
Durham E-Theses

The construction of oracles for software testing

Zhang, Xiaodong

How to cite:

Zhang, Xiaodong (1993) The construction of oracles for software testing, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5538/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5538/
 http://etheses.dur.ac.uk/5538/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

epartniexit of Computer Science

The Construction of Oracles for
Software Testing:

,8c Thesis

Xiaodong Zhang

1993

Abstract

Software testing is important throughout the software life cycle. Testing is

the part of the software development process where a computer program is sub­

ject to specific conditions to show that the problem meets its intended design.

Building a testing oracle is one part of software testing. An oracle is an external

mechanism which can be used to check test output for correctness. The charac­

teristics of available oracles have a dominating influence on the cost and quality

of software testing. In this thesis, methods of constructing oracles are investi­

gated and classified. There are three kinds of method of constructing oracles: the

pseudo-oracle approach, oracles using attributed grammars and oracles based on

formal specification.

This thesis develops a method for constructing an oracle, based on the Z

specification language. A specification language can describe the correct syntax

and semantics of software. The contextual part of a specification describes all the

legal input to the program and the semantics part describes the meaning of the

given input data. Based on this idea, an oracle is constructed and a prototype is

implemented according to the method proposed in the thesis.

Acknowledgement

I wish to thank Dr. D. J. Robson for kindly agreeing to be my supervisor, and

for his supervision and administration throughout the research project.

I would also like to thank my husband Hongji Yang for his encouragement,

unselfish support and beneficial technical advice.

I am feeling in debt to my son Tianxiu Yang for being unable to look after

him wholeheartedly whilst undertaking this study.

i

Copyright

The copyright of this thesis rests with the author. No quotation from it should

be published without her prior written consent and information derived from it

should be acknowledged.

11

Contents

1 In t roduc t ion 1

1.1 Purpose of the Research 1

1.2 Scope of the Thesis 3

1.3 Thesis Structure . , , . , 3

2 Software Engineering and Testing 5

2.1 Definition of Software Engineering 5

2.1.1 The Software Life Cycle 6

2.2 Software Engineering and Testing 12

2.3 Definition of Software Testing 13

3 Review of Software Testing 16

3.1 Strategies of Software Testing 16

3.2 Functional Testing 17

3.3 Structural Testing 19

3.4 Static Analysis 23

3.5 Dynamic Analysis 23

3.6 Testing Tools 24

3.6.1 Static Analysis Tools 25

3.6.2 Dynamic Analysis Tools 26

m

3.7 Summary 27

4 Testing Oracles 29

4.1 Introduction 29

4.2 Pseudo-oracle Approaches 31

4.3 Attributed Grammar Approaches 34

4.3.1 Context-free Attributed Grammars 34

4.3.2 Attributed Grammar Oracles 37

4.4 Formal Specification Approaches 40

4.4.1 Formal Specification Languages 40

4.4.2 Oracles Based on Formal Specification 41

4.5 A Summary of the Approach to the Construction of Oracles . . . 45

5 The Construct ion of an Au toma ted Oracle 47

5.1 A Scheme for an Automated Oracle 47

5.2 Z Specification Language 52

5.2.1 Features of Z Specification Language 52

5.2.2 Examples of Z 54

5.2.3 Identifying the test cases using Z 57

5.3 Lex 59

5.4 YACC-Yet Another Compiler-Compiler 60

6 Implementa t ion 63

6.1 Lexical Analysis and Scanner 65

6.2 Syntax Analysis and Parser 67

6.2.1 Shift-Reduce and Reduce-Reduce Conflicts 70

6.2.2 Error Handling and Recovery 74

6.3 Semantics Analysis and Expected Output Generator 78

iv

6.4 Summary 82

7 Results and Evaluation 83

7.1 An Example of the Use of the Oracle 83

7.2 Using Test Case Table (Test Case Selection) 86

7.3 Evaluation 88

7.4 The Value of Formal Specification in Software Testing 89

7.5 The Limitation of Formal Specification in Software Testing 90

8 Conclusions 92

8.1 Review of Project 92

8.2 Assessment: Achievements 93

8.3 Assessment: Criticisms 94

8.4 Future Directions 94

9 References 96

A The Lexical Analyser of Z Specification 101

B The Semantic Analyser of Z Specification 106

v

List of Figmres

2.1 The Waterfall Software Life Cycle Model 8

5.1 A Scheme of Automatic Oracle 49

6.1 Oracle Generation 64

6.2 Lexical Analyser Generation 66

6.3 Parser Generation 68

6.4 Semantic Analyser 79

vi

c h a P t e r 1

Introduction

1.1 Purpose of the Research

Program proofs and program testing are two methods used to evaluate program

"correctness". Program proof assures the correctness of a program using a math­

ematical method of verifying the logic and the function of a program or program

part. Proofs are expensive and minor changes in a program may require extensive

change in its proof.

Program testing is the process of evaluating a program, with or without

execution, to verify that it satisfies specified requirements. Although it is thought

that testing can only expose errors of program and not demonstrate their absence

[32], program correctness is most often evaluated via this technique. In the field

of software engineering, testing generally contains four tasks:

1. Select a set of input data according to a suitable testing strategy

2. Obtain actual output data by executing program on input data

3. Derive expected output data

1

4. Compare the actual output results and expected output results, in order to

validate the program.

In the testing literature, the third and fourth tasks are known as the ora­

cle problem. Oracles are an external source which, for any given input descrip­

tion, can provide a complete description of the corresponding output behaviour

(ie. expected outputs) and determine whether the test output conforms with the

expected output. Generally, a programmer serves as a test oracle, calculating

expected output data from the specification by hand, comparing actual outputs

with their expected outputs and agreeing too eagerly with the results of program

execution.

A definition of the expected output or result is a necessary part of the soft­

ware testing. This obvious principle is one of the most frequent mistakes in soft­

ware testing and i t is something that is based on human psychology. If the ex­

pected result of a test has not been predefined, chances are that a plausible,

but erroneous result will be interpreted as a correct result[32]. Therefore, more

attention should be paid to deriving the expected output of test data. Properly

exploited, an automated oracle can improve not only testing productivity but also

its efficacy.

In this thesis, the construction of an automated testing oracle is proposed,

and this is an alternative to a human oracle. This automated oracle integrates

formal specification techniques with the process of software testing. The greatest

advantage of this technique is the generation of an oracle which functions inde­

pendently of human decisions. This provides a strong foundation upon which to

build a complete testing system. The generation of a complete testing system

from a formal specification would provide a greatly enhanced tool.

2

1.2 Scope of the Thesis

The central aim of the research described in this thesis is to look at methods for

constructing an automated testing oracle. The work is divided into two parts:

1. the development of a testing oracle construction method, and

2. the design and implementation of a prototype automated oracle based on

the Z specification language.

In a formal specification, a context-free grammar can be defined with the

addition of synthesised and inherited attributes. The attributes provide the in­

formation required to generate meaningful test cases. Input test data points and

the corresponding expected outputs are then generated either randomly or sys­

tematically from the grammar. Following this idea, a construction method of an

automated oracle is proposed and implemented based on the Z formal specification

language. The system consists of two basic components: a parser to generate the

parse tree of the Z specification in Lex and YACC, and an interpreter to generate

expected outputs of the software in the C programming language.

The scope of this work has been limited to simple and small specifications

written in the Z specification language. It is not intended to produce a tool for

large complex Z specifications which is an issue for future research.

1.3 Thesis St ructure

Chapter 2, Software Engineering and Testing, gives the definition of soft­

ware engineering and testing and describes the importance of testing in software

engineering.

3

Chapter 3, Software Testing, provides an overview of software testing,

introduces and evaluates techniques in software testing, and shows that testing is

necessary at all stages of the software life cycle.

Chapter 4, Testing Oracles, surveys related research in testing oracle, gives

definitions of testing oracles, and introduces testing techniques and current re­

search in the area of testing oracles.

Chapter 5, Construct ion of an Automated Oracle, proposes a method

of constructing an automated testing oracle based on the Z specification language,

and introduces theories, concepts and tools related to constructing an automated

testing oracle.

Chapter 6, Implementa t ion , describes the implementation of the prototype

components designed in chapter 4.

Chapter 7, Result and Evaluat ion, presents an example of the result of

using the system and evaluates the research in the thesis.

Chapter 8, Conclusions, summarises the thesis, assessing the research car­

ried out in thesis against the proposed criteria and suggesting areas for future

research.

4

Chapter

©ftware Engineering and

Testln

.1 D e f i n i t i o n o f Software Engineering

As software systems have grown more sophisticated and complex, software devel­

opers have sought new methods for their development. Software engineering is a

response to that need.

The IEEE standard Glossary of Software Engineering terminology (IEE83)

defines software engineering as: "The systematic approach to the development,

operation, maintenance, and retirement of software", where software is defined as:

"Computer programs, procedures, rules, and possibly associated documentation

and data pertaining to the operation of a computer system."

From this definition, we know that software engineering is the technological

and managerial discipline concerned with systematic production and maintenance

of software products that are developed and modified on time and within cost

estimates [16].

Software engineering is a new technological discipline distinct from, but based

5

on the foundations of, computer science, management science, economics, com­

munication skills, and the engineering approach to problem solving.

Because software engineering is concerned with the development and main­

tenance of technological products, problem-solving techniques common to all en­

gineering disciplines are utilised. Engineering problem-solving techniques provide

the basis for project planning, project management, systematic analysis, method­

ical design, careful fabrication, extensive validation, and ongoing maintenance ac­

tivities. Appropriate notations, tools and techniques are applied in each of these

areas. Furthermore, engineering, scientific principles, economics, and communi­

cation skills are combined within the framework of engineering problem solving.

The result is software engineering.

The term "computer software" is often taken to be synonymous with "com­

puter program" or "source code". Rigorously, "computer software" is synony­

mous with "software product". Thus computer software includes the source code,

and all the associated documents and documentation that constitute a software

product. Requirement documents, design specifications, source code, test plans,

principles of operation, user manuals, installation instruction, and training aids

are all components of a software product. Software products include system-level

software as well as application software developed to solve specific problems for

end users of computing systems [16]. But in this thesis, 'software' just means a

'program'.

2.1.1 The Software Life Cycle

Like all other large-scale systems, large software systems take a considerable time

to develop and are in use for an even longer time. A number of distinct stages in

this period of development and usage must be identified. The most commonly used

6

stages in the software development life cycle are problem definition, requirement

analysis, specification, design, testing, and operation and maintenance [21] [47].

The waterfall model of software life cycle is illustrated in Figure 2.1. Software

development cascades from the highest phase to more detailed implementations.

1. Problem definition

The goal of problem definition is to define the problem in user terms as

precisely as possible. Problem definition also helps the user to better un­

derstand the problem.

The result of this phase is a document that defines the problem in terms of

the user's objectives and major constraints.

2. Requirement Analysis

The requirement analysis represents a period of interaction between the user

and the analyst, the latter being the computer professional assigned to work

with the user during this phase. The original requirements are examined

and tested for internal consistency. In other words, any contradictions or

ambiguities in the requirements are discussed with the user until they are

resolved to the satisfaction of both parties. The requirements are then re­

fined until the user and analyst are in complete agreement as to the expected

detailed behaviour of the new software.

3. Specification

The objectives of the specification phase are to describe what the solution

looks like:

o what input the system is going to process

e what function i t will perform for each input

7

Problem
Definitio

Validation

Requirement

Validation

Verification

Desig n

Verification

2

Implementation

Testing

Operation An
^ Ma amtenan

Revalidation

Figure 2.1: The Waterfall Software Life Cycle Model

8

o what the corresponding output will be, and

o whether the specified system meets the requirements and whether its

further development satisfies to the project plan or whether the project

plan must be altered.

A specification of a program may serve different purposes [26]:

o Specifications are used for program documentation.

o Specifications serve as a mechanism for generating questions. The con­

struction of specifications forces the designers to think about the re­

quirement definition and the intrinsic properties and functionalities of

the software system to be designed.

o A specification can be considered as a kind of contract between the

designers of a program and its customers.

o Specifications are a powerful tool in the development of a program

during its software life cycle. The presence of a good specification

helps not only designers, but also implementors and maintainers.

o With regard to program validation, specifications may be very helpful

to collect test cases to form a validation suite for the software system.

4. Design

With the commencement of the design stage the attention of software de­

velopers focus on the question of how the user's requirements are to be

implemented. This means that ideas on the structure of the programs and

the data structures on which they will work are generated, and the best ideas

are selected for further development. Design does not involve a completely

9

systematic way of working backward from the requirements. It requires

iteration, synthesis and analysis.

In the process of software design, there are three distinct types of activities:

external design, architectural design and detailed design. Architectural de­

sign and detailed design are collectively referred to as internal design.

External design of software involves conceiving, planning out, and specifying

the externally observable characteristics of a software product. These char­

acteristics include user displays and report formats, external data source and

data sinks, and the functional characteristics, performance requirements,

and high level process structure for the product. External design begins

during the analysis phase and continues into the design phase.

Internal design involves conceiving, planning out, and specifying the inter­

nal structure and processing details of the software product. The goals of

internal design are to specify internal structure and processing details, to

record design decisions and indicate why certain alternatives and trade-offs

were chosen, to elaborate the test plan, and to provide a blueprint for im­

plementation, testing, and maintenance activities. The work products of

internal design include a specification of architectural structure, the details

of algorithms and data structures, and the test plan.

5. Implementation

The implementation phase of software development is concerned with trans­

lating design specification into source code. The primary goal of implemen­

tation is that debugging, testing, and modification are eased. This goal

can be achieved by making the source code as clear and straightforward as

possible. Simplicity, clarity, and elegance are hallmarks of good programs;

10

obscurity, cleverness and complexity are indications of inadequate design

and misdirected thinking.

6. Testing

The written code should be tested rigorously based on the required quality

characteristics. This is the objective of the test phase. Testing usually

proceeds in several steps. As soon as code has been written, it should be

tested. First pieces (modules) are tested in isolation. This is called unit

testing.

Later, modules are tested in groups to see whether they interact properly.

This is called integration testing. In most instances, the newly developed

software system must be tested in its actual running environment. If there

are several environments, each must be tested in what is called system test­

ing.

Software testing is important throughout the software life cycle. It can be

seen that some form of testing is necessary at all stage of the life cycle

(Figure 2.1). The terms "validation" and "verification" can be looked upon

as various forms of testing; they are defined fully in Section 2.3.

7. Operation and Maintenance

Normally this is the longest life cycle phase [40]. The system is installed

and put into practical use. The maintenance phase focuses on change that

is associated with error corrections, adaptations required as the software's

environment evolves, and modifications due to enhancements brought about

by changing customer requirements. The maintenance phase reapplies the

steps of the definition and development phases, but does so in the context

of existing software. Three types of change are encountered during the

11

maintenance phase:

Correction. Even with the best quality assurance activities, it is likely that

the customer will discover defects in the software.

Adaptation. Over time the original environment (e.g., C P U , operating sys­

tem, peripherals) for which the software was developed is likely to change.

Enhancement. As software is used, the customer/user will recognise addi­

tional functions that would provide benefit.

2 o 2 Software Engineering and Testing

The software engineering life cycle shows that some form of testing is carried

out throughout the life time of a software product. It can be seen that some

form of testing is necessary at all stages. Testing typically consumes an enormous

proportion (sometimes as much as 50 %) of the effort of developing a system [4]

therefore we need to improve techniques to tackle the problem.

Software testing is part of the validation process which is normally carried

out during implementation and also in a different form, when implementation

is complete. Testing involves exercising the program using data, observing the

program outputs and inferring the existence of program errors or inadequacies

from anomalies in that output.

Testing requires a test plan that describes what is to be tested and when

and how it is to be tested. In its most detailed form, the test plan includes a

specification of the test cases and the expected outputs.

Although only a part of the overall validation process, program testing is the

only technique used to validate a program in most programming organisations.

Program verification is a widely used validation technique. After testing, the soft-

12

ware system is delivered to the customer. Some testing techniques are described

in detail in the next section.

2 c 3 Defini t ion of Software Testing

Testing is a term with varied meanings, there are other related terms, such as

validation, verification, certification, and debugging. It is important to give a

clear definition of terms used in software testing.

In this thesis, the following definitions will be used for testing, validation,

verification, and debugging [31,40]:

o Testing — Testing is the process of evaluating a program, with or without

execution, to verify that it satisfies specified requirements. It is the process

of feeding sample input data into a program, executing it, and inspecting

the output and/or behaviour for correctness. Testing is exercising different

modes of a computer program's operation through different combinations of

input data (test cases) to find errors.

o Validation — Validation is the process of checking that system and its struc­

ture as implemented meets the specifications of the user ('Are we imple­

menting the right product?'). The process includes ensuring that specific

program functions meet their requirements and specification. Validation

also includes the prevention, detection, diagnosis, recovery and correction

of errors. Validation is more difficult than the verification process since

it involves questions about the completeness of the specification and envi­

ronment information. The validation of a software is a continuing process

through each stage of the software production.

13

o Verification — Verification is the process of ensuring that the system and

its structure meet the functional requirements of the baseline specification

document ('Are we implementing the product right?'). Verification is usu­

ally only concerned with the software's logical correctness (i.e., satisfying

the functional requirements) and may be a manual or a computer based

process (i.e., testing software by executing it on a computer). Now, the

post-implementation validation and verification technique rely on program

testing.

Q Certification — Certification extends the processes of verification and valida­

tion to an operational environment; confirms that the system is operationally

effective; is capable of satisfying requirements under specified operating con­

ditions; and finally guarantees its compliance with requirements in writing.

Certification usually implies the existence of an independent quality control

group for the acceptance testing of the overall system. The acceptance test­

ing may be accomplished by operational testing, and/or placing the system

in simulated operation. Certification is the formal demonstration of system

acceptability to obtain authorisation for its operational use.

• Debugging —- Debugging occurs as a consequence of successful testing. That

is, when a test case uncovers an error, debugging is the process that results

in the removal of the error. The debugging process will always have one of

two outcomes: (1) the error (cause of the system) will be found, corrected,

and removed, or (2) the error will not be found.

An error is a mistake by a programmer or designer. It may result in textual

problem with the code called a fault. A failure occurs when a program computes

an incorrect output for an input in the domain of the specification [33].

14

A test case is a detailed design, consisting of both the required input data for

program execution, and a precise description of the correct output of the program

for that set of input data.

The term software testing is often used to describe techniques of checking

software by executing it with input data. A wider meaning would be: testing

includes any techniques of checking software, such as symbolic execution and

program proving as well as the execution of test cases with data. The expected

outputs derived by tester are based on the specification derived manually.

15

Chapter

Review of Software Testing

3.1 Strategies of Software Testing

There are many widely differing testing techniques, but for all the apparent diver­

sity they cluster or separate according to test case design. A test case is a detailed

design, consisting of both the required input data for program execution, and a

precise description of the correct output of the program for that set of input data.

Selecting test input data, like other processes that attempt to make the best

choices, must be based on all available information of facts rather than coincidence,

myth or guesswork. There are a number of sources of information about a program

or a program unit. The source code is a source of information, if it is available to

the testers. Another main source of information is the functional specification of

the program or module. These two main sources of information give rise to two

main streams of testing approaches, structural testing and functional testing.

Once a strategy or a combination of strategies is decided, there are a number

of established techniques which can be followed to design test cases. Some of

these techniques require the execution of the program and some do not. Therefore,

testing techniques can also be classified as either dynamic or static. Static analysis

16

is any testing technique that does not involve the execution of the program under

test. Dynamic analysis is any testing techniques that requires the program to be

executed.

3 o 2 Functional Testing

A testing strategy may be based upon one of two starting points: either the

specification or the software is used as the basis for testing. Starting from the

specification the required functions are identified. The software is then tested to

assess whether they are provided. This is known as functional testing.

Functional testing involves two main steps. Firstly, it is to identify the

functions which the software is expected to perform. Secondly, it is to create test

data which will check whether these functions are performed by the software. No

consideration is given to how the program performs these functions.

Functional testing has been termed a black box approach as it treats the

program as a box with its contents hidden from view. The tester submits test

cases to the program based on their understanding of the intented function of the

program. An important component of functional testing is an oracle. An oracle

is someone which can state precisely what the output of a program execution will

be for a particular test data. Useful techniques in performing functional testing

include[12]:

e Random testing

® Adaptive perturbation testing

© Cause-effect graphing testing

17

Random Testing Random testing produces test data without reference to the

code or the specification. The main software tool required is a random number

generator. Potentially, there are some problems for random testing. Most sig­

nificantly it may seem that there is no guarantee for a complete coverage of the

program. For example, when a constraint on a path is an equality e.g. A = B+5

the likehood of satisfying this constraint by random generation is low. Alterna­

tively, if complete coverage is achieved then it is likely to have generated a large

number of test cases. The checking of the output from the execution would require

an impractical level of human effort.

Adaptive Perturbation Testing This technique is based on assessing the effective­

ness of a set of test cases. The effectiveness measure is used to generate future

test cases with the aim of increasing the effectiveness.

The cornerstone of the technique is the use of executable assertions which

the software developer inserts into the software. An assertion is a statement about

the reasonableness of values of variables. The aim is to maximise the number of

assertion violations recorded. Each test case is now considered in turn. The single

input parameter of the test case that contributes least to the assertion violation

count is identified. Optimisation routines are then used to find the best value to

replace the discarded value such that the number of assertions is maximised.

Cause-effect Graph Testing The strength of cause-effect graphing lies in its power

to explore input combinations. The graph is a combinatorial logic network, mak­

ing use of only the Boolean logical operators AND, O R and N O T . Meyers [32]

describes a series of steps for determining cases using a cause-effect graph as fol­

lows:

18

o Divide the specification into workable pieces. A workable piece might be the

specification for an individual transaction. This step is necessary because a

cause-effect graph for a whole system would be too unwieldy for practical

use.

o Identify causes and effects. A cause is an input stimulus, e.g. a command

typed in at a terminal, an effect is an output response.

o Construct a graph to link the cause and effects in a way that represents the

semantics of the specification. This is the cause-effect graph.

o Annotate the graph to show impossible effects and impossible combinations

of causes.

o Convert the graph into a limited-entry decision table. In this case, condi­

tions represent the causes; actions represent the effects and rules (columns)

represent the test cases.

The purpose of the cause-effect graph is to identify a small number of useful

test cases.

3 0 3 Structural Testing

The opposite to the black box approach is the white box approach. Here testing

is based upon the detailed design rather than on the functions required of the

program, hence the name structural testing. Structural testing is concerned with

testing its implementation. Although used primarily during the coding phase,

structural testing should be used in all phases of the life cycle where the software

is represented formally in some algorithmic, design, or requirements language.

19

There are three kinds of structural testing methods based on the process of

generating test data:

o Statement testing: the design of test data in order that all statement in the

program should be executed at least once.

o Branch testing: enough test data to be written so that all branches in the

program should be executed at least once.

© LCSAJs testing: enough test data required to be written so that all linear

code sequence and jumps (L C S A J s) should be executed at least once.

Computation testing is another form of structural testing. This uses the

structure of the program and select paths which are used to identify domains.

The assignment statements on the paths are used to consider the computations

on the path. These approaches also make use of the ideas of symbolic execution.

Computation testing strategies focus on the detection of computation errors.

Test data for which the path is sensitive to computation errors are selected by

analysing the symbolic representation of the path [11].

There are other software testing techniques. They are either functional test­

ing or structural testing depending on the generation of test data. They may

be thought as another kind of testing techniques. In some of these approaches,

the input space of a program is partitioned into path domains, i.e. subsets of

the program input domain that cause execution of each path and the program

is executed on test cases which are constructed by picking test data from these

domain. Examples of such techniques are symbolic testing, algebraic program test­

ing, grammar-based testing and data-flow guide testing. Another approach is to

instrument the program by recording processes which do not affect the functional

behaviour, but record properties of the executing program.

20

There are another two important testing techniques: domain testing and

mutation testing.

In domain testing there are two methods to select test data. In the first

method, test cases are created based on informal classification of the require­

ments into domain; either data or function may provide the basis for the domain

partitioning. The test cases are executed and compared against the expectation

to determine whether faults have been detected. In the second method, test cases

are created based on the observation that points close to, yet satisfying bound­

ary conditions are most sensitive to domain errors[ll]. An error in the border

operator occurs when an incorrect relation operator is used in the corresponding

predicate, and an error in the position of the border occurs when one or more

incorrect coefficients are computed for the predicate interpretation. The domain

testing strategy selects test data on and near the boundaries of each path domain.

Mutation testing is not concerned with creating test data and demonstrating

that the program is correct. It is concerned with the quality of a set of test data[8]

[7]. While other forms of testing use the test data to test the program, mutation

testing uses the program to test the test data.

High quality test data will exercise a program thoroughly. To provide a

measure of how well the program has been exercised, mutation testing creates

many, almost identical, programs. One change is made per mutant program.

Each mutant program and the original program are then executed with the same

set of test data. The output from the original program is then compared with the

output from each mutant program in turn. If the outputs are different then that

particular mutant is of little interest as the test data has discovered that there is

difference between the programs. This mutant is now dead and disregarded. A

mutant which produces output that matches with the original is interesting. The

21

change has not been detected by the test data, and the mutant is said to be alive.

Once the output from all the mutants has been examined, a ratio of dead

to live mutants will be available. A high proportion of live mutants indicates a

poor set of test data. A future set of test data must be devised and the process

repeated until the number of live mutants is small, indicating that the program

has been well tested.

Mutation testing is highly promising technique for judging the effectiveness

of test data. In some cases it can be used to prove the correctness of certain types

of programs. The major stumbling block is the problem of equivalent mutants.

For example, if a P A S C A L program contained the statements:

REPEAT

read (X)

S := S + X

UNTIL S > P

and the program was mutated to contain the fragment

REPEAT

read (X)

S := S + X

UNTIL S > Q

22

and, if in the program p and q were set to the same value then the mutant

and the original program are equivalent. It requires the tester to examine the

original and the mutant to check for equivalence. No test data would be able to

distinguish between them. If a large number of equivalent mutants are created a

considerable amount of work will be needed.

3 o 4 Static Analysis

A testing technique that does not involve the execution of the software with data

is known as static analysis. In static analysis, the requirements and design docu­

ments and the code are analysed, either manually or automatically, without actu­

ally executing the code. Common static analysis techniques include such compiler

tasks as syntax and type checking. Only limited analysis of programs containing

array references, pointer variables, and other dynamic constructs is possible us­

ing these techniques. The static analysis techniques include requirement analysis,

design analysis, code inspections, proof of correctness and walkthroughs.

S o 5 Dynamic Analysis

Dynamic analysis requires that the program testing be executed, and hence follows

the traditional pattern of program testing, in which the program is run on some

test cases and the results of the program's performance are examined to check

whether the program has operated as expected.

Functional testing may dictate the set of test cases. The execution of these

test cases may then be monitored by dynamic analysis. The program can also be

examined structurally to determine test cases which will exercise the code left idle

by the previous test. This dual approaches results in the program being tested

23

for the function required and the whole of the program being exercised. The

latter feature ensures that the program does not perform any function that is not

required.

3 , (8 Testing Tools

Testing is an important and budget-consuming part of the program development

cycle. The manual testing process is especially tedious and error-prone. All or

part of this process should be automated in order to reduce the number of errors.

Automated testing tools should be able to analyse a program, delete some type of

errors, generate test case, initiate program execution, log test results, and compare

test results with expected results.

Testing tools are software tools that assist the testing of programs, such as

analysing program structure, generating test data and recording test execution.

They should be more cost effective to obtain a general program which can perform

its function in a variety of test situations. The tools cover a wide range of activities

and are applicable for use in all phases of the software development life cycle.

Some perform static testing and others dynamic; while some evaluate the system

structure, and others the system function.

A tool is a vehicle for performing a test process. The tool is a resource to

the tester, but by itself is insufficient to conduct testing. A testing technique

is a process for ensuring that some aspect of an application system functions

properly. There are few techniques, but many tools. The concept of tools and

techniques is important in the software testing process. It is a combination of the

two that enable the test process to be performed. We should first understand the

testing techniques and then understand the tools that can be used with each of

24

the techniques.

3.6.1 Static Analysis Tools

A static testing tool (static analyser) is a program that analyses source code to

reveal errors or dangerous constructs without actually executing the code. A static

analyser is mainly used to check certain global aspects of program logic, syntactic

errors, coding styles, and interface consistency. The information revealed by static

analysers include:

s Syntactic error messages,

o Number of occurrences of source statements by type.

© Cross-reference maps of identifier usages,

e Analysis of how the identifiers are used in each statement (data source, data

sink, calling parameter, dummy parameter, subscript, etc),

® Subroutines and functions call by each routine,

© Uninitialised variables,

© Variables set but not used,

s Isolated code segments that cannot be executed under any set of input data,

• Departures from coding standards (both language standards and local prac­

tice standards), and

* Misuse of global variables, common variables, and parameter lists (incorrect

number of parameter).

25

There are many kinds of static testing tools which have been used, for exam­

ple: Front End Language Processor; Acceptance Test Criteria; Data Flow Anal­

yser; Control Flow Analyser; Error Analyser; Report Generator, etc.

Because the exact value of the variable may not be known until the execution

time, one cannot generally know which array element is being referenced or defined

in a statement. Therefore all static analysis tools are limited by the problem of

identification when the subscript is a variable.

3.6.2 Dynamic Analysis Tools

Dynamic analysis tools provide support for testing by direct execution of the pro­

gram being tested. The range of functions supported by a dynamic tool is broad.

Systems, which generate and evaluate test data using any one or a combination

of the testing techniques have been implemented and used in a variety of setting.

Dynamic analyser tools can be divided into four parts: symbolic evaluators, test

data generators, program instrumenters, and program mutation analysers.

1. Symbolic Evaluators — Symbolic evaluators are programs that accept sym­

bolic value for some of the inputs and algebraically manipulate these sym­

bols. They perform operations symbolically as if the program were executing

and derive output values as symbolic expressions including the input vari­

ables.

2. Test Data Generator — A test data generator is a tool which assists a

user in the generation of test data for a program or module. The purpose

is to relieve the effort required in generating a large volume of test data,

and in the case of automatic test data generation, to avoid programmer's

bias in preparing his own test data. The same way that manual testing

26

can be regarded as two distinct approaches — functional and structural —

automated generation of test data may be categorised into three types:

(a) Pathwise test data generators

(b) Data specification systems

(c) Random test data generators.

3. Program Instrumenters — Program instrumenters are systems that insert

software probes into source code in order to reveal their internal behaviour

and performance. Their main applications are coverage analysis, assertion

checking, and detection of data flow anomalies. There are three types of

program instrumenters: (1) dynamic execution verifiers, (2) self-metric in­

strumenters and (3) dynamic assertion processors.

4. Mutation Testing Tools — An automatic mutation system is a test entry,

execution, and data evaluation system that evaluates the quality of test

data based on the results of program mutation. In addition to a mutation

"source" that indicates the adequacy of the test data, a mutation system

provides an interactive test environment and reporting and debugging op­

erations which are useful for locating and removing errors.

3 o 7 Summary

Testing is necessary at all stages of the software life cycle. Testing is an activity

that requires a great deal of planning. It uses information from all previous

phases. Therefore the test plan is a crucial document in the software development

life cycle. It is very important to plan for proper testing, to work with objective

27

testing criteria, to combine functional and structural testing, and to control the

testing process as any other phase in the development life cycle.

Structural and functional testing are not competing approaches. Both meth­

ods are essential. Both are effective, and both have limitations. The two concepts

actually represent the extreme points of a spectrum between structure and func­

tion. Unit testing tend to be more structural than functional, while the converse

is true for system testing. Functional testing can in principle detect all bugs, but

would take an infinite amount of time to do so. Structure testing cannot detect

all bugs even if completely executed.

Strategically speaking, i t is important to develop a reliable and effective func­

tional test approach because, first, functional testing can address errors of emis­

sion whereas most other test approaches cannot, and secondly, because bought-in

software parameterised packages and some "generated" software cannot really be

tested by other means [1]. Howden suggests functional testing be taken further

[28].

The requirement for a test oracle derived from the above survey on software

testing is useful in the development of the testing approach. A program can only

be tested properly if the tester has the exact knowledge about what the program

under test should and should not do. This justifies the requirement for a test

oracle for all test cases. Such information, for deciding if a program is behaving

correctly, can generally be derived from the specification of the program.

28

Chapter 4

Testing Oracles

4 . 1 Introduct ion

Software testing is an important stage in the software life cycle. Once the software

is implemented in machine-executable form, it must be tested to uncover defects

in function, in logic and in implementation.

Almost all of the research on software testing focuses on the development

and analysis of theory of input data selection criteria and particular criteria such

as path testing, data flow testing functional testing, and random testing. Methods

have been developed for the automatic generation of input data satisfying these

criteria. Many schemes which propose large quantities of test input data, do not

address the problem of getting expected outputs to check the resulting outputs

for correctness. In particular there is an underlying assumption that once the

phase of selecting test data is completed, the remaining tasks are straightforward.

But it is frequently more difficult to obtain the expected output. Consequently,

ad hoc methods of getting the expected output often must be used including

hand calculation, simulation and alteration. Researchers have been searching for

mechanisms that can derive the expected output of each input of a program, which

29

is usually known as the oracle problem.

Oracles are an external source or a process of examination which, for any

given input description, can provide a complete description of the corresponding

output behaviour (i.e., expected outputs) and determine whether the test output

confirms with the expected output. The oracle may be a program, a program

specification, a table of examples, a body of data that specifies the expected output

of a set of test data as applied to a tested program, or simply the programmer's

knowledge of how a program should operate. The oracle may take a variety of

forms, including:

1. Manual examination of each output from each test run — this is the form

of oracle that is widely used. Generally, the tester serves as this kind of

oracle. The expected outputs are computed by hand or derived from a

specification. Actual outputs are compared visually. It is commonly called

the human oracle.

2. Manual generation of each output once, to be compared automatically with

the output from each test run — this kind of oracle is generally used in

dual coding (Two programs are produced using the same specification. The

definition will be given in the next section). In dual coding technique, the

comparison of the outputs of two programs must be done accurately and

efficiently, since there are a lot of outputs from two programs. A monitor is

needed to run the two versions of the programs, and compare their outputs.

3. Programs which generate < x, y > pairs, where y is the correct output from

input x — some test case generators can get test input and expected output

pairs in terms of the testing technique. The generator can serve as this form

of oracle.

30

4. Programs which generate the correct output y for any input x — this is an

ideal oracle. In this kind of oracle, expected output can be generated for

any test input.

5. Programs which determine the correctness of any input/output pair < x,

y > — this is a testing tool, called a comparator. It is used to compare and

check actual output with expected output.

The characteristics of the available oracles have a dominating influence on

the cost and quality of software testing.

4 o 2 Pseudo-oracle Approaches

A -pseudo-oracle is an independently produced program intended to fulf i l l the same

specification as the original program [13]. This technique is frequently called dual

coding, and has been historically used only for highly critical software. The two

programs which are to be produced in parallel by totally independent program­

ming teams, are run on identical sets of input selection which must satisfy some

pre-determined test data adequacy criterion. If the outputs are the same (or

acceptably close in the case of numerical programs), the original program is con­

sidered to be validated. If, on the other hand, the outputs of the two programs do

not agree, the two programs are examined using standard debugging techniques.

The process is repeated until all discrepancies are resolved. [13] describes a tech­

nique for producing pseudo-oracles. Such a technique has been used in producing

ultra-reliable software system. This technique has been used to build a system of

automatic program testing in [3,27,35,37].

Since the research into the pseudo-oracles involves the comparison of the

outputs of two programs, it must be possible to do this accurately and efficiently.

31

The comparison might be done manually, although frequently a monitor which

runs the two versions of the programs, and compares their outputs will be also

necessary.

Another method uses very high level programming language as a pseudo-

oracle. This method is similar as the dual programming method. The functional

specification is given to two programmers and each of whom independently code

a separate program using a different programming language. There are some

languages by which it is relatively easy to construct program quickly. They can

offer as much as a ten to one reduction in lines of code written as compared

with conventional programming languages, e.g., building a high level language

for testing on assembly language program. Typical very high level languages are:

SETL, which is based on the storage of data in mathematical objects known as

sets [39]; APL, which is based on the storage of data in arrays and PROLOG,

which is based on logic. Girard and Rault described a project in [22] which used

APL as a medium for producing oracles.

Although very high level languages are able to offer large reductions in pro­

gramming time they do suffer from the disadvantages that the programs con­

structed tend to be inefficient. However, these programs can be used as oracles

during the development of the more efficient production software.

The methods for constructing a pseudo-oracle are expensive, but it might be

necessary for non-testable programs [46]. The following classes of programs are

identified as being non-testable programs according to the definition given:

1. Programs which were written in order to determine the answer in the first

place. There would be no need to write such programs, if the correct answers

were known.

2. Programs which produce so much output that it is impractical to verify all

32

of i t .

3. Programs for which the tester has a misconception. This may be thought

of as a case in where there are two distinct specifications. The tester is

comparing the outputs against a specification which is different from the

original (given) specification.

For those programs deemed non-testable due to a lack of knowledge of the

correct answer in general, there are nonetheless, frequently simple cases for which

the exact correct result is known. In the case of programs which produce excessive

amounts of output, testing on simplified data might involve minor modifications

of the program. The problem with relying upon results obtained by testing only

on simple cases is obvious. It is frequently the 'complicated' cases that are most

error-prone. I t is common for central cases to work perfectly where boundary

cases cause errors. A pseudo-oracle may be necessary for these programs.

In order that a pseudo-oracle be useful in practical contexts, certain assump­

tions must be fulfilled [13]:

1. Independence of the pseudo-oracle

This assumption is really central to our proposed methodology. The two (or

several) programs must be developed completely independently by different

programming teams. This is essential in order to eliminate the possibility of

the some programmer's misconceptions being inserted into both the original

program and the pseudo-oracle.

2. Availability of a convenient very high level language

Obviously the team charged with the development of the pseudo-oracle must

have an available compiler for a language in which code can only be written

33

quickly and easily. The compiler should have substantial debugging features

in order to facilitate the development.

3. Extensive use envisioned for original program

The overhead involved in producing a second program (even in a very high

level language) can only be justified if the original program is intended to

be run often or in a safety critical environment.

4. Complete and precise specification

There must be a complete and precise specification available to both pro­

gramming teams. This is obviously crucial; it is hardly to be expected that

two (or more) programs written to meet some vague incomplete specification

will turn out to be equivalent.

4 o S > A t t r ibu ted Grammar Approaches

This method for producing oracle uses a.n attributed context-free grammar as the

basic mechanism for describing and generating test inputs and expected outputs.

The attributes provide the context sensitive information necessary to generate

semantically meaningful test cases.

4.3.1 Context-free Attributed Grammars

A context-free grammar is important concept for constituting an oracle in this

thesis. This concept is defined here and will be used in the next chapters.

34

Sentence

An alphabet is a collection of characters. The ASCII character set is a good

example of an alphabet. A string or word (token) is a specific sequence of symbols

from an input alphabet. A language is a set of words, and a sentence is a sequence

of one or more of the words within the sentence, and that is where a grammar

comes into play. A formal grammar is a system of rules (called productions) in

which the order of words may occur in a sentence.

The syntax of a sentence determines the relationships between the words and

phrases in a sentence. That is, the syntax of a language controls the structure of

a sentence.

Context-free Grammar

A context-free grammar is a system of definitions that can be used to break up a

sentence into phrases solely on the basis of the sequence of strings in the input

sentence. A context-free grammar is usually represented in Backus-Naur form

(BNF). This notation has a number of significant advantages as a method of

specification for the syntax of a language[2].

1. A grammar gives a precise, yet easy to understand, syntactic specification

for the programs of a particular programming language.

2. An efficient parser can be constructed automatically from a properly de­

signed grammar. Certain parser construction processes can reveal syntactic

ambiguities and other difficult-to-parse constructs which might otherwise go

undetected in the initial design phase of a language and its compiler.

3. A grammar imparts a structure to a program that is useful for its translation

into object code and for the detection of errors.

35

In general, BNF involves four quantities: terminal, non-terminal, a start

symbol, and productions. The basic symbols of which strings in the language are

composed we shall call terminals. The word "token" is a synonym for "terminal"

when we are talking about programming languages. Non-terminals are special

symbols that denote sets of strings. The terms syntactic 'variable' and syntactic

categories 'statement', 'expression', and 'statement-list' are non-terminals; each

denotes a set of strings. One non-terminal is selected as the start symbol, and it

denotes the language in which we are truly interested. The other non-terminals

are used to define other sets of strings, and these help to define the language, they

also help to provide a hierarchical structure for the language at hand.

The productions define the ways in which the syntactic categories may be

built up from one another and from the terminals. Each production consists of a

non-terminal, followed by the symbol " : :=" , followed by a string of non-terminals

and terminals.

For example, consider the following grammar for simple arithmetic expres­

sions. The non-terminal symbols are 'expression' and 'operator', the 'expression'

being the start symbol. The terminal symbols are

ID + - * / ().

The productions are:

expression ::= expression operator expression

expression ::= (expression)

expression ::= -expression

expression ::= ID

operator ::= +

operator ::= -

operator ::= *

36

operator ' ••=/•

A t t r i b u t e Grammar

An attribute grammar provides a formal method for specifying the semantics of

sentences in a language which is defined by context-free grammar [24]. An at­

tribute grammar consists of a set of context-free productions each of which has an

associated set of rules expressed in the form of semantic functions. The attribute

grammar associates a finite set of attributes with each grammar symbol. The

semantic functions specify the way in which the attributes of particular symbols

are to be evaluated from the attributes of other symbols in the same production.

An attribute grammar gives a theoretical basis for the computation of seman­

tic attributes, and assist in the semi-automatic production of semantic analysers.

In time, the automatic production of semantic analysers from attribute gram­

mars may become as commonplace as the production of table-driven parsers from

context-free grammars is at present.

The attribute grammar specifies the semantic attributes of any sentence in

terms of purely local properties. Attribute values only depend on the attributes

of neighbouring nodes in the tree. In effect, the semantic properties of a language

are reduced to stepwise computations in exactly the same way as the productions

of a context-free grammar reduce the syntax of a language to computations which

are performed one production at a time.

4.3.2 Attributed Grammar Oracles

An example of BNF is shown below:

< digit > : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

< integer > ::= < digit > | < digit > < digit > .

37

This shows the rules forming an integer in a programming language. The first

rule states that a digit is either a zero, a one, a two, etc. The second rule states

that an integer can either be a digit or a digit followed by an integer. Thus 372 is

an integer. It consists of a 2 which is a digit and hence an integer. The integer 2 is

preceded by the digit 7 which makes 72 an integer. The integer 72 is preceded by

the digit 3 which makes 372 an integer. A compiler for a programming language

can use such rules in order to process programs.

The method for producing oracles using attributed grammar reverses this

process. A tester defines a test grammar. The basic test grammar is written

using an extended BNF. The generation process for a grammar starts with an

empty string and then generates an example of start symbol. I t does this by

choosing one of the rules for the start symbol. The choice procedure is described

as follow. Once a group of symbols occurring to the left of the predicate in the

rule. The guard may also involve the value of the current terminal or any of its

synthesised attributes. If the guard has a true value then the rest of the term is

evaluated, otherwise it is not and the next alternative term, if any, is processed.

As with compilers, action routines are used to produce an output string

corresponding to the generated input string. Action routines are allowed any place

in the right-hand-side of the rules, and these action routines and their attributes

specify those actions necessary to produce the output string.

Suppose to generate a test case involving N (< N_MAX) integers from the

range V_MIN to V_MAX. Basing attributed grammar method on the output, a

sort list of numbers will be generated for the output file. The output string is

presented by the context-free grammar:

sort_output ::= empty) sort_output "element" sort_output

The attributes will be used to ensure that the output string is given length

38

and that the element are sorted. The following attributed grammar is defined.

ATTRIBUTED TEST GRAMMAR

1. test-case ::= [# N in O..MAX_N]@init sort_output(N, V_MIN, VJVIAX).

2. sort_output(N, A, B) ::= [? N = 0] empty | [? N > 0][# I in A..B; j in 0..N-1]

sort_output(J, A, I) "elemental) @put_element (I) sort_output(N - J - 1, I , B).

ACTION

init: initialises the input string to be empty.

put_element(I): puts the integer I into some random free location in the

string.

Since the grammar productions are carried out in a top-down, left-to-right

fashion, the grammar will build the output string from left to right. The two

grammars above will work well enough with test data.

Several approaches for producing oracles involve the use of this technique.

But more approaches focus on automated testing and test case generation. Gen­

erally, the approaches to oracle construction are tackled as part of the test gener­

ation.

Duncan and Hutchison presented this method for generating test cases in

[15]. The user of a test case generator using attributed grammars defines the

grammar of the test data to be generated, then takes this grammar and produces

test data together with expected output.

Using this technique, Panzl [34] reported on-regression testing of FORTRAN

subroutines. He presented a test case description language and a program to

automatically execute the cases, monitoring actual versus expected behaviours.

Jagota and Rao [30] have developed a test case language and an interpreter,

specifically designed for testing microprocessor operating systems. Camuffo et. al.

[9] proposed the description of the functional specifications of a program (syntax

39

and semantics) using a formalism based on two-level grammars. Some tools,

which can generate automatically both test data and related expected output are

implemented. Elsewhere, attributed grammars have been used both as test-case

generators and test oracles.

The method for producing test cases using attributed test grammar is quite

expressive, but is not very user-friendly in appearance. One disadvantage of this

method is that the generated test case, while syntactically correct, can be se-

mantically wrong [29]. Another is that the tester needs to write the attributed

test grammar. As yet there has been very little experience in the use of such

grammars. For example, it is still not yet clear whether for production quality

programs the complexity of the grammar produced will be so large as to make the

technique unfeasible.

4 0 4 Formal Specification Approaches

4.4.1 Formal Specification Languages

A formal specification will describe the following:

e what input the system is going to process,

© what function it will perform for each input, and

• what the corresponding output will be.

Any specification must be in a specification language. Specification lan­

guages may be classified into two major classes: formal specification languages

and informal specification languages .

Formal specifications have a mathematical (usually formal logic) basis and

employ a formal notation to model system requirements.

40

Informal specification languages, on the other hand, use a combination of

graphics and semiformal textual grammars to describe and specify system re­

quirements. Given the graphical and "English-like" nature of these languages,

they provide a vehicle for eliciting user requirements and communicating the an­

alyst's understanding of the requirements back to the user for verification.

The two approaches have complementary strengths and weaknesses. Whereas

informal specifications have advantages for requirements elicitation, ease of learn­

ing, and communication, formal languages provide conciseness, clarity, and pre­

cision, and are more suitable for analysis and verification. Therefore, formal and

informal specifications must not be regarded as competitive but rather as com­

plementary.

4.4.2 Oracles Based on Formal Specification

Specifications are of great importance in testing, for they determine what the

software ought to do and must necessarily form the basis for the testing of the

functionality of software.

The formal specification language has two major components: syntactic spec­

ifications and semantic specifications. The syntactic specifications provide syn­

tactic and type-checking information, and range of operations. Semantic specifi­

cations define the meaning of the operations by starting, in the form of axioms,

the relationships of the operations with each other. The formal functional speci­

fications describe the program behaviour, i.e., syntax part describes all the legal

input to the program, together with the 'meaning' of each given by the semantic

part.

For formal specifications, we can use formal specifications as an oracle in one

of two ways:

41

o to check the result, and

o to predict the result.

Checking the result seems in principle easier. The alternative would seem to

use the specification to calculate or predict the output that should be expected,

but that requires an executable specification, and many specifications will be

essentially non-executable. There are some approaches for producing oracles using

formal specifications, typically the oracle problem is tackled as part of the test

case generation activity.

Day and Gannon implemented a test oracle based on formal specification [14].

This system translates a formal specification of input-output data into an auto­

mated oracle. The generated oracle will validate the consistency of an unlimited

number of program inputs and outputs with the specification. The specification

language used in the system is intended to describe a problem domain limited to

programs written in CF PASCAL (Character File Pascal). CF PASCAL is a Pas­

cal subset which allows the programmer only the two primitive data type, CHAR

and TEXT, with all program inputs and outputs in the form of text files. Strictly

speaking, CF PASCAL is not a formal specification language. The specification

used does not give enough semantics attributes so that a user must define func­

tions to specify other semantic attributes. The users must understand attribute

evaluation and bottom-up parsing, and attribute-evaluation software would have

to be written. The following example shows that Day and Gannon gained a test

oracle based on their own formal specification.

This example is a specification for a program which is to remove extra blanks

which separate the words in the input file.

PROBLEM: Write a program to take as input a line of text and output the text

with a single blank between each word. A l l initial blanks should also removed

42

form the line.

SYNTAX SECTION

<nlein>:: = <wblist> <eoln>

| <blank> <wblist> <eoln>

| <wblist> <blanks> <eoln>

| <blanks> <wblist> <blanks> <eoln>

| <blanks> <eoln>

| <eoln>

<wblist> ::= <wblist> <blanks> <word> | <word>

<word> ::= <char> <word> | <char>

<blanks> ::= <blank> <blanks> | <blank>

<fileout>::=: <wlist> <blanks> <eoln> | <blanks> <eoln>

<wlist> ::= <wlist> <blank> <word> | <word>

<word> ::= <char> <word> | <char>

<blanks> ::= <blank> <blanks> | <lambda>

The addition of the semantic rule finishs the section.

SEMANTIC SECTION

List(Words(Fileout)) = List(Words(Filein))

An execution of the generated oracle for the insert blanks problem-is showed

below. Note that the output file is incorrect; the extra blanks were all inserted

after the first word.

Width : /

Filein : List of words separated by one blank/

Fileout: List of words separated by one blank/

Oracle Run: Siblanks

Checking Syntax Rule 1.

43

Data Meets Specification SYNTAX RULE 1.

Checking Syntax Rule 2.

Data Meets Specification SYNTAX RULE 2.

Checking Syntax Rule 3.

Data Meets Specification SYNTAX RULE 3.

Checking Semantic Rule 1.

Data Meets Specification SEMANTIC RULE 1.

Checking Semantic Rule 2.

Data Meets Specification SEMANTIC RULE 2.

Checking Semantic Rule 3.

Data Meets Specification SEMANTIC RULE 3.

Checking Semantic Rule 4.

Semantic Error: SEMANTIC RULE 4.

There are other approaches for producing an oracle based on formal specifi­

cation language as part of test case generation.

Frankl [18] has developed a schema for object-oriented testing using algebraic

specifications to test an object 0. The specification is used to generate pairs of

equivalent call sequences to instances of 0 and one of the call sequences is executed

on each instance. Object behaviour is deemed correct i f the two instances are left

in the same internal state. With the Mockingbird system [23], the specification for

a message protocol is transformed to a constraint logic program which can serve

as a validator and generator of test data. As a generator, the program produces

messages conforming to the specification, as well as syntactically and semantically

incorrect messages. As a validator the program serves as the test oracle, Choquet

44

[10] and Pesch [36] used specifications to generate test input and expected output.

To obtain the test cases from these specifications particular values are substituted

for variable in parts of the specification, it is the tester's responsibility to generate

the appropriate instantiations. Gerhart [19] describes an interactive system for

generating test data using Prolog. The user of the system identifies important

conditions in the specification of a program and provide a generator for test data.

The system then generates a set of test data that covers as many combinations

of the conditions as possible. Tsai [44] described a system of automated test case

generation for programs specified by relational algebra (RA) queries. To automate

test case generation, limiting the expressive power of the specification language

(relational algebra RA) is used.

At present, creating test cases from formal specifications is a complicated and

poorly understood information-processing technique requiring extensive human

expertise. Thus the specification language which is used for producing oracles has

to be limited by the expressive power.

405 A Summary of the Approach to the Con­

struction of Oracles

In general, we can classify oracles into four kinds in terms of their construc­

tion: human oracles, pseudo-oracles and oracles using attributed grammars and

specification-based oracles. For human oracles, one method is that expected out­

put is derived manually from specification, but this approach can be quite expen­

sive especially when a large mass of test cases must be executed, as is normally the

case, for example, with random testing; another method is that expected output

is not derived at all and the effective actual output is inspected by the operator:

45

this may be a dangerous testing practice since the testing evaluation becomes de­

pendent on the competence and the fairness of the operator [6]. Even so, human

oracles are frequently used in software testing.

The use of a pseudo-oracle for testing may not be practical. Obviously such

a treatment requires a great deal of overhead. At least two programs must be

written, and if the output comparison is to be done automatically three programs

are required to produce what one hopes will give identical result. It has been

argued [20] that writing multiple versions of software, even when the language

used is not a very high level language, does not add substantially to the cost of

a software system. Two programs developed in similar ways may contain similar

errors. In addition, the construction of multiple versions of software as oracle

reduces the large amount of effort expended during testing.

With the development and application of a formal specification language, the

approach of using specifications as an oracle has received a lot of attention. But

these approaches have not been sufficiently well-defined to be generally applicable

[38]. There has been very little experience of using attribute grammars. Besides,

the specifications which are used in the above approaches are test specifications.

These specification languages are only used to ease software testing and they may

not be useful for other purposes. Thus, the extension of these methods will be

restricted, and an extra cost will be paid for writing extra testing specification.

46

Chapter

The Construction of am

Auitomated Oracle

5.1 A Scheme for an Automated Oracle

Specifications are of great importance in testing, for they determine what the

software ought to do and must necessarily form the basis for the verification

testing of the functionality of the software [25]. The use of a formal specification

allows the development phase and test preparation to be performed due to the

proper advantages of formal specification. For a formal specification, i t must have

a mathematical (usually formal logic) basis and employs a formal notation to

model a system. The advantages of using formal specification [40] are as follows:

e The development of a formal specification provides insights into and under­

standing of the software requirements and the software design.

o Given a formal system specification and a complete formal programming

language definition, i t may be possible to prove that a program conforms to

its specification. Thus, the absence of certain classes of system error may

47

be demonstrated.

o Formal specifications may be automatically processed. Software tools can

be built to assist their development, understanding and debugging.

o Depending on the formal specification language used, it may be possible to

animate a formal system specification to provide a prototype system.

o Formal software specifications are mathematical entities and may be studied

and analysed using mathematical methods.

o Formal specifications may be used as a guide to the tester in identifying

appropriate test cases.

We can consider making use of formal specifications to construct an auto­

matic oracle for checking or predicting the expected output of a software system.

A formal specification language is needed to describe both the syntactical

(also for contextual parts) and semantic aspects of the software. The contextual

part of a specification describes all the legal input to the program, the semantics

part describes the meaning (expected output) of each given input data. In terms

of this idea, an oracle can be constructed from a context-free grammar, together

with the related "meaning". Figure 5.1 shows a schema of the technique.

A scanner is a program which performs lexical analysis of source language, as

opposed to syntactic analysis and semantic analysis. Lexical analysis is that part

of the compiler which reads the original source language character by character and

translates it into a sequence of primitive units called tokens or terminal symbols.

The function of a scanner is to take an input source language and produces as

output a stream of tokens suitable for the syntax analyser or parser. There are only

a small number of tokens for any language and they are conveniently represented

48

Specification

Parser Parser

internal form of syntax

1

Generator Generator

test data

test data
in internal
form

Manager

internal form of semantics

Intepreter

expected results

Automated Oracle

Figure 5.1: A Scheme of Automatic Oracle

49

by small integers. The scanner can recognise symbols normally defined by a

context-free grammar.

A scanner is often sufficiently simple that it can be written for example

straight as a straightforward C program. Such a scanner (lexical analyser) consists

of a loop containing a single switch statement which decides what the next token

being read is by looking at the next character. It takes as input the source text and

produces as output a list of tokens. There are suitable tools for the construction

of a lexical analyser, of which Lex [5] is one of them. Lex automaticly generates

lexical analysers and it will be described in the next section.

A parser is a program which performs syntax analysis. A parser determines

whether the stream of tokens from the scanner forms a valid sentence in the source

language grammar. If so, a parse tree can be unambiguously derived.

There are two obvious ways of building up a parse tree. One is to start with

the sentence symbol and build downwards to the terminals; the other is to start

at the terminal and build upwards to the sentence symbol. These are known as

top-down and bottom-up parser methods respectively.

In the top-down parsing, the LL(1) parsing method is widely used. The

LL(1) parser means a parser in which we read the source text from the left (the

L), and then produce a left-most (the L) derivation. We recognise non-terminal

in turn, starting with sentence symbols to form the parse tree.

In the bottom-up parsing, the LR(k) shift-reduce parser is used. There

are three types of LR parser: canonical LR (k), simple SLR(k) and lookahead

LALR(k). In general, we are interested in the case where k = l .

With shift-reduce parsing, we use a stack to hold symbols. At any stage, we

have principally two options:

50

o Push the current token onto the top of the stack and call the lexical analyser

to get a new token. The token is said to be shifted onto the stack.

o Decide for the token on the top of the stack from a valid right-hand side of a

production. Pop them off the stack and replace with the non-terminal on the

left-hand side of the production. This is known as reduce using production.

Some parser generators are widely used now. A parser generator is a complete

programming language which can generate automatically a parse table. YACC [5]

is an outstanding one. YACC is widely available under Unix and some other oper­

ating systems. YACC takes a specification of a programming language grammar

and semantic actions and produces an L A L R (l) parsing table and a shift-reduce

parser. The source program is read as a stream of tokens. A lexical analyser must

be provided separately, typically using the Lex lexical analyser generator.

A test data generator is a program that can generate syntactically and con-

textually correct test data (input data) through a right-most derivation of the

attribute syntax given in the specification. Given the syntax and a representation

for the test-domains, the algorithm for generating the test domain partition is

produced for a particular specification. Typical test data are selected in terms of

the given test domain partition. The work of this part focuses on how to generate

test input data. In this thesis, we only pay our attention to how to get expected

output from the input data which has been given.

An interpreter is a program that simulates the behaviour of the software un­

der validation, by 'execution' of the semantics, and produces the expected results

relating to the test domain. It needs to give special semantics to a formal speci­

fication language and then interpret the formal specification language using this

semantics. YACC provides a function for semantic action. The user may specify

actions that are executed whenever a rule (production) or part of rules, is recog-

51

nised. These actions can return values and access values returned by previous

actions. These features of YACC can also be used to write an interpreter in C.

A manager is a program that aggregates the generated test data and expected

outputs, and prints an testing oracle in the form of a case table.

According to this idea, an expected output related test-domain can be ob­

tained from a formal specification. The pre-requisite would be the description of

syntax of the specification language. The Z specification language has concrete

syntax and semantics, and is almost fully defined [41,42] so it is used in this thesis.

5.2 Z Specification Language

5.2.1 Features of Z Specification Language

There are two approaches to formal specification languages which fundamentally

affect the way in which a system is specified, the model-oriented and algebraic

approach:

9 A model-oriented specification aims to construct an explicit

abstract model of an information system in terms of well-understood math­

ematical entities such as sets whose semantics are formally defined.

• An algebraic approach specification involves creating objects which represent

some real world entities, and model them in terms of the operations which

can be performed on them.

Z is a model-based specification language. Z specifications are more intuitive

to non-scientists since it models real-world entities directly using relatively simple

mathematical objects.

52

Z is a formal specification language devised by Jean-Raymond Abrial and

developed by the Programming Research Group at Oxford University in the early

80s. It is still a topic of research at Oxford and other institutions, and has been

the centre of interest to the non-academic world.

Z has been used to specify several non-trivial information systems. It is

mainly used for safety-critical projects at present, but this situation will hopefully

change as more and more people use Z.

Z is of interest to academics because of its mathematical foundations, and the

promise of being able to bring a degree of rigour to a software engineering project.

However, there is some doubt whether this can be achieved universally. This is

probably right, but that does not detract from the very real benefits discussed in

the previous section. These benefits could be secured by sing Z in the real world.

One of the biggest advantages of Z as a language for specifying medium

to large-size systems is its in-built schema calculus. This provides a mechanism

for easily decomposing specifications into smaller, more manageable units called

schemas. A schema consists of a collection of named objects with a relationship

specified by some axioms, and Z provides notions for them in various ways, so

that a large specification can be built up in stages. Schemas can have generic

parameters, and there are operations in Z for creating instances of generic schemas.

Schemas give Z specifications a modular property, something which has long been

recognised as a powerful aid when dealing with complicated problem domains.

It helps the analyst to build a correct specification, and allows the reader to be

gently introduced to a new specification by gradually unravelling the model. I t

basically reflects the human shortcoming of only being able to deal with a few

new concepts at any one moment in time.

53

5.2.2 Examples of Z

This example specifies a simple banking system[41]. We begin by deciding that

the state of the system consists of the balance of each account

Bank

bal : ACCT ^ N

The arrow i—• indicates a function from ACCT to N (natural number).

When the operation changes the states, we use A BANK to indicate i t .

When the operation does not change the states, we use S BANK to indicate i t .

bal represents the state before an operation and baV represents the state after an

operation.

A BANK = BANK A BANK'

H BANK = [A BANK | bal' = bal]

The balance is in number of pence. We suppose that the bank manager is

mean enough to never allow overdrafts.

One possible operation is to transfer some money from one account src to

another dst:

Transferl

A Bank

amount? : N

src?, dst? : ACCT

src? 7̂ dstl

bal(srcl) > amount?

bal' = bal ® {src? \—> bal(src?) — amount?,

dst? i—> bal(dst?) + amount?}

54

By convention names in the declarations ending in '?' are input data, and

names ending in '!' are output data; the '?' '!' are otherwise just part of the

name.

The operator 0 (function overriding) combines two functions of the same

type to give a new function. The function f © g is defined as x if either f or g are

defined, and will have a value of g(x) if g is defined at x; otherwise it will have a

value of f(x) . That is

dom(f © g) = dom(f) U dom(g)

x G dom(g) =• (f © g)(x)=g(x)

x £ dom(g) A x G dom(f) (f © g)(x)=f(x)

We might describe also the operations of depositing and withdrawing money

from the bank, asking for the current balance of an account, and so on, then turn

later to the reporting of invalid operations. To do this, we add an extra output

report! to each operation, and arrange such that this has a value 'OK' after every

successful operation:

Ok

reportl : MESSAGE

reportl = "ok"

For unsuccessful operations, we report the reason for failure with an appro­

priate message, and constrain the final state of the banking system to be the same

as the initial state. The two possible errors in a Transfer operation occur when

the source and destination accounts are the same, and when the source account

does not contain enough money:

55

SameAcct

EBANK

src?, det? : ACCT

report* : MESSAGE

src? = dst?

reportl = "Same account for src and dst"

NotEnough

"EL Bank

amount! : N

src?, det? : ACCT

reportl : MESSAGE

src? 7̂ dst?

bal(src?) < amount?

reportl = "Not enough money in src"

The transfer operation, complete with error reporting, can now be specified

by combining these schemas:

Transfer = (Transferl A OK) V SameAcct V NotEnough.

56

Transfer

A Bank

amount! : N

src!,det! : ACCT

report* : MESSAGE

src! ^ dstl

bal(srd) > amount!

bal1 = bal © {src? t-> bal(srrf) — amount!,

<fsi? i—> bal(dst!) + amount!}

report! : "OA*"

V

src? = <fsi?

reporf! = "Same account for src and dst"

V

src? ^ c?si?

bal(srd) < amount!

report\ = "Not enough money in src"

5.2.3 Identifying the test cases using Z

The most important consideration in program testing is the design or invention

of effective test cases [32]. The typical test case design of functional testing tech­

niques is equivalence partit ioning. Equivalence partitioning is a technique for

determining which classes of input data have common properties. The equiva­

lence classes must be identified by using the program specification. There are two

considerations for equivalence partitioning:

57

1. Each test case should invoke as many different input condition as possible

in order to minimise the total number of test cases necessary.

2. One should try to partition the input domain of a program into a finite

number of equivalence classes such that one can reasonably assume that a

test of a representative value of each class is equivalent to a test of any other

value. That is, if one test case in an equivalence class detect an error, all

other test cases in the equivalence class would be expected to find the same

error.

Using the equivalence partitioning techniques, we look for a partition of

the input and output sets and states. These are given in the declaration parts

of the specification, and the conditions contained in the predicates parts of the

specification. In this particular case this can lead to the table below

bal bal > A m o u n t bal < A m o u n t

Amount? N N N

src? dst? src? 7^ dst? src? = dst? src? 7̂ dst?

report! O K same account not enough money

bal' baT = bal © sth bal' = bal bal' =bal

Note:

bal' = bal © sth is in above table:

bal' = bal © {src? i—• bal (src? - amount?, dst? (-> bal(dst?) + amount? }

The report! and bal' are just expect outputs relating to inputs src?, dst?,

amount? for the banking system. How to use this table will be discussed in the

next chapter.

58

5 o 3 Lex

Lex is a lexical analysis generator.

The general format of Lex source is

{ definition }

%%

{ rules }

%%

{programmer subroutines}

The definition section is used to define variables for the program and for

use by Lex. It may also contain other commands, including the section of a host

ianguage, a character set table, a list of start conditions, or adjustments of the

default size of arrays within Lex itself for large source programs.

The rules section of a Lex input consists of a regular expression and an

action. A regular expression specifies a set of strings to be matched. It also

contains text characters (which match the corresponding characters in the strings

being compared) and operator characters(which specify repetitions, choices, and

other features). When an expression is matched, Lex executes the corresponding

action, There is a default action, which consists of copying the input to the output.

In Lex, the actions are written in C.

The third section is used for any subsidiary code that the user needs. This

section can hold whatever auxiliary procedures are need by the action. Alterna­

tively this part can be complied separately and loaded with the lexical analyser.

Lex accepts a high-level, program-oriented specification for character strings

matching, and produces a program in a general purpose language which recognises

regular expressions. The regular expressions are specified by the programmer in

the source specifications given to Lex. The Lex written code recognises these ex-

59

pressions in an input stream and partitions the input stream into strings matching

the expression. At the boundaries between strings, program sections provided by

the programmer are executed. As each expression appears in the input to the

program written by Lex, the corresponding fragment is executed.

Lex does not worry about ambiguity. It will always select the longest possible

match. If two matches are the same length, the first is used.

Lex is designed to simplify interfacing with Y A C C . What Lex writes is a

program named yylex(), the name require by Y A C C for its analysis.

5 o 4 YACC—Yet Another Compiler-Compiler

Y A C C is a parser generator which automatically generates L A L R (l) parsing tables

and a shift-reduce parser from a specification of the grammar and associated

semantic actions. A Y A C C specification has three parts like

declaration

%%

rules

%%

programs.

The declaration part contains the declarations of all tokens that will be

passed from the lexical analyser and used in the rules and programs sections.

The rule section is made up of one or more grammar rules and the associated

semantic action. A grammar rule has the form

A : B O D Y ;

A represents a nonterminal name, and B O D Y represents a sequence of zero

or more name and literals. The colon and semicolon are Y A C C punctuations.

60

Names may be of arbitrary length, and may be made up of letters, dot and

non-initial digits. Upper and lower case letters are distinct. The name used in the

body of a grammar rule may represent tokens or nonterminal symbols. A literal

consists of a character enclosed in single ' ' ' s . As in C , the backslash ' \ ' is an

escape character within literals, and all the C escapes are recognised.

With each grammar rule the programmer may associate actions to be per­

formed each time the rule is recognised in the input process. These actions may

return values , and may obtain the values returned by previous actions. More­

over, the lexical analyser can return values for tokens, if desired. An action is an

arbitrary C statement, and as such can have input and output, call subprograms,

and alter external vectors and variables. An action is specified by one or more

statements, enclosed in curly braces ' { ' and ' } ' .

The third section of the Y A C C specification consists of supporting C routines

to support the semantic actions defined in the rule section.

Y A C C provides a general tool for imposing structure on the input to a com­

puter program. The Y A C C programmer prepares a specification of the input pro­

cess; this includes rules describing the input structure, code to be invoked when

these rules are recognised, and a low-level routine to do the basic input .YACC

then generates a function to control the input process. This function, called a

parser, calls the programmer-supplied low-level input routine (the lexical anal­

yser) to pick up the basic items (tokens) from input stream. These tokens are

organised according to the input structure rules, called grammar rules; when one

of these rules has been recognised, the programmer code supplied for this rule, an

action, is invoked; actions have the ability to return values and make use of the

values of other actions.

Since Y A C C uses an L A L R (l) parsing table, both shift-reduce and reduce-

61

reduce conflicts may occur. With shift-reduce conflicts Y A C C uses a shift in favour

of a reduction. With reduce-reduce conflicts Y A C C uses the production declared

first in the rules section. Both conflicts are permissible in programming language

grammars.

A lexical analyser by the name yylex() must be provided. The lexical analyser

yylexQ returns tokens consisting of token type and attribute value pairs. If a token

type value is returned as digit, the token type must be declared in the first section

of the Y A C C specification. The attribute value is communicated to the parser by

a Y A C C defined variable yyval.

The next chapter will discuss how to use L E X and Y A C C to implement an

automatical oracle based on Z formal specification language.

62

Chapter (6

Implementation

The idea of constructing an automatic oracle is to make use of two features of

the Z formal specification language — the concrete syntax and the semantics

of the language. In this thesis, an automatic oracle generation consists of four

parts. Figure 6.1 shows this system with four parts: a scanner, a parser, a syntax

checker and an expected output generator. In this system, the input of the system

is a particular specification written in Z; the output is the printed Z specification

schema in boxes and a table of expected output related input-domain for this

particular specification.

The scanner used for the lexical analysis is written in Lex. The parser is

written in Y A C C . The parser reads a stream of tokens from the scanner and

produces a symbol table in terms of Z grammars. The arrows between the scanner

and the parser indicates the parser invoking the scanner and the lexical analyser

returning the current token to the parser. The syntax checker utilises an existing

tool — fuzz, fuzz is a package for checking Z specifications with the Z scope and

types, and printing them with l&TppC. fuzz can be decomposed into two parts: one

part is a program for analysing and checking specifications expressed as M g X

input files; the other part is a J&TgXstyle option, containing environments for the

63

Z Specification

Scanner

Parser

Syntex

Checher
Interpreter

Printing

Program

Printing

Program

* V

Z Specification Expected Output Related Test Domain

Figure 6.1: Oracle Generation

64

major constructs of Z and commands for the mathematical symbols.

The expected output generator (interpreter) is written in C. It consists of

several semantic routines including action parts of Y A C C . In the semantic analysis,

Z is interpreted using specific semantics of Z. The expected output generator

produces a test case table and prints it.

6.1 Lexical Analysis and Scanner

Lexical analysis is the part of a complier which reads the original source program

character by character and translates it into a sequence of primitive units called

tokens or terminal symbols [17]. In this case, the original source program is a

particular specification written in Z. Traditionally the program which performs

this function is called a scanner. Thus a scanner performs a lexical analysis of the

Z language.

The scanner is relatively straightforward to produce using Lex together with

grammar and concrete syntax given in reference [42] and [43]. The diagram of

the scanner is shown in Figure 6.2. The first phase predefines strings that will

be used in phase two. For example, the Z lexical analyser includes the following

definitions:

whitespace {delimiter}+

alpha [a-zA-Z_]

alphanum [a-zA-Z_0-9]

digit [0-9]

integer {digit}+

Each definition consists of a name being denned on the left and its definition

on the right.

65

Phase 1 Phase 2

Predefmition
Pattern

Definitions

Pattern

Definitions

Pattern

Definitions

Lookup ()

Figure 6.2: Lexical Analyser Generation

66

The second phase is where the patterns corresponding to each token defined

in Y A C C are defined. When a pattern is matched, a corresponding action included

in braces (some C code) is executed.

The subsidiary routine (lookup()) is then called, to recognise a token or a

variable. When a variable is recognised, its name is saved in the symbol table. An

external variable yylval is used to return a simple mapping for the value of each

"integer". During the translation of the mathematical symbols into their A S C I I

representation, the l&TgXsymbols as tokens are used:

0 to be translated to O P L U S

G to be translated to IN, etc.

(S o 2 Syntax Analysis and Parser

The purpose of syntax analysis is to determine whether the stream of tokens from

the scanner forms a valid sentence in the Z specification language grammar. If

so, its parse tree and symbol table is derived. The parser for Z is generated using

Y A C C (See Appendix B) . The diagram of parser is shown in Figure 6.3:

In phase 1, the tokens used in the grammar are declared. For example:

%token B E G I N _ Z E D

%token E N D _ Z E D etc.

The grammars given in [43] are ambiguous grammars. For the ambiguous

grammars, Y A C C resolves the ambiguity by specifying the precedence and asso­

ciation of tokens, rather than merely rewriting unambiguous grammars. For the

association, using "%left token-name" declaration for operators associated to the

left; using "%right token" declaration for the operator associated to the right.

Operators that have same the precedence appear in the same declaration.

67

Phase 1

Token

Definition

Phase 2

Production

Semantic

Analysis

Figure 6.3: Parser Generation

68

In the second phase, the grammar of the Z specification given in [43] is

defined. A production in Y A C C has the form:

non-terminal : right hand side { actions };

Each grammar rule given in [43] should be converted from B N F notation into

the format expected by Y A C C as outlined below:

o The B N F define symbol "::=" becomes ":".

o The B N F concatenation symbol "," is simply omitted.

o An "underscore" character is substituted for each space that occurred within

the meta identifiers.

o References to terminal symbols become references to the corresponding to­

kens provided by the scanner, for example:

"begin{schema}" becomes B E G I N J 3 C H E M A ;

"end{schema}" becomes E N D _ S C H E M A .

o An additional rule, of the following form, is written for all optional syntactic

items:

rule-name : f optionaLitems J ; will become

rule-name : optional items

I ;

e For all syntactic items that may occur one or more times, an additional rule

of the following form is written:

rule-name : syntactic-items rule-name

| syntactic-name;

69

o Any grammar rules that use parenthesis for grouping are rewritten in their

expanded form, for example

rule ::= a(b|c); will become

rule : ab | ac;

The action part in Y A C C defines semantics routines. When a rule is matched,

the corresponding semantics routine is called.

6.2.1 Shift-Reduce and Reduce-Rednce Conflicts

The original grammar expressed in [43] contains 103 rules, these rules are trans­

lated into a Y A C C grammar consisting of 219 rules. When this version of the

grammar is used to produce a parser, Y A C C reports 90 reduce-reduce conflicts

and 119 shift-reduce conflicts. The main reason for these conflicts is that the

grammar of Z contains a great deal of ambiguity and is not suitable for parsing

by an L A L R (l) parser.

In principle, Y A C C applies two straightforward rules to resolve these two

types of conflict:

o With shift-reduce conflicts, Y A C C will use a shift in favour of a reduction.

o With reduce-reduce conflicts, Y A C C will use the production declared first

in the grammar definition.

Of the two types of conflict, reduce-reduce conflicts are important and usually

indicate a probable error in the grammar. They arise because there are two or

more possible grammar rules that can be applied to the same input sequence.

Sometimes, rewriting of the grammar is needed to avoid reduce-reduce conflicts.

70

Shift-reduce conflicts can often be accepted as a rule of thumb and they can

often be resolved using precedence and association. So they are disregarded until

the reduce-reduce conflicts have been addressed.

Reduce-reduce conflicts When the original version of parser is executed, Yacc

report 109 reduce-reduce conflicts. For example, the rules schema_name and ident

are as shown below

schema_name : word ;

word : V A R I A B L E ;

ident : word decoration ;

opt^strokeJist : "'

| '?'
I
| SUB

I ;
When rule opt-stroke-list is empty, a parsing conflict arose because, after

reading a ';' the parser does not know whether to reduce the rule schema-name

or ident. For this parsing conflict, the grammar is rewritten using a rule and a

new token as follow:

: sword ;

: S V A R I A B L E

: V A R I A B L E ;

: word decoration ;

schema name

word

word

ident

opt jtroke_list

' ? '

SUB

71

This change removes all reduce-reduce conflicts.

Shift -reduce conflicts After all the reduce-reduce conflicts have been removed

attention is then focused on the shift-reduce conflicts.

In the declaration section of parser, the relative precedence and association

for all the relevant terminal symbols are declared. This then automatically assigns

precedence levels to certain grammar rules as follows:

Each rule is given the precedence level associated with the last terminal

symbol mentioned in its components. Consequently, rules which do not contain

a terminal symbol or whose last terminal symbol does not have a declared prece­

dence, are not assigned a precedence level.

Parsing conflicts are then resolved by comparing the precedence of the gram­

mar rule being considered with that of the look-ahead token:

1. If the precedence of the look-ahead token is higher then the parser will shift.

2. If the precedence of the rule is higher then the parser will shift.

3. If they have equal precedence then the choice is based on the association of

that precedence level.

4. If neither the rule nor the look-ahead has precedence then the default is to

shift.

After the relative precedence and association for all the relevant terminal

symbols have been declared, 68 shift-reduce conflicts are removed, and the parser

still has 41 shift-reduce conflicts. Consider the fragment of the original grammar

for expression given below:

expression : expression in_gen expression;

72

in_gen : R E L

| P F U N

| F U N

| P I N J

| I N J

| P S U R J

| SURJ

| B I J

| F F U N

| F I N J ;

I t can obviously be seen that the rule expression does not contain a terminal

symbol, consequently, i t does not have an associated precedence level. Hence,

Y A C C is unable to use precedence and association information to resolve the

parsing conflicts. In order to resolve these parsing conflicts, the rule expression is

rewrit ten as follow:

expression : expression REL expression

| expression P F U N expression

| expression F U N expression

| expression P I N J expression

| expression I N J expression

| expression PSURJ expression

| expression B I J expression

| expression SURJ expression

| expression F F U N expression ;

These changes remove another eight shift-reduce conflicts.

This method of inserting some terminal symbols is also used to enforce the

73

predecence and association to the following rule

expression^! : expression^! in—fun expression—1.

These changes again remove another eight shift-reduce conflicts. But there

are st i l l 25 shift-reduce conflicts which have not be been removed. Because a shift

i n favour of a reduction can be used to resolve shift-reduce conflicts, the following

rules are introduced:

i tem : ident A D E F branch_list

def_Jhs : ident in_gen ident

var_name : ident

W i t h these rules, ten more conflicts are resolved. Finally, the remaining 15

parsing conflicts are also resolved by introducing similar rules as those three rules

just introduced above.

6.2.2 Error Handling and Recovery

The parser generator must be capable of handling and recovering all syntax errors.

During the parser generation, there are syntax errors i n the overall structure of

the program. Common examples are omi t t ing a semicolon between statements or

forgetting a closing section bracket. For the syntax errors, there are four types of

error recovery which are possible to use in combination.

• Panic mode recovery — The input tokens are discarded un t i l a token that

signifies a consistent position is reached. This method is simple and w i l l not

get stuck in a loop.

• Phrase level recovery — Local alternations are made to the input tokens

to obtain a valid phase that would allow parsing to continue. Inserting

deleting, changing and swapping tokens are all possible. The method works

74

poorly when the error occurred some way back in the input .

o Error productions — This method uses a grammar w i t h productions to pick

up some errors and construct a parser using this grammar.

o Global error correction — This method seeks to transfer a source program

to a program that can be parsed correctly. This is far too expensive to be

used.

Y A C C provides error handling which makes use of error productions. In this

thesis, panic mode and error productions are used in combination. The general

f o r m is:

non-terminal : error synchronising set

The synchronising set is a set of symbols. On encountering an error, YAGC

discards input tokens un t i l i t finds one in the synchronising set, or, i f there are

non-terminals i n the synchronising set, one that can eventually be reduced to one

in the synchronising set. I t can then shift the token and eventually reduce the

error production, allowing parsing to resume.

The major dif f icul ty associated w i t h error recovery is the question of where

to restart parsing after a syntax error has been deleted. I f parsing restarts at an

inappropriate phase then the first syntax error is likely to lead a whole stream of

connected syntax errors.

Perhaps the most straightforward strategy relies on the presence of a single

token used to mark the end of each statement. I n this situation when a syntax

error has been detected, all tokens are simply ignored un t i l the end of statement

marker is found and then restart parsing. Unfortunately the Z specification lan­

guage does not have end of statement markers, which makes error recovery more

complicated.

75

In this parser, the error recovery strategy is highlighted below:

o For each grammar rule, a synchronising set is defined. Some of the synchro­

nising sets contain terminals and nonterminals and some are empty.

o For terminals i n the synchronising set, the parser discards input tokens un t i l

i t finds one in the synchronising set; for non-terminals in the synchronising

set , i t can eventually be reduced to one in the synchronising set, the parser

can then shift the token and eventually reduce the error production, allowing

parsing to resume.

o For the empty synchronising set, the parser can immediately reduce by error

production.

To illustrate this strategy consider the following example. I f an error occurs

in the rule basic_decl then all tokens are discarded un t i l one of the following is

found:

o any of the nonterminal "ident", "schema-ref", "op_name", indicating the

end of the current section of basic_decl;

o the token " W H E R E " , indicating the end of the decl-part.

76

The grammar rules that incorporate error recovery are listed in table 2 along w i t h

a list of the terminals and nonterminals which w i l l cause parsing to resume.

unboxed_para E N D _ Z E D

i tem '] ' , schema_name, ident, predicate, END_ZED

axiomatic-box E N D _ A X D E F

generic_box E N D _ G E N D E F

decLpart W H E R E , ident, schema-ref, op-name

axiom_part END_SCHEMA, E N D _ A X D E F F , END_GENOEF, ' } ' ,

N L , ALSO, PRE, T R U E , FLUSE, L N O T , F O R A L L ,

EXISTS, E X I S T _ 1 , schema_ref, ' (' , ') '

def lhs D D E F

schema_exp END_ZED, F O R A L L , EXISTS, E X T S T _ 1 , ' [' ,

'] ' , ' (' , ') ' , L N O T , PRE

schema_text ident, '] '

predicate END_SCHEMA, E N D _ A X D E F F , END_GENOEF, ' } ' ,

N L , ALSO, PRE, T R U E , FLUSE, L N O T , F O R A L L ,

EXISTS, E X I S T _ 1 , schema_xef, ' (' , ') '

expression POWER, pre_gen, I N T E G Y , M I N U S , L A N G ,

R A N G , L B A G , R B A G , ' (' , ') ' , T H E T A ' { ' ,

'] ' , L A M D A , M U

set-ref T
Table 2: The Grammar Rules for Error Recovery

77

(B o 3 Semantics Analysis and Expected Output

Generator

I t is customary to distinguish between the syntax and the semantics of a pro­

gramming language. The syntax is concerned w i t h the grammatical structure of

programs. The semantics is concerned w i t h the meaning of grammatically correct

programs [45].

Semantic analysis is concerned w i t h the identifiers and constants that appear

in a source program. "Literal" constants are usually recognised by the scanner.

Their attributes are deduced f r o m their forms. Thus for identifiers we must:

1. on encountering the declaration of each identifier, create a new identifier

structure containing its attributes;

2. whenever the identifier subsequently occurs, locate the appropriate identifier

structure and inspect its structure;

3. i n certain circumstances, locate the identifier as i n 2 above and update some

or all of its attributes.

I n this thesis, semantics analysis is concerned w i t h constructing a test case

table and getting expected output related to the test-domain f r o m a specification

wr i t ten in Z. The diagram of semantics analysis is showed i n Figure 6.4.

Specifications of large systems in Z are often buil t up by specifying smaller

sub-systems using schema calculus. A schema of a module i n Z can be expressed

as:

78

Specification

Declaration Part

Declaration

Analyser

Parser

Predicate Part

Table
Producer

Predicate

Analyser

Test-case Table

Figure 6.4: Semantic Analyser

79

Schema — name

declaration — part

predicate — part

In the declaration-part of the schema, all names of inputs, outputs and states

are given. By convention names ending in '?' are input data; names ending in '!'

are output data; names ending in "' are updated states; and names ending in '?',

'! ' and " ' are otherwise just part of the name. A symbol table which holds names,

values and types of input data, output and states are bui l t as the following:

typedef struct idnames {

idptr inext;

typeptr itype;

int ivalue;

char i n a m e [L E N G T H + l] ;

idptr i lef t ;

idpt r irght;

} idnames

1. inext is used to temporarily chain together the identifiers in a decl-part.

2. itype points to the type structure for this identifier.

3. ivalue is its value.

4. iname is the spelling of this identifier.

5. ileft is the left l ink i n the binary tree.

6. iright is the right l ink in the binary tree.

80

When the keyword W H E R E is encountered, it indicates the end of the

declaration-part and the beginning of the predicate-part. When a lookahead sym­

bol is the keyword " W H E R E " , routine columnl() is called to get the first column

of the test case table. The predicate-part consists of a series of predicates. Test-

domain and expect output are given from these predicates. The keyword L O R

is a partition of the test domain. If there are m L O R in the predicate-part of

the specification, then there are m+1 test-domain partitions. In each test-domain

partition, a symbol table is built as the following:

typedef Struct tests {

typeptr itype;

int ivalue;

char iname[LENGTH+1];

idptr ileft;

idptr irght;

} tests.

1. itype points to the type structure for this identifier.

2. ivalue is its value.

3. iname is the spelling of this identifier.

4. ileft is the left link in the binary tree.

5. iright is the right link in the binary tree.

When a keyword L O R and E N D _ S C H E M A is recognised, the routine test-

domainQ is called to get the test-domain and the expected output related to this

test-domain. A test case table can be built using this information.

81

6 o 4 Summary

The implementation of the oracle prototype was described in this chapter, includ­

ing the implementation of a scanner and a parser used for the Z specification,

using Lex and YACC. This utilised an existing Fuzz tool to f u l f i l l syntax checking

and pr int ing the Z specification in the box style. Parts of semantics analysis are

also implemented for the Z specification. When a given fo rm of the Z specifica­

t ion file is input to the prototype, the prototype can check the syntax of the Z

specification and print out the Z specification in a standard box style, as well as

pr int ing out the expected outputs related to the input test domain. This is the

f o r m of oracle which was designed in this thesis. The corresponding test case can

be obtained f r o m the table.

However this prototype can only work on some simple textbook examples.

Further research needs to be carried out for more complicated and practical exam­

ples. Nevertheless, i t looks promising i n that the Z Specification can be interpreted

using a special semantics and the feasibility of this needs further exploration.

82

Chapter 7

Results amid Evaluation

In this chapter, an example is first presented as the result of using the prototype,

followed by an evaluation of the research is given. Finally the value of formal

specifications i n software testing is discussed.

7.1 A n Example of the Use of the Oracle

I n chapter 4, an example of a banking system for transferring money fo rm source

account to destination account was given. For that particular example, the input

file of the specification can be wr i t ten as:

\begin{schema}{Transfer}

\Delta Bank \\

amount?: \nat \\

s r c ? , det?: ACCT\\

report!: MESSAGE

\where

s r c ? \neq dst? \\

b a l (s r c ?) \geq amount? \\

83

file:///Delta
file:///where

b a l ' = bal \oplus \ { s r c ? \mapsto bal (s r c ?) - amount?, \\

dst? \mapsto b a l (d s t ?) + amount? \ } \\

report!: "OK" \\

\ l o r \ \

s r c ? = dst? \\

report! = "Same \ account \ f o r \ s r c \ and \ dst" \\

\ l o r \ \

s r c ? \neq dst? \\

b a l (s r c ?) \ l e q amount? \\

report! = "Not \ enough \ money \ i n \ s r c " \\

\end{schema}

When this file is input to the system, i f there is any syntax error i n the file,

the system w i l l report the syntax error, otherwise, a specification and test case

table are printed as follows respectively:

84

file:///oplus
file:///mapsto
file:///mapsto

Transfer

A Bank

amount? : N

src?, det? : AGGT

report*. : MESSAGE

src? ^ dst?

bal(src?) > amount?

bal' = bal © {src? H-> bal(src?) — amount?,

dst? i—> bal(dst?) + amount?}

reportl : " O t f "

V

src? = <fsf?

reportl = "Same account for src and dst"

V

src? ^ dst?

bal(src?) < amount?

reportl = "Not enough money in src"

bal bal > A m o u n t bal > A m o u n t bal < A m o u n t

Amount? N N N

src? src? ^ dst? src? = dst? src? 7^ dst?

dst? src? 7^ dst? src? = dst? src? ^ dst?

report! O K same account not enough money

bal ' bal ' = bal © sth bal ' = bal bal ' = b a l

The bal ' = bal 0 sth i n the above table is:

85

bal ' = bal 0 {src? i—> bal (src? - amount?, dst? i—> bal(dst?) + amount? }

7 o 2 Using Test Case Table (Test Case Seleo

Having established the test-domains table as in the previous section, the next step

w i l l be to select typical test cases f r o m the set. The process is:

1. Assign a unique number to each equivalence class,

2. U n t i l all valid equivalence classes have been covered by test cases, cover as

many of the uncovered value equivalence classes as possible,

3. U n t i l all invalid equivalence classes have been covered by test cases, write a

test case that cover one, and only one of the uncovered invalid equivalence

For a Z specification, selection w i l l be the chosen state. I n the previous

example on the banking system, the state bal of the system consists of the balance

of each account is:

bal : ACCT H-> N

thus, we might select the state first to be

bal:

4256 - f 200

8957 —• 320 W i t h this state, the first set of data can be chosen as below:

Testdata 1:

t ion)

classes.

, Bank

86

src? = 4256 -» 200

drc? = 8957 -> 320

Amount : = 100

Testdata 2:

src? = 4256 - » 200

drc? = 4256 -> 320

Amount : = 100

Testdata 3:

src? = 4256 ->• 200

drc? = 8957 -> 320

Amount : = 500

A test case table is thus obtained:

T D _ 1 T D _ 2 T D _ 3

bal as above as above as above

amount 100 100 500

src? 2546 2546 2546

dst? 8957 2546 8957

report! ok same account not enough money

bal ' 4256 100

8957 -> 420

not changed not changed

From the above table, we know, that the expected outputs should be

Testdata 1: report! =ok

bal ' :

src' = 4256 - • 100

dst' = 8957 - * 420

87

Amount : = 100

Testdata 2:

report! = same account

bal ' = bal not changed

Testdata 3:

report! = not enough money

bal ' = bal not changed

Therefore, report 'and bal' are expected outputs. Unfortunately, the expected

output bal' must be worked out by hand for this system at present.

7 , 8 Evaluation

A prototype based on the research in this thesis has been implemented on a SUN

workstation and experiments show that the prototype can work on examples like

the one presented in the previous section. From the above example, we know,

when the test data are selected f rom input condition, the expected output is

automatically given i n the oracle table.

For this prototype, i t is a try-on to use Z formal specification to gain auto­

matically the expected output - the oracle table. A t present, i t can only accept

similar cases like the example just shown as input . I t needs a further work to

accept complex case as its input .

The advantage of this approach is the generation of an oracle which is func­

tionally independent of any human decisions. This provides a strong foundation

upon which a complete testing system can be bui l t , i.e., by adding test case gen­

eration and gathering test coverage information. Addi t ional ly the system can

provide motivation for generation of a formal specification during the software

88

development cycle. The system integrates Z formal specification techniques w i t h

the process of software testing.

The implementation is independent of other tools, in particular a compiler.

A n oracle is generated to model the particular specification expressed, instead of

requiring compiler extensions to drive test cases through the program. But the

system can only automatically generate an oracle for small and comparatively

simple Z specifications.

7 » 4 The Value of Formal Specification in Soft­

ware Testing

A formal specification readily lends itself to test generation. I t has the additional

validation value of being implementation independent, as specifications are gen­

erally not wr i t t en i n a programming language. A functional testing approach

has the advantage that testing oracles as well as test inputs are obtainable f r o m

the specification. A structural test approach would st i l l require some f o r m of

specification for a test oracle.

The generation of a complete testing system f r o m a formal specification would

provide a greatly enhanced tool. A program specification provides rules for de­

scribing its inputs syntactically, which can provide a basis for the generation of

test cases. A n exhaustive approach which generates all possible inputs is not feasi­

ble. However, certain boundary information does appear to be present i n the B N F

grammars themselves. I t may be possible to generate an interesting set of test

cases and to bui ld an automated testing system. The advantages of automated

testing f r o m a formal specification are as follows:

1. Test cases are available immediately after the specification is developed and

89

thus can be applied to incomplete or part ial ly designed and coded programs.

This i n tu rn gives the abil i ty to catch faults early in the development cycle

and to reduce the amount of expensive recoding and redesign.

2. Automated testing f r o m formal specifications does not require a human

tester to have a complete understanding of the program specification or the

code to generate test cases. This is important for a complex specification or

for convoluted code.

3. Unlike most testing methods, automated testing f r o m formal specifications

does not require a tester to manually derive expected outputs for represen­

tative sets of test inputs. This is especially important for new systems for

which no good test cases are known.

7 o 5 The Limitation of Formal Specification in

Software Testing

There are some limitations when formal specification is used in software testing.

The prototype bui l t i n this thesis cannot accept a complex example as input at

the moment. A test oracle derived alternatively f r o m Z specification means that

Z formal notation have to be executed. I t required that formal semantics w i l l be

defined for Z specification. Further work needs to be done in order to deal w i t h

more complicated examples.

To use Z formal notation as an oracle, the concrete input and output must be

converted into their abstract representations. I n many cases i t would be diff icul t

to get a test oracle without having other operations on the data type available.

For more complex data types, the Z formal notation leads to be simpler.

90

This thesis has demonstrated how a test oracle for a simple example can be

derived f r o m its formal specification. I t has been shown that specification-based

testing must be fur ther developed and should be incorporated into the software

development lifecycle. this requires the use of formal specification languages in

the specification and design phase and implementation. We intend to explore the

possibility of exploring specification languages to incorporate test case descriptions

that the user can specify the environment can generate automatically. We believe

that developers w i l l be less reluctant to use formal specification languages i f we

can demonstrate concrete advantages to be gained f r o m their use i n testing.

91

Chapter

Ccmckasioiis

8 . 1 Review of Project

Software testing has been identified as an expensive phase of the software life cycle.

Therefore, research into the development of testing tools used by testers is needed.

I n particular, automated software testing tools for functional or structural testing

are urgently needed.

A number of authors have suggested methods for functional testing, and there

are also a substantial number of systems based on this approach. Functional test­

ing depends on the availability of a test oracle used to determine the correctness

of the output for a particular test input. A program can only be tested properly

i f the tester has the exact knowledge about what the program under test should

and should not do. This justifies a need for a test oracle. Such information, for

determining i f a program is behaving correctly, can generally be derived f r o m the

specification of the program.

Practical issues of testing and the techniques of formal specification are of­

ten regarded as incompatible and irrelevant to one another. Some software testing

techniques based on specifications make use of either informal specifications, or a

92

specific specification which is wr i t ten for software testing. This thesis has demon­

strated that this need not be the case, by constructing a prototype oracle based

on the Z formal specification language.

8 c 2 Assessments Achievements

The following have been achieved during the project:

o A n overall review of the software testing strategies and testing techniques

was conducted, which analysed their strengths and weaknesses, and indi­

cated the importance of functional testing in software testing.

o A n overall survey of the testing oracles was carried out, which classified

testing oracles, and assessed the existing oracles.

o A method was proposed for constructing an automatic oracle based on the

Z formal specification language and a design was constructed.

o A n investigation into relevant tools was done for constructing the proposed

oracle, e.g. fuzz, Lex, Y A C C , etc.

o A parser was constructed for the Z specification language to develop an

automatic testing oracle.

o a prototype of the testing oracle was constructed based on a formal specifi­

cation in Z.

o experiments were carried out w i t h the prototype,

o the results of the experiments were evaluated.

93

8 o 3 > Assessments Criticisms

A n ideal system could translate a formal specification such as Z into an auto­

matic correctness oracle. This automatic correctness oracle would validate the

consistency of an unl imited number of program inputs and outputs w i t h the spec­

ification. A complete tool implementation is beyond the resource constrains of this

thesis. I n this thesis, only a number of experiment examples have been considered.

For the given syntax and a representation for the test-domain, the specification

was parsed, then the at tr ibuted grammar style operations were used to develop the

par t i t ion moving down and up the parse tree. The specification was interpreted

to get some expected output related to test-domain using special semantics for Z.

I f we consider more different representations , i t is not simple. There is a sense i n

which we must "execute" the specification. Superficially i t seems promising, but

needs exploration further to ascertain its feasibility. Even though the specification

need not itself to be executed, i t would s t i l l be possible to carry out the l imi ted

experiments f r o m the execution required here.

8 o 4 Future Directions

I t has been seen f r o m the discussions i n previous chapters that constructing an

automatic oracle using formal specification is potentially of interest i n software

testing. To jus t i fy the arguments proposed in this thesis, fur ther implementation

of the tool and experimenting w i t h using the tool w i l l be the main direction for

future research.

The formal semantics of Z notation is given in [41]. The formal semantics

provides a foundation for a logical calculus for reasoning about a specification and

deriving consequences f r o m them. The successful application of formal methods in

94

industry w i l l be helped by a software tool [41]. Perhaps a fu ture research project

is to use the formal semantics of Z (such as denotational semantics and axiomatic

semantics) to construct an automated testing tool .

The formal specification means that all the early parts of the testing pro­

cedure are easy to carry out. The functions have been identified, w i t h their

parameters (and the environment conditions, i f they are regarded as different)

so the first stages have already been done. The formal specification means that

valid results for each test case can be worked out w i t h certainty. Thus the for­

mal functional testing w i l l become important i n software testing. Perhaps the

most important fu ture direction is the need to carry out fu ture research into the

construction of a completely automated tool based on a Z specification.

95

Chapter 9

References

[1] Abbot t , J., Software Testing Techniques, NNC Publications, 1986.

[2] Aho, A . V . and Ul lman, J. D . , Principles of Compiler Design, Addison-Wesley

Publishing Company, 1977.

[3] Avizienis, A . and Chen, L . , "On the Implementation of N-version Program­

ming for Software Fault-Tolerance during Program Execution ", Proceedings of

COMPSAC Conference, 1977.

[4] Bell , G., Morrey, I . and Pugh, J., Software Engineering —• A Programming

Approach, Prentice-Hall INC. , Englewood Cliffs, New Jersey, 1987.

[5] Bennett, J. P., Introduction to Compiling Techniques: A First Course Using

ANSI C, LEX and YACC, The McGraw-Hi l l International, London, 1990.

[6] Bertolino, A . , " A n overview of Automated Software Testing", J. System Soft­

ware, Vol . 15, pp. 133-138 (1991).

[7] Budd, T . A . , Demillo, R. A. , L ip ton , R. J. and Say ward, J., "Theoretical and

empirical studies on using program mutat ion to test the functional correctness

of programs", Proc. A C M Symp. Principles of Prog. Lang., 1980.

96

[8] Budd, T. A. and Lipton, R. J., "Muta t ion Analysis of Decision Table Programs",

Proc. Conf. Information Science and Systems, 1979.

[9] Camuffo, M . , Maiocchi, M . and Morselli , M . , "Automatic Software Test Gen­

eration", Information and Software Technology, Vol . 32, No. 5 (June 1990).

[10] Choquet, N . , "Test Data Generation Using a Prolog w i t h Constraints", Work­

shop on Software Test, Los Alamitos, CA, 1986.

[11] Clarke, L . A . and Richardson, D . J., "The application of error-sensitive testing

strategies to debugging", ACM SIGplan Notices , Vol . 18, No. 8 (1983).

[12] Coward, P. D. , "A review of software testing", Information and Software Tech­

nology, Vol . 30, No. 3 (1988).

[13] Davis, M . D. and Weyuker, E. J., "Pseudo-Oracles for Non-testable Programs",

A C M , November 1981.

[14] Day, J. D . and Gannon, J. D . , " A Test Oracle Based on Formal Specifications",

2nd Conf. on Software Development Tools, Techniques and Alternatives, De­

cember 1985.

[15] Duncan, A. G. and Hutchison, J. S., Using At t r ibu ted Grammars to Test De­

signs and Implementations, 1981.

[16] Fairley, R. E., Software Engineering Concepts, McGraw-Hi l l Book Company,

1985.

[17] Farmer, M . , Compiler Physiology for Beginners, Charwell-Bratt L t d , 1985.

[18] Frankl, P. G., "Tools for Testing Object-oriented programs", Proceedings of

Pacific Northwest Software Quali ty Conference, 1990.

[19] Gerhart, S., " A Test Data Generation Method Using Prolog", Technical Report,

1985.

97

[20] Gi lb , T. , "A Comment on the Defini t ion of Reliabil i ty", ACM Software Engi­

neering Notes, Vol . 4, No. 3 (1979).

[21] Gilbert , S., Software Design and Development Generation Method Using Pro­

log, Science Research Associates, 1983.

[22] Girard, E. and Rault, J. C , " A Programming Technique for Software Reliabil­

i t y " , IEEE Symposium on Software Reliabil i ty, 1973.

[23] Gorlick, M . M . , Kesselman, S. F., Marot ta , D . A. and Parker, D . S., "Mock­

ingbird: A logical methodology for testing", Journal of Logical Program, Vol .

8, pp. 95-119 (1990).

[24] Gough, K . J., Syntax Analysis and Software Tools, Addison Wesley Publishing

Company, 1988.

[25] Hal l , P. A . V . , "Relationship between Specifications and Testing", Information

and software technology, Vol . 33, No. 1 (1991).

[26] Horebeek, I . V . and Lewi, J., Algebraic Specifications in Software Engineering,

Springer-Verlag, Berl in , 1989.

[27] Horning, J. J., Lauer, H . C , Mell iar-Smith, P. M . and Randell, B . , "A Program

Structure for Error Detection and Recovery", in Lecture Notes in Computer

Science, Vol . 16, Springer, 1974, pp. 177-193.

[28] Howden, W . E., "Error, Testing Properties and Function Program Tests", i n

Computer Porgram Testing, North-Holland, 1981.

[29] Ince, D. , "The Validation, Verification and Testing of Software", Technical Re­

port , Computing Discipline Faculty of Mathematics, Open University, M i l t o n

Keynes, England, August, 1984.

98

[30] Jagota, A . and Rao, V . , " T C L and T C I : A Powerful Language and Interpreter

for Wr i t ing and Executing Black Box Tests", Proceeding of Pacific Northwest

Software Quali ty Conference, Los Alamitos, CA, 1986.

[31] Mayrhauser, A . V . , Software Engineering — Methods and Management, A C A ­

D E M I C PRESS, 1990.

[32] Meyers, G. J., The Art of Software Testing, John Wiley, 1979.

[33] Morel l , L . J., "Uni t Testing and Analysis", SEI Curr iculum Module SEI-CM-

9-1.1, Carnegie Mellon University, 1988.

[34] Panzl, D. J., "A Language for Specifying Software Tests", Proceedings of AFIPS

National Computer Conference, 1978.

[35] Panzl, D . J., Experience With Automatic Program Testing, IEEE, 1981.

[36] Pesch, EL, Schnupp, P., Schaller, H . and Spirk, A . P., "Test Case Generation

Using Prolog", Proceedings of 8th International Conference on Software Engi­

neering, Los Alamitos, CA, 1985.

[37] Randall, B . , "System Structure for Software Fault Tolerance", IEEE Transac­

tions on Software Engineering, Vol . 1, No. 4, pp. 220-232 (1975).

[38] Richardson, D . J., O 'Mal ly , 0. and Ti t l e , C , "Approaches to Specification-

based Testing", Software Engineering , Vol . 14 , No. 8 (December, 1989).

[39] Schwartz, J. T . , "Automatic Data Structure Choice i n a Language of Very High

Level", CACM, Vol . 18, pp. 722-728 (1975).

[40] Sommerville, I . , Software Engineering (3rd Edn.), Addison-Wesley Publishing

Company, Wokingham, 1989.

[41] Spivey, J. M . , Understanding Z, Cambridge University Press, 1988.

[42] Spivey, J. M . , Tiie Z Notation, Prentice Hal l , 1989.

99

[43] Spivey, J. M . , The fuzz Manual, 1992.

[44] Tsai, W . T. , Volovik, D. and Keefe, T . F., "Automated Test Case Generation

for Programs Specified by Relational Algebra Queries", IEEE Transactions on

Software Engineering, Vol . 16 , No. 3 (March 1990).

[45] Wat t , D . A. , Programming Language Syntax and Semantics, Prentice-Hall In­

ternational, Inc., 1991.

[46] Weyuker, E. J., "On Testing Non-testable Programs", The Computer Journal,

Vol. 25, No. 4 (1982).

[47] Zelkowitz, M . V . , Shaw, A . C. and Gannon, J. D . , Principles of Software Engi­

neering and Design, Prentice-Hall, Englewood Cliffs, NJ , 1979.

100

A p p e n d i x A

The -Lexical Analyser o f
Specification

u
/ * s c a r i n e r — l e x i c a l a n a l y s i s */
#include
#define
extern char
extern i n t
% }

d e l i m i t e r
whitespace
alpha
alphanum
a s c i i _ c h a r
escape_char
digit_
integer

"y.tab.h"
token(X)
yytext [] ;
y y l v a l ;

[\t\n]
{d e l i m i t e r } +
[a-zA-Z_]
[a-zA-Z_0-9]
[~\"\n]
\\n|\\\"
[0-9]
{ d i g i t } +

/# generated by yacc */
X

whitespace {
{alpha}{alphanum}
integer {

"<>'

y y l v a l
{ return
{ return
{ return

{ return
: a t o i (y y t e x t)

ADEF ;}
DDEF ;}
NEQ ;}

lookup(VARIABLE); }
return(INTEGER);}

" < = "
"> = "

{ return
{ return
{ return

LEQ;}
GEO,;}
yytext [0] ; }

n
/* reserved word */

#define
extern char

token(X)
yytext [] ;

s t a t i c s t r u c t keyword /* reserved word table */

char
i n t

} keytable[] =

name; / representation */
token_yylex; /* y y l e x O value */
/* sorted */

"\begin{zed}", token(BEGIN_ZED),
"\end{zed}", token(END_ZED),
"\begin{axdef}", token(BEGIN_AXDEF),
"\end{axdef}", token(END_AXDEF),
"\where", token(WHERE),
"\begin{schema}", token(BEGIN_SCHEMA),
"\end{schema}", t oken(EWD_ SCHEMA),
"\a l s o " , token(ALSO),
"\bejin{gendef}", token(BEGIN_GENDEF),
"\end{gendef}", token(END_GENDEF),
"\defs", token(DEFS),
"\l d a t a " , token(LDATA),
"\rdata", token(RDATA),
"\pre", token(PRE),
" Y f o r a l l " , token(FORALL),
" \ e x i s t s " , token(EXISTS),
" \ e x i s t s _ l " , token(EXISTS_l),
"\lnot", token(LNQT),
" \ l p r e " , token(LPRE),
"\land", token(LAND),
" \ l o r " , token(LOR),
"\implies", token(IMPLIES),
" \ i f f " , t o k e n (I F F) ,
"\project", token(PROJECT),
"\hide", token(HIDE),
"\semi", token(SEMI),
"\true", token(TRUE),

file:///where
file:///also
file:///defs
file:///ldata
file:///rdata
file:///exists
file:///exists_l
file:///lnot
file:///lpre
file:///land
file:///implies
file:///project
file:///hide
file:///semi
file:///true

" \ f a l s e " ,
" \ i n " ,
" \ X i " ,
"\Delta",
"\lambda",
"\mu", "
"\theta",
"\power",
"\limg",
"\rimg",
"Mangle" ,
"\rangle",
"\lbag",
"\rbag",
"\bsup",
"\esup",
"\notin",
"\empty",
"\subseteq",
"\subset",
"\neq",
"\ l e q " ,
"\geq",
"Apart i t ion",
"\inbag",
" \ d i s j o i n t " ,
"\power_l",
"\cross",
"\cup",
"\cap",
"\ c a t " ,
"\setminus",
"\bigcup",
"\bigcap",
" \ f i n s e t " ,
" \ f i n s e t . l " ,
" \ r e l " ,
"\mapsto",
"\upto",
"\uplus",
"\div",
"\mod",
" \ f i l t e r " ,
"\dom",

token(FALSE) ,
token(IM),
token(XI),
token(DELTA),
token(LAMBDA),
token(MU),
token(THETA),
token(POWER),
token(LIMG),
token(RIMG),
token(LANGLE),
token(RAMGLE),
token(LBAG),
token(RBAG),
token(BSUP),
token(ESUP),
token(NQTIN),
token(EMPTY),
token(SUBSETEQ),
token(SUBSET),
token(NEQ),
token(LEQ),
token(GEQ),
token(PARTITION),
token(INBAG),
token(DISJOINT),
token(POWER.1),
token(CROSS),
token(CUP),
token(CAP),
token(CAT),
token(SETMINUS),
token(BIGCUP),
token(BIGCAP),
token(FINSET),
token(FINSET.l),
token(REL), -
token(MAPSTO),
token(UPTO),
token(UPLUS),
token(DIV),
token(MOD),
token(FILTER),
token(DOM),

file:///false
file:///Delta
file:///lambda
file:///theta
file:///power
file:///limg
file:///rimg
file:///rangle
file:///lbag
file:///rbag
file:///bsup
file:///esup
file:///notin
file:///empty
file:///subseteq
file:///subset
file:///inbag
file:///disjoint
file:///power_l
file:///cross
file:///setminus
file:///bigcup
file:///bigcap
file:///mapsto
file:///upto
file:///uplus

"\rag",
"\comp",
" \ c i r c " ,
"\dres",
" \ r r e s " ,
"\ndres",
"\nrres",
"\oplus",
"\plus",
" \ s t a r " ,
"\beq",
"\pfun",
"\fun",
" \ p i n j " ,
" \ i n j " ,
" \ p s u r j " ,
" \ b i j " ,
" \ s u r j " ,
"\ffun",
" \ f i n j
"\inv",
"\plus",
"\nat",
"\riat_l",
"\num",
"\sub",

token(RAG),
token(COMP),
token(CIRC),
token(DRES),
token(RRES),
token(NDRES),
token(NRRES),
token(OPLUS),
token(PLUS),
token(STAR),
token(BEQ),
token(PFUN),
token(FUN),
token(PINJ),
token(INJ),
token(PSURJ),
token(BIJ),
token(SURJ),
token(FFUN),
token(FINJ),
token(INV),
token(PLUS),
token(NAT),
token(NAT_1),
token(NUM),
token(SUB),

lookup (t)
in t t ;
{

r e g i s t e r s t r u c t keyword *p;

p = keytable;

while (p->name)
i f (!strcmp(yytext), p->name)

return p->token_yylex;
e l s e

p++;

return t ;
}

file:///comp
file:///circ
file:///dres
file:///rres
file:///ndres
file:///nrres
file:///oplus
file:///plus
file:///star
file:///pfun
file:///pinj
file:///psurj
file:///surj
file:///ffun
file:///plus
file:///riat_l

Appendix B

The Semantic Analyser of
Specification

/* parser f o r Z s p e c i f i c a t i o n */

u #include <stdio.h>
#include <ctype.h>
#include "lex.yy.c"

i n t y y l v a l ;

'/}

'/token BEGIN.ZED
'/token END_ZED
/otoken BEGIN_AXDEF
70token END.AXDEF
'/token WHERE
'/otoken BEGIN.SCHEMA
%token END.SCHEMA
'/token ALSO
'/token VARIABLE
'/token BEGIN_GENDEF
'/token END_GENDEF
'/token FORALL
'/token DEFS
'/token BBAR
'/token LDATA
'/token RDATA

%token PRE
'/token ADEF
%token DDEF
'/.token EXISTS
'/token EXISTS.l
'/token LNOT
'/token LPRE
'/token LAND
'/token LOR
'/token IMPLIES
%token IFF
'/token PROJECT
'/token HIDE
'/token SEMI
'/token TRUE
'/token FALSE
'/token IN
'/token XI
'/token LAMBDA
'/token MU
'/token DELTA
'/token THETA
'/token POWER
%token LIMG
'/token RIMG
'/token LANGLE
'/token RANGLE
%token LBAG
'/token RBAG
'/token BSUP
%token ESUP
'/token NOTIN
'/token SUBSETEQ
'/token SUBSET
'/token NEQ
'/token LEQ
y.token GEQ
'/token PARTITION
'/token INBAG
'/token DISJOINT
%token P0WER_1
'/token CROSS
'/token CUP
'/token CAP

'/.token SETMINUS
°/0token NL
'/.token BIGCUP
'/.token BIGCAP
'/.token FINSET
'/.token FINSET.1
"/.token MAPSTO
'/.token UPTO
'/.token UPLUS
'/.token DIV
'/.token MOD
'/.token FILTER
'/.token DOM
'/.token RAG
'/.token COMP
'/.token CIRC
'/token DRES
'/,t oken RRES
'/Otoken NDRES
%token NRRES
°/0token OPLUS
'/.token PLUS
'/.token STAR
'/.token BEQ
'/.token REL
'/.token PFUN
'/.token FUN
'/.token PINJ
'/.token INJ
'/.token PSURJ
'/.token BIJ
'/.token SURJ
'/otoken FFUM
'/.token FINJ
'/.token INV
'/.token PLUS
'/.token CAT
%token EMPTY
%token NAT
%token NAT_1
%token NUM
'/token DCAT
'/.token INTEGER
'/.token SUB

'/.token MINUS
'/.token S VARIABLE

/* precedence */

°/.left MAPSTO
'/.left UPTO ESUP
'/.left > — > CUP SETMINUS

CAT UPLUS
'/.left > * > DIV MOD CAP

COMP CIRC FILTER
'/.left OPLUS DRES RRES NDRES

NRRES
'/.left NEQ NOTIN SUBSETEQ SUBSET

LEq GEQ
PARTITION INBAG

'/.left REL PFUN FUN PINJ
INJ PSURJ SURJ BIJ
FFUN FINJ

'/.left LAND LOR IFF PROJECT
HIDE SEMI

°/.right INV PLUS BSUP STAR
°/.right MINUS DISJOINT LNOT PRE
'/.right POWER.1 ID FINSET FINSET.l

SEQ SEq.l ISEQ BAG
•/.right IMPLIES

-%start s p e c i f i c a t i o n

'/.%

/* rules section */

sp e c i f i c a t i o n : paragraph.list ;

paragraph_list : paragraph
I paragraph paragraph_list ;

paragraph : unboxed_para

I axiomatic_box
I schema_box
I generic_box ;

unboxed.para : BEGIN.ZED
item_sep_list item
END_ZED

item_sep_list : item
I item sep item_sep_list ;

item : ' [' i d e n t . l i s t '] '
I schema_name opt_gen_formals DEFS schema_exp
I def_lhs DDEF expression
I ident ADEF branch_list
I predicate ;

i d e n t _ l i s t : ident
I ident ',' i d e n t _ l i s t ;

opt_gen_formals : gen_formals

branch _ l i s t : branch
I branch BBAR branch_ l i s t ;

axiomatic.box : BEGIN^AXDEF
decl_part

opt_axiom_part
END_AXDEF;

schema_box : BEGIN_SCHEMA ,{'schema_name ,} , opt_gen_formals
decl_part
opt_axiom_part
END.SCHEMA ;

generic_box : BEGIN_GENDEF opt_gen_formals
opt_axiom_part
END_GENDEF ;

opt_axiom_part : WHERE
axiom_part

d e c l _ p a r t b a s i c _ d e c l _ l i s t ;

b a s i c _ d e c l _ l i s t : b a s i c _ d e c l
I b a s i c _ d e c l sep b a s i c _ d e c l _ l i s t ;

axiom_part : p r e d i c a t e _ l i s t ;

p r e d i c a t e _ l i s t : p r e d i c a t e
I p r e d i c a t e sep p r e d i c a t e = l i s t ;

sep
I NL
I ALSO ;

d e f l h s : var.name opt_gen_formals
I pre.gen i d e n t
I i d e n t i n_gen i d e n t ;

branch : i d e n t
I var_name LDATA e x p r e s s i o n RDATA ;

schema.exp

schema_exp_l

: FORALL schema.text schema_exp
I EXISTS schema_text ' @' schema.exp
I EXISTS_1 schema_text '0' schema.exp
I schema.exp.l ;

' [' schema.text '] '
I -schema.ref
I LNOT schema.exp_l
I PRE schema.exp.l
I schema.exp.l LAND schema.exp.l
I schema.exp.l LOR schema.exp.l
I schema.exp.l IMPLIES schema.exp.l
I schema.exp.l IFF schema.exp.l
I schema.exp.l PROJECT schema.exp.l
I schema.exp.l HIDE ' (' d e c l . n a m e . l i s t
I schema.exp.l SEMI schema.exp.l
I ' (' schema.exp ') ' ;

schema_text : d e c l a r a t i o n o p t . p r e d i c a t e ;

d e c l a r a t i o n : b a s i c _ d e c l _ l i s t

o p t . p r e d i c a t e : '|' p r e d i c a t e
I ;

schema.ref : schema.name d e c o r a t i o n o p t . g e n . a c t u a l s

o p t . g e n . a c t u a l s : g e n . a c t u a l s
I J

b a s i c . d e c l : d e c l . n a m e . l i s t ':' e x p r e s s i o n
I schema.ref ;

p r e d i c a t e : FORALL schema.text '@' p r e d i c a t e
I EXISTS schema.text '@' p r e d i c a t e
I EXISTS.l schema.text '<3' p r e d i c a t e
I p r e d i c a t e . l ;

p r e d i c a t e . l : e x p r e s s i o n . r e l . l i s t
I p r e . r e l e x p r e s s i o n
I schema.ref
I PRE schema.ref
I TRUE
I FALSE
I LNOT; predicate.l-'/.prec LNOT
I p r e d i c a t e . l LAND p r e d i c a t e . l
I p r e d i c a t e . l LOR p r e d i c a t e . l
I p r e d i c a t e . l IMPLIES p r e d i c a t e . l
I p r e d i c a t e . l IFF p r e d i c a t e . l
I ' (' p r e d i c a t e . l ;

e x p r e s s i o n . r e l . l i s t : e x p r e s s i o n r e l e x p r e s s i o n
I e x p r e s s i o n r e l e x p r e s s i o n . r e l . l i s t ;

r e l ' = >

I IN

I i n _ r e l ;

d e c l _ n a m e _ l i s t : decl.name
I decl.name ',' d e c l _ n a m e _ l i s t ;

expression.O : LAMBDA schema_text e x p r e s s i o n
I MU schema.text o p t _ s _ e x p r e s s i o n
I e x p r e s s i o n ;

o p t _ s _ e x p r e s s i o n : ' @' e x p r e s s i o n
I ;

e x p r e s s i o n : e x p r e s s i o n REL e x p r e s s i o n
I e x p r e s s i o n PFUN e x p r e s s i o n
I e x p r e s s i o n FUN e x p r e s s i o n
I e x p r e s s i o n PINJ e x p r e s s i o n
I e x p r e s s i o n INJ e x p r e s s i o n
I e x p r e s s i o n PSURJ e x p r e s s i o n
I e x p r e s s i o n BIJ e x p r e s s i o n
I e x p r e s s i o n SURJ e x p r e s s i o n
I e x p r e s s i o n FFUN e x p r e s s i o n ;
I e x p r e s s i o n FINJ e x p r e s s i o n
I e x p r e s s i o n _ l _ l i s t ;
I e x p r e s s i o n . !

e x p r e s s i o n _ l _ l i s t : e x p r e s s i o n . l CROSS e x p r e s s i o n . l
I e x p r e s s i o n . l CROSS e x p r e s s i o n . l . l i

e x p r e s s i o n _ l : e x p r e s s i o n _ l CUP e x p r e s s i o n _ l
I expression.,! CAP e x p r e s s i o n _ l
I e x p r e s s i o n . l SETMINUS e x p r e s s i o n _ l
I e x p r e s s i o n _ l MAPSTO e x p r e s s i o n . 1
I e x p r e s s i o n _ l UPTO e x p r e s s i o n _ l
I e x p r e s s i o n _ l UPLUS e x p r e s s i o n _ l
I expression,.! DIV. e x p r e s s i o n . !
I e x p r e s s i o n . ! MOD e x p r e s s i o n . !
I e x p r e s s i o n . 1 FILTER e x p r e s s i o n . !
I e x p r e s s i o n . ! COMP e x p r e s s i o n . !
I e x p r e s s i o n . ! CIRC e x p r e s s i o n . !
I e x p r e s s i o n . ! DRES e x p r e s s i o n . !
I e x p r e s s i o n . l RRES e x p r e s s i o n . !
I e x p r e s s i o n . l NDRES e x p r e s s i o n . l
I e x p r e s s i o n . l NRRES e x p r e s s i o n . l
I e x p r e s s i o n . l OPLUS e x p r e s s i o n . !

I expression_l CAT expression_l
I expression_l expression_l
I expression.! ' e x p r e s s i o n _ l
I expression_l '*' expression_l
I POWER expression_3
I pre.gen expression„3
I MINUS expression_3 %prec MINUS
I expression_3 LIMG expression_0 RIMG
I expression_2 ;

expression_2 : expression_2 expression_3
I expression_3 ;

expression_3 : var_name opt_gen_actuals
I number
I set_exp
I LANGLE opt_expression_list RANGLE
I LBAG opt_expression_list RBAG
I ' (' expression•',' expression_list
I THETA schema_name decoration
I expression_3 '.' var_name
I expression_3 post_fun
I expression_3 BSUP expression ESUP
I ' (' expression^ ') ' ;

opt_expression_list: expression_list
I ;

expression_list : expression
I expression ',' expression_list ;

set_exp : ' { ' opt_expression_list ' } '
I ' { ' schema_text opt_s_expression

ident : word decoration :

decl_name : ident
I op_name ;

var.name : ident

I ' (' op_name ') ' ;

op_name : '_'in_sym ;_'
I pre_sym '_'
I '_' post.sym
I '_'LIMGV_'RTMG

in_sym : i n _ f u n
I i n _ geh
I i n _ r e l ;

pre_sym : pre.gen
I p r e . r e l ;

post.sym : p o s t . f u n ;

d e c o r a t i o n

gen_formals

g e n _ a c t u a l s

o p t . s t o r k e _ l i s t

schema_name

sword

word

number

i n _ f u n

: o p t _ s t o r k e _ l i s t ;

: ' [' i d e n t . l i s t '] ' ;

: 1 [' e x p r e s s i o n . l i s t '] ' ;

. J t >

I ' ? '
I
I SUB
I ;

: sword ;

: SVARIABLE;

: VARIABLE ;

: INTEGER;

: MAPSTO
I UPTO
I ' + '
I '_'
I CUP
I SETMINUS

post_fun : INV

CAT
UPLUS
> *»
DIV
MOD
CAP
COMP
CIRC
FILTER
OPLUS
DRES
RRES
NDRES
NRRES :

PLUS
ESUP
STAR

m_gen

pr e _ r e l

REL
PFUN
FUN
PINJ
INJ
PSURJ
SURJ
BIJ
FFUN
FINJ ;

DISJOINT ;

i n r e l NEQ
-NOTIN-
SUBSETEQ
SUBSET

LEQ
GEQ
PARTITION

I INBAG ;

pre_gen

7.7.

POWER_i
ID
FIMSET
FINSET.l
SEq
SEQ_1
I SEQ
BAG :

main()
{
yyparseQ ;

