar Architecture and Molecular

'U

BELL
Fun
Recognition

BOCHMANV Dr. M. (University of East Anglia) 24th October, 1990

Synthesis, Reactions and Catalytic Activity of
Cationic Titanium Alkyls

BRIMBLE, Dr. M.As(Massey University, New Zealand) 29th Julv, 1991

Svnthetic Studies Towards the Antibiotic
Griseusin-A

BROOKHART, Prof. M.S. (University of N. Carolina) 20th June, 1991

T Olerin Polvmerizations, Oligomerizations and
Dimerizations Using Electrophilic Late Transition

Metal Catalysts

BROWN, Dr. J. (Oxford University) 28th February, 1991

Can Chemistry Provide Catalysts Superior to Enzymes?

BUSHBY Dr. R. (Leeds University) 6th February, 1991

Blraawcals and Organic Magnets

COWLEY, Prof. A.H. (University of Texas) 13th December, 1990

T New Organometallic Routes to Electronic Materials

CROUT, Prof. D. (Warwick University) 29th November, 1990
Enzvmes in Organic Synthesis ’

DOBSON Dr. C.M. (Oxford University) 6th March, 1991

NMR Studles of Dynamics in Molecular Crystals
GERRARD Dr. D. (British Petroleum) 7th November, 1990
" Raman Spect*oscoov for Industrial Analysis

HUDLICKY, Prof. T. (Virginia Polytechnic Institute) 25th April, 1991
Blocatalvs1s and Symmetry Based Approaches to the
Efficient Synthesis of Complex Natural Products

JACKSON', Dr. R. (Newcastle University) 31st October, 1990

New Synthetic Methods: a-Amino Acids and Small
Rings

KOCOVSKY ', Dr. P. (Uppsala University) 6th November, 1990

Stereo- Controllea Reactions Mediated by Transition
and Non-Transition Metals



LACEY, Dr. D. (Huil University) 31st January, 1991

Liquid Crvstais
1st November, 1990

LOGAN, Dr. N. (Nottingnam University) 1
Rocket Propellants
MACDONALD, Dr. W.A. (ICZ Wilten) iith October, 199C
Materials for the Space Age
X MARKAM, Dr. J. (ICI Sharmaceuticals) 7th March, 1991
DNA Fingerprinting

PETTY, Dr. M.C. (Durham University) i4th February, 1961

Dia sy

Molecular EZlectronics

PRINGLE , Dr. 2.G. (Bristol University) s+h Decemper, 1990

Metal Compiexes with Functionaliised Fhospnines

PRITCHARD. Prof. J. (Queen Mary & Westfieid College, 71st Novemper, 1990

London University)
Copper Surfaces and Catalysts

SADLER, Dr. P.J. (Birkbeck College London) 24th January, 1991

Design of Inorganic Drugs: Precious Metals,

Hypertension + HIV

SARRE, Dr. P. (Nottingnam University) 17th January, 1991
Comet Chemistry

SCHROCK, Prof.R.R. (Massachusetts Institute of Technology) 24th April, 1961

Metal-ligand Multiple Bonds and Metathesis Initiators
SCOTT, Or. S.X. (Leeds University) Sth November, 1990
Clocks, Oscillations and Chaos
E
SHAW , Prof. B.L. (Leeds University) 20th February, 1991
Syntheses with Coordinated, Unsaturate

Ligands

d Fhosphine

SINN', Prof. E. (Hull University) 30th January, 1991
Coupling of Little Electrons in Big Molecules.
Implications for the Active Sites of (Metalloproteins

and other) Macromolecules

prof. R. (South Western University, Texas) 26th October, 1990

S
SOULEN ",
Preparation and Reactions of Bicvcloalkenes

& WHITAKER , Dr. B.J. (Leeds University) 23th November, 1990
Two-Dimensional Velocity Imaging of State-Selected

Reaction Products

+
Invited specificaily for the postgraduate training programme.
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Dr. J.A. Salthouse, University of Manchester
Son et Lumiere — a demonstration lecture

Dr. R. Keeley, Metropolitan Police Forensic Science
Modern forensic science

Prof. B.F.G. Johnson', Edinburgh University
Cluster—suriace analogies

Dr. A.R. Butler, St. Andrews University
Traditional Chinese herbal drugs: a different way of treating disease

Prof. D. Gam’T, St. Andrews University
The chemistry of PLP—dependent enzymes

Dr. R. More O'Ferrall’, University College, Dublin
Some acid—catalysed rearrangements in organic chemistry

Prof. I.M. Ward, IRC in Polymer Science, University of Leeds
The SCI lecture: the science and technology of orientated polymers

Prof. R. Gnga , Leeds University
Palladium—catalysed cyclisation and ion—capture processes

Prof. A.L. Smith, ex Unilever
Soap, detergents and black puddings

Dr. W.D. Coooer Shell Research
Colloid science: theory and practice

Dr. K.D.M. HarnsT St. Andrews University
Understanding the properties of solid inclusion compounds

Dr. A. Holmes Cambridge University
Cycloaddition reactions in the service of the synthesis of piperidine and

indolizidine natural products
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Dr. M. Anderson, Sittingbourne Research Centre, Shell Research
Recent Advances in the Safe and Selective Chemical Control of Insect
Pests

Prof. D.E. Fenton', Sheffield University
Polynuclear complexes of molecular clefts as models for copper biosites

Dr. J. Saunders, Glaxo Group Research Limited
Molecular Modelling in Drug Discovery

Prof. E.J. Thomas', Manchester University
Applications of organostannanes to organic synthesis

Prof. E.Vogel, University of Cologne
The Musgrave Lecture Porphyrins: Molecules of Interdisciplinary
Interest

Prof. J.F. Nixon, University of Sussex
The Tilden Lecture Phosphaalkynes: new building blocks in inorganic
and organometallic chemistry

Prof. M.L. Hitchman', Strathclyde University
Chemical vapour deposition

Dr. N.C. Billingham, University of Sussex
Degradable Plastics — Myth or Magic?

Dr. S.E. Thomas', Imnerial College
Recent advances in organoiron chemistry

Dr. R.A. Hann, ICI Imagedata
Electronic Photography — An Image of the Future

Dr. H. Maskill', Newcastle University
Concerted or stepwise fragmentation in a deamination-type reaction

Prof. D.M. Knight. Philosophy Department, University of Durham
Interpreting experiments: the beginning of electrochemistry

Dr. J-C Gehre:. Ciba Geigy, Basel
Some aspects of industrial agrochemical research

f Invited specially for the postgraduate training programme.
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Dr M. Glazer & Dr. S. Tarling, Oxford Universitv & Birbeck College, London
It Pavs to be British! - The Chemist's Role as an Expert Witness in Patent
Litigation

Dr. H. E. Brvndza, Du Pont Central Research
Synthesis, Reactions and Thermochemistrv of Metal (Alkvl) Cvanide Complexes
and Their Impact on Olefin Hydrocvanation Catalysis

Prof. A. Davies, Universitv College London
The Ingold-Albert Lecrure The Behaviour of Hvdrogen as a Pseudometal

Dr. J. K. Cockcrott. University of Durham
Recent Developments in Powder Diffraction

Dr. J. Emslev, Impenai College, London
The Shocking Historv of Phosphorus

Dr. T. P. Kee, Universitv of Leeds
Svnthesis and Co-ordination Chemistrv of Silvlated Phosphites

Dr. C.]. Ludman, University of Durham
Explosions, A Demonstraton Lecture

Prof. D. Robins, Glasgow Universitv
Pyrrolizidine Alkaloids : Biological Activity, Biosvnthesis and Benetits

Prof. M. R. Truter, Universitv College, London
Luck and Logic in Host - Guest Chemustry

Dr. R. Nix, Queen Marv College, London
Characterisation of Heterogeneous Catalysts

Prof. Y. Vallee. Universitv of Caen
Reactive Thiocarbonyvi Compounds

Prof. L. D. Quin, Uruversitv of Massachusetts, Amherst
Fragmentation of Phosphorous Heterocvcles as a Route to Phosphorvl Species
with Uncommon Bonding

Dr. D. Humber, Glaxo. Greenford
AIDS - The Development of a Novel Series of Inhibitors of HIV

Prof. A. F. Hegartv, University College, Dublin
Highlv Reactive Enols Stabilised bv Steric Protection

Dr. R. A. Aitken, Universitv of St. Andrews
The Versatile Cvcloaddition Chemistry of BuzP.C5;

Prof. P. Edwards, Birmingham University
The SCI Lecture - What is Metal?

Dr. A. N. Burgess, ICI Runcorn
The Structure of Perfivorinated lonomer Membranes
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Januarv 20

Januarv 21

January 27

Januarv 28

Februarv 3

Februarv 10

Februarv 11

Februarv 17

Februarv 18

Februarv 22

Februarv 24

March 10

March 11

March 17

March 24

Mav 135

Mav 21

June 1

June 2

JUI\E/

Dr. D. C. Clary, Universitv of Cambridge
Energy Flow in Chemical Reactions

Prof. L. Hall, Cambridge
NMR - Window to the Human Bodv

Dr. W. Kerr, University of Strathclvde
Development of the Pauson-Khand Annulation Reaction : Organocobalt Mediated

Synthesis of Natural and Unnatural Products

Prof. J. Mann, Universitv of Reading
Murder, Magic and Medicine

Prof. 5. M. Roberts, University of Exeter
Enzvmes in Organic Svnthesis

Dr. D. Gillies, Universitv of Surrev
NMR and Molecular Motion in Solution

Prof. 5. Knox, Bristol University
The Tilden Lecture Organic Chemlstrv at Polvnuclear Metal Centres

Dr. R. W. Kemmitt, Universitv of Leicester
Oxatrimethvienemethane Metal Complexes

Dr. I. Fraser, ICI Wilton
Reactive Processing of Composite Materials

Prof. D. M. Grant, Universitv of Utah
Single Crystals, Molecular Structure, and Chemical-Shift Anisotropy

Prof. C. ]J. M. Stirling, University of Sheffield
Chemistrv on the Flat-Reactivity of Ordered Svstems

Dr. P. K. Baker. Universitvy College of North Wales, Bangor
'Chemistry of Highlv Versatile 7-Coordinate Complexes'

Dr. R. A. Y. Jones, Universitv of East Anglia
The Chemistry of Wine Making

Dr. R. J. K. Tavlor, Universitv of East Anglia
Adventures in Natural Product Svnthesis

Prof. I. O. Sutherland, University of Liverpool
Chromogenic Reagents tor Cations

Prof. ]. A. Popie, Carnegie-Mellon University, Pittsburgh, USA
The Bous-Rahman Lecture Applications of Molecular Orbital Theory

Prof. L. Weber. University of Bielefeld
Metallo-phospha Alkenes as Synthons in Organometallic Chemistry

Prof. |. P. Konopelski. University of California, Santa Cruz
Svnthetic Adventures with Enantiomerically Pure Acetals

Prof. F. Ciardelli, University of Pisa
Chiral Discrimination in the Stereospecific Polvmerisation of Alpha Olefins

Prof. R. S. Stein. University of Massachusetts
Scattering Studies of Crystalline and Liquid Crystalline Polvmers
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Jure 16 Prof. A. K. Covington, University of Newcastle
Use of Ion Selective Electrodes as Detectors in Ion Chromatography

Jure 17 Prof. O. F. Nielsen, H. C. Orsted Institute, University of Copenhagen
Low-Frequency IR - and Raman Studies of Hvdrogen Bonded Liquids
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