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Abstract

In this thesis the development of a hardware artificial neuron device and artificial
neural network using stochastic pulse rate encoding principles is considered.

After a review of neural network architectures and algorithmic approaches suitable for
hardware implementation, a critical review of hardware techniques which have been consid-
ered in analogue and digital syste-rris is presented. New results are presented demonstrating
the potential of two learning schemes which adapt by the use of a single reinforcement
signal.

The techniques for computation using stochastic pulse rate encoding are presented
and extended with new novel circuits relevant to the hardware implementation of an
artificial neural network. The generation of random numbers is the key to the encoding
of data into the stochastic pulse rate domain. The formation of random numbers and
multiple random bit sequences from a single PRBS generator have been investigated. Two
techniques, Simulated Annealing and Genetic Algorithms, have been applied successfully
to the problem of optimising the configuration of a PRBS random number generator for
the formation of multiple random bit sequences and hence random numbers.

A completé hardware design for an artificial neuron using stochastic pulse rate encoded
signals has been described, designed, simulated, fabricated and tested before configuration
of the device into a network to perform simple test problems. The implementation has
shown that the processing elements of the artificial neuron are small and simple, but that
there can be a significant overhead for the encoding of information into the stochastic
pulse rate domain. The stochastic artificial neuron has the capability of on-line weight
adaption. The implementation of reinforcement schemes using the stochastic neuron as a

basic element are discussed.
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Chapter 1

Introduction

The art of computing is, as ever, advancing rapidly with new architectures for machines
and processors, new fabrication techniques for components which enable a reduction in size
and an increase in the speed of operation occurring all the time. Programming languages
and operating systems are becoming more tractable and user friendly, command line user
interfaces are being superceded by graphical user interfaces. However, these machines still
adopt a conventional approach, based upon a von Neumann architecture, of an inherently
complex central processing unit and attached memory. There are parallel processing
systems available which may have several processing units operating concurrently either
on shared or individual memory but these systems must still be explicitly programmed
to operate. Despite these advances in speed and sophistication certain tasks still remain
difficult to program a machine to perform effectively, eg. speech, vision, reasoning or
contents based information processing tasks. However these are tasks which are performed
regularly and with ease by animals.

The structure of the information processing system in animals is different. The brain
and nervous system which performs these tasks is based upon what is thought to be a
basic processing unit, the neuron, in a massively parallel architecture, with a high level
of interconnectivity, distributed memory and a relatively slow speed of operation. In
addition this system is not explicitly programmed to perform but can learn and adapt to
new situations, experiences and environments.

The reliability and fault tolerance of the two different approaches is interesting to note.
For traditional systems a component or sub-system failure is usually catastrophic until
repaired leading to multiple systems being operated in parallel for safety critical tasks.
Networks of neurons are generally fault tolerant with their large number of processing
elements and interconnections. In fact, the system is constantly evolving as it operates
with cells dying and new ones being added.

There therefore must be merit in this alternative method of approach to information

processing and thus there is a desire to study, simulate and model these approaches which

&



do not need to be programmed to perform a task but can be trained and which have
the potential to be fault tolerant. The study of networks of neurons is widespread and
conducted in many different fields across science and engineering including electronics,
computing, optics, biology and psychology. The generic title to this area is usually Neural
Networks and in the particular case of synthetic systems Artificial Neural Networks.

The study of neural networks could be approached in several ways: the investigation
of learning algorithms, the study of the biochemistry of living neural networks, the exam-
ination of decision making systems or the development of simplified plausible models in
software and hardware. From an engineering point of view not all of these are relevant
approaches. The study of software and hardware neural network models and implemen-
tation is pertinent to engineering since ultimately any feasible system must be developed
and operated.

Much work has been conducted into learning and adaption algorithms with systems
which will adapt their behaviour based upon either the system’s own experience or by
external influence from the environment. Often incorporated into these systems is a model
of a neuron usually based upon the principle of a function of a weighted sum of inputs. The
system is often simulated in software upon a conventional machine for the relative ease
that this offers in varying the system and model. For development and research purposes
this is often adequate. If, however, an operational system is required with a practical real
time response the issue of fabricating such developed algorithms and networks in hardware
must be considered which is what this thesis sets out to address.

In realising a hardware artifical neural network system several issues must be addressed:
The algorithm and neural network system architecture to be adopted.
Many architectures and algorithms have been, and are continuing to be proposed.
However several approaches, particularly the more sophisticated, are not necessarily
suitable for the development of a dedicated hardware solution for individual process-
ing elements. In addition, the learning and adaption algorithm may not be easily
integrated into a hardware environment. This does not mean that these systems are
without merit but that they are not currently appropriate for the development of

hardware.

The system to be used for building the network.

System realisation could be undertaken in many different fields, eg. electronics, op-
tical or perhaps even biological. The latter two fields may be interesting but are
not pertinent for this work, for the electronics approach the assorted analogue and

digital methods should be assessed.

The signalling and communication methods to be adopted.

The method of signalling and control is allied strongly to the approach adopted for

the main hardware realisation.



The provision for on-line learning, adaption or adjustment of performance.

If a neural network is constructed in hardware is its performance determined at build
time, run time or can it be adapted as it operates? Ideally the latter method should
be feasible but probably bootstrapping the system by the programming of a base

configuration in the network should be enabled.

The effectiveness with which the architecture can be extended or reconfigured

in the selected hardware.

Is the hardware easy to reconnect into a new configuration? Can the inputs to
hardware devices be adjusted for different architectures and could the number of
neurons in the system be varied easily still allowing the system to trained and operate

effectively.

How the approach taken could be enhanced.

Finally, is the hardware implementation the only one feasible or is it possible to
enhance the system to improve the performance or correct mistakes, ie. does the basic
approach work. This can only really be answered by constructing and demonstrating

the capabilities of a system.

The above issues will be addressed as outlined in the following section, with the selected

hardware solution of stochastic pulse rate encoding explained, justified and implemented.

1.1 OQOutline of Thesis

In this thesis issues relating to the hardware implementation of an artifical neuron and
an artificial neural network using stochastic pulse rate encoding principles are discussed.
The aim is to present a potential solution to the problem of realising artificial neurons in
hardware since most work is currently conducted via software synthesis and modelling.
The outline of the thesis structure is consequently presented below.

In Chapter 2 a review of ANN architectures and algorithms which display a rele-
vance to hardware implementation is presented. Validation for two of these systems is
conducted, the Multi-layer Perceptron and the Kohonen Self-Organising Feature Map,
and the scheme of reinforcement learning using Ap.-p techniques is extended to form
two new models which just use a single reinforcement feedback connection for adaption
purposes. Chapter 3 provides a critical review of hardware implementation systems and
describes some currently available dedicated hardware devices. Within this chapter pulse
rate encoding strategies are introduced, but with a full discussion of stochastic pulse rate
encoding techniques deferred to Chapter 4. Included in the critical review of Chapter 4
into stochastic pulse rate encoded processing is the presentation of new novel circuits with

relevance to the implementation of a neuron using these techniques. Chapter 5 discusses



issues relating to formation of multiple random number sequences from a single PRBS gen-
erator. The two optimisation techniques of Simulated Annealing and Genetic Algorithms
are presented and applied to the problem of the optimum configuration determination for
the PRBS and its ancillary circuitry. Chapter 6 draws together the techniques and issues
raised in the preceding chapters to enable the design of an artificial neuron operating upon
stochastic pulse rate encoded signals to be presented. The neuron design is described and
has been fabricated enabling the testing and subsequent analysis of its operation in a
limited network to be described. This thesis is concluded in Chapter 7 with a summary

of the results presented and suggestions for further work.



Chapter 2

Aspects of Artificial Neural
Networks

In this chapter a critical review is provided of the some of the key types of neural networks
which have been developed together with associated training algorithms and strategies.
The following types of network are explained with the aim of gaining an understanding of
different approaches taken in this field and to determine the most appropriate system for

hardware implementation with an on-line learning algorithm.

Perceptron, MLP and Backpropagation. This type of network is one of the most widely
used and provides feedforward connections only through the network. A feedforward

network will ultimately be demonstrated using the designed hardware neuron of §6.

Kohonen Self-Organising Feature Map. This network was investigated since it does not

require external intervention in the learning process but is able to adapt itself to the

task it will perform.

Hopfield Net. This network introduces the concept of feedback connections and high-
lights the property that energy minimisation within a neural network architecture

is relevant to the learning process.

Boltzmann Machine. Learning and adaption through random processes are demonstrated
to be achievable and valuable by the study of the Boltzmann machine. The hardware
neuron developed later will use a stochastic signalling strategy to perform inter-

neuron communication and computation.

Reinforcement Learning and Ar_p. Simple learning strategies in which only a single
signal is fed back to the processing elements are reviewed. The Ap_p strategies,

in particular, are relevant since they provide the basis for algorithms which may



be combined with the hardware neuron developed to produce an integrated perfor-

mance.

The area of reinforcement learning is expanded upon in this chapter. After an initial
validation of the work of Barto et al, 2], into Ap_p, two extensions to the learning
strategies called the Q-model and T-model Ap_p are proposed and tested. Results are

presented demonstrating the ability of these new algorithms to adapt and solve basic

feedforward problems.

2.1 The Biological Inspiration for Artificial Neural Net-

works.

Artificial neural systems, neurocomputers, connectionist models, parallel distributed pro-
cessing models, layered self-adaptive systems, self-organising systems, neuromorphic sys-
tems and cyberware are all terms which can be applied to a technology and ideology which
can be encompassed under the title of Artificial Neural Networks (ANN) or just Neural
Networks (NN). The roots and inspiration for ANNs are drawn from biology and biologi-
cal nervous systems. Such biological systems or wetware consists of a multitude of simple
processing elements which are connected together in a massively parallel architecture.

The brain consists of many neurons of different varieties but following the general
format as illustrated in Figure 2.1. A formation of nerve fibres, dendrites, are connected
to a cell body, soma, within which is located a nucleus. A single long fibre, the azon,
leaves the cell body which ends by repeatedly dividing. The terminating points of the
divided axon form transmitting connections to the dendrites of other neurons or connect
directly to the neurons via synaptic junctions or synapses.

Signalling from one neuron to another is a complex chemical process with chemicals
released from the sending side of the synapse. The effect of these chemical releases is to
alter the electrical potential within the cell body. If the cell potential reaches a given
level the neuron is activated releasing a fixed strength and duration signal along the axon
to other neurons. After the cell has fired a recovery period follows before the neuron is
able to fire again. (For a more comprehensive explanation of the biological operation of
a neuron a biological/medical text should be studied eg. Gray’s Anatomy). Individual
cells and interconnections are limited in the task which they can achieve, but the collec-
tive behaviour of these structures of biological formations performs a useful task in the
embodying organism. Conservatively it has been estimated that there are at least 10!
neurons in the human brain with 10'* interconnections ie. 10% synapses for each neuron.

Given the above rudimentary description of a neuron’s behaviour two main approaches
can be adopted for the study and development of ANNs. One approach is to study, model

and possibly build analogous devices as accurately as possible. The second is to draw



upon ideas from actual systems and develop simple processing element exemplar within
a massively parallel architecture. The former approach is normally adopted by biologists
and psychologists in order to determine the functioning of the brain and nervous system.
The latter approach is usually followed by engineers in pursuit of a system which will
perform a computationally useful task. This is the method that will be followed while still
remembering the inspiration for the ideas.

A final few points should be made clear about NNs, that is a NN is not a static
entity. The strengths of interconnections vary with time, new ones are formed and old
ones may decay away. Due to the large quantity of parallelism there is redundancy built
into the system and a level of fault tolerance is available. Rather than being explicitly
programmed a NN evolves to perform an action by learning and adaption. Thus, given
that the network changes through damage or the network has to increase its functionality
it is able to adapt to the new situation. It is necessary therefore to study and develop
learning/training algorithms for any network created to enable it to be taught how to
perform a task or tasks.

Why study and develop ANN at all? What benefit can they offer beyond a tradi-
tional von Neumann architectured machine? What task or tasks could they be used to
perform? Hopefully a more complete reason for the study of ANNs will become apparent
by answering the latter two questions.

Benefits of ANN are their potential robustness and gradual degradation in performance
if an area of the network becomes damaged. Within a traditional computer a failure in a
processing section is catastrophic in terms of system performance, this is not necessarily
the case with a NN. A von Neumann machine must be explicitly programmed to perform
a task. Even with the use of a high level programming language this may not be a
simple operation for a complex task or the genre of operation which a NN is actually
accomplished at. Certainly for rapid exact algorithmic or mathematical operations a
traditional computer is excellent but this is not the case for noisy, inexact information
processing.

A NN can perform as a classifier where the task of a classifier can be divided into the

following three categories.

Traditional Classifier. A NN can be used to identify a class to which an input is most
appropriate, eg. to classify types of vehicles as to whether they are cars, vans or
bicycles. The difference a NN classifier exhibits from a statistical classifier is that it
is adaptive and is able to take into account new information as opposed to processing
all training data before being used with new data. NN may be non-parametric

and make fewer assumptions about a data set’s information distribution than a

traditional classifier.

Content-Addressable or Associative Memory. These are similar operations. In Content-

Addressable Memory (CAM) data are mapped to an address, whereas with Asso-




ciative Memory data are mapped to data. In this mode of operation a NN may be
used to recall a more complete pattern for a piece of input data eg. a partial image
of a character can be used to reconstruct the entire character or a telephone number

will lead to the retrieval of the name and an address associated with it.

Vector Quantiser or Feature Extractor. In this situation a NN may not be provided
with any a prior: information about a data set but is taught to cluster the informa-
tion as it sees fit by the extraction of information it considers relevant. These NN
could be used in signal transmission to reduce the information which must be sent
without losing the clarity of the message. Similarly in data compression they may

be used to extract only pertinent information for storage.

Already it has been stated several times that much of the interest and power of NNs
is the ability they have to adapt and learn from the data presented to them. The two
global classes of training available are Supervised Learning and Unsupervised Learning.
These two classes can be sub-divided into learning structural information or temporal

information.

Supervised Learning. In this case the desired output from the NN is known for each
input and is used to improve the NN output performance. This improvement can
be by direct comparison of each desired output and actual output or by the use of
a performance signal which indicates how satisfactorily a NN has performed for the
given input. This case is often referred to as Reinforcement Learning or learning

with a critic, whereas overall Supervised Learning can be referred to as learning with

a teacher.

Unsupervised Learning. This system has no external teacher to guide a NN response.
The network is allowed to form its own internal clusters of information. Unsupervised

Learning can be called self-organisation.

The two sub-categories of structural and temporal learning are described as follows.
With structural learning a stable attractor exists for each input which will be learned. For
temporal learning the output could be a sequence or series of patterns. Whether or not

the input is structural or temporal will be problem specific.

2.2 Basic Processing Element Model

The structure of the basic artificial neuron can be traced back to the work of McCulloch
and Pitts, 1943, [3]. They proposed that a model neuron would be either on, firing, or off,
not-firing, based upon the weighted sum of inputs exceeding a threshold value. For an n

input neuron where z; is an input, w; is the associated weight the response N,y is such




that N
Z T; Wy Z T = jVn'u.t, =1
=1

else N
> 2w <T = Now =0
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where T is the threshold at which the neuron is activated. To make the threshold of

activation easily variable it can be treated as another weighted input, zgwg, the input

value of which, xg, is always unity.

This basic neuron architecture of McCulloch and Pitts can be graphically summarised as
in Figure 2.2.

The step threshold function is only one of several activation functions which an artificial
neuron may have. Other common neuron activation functions are the linear, clipped linear
and sigmoidal function as illustrated in Figure 2.3.

Many different ANN models have been developed including the Perceptron, Multi-layer
Perceptron, Kohonen Self-Organising Feature Map, Hopfield Net, Boltzmann Machine,
Bidirectional Associative Memory, Adaline, Madaline . ... Each network structure exhibits
its own style of functionality, structure and learning technique. In order to appreciate the
diversity of the subject and to gain an insight into the operation of ANN several of the

above models will be discussed.

2.3 Single-layer Perceptron and Multi-layer Perceptron

The term perceptron was coined by Rosenblatt for his implementation of the McCul-
loch & Pitt style neuron. Rosenblatt studied this form of artificial neuron extensively
as summarised by himself [4] and more simply by Simpson [5] or Hertz et al [6]. These
two styles of network which are of interest are both feedforward networks, ie. all inter-
connections between neurons are in a forward direction only with no connections feeding
backwards to previous neurons and no connections feeding across to neurons at an equiv-
alent depth in the network, both are feasible in more sophisticated configurations. The
Single-layer Perceptron (SLP) is the most basic network but it is still able to perform sim-
ple pattern recognition tasks. Training may be achieved by the Perceptron Convergence
Procedure. More complex pattern recognition may be achieved using the Multi-layer Per-
ceptron (MLP) which after the development of the Backpropagation algorithm could also

be successfully trained.




2.3.1 SLP and the Perceptron Convergence Procedure

A single perceptron computes a sum of weighted inputs which after subtraction of the
threshold, 7', passes the resultant through a step threshold activation function to produce
either a 1 or -1 as its output. The activation function is the sgn function. The perceptron

may be considered to respond to one class of inputs with a 1 and to the rest with a -1. If

the perceptron output is y then

Y =sgn (ZW: T,W; — T>
i=1

+1
-1

Once again the threshold can be subsumed into the summation as an input zo which
is always unity. A perceptron can be seen to form two decision regions which in a two
input case produces a dividing line, for the-three input case a dividing plane and in higher
dimensional cases a dividing hyperplane. The exact position of this decision boundary is
adaptable by adjusting the weights and training the perceptron to respond correctly.

A SLP architecture is illustrated in Figure 2.4. It can be seen to consist of two layers
only. The first or input layer acts only to distribute the inputs to each perceptron on the
second, processing, layer. The processing layer produces the network outputs.

How can the weights which connect the input layer to the processing layer be adjusted?
Rosenblatt proposed the Perceptron Convergence Procedure which will now be described

step by step. NB. T has been incorporated as zgwg.
1. Initialise all weights, w;, to a small random value. 0 < i< n

2. An input vector X and the desired output vector D are presented to the network of

n perceptrons.
X = {231,.’132, B )m'n,}

D = {d,dg,...,dn}

+1
-1

d;, =

3. Calculate the actual output vector of the SLP Y by determining the response of

each perceptron.
Y = {yl)yQ) s )y'n,}

y:(t) = sgn (Z a:,-wi>
i=1
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4. Adjust the weights according to the following scheme.
wi(t 4+ 1) = wi(t) + nldi(t) — i (t)]=i(1)

0<1<n

7 a gain term used to specify the proportion of adjustment required, the adaption

rate, 0 <5 <1

5. Repeat from step(2) until a satisfactory response is produced from the network for

the classes of data.

It will be seen from step(4) that no weight adjustment occurs if the actual output

is equivalent to the desired input, y;(t) — d:(¢) = 0.

The selection of the gain term 7 is important as it must satisfy two conflicting con-
straints, that of producing fast adaption for variances in input and the alternative of
producing stable weight estimates from past events. The greater 7 is the quicker adaption
~will occur but the less stable the adaption will become. Choice of 7 is very much problem
dependent.

Variations on the basic Perceptron convergence procedure can be made by using a
continuously valued activation function output from the perceptron rather than the sgn
function. This will allow the use of gradient descent techniques for perceptron weight

adaption. If an error or cost function is defined for the SLP output e such that

e— %Z(d,;(t) -
=1

the change in the weight w,; can now be made proportional to the gradient of the error at

the present location.

O
3 dw; (1)

—nzd(t — yi(t))zi(t)

w,;(t + 1) - w,j(t) = Awi(t)

The correction in weight value can be made individually leading to
Awi(t) = 7751‘:1:2'(25) (2.1)

6, = d,j(t) - yi(t) (2.2)

The equation eq.(2.1) and eq.(2.2) form the delta rule, adaline rule or Widrow-Hoff rule

[7]. A more common name and the one most often applied in an adaptive signal processing
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field is the Least Mean Square (LMS) rule.

The SLP is a very simple NN and as such suffers from several constraints. For a
perceptron to be able to make a decision the two distribution domains must be linearly
separable, it must be feasible to form a dividing plane between the two domains. For
example the two input AND function is linearly separable whereas the two input exclusive-
OR, XOR, is not Figure 2.5. The XOR problem is the simplest case of a parity decision
problem, the more general class of which is discussed by Minsky & Papert [8]. If the
domains are not linearly separable no stable decision can be made and the boundary will
alternate for the different input sets. If the classes are too close together it may prove
difficult for a decision boundary .to be formed, but.given that a set of weights for the
desired association does exist it has been proved by Minsky & Papert [8] and Hertz et al
[6] amongst others, that the Perceptron Convergence Procedure will find them in a finite
number of iterations. The drawback here for the SLP is thus the potentially long learning
time. Due to the SLPs simple decision nature they are poor at generalising a solution.

Before proceeding forward to describe the more powerful MLP systems much emphasis
has been placed upon the work of Minsky & Papert for quashing enthusiasm for the
ANN within their book Perceptrons. In a revised and updated 3rd edition they argue
forcefully that their intention was to highlight considerations which must be borne in mind
when evaluating neural systems and their classification potential through examples of hard
learning problems, eg. the N-input parity problem or the determination of connectedness.
It would be fair to say that no adequate learning algorithm existed at the time for training
multiple layered networks. These problems have subsequently been resolved independently

by several researchers as described in the following section on MLPs.

2.3.2 MLP and Backpropagation

As the name suggests the MLP is an extension of the SLP to create a network of more
than one layer of perceptrons. If the perceptrons have a continuously valued non-linear
activation function many of the limitations of the SLP can be overcome. It is this type of
activation function which provides the network with the ability to perform more complex
tasks. If the processing elements had linear activation functions then the MLP can be
demonstrated to be reduced to a SLP. The problem with the MLP originally was the
ability to adjust the weights of all perceptrons in a coherent fashion to improve the network
performance. The advent of the Backpropagation algorithm has removed this hurdle.
Before describing the Backpropagation algorithm it would be wise to first of all specify
a naming and numbering convention for the MLP. An MLP consists of a number of layers
of perceptrons as illustrated in Figure 2.6. There are three types of layer within an
MLP, input, hidden and output layers. The first layer, the input layer, acts purely as
a distribution layer, each node supplying signals to processing elements in the following

layer. No procéésing takes place at this level. The last layer, the output layer, receives all
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the inputs for its processing elements from within the network and passes the results back
out to the environment. Between the input and output layers there are one or more hidden
layers, so called because they have no external connections to the environment. Signals
are received from the previous layer, processed and outputted to the following layer. Due
to the isolation of hidden layer processing elements they are often the most difficult to
analyse and adapt. An MLP will be specified by the number of hidden layers plus the
output layer that it contains and by the number of neurons in each layer. This is based
upon the fact that processing only occurs in these layers and neurons. Hence, Figure 2.6
is a three layer MLP of configuration 4-3-3 with three inputs and three outputs.}

Being able to specify a network is clearly one consideration, another is how is the
number of layers determined? and how the number of perceptrons are determined for
each layer? Quite obviously the number of nodes for input and output will be determined
by the required connections to the environment, for hidden layers the task is not so simple.
Lippman [9] highlights how the decision regions are constrained by the various number
layered networks from the SLP upto the three layer MLP. In theory an arbitrary complex
decision space can be created by a three layer MLP, more layers may be used to aid in
the decision region formation. The number of perceptrons in a hidden layer must be
sufficient to form decision regions that are as complex as required but no more. Too
many perceptrons may cause the network to overclassify ie. its response is too highly
tuned towards a particular set of inputs rather than a general class of inputs, the network
therefore has difficulty generalising.

For a more formal analysis of the number of hidden layer perceptrons required and
their ability to divide the solution space the work of Mirchandani & Coa [10}, Huang &
Huang [11] and Makhal et al [12] should be consulted. These papers unfortunately place
constraints upon the MLP configuration to obtain their results. In the general case they
may not be so applicable. They do illustrate the complexity of the analysis necessary for
even the simplest of networks.

Given that a network has been formed and it is possible to alter the weights for the
interconnections, what method should be used to determine how to vary the weights?
For the SLP the Perceptron Convergence rule exists for producing the correct output
or there are the gradient descent technique variations, delta rule etc. for minimising the
error between actual output and desired network output. By extension of this gradient
descent approach for minimising a cost function several researchers have developed the
same appropriate algorithm commonly known know as Backpropagation, Werbos [13],
Parker [14] and Rumelhart et al [15]. The name is taken from the most recent exposition
of the algorithm by Rumelhart et al.

Backpropagation is an iterative gradient descent technique with the aim of reducing

the difference between the actual and desired output. The technique relies upon each

LCaution: Some papers include the input layer in the specification of the size of the network.
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processing element possessing as its activation function a continuously differentiable non-

linear function. A sigmoidal transform is most often used.

f(z) = 1+e*

z — 400 flz) —1
z=0  f(z)—>05

z — —00 f(z)—0

or
1—e 2

f(z) = tanh(z) = m

T — 400 flz)—1
z=0 f(z)=0

z — —00 f(z) - -1

There follows a step by step description of the backpropagation algorithm as put forward
by Rumelhart et al.

1. Initialise all the weights w;; to small random non zero values.

2. An input vector X and the desired output vector D are presented to the MLP.
X = {ml,xg,.. . ,a:N_l}

D = {d,da,...,dy—1}

3. Forward propagate through the MLP from the input layer to the output layer. The
response for each layer is calculated and fed into the following layer until an output
Y is produced.
Y ={y1,92,.- -, ym-1}

4. Adapt the weights for each layer starting at the output layer and backpropagating
the adjustment through the hidden layers.

wi (t + 1) = w;(t) + né;;

w;;(t) weight for hidden node 7 or input node ¢ in preceding layer to node j in

current layer at time t.
x! output of node ¢ in preceding hidden layer or actual input value.

7 gain term which determines the degree of adaption to weight.
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6; a correction measure based on the error between the desired and actual response.

This is calculated differently for the hidden layer and the output layer.

Output layer The desired response is d; while the actual response is ;.

6; = yi(1 = ;)(d; — ;)

Hidden layer There is no known desired response therefore an expected re-

sponse is inferred from the following layer.
5j = x;(l — :L‘;) Z‘Sl"wﬂ"
k

k is for all neurons in the layer after node j.
5. Repeat this procedure from step (2) until the network performance is acceptable.

The above listed basic algorithm suffers from the fact that it can take a long time to
converge and also that it is possible for the system to become caught in a local minima
of the solution space rather than the global minima. One of the most useful and widely
implemented techniques to improve this basic algorithm is to include a momentum term «
. at step (4). The momentum takes into account the amount by which the weight changed

on the previous pass through the algorithm. The improved weight update equation is
w,;j(t + 1) = Wiy (t) + 7’]5]'.’E; + Q'A'w,jj

Awij = w,;j(t) — Wy (t—1)
00<a<10

The reasoning behind the use of the momentum term is that, as the algorithm changes
the weights downwards towards the global minima, the momentum term will provide
averaging across the different input/output pattern pair sets presented. If local minima
occur the momentum term should enable the algorithm to pass through them more easily
without being trapped. NB. For o = 0 the update equation reduces to that of the basic
backpropagation algorithm.

As different values of n and o may be optimal at different points it has been proposed
to make them adaptable eg. Vogl [16] and Hertz et al [6]. One such scheme is to vary 5
based upon the effectiveness of n at reducing the error. If  did not cause a reduction in
error the weight adjustment 7 is too severe and should perhaps be reduced. Conversely if

several updates have been made which cause the error to reduce, 7 may be increased as
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the adjustment that it causes is too conservative.

_ +a ifAE < 0 consistently
An=4 —bn ifAE >0 (2.3)
0 otherwise

eq.(2.3) is a proposed gain adjustment scheme, the gain is improved by a constant step a
if consistent improvements in the network performance are made, while a proportional de-
duction of gain occurs for poor network performance. It has been suggested that o should
be set to 0 when the gain is reduced and reset to its original value when improvements in
gain are made. The reasoning for this step is that the momentum term takes account of
prior learning experiences Aw;;, thus when the change in network error AE is positive the
general direction of weight change should reverse, a process which the momentum term
opposes.

Other techniques for improving the scope and performance of the basic backpropaga-
tion algorithm include Scalero & Tepedelenlioglu’s [17] system for minimising the mean-
squared error between the actual and desired outputs with respect to the inputs to the
non-linearities. Traiﬁing in the complex domain can be achieved by using Complex Back-
propagation which may take several variant forms, [18, 19, 20, 21].

The MLP and backpropagation discussed so far are a restricted form of the general class
of feedforward networks. More generally the output of a neuron is able to feedforward to
any neuron in any layer of the network. It is unnecessary to connect the output of a neuron
to all the inputs of the neurons in the following layer. This relaxation of conditions from the
fully connected MLP lead to much of the fascination with the structure of ANNs. If a link
or a neuron fails it may be possible to readjust the weights to restore the performance of the
network. The system has fault tolerance and the ability to re-adapt. If the performance
of the network is affected it will most likely be a gradual deterioration rather than a
catastrophic failure of the whole system.

It can be seen that overall the backpropagation algorithm is quite numerically inten-
sive requiring a lot of information to be passed both forward and backwards. At each
neuron many calculations must be performed and a record of previous weight conditions
maintained if the momentum term is to be utilised. Backpropagation is not suited to
direct implementation in hardware upon a specialised platform which operates on-line.
Usually, learning, training and adaption are performed off-line and the learned weights
programmed into hardware which is to run the network, whether that be a conventional

architectured machine or a more highly specialised piece of hardware for running a NN.
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2.3.3 MULP and Backpropagation Implementation

To acquire an understanding of the problem of implementing an MLP network and to
apply the backpropagation training algorithm in software a simple simulator was pro-
duced. It should be noted that many sophisticated and respected NN simulators exist
both commercial eg. NeuroProll or 'public domain’ eg. Xerion or Migraines/Aspirin. It
was felt that benefit would be gained by producing a simple demonstrator with which to

experiment.

The simulator enabled simple networks of up to five layers and forty neurons per layer
to be specified. Configuration of the simulator is controlled by a setup file setup.mlp.
An example of the file setup.mlp is shown in Figure 2.7. The format of the file is slightly
terse and the actual specification of the network is not to the standard described in the

previous section, this was to simplify coding. The file terms are explained as follows:
layers the total number of layers in the network (input, hidden and output)
neurons per layer the appropriate number of layers to describe each layer
training gain the value of 7

training momentum the value of

tv the number of training vector combinations X and D

inspect rate how frequently the RMS error of the network is to be stored in the file

results.mlp

training group size the number of times a training vector pair is to be presented to a

network before the next training pair is selected
epochs the number of different training vector pairs to be presented
ip/op the appropriate number of training vector combinations

The output of the software is an ascii file results.mlp which firstly reiterates the network
parameters followed by a table of the RMS error of the network against time.

Two standard demonstration problems were investigated using the simulator, the 8-
3-8 coder/decoder and the two input Exclusive-OR (XOR). These problems were chosen

to validate the literature on the general characteristics of an MLP network.

Encoder/Decoder Problem

The encoder/decoder problem is an auto-associative problem in which the network

output Y matches the original network input X.2 The aim is for the MLP to find a

2In a hetero-associative problem the network output Y differs from thie network input X.
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suitable coding scheme to pass the input pattern through a reduced number of hidden
layer neurons back out to the same number of output neurons as inputs. This type of
problem may also be referred to as an N-M-N problem where M < N. The difficulty of
the learning problem depends upon how much smaller M is than N. Specifically a two layer
MLP was used to solve the 8-3-8 encoder/decoder problem. There are eight input/output
patterns each with a single input set high in each input pattern and only the corresponding
line set high in the output, in fact Figure 2.7 illustrates the eight training vectors. The
obvious solution to the 8-3-8 problem is for the three hidden layer neurons to learn the
binary codes.

A group of simulation runs were performed with various combinations of 7, @, training
group size, and whether the patterns are presented individually at random or sequen-
tially as a batch. Figure 2.7 is actually a setup file for such a problem, there being eight
training vector combinations. The results of these simulation runs can be seen in Figure 2.8
to Figure 2.12.

The first set of runs had zero momentum, o = 0, and individual training vector pairs
were presented at random, Figure 2.8. It can be seen that increasing the gain term for
backpropagation increases the rate of error reduction. However, although for larger gains
a faster rate of convergence occurs, the descent is more noisy and the system varies around
the convergence point more as it over corrects.

The next two sets of runs had a non-zero momentum term and again individual train-
ing vector pairs were presented at random, Figure 2.9 and Figure 2.10. These figures
illustrate that increasing the momentum term increases the speed of the error reduction, a
combination of relatively large gain and momentum produce the fastest converging results.
The two terms cannot be increased continuously or else the system becomes unstable.

Finally for the encoder/decoder case two sets of batched runs were performed as shown
in Figure 2.11 and Figure 2.12. In these runs all of the training pairs were passed through
the network and the average RMS error for all pairs used as the means of network train-
ing by backpropagation. Both figures demonstrate what has already been shown that
increased gain or momentum can increase the rate of adaption.

The overall speed of adaption is generally comparable for both the individual and
batch methods of pattern presentation but the batch system produces a smoother RMS
error curve and will be a smoother path across the error surface of the system.

The analysis of a cross section of runs for many gains and momentum combinations
reveals that the limiting values for both are interdependent. In general, the larger the
value of one parameter the lower the limit of its counterpart. A possible solution to this
interdependence and noisy convergence is to use adjustable values. Iﬁi'tia,lly large values
for both parameters are selected, first the momentum term is red'uced and later the gain
term. . In this way a rapid descent of the error surface could be achieved initially, but

as a solution is reached the noise in the gradient following will be reduced first as the
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momentum and then as the gain is reduced.

XOR Problem

The XOR problem is a hard learning problem so called because the input/output rela-
tionship is not linearly separable, as illustrated in Figure 2.5. The XOR problem is the
simplest form of the more general N-input parity problem given by Minsky and Papert,
[8]. For an XOR there are two inputs and one output. The output is high if either one
or other of the inputs is high, but not both. The more general N-input parity problem is
such that the single output is high if either an odd or even number of the N inputs are
high depending whether odd or even parity is required.

For these tests a fully connected two layer MLP with two hidden layer neurons and
one output neuron is used. It should be noted that Rumelhart et al [15] demonstrate
a simplified feedforward network solution to this XOR problem using the network of
Figure 2.13. In this case though it can be seen that connections are utilised which skip
the intermediate hidden layer allowable in a general feedforward structure but not in our
restricted case of an MLP.

A group of simulation runs were performed with various combinations of gain and
momentum. The results of these simulation runs can be seen in Figure 2.14 to Figure 2.16.
It can be seen that similar characteristics are exhibited as for the 8-3-8 encoder/decoder
problem in that larger values of gain or momentum produce faster rates of error reduction.
However, with this problem it can be seen that, within the duration of the runs, the
network did not always converge to a satisfactory solution, Figure 2.14 for » = 0.5 and
a = 0.0, or Figure 2.16 for n = 0.7 and « = 0.4. It was found that often re-initialising the
weights at random values enabled the system to converge for the same system training

parameters. For these runs it can also be seen that the rate of error reduction once it does

start to occur is rapid.

2.4 Kohonen Self-Organising Feature Map

Supervised learning as demonstrated by the Multi-Layer Perceptron is only one form of
learning. It is not always neceésary to have a formal teacher to train a neural network.
Teuvo Kohonen has developed the self-organising neural network in his work, (22, 23,
24]. This type of network performs. its classification and learning in an unsupervised
manner. No explicit tutorial set of inputs and outputs is required.

The biological origin of the Kohonen Self-Organising Map is the competition exhibited
within sectors of physiological neural systems and the resulting spatial organisation of
response. There is direct evidence of the localisation of functions inside the brain. Within
localised areas maps exist for variations of a given type of stimulus. For example, an

area of the brain responds to sound stimuli, but slightly different sections are excited for
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different notes.

The Kohonen network operates on a winner takes all policy for the neurons. Each
neuron receives identical inputs. Neighbouring neurons in the network compete in their
activities by mutual lateral interaction. Pattern detection of the inputs occurs as the
neurons adaptively form specific feature detectors, each neuron becoming a separate de-
coder. The format of the neuron is different to that of the perceptron. The neuron whose
weights most closely resemble the input vector is said to be the active neuron and pro-
duces a response. The neuron with the active response has its weight values for its inputs
adjusted towards the stimulus to improve the response, while other input weights in the
net are decreased or left alone. Rather than adjust the values for only one neuron a re-
sponse neighbourhood structure may be used in which nearest neighbours of an active
neuron also have their weights adjusted in favour of a response for the given input vector.
Gradually the size of the neighbourhood is reduced as is the degree to which the neuron
weights are changed. Types of neuron neighbourhood maps are illustrated in Figure 2.17
and Figure 2.18.

It has been stated above that all neurons receive that same inputs. This does not
strictly have to be the case. Kohonen originally proposed the use of a switching or relay
network between the network inputs and neuron inputs. Each neuron received a set of
signals from the environment which may not be identical but are coherent. It was demon-
strated that self-organisation would still occur provided the input events to the neurons
are uniquely determined by the input events to the network. Using the Kohonen training
algorithm, self-organisation of a set of signal values is only possible if the relationship
between signals is simple. For practical applications preprocessing will often be necessary

to form a simple association, eg. for image processing.

2.4.1 Training

Unlike feedforward networks, such as the MLP presented earlier, no explicit response is
required from the network. Input patterns are presented to the network during training
to enable neuron responses to group themselves into areas of similar action.

The unsupervised training algorithm for Kohonen Self-Organising Feature Maps may

be described as follows.

i) Initialise all weight values to small random values. Often the weights are normalised

for improved network performance.

i) An input vector, X, is presented to the net.

X = {zo,z1,%2,.. -, TN-1}

iii) Calculate the distances between the input vector and the weight vectors for each
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vi)

vii)

viii)

neuron.

N-1
dj = > (wilt) —wij(1))? (2.4)

2=0 .
where
d; distance between input and output of neuron j.
x;(t) input to node 7 at time t¢.

w;; (t) weight for input node ¢ to output node j at time t.
Determine the node j* with the minimum value of d;. This is the active neuron.

Improve the weights of neuron j7* such that its response for this type of input is a
closer match, ie. d; is smaller. Enhance the weights values for all neurons in the

designated neighbourhood by the following system.
wij(t + 1) = wij (1) + n(t)(z:(t) — wi; (1)) (2.5)
0<i<N-1
7 € NE;-(t)

n(t) training gain at time, t, 0 < 7(t) < 1

Note the similarity between the perceptron weight updating, eq.(2.11), and the Ko-
honen weight updating, eq.(2.5).

Adjust the training gain, 7(t), if required. Training gain should be reduced mono-

tonically with time.

Adjust the size of the neighbourhood if required. The size of the neighbourhood

should be reduced monotonically with time.

Repeat training from step (ii) with a new input pattern until a satisfactory response

is achieved from the Kohonen Self-Organising network.

In steps (vi) and (vii) of the training algorithm, how would it be best to vary the

training gain, n, and the size of the neighbourhood?
Taking the size of the neighbourhood first. A wide neighbourhood should be specified

initially to provide general ordering of the neurons in relation to the inputs. The size

could be up to half the total number of neurons. As learning progresses the area should

be reduced to produce improved local ordering. It may finally occur that only one neuron

is adjusted for a given input. The specific method of area reduction is not particularly

important, linear, exponential or proportional to time are all successful. Due to neurons

being discrete entities the reduction will need to be quantitised.

21



Training gain may be adapted in a similar fashion. The gain is specified to be between
zero and unity. For values close to unity the adjustment of weights is large and may be
used to provide general ordering. For values close to zero the adjustment will not be as
significant to the reordering of the network, but more towards the fine tuning of neuron
responses. Again it is not significant which particular method is used for reducing the
gain. Unlike the neighbourhood size, adjustment of the gain will be continuous.

The two ideas of reducing the influence of training gain and neighbourhood size may
be combined in the use of a training gain that is variable with the distance from the active
neuron, Figure 2.19.

The active neuron has the most adaptation, as one moves towards the outer layers of
the neighbourhood the gain is reduced. A bell shaped gain centred on the active neuron
is often used. As learning progresses it is still necessary to reduce the overall gain and
neighbourhood size with time.

It has been found that the maps formed by Kohonen networks have the following

convergence properties

i) representation of the divisions of the data amongst the inputs are formed along the

most pronounced dimensions.
ii) preservation of the neighbourhood relationship between inputs.

iil) transform regions of input domain which are more frequent to larger regions of the

output domain with greater detail and vice versa.

2.4.2 Kohonen Self-Organising Map Implementation

To acquire an understanding of the problem of implementing a Kohonen Self-Organising
feature map and to apply the learning rule in software, a simple simulator was produced
as per the MLP, §2.3.3. The basic algorithm implementation was straightforward, but ad-
dition of varying learning rates, neighbourhood sizes and the input/output of information
proved more time consuming.

A simple problem was addressed, that of ordering two-component input vectors , (z,y)
where 1.0 < z < 10.0 and 1.0 < y <€ 10.0. A two dimensional array of two input neurons
was used. An ideal mesh can be visualised for uniform response, Figure 2.20 shows a
10 by 10 ideal mesh. One corner of the Kohonen layer responds to input vector (1,1) and
the diagonally opposite corner responds to (10, 10).

For an arbitrary input vector the neuron with the closest match, minimum value of d;,
fires. For input (5.1,7.8) the neuron (5,8) in the mesh fires. No orientation is specified
for the mesh output, so in Figure 2.20 (1,1) could equally be the top right, bottom left or
bottom right after training but with (10,10) always diagonally opposite to preserve the

neighbourhood relationship between inputs.



The algorithm of §2.4.1 was adopted with a neighbourhood style of Figure 2.17. The
weight vector values were set to random values near the mid range of the training space,
(5.0,5.0). Uniformly distributed random vectors were presented to the network with dif-
ferent values of 7y, neighbourhood size and the rate of their reduction.

By displaying the mesh created by the neuron weights at successive intervals the organ-
isation of the network can be viewed graphically. Initially for large value of 7y and large
neuron neighbourhoods the mesh dynamics are large, large changes in the mesh layout oc-
cur as general ordering occurs. The neurons orientate themselves towards an appropriate
topology. Once topologically correct the refinement of the weight values occurs.

The concept of reducing 7 and. the neighbourhood size can be considered as the amount
of energy or heat which the system possesses. At high values much movement of weight
values and hence mesh layout are possible due to the high energy of the system. The
reduction of 7 and neighbourhood size may be likened to a cooling process enabling the
system to settle into an ordered state.

The series of figures, Figure 2.21 to Figure 2.24, illustrates the organising process
of the Kohonen layer. It can be seen how the network orgzuiisa,tion settles down with
increased number of pair presentation. In these ﬁgufes the data in the (z,y) pair are
uniformly distributed throughout the input space. Due to the simplicity of the input set
it is difficult to demonstrate the principle that the division of data amongst inputs has
occurred along the most pronounced dimensions. A two-dimensional layer is being used
to divide a two input vector. The neighbourhood relationship is preserved in the Kohonen
Layer.

The uniform distribution of data does not allow the demonstration of the transfer
between domains, ie. the areas of the input domain which are most frequently excited are
mapped to larger regions, more neurons, in the output domain. To verify that this occurs
the distribution of the (z) component of (z,y) was changed to a normal distribution. The
normal distribution is centred at the middle of the range.

Figure 2.25 illustrates the effect that this has on the output domain. Firstly, the spread
in the z direction is reduced, for the uniform case the distribution of ¢ and y was the same.
Secondly, in the centre of the distribution more neurons are active hence the outputs are
closer together produce greater detail. All input weights are adjusted when neuron weight
values are improved; this has the effect of causing the y dimension to be drawn in at the
top and the bottom.

Kohonen, [22], notes several effects within these feature maps.

Magnification factor which is basically a restatement of the network property that
regions of the input domain which are most frequently excited will map to the most

neurons in the output domain to produce the greatest resolution.

Boundary effect which forms since the training of neurons occurs in neighbourhoods,

those neurons which are near to the edge will suffer an effect due to not having the
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same number of neurons with which to interact. In general this will cause the map

to contract and pull away from the edges of the output domain.

Pinch/Collapse/Focusing Phenomena are all related since they are believed to be
caused by the interaction between neurons being incorrect, ie. the wrong parameters
for neighbourhood size and strength of interaction. Pinch occurs when the neigh-
bourhood is too small, and means that the distribution of neuron response does
not spread out across the entire output domain. Collapse can occur when the neigh-
bourhood is too large and results in many neurons having basically the same output.
Focusing can occur if the neighbourhood interaction is too weak, in which case one

or two elements take over 'résponding to virtually every input vector presented to

the network.

It is found that a balance exists between the rate of reduction of  and ng. Similarly
for the neighbourhood size. Too large a value of 7y or too slow a rate of reduction and
the network takes a long time to settle down and organise into a sensible state. Too
small a value of ng or too fast a rate of reduction and the network cannot unravel itself
into an ordered condition, but remains contorted. Despite these potential pitfalls and the
undesirable effects above the Kohonen Self-Organising feature map has been found to be
remarkably robust at learning this data set. This must be qualified by stating that the

data are not particularly complex and are suitably conditioned to the output domain.

2.5 The Hopfield Network

In the previous sections of this chapter the NN structures of the MLP and the Kohonen
Self-Organising Feature Map were reviewed and investigated. In this section a brief dis-
cussion of the Hopfield Network is conducted. This NN structure was first presented by
Hopfield in 1982 and 1984, [25, 26]. The Hopfield Network is worthy of review because:

1. the network exhibits Associative Memory properties ie. given part of a piece of input

data the network is able to more fully recall the entire piece of information.
2. in its original form, the network operates asynchronously.

3. the simple nature and operation has led to its use as the basis for the investigation

of hardware implementations of NNs as pointed out by Murray et al, [27).

4. the network can be adapted and used to solve a difficult but well designed optimi-

sation problem, including the Travelling Salesman Problem, [28, 29].




2.5.1 Architecture and Operation

The basic architecture of a Hopfield Net is illustrated in Figure 2.26. From this diagram it
can be seen that this NN consists of a single layer of neurons which are fed both from the
inputs to the network and from every output of the network except their own. The input
connections are used to simply load the network. A form of recurrence or feedback exists
in the network through the strong coupling of connections from output to input. The aim
of the connections is to provide mutual excitation if associated connection weights are
positive and inhibition if connection weights are negative.

In the original format each neuron had a step response function with an output value
which could be classed as -1 or +1, a sgn function. Given that a set of neuron weights has

been determined, to operate the Hopfield Net the following procedure is followed,

1. Load the Hopfield Net with the initial values of the input pattern, X
%i(0) = z;
0<i<N-1

2. Update each neuron, j, output according to the following rule

N-1

y,-(t +1) =sgn (Z wijyi(t)> (2.6)
=0

The update method of the neurons given by Hopfield is asynchronous as this is more

akin to the way the brain operates. The asynchronous update may be implemented

in one of two ways:

(a) at each time step select a neuron, j, at random to be updated and apply eq.(2.6).

(b) each neuron independently updates by using eq.(2.6) with respect to a given
probability per unit time.

As Hertz et al [6] point out, the former is best suited for the simulation of Hopfield
Nets allowing central control, while the latter is more appropriate for hardware
implementations. Both methods equate to the same principal of update but with a

different distribution in time.

How are the weights, w;;, initially determined for a Hopfield Net? Rather than a
training algorithm as .per the above two previously discussed systems, the neuron inter-
connection weights are initially calculated and fixed within the network. The mathemat-
ical format for calculating the connection weights as given by Hertz et al will be briefly

outlined.




Consider first a single pattern to be held within the network, P = {pg,p1,p2,...,pn-1}.
For the Hopfield net to be stable then

pi=sgn | > wijp;
j

The updating equation of eq.(2.6) will produce no change.

= Wi X Pipj
The proportional constant may be taken to be % with N the number of neurons in the
network.

1
Wiy = ﬁpipj

If a few of the initial values entered into the network are incorrect, the overall summation
at a node will swamp the errors producing the desired pattern; after the network has been
allowed to update itself over several time steps, the network relaxes.

The expansion to storing many patterns within the Hopfield Net is to allow the super-

position of terms for each pattern such that

1 Q
J— E e fh
w’L] - N II:lpi p]

Q is the total number of patterns to be stored in the network. NB. The weights of the
Hopfield Net are symmetric, w;; = wy;.

Overall this weight setting rule is known as the ’generalised Hebb rule’ due to its
closeness to the proposal by Hebb, [30], regarding the interaction of synaptic strengths in

the brain due to experience. Hebb actually wrote:

"When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased.”

The Hopfield Net as an associative memory, or content addressable memory, has two
main limitations. Firstly, the total number of patterns which may be stored is small
compared to the number of network connections. The attempted storage of too many
patterns within the net may cause the network to relax to spurious patterns unlike any of
its stored patterns. The second major limitation is that if two patterns show too many
bits in common to one of the other patterns, the pattern may be unstable such that
the net relaxes to the other pattern with which the original input shares many common

bits. Orthoganilisation procedures have been specified to ameliorate the second of these
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drawbacks.
In general, when operating, a Hopfield Net relaxes to the stored pattern which is the

closest with respect to its Hamming distance from the actual input.

2.6 Boltzmann Machine

The last specific NN structure which will be reviewed is the Boltzmann Machine developed
by Ackley et al [31]. Discussion and descriptions are also given by Rumelhart et al [15]
and Hertz et al [6]. The Boltzmann Machine has much in common with the Hopfield Net
previously described in §2.5, in that it extends many of the principles to a multiple layer
architecture if required. As with the Hopfield Net, the processing elements are in one of
two states, either on or off, however which state a neuron adopts is probabilistic. Similar
to the Hopfield Net links between processing elements are symmetric. Any element, 1,
which is connected to an element, j, has a weight associated with the link w;;; there is an
equivalent connection from j to 7 of value wj;.

A review of the Boltzmann Machine is worthwhile since, as has already been stated,
it can be considered an extension of the Hopfield Net. Secondly the neurons operate
stochastically and have a stochastic output, yet their collective behaviour can be trained
to perform a coherent and computationally useful task. Thirdly the neurons operate in
a stochastic manner upon signals which are deterministic, in §6 an artificial neuron is
examined in which the reverse is the case, the neurons operate in a deterministic manner
upon signals which are stochastic.

Ackley et al demonstrated the ability of the Boltzmann Machine using the 4-2—4

encoder/decoder problem which has been used earlier to assess the MLP, §2.3.3.

2.6.1 Architecture and Operation

The basic architecture of a Boltzmann Machine. consists of a network of interconnected
neurons. It is not necessary for each neuron tb be connected to every other neuron and,
due to the bidirectional nature of the connections, it is not a feedforward only network,
as with the MLP.

A general arrangement of neurons as shown in Figure 2.27 is thus achieved. The main
constraint is that the neurons of the network can be divided into two classes visible and
invisible. Visible neurons have connections to the outside world, while hidden neurons are
simply connected to other neurons. As has been already stated, the neurons are stochastic

ie. the output adopts a value of 1 or -1 according to the following rule

Si=+1 p=g(hi)

S; = -1 p=1—g(hi)
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h; is the sum of weighted inputs for a neuron ¢ as is usual for a neuron.
h,j = Z Wy S,
J
and the probability g(h;) is given by the Boltzmann function

g(hi) = L}_
14e7
where T is a measure of the temperature of the system and h is Boltzmann’s constant.

With neurons operating in a stochastic manner, how can network training of a Boltz-
mann Machine be achieved? Ackley et al proposed, and demonstrated, a gradient descent
based technique which uses only locally available information to optimise the global net-
work performance. The training is a form of Hebbian learning as described in the previous
section. To adapt the Boltzmann Machine it is operated in two configurations, clamped
and unclamped. Statistics are gathered regarding the output values of connected neurons
in the two conditions of the network.

In the clamped state the visible neurons are held at their desired values and the network
is operated at a given value of T until it reaches equilibrium. A measure of the correlation
is made between the output of neuron ¢ and neuron j both being on together. This
clamping, stabilisation and measurement process must be repeated for each of the desired
network input/output formats or a group of subsets of a content addressable memory
format. The clamped correlation values for each of the neuron pairs are averaged.

In the unclamped state, the network is allowed to run without any imposed external
constraint on the visible neurons. Again a measure is made of the correlation between the
output of neuron ¢ and neuron j once the network has reached equilibrium.

The bidirectional interconnection links are updated according to the following rule
’)7 [
Awij - —f <<Sisj>clmnpccl - <S":Sj)nncla.mped> (28)

<S1-Sj> | N is the average of the correlation between the outputs of neurons 7 and j
clampe

for each of the clamped input conditions.

(5:5;)

clamped input condition.

unclampaod is the correlation between the outputs of neurons 7z and j for the un-

7 is the training gain, rate of adaption, used for the gradient descent.

T is the temperature at which the system is operated. As training of the system pro-

gresses the value of T is slowly reduced.

A complete derivation and alternative descriptions of the Boltzmann Machine training
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procedure can be found in the previous references, [15, 6, 31]. It is interesting to note that
due to the stochastic nature of operation of each neuron a weight change may be in the
wrong direction thus enabling the system to avoid local minima.

When operating a Boltzmann Machine in software it is usual to select a neuron at
random for output update based upon eq.(2.7). For the system to reach equilibrium at a
given temperature, in a clamped or unclamped condition, can take some time. Often the
speed of reaching equilibrium can be increased by approaching the desired value of T at
which a network is to operate through the Simulated Annealing process. The process of
Simulated Annealing will be describe more fully in §5.4.

There is clearly a lot of work to be performed in the operation of a Boltzmann Machine
which leads to its main drawback; a Boltzmann Machine operates slowly. As Hertz et al

highlight there are four nested layers of operation:
1. many weights require updating using eq.(2.8).

2. the calculation of (S;S;) in an unclamped condition and all the desired clamped

configurations.
3. attainment of an equilibrium of operation at a temperature 7.

4. the network must operate for many cycles with neurons selected at random for output

update via eq.(2.7).

Despite the limitations caused by complexity and slow speed of operation the Boltz-
mann Machine can and does operate successfully. The network demonstrates that con-
structive collective behaviour can be obtained in a stochastically operating NN. Finally, it
is the first truly recurrent NN which feeds information both backwards and forwards via

its bidirectional weights.

2.7 Reinforcement Learning Schemes

Reinforcement learning undertaken by the use of a simple signal transmitted to the neuron
elements has taken various forms, and will probably have several more in the future.
It differs from other supervised learning strategies, such as backpropagation, which are
used for adapting multi-layer feedforward networks. Ounly a single gualitative response of
good/bad performance of the network is provided, an error value. Backpropagation and
algorithms of its genre produce a specific response to the network performance, an error
vector.

Widrow et al, [32], using a single ADALINE, demonstrated 'learning with a critic’.
The ADALINE is the artificial neuron developed by Widrow and Hoff, [7]. The ADALINE
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consists of a sum of weighted inputs passed through a signum, eq.(2.9).

N
v =) wiwy

1=0

(2.9)

A +1, x 20
EEETY 21 4 <o
’ 2

Normally within the inputs zg will be one set to +1 such that adjusting its weight value
will have the effect of adjusting the switching point for the signum function. The learning
with a critic architecture is illustrated in Figure 2.28. If the response by the ADALINE
is deemed to be good the Critic Switch, b;, is set to the positive, reward, position. The
weights of the ADALINE are adjusted by the Least Mean Square (LMS) algorithm or
any other appropriate adaption algorithm to improve the tendency of the ADALINE to
produce the same response. However, if the ADALINE performance is bad the Critic
Switch is set to the punish position and the weights are adjusted to produce the opposite
response.

The above configuration was applied to a temporal problem of playing the card game
Blackjack. The ADALINE circuits had the role of a player in the game. The critic response
was a good if the game was won by the ADALINE player or bad if the ADALINE player
lost. The series of inputs to the ADALINE were the cards as played. The output was
whether another card should be taken by the ADALINE player. Only at the completion of
the game was the critic involved. The same game was advanced through and each input
state rewarded/punished depending upon the overall result of the game. An optimal
decision strategy exists for the player’s actions in the game of blackjack and it was found
that the ADALINE performance improved as more games were played tending towards
this optimal decision. o

Barto et al have worked upon several schemes employing reinforcement learning as the
means of training individual or a network of neuron-like elements. The first formulation
was the Associative Search Network (ASN) [33, 34, 35]. The second scheme was the
Associative Search Element (ASE) and the Adaptive Critic Element (ACE) [36].

The ASN is an associative memory structure. The network learns to output a pattern,
Y, based upon a given input key, X, for and environment, E. An association is formed
between the key supplied to the network and the pattern output by the network. The
network is not explicitly informed of the key/pattern relationship but is trained to max-
imise a reinforcement signal or performance parameter. The performance of the network is
determined by the environment evaluating the pattern output based upon the key input.
A full ASN is illustrated in Figure 2.29. It can be seen that the ASN as shown consists of
two types of processing elements, the basic adaptive elements, AE, and a single predictor

element, PE. The aim of the PE is to aid in the training of the AEs by anticipating the
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reinforcement/payoff from the environment.

At a given time, t,

si(t) = Z wij(t)z; ()

o[ b i s+ NoISE >0
TN 0, i si(t) + NOISE <0

The update of the AE weights uses a previous output of the prediction element.
- n -
p(t) = prj(t)mj(t)
J=1

Two update processes are required one for the AEs and one for the PE. For the AEs
the update is based upon the reinforcement/payoff received from the environment, z(t),

previous AE output values, y(t — 1), and previously predicted reinforcement/payoff, p(t).
wi(t+1) = wi;(t) + ofz(t) — p(t = Dy(t — 1) — y(t - 2)]z;(t - 1)
The update of the predictor weights is achieved by the following expression,
Wi (t+ 1) = wps (t) + op[2(t) — p(t — 1)]z;(t - 1)

The predictor aims to anticipate the payoff from the environment. The term « and oy, are
learning constants determining the rate of learning for w;; and w,; respectively.

The second system investigated by Barto et alalso had two processing elements, ASEs
and ACEs. These two processing elements were used together to learn to control the
cart-pole balancing problem. The cart-pole balancing problem consists of a movable cart
on which a pole has to be balanced vertically. Normally the cart and pole are restricted
to move in a single horizontal direction, Figure 2.30. The pole is maintained in balance
by applying impulses to move the cart. This control problem is also known as the broom
balancing problem. .

The ASE network of Barto's and his colleagues was trained to avoid failure of the
cart pole balancing system, ie. the pole fell over or the cart reaching the end of its track.
The ASE control and learning system configuration is illustrated in Figure 2.31. This is
particularly difficult since failure of the system may occur after a long series of individual
control decisions. This system differs from the ASN in that not only is a single control
output, y, required but also the status of the environment is fed through a decoder before
entering the ASE. The environment is divided into regions by the decoder. For each region

a control action-is to be associated. The regions are constructed from four parameters, the
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position of the cart, the velocity of the cart, the angle of the pole and the rate of change
of pole angle. These regions are similar to fuzzy regions. The decoder selects just a single
region or input to the ASE to be active.

The output of the ASE is given by

y(t) = f > wi(t)zi(t) + NOISE
i=1
+1 if >0 (right)
fz) = .
-1 if z<0 (left)
Due to the random noise term the weight, w;, only corresponds to the probability that an
action will be taken. Learning in this system therefore updates the probability of these

actions. The learning rule for the ASE is
wi(t + 1) = wi(t) + ar(t)e(t)

where
« is the learning constant controlling the rate of change of w;
r(t) is a real-valued reinforcement
e;(t) is the eligibility of an input.

The eligibility term is based upon the premise that inputs should have a maximum in-
fluence a short time after firing and decay to zero afterwards, ie. an input becomes less
significant the longer it remains inactive. A simple exponential decay of eligibility may be

used. 7
e;(t+1) = be;(t) + (1 — 8)y(t)zi(¢)

0 <6 <1 determines the rate of decay of eligibility.

This overall system is fairly complex and upon testing the results were found to be
poor. This was due to the fact that reinforcement is zero for the majority of the time only
taking the value -1 at failure of the system. The more successful an ASE becomes the less
frequent the occurrence of a failure signal and the slower the learning.

To improve the performance of the ASE the ACE was added to the configuration,
Figure 2.32. The ACE performs a similar function to that of the predictor in the ASN in
that the aim of the ACE is to produce a better reinforcement, #. This reinforcement is for
every input to the system and output combination from the decoder, so that reinforcement
occurs continuously, not just at failure of the system.

Continuous reinforcement is generated in a similar manner to that of the predictor



within the ASN, .
p(t) =) wi(t)zi(t)
i=1
where
p(t) is a prediction of the eventual reinforcement,
v; is a weight applied to an input z;.

The ACE weights are updated by the following scheme,

vi(t +1) = v;(t) + o [r(t) + yp(t) — p(t — 1))z (t)

0<y<1
@, is the constant determining the rate of change of v,,
7(t) is the reinforcement from the environment,

v is a discount factor which will provide for the prediction to decay to zero if no external

reinforcement occurs and

Z, is a trace of z; value calculated in similar fashion to the eligibility parameter of the
ASE.

Zi(t+ 1) = Az (t) + (1 — M)z (2)

0 < A < 1 which determines the decay rate of Z; as per 6 for e;.

The estimated reinforcement, #, is updated by

() = r(t) +vp(t) — p(t — 1)

This system of ASE with ACE was found to be far more satisfactory than the single
ASE, due to the continuous reinforcement applied to the ASE.

Although these descriptions of ASE and ASE with ACE have been brief it can be seen
that both rely upon a single global signal provided by the environment to improve the
performance of the controlling network.

Stochastic learning automatons, as reviewed by Narendra and Thathachar, [37], can
employ various reinforcement learning schemes to improve their behaviour in acting with
an environment. Figure 2.33 illustrates the link between a stochastic automaton and its
environment. As Narendra and Thathachar state, a stochastic automaton has six parts,

a sextuple, {z, %, o, p, A,G}.
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x is the set of inputs.
¢ is the set of internal states {¢1, da2,...,d,}.
« is the action/output set {o, a2, ..., } such that r < s.

p are the state probability vectors which determine the state chosen at each stage, for a

given stage 7, p(n) = (p1(n),p2(n), ..., ps(n))".
a is the updating or reinforcement scheme which produces p(n + 1) from p(n).
G is the output function which may be either deterministic or stochastic, G : ¢ — a.

The operation of these learning automatons is to update their action probabilities, p(n),
on the basis of the environmental response.

The idea of the reinforcement schemes is simple. When a learning automaton selects
an action ¢; at stage n, if the input from the environment is not a penalty, z(n) = 0,
the action probability, p;(n) is increased while the alternative action probabilities are
decreased. If the environment inputs a penalty, z{n) = 1, the opposite adjustments are
made, p;(n) is decreased while the other action probabilities are increased. The above can
be summarised by the following equations, for when the action at n is ¢; the pj(n+1)

terms, where 7 # %, are adjusted by

i(n+1) = py(n) = f5(p(n)) 2(n) =0 nonpenalty

pi(n+1) =p;j(n) + g;(p(n)) z(n)=1 penalty
The equation for p;(n + 1) are as follows

pi(n+ 1) =pi(n) + Z fi(»(n)) z(n) =0 nonpenalty
i

pi(n+1)=pi(n) = 3 _g;(p(n)) z(n)=1 penalty
i

The algorithms and continuous functions f;(-) and g;(-) are such that
Yop(n+1)=1
k=1
pr(n+1)e(0,1) V k=1,...,r

whenever every  pr(n) € (0,1)

Using the two conditions of non penalty and penalty several variations on the rein-
forcement scheme may be employed. The updating may be linear or non linear and

applied with a combination of reward, penalty or inaction for the non penalty-penalty
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conditions, ie. Reward-Penalty, Reward-Inaction, Reward-Reward, Penalty-Penalty and
Inaction-Penalty.

Note the difference in the approach to learning to that of the ADALINE and ASE
formats. Stochastic learning automatons perform updates within the probability space,
whereas the others perform updates within the parameter’s space based upon the rein-
forcement signal. As the action selected for an environment is probabilistic, the stochastic
learning automaton is able to find the global minimum rather than becoming trapped in

a local minima, which can occur for the previous architectures.

2.7.1 Barto Reinforcement Learning

Barto and Jordan, [2], describe a method for performing nonlinear supervised learning
upon a multi-layer feedforward network. Instead of the exact solution to the network
being used, a qualitative response is created to describe the network’s performance. A
critic is used to train the network punishing or rewarding the system depending upon its
response to inputs. A scalar quantity is fed back through the network to each of the neural
elements. In backpropagation an error vector is fed back through the network. The error
vector which backpropagation uses contains more information on the differences between
the desired output and actual network output.

Barto and Jordan in fact use two variants of an Associative Reward-Penalty or Ap_p
algorithm an element of stochasticism is introduced into the weight updating mechanism.
These two algorithmic variants will now be described. In the following section, §2.8, of this
thesis two extensions to these mechanisms are proposed commensurate with the hardware
neuron which will be developed.

As already stated, the algorithm operates upon a multi-layer feedforward network.
Input signals are applied to the input layer of the network which propagate through to
the output layer. Besides the connections to the preceding layer, each processing element
also has an input which is permanently at +1, a bias. The input layer processing elements
do not actually perform any computation, but act as a distribution point for the signals.
Hidden layer processing elements and output layer processing elements generate an output
value in different ways.

Output layer elements, j, produce an output value z; which is a function of its inputs,

z;, from the preceding layer(s) and the weight for the connection between the processing
elements 1 to 7, w;;.
n
vy = Zwijxi
1=()

1
;= f(y) =

1 + e
The output units are the same as for a Multi-Layer Perceptron network and the back-

propagation algorithm by Rumelhart et al, [15]. Element input zq is the bias term fixed



at +1.

Hidden layer elements behave the same as those in a Boltzmann network, [31], having

stochastic behaviour,
1, probability f(v;)

z, =
! 0, probability 1 — f(v;)

It should be noted that all the processing elements use a sigmoidal, squashing or logistic
function. Output layer units use the function directly to form their output values whereas,
for hidden layer units, the function generates the probability of the neuron producing a
one or firing. The hidden layer processing elements have a stochastic behaviour. In
this network expected activity does not propagate from hidden units in the way that
deterministic activations in an MLP network do.

The performance of the network to produce the desired output must be assessed and
the network trained to produce a better approximation to the desired output.

Denoting the actual network output as Y,

Y = (ylvyz)"'>yN)

where the y; are N output units, this is purely a renaming of the z; values to y; values

for the output layer, and letting the desired network output be D,
D = (dy,da,...,dN)

A performance measure can be defined as the mean square of the difference between

desired and actual output.
N
1
£= > (di — yi)? (2.10)
’ 2=1
<e

0<e<1

This performance measure or network error is used as the basis for improving the network
response. Output layer processing elements and hidden layer processing elements have

their weights updated differently.
Output layer processing elements again operate for updating as per Rumelhart et al,
[15], in that the weights are updated by the backpropagation method, that is, a gradient

descent occurs.

Awi; = p(dj — ;) f' (vj)z;

where f'(v;) is the derivative of the function f(v;),

f'(vj) = F)(1 = flv;)) = y;(1 — )
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p is a training gain term which affects how great the adjustment in the weight, w;;, is
made. As the hidden layer processing elements have a stochastic behaviour the error, ¢,
is random thus the adjustment in weights for the output layer will be random.

Hidden layer processing element weight update is accomplished by means of a broad-
cast reinforcement signal, r, which is sent to all hidden processing elements. This is simpler
than backpropagating an error through previous processing elements from output towards
the input. All weight updates can be performed simultaneously rather than waiting for
other layers of elements to complete their updates as is the case for example in the back-
propagation algorithm. Two schemes were proposed by Barto and Jordan [2], for weight
updating in the hidden layers using the value of ¢, the mean squared error between desired
and actual network output, eq.(2.10). These schemes are the the P-model Ap_p and the
S-model Ar_p. The P-model Ap_p is a binary reinforcement technique for hidden ele-
ment weight updating, while the S-model Ap_p is a proportional reinforcement method

for updating the hidden element weights.

P-model Ag_p

The reinforcement signal » for updating the hidden layer weights has a probabilistic binary

value depending upon ¢,
1, probability (1 —¢)
0, probability

P =

The better the network is at producing the desired output the greater the probability of
a 1, implying success. Hidden processing elements have their weights updated according

to the following rule,

A = o PEs = F(v)z: ifr=1 o
T M-y - f))e i =0 2

p is the training gain affecting how much weights are adjusted, while X is the degree of
asymmetry between the size of the weight change for r = 1, viewed as success, and 7 = 0,
viewed as failure, 0 < A < 1. If A = 0 then the weight update strategy is a Reward-
Inaction, else for A > 0 the strategy is a Reward-Punish.

The qualitative way this scheme works for hidden elements is that for success, r = 1,
the weights, w;;, alter so that the probability of the processing element producing the
same response for the same input pattern increases. Thus in a similar situation the same
actions will be more likely to be performed by the network. If r = 0 and the network fails
the weight changes are such that the probability of the processing elements producing the
same response for similar input patterns are reduced. The weight changes for failure are
governed by A so weight adjustment can also be scaled for failure of the network relative

to success by the network. The reward and punish could be decoupled such that two
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separate gain terms are used, ie. p for reward and A for punish, by removal of the p factor

from the equation for the case » = 0 in eq.(2.11).

S-model Arp_p

This scheme is simpler than the P-model with a real valued reinforcement signal, r, directly

derived from the error, €, as opposed to a probabilistic binary value for 7.
r=1-¢

The better the network performance the smaller € will be and the stronger the reinforce-

ment, . There is only the need for one weight updating algorithm,
Awg = p(r(zj = f(vg)) + A1 =) (1 = z; = f(v;)))z; (2.12)

This scheme is simpler than the P-model Ap_p. It can be seen to reduce to the P-model

Ap_p for values of r =0 or r = 1.

2.8 Two New Extensions for Reinforcement Learning: Q-
model and T-model Ar_p

For the basic P-model and S-model Ap_p schemes tested by Barto and Jordan and re-
viewed in §2.7.1 two forms of weight adjustment are used in each method, namely the
gradient descent at the output layer processing elements and the reinforcement at the
hidden layer processing elements. To have just a single weight adjustment scheme would
be better for hardware implementation purposes to keep the design as simple and uniform
as possible. By eliminating the gradient descent at the output processing elements two
new architectures may be evolved, the Q-model Ap_p and the T-model Ap._p based upon
the P-model Ap_p and the S-model Ap_p respectively.

A second variation which was incorporated into the Q.and T-model Ap_p was that
all the neurons in the underlying network model now operate stochastically. The neurons
have a binary output based on the sigmoid transform of the weighted sum of inputs. In the
original form only the hidden layer neurons had a stochastic output while the output layer
neurons operated deterministically. The weight values for the network are still real valued
and continuous. This network model with associated learning strategy is now beginning
to model the style of network that can be formed from the developed hardware stochastic

neuron, and this is one of the reasons for investigating the reinforcement learning approach.

Q-model AR_p The Q-model Ap_p is derived from the P-model Ap_p with all weights

subjected to probabilistic binary reinforcement. The adaption strategy for all neuron
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weights in all layers are based on a reinforcement signal, », which has a probabilistic

binary value dependant upon the network error, ¢.

d; is the desired neuron output value and y; is the actual neuron output value for N

neurons.

Thus - .
1, probability (1 —¢)
r=
0, probability

As a network produces an output closer to that desired, the greater the probability of a
favourable reinforcement signal, r = 1. All processing elements now have their weights
adjusted according to the following rule

Aws: — plzj — f(vj))z: ifr=1
7 (1 —az; — f(v;))z; ifr=0

p is the training gain affecting how much weights are adjusted, while X is the degree of
asymmetry between the size of the weight change for r = 1, viewed as success, and » = 0,
viewed as failure, 0 < A < 1. If A = 0 then the weight update strategy is a Reward-
Inaction, else for A > 0 the strategy is a Reward-Punish.

T-model Ag_p The T-model Ap—p is similarly derived from the S-model Ap_p adap-
tion strategy. All weights are now varied due to a real valued reinforcement signal, r,

derived directly from the error, €.

r=1-—¢

As the network produces an output closer to that desired the greater the value of the
reinforcement signal. All processing elements in this model have their weights adjusted

according to the following rule
Awij = p(r(z; — f(v;)) + ML =) (1 = zj — f(v))))z

2.8.1 Evaluating the Four Ar_p Strategies

In §2.3.3 simple feedforward networks were used to assess the capabilities and learning
rates of an MLP with the backpropagation algorithm. As a comparison the two styles of
problem which-had been used with the MLP evaluation were repeated for the four Ap_p

39



algorithm variants, namely the encoder/decoder problem and XOR. problem.

The encoder/decoder problem was the same style of 8-3—-8 network of artificial neurons
while the XOR. used a 2-2-1 architecture of artificial devices. After difficulty was expe-
rienced gaining favourable results for the Q and T-model algorithm simulations with the
8-3-8 problem, but success was achieved with the 2-2-1 XOR,, a new set of simulations
for a reduced 4-2-4 encoder/decoder network were performed for the Q and T-model. A
spread of training parameters were used with varying training gain p and asymmetry X
for each of the learning models.

A simulation run consisted of presenting a pattern to the network and noting the
network’s response. The weights_of each artificial neuron were updated and a new pattern
selected at random from the input set and presented. After a given number of pattern
presentations the network performance was calculated by presenting each of the input
patterns in turn and determining the RMS error value. The average of the RMS error

value is taken as a measure of the overall perforrha.nce of the network.

P-model and S-model Agr_p For both the P and S schemes rapid initial descent
governed by the value of p the training gain is observed. In general the greater the value
of p the faster the rate of descent but with diminishing returns, Figure 2.34 and Figure 2.35.
In both these cases the long term adaption levels out to an offset value greater than zero
as illustrated in Figure 2.36. NB. For all of these simulation runs A = 0.

By addition of a degree of asymmetry, A > 0, both the P and S models are able to
produce an improved adaption result as illustrated by Figure 2.37. Even a very small
value of A is significant in improving the adaption capabilities, Figure 2.38. If, however,
the value of A is too large, then the P and S algorithms fail to adapt to an optimum
solution but as with the case of A = 0 tend to a non-zero value. The error oscillates more
vigorously about this offset level though.

Using the P and S-model algorithms to train a 2-2-1 network of neurons to perform the
non-linearly separable problem of the XOR proved as difficult as with more sophisticated
algorithms. For any of the combinations of p and A attempted the network could not be
trained to the appropriate value with either algorithm. It was found that a very small
degree of asymmetry was required and that the number of pattern presentations made to
the network was extremely large for the network error to tend to zero, Figure 2.39 and
Figure 2.40. For this case there is a rapid initial descent as with the 8-3-8 encoder/decoder

but the improvement to remove the last portion of error is very slow.

Q-model and T-model Agr_p As with the previous two P and S variants the 8-3-8
encoding problem was tackled with these new Q and T-model versions. As each output
neuron now produces an integer response 1 or 0 the performance measure, RMS Error, will
now be in discrete levels. The trend of increasing the gain p to increase the rate of learning

could not be observed in the performance plots. Varying the amount of asymmetry did
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not aid in the adaption process for eifher the Q or T-models, unlike the P and S-models,
the network performance was poor and varied widely even with small value eg. A = 0.005
as exemplified by Figure 2.41. ,

Surprisingly, when the Q and T-models are applied to the XOR problem with a small
non-zero value for A the problem could be adapted to, Figure 2.42 and Figure 2.43. Note
the highly quantitised performance measure for the network and learning algorithms which
provide a possible insight into the problem of adaption with the 8-3-8 encoder/decoder.

With the output of each neuron being either correct or incorrect with respect to the
probability given by a function of its weighted inputs the opportunity for the network to
obtain a strong reinforcement signal, ie. the probability that all outputs are correct, to
enhance its performance is limited. The training time necessary may therefore be longer
than that allocated for the above experiments.

Returning now to the encoder/decoder style configuration but with a reduced size of
problem, ie. 4-2—-4, it can be seen from Figure 2.44 and Figure 2.45 that the network
with either the Q or T-model reinforcement training algorithm can now work in the time
allocated. The assortment of values for gain and asymmetry presented are due to the fact
that conversion to a satisfactory result is not always possible. Given one set of gain and
asymmetry values the algorithm may not converge, but given new initial random weight
values the network may converge. It can be seen in Figure 2.44 that for p = 0.9 and
A = 0.03 the system is probably stuck in a local minimum before being able to escape at

around 50000 presentations.

2.9 Conclusions

In this chapter the aim has been to provide a critical review of four key neural network
architectures, the MLP §2.3.2, the Kohonen Self-Organising Feature Map §2.4, the Hop-
field Net §2.5 and Boltzmann Machine §2.6 in order to determine the most appropriate
attributes for hardware implementation and on-line learning. The first two networks were
simulated in software in order to gain a fuller appreciation and understanding of their
functionality.

Several architectures and paradigms utilising reinforcement learning techniques have
been reviewed §2.7. These algorithms are of particular interest since they usually use the
minimum amount of information which has to be fed back through the network. The two
learning models, P and S, presented by Barto et al have been demonstrated to function
as speciﬁed.. The two systems were found to rely on a small punishment signal in order to
gain their best performance.

Building on these two models their respective reinforcement strategies were extended
to the output layer of a network. In addition, the output layer neurons were configured

such that their output was probabilistic as per the hidden layer. It was found that feeding
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a single reward or punishment signal to every neuron, it was possible to train the network
to perform the two demonstration tasks of the 4-2—4 encoder/decoder and the 2-2-1 XOR.
problem. Again it was found that the asymmetry term, XA, was important in the network
adaption performance. When the larger 8-3-8 encoder/decoder problem was attempted
with these new learning algorithms they did not converge in the time used to train them,
there may thus be a scalability issue which needs to be addressed in using these methods.

It can be seen that there are many and varied algorithms used in the study of ANNs.
The research into these algorithms is normally conducted in software models. It has been
highlighted throughout that NNs are essentially a parallel processing technique consisting
of many simple processing elements which are interconnected. The hardware design of
the processing elements is thus a key issue if the most benefit is to be gained from these
systems. The following chapter, §3, provides a review of possible hardware techniques
which may be used to form ANNs. Included in this review are several commercially
available devices.

The method of stochastic pulse rate encoded signals is discussed in the hardware
review, it is pursued further by an explanation of the coding techniques and processing
circuits in §4. This suite of circuits is extended with novel circuit designs relevant to ANNs
before an actual hardware neuron design is discussed, developed, tested and operated in

the following chapters of this thesis.
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Dendrites

Nucleus
Axon

Figure 2.1: Illustration of a Biological Neuron Structure. Artificial neurons model a
simplified structure of a biological neuron. A single, simple, processing element with many
tnputs and one output.

F(x)

Activation
Function

1

Figure 2.2: General Artificial Neuron Architecture of McCulloch and Pitts. This con-
sists of weighted input values which are summated and then passed through an activation
function.

43



T - » A/T

Step Function Linear Activation Function

-
=3
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Figure 2.3: Common Neuron Activation Functions. The Step Threshold function was the
original proposed by McCulloch and Pitt. Alternative activation functions are illustrated,
all but the Linear Activation Function constrain the output range of the neuron.

Inputs Perceptrons Outputs

Figure 2.4: Single layer perceptron configuration. There is only a single processing layer
in this structure with no feedback connections and no connections across the network from
one perceptron -to another.
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Figure 2.5: Example of AND and XOR. functions for the Perceptron. The AND function
is linearly separable, a single decision line can divide the two output domains. The XOR
function is not linearly separable, more than one decision line is necessary to divide the
two output domains.
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Figure 2.6: Three layer fully connected MLP configuration. As for the SLP, all connections
are feedforward to the next layer only with no connections between neurons in the same

layer.
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layers. -

8 3 8

0

neurons per layer
training gain

training momentum 0.2

tv
training type

inspect rate

10

training group size 1

epochs

2000

ip 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
op 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ip 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
op 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
ip 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
op 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

ip 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
op 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
ip 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
op 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
ip 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
op 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
ip 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
op 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
ip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
op 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Figure 2.7: Example of the file setup.mlp. This file ts used to configure the basic MLP

stmulator written to demonstrate and verify the operation of MLPs.
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Figure 2.8: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing
the gain term for backpropagation increases the rate of reduction in RMS Error.
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Figure 2.9: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing
the momentum term for backpropagation increases the rate of reduction in RMS Error.
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Figure 2.10: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing
the momentum term for backpropagation increases the rate of reduction in RMS FError,
but for large values of gain and momentum the decrease in RMS Error is noisier and the
convergence point is noisier, this is not obvious from these though.
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Figure 2.11: Error curves for 8-3-8 coder/decoder MLP, Batch presentation. Increasing

the gain term for backpropagation increases the rate of reduction in RMS Error.
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Figure 2.12: Error curves for 8-3-8 coder/decoder MLP, Batch presentation. Increasing
the momentum term for backpropagation increases the rate of reduction in RMS Error.

Hidden Output
Layer Layer

Figure 2.13: Rumelhart et al network architecture to solve the XOR problem. Simplified
network for solving the XOR problem. Note, however, that feedforward connections from

the input layer pass directly to the output layer.
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Figure 2.14: Error curves for 2-2-1 XOR MLP. In general, increasing the gain term for
backpropagation increases the rate of reduction in RMS Error. Note, a system will not

always converge, eg. n = 0.5, = 0.0
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Figure 2.15: Error curves for 2-2-1 XOR MLP. Increasing the momentum term for back-
propagation increases the rate of reduction in RMS Error.
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Figure 2.16: Error curves for 2-2-1 XOR MLP. In general, increasing the momentum term
for backpropagation increases the rate of reduction in RMS Error. Note a system will not

always converge, eg. n =0.7, « =04
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Figure 2.17: Kohonen Self-Orgdnising Feature Ma,pi Network Neighbourhood Layout, 1.
Each neuron has eight nearest netghbours and the netghbourhood scales as 1-8-16.
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Figure 2.18: Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 2.
Each neuron has siz nearest neighbours and the neighbourhood scales as 1-6-12.
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Figure 2.19: Variation in Training Gain, 1, vs Distance from Active Neuron. The influence
of gain and neighbourhood size are combined within this single distribution. Negative
values for gain as generated by this *Mezican Hat’ curve have proved successful in training
Kohonen Self-Organising feature maps.
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Figure 2.20: Ideal Uniform 10 by 10 Mesh. A two dimensional array of 10 = 10 elements
can be arranged as a uniformly spaced regular grid.

Figure 2.21: Kohonen Self-Organising Layer, 10 iterations. After only a few iterations of
the training algorithm the majority of the neuron responses are still concentrated around

the central value. A large value of n and neighbourhood will be used to disperse the neuron
responses throughout the output domain.
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Figure 2.22: Kohonen Self-Organising Layer, 1000 iterations, Uniform (x,y) distribution.
The neuron.responses have been distributed throughout the output domain. A ’twist’ in the
output map appears to exrist. Provided there is enough energy within the system tie. large
n and neighbourhood, the training algorithm should unravel this twist.

Figure 2.23: Kohonen Self-Organising Layer, 100000 iterations, Uniform (x,y) distribution.
The basic structure of the reqular grid has been formed. The twist in the response has been
undone.
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Figure 2.24: Kohonen Self-Organising Layer, 300000 iterations, Uniform (x,y) distribu-
tion. The output grid has stabilised to the expected uniform structure for the uniformly
distributed two dimensional inputs. Small values of n and neighbourhood will be used to
continue fine tuning the network response.

Figure 2.25: Kohonen Self-Organising Layer, 300000 iterations, Normal (x), Uniform
(y) distribution. With a concentration of information about the central value for the
z-dimension the output map is pulled into a form where more neurons are used for areas
where most information is present.
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Figure 2.26: General Architecture of a Hopfield Net, four neurons. A Hopfield Net con-

sists of a single layer of neurons with the feedback of their output to every neuron except

themselves.

54




Visible Invisible/Hidden
, .

Output

Figure 2.27: General Architecture of a Boltzmann Machine. Neurons generate o stochastic
output and can be divided into two classes, Visible and Invisible. Only visible neurons are
connected to the outside and these can be further divided into Input and Output sub-classes.
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Figure 2.28: Criticised ADALINE. Learning with a critic architecture, only a single +1,
Reward, or -1, Punish, signel is used to update neuron weights.

ASN
e g
X, Z | pE
X W
: WZ; Predictor Payoff
X, o Pon p 2

[ = e e e e o e e e e e - - .

Figure 2.29: Associative Search Network Architecture. The ASN has two types of pro-
cessing elements, many Adaptive Elements, AE, and a single Predictor Element, PE. All
processing elements are connected to the environment, F.
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Figure 2.30: Cart-Pole balancing system. By moving the cart appropriately the aim is to
keep the pole in an wupright position.
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Figure 2.31: Associative Search Element (ASE) configuration. The system environment
status is decoded before feeding into the ASE. The reinforcement signal is only set at times
of system fatlure. The system responses and rate of adaption were found to be poor.
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Figure 2.32: Associative Search Element with Adaptive Critic Element (ACE) Configura-
tion. Basic performance of the ASE system Figure 2.81, is enhanced by the inclusion of
the ACE which generates a continuous value of internal reinforcement signal for every set
of decoded outputs and reinforcement inputs.
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‘Figure 2.33: Learning Automaton.
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Figure 2.34: Initial adaption rate for 8-3-8 encoder/decoder P-model Ap_p. It will be
noted that increasing the gain, p, produces an increase in learning rate. There exists a
constant error which the training algorithm can not overcome.
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Figure 2.35: Initial adaption rate for 8-3-8 encoder/decoder S-model Ap_p. It will be
noted that increasing the gain, p, produces an increase in learning rate. There ezists
a constant error which the training algorithm can not overcome. By comparison with

Figure 2.34 the P-model Ap_p is marginally faster at error reduction.
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Figure 2.36: Long term adaption for 8-3-8 encoder/decoder. The two models of network
of Figure 2.34 and Figure 2.35 have be trained for a long period of time but remain with
the same amount of network error.
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Figure 2.37: Long term adaption for 8-3-8 encoder/decoder with A > 0. It can be seen
that increasing the value of asymmetry from zero aids the training of the network by

reinforcement learning.
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Figure 2.38: Long term adaption for 8-3-8 encoder/decoder with small A\. By comparison
with the previous Figure 2.34 and Figure 2.35 it can be seen that even a small degree of
asymmetry is beneficial.
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Figure 2.39: XOR learning P-model. For adaption to occur such that the network error
tends to zero it is necessary to use a very small value of A and a long training period.
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Figure 2.40: XOR learning S-model. As per the P-model, Figure 2.39, a small value of A
was found to be necessary combined with a long training period for network error to tend

to zero.
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Figure 2.41: Poor learning of 8-3-8 by Q and T models. This is an ezample of the poor
adaption of the new Ar—_p models and the inability to reduce the network error to zero

even for small degrees of asymmeiry.
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Figure 2.42: Q-model XOR. Note that by comparison with the P-model results of Fig-
ure 2.39 the rate of adaption and learning is of the order of ten times faster. A highly

quantised response is evident.
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Figure 2.43: T-model XOR. Note that by comparison with the P-model results of Fig-
ure 2.40 the rate of adaption and learning is of the order of ten times faster. A highly

quantised response is evident.
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Figure 2.44: Q-model learning for the 4-2—4 encoder/decoder.
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With a reduced problem

size the Q-model is able to adapt to form the necessary weight values. The system can still
get caught in an apparent local minima as exemplified by the plot for p = 0.9 and A = 0.03.
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Figure 2.45: T-model learning for the 4-2—4 encoder/decoder. As per the Q-model, Fig-
ure 2.44, with a reduced problem size the system ts able to adapt to form the necessary

weights to converge.
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Chapter 3

Hardware Implementation: A

Critical Review

The previous chapter has discussed ANN architectures and the classes of learning algo-
rithms which may be implemented. One of the problems which exists with many of these
architectures and algorithms is that they exist only as mathematical models or are imple-
mented as a software solution upon a standard von Neumann style architecture machine.
The power of ANNs is derived from the high degree of parallelism that can be achieved.
Despite the high speed of modern computer platforms for the simulation of ANNs, the
platforms are often not fast enough for very large networks or real-time applications. The

following difficulties, as highlighted by Atlas and Suziki [38] are to blame.

Massive interconnections can be required.

Most architectures involve tens, hundreds even thousands of neurons requiring inter-
connection. This is particularly acute in a fully connected NN. Each connection will
require a multiplication and each neuron will therefore need many multiplications

and summations of results.

Learning.

Many of the problems thought best suited to the solution by NNs have large data
sets. Most algorithms are slow to converge to a solution due to adjusting the many

weights that exist and this may necessitate many iterations.

Trial and error.

NNs do not always converge to a solution. When they do converge this may not be
to a global minimum. Different training runs may be needed to be tried with various

initial conditions to enable the best results to be selected.
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Flexibility.
ANN algorithms and architectures are continuously evolving. A hardware solution

must be as adaptable and adjustable as possible.

Therefore, it is worthwhile developing hardware realisations of ANN to increase the
rate of processing and the size of problem which can be tackled in a rational timescale.

What possible systems are there for implementing an ANN in hardware? Analogue
electronics, digital electronics, optical devices or any other system which may currently
be in vogue. Points to be considered are the complexity of the resulting system (on top
of the interconnectivity of the neurons), stability of the system, the ability of the system

~ to learn on or off line.

3.1 Analogue Artificial Neural Networks

The basic operation of an ANN processing element as described in §2.2 can be summarised

as

Noyr = F [Z(H)J

therefore within analogue hardware it is necessary to perform the three operations of
multiplication II, summation )7 and activation function F. Graf & Jackal [39] and Foo
et al [40] provide a general introduction into analogue im}:ﬂementa,tions, while Mead [41]
provides a greater depth and more specialised viewpoint for using analogue circuits.

The basic instantiation of these three operations within an ANN is as follows

Multiplication. A single transistor could be used to perform multiplication, but a bet-
ter approach would be to represent the strength of a connection by a resistor. In
the latter case the output from a neuron ¢ is input to a neuron j through a con-
ductance representing the connection strength or weight T;;. If the voltage at the
input to neuron j is held at ground a current I;; will flow through the conductance

representing the weighted signal.
Lij = Vour, Ty

The realisation of this weighting conductance can be achieved in several ways, in-
cluding a CMOS switch operating in its active region, a switch-capacitor network,
a switched-resistor network or a switched-ladder resistor network, all are illustrated

in Figure 3.1.

Summation. The addition of input signals, currents, can be achieved by connecting
the input wires together at a single node. An example would be the input of an

operational amplifier (Op Amp) which is considered to be at virtual ground.
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Pros I Cons —I

Speed of operation Lack of thermal stability
Asynchronous behaviour Low noise immunity
Easy implementations Interconnection problems
Simple circuits Limited accuracy
Small circuit elements Hard to test
Direct interfacing Basic components hard to fabricate
Basic storage of weights Lack of design tools
Smooth neural activation function Signed storage of weights
Massive parallelism Non-uniform processing

Table 3.1: Implementation considerations for analogue neural networks

Activation Function. The format of activation realised will depend upon the configu-
ration of the Op Amp at whose input the currents are summed. At the simplest
level an Op Amp can be configured as an analogue comparator, a step function
can thus be formed. A basic clipped linear activation function can be created us-
ing a non-inverting Op Amp configuration. Finally, a basic sigmoidal function may
be achieved using two Op Amps in series. These three concepts are illustrated in

Figure 3.2.

There are several advantages to following an analogue solution to hardware implemen-
tation, amongst them are the relatively simple circuits necessary, their small size and the
ease with which they can be designed. This can lead to a high level of integration and
a massively parallel design. As there does not need to be an overall clock to control the
operation, this can be both fast and asynchronous. Finally, the connection strengths are
represented by basic electronic components, eg. resistors and capacitors, no sophisticated
circuit control mechanism is required.

However, analogue solutions are not without their problems. Analogue circuits lack
thermal stability and have a low threshold to noise immunity. Despite being small and
offering the possibility of a high level of parallelism how are the large number of connecting
wires to be routed? The basic components which can be used for weight representation,
resistors and capacitors, are hard to fabricate accurately and repeatedly. How are signed
weights to be represented and stored? Analogue design tools for integrated circuits are
not as well developed as their digital counterparts making the design of a circuit more
difficult.

The pros and cons for the analogue implementation of ANN are summarised in Ta-

ble 3.1
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3.2 Digital Artificial Neural Networks

In a digital implementation of an ANN processing element it is obviously necessary to per-
form the same operations as with an analogue approach. A number of approaches can be
taken to generating a network. One is to form all the components of a neuron separately
‘using digital technology. A second is to generate digital architectures and processors tai-
lored towards ANN implementation and application, ie. to design neurocomputer devices
and accelerator boards. A third is to make use of existing high performance parallel com-
puters and devices to construct purpose built machines, for example using transputers,
or parallel DSP devices. Atlas & Suziki [38] provide a general introduction to digital NN
systems.

Yet another approach using digital circuits is to use pulse coded computation as ex-
emplified by Murray et al [27] with a deterministic approach and Tomlinson et al [42] and
Leaver [43] with a stochastic approach. The pulse coded idea will be enlightened upon
further in §3.4.

Whichever of the above techniques is selected, digital technology has several consistent
characteristics. The method of using binary data provides excellent noise immunity. The
level of computation precision and accuracy does not depend upon the transistor size but
on the number of bits used. The dynamic range of the system is influenced by the number
of bits used. Digital circuits are relatively easy to design with many packages available
for design and analysis before committing to silicon and the testing of the final fabricated
product. Programmable components can be incorporated into a design to enable a system
to be reconfigured by a software controller. Large matrices of synaptic weights can be
stored in digital memory. Digital input/output can be multiplexed to reduce the number
of physical connections both internally within a device and from device to device while
maintaining a high level of connectivity for an overall network; this will of course be at
the expense of an increase in complexity and a reduction in speed.

There are drawbacks to the use of digital hardware for the implementation of ANNs.
Due to the switching action of transistors as devices operate and the constant charg-
ing/discharging of capacitors a higher power rating results. Digital circuits for addition,
multiplication etc. are complex requiring many components and are expensive with respect
to semiconductor usage. Despite the high level of integration that is possible and further
advances in the reduction of device size the amount of semiconductor substrate required
will be high. Digital processing at present is inherently a sequential operation leading to
slower networks with respect to the number of interconnections per second which can be
achieved. Finally, it mﬁst be remembered that the world is analogue in nature and an
additional overhead of analogue to digital and digital to analogue conversion may need to
be accounted for. It is likely that these conversions will only be upon the initial input and
final output from the network and may not place too great an overhead upon performance.

The pros and cons for the digital implementation of ANNs are summarised in Table 3.2.
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L Pros l Cons

High noise immunity Speed of operation
Precision High component count
Existing design tools High power dissipation
Programmable components are possible A/D and D/A required
Store fixed and adaptive weights Synchronous behaviour
High speed individual computations Multiplexors occupy large area
Multiplex/Demultiplex

Table 3.2: Implementation considerations for digital neural networks

3.3 Hybrid Artificial Neural Networks

A mixture of analogue and digital techniques for the hardware implementation of ANNs
could be combined to provide a hybrid solution. This could lead to the best, or the worst
features, of both disciplines being combined.

In a hybrid system weight storage and update can be performed digitally since this
provides a more stable method than their analogue counterparts. Actual computation
could be performed using analogue processing circuits as this often provides the smaller,
faster circuits. Inter-element communication could be a mixture of digital and analogue.
Analogue communication links could be used internally within an individual neural chip.
Digital communication links could be used inter-chip or through a complete neural pro-
cessing system.

Alternatively, pseudo analogue systems could be realised using digital signals by means

of pulse encoding.

3.4 Pulse Coded Hardware Implementations

Digital encoding techniques for coding analogue information are highly developed espe-
cially for the field of communications. The aim in this section is to briefly describe meth-
ods and possible schemes for processing analogue signals as pulse sequences. It will be
explained how the schemes offer several potential advantages over conventional analogue
signal processing and numerical digital signal processing.

Pulse stream coded information has been implemented in several ways by various re-
searchers into their application for neural networks. The neuron elements of these networks
will be described.

Several pulse coding techniques exist for coding information into a pulse domain. These

schemes can be divided into deterministic and stochastic methods which will be further

elaborated on.
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Pulse modulation techniques have been widely developed and include
e Pulse Width Modulation

Pulse Position Modulation

Pulse Amplitude Modulation

Pulse Code Modulation

e Phase and Delay Modulation

Pulse Frequency Modulation, or Deterministic Pulse Rate Encoding

e Stochastic Pulse Rate Encoding

With all these schemes the information is contained within the properties of the pulse or
a specified group of pulses.

A complete description of most the above coding schemes can be found in Stremler,
[44). Three more pulse encoding schemes which are not described by Stremler are as
follows:

Phase and Delay Modulation. Two output lines are required for this method. The
signal is represented by the phase difference which occurs between the two lines. One line
is a regular pulse stream while the delay of the pulses in the second line is relative to the
first in proportion to the size of the signal.

Pulse Frequency Modulation, PFM, or Deterministic Pulse Rate Encoding.
Pulses of constant amplitude and duration are generated but at a rate proportional to the
signal. Within a given time period the signal can be deduced from the number of pulses
received. For a specific signal level the pulses are produced in a regular deterministic
manner.

Stochastic Pulse Rate Encoding. Pulses of constant width and amplitude are
generated. The pulse sequence generated has the probability of a one appearing on the
line proportional to the signal value to be encoded. Single line or dual line, unipolar and
bipolar systems exist. These techniques are more fully discussed later in this thesis, §4.

The pulse encoding schemes described above have been developed for different envi-
ronments. They are often most suited for the transmission of data and not necessarily the
manipulation of data as required for numerical computation. This does not mean that
calculations could not be achieved, rather that the schemes are not appropriate for these
operations.

The basic desired numerical operations have already been outlined as addition and
multiplication. Combining the pulse encoding schemes and numerical operations is not
always satisfactorily achieved. PWM and PPM implementations of these operations are

not known about although the design of suitable circuits is obviously feasible.
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PAM signals may be used to perform these operations if the pulse sequences are syn-
chronised. Analogue adders and multipliers operating upon the pulses may be used. Using
the PA system would not offer any computational advantage when compared to complete
analogue signal manipulation. Problems of stability and noise immunity for these oper-
ations exist. Improving these qualities increases the complexity of circuits. It would be
necessary to maintain synchronism between the pulse streams.

PCM is suitable for numerical computation, particularly where a linear coding method
is employed. Digital computers manipulating data encoded as binary information are all
too common. Processing engines for addition, multiplication and other mathematical
operations, eg. Fast Fourier Transforms, are highly developed. These implementations
vary from the specific Digital Signal Processor, DSP, circuits, eg. Motorola DSP96002 or
Texas Instruments TMS320 series, to the more general purpose implementations within
microprocessors, eg. Intel 80x86 series or Motorola 68000 series. The basic building blocks
for addition and multiplication are well known, the disadvantage is that the circuits are
complex but their operation is consistent.

The use of stochastic pulse rate encoded sequences for numerical computation is sur-
prisingly direct. Basic logic gates can be used to perform multiplication, addition and
inversion. The accuracy of the result obtained depends upon the time taken to observe

the output pulse stream since the information is represented as a probability or expected

value.

3.4.1 Deterministic Pulse Coding Circuits

Much work has been conducted by Murray, at the University of Edinburgh, into the
hardware implementation of NNs using deterministic encoding strategies.

The original system investigated was based upon asynchronous pulses, {45, 46]. The
neuron could adopt one of the two states, on or off. When on and firing the output is a
stream of pulses of fixed frequency and width. The pulses are generated by a ring oscillator.
The parameters of the pulse stream are fixed by the time constants of the oscillator. As
with many neuron circuits the condition as to whether or not to fire is based upon the
weighted sum of inputs. Here the inputs are divided into excitatory and inhibitory pulse
streams which both feed an integrator. If the excitatory pulses exceed the inhibitory ones
the integrator charges up turning on the oscillator, else the integrator is discharged and
the neuron does not fire.

The input pulse streams in a synapse are weighted deterministically using the contents
of standard RAM. The MSB is the sign bit which determines if the pulses are to excite or
inhibit the neuron. The remaining bits are used to gate the Chopping Clock signals which
have Mark:Space ratios 1 :1,1:3,1:7, ..., 1: (271 — 1), where p is the number of
bits in the weight. The pulses from the synapse are added to the overall pulse streams

by using OR gates. It is not necessary for the pulse stream inputs to be synchronous for
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the neuron to operate, buf the chopping clocks in the individual synapse circuits must be
synchronous to obtain the correct weighting.

This topology does not provide for any learning in hardware. All training is performed
off line and the weight RAM for the synapses loaded with the appropriate values.

The above idea proved unsatisfactory for a number of reasons. The digital weight
storage required too large an area. The separate lines for the excitatory and the inhibitory
pulse streams were considered clumsy and inefficient. The pseudo-clocks were not thought
of as either aesthetically pleasing or smooth enough for dynamic behaviour.

A second system was designed in collaboration with the University of Oxford, [47, 48,
49, 50]. The level of neural activity is again represented by a regular pulse stream of fixed
magnitude pulses  The rate of these pulses is dependent upon the level of neural activity
as they are produced by a voltage controlled oscillator, VCO. The input to the VCO is
from the sum of the synapse values.

The synapses are formed from MOST transconductance multipliers. These multipliers
generate the product of two voltages as a current. One voltage input is the constant
magnitude pulse stream from a previous level of varying frequency. The second voltage
is the weight value to be applied to this pulse stream. This is an analogue voltage on
a capacitor which is refreshed from a value stored externally on RAM. The resulting
scaled pulses from each synapse will affect the charge accumulation on an integrator. The
integrator voltage feeds the VCO of the neuron.

The basic neuron design is very simple and is able to produce an analogue output
representation. Simulation and actual circuit fabrication have proved highly successful in
the specific problem of position location for a robot.

With the signals being represented not only as the frequency of pulses but also as the
amplitude of these pulses, how susceptible are they to analogue noise? How stably can the
weight values on the capacitor be maintained? It must be admitted that these analogue
values only exist locally within the neuron, the main signalling being a digital waveform.

A third mixed analogue digital pulse rate system has been presented by Murray et al
recently, [61]. This system is specifically orientated towards a multi-layer perceptron
configuration. The system varies from earlier ones in that the coding of information is in
the pulse widths and that the system is synchronous. A constant pulse frequency is used
which is controlled by a master clock. Computations occur during the first half of the
cycle, the results are transmitted through a sigmoidal function during the second half of
the cycle. The Mark:Space ratio of the pulses contains the neural state information. Fully
on, 1.0, is represented by 1:1; fully off, 0.0, by no pulse at all; half on, 0.5, by a pulse of
1:3 Mark:Space ratio. Benefits of the system are the high throughput of calculations in
conjunction with the parallel nature of the network. No learning has yet been incorporated
into the network.

The above circuits and implementations can be found in Murray and Tarassenko’s



recent book, [27].

At the University of Kent, [62], a neural circuit has been designed which uses an ana-
logue voltage input and produces an analogue output voltage. The neuron conducts inter-
nal processing using pulse streams. The pulse streams for each signal are asynchronous.
Analogue inputs to the neuron are converted to pulse streams of fixed width but variable
frequency by a VCO. Weighting of these pulse streams is achieved by PWM. The resulting
weighted pulses are summed using an OR gate before integrating the total, so forming
an analogue output voltage. The neuron is designed so that the maximum Mark:Space
ratio of the input pulse stream is 1:10. After weighting the Mark:Space ratio value will
be reduced. The incidence of coincident pulses at the summing OR. gate will be low. An
inhibition signal is applied to the resultant pulse stream before integration, again this is
carried out by PWM. The problem of weight storage was not resolved, the possibility of
external RAM refreshing an analogue voltage on the gate of a transistor was stated. No
on-line learning was presented. Frequency of operation of the circuits was high to reduce
the RC component values in the timing sections of the neuron. This had the bonus of
keeping a high throughput of data. Maintaining consistent and stable timing using the

RC time constants was a problem with the idea.

3.4.2 Stochastic Pulse Coding Circuits

The previous section concentrated on work which used regular pulse streams to perform
computation. In this section an overview of some neural circuit implementations based
upon stochastic pulse encoding techniques is presented. The mechanics of this style of
encoding, computation and decoding are fully discussed in the following chapter, §4. The
possibility of using stochastic pulse systems for NNs was highlighted by Gaines {53).

An associative memory neural network simulation was reported by Nguyen and Holt,
[64], in which stochastic processing elements were used. Encoding of signals used a pseudo-
noise source formed from a Pseudo Random Binary Sequence, PRBS, shift register config-
uration. They highlighted the advantage of a stochastic implementation in terms of a low
gate count, easier routeing of signals in parallel and improved noise immunity, the penalty
being an increase in processing time compared to the direct DSP implementations. One
reason is that the results are gained by time averaging the output pulses. As a network
grows the multiplier of a DSP chip would become an increasing bottleneck reducing the
speed differential. The accuracy of Nguyen and Holt’s system was comparable with a
10-bit digital parallel multiplier.

A stochastic implementation of a Hopfield net has been achieved by Van Den Bout
and Miller, [55, 56]. This design made extensive use of shift registers and counters which
occupied a significant amount of silicon. The design was expandable to allow the Hopfield
net to grow to larger sizes. Two interesting points were raised by this work. First, the

dynamic range of the weights could be increased by use of an exponential distribution of
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the randofn numbers used to encode them. This will lead to a logarithmic distribution of
weight values. Computational circuits are unaffected since it is the interpretation placed
upon the resulting pulse streams which is important. Second, by adjustment of the Prob-
ability Density Function, PDF, for the random number generator controlling the output
of the neuron circuit, the output function can be varied. A uniform PDF will produce a
linear transfer function with hard limits, a sigmoidal transfer function can be achieved by
using a Gaussian distribution.

Investigation of a stochastic neural circuit has been conducted by Banzhaf, [57], Fig-
ure 3.3. The neurons made use of AND and OR gates for computation. The aim was to
realise primitive neuron-type functions, not to perform accurate algebraic manipulation.
This was evident mainly in the performance of addition by use of a single OR. gate, as
pulses became more dense and the result less accurate, the output begins to saturate at
unity. By implementing a gate structure which allowed excitatory and inhibitory signals,
a sigmoid style non-linearity could be formed. The effect of representation of weight pulses
was assessed. The weighting pulses were produced on different time scales and with differ-
ent quantities of dead-time. The latter point could cause synaptic gates to operate near
to their points of instability.

Tomlinson et al [42] discuss a stochastic pulse rate NN implementation system which
was subsequently fabricated into a chip set, the Neural Semiconductor SU3232 and NU32.
Similar to Banzhaf above inexact summation of the excitatory and inhibitory net input is
performed but this time a WIRED-OR is utilised. The WIRED-OR. conserves on chip
substrate area and allows scalable summation of many inputs to be performed. Eguchi
et al [58, 59] also use the ideas of Tomlinson et al to produce their experimental NN chip.

Kondo et al[60] utilised stochastically encoded data in their two proposed architectures
of Figure 3.4 and Figure 3.5. Their first proposal, Figure 3.4, iteratively cycles through
each input and associated weight before generating an output pulse. The weighted in-
put value pulses are summed in an up/down counter before passing through a sigmoid
transform. Their second proposal, Figure 3.5, weights each input in parallel before per-
forming an analogue summation of the resultant values. The result of the summation is
then passed through a sigmoid transform. In both designs it is interesting to note that
the sigmoid transform is performed by comparison of the w.éighted sum of inputs with a
Gaussian random number. This technique will be returned to and developed in §4.7 using
an entirely digital circuit.

A thesis by Hyland, [61], investigated the use of stochastic pulse encoding and compu-
tation to a particular type of model for neural networks, the Boltzmann Machine. Several
encoding systems were discussed and simulated. Hyland’s tests mirrored Ackley’s, Hin-
ton’s and Sejnowski’s, [31], original experiments. Learning of the 4-2-4, 4-3-4 and 8-3-8
encoder mappings was achieved with varying degrees of success. Due to the simulation be-

ing conducted on a serial computer rather than a parallel network or a dedicated hardware
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configuration, Hyland found the processing to be exceedingly labourious. The requirement

to use specific hardware for improved performance was evident.

3.5 Commercial Hardware Realisations

Few commercial hardware realisations of dedicated neurons or network devices have been
produced and marketed, Devices which have been include the ETANN and Nil000 by In-
tel, SU3232 and NU32 chip set by Neural Semiconductors, the NiSP by MCE and finally
the NEURO4 by Mitsubishi. There are many forms of accelerator boards which incorpo-
rate DSP chips eg. TMS320C40 or fast co-processors eg. 1860, which have been produced
together with supporting software libraries for driving these systems. These boards are of

a more general purpose nature and not necessarily to be used for NN applications.

ETANN
The ETANN, Electronically Trainable Analog Neural Network, [62, 63], produced by

Intel is an analogue device consisting of 64 neurons. No on-chip learning is provided
for the device, instead all learning and training is conducted off-line using third
party development systems hosted on a PC, eg. iDynaMind by NeuroDynamX or
iBrainMaker by California Scientific Software. Neuron weights are downloaded to

program the device once adaption has taken place.

Ni1000

The Nil000 is another device NN device developed by Intel, [64]. Unlike the previ-
ously developed ETANN this device is digital with a resolution of 5-bits. The Nil000
has a maximum 256 input vectors which it is able to classify into 64 groups by means
of a Radial Basis Function style algorithms. Operating several of these devices to-
gether will allow the number of degrees of classification to be increased. The Ni1000
has been integrated into an accelerator board by Nestor Inc., which together with

their emulation software allows the development of NN based systems,

NU32/5U3232 Chip Set

Rather than produce a unified device Neural Semiconductors produced a set of
devices, NU32 and SU3232. The SU3232 is a matrix multiplier with 32 inputs.
There are 1024 weights in the device organised as a 32x32 weight matrix. The
output function for a neuron is incorporated in the NU32 device member of the set.
The format of computation used by Neural Semiconductor is a stochastic pulse rate

method as described previously and which they refer to as Digital Neural Network
Architecture, DNNA.!

IDNNA is a trademark of Neural Semiconductors, Inc.
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NiSP
The NiSP (Neural Instruction Set Processor) is a RISC based processor designed
specifically for NN operation, [65]. The device has an overall 12-bit data resolution
and can have any desired activation function loaded into it. The device is optimised
for feedforward network operation with only seven instructions in its entire instruc-
tion set. The size of feedforward network both in terms of the number of neurons
and layers is limited by the amount of RAM connected to the processor which is
32k. The device is aimed at the embedded control system market, but as with all the

above mentioned devices, a development board and emulation software is available.

NEURO4

Limited information is available on this device from Mitsubishi, but the device is
digital containing 12 processors. The NEURO4 processor operates using 24 bit
floating point representation. Currently the device is available in sets of four chips'
configured upon an accelerator board suitable for driving from a workstation. In
addition the device can be used as an external set of processors for general purpose

parallel processing.

3.6 Conclusions

In this chapter a review of the requirements for a hardware implementation of an artificial
neuron or an ANN have been specified which include a high level of interconnectivity,
small neuron size, ability for the neuron weights to be adapted on-line ie. the neuron
to be trainable in a hardware implementation. It has been shown that the two principal
approaches of analogue or digital circuitry may be used to formulate a neuron with sample
circuits shown where relevant. The benefits and drawbacks of these two methods have been
tabulated. A possible compromise may be a hybrid of the two approaches.

The techniques of pulse processing have been highlighted. Pulse processing is essen-
tially a digital process but may be used to represent analogue values by varying pulse
width, amplitude or frequency. The many and varied deterministic approaches adopted
by Murray et al have been reviewed. Additionally, stochastic pulse rate encoding imple-
mentations by many researchers have been reviewed. These stochastic approaches have
often been found to be deficient in a particular area eg. they perform inexact computation
or move out of the digital domain for certain sections of their circuitry.

A hardware stochastic pulse rate computation approach would seem beneficial due to
the ease of connectivity of the neuron, the potential simplicity of the circuitry and their
improved immunity to noise compared to alternative systems. In the following chapter, §4,
a thorough review of stochastic pulse rate encoding and processing techniques is conducted.

New novel circuits are presented to maintain the accuracy of computation and to ensure
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that all the processing for an artificial neuron is kept within the digital stochastic pulse rate
encoded domain. These circuits will then enable a hardware neuron to be designed and
fabricated as described in Chapter 6. This neuron should also have the ability to have its
weights, and therefore its performance, adjusted as a network is running. Demonstartion
of the processing capability of the new hardware neuron will be provided by implementing

a basic network for a simple test problem, the 4-2—4 encoder/decoder.
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“Chapter 4

Stochastic Pulse Rate

Computation

In earlier chapters of this thesis the broad concepts of ANNs have been introduced. In
particular Chapter 2 made reference to several architectures and algorithms namely, the
MLP, the Kohonen self-organising feature map, the Hopfield network and the Boltzmann
machine. Besides software models and simulations hardware concepts for the implemen-
tation of ANNs have been reviewed in Chapter 3. From the review of hardware it can
be seen that a need exists for a hardware implementation system that is cheap to con-
struct ie. requires few components and uses non-complex fabrication techniques, is stable
and accurate with respect to the storage of interconnection weight values, may be easily
reprogrammed to perform a new task and finally the interconnection weight values may
be easily adjusted by a learning scheme which is operating on-line. So far most of the
hardware approaches offered are deficient in one or several of these areas.

Pulse rate computation has been proposed for hardware implementation to gain the
benefit of both the analogue and digital worlds. Murray et ol [45, 46, 66, 47, 48, 67, 50,
51, 27], Meador et al[68], Cotter et al [69], Tomberg et al [70] and Daniell et al [52] adopt
a deterministic approach whereby communication and processing can be effected by using
deterministic pulse sequences. Nguyen et al [54], Eguchi et al[58, 59], Tomlinson et al[42],
Banzhaf [57] and Kondo et al [60] have followed a stochastic pulse rate encoded sequence
policy. These proposals have involved analogue circuit forms or have performed inexact
computations. The pulse rate method, in particular the stochastic pulse rate methods,
are attractive since there is biological evidence that neurons signal via stochastic pulse
streams, for example see Churchland et al [71].

If use is to be made of stochastic pulse rate encoding and computation techniques, it
is first necessary to understand the operation of the basic component parts and why they

will be of benefit. A critical review follows of stochastic encoding techniques, transfer-



ring information from a deterministic value into a stochastic pulse stream representation.
Circuits are presented to perform multiplication, addition, subtraction and function ap-
proximation. New circuits are proposed for single line unipolar subtraction but more
importantly the addition of N bipolar signals with an exact result. With the aim of de-
signing an artificial neuron operating by use of these techniques it is necessary to derive
an appropriate circuit for performing a non-linear transformation. The non-linearity cir-
cuit developed performs a sigmoidal transformation in the stochastic pulse rate encoded
domain.

The techniques of stochastic pulse rate encoding and computation were first committed
to paper in 1965 both by researchers at the Standard Telecommunications Laboratories
[72, 73] and at the University of Illinois [74]. The technique relies upon the principle
that the probability of a binary variable being a one is a representation of the required
analogue information. In general, observing a signal at an instant will only produce an
expected value result. To gain an increasingly accurate value it is necessary to average
the number of pulses received over a given number of time slots. Several problems arise
immediately, firstly, how is information translated into this domain? Secondly, how can
negative numbers be accounted for? Finally, how can pulse streams be manipulated to
perform mathematical computation. The input encoding strategies will be demonstrated

first before considering the mathematics which may be performed.

4.1 Encoding or Input Mapping into the Stochastic Pulse
Rate Domain

Several encoding strategies are put forward by Gaines [53] and Mars & Poppelbaum [75]
including linear or non-linear mappings, unipolar or bipolar signals and whether one or
two lines are to be used to transmit information between computation elements. The basic
principles of input mapping can be understood by reference to three linear schemes, the
simple Single Line Unipolar (SLU) strategy which will be developed into the Dual Line
Bipolar (DLB) and finally Single Line Bipolar (SLB) strategies. Non-linear schemes for

encoding with an infinite range in at least one direction will be briefly presented.

4.1.1 SLU Input Mapping

Given an input value z within the range 0 < z < X which it is desired to represent upon
a single line as the probability of observing a pulse, a binary variable z; may be defined

with a generating probability p by the following transform.

T
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Thus X, the upper boundary limit, will be represented by a signal which is always ON,
and zero the lower boundary limit, will be represented by a signal which is always OFF.

To actually generate a binary pulse train of x;’s to represent z,  would be normalised
by dividing by X and the resultant compared with a uniform normalised noise source 7,
0 <n < 1. Ifz > naoneis produced as an output else a zero is produced. The comparison
is undertaken at regular clock intervals so producing a stochastic pulse train. By this
formation x; is seen to be a Bernoulli random variable [76]. Figure 4.1 demonstrates an
example of two values of z encoded as stochastic pulse streams.

Analysing the characteristics of the Bernoulli sequence, the value of z; may be noted
at each of the NV clock intervals. Denoting the sample as zp, for that at the i’th clock

pulse, an estimate of the generating probability p is

1 N
p= Yv— zzzl Tp;
The expected value of this estimate is
Exp[p]=p

as would be expected for a Bernoulli sequence ie. the expected value is the original gen-
erating probability and is independent of the number of samples N taken. A Bernoulli
sequence is a zero-order Markov chain. The accuracy of this estimate is a function of the

number of samples taken and is determined by the variance of the expected value Var(p).!

Var (p) = Exp [(5 — p)?]

r 2

1 N
= Exp (F 2 xbi—p)

A 2, . ' (4.1)
AR —ﬁ;wbmw

N 2
1
= yzExp [( :vbi> — 2p* + p?

. 1 (N 2 1 X
wo (L) =7 =gl
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=
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<
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—

Now,

1The variance of a value A measures the expected square of the deviation of A from its expected value.

84



N N
N2 A2 2 o
= Z Ty~ + Z Th; Ty,
? i#)
N

N
= Z:E(,',2 + QZfEbiaj(,j
p

i<y

Exp [N?p%] = NExp [5%]

N N
NQEXp [752] = Exp [Z mbiz +2 Z :Ebixbj]
; i<

N N
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therefore
N2Exp [$%] = Np + CoExp (24, JExp [zs,]

= Np+ N(N - 1)p? (4.2)

EXp {}32] — p+ (NN_ 1)p2

Replacing eq.(4.2) in eq.(4.1)

p+ (N —1)p* — np?
N

Exp[p—p)* =

p(1—-p)

Var (5) = B

(4.3)

This leads to a standard deviation for p of

o(5) = (p“—];—p—))

The expected error is zero for p = 0 or p = 1, and reaches its maximum value at p = 0.5
as illustrated on Figure 4.2. This diagram also illustrates the balance between accuracy
and speed of determining the value of p. The more accurate a result required the more
samples need to be averaged and therefore the longer it will take. Further effects of the
time averaging period for converting from a stochastic pulse sequence to a deterministic

signal are discussed in §4.8
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4.1.2 DLB Input Encoding

Both positive and negative values of 2, —X < z < X, can be represented by extending
the SLU case to that using two lines, one line upon which positive values are encoded, the
UP line (U) and the other line upon which negative values are encoded, the DOWN line
(D). This can be accomplished by defining

pU=1)-pD=1)=+ (4.4)
No unique association exists between the probabilities represented by each line and the
overall value represented . This is because there are two signal lines with a possibility of
4 signal conditions being used to represent a single value and for example an overall value
of 0.6 can be represented by an UP line value of 0.6 and a DOWN line value of 0.0 or
an UP line value of 0.8 and a DOWN line value of 0.2. The former case is known as the
minimum variance form. Very distinct polarised starting pulse sequences can be defined
with positive values only on the UP line and negative values only on the DOWN line.
Each pulse sequence in this dual line case is defined independently as follows for the

minimum variance form of the value.

z>0= p(U=1)=Y
p(D=1)=0

| p(U=1)=0

r< 0= D—l)—i
pPD=1)=|+

PN p(U=1)=0
p(D=1)=0

For the purposes of analysis the following four values are defined
p(U=0,D=0)=v
p(U = 1,D ¥0)=u
pU=0,D=1)=d

p(U=1,D=1)=c¢

which obviously leads to
c+dt+ut+v=1
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We have
p(U=1)=u+ec

p(D=1)=d+c

by eq.(4.4) N
_d= =
= e (4.5)

If both the UP line and DOWN line are in the same condition this will correspond to zero
and will not contribute towards the resultant.

For the DLB system the mean and variance may be obtained using a three-level random

value B; at the i’th clock pulse.

B, =U,~ D,

where U, = 1 for the UP line on and D; = 1 for the DOWN line on. After N clock pulses

the mean value of B; is
B=v0+ul+d —1+c0

. z
B: —d:—-——
v X

The variance of B is determined by

-y _ Exp[B?] - B?
v.0+ul+dl+c0— (u—d)?
| N
u+d— (u—d)? (4.6)
N
w(l —u)+d(1 —d)+ 2ud
N

It can be seen that the variance is minimised if either d = 0, (v > d) or u = 0, (u < d)

Var (B) =

and leads to the minimum variance mapping

z >0

_— X

0 z <0
D1 0 z>0
p(D=1)= _33;_ £ <0

A unique probability for ¢,d,u and v does not exist due to the equivalence of (U =1,D =
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1) both on and (U =0, D = 0) both off. If it is assumed both lines are never on together

(simple gating can ensure this in practice) then ¢ = 0.

4.1.3 SLB Input Encoding

The final linear transformation scheme to be considered is that of representing bipolar

quantities on a single line. For an input value z, —X < z < X, the binary variable z;

with a generating probability p, the following transform is used,

(4.7)

DO | =

T
P=P($b=1)=ﬁ+

Maximum positive value, X, is given by a logic level of always on, maximum negative
value, —X, by a logic level of always off and zero by a random fluctuating logic level with

an equal probability of being either on or off.

If $ is an estimate of p as for the SLU case then

. z 1

P= ﬁ -+ '2' (4.8)
z R

7 =2-1 (4.9)

The variance of this estimate may be gained in the following manner.

Var <%) = Var (25 — 1)

For two independent random variables R and S

Var (R + S) = Var (R) + Var (S)

therefore N
Var (%) = Var (2p) — Var (1)

— Exp (26 — 2p)Y]

= 4Exp [ — p)’]
which by use of eq.(4.3) . 4p(1
Var (;) _ P(N—P)

which by use of eq.(4.7) is

Var <%> = l—:—]—sf%—)z (4.10)

The variance of the estimate of = is zero for maximum positive and negative values but a
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maximum for z = 0.

4.1.4 Non-linear Input Encoding

The transforms listed in the above three sections have been linear transforms with a finite
range of values which may be encoded. For completeness there now follows some examples
of non-linear transforms which have an infinite range in at least one direction. No analysis
of variance is presented as the schemes are shown for information only.

Using a single line an input range 0 < z < 400 can be encoded as a probability p of

observing a one on the line as
z

e+

p =

e is defined as the centre value for encoding, it is the point at which p = 0.5.
z—0 =p-—>0
z=¢e =2p=105

rz—4oo=>p—1

For z < e the value of p will vary rapidly, but for z > e the probability varies more slowly.
Figure 4.3 shows a sample transformation for e = 5. The effect of varying e is to alter the

position of the ’knee’ of the transformation curve. To retrieve values from the stochastic

domain

Bipolar values of z in the input range —co < 2 < 0o can be encoded onto a single line

by
_z—e+ /(22 +¢€%)

- 2z

not a simple transform. Decoding is achieved by

oo =2
2p(p - 1)

This scheme allows completely arbitrary values to be encoded into the stochastic pulse
domain and is also illustrated in Figure 4.3 for a value e = 5. The effect of varying e is to
alter the gradient of the transformation curve. A

Having reviewed the main forms and principles of stochastic pulse rate encoding the
basic mathematical operations of inversion (negation), multiplication and addition will
now be presented together with Boolean logic circuits to perform the required tasks in
hardware. Only the linear encoding schemes will be considered. Due to the complexity of

input encoding and decoding for the non-linear strategies they will not be considered.

89



4.2 Inversion

Inversion, negation or complementation can be achieved by using at most a single logical
inverter for the three linear encoding schemes. For the SLU and SLB a single logical
inverter in the line will suffice, while for the DLB case merely exchanging the two signal
lines performs the necessary action, ie. UP — DOWN and DOWN — UP, Figure 4.4

In the SLU case the inverter complements the input sequence z; so that the output z,
is
zo=1—124
Exp [z,] =Exp [l — z1] = 1 — Exp [z1]
Po=1-p1

a trivial result.

In the DLB case where the two lines are exchanged

Exp [21] = Exp [ ] — Exp [z]]
=p(U1) — p(D1)

Exp [z,] = Exp [2]] — Exp [z])]
=p(D1) — p(U1)

= Ty=—I

The output inverted signal is equivalent to the negative of the input signal.

In the SLB case

:130=1—:I:1

Exp [z,] = 1 — Bxp [z1]

Po=1—p1
as for the SLU above but,
1 + x;
=5 T ox
1 To 1 1
atax =" <§+ﬁ>
Zo=—I1

and the output signal is the negative equivalent of the input signal.
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4.3 Multiplication

Taking each of the three linear encoding schemes in turn it will be demonstrated how
Boolean logic gates may be used to achieve the multiplication of two stochastic pulse

streams.
For the SLU case with two input streams p; and p an AND will perform multiplication

to generate the output p,.

Po = P1P2
" when
p'L - X
therefore
To  T1T2
X XX
T1T9
To=
X

The normalised product of inputs z; and z2 with respect to the range of X is found. This
is always representable.
The variance of this product Var (p,) is obtained by using eq.(4.3),

R pi(l —p:)
Var (5;) = 2o P2
ar () = P
thus
1—
Var (p,) = p1p2(1 — pip2) (4.11)
N
this can be verified to be
Var (p,) = p1Var (p2) + p2Var (p1) — N Var (p;) Var (p2) (4.12)

The equivalence of eq.(4.11) and eq.(4.12) can be demonstrated by expansion of eq.(4.12).

For the DLB representation it is necessary that two positive or two negative quantities
produce a positive result which implies that when both the UP inputs are on or both the
DOWN inputs are on the output UP should be on. However, if an UP and a DOWN
are on together the the output DOWN must be on. Figufe 4.5 demonstrates the required

gating arrangement. Using the previously defined probabilities for a dual line system (v,
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u, d and ¢) the output probabilities of the multiplier are given by

Uy = V1 + V2 — V1V2
U = UTUg + d1do
(4.13)

do = urdy — dyup

Co = 61(1 - ’Ug) + Cz(l - ’1)1) — C1C2

therefore
U — do = urug + dids — (urdy — diug)

= (u1 — d1)(u2 — d2)

By using eq.(4.5)

8

v =ui—d;

we obtain
T1Z2

T, = e

Given that both the input values to the multiplier are in the minimum-variance format

it is possible for only one at most of the following terms to be non-zero, ujus, dids, ui1ds
or diug. By inspection of eq.(4.13) it can be seen that only one of u, or d, may be non-

zero and thus the resultant of the multiplier will be in minimum-variance format. From

eq.(4.6)

-y . o — A2
Var (22) - ()

X N
o Uo + dp — (uo — d(,)2
h—— = .
= var (X) N (4.14)

this can be shown to be
%\ _ 22 1Y _ &1 Z2
Var (Y) = (u1 + d;)Var <X> + (ug + d2)Var (X) NVar (X) Var <X> (4.15)

by expanding fully both eq.(4.14) and eq.(4.15).

For the SLB representation the gating is required to produce an output pulse when
both signal lines are in the same state, both on or both off and no signal when the two
input lines are different states. An appropriate circuit is shown in Figure 4.6. The circuit
can be recognised as an XINOR gate.

The output generating probability p, can be expressed in terms of the two input
generating probabilities.

Po = p1p2 + (1 —p1)(1 — p2)
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since

Exp [z,] = Exp [z122 + Z,Z2]

where

T, =1-—-x;
This can be demonstrated as follows given that the two input sequences are independent.
Exp [z,] = Exp [z1]Exp [z2] + cov (21, 22) + Exp [Z1]Exp [Z1] + cov (Z1, Z2)
cov (Z1,Z2) =Exp [(1 — 21)(1 — 22)] — Exp[1 — z1]Exp [1 — z2)
=Exp [l — 21 — 22 + z122] — (1 — Exp [z1])(1 — Exp|[z2])
= BExp [z122] — Exp [z1]Exp [z2]
= cov (&1, Z2) = cov (z1,2)
Exp [z,) = Exp [z1]Exp [z2] + Exp [Z1]Exp [Z2] + 2cov (21, z2)
As z1 and z9 are independent then

cov(zy,29) =0

thus
Po = p1p2 + (1 — p1)(1 — p2)

Using the fact that (from eq.(4.8))

. +1
Pi=ox Ty
:B_.’Bl.’L'Q
T X

As with the SLU case the output p, is the normalised product of z;, 23 with respect to

the range of X is formed.
Assessing the variance of the output of the SLB multiplication eq.(4.10) can be used

Var (%) = }—_—(—%i

and produce
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This can be demonstrated to be

Var <_)Z> = Var <X) + Var <X> NVar (X)Vm (

4.4 Addition

)

&

In the simplest case for the multiplication of two stochastic pulse streams of the previous
section §4.3 ie. SLU signals, a single AND gate would suffice. To perform addition of two
stochastic pulse streams a corollary might be to use a single OR gate. Several problems
exist with this suggestion. Firstly, if two probabilities in the range [0, 1] are summed the
resultant probability could be greater than unity ie. in the range [0, 2], this is not realisable!
Secondly, if an OR gate is used and there are two coincident pulses arriving at its inputs
only a single pulse will be produced by the gate, a bit of data is lost. Possible solutions
to overcome these limitations have been put forward by Gaines [53] and by Leaver [43].
Gaines’ main proposal is to perform a weighted sum of inputs, a system which can be
used for all linear encoding schemes. Gaines’ circuits are reviewed for the three linear
strategies followed by Leaver’s technique which relies upon insertion of excessive number
of pulses into the resulting output stochastic pulse stream. A new appropriate efficient
gating circuit is put forward for an N input summer operating upon Gaines’ principles.
For the case of the SLU signals, the circuit of Figure 4.7 can be used to perform a
weighted sum of two inputs. The two generating probabilities p; and po exist for the
inputs z; and z, a third unipolar line S generating probability p3 acts as a gating signal
to determine which of z; or z5 should be switched to the output z,. A strong resemblance

can be seen between Figure 4.6 and Figure 4.7 from which it can be deduced that

Po =p3p1 + (1 — p3)p2 (4.16)

Using eq.(4.3) the variance of the output can be verified to be

Var (p,) = p3Var (p1) + (1 — p3)Var (p2) + (p1 — p2)*Var (p3) (4.17)
from ) ) .
Var (5,) = PP3+ (1= ps)po)( - (P1ps + (1 — p3)p2))
The output of this circuit is
T, = p3r) + (1 - p3):1:2 (4.18)
If p3 = 0.5 then
o + 9

o=~

The DLB case is slightly more complex. An initial system would be to use two circuits
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of Figuré 4.7 one for the UP lines and one for the DOWN lines. Thus using eq.(4.16)

U, = p3ur + (1 — p3)us
do = p3d1 + (1 — p3)dy

=T, = Uy — dy :PS(Ul - dl) + (1 - p3)(u2 - d?)

By substituting the respective values of u, and d, into eq.(4.17) the variance for the result
is

Var (p,) = paVar (p1) + (1 — p3)Var (f2) + (p1 — p2)*Var (3)

From the above equation it can be seen that if z; and z3 are in a minimum variance
form then z, will not necessarily be in a minimum variance form. This can be explained
by the following example, if (u1, d2) and (ug, di) are non-zero ie. the two quantities are
of opposite sign, then (u,, d,) will both be non-zero and the result is not in minimum

variance form.
Another circuit approach is that of Figure 4.8 from which it is possible to produce the
sum of two inputs in a minimum variance form. This circuit cancels the positive signals

on one set of inputs with negative signals upon the other input set.

o =p3(1 ~ do)ug + (1 — p3)(1 — di)us
do =p3(1 —ug)d1 + (1 — p3)(1 — u1)do

= Uy — do = p3(ur — d1) + (1 — p3)(uz — da) + (1 — 2p3)(u1ds — ugdy)

which in the case of'p3 =0.5

From eq.(4.5)

— updy — ugd

U, + d, =

the values of u, — d, and u, + d, may be substituted into eq.(4.6). The resulting variance

value is
. @ @ o2
Var <m_") - (XL) n <7f2) n (55%2) _ (uads — ugdy)
X)) 2 2 4N N

The final linear coding scheme of the SLB case is similar to the SLU addition case.
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The circuit of Figure 4.7 will suffice again with the result of
zo = paz1 + (1 — p3)zo

This time it is generated via the substitution of the generic version of eq.(4.7) into eq.(4.16).

Once again if p3 = 0.5 the result
Ttz

Z, 5
is arrived aft.

This weighted summation format is not the only approach to stochastic addition.
Leaver [43] puts forward an alternative strategy that of pulse insertion. One of the prob-
lems stated above with using an OR gate for the purpose of addition is the gate’s failure
to account for the condition of coincident pulses upon its inputs. Rather than weight each
input pulse train they are both added together using an OR gate with any coincident
pulses detected by an additional AND gate. The output of this AND gate is used to
increment a counter which holds a record of outstanding coincident pulses. If no pulses are
detected as being emitted by the adding OR. gate and the coincident pulse counter holds
a value greater than zero a pulse is generated, inserted back into the output pulse train
and the counter decremented. Figure 4.9 shows a circuit which can perform the coincident
pulse detection and insertion. For the SLU addition only a single circuit is required, but
for DLB addition it is necessary to use one for the UP lines and one for the DOWN lines.
In the SLB case a system which detects and accounts for both coincident spaces as well
as coincident pulses is required. If there is an excess of pulse pairs then additional pulses
must be inserted into the output sequence and if there is an excess of space pairs pulses
should be removed from the output sequence.

For all instances of Leaver’s adders [43] no scaling of either inputs or output occurs and
the output probability can try to exceed the range [0, 1] producing an incorrect addition.
Using the SLU system as an example, before the out of bounds condition occurs the
probability of coincident pulse pairs will increase requiring a large counter to maintain
a record of how many pulses must be inserted. With the output sequence becoming
increasingly full as the limit of the adder is approached so a lag may build up for the
insertion of pulses back into the output sequence when the input sequences change. This
lag will be particularly acute if the result of the summation would be greater than a
probability of 1. It is possible to pre-scale the input values into a Leaver adder so as not
to exceed the dynamic range, but if this is going to be performed then the extra complexity

of using the counter does not appear worthwhile.
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4.4.1 An N Input Adder Proposal

In this section a new circuit for the addition of N input signals is proposed since Gaines
[63] makes only a passing reference to the problem of the accurate summation of more
than two stochastic signals. The simple cascading of summation circuits presented so
far will not suffice in the general case. For Leaver’s adders the result is more likely to
tend towards a limiting factor of a saturated pulse stream so reducing the accuracy of the
addition or the magnitude of signals which could be summed unless pre-scaling the inputs
occurs. Using Gaines’s two input weighted summer the result for three sequences would
be

£t tr3 @ x| T3

T Ty T E Ty T

However, it can be seen that if the number of sequences to be added is a power of two such
a system would succeed. This may not be practical for a particular application. What is
desired is, for in the case of three lines, three weighting sequences of value % with no two

weighting sequences having coincident pulses giving the result of eq.(4.19).

_ T+ 2o+ 23

o= 1
z 3 (4.19)

For the general case of adding IV sequences it is necessary to weight each of the sequences
by % ensuring that all pulses in each sequence are mutually exclusive. This last condition
will mean that the weighting sequences are not statistically independent.

Let us assume that the summation of N pulse streams is desired. First a unipolar
sequence of % is generated, the first % sequence. Complementing this sequence using an

inverter will generate (1 — %) = (ﬂ}_;_l_) A new sequence of N_1:1' is generated which by

taking the product of (7\1171) (N—ng) forms a second % sequence. This process is continued

with the sequence N_l—i generated and multiplied by the complements of both % and TV'L—T
to form another % This process is fully illustrated by Table 4.1.

Pulse Sequence of N Weighting Calculation Output Weight
1 ¥ ¥
2 v (i- %) ¥
v -9 (mp) (0-3) |
SR Y SN S I

Table 4.1: Weighting calculations for N pulse sequences of value —11\7

This process of forming N _le sequences is effective because the complement of a pulse

sequence has no coincident pulses with its original. The product of complements will thus
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have no coincident pulse with any of the generating sequences thus by multiplying by the
next ﬁ will produce a new suitable % pulse sequence.

What actual form should the base —}v, ﬁ, ey % sequence take? It can be demon-
strated graphically that deterministic pulse sequences would need to be judiciously selected
or else unsatisfactory results are produced. Figure 4.10 illustrates clearly the problem
with deterministic sequences for four i signals. The mathematical operations of multi-
plication and addition dealt with so far have been conducted in the stochastic domain.
Using stochastic pulse sequences for this divider does produce the desired response. A
short piece of computer code can be produced to demonstrate this principle operating
effectively.

Finally, this stochastic N pulse stream weights must be sensibly realised in hardware.
It can be seen from the equations describing the weight functions that a cascade of com-
plementer (inverters) and multipliers ( AND gates) is all that is required, Figure 4.11.

Two problems are immediately apparent from the schematic of Figure 4.11 as follows,

1. the loading upon the inverters at the top of the cascade will be detrimental to the

performance.

2. the required fan-in of the AND gates at the bottom of the cascade will be large.

The greater the number of sequences the more acute the two problems will become. Due
to the repetitive and modular nature of the expansion to create the sequences the circuit
of Figure 4.11 can be improved upon to Figure 4.12. Figure 4.12 takes advantage of
the repetitiveness with an improved circuit design. No undue loading is placed upon the
inverters at the top.of the cascade and the fan-in of all the AND gates remains at two
regardless of their position in the cascade. This second design is not without its drawbacks,
the greater the value of N the greater the propagation delay for the pulses to ripple down
the cascade, resulting in the output pulses not being synchronised and spikes forming by
partial results. Despite this, N 7{,— pulsé sequences can be adequately generated and used

to weight the input to an OR gate adder.

4.5 Subtraction

The subtraction operation only really needs to be considered for unipolar signals. For

bipolar signals subtraction is achieved by the addition of negative or complements of the

desired signals.

4.5.1 A Subtracter Proposal

For unipolar signals a negative signal representation does not exist, but translating Leaver’s
technique of pulse insertion for addition to one of pulse removal for subtraction the de-

sired operation can be effected. Figure 4.13 illustrates schematically a circuit proposal
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to achieve subtraction for unipolar signals. For this circuit, pulse stream y is being sub-
tracted from pulse stream z. Pulses on y are accumulated in a counter the output of
which is active if the counter’s content is greater than zero. The AND gate will produce
an output with the next pulse upon = which is removed from the output by means of the
XOR. gate. The output from the ANND gate also decrements the counter, since one less
pulse has to be removed from =z.

Problems with this circuit will occur if the number of pulses in y is greater than those
in = for a sustained period of time, y > 2. In effect an attempt will be made to exceed
the lower probability bound of zero. The counter will count up thus when y is less than =
again and a valid subtraction can be performed a lag results as the counter removes pulses
and decrements before settling down to produce a correct result. Although this system is
not ideal and no account is taken as to whether a negative result would be the outcome it
does demonstrate that subtraction could be achieved. In general it is required that z > y

for valid subtractions to be performed.

4.6 Integration and the ADDIE

The preceding sections of this chapter have discussed computations which use only combi-
national logic elements and have no knowledge of the previous events. More sophisticated
operations eg. square-rooting and function generation, may be formulated using integra-
tors. Integration requires knowledge of previous events and thus memory is required.
Integration is the summing of preceding events which can be accomplished by use of a
digital up/down counter. The counter increments by one if the UP line is active on a
clock pulse, decrements by one if the DOWN line is active on a clock pulse and remains
unaltered if both lines are in the same state, assuming a DLB system.

The counter can be considered to have N +1 states, S = Sy, 51, -, Sy where s; is the
numerical value of each state and also the output of the counter when it is the ¢'th state.

A possible linear mapping from the value held in the counter into the range (0,1) is

$; = —

N

At a given time the counter is in a state S = S; with output s = s;. Driving the
counter with stochastic sequences means that the actual counter state is unpredictable

but it may be expressed as a probability m;. The output is now a random variable with

expected value 5 defined as
N
§= Z T;8;
=0

Using a Bernoulli sequence to drive the UP and DOWN lines of the counter, such that the
probability of the UP line being on and the DOWN line being off is w, and the probability
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that the UP line is OFF and the DOWN line is on is e, the expected change of the counter

output is
w—e

N

bs =

Over a clock period T seconds the expected counter output change is

m—1 m—1
5(nT) —5(0) = Z 6s(nT) = Z 2&1\—16(& (4.20)
n=0 .n=0

eq.(4.20) is a simple zero-order numerical integration formula for w(t) — e(t) which can be

reorganised and rewritten as

T
5(t) = s(0) + % /O w(r) — e(r)dr

SLU, DLB and SLB mappings can be used to implement this integration technique with
a counter as will now be considered.

Only positive quantities exist for SLU signals and the counter can only count up. The
ddta line is connected to the up port of the counter with the down port set to off. The

quantity being integrated is x1, the quantity represented by the counter is z,,

w=2
X
i e=0
TX
¢
To(t) = (O) + — :EI(T)dT

NT.

In the DLB representation the UP and DOWN lines for the signal can be connected
directly to the up and down ports of the counter respectively. A transformation mapping

is now appropriate for the output of the counter since bipolar quantities are represented.

%:(25—1)

100



that the UP line is OFF and the DOWN line is on is e, the expected change of the counter
output is
w—e

ds =
TN

Over a clock period T seconds the expected counter output change is

m—1 m-—1 —eln
(1) ~5(0) = Y ss(am) = 3 WD el (4.20)
n=(0 n=0

€q.(4.20) is a simple zero-order numerical integration formula for w(t) — e(t) which can be

reorganised and rewritten as

T
5(t) = s(0) + YVI_T '/0 w(r) — e(r)dr

SLU, DLB and SLB mappings can be used to implement this integration technique with
a counter as will now be considered.

Only positive quantities exist for SLU signals and the counter can only count up. The
data line is connected to the up port of the counter with the down port set to off. The

quantity being integrated is z;, the quantity represented by the counter is z,,

)
X
e=0
s= 2o
X
¢
z,(t) = 2,(0) + —= ml(T)d'r

NT.

In the DLB representation the UP and DOWN lines for the signal can be connected
directly to the up and down ports of the counter respectively. A transformation mapping

is now appropriate for the output of the counter since bipolar quantities are represented.

=(25-1)

=&
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Let z; be the value on the input lines with the following probabilities defined, then

w = Uy

e:dI

T d
—=u—di=w—e
X

9
= xo(t) = LEO(O) + N—T A z17dT
Due to the transformation mapping the effective gain of the integrator has increased by a
factor of two.
For the final encoding scheme of SLB the integrator is formed by connecting the signal
line directly to the up port of the counter and connecting an inverted form to the down

port. The quantity x; is represented by the generating probability p,, therefore

w=p

e=1-p

and

z1
w—e=2p1—1=3(—

t

2
= z,(t) = 2,(0) + T A z17dT

The next advance from these single input integrators is to dual input integrators. Quite
obviously it is feasible to precede the single input integrator with a two input addition
circuit from §4.4, but for the bipolar systems a saving in hardware can be gained by
judicious gating prior to the counter to form a two input summing integrator. A slightly
more sophisticated counter is required in the case of the dual line representation.

Using the circuit of Figure 4.14 for DLB signals, which necessitates a counter which
can increment and decrement by two, an equally weighted integration can be performed.
If the UP2 line is on when both UP; and UP; lines are on then the counter increments
by two. The UP1 line is on if only one UP line is on and similarly for the down lines.

If the UP and DOWN lines of each input are subscripted 1 and 2 respectively then the

expected change in output s, és, is given by

_ 2uiug + u1(1 — U9 — dg) + U,Q(l —uy — dl) - dl(l — Uy — dz) - dg(l — U — dl) — 2d1dy

bs I

_uy—ditup—dy w-—e




For the SLB case, the integration of the sum of two inputs is achieved by utilisation
of the three possible input conditions. The counter increments if both lines indicate up,
the counter decrements if both lines indicate down and no change occurs if the two inputs

are opposite. Figure 4.15 shows the required gating,

W = p1p2

e=(1-p1)(1-p2)

(2p1— 1)+ (2pa — 1)
2

w—e=p1+p—1l=

_T1t 2
C2X

zo(t) = zo(t) + L t(acl(T) + zo(7)dT

NT Jo

The output of all the integrator circuits discussed have been a state S; with a value
s; which can be read out from the counter as either a parallel or serial bit values. This
value is no longer within the stochastic pulse domain. To continue pulse processing it is
necessary to re-encode the value s; back into the stochastic pulse domain. Re-encoding is
achieved as with the basic encoding strategies of §4.1 dependant upon the representation
scheme adopted. The integrator can be summarised as Figure 4.16.

The ADDIE, Adaptive Digital Element, is formed from a two input summing integra-
tor. Its operation depends upon the stochastic input sequence and the probability of the
feedback sequence from the current state of the integrator, Figure 4.17. The ADDIE is
used as the basis for output interfaces discussed in a following section, §4.8. The operation
of the ADDIE can be explained by reference to a passive frequency modulation detector,
[77]. The input to the circuit of Figure 4.18 is a fixed frequency train of pulses. A steady
state voltage will be output depenciing upon the frequency of the incoming sequence when
the rate of charging by the pulses is balanced by the discharge rate through the resistor.
The ideal case will be that the voltage across the capacitor will be directly proportional

to the rate of discharge.

v
VTR
1
logv=—=t+c¢
att =0
1
v = Vpe ¥ (4.21)

The RC network realises eq.(4.21). Moving forward to a pulse train which has a varying
frequency but that the frequency is around a fixed mean value, the voltage across the
capacitor will vary but with a fixed mean value. Advancing again to the analogue circuit

representation of this frequency detector, Figure 4.19, the output voltage is now dependant
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upon the ratio of the two resistors, g—; For a circuit with purely capacitive feedback, inte-
gration is performed equivalent to that of the up/down counter of the stochastic circuits.
The negative feedback resistor is equivalent to the inverted output fed back in the stochas-
tic circuit, Figure 4.17. The ADDIE operating upon stochastic pulse sequences thus has
similar characteristics to the RC network upon an operational amplifier. The state of
the counter is a binary number proportional to the probability of the input stochastic se-
quence. The value of the ADDIE time constant is varied by adjusting the counter length
or applying a multiplier to the feedback stochastic pulse train.

The ADDIE may be used as the basis for function formation as described by Gaines
[63]. For example, the square root of a number may be extracted by feeding back the
square of the inverse of the ADDIE output rather than simply the inverse, Figure 4.20.
Note, in this circuit, the D-type flip-flop delays the fed back pulse stream by one cycle
effectively isolating the pulse stream from itself and making it statistically independent,
hence enabling squares at the multiplier to occur.

The functionality of the ADDIE may be further extended by connecting a gating circuit
to the ADDIE’s counter. The integrator’s counter will contain an increasingly accurate
estimate of the probability that the input line is on. Thus, the counter gating may be used
to apply arbitrary transformations to the stored count. The transformed quantity can be
re-encoded into a stochastic pulse sequence for further processing. Figure 4.21 illustrates

the configuration for such a system.

4.7 Sigmoidal Transform Proposal

It is aimed to produce a sigmoidal transfer function for use in a neuron design operating
using stochastic pulse sequences. It is desired to keep all operations digital and within the
stochastic processing domain. Several options can be considered for forming this sigmoidal
transfer function, forming the sigmoid function equation stochastically using the ADDIEs,
implementing a look-up table of input to output values and finally a non-linear stochastic
transform. Each of these three will be considered in turn.

Using ADDIEs to formulate the sigmoid function equations would require one of the

following equations to be produced,

(4.22)

N _ tanh(s) = L 423
f(z) = tan (z)—m (4.23)

Directly realising the exponential function is not feasible using stochastic circuits, but

eq.(4.22) and eq.(4.23) could be represented by a power series using a Maclaurin’s expan-
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sion. For eq.(4.22) this produces

1 1+
1+e™® 2 47 48

fz) =
and for eq.(4.23) produces,

_ 2 2
fo) = T a4 e
NB. These are not the only sigmoidal equations but they are the ones most commonly
used.

The accuracy of these expansions is limited. The scaling terms could be formed in
a similar manner to that used in the N 4 1 pulse divider but would require large pulse
divider circuits. Therefore, this method for forming a sigmoid from a base equation is not
recommended. '

Using a look-up table requires that the input values to the table from the output
value formed from an ADDIE are a stable quantity. This quantity is used to reference a
corresponding value which is encoded into the stochastic pulse domain. The profile and
accuracy of the sigmoid formed will depend upon the number of elements in the table and
thus the length of the counter in the ADDIE. Using a look-up table requires the transfer
out from and back into the stochastic pulse domain. This is an entirely digital system.

The third option is a non linear stochastic transform which will now be demonstrated
in the following sections. This transform utilises Even-Shift orthogonal sequences which
can used to form a Gaussian random number (GRN) generator. This GRN is used to
perform the actual transform by comparison with a stochastic pulse sequence. A circuit

is presented to actually carry out the transfer function.

4.7.1 Even-Shift Orthogonal Sequences

An Even-Shift Orthogonal Sequence, E-sequence, is defined as a sequence of length n,
S = (s1,82,...,8,) whose elements s; (j = 1,2,...,n) are either 1 or -1 and whose

auto-correlation function W,,() is zero for all even shifts except the zero shift, [78].

n—[1

|
Wos(i) = > spsppp =0 (4.24)
k=1

i=42,44,.. . % (n—2)

Figure 4.22 illustrates the auto-correlation function for the following 16 element E-sequence,
(-1,1,-1,1,1,1,-1,-1,-1, 1, 1, -1, 1, 1, 1, 1). E-sequences are derived from and have

a one-to-one correspondence with complementary sequences discussed by Golay, [79]. As
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such it can be shown that the length n of an E-sequence is an integral multiple of four and
that » must be twice the sum of at most two square numbers. These are not apparently
sufficient conditions though.

Given an FE-sequence, S, as defined above, the sequence can be decomposed into the

form
S=(X;Y) (4.25)
where
Xr =(81,83,-.+,8n—1)
Yr = (s2,84,...,5n)

X expresses the sequence of odd-number subscripted elements, while Y is the even-number
subscripted elements of S. These two sequences X and Y, form a pair of complementary
sequences of length %. Thus, given a pair of complementary sequences X and Y, the
binary sequence formed by eq.(4.25) is an E-sequence.

It can be demonstrated and verified that for an E-sequence (X;Y') the following com-
binations are also E- sequences: (Y;X), (X%Y), (X;YE), (XE&YR), (-X;Y), (X;-Y),
(—X;=Y), (Xa,;94,), (Xa,;Y4,), (Xa,;Ya,), (Xa,;Ya,). The superscript R stands for
reversing the order of the elements. The subscripts A, and A, stand for inverting the sign
of the odd or even elements of the subsequence respectively.

Although methods exist for forming one E-sequence from another E-sequence and from
complementary pair sequences, no reference could be found for a method determining
the number of E-sequences of a given length or calculating them all, other than by an
exhaustive search through all sequences to find those which satisfy eq.(4.24). Software
was written using Borland Turbo C++ version 2 to test all possible sequences. A problem
immediately becomes apparent with this search; as the number of bits for prospective E-
sequences increase by one, the search space doubles. The runtime of the program increases

exponentially with n.

4.7.2 Sigmoidal Transform Production Using Gaussian Distributed Ran-
dom Numbers

In §4.1 encoding or input mapping techniques have been discussed using uniform dis-
tributed random numbers to map a deterministic value into a stochastic pulse stream of
1’s and 0’s. In general, the probability of observing a one on the output line represents the
normalised deterministic value. These linear transfer functions are the Cumulative Dis-
tribution Function (CDF) for a uniform random number which has a Probability Density
Function (PDF) as illustrated in Figure 4.23.

If we require a sigmoidal transfer function, ie. CDF as Van Den Bout [56] explains, it

is necessary to find an appropriatebPDF to encode the variable against. The Gaussian or
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Normal distribution function has the following PDF eq.(4.26)

1 _(1:—/1.)2
e 27 —00 <z <00 (4.26)

() =

oV 2n

where p is the mean value of the distribution and o2 is the variance. The associated CDF

is eq.(4.27)
F(;::):/a' I SN (4.27)
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For 1 = 0 and 02 = 1 Figure 4.24 shows the respective graphs.

It can be seen from eq.(4.26) and eq.(4.27) that the offset of the PDF and therefore
the CDF is governed by the mean value of the Gaussian distribution. The variance of the
distribution affects the peakiness of the PDF which in turn affects the sharpness of the
sigmoidal transform of the CDF. The results of adjusting the mean and variance upon the
CDF output are illustrated in Figure 4.25 and Figure 4.26.

Increasing the variance reduces the gradient of the sigmoid, decreasing the variance in-
creases the gradient. Increasing the mean moves the sigmoid to the right, while decreasing
the mean moves the sigmoid, in the opposite direction, to the left. Thus by manipulation
of the variance and mean the resulting sigmoid can be altered. These two sets of results

were plotted from the output generated by a simple software model.

4.7.3 Sigmoidal Transform Production Using E-Sequences

It is well known that a Gaussian random signal may be generated via the Central Limit
Theorem?. Broadly the central limit theorem states that the sum of n identically generated
independent random variables tends towards a Gaussian distribution as n — oo. An
approximation can be realised by the addition of n binary random variables with a digital
filter which has a weighting function of n weight elements.

Izumi [81] proposes the use of an E-sequence for the digital filter weighting function
based upon the ideas of Davies {82] and his own earlier work [83]. An Ersequence weighting
function is selected since it is an optimum weighting function for the production of a

Gaussian distribution. The quality of the produced Gaussian distribution is measured in

ZCentral Limit Theorem [80]
Let Xi,...,Xx be independent random variables that have the same distribution function and therefore

the same mean & and the same variance o2, Let Y, = X3 + ... + X, then the random variable

Y, —np
avn

is asymptotically normal with mean 0 and variance 1; ie. the distribution function F,.(z) of Z, satisfics

YA

2

lim F,(z) = ®(z) = \/% / e du
7r o =00

n—oo
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terms of the coeficient of skewness® and the coefficient of kurtosis.* Izumi subsequently
demonstrates the suitability of an E-sequence.

Developing the circuit used by Izumi to create a Gaussian random number the desired
sigmoidal transform can be formed by using the Gaussian random number to map a value
into a stochastic pulse stream. A block diagram of the proposed circuit is shown in
Figure 4.27. _

Pulses from a Pseudo Random Binary Sequence (PRBS) are weighted by the values of
an E—sequence. The resultant products are accamulated in an Up/Down Counter which
has been pre-loaded with the offset for the Gaussian mean. After the entire E-sequence
has been cycled through, n products, the value of the counter is output to a comparator to
map the required value z into the probability of a pulse according to a sigmoidal transform.
If the number of bits for  is more than produced by the counter, the output of the counter
has zeros padded for the least significant bits.

Binary values are being manipulated so the E-sequence is represented in terms of 1’s
and O’s as opposed to 1’s and -1's. The derivation for the Increment and Decrement signals

is shown in Table 4.2.

PRBS Bit r; | F-Sequence Bit w; W5 Increment | Decrement
Bipolar | Binary | Bipolar | Binary Binary
0 -1 0 0 0 0
0 1 1 0 0 0
1 -1 0 -1 0 1
1 1 1 1 1 0

Table 4.2: Derivation of Increment and Decrement Gating for Gaussian Random Number
Generator

What does the sigmoid look like which is produced by this circuit? What effect does
the zero padding have? To investigate these two areas, a simple software model was writ-
ten. This produces results of the input/output relationship for the sigmoidal transform.
Figure 4.28 illustrates a typical sigmoid formed for a given E-sequence. In fact, all sig-
moids were found to have this appearance regardless of the number of zeros used for LSB

padding provided the input encoding range had a similar number of bits. This is due to

3Coefficient of Skewness [84] is the 3rd moment of X* and is denoted by ;.
n =EX") = o B{(X ~ 1)’}

If the distribution of X is symmetrical about jz eg. uniform distribntion, binomial distribution then 1, = 0.
If X has a long tail to the right, eg. geometric distribution, Poisson distribution, 71 > 0 the distribution
is said to be positively skewed. If X has a long tail to the left v, < 0 and the distribution is negatively

skewed. .
*Coefficient of Kurtosis [84] is 3 less than the 4th moment of X* and is denoted by 7a.

o = B(X™) =3 =0 *E{(X — p1)*} - 3

The 4th moment is decrcased by 3 so that a Gaussian distribution has v, = 0. A distribution with thicker
tails than the Gaussian distribution will have 4, > 0, while one with thinner tails will have 72 < 0.
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the fact that the relative dynamic range of the Gaussian random number will be the same.
It should also be noted that the sigmoid transform produced is very subtle, but it does
exist.

A Gaussian distributed random number with a greater dynamic range is necessary
to produce' a better quality sigmoidal transform. For a greater dynamic range a larger
E-sequence is required which will reduce the frequency with which a Gaussian random
number can be generated from a PRBS. The size of the shift register to hold the E-sequence
will also increase possibly leading to problems of hardware realisation, but nothing which

can not be accommodated.

4.7.4 FE-Sequence Conclusions

Following a very brief summary of the properties of £-sequences relevant to their formation
and application to the production of sigmoidal transforms, the transformations possible
when moving from a PDF to a CDF for a random number are discussed with particular
reference to Gaussian distributed random numbers. The effects of adjusting the mean and
variance for a Gaussian random number upon the transformation are demonstrated. Fi-
nally, a circuit for producing isigmoidal transformation entirely digitally in the stochastic
pulse rate encoded domain is proposed.

The sigmoidal transformation circuit proposed has several limitations which include
the need for a long shift register to hold the E-sequence, limited dynamic range of the
Gaussian random number produced and poor resulting sigmoidal transform. Yet, a sig-
moidal transform is produced. Due to the length of the F-sequence a Gaussian random
number can only be produced every n clock cycles, where n is the length of the F-sequence.
By investigating other E-sequences of the same length or longer, more suitable sequences
may be found. Software has been produced to find E-sequences of a given length although

at present it is serial and slow for E-sequences of length greater than 24 bits.

4.8 Decoding and Output Interfacing

The majority of the elements described so far have consisted of basic logic gates and
have been concerned with processing stochastic pulse signals. At some stage it will be
necessary to view the results of any computation. The stochastic value must be converted
to a deterministic value.

At a basic level the number of ON pulses for a stochastic pulse sequence are summated
over a known number of clock cycles. The ratio of ON pulses to the total number of
clock cycles represents an estimate of the sequence value. Increasing the number of clock
intervals over which the calculation is performed improves the accuracy but also increases
the time over which the measurement is made. If the sequence is stationary, a fixed

quantity, this does not pose a problem, however, if the signal is time-varying it is necessary
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to continually track the signal. Therfore, any system to perform this decoding must have

the following characteristics, [75].
e Minimum bias error in the steady-state.
e Minimum variance in the steady-state.
e Minimum response time to a minimum bias error for a step input.
e Minimum response time to minimum variance for a step input.
e Ability to track non-stationary input quickly and accurately.

The solution to this problem is normally a form of Moving Average or Exponential calcu-
lation.

A moving average can be maintained by keeping a record of the previous N sequence
values and calculating the average pulse rate. For the next clock cycle the oldest sequence
value is removed and replaced by the new sequence value and the average is recalculated.
If the value on the signal line is represented by A;(0,1) then the estimate of the sequence
value is

1 N-1

PN = ﬁ(; Ai+AN)

this can be shown to be
PN =PNn-1+ An— o
N

The shorter the sampling period the greater the effect the new sequence value will have,
but the quicker the system response. The inverse is true that the longer the sequence the
less influence the new value has but the slower the system is to respond, the bandwidth has
been reduced. A major problem with this system is the necessity to store the N previous
sequence values. An appropriately long shift register can be utilised as illustrated in the
practical circuit Figure 4.29 (cf. Figure 4.15) which performs the second form of moving
average calculation.

More sophisticated systems for generating an output can be achieved by adjusting the
weighting coefficients applied to the pulse sequence, from the uniform value of %, providing
that the sum of the weights is always unity. Using the ADDIE of §4.6 Mars et al, [75], fully
explain the use of two ADDIE variants. The first is an ordinary noise ADDIE to produce
an output which is an exponential average. The second uses a deterministic pulse stream
for feedback and is the Binary Rate Multiplier (BRM) ADDIE. The speed of response of
an ADDIE for output is related to the number of bits it uses, the more bits the slower
the response to changes in input probability. However, the more bits used the greater the

accuracy of the exponential average achieved for a stationary signal.
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4.9 Summary

The main aim of this chapter has been to provide an overall critical review of stochastic
pulse rate computation by the use of three linear encoding schemes SLU, DLB and SLB.
In reviewing this material, primarily of Gaines, the mathematics and logic circuits for
performing encoding, inversion, multiplication, addition, subtraction, integration, function
formation and decoding have been presented.

In the process of this review a system for actually accurately summating N stochastic
pulse sequences has been proposed together with an efficient logic circuit implementation,
§4.4.1. Leaver’s principle of addition by pulse insertion for SLU signals has been considered
and a circuit operating in a similar manner put forward for performing subtraction by pulse
removal, §4.5.1. The final new material considered is that of developing a suitable circuit
to perform sigmoidal transformations. A circuit using GRNs generated from E-sequences
is explained and has been simulated, §4.7. The limitations of this approach are slowness of
operation, requirement for a long E-sequence for a reasonable dynamic range and limited
quality sigmoid produced but nevertheless a non-linear transformation, sigmoid transform,
is generated

Stochastic pulse rate computation relies heavily upon the ability to encode information
efficiently using many noise source or suitable random number generators. The following
chapter, §5, discusses the generation of random numbers with a view to the efficient par-
allel generation of several random numbers at once for use in a stochastic pulse processing
circuit. With all the constituent parts for an artificial neuron considered the design, im-
plementation and test of an artificial neuron operating using stochastic pulse rate encoded

signals is described in Chapter 6.
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Figure 4.1: Sample encoded pulse streams for an SLU input mapping. The signal value is
the probability of reading a one from the signal line.
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Figure 4.2: Input Probability vs Variance for a SLU Encoding. This illustrates that the
greatest variance occurs at p = 0.5 and the balance between speed and accuracy. The more
samples obtained the smaller the variance but the longer it will take.
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Figure 4.3: Non-linear encoding transfer functions. Using non-linear encoding systems an
infinite range of values can be encoded into the stochastic pulse rate domain.
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DLB  p, P,

Down Up

Figure 4.4: Inversion for SLU, SLB and DLB. A single logical inverter may be used for
SLU and SLB signals. Ezchanging the two lines is sufficient for DLB signals.
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Figure 4.5: DLB multiplication. If u; and ug are high or dy or dy are high u, must be
high, else d, is high.
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Figure 4.6: SLB multiplication. An output high is produced if both input signals are in the
same state, else an output low is produced.
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Figure 4.7: SLU/SLB Addition. The weighted summation of two signals, p; and ps, by a
third ps.
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Figure 4.8: DLB addition. This circutt produces the minimum variance summation of two

input signals.
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Figure 4.9: SLU addition by pulse insertion. Coincident pulses upon z and y are accu-
mulated, when both = and y are zero an accumulated pulse is inserted back into the pulse
stream.
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Figure 4.10: Deterministic sequences for addition. This diagram demonstrates that deter-
ministic selection of scaling signals can lead to an unequal distribution of pulses.
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Figure 4.11: Initial circuit for the generation of N pulse streams of value % Note the

large loading placed upon inverters at the top of the cascade and the large number of inputs
for the AND gate at the bottom of the cascade.
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Figure 4.12: Improved circuit for the generation of N pulse streams of value % Note the
modest and consistent fan-out and fan-in for oll stages of the circuit.
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Figure 4.13: SLU subtraction by pulse removal. In this circuit y is subtracted from z
by counting the pulses on y and by means of the AND and XOR. gates detecting and

removing the pulse from z.
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Figure 4.14: Two input summing integrator for DLB. This circuit requires a counter which
will tncrement and decrement by two. The circuit performs equally weighted integration of
the two DLB inputs.
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Figure 4.15: Two input summing integrator for SLB.
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Figure 4.16: Generic two input summing integrator. This circuit performs integration of

the two input signals and re-encodes the resultant deterministic value into the stochastic
pulse rate encoded domain.

o]

Figure 4.17: Schematic of an ADDIE. The ADDIE 1is used as the basts for output interfaces.

1 T

Figure 4.18: Schematic of a frequency modulation detector. For a source of fized frequency
input pulses the output will be a steady state voltage dependant on the input frequency. This

will occur when the rate of charging of the capacitor by the pulse stream 1is equal to the
rate of discharge through the resistor.

——w

Figure 4.19: Schematic of an analogue frequency modulation detector. The output voltage
for an input pulse stream is dependant upon the ratios of the resistors.
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Figure 4.20: ADDIE circuit to obtain the square-root of a pulse stream. The square of
the inverse of the output is fed back in this configuration.
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Figure 4.21: Generic ADDIE circuit to obtain arbitrary function transformations.
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Figure 4.22: 16-bit e-sequence autocorrelation function. All even shifts, except zero, pro-
duce o zero result.
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Figure 4.23: PDFs with associated CDFs for a URN. Adjusting the probability density
function (PDF) distribution varies the cumulative distribution function (CDF) distribution
given a uniform random number (URN).

120



fix)

Figure 4.24: PDF with associated CDF for a Gaussian random number. The mean and
variance for the PDF are 0 and 1 respectively.
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Figure 4.25: Sigmoids for adjusted variance values. Decreasing the variance of the gener-
ating PDF increases the sharpness of gradient of the CDF.
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Figure 4.26: Sigmoids, resultant CDFs, for adjusted mean values of the generating PDF.

Increasing the PDF mean moves the sigmoid to the right, while decreasing the PDF mean
shifts the sigmoid to the left.
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Figure 4.27: Sigmoidal transform generating circuit. A Gaussian Random Number (GRN)
s generated using an e-sequence. The GRN is compared to the input value, z, to produce
the probability of a pulse output according to a sigmoidal transform.



o o
o v -

0.7
0.6 1

Comparator Output
© o © o o
—_— 8] W =N (v,

[=]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(=]

Gaussian Input

Figure 4.28: Sigmoid produced by encoding circuit simulation. The sigmoid produced is
only slight but it does exist. A more pronounced sigmoid could be produced by a GRN with
a greater dynamic range, a larger e-sequence.

— UP
~o DDOWN

Counter

Shift
Register

Figure 4.29: Moving average circuit implementation. The shift register ¢s used to hold the
N previous sequence samples. Compare this circuit to that of Figure 4.15.
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Chapter 5

Multiple Random Number

(Generation

5.1 Introduction

The previous chapter, §4, has discussed a pulse rate computation technique using stochas-
tic pulse rate encoded signals. This technique relies heavily upon a noise or random
number source for encoding deterministic information into the stochastic pulse rate do-
main. A simple efficient technique for the generation of noise or random numbers for the
purpose of encoding is needed. Since stochastic pulse rate computation operates digitally
it would be preferable if the random number generator also operated by the use of digital
circuits, it could then be fabricated in the same format as the rest of the processing struc-
ture. Many signals will need to encoded therefore the generation of multiple numbers will
be investigated.

In this chapter a short review of techniques and implementation of random number
generators is made together with possible tests which may be applied to the resulting
sequence to assess their quality. Particular attention is paid to a class of generators known
as Pseudo Random Binary Sequence (PRBS) generators from which it is possible to obtain
more than one random number at a time. A technique is discussed for forming multiple
sequences from a single PRBS. The technique leaves open ended the final stage of the
selection of the appropriate circuits for sequence formation. The optimisation and search
techniques of simulated annealing and genetic algorithms were applied to the selection
process. It will be demonstrated that, in general, provided either algorithm is suitably

configured it can be used for determination of the necessary circuits.
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5.2 Generation of Random Numbers

A random number is a number, possibly within a specified range, which has no prearranged
order and its value can not be determined in advance. A random number may be described
probabilistically. For uniformly distributed random numbers each number has an exactly
equal chance of being selected, but other distributions may be produced, eg. Gaussian,
Poisson. Random n11n15ers are required for many applications for modelling and simulation
of processes, selection of input patterns to a neural network during a training phase, even
the selection of a Premium Bond winner.

Random numbers can be generated either by using hardware or software algorithms.
Hardware random number generators are frequently specialised pieces of equipment not
usually suitable for integration into a general process. They are based upon naturally
occurring random physical processes and produce excellent results. Software random
number generators are algorithms that require direct calculation within a computer. They
can be manipulated easily and are often implemented as functions or subroutines. Many
computer languages have a random number function included in a standard library if not
the main language eg. functions rand() and drand48() in C. A user should be aware
that the quality of these functions can often leave much to be desired. Software random
number generators do possess the advantageous property of repeatability by resetting the
seed of the generator.

A description of hardware and software random number generators together with the

tests which may be applied to them is given in Appendix A.

5.3 Pseudo Random Binary Sequence Generators

PRBSs are formed using digital circuits constructed from Linear Feedback Shift Registers,
LFSRs. The feedback applied to the shift registér determines the type of sequence formed.
The type that is of interest in this case is that which performs modulo two arithmetic,

XOR gates being used to achieve this.

5.3.1 Basic PRBS Generator Considerations

A shift register is a cascade connection of binary memory elements controlled in such a way
that the contents may be transferred, shifted, along the register by applying an external
clock pulse. Usually the direction of shift is fixed, although bi-directional shift registers
exist. In practice a shift register is formed from an array of flip-flops in series. The output
Q of each stage drives the input D of the following stage. The clock inputs of each stage
are driven simultaneously, Figure 5.1

The size of a shift register with N stages is said to be of degree n or of order n. When

clocked the contents of stage ¢; moves into stage g;+1. If no connection is made to the nth

125



stage output back to the input, its contents are lost from the register. The value the first
stage adopts depends upon the value its input is set to. The register holds n digits into
the past and can be said to have a memory span of n.

If feedback from later stages is introduced to supply the input value to the first stage
the future values of the shift register depend upon the present state of the register and
the format of the feedback, Figure 5.2. For example, if the output of the last stage is fed
directly back into the first stage an n-bit ring counter can be formed, or if the output of
the last stage is fed back inverted an n-bit twisted ring counter can be formed. It is the
configuration of the feedback for the shift register that is of interest to the generation of
random numbers. The feedback network, f(zy,z9,---,z,), may be any combination of
binary logic function.

Tausworthe, [85], developed a random number generator based upon the above prin-
ciple of linear feedback. Modulo 2 arithmetic is applied to the feedback, ie. XOR gates
are used to form the feedback network. Appropriately selected feedback on the shift reg-
ister will enable an output bit sequence of length 2™ — 1, maximal length known as an
m-sequence. The feedback configuration for a Tausworthe generator is described by its

characteristic equation

D"®D"*®1=0

where D is the delay operator, n is the length of the generator and s is an output from
another stage i.n the shift register. The PRBS configuration may also be described in terms
of the feedback stages, 2P, used to generate the next bit in the sequence to be moved into
the register,

n—1 D xn——s—l -1

Z =

The characteristic equation is a primitive polynomial, ie. it is an irreducible polynomial.
Other XOR feedback combinations can be used but the sequence will not necessarily be
maximal length. Tables of irreducible polynomials have been published to reduce the
need to calculate them, [86]. During production of the bit stream the shift register will
cycle once through all its possible states, except the all zeros state, before repeating. The
all zero state is self replicating. The sequence of bits output is a Bernoulli sequence of
probability 0.5. Since the sequence length is odd the number of 1’s and 0’s will vary by
only one, the number of consecutive logic levels of a particular state is directly related to
the length of the run, ie. half the runs will be of length one, a quarter of length two, an
eighth of length three, etc.

The realisation of a PRBS can be achieved efficiently in software by a few lines of code,
but for the fast generation of values a hardware method is preferable. Several architectures
have been used from a simple single shift register to more elaborate schemes using multiple
shift registers, [87, 88, 89], the latter allowing increased speed in the formation of random

numbers when many steps are required to advance the generator beyond correlation.
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5.3.2 Delayed PRBSs

Having produced a single pseudo random bit stream, how can multiple instances be gen-
erated which can be considered independent? If the sequence is sufficiently long then
the autocorrelation between delayed versions is small except where the two sequences are
synchronous. For an n-stage binary shift register generator a maximal length sequence

the normalised autocorrelation function for a period L bits is given by
1
A(k) = i > ivigk
L

k denotes discrete time delay, and the sequence is expressed as +1 and —1 rather than 1

and 0. The transformation from z; to y; is given by
yi = (-1)" =1 - 24z,

1—--1,0—1

The autocorrelation function has the appearance of Figure 5.3. It can be seen that for
all except synchronous sequences the correlation is negligible and they can be considered
as independent sequences. It is feasible to have g generators each of the same feedback
configuration but with a different seed state producing ¢ sequences. This method is
inefficient in its realisation requiring the formation of many generators.

Viewing the configuration of a single PRBS generator it can be seen that adjacent
cells of the register will cycle through the same sequence as that produced by the output
but delayed by the appropriate number of bits. A single PRBS could be produced with
multiple cells after the base n cells to store the delayed sequence in, Figure 5.4. For
sequences of long length and large delays the overall shift register length will become
prohibitive for practical formulation. '

Tsao, (1], demonstrated how, using modulo two arithmetic and the shift-and-add prop-
erty of m-sequences, specified delayed versions of a sequence can be realised. Figure 5.5
illustrates the initial steps needed. It can be seen that the number of XOR gates needed
depends upon the delay and number of serial additions required. The overall speed of
operation of the generator will be hampered by the propagation delay through the XOR
gate tree. A problem is to determine the necessary tap combinations for a given delay.
This problem has been resolved in several ways.

Tsao resolves the problem of determining the required tap points by manipulation of

the characteristic equation,

D"'_I@Dp@ @DTEBD.S‘:D—I
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= D'n. D Dp+l ) D'r+1 o D.€+1 o) DO =0

This is best illustrated using the three Tsao examples for a four-stage PRBS. These three
cases will be reiterated for other techniques which have been developed.

For a four-stage PRBS the characteristic equation is;
D¥¢D*=1or D*eD*® D" =0

The delay combinations for D%, D% and D3 are to be deduced.

%

1. D°

Rearranging the characteristic equation,

D*=D*@ D°
D*=DpD* = D(D*® D%
= D*¢eDeD°
2. DS
D*=D?D* = D*D*@ D"
— D5D2

= D¢ D*¢ Do D’

3. Finally D1®
D13 — D—2

Extract D? from characteristic equation,

= D*D*eDe&D?) = 0
D* £ 0
D*eDeD™? = 0

D* = D?*@D

The mathematical manipulations necessary for each individual delay are not always ob-
vious. As the characteristic equation and delays desired become longer the modulo two

algebra becomes more demanding.
Davies, [90], observed that if the required delay, D7, is divided into the characteristic
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equation, f(D), then
DI

f(Dy ~

where ¢(D) is the quotient and 7(d) is the remainder, ie.

¢(D) @ (D)

D’ = j(D)q(D) ®r(D)

For the m-sequence

f(D)=0= f(D)g(D)=0

thus
D’ = (D)

The coefficients of the remainder, r(D), are the desired tap off points from the shift
register. Practical considerations for the calculation of 7(D) are considered by Davies, [91]
and Van Luyn, [92]. The division technique will now be used to calculate the connections

for the previous three cases.
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Gardiner, [93], provides a third general purpose method for determining feedback com-
bination delays. The basic principle is to increment all the delays in the characteristic
equation by one and when a delay is produced that is outside the bounds of those which
can be directly obtained from the generator to reduce the equation to terms which can.
Nlustration by example is probably the best method to understand this technique, there-
fore repeating for the last time the example generator for delays D?, D% and D™ we have

the characteristic equation in the form
D’eD*=1

Dt=D3g@ DO (5.1)

1. D® Increment delays
D®=D*e D!

D* cannot be obtained from the PRBS directly, but substituting from eq.(5.1) pro-
duces:
D5 — D3 D Dl o) DO

2. D% Again increment the previous equation

DS =D*e D?*¢ D°
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Again using eq.(5.1) this can be reduced to the minimal configuration

D°=D'@¢D*@D'e D’
3. D' Increment delay by three from that of DS

D’ = D'eoD’eD*eD?
D9 — (D3@D2@D1@DO)@(D3$D1@DO)@(D3@DO)®D3

Note that D* @ D' = 0
‘ D°=D*q D°

Increment delay by four

D13 — DG@D4
— (D3®D2@D1®DO)@(D3®DO)
= D@ D!

In the last example, D3, rather than increment by a single delay and reduce the
subsequent equation, an increment of multiple delays is used before reduction of the

resulting equation.

It can be seen from the above three techniques that any one may be suitable to find
a tap combination to produce a single delay of the fundamental sequence. However, it is
not possible prior to the calculation to determine how many tap off points will be required
for a delay and where they will lie. In addition, if several delayed sequences are required,
many taps from a single shift register cell may be required causing uneven loading upon the
shift register. Considering these points the following section considers a possible solution

to these problems of forming multiple PRBS sequences from a single generator.

5.3.3 Multiple PRBS

The methods described above for obtaining the tap pattern required for a single delay
are in general adequate for most needs. If multiple pulse sequences are required from a
single generator these techniques are no longer practical since other considerations besides
absolute delay must be considered. Firstly, the number of taps which must be XORed
to form a delay must be a reasonable size. If this fan-in is too large it will result in
complications when attempting to connect up a circuit. The algorithms of section §5.3.2
do not provide any knowledge of the number of taps required to form a delay prior to their

calculation. Secondly, if the number of delays which require a tap from a given element of
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the shift register is too large the loading will adversely affect the shift register performance.
Alspector et al, [94], highlights these problems and offers a possible solution.

Alspector’s solution for resolving the dilemma, the basic principle of which is the
reverse of the methods outlined in §5.3.2, has been implemented in software. The technique
~will now be outlined. Groups or buckets of tap combinations are first formed that satisfy

the following three constraints.

1. The number of taps required to produce a delay, F, is bounded eg.
2<F<L5

F is used since it represents the fan-in to the XOR. gate necessary to produce the

delay.

2. The delay, d, created by a given tap combination is to be within a given bound of

the optimal value, D.
d=D=+46

5 is the delay tolerance.

3. The loading, L, placed upon elements of the shift register shall be evenly distributed

and as low as possible.

After generating all tap combinations which satisfy condition (1) and placing them in
buckets where their associated delays satisfy (2), it is then necessary to select from each
bucket a tap combination which minimises a cost function based upon all three constraints.
Note, not all tap combinations which satisfy (1) will have a suitable delay. The number of
possible combinations of selection from each bucket will be large. Hypothetically, for 31
equally spaced delayed sequences 31 buckets would be required, if each contained just two
tap patterns the number of configurations to evaluate is 23! = 2147183647. In practice
there will be more tap patterns per bucket and an even larger search space. An exhaus-
tive search of all these possible solutions is prohibitive in the amount of computation time
required. In.Alspector et al [94] paper it was étlggested that the search process may be
conducted by random or deterministic techniques and possibly simulated annealing. Thus,
in section §5.4 and §5.5 a discussion of the implementation of two random search algo-
rithms, Simulated Annealing and Genetic Algorithms, is made. These two algorithms were
experimented with to find an optimal form for the taps from all the possible combinations.
An example of Alspector’s system may best illustrate the whole procedure.

Given a PRBS generator of 10-bits from which we require five sequences the nominal

spacing between delays is:

m-sequence length - -1 = 204.6

Number of sequences 5
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Therefore delays of 0, 205, 410, 615 and 820 are required. A range of taps that are suitable
is specified. The range two to four will be used in this case. It will be observed that a delay
difference of £1 can be achieved by moving a tap up/down the shift register, Figure 5.6.
Similarly by moving complete tap patterns up and down the shift register the overall delay
can be adjusted, Figure 5.7. A set of essential tap patterns can be defined where a single
tap is always the least/most significant bit. Near delays are determined by shifting the
tap patterns by p and adjusting the delay by p. For two taps per pattern the essential
taps are illustrated in Figure 5.8. By extrapolation the principle can be expanded to any
other number of taps.

The number of tap patterns for a given number of taps is

N Nt .
( K ) = NI(N — K)! _ (5:2)

whereas the number of essential tap patterns is

(N—l)é (N —1)! (5.9

K-1] (E-DI(N-EK)

Here N is the length of the PRBS generator and K is the number of taps to be used. For
the example of the 10-bit PRBS with the range of taps from two to four the total number

£ [ 10
> = 375
. K=2 K

but the number of essential tap patterns is

4 9
Z =129
K=o \ K -1

A table of essential tap patterns will exist for two, three and four taps per pattern. The

of tap patterns is

correct delay must now be associated with these patterns. Three methods are proffered by
Alspector for the solution of tap patterns and delays, the Simple Shifting Method, the Gi-
ant Step/Baby Step Method and the Discrete Logarithm Method. The techniques increase
the speed of association of a delay with a pattern but also increases the complexity of the
implementation. The Simple Shifting Method was adopted for ease of implementation and
will be detailed, refer to Alspector’s paper for details of the other two methods.

For a given tap combination from the PRBS determine the output that produces from
n clocks of the PRBS. n is the length of the PRBS. This n bit output vector, g, is stored.
The PRBS is reset to its initial base value and clocked. An n bit rolling output vector

from the PRBS is maintained. This rolling output vector is compared with the vector
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g. When these two vectors are equivalent the number of clock cycles required is the shift
associated with the tap combination.

Having calculated the delay for each of the 129 essential tap combinations the table
of delay/tap pairs can be expanded to cover all 375 tap combinations. A tolerance band
is placed round each of the nominal delays to create a bucket into which delay/tap pairs

are placed. For a tolerance of £50 the delay buckets are illustrated in Table 5.1.

Lower Delay Limit | Nominal Delay | Upper Delay Limit
974 0 50
155 205 255
360 410 460
365 615 665
770 820 870

Table 5.1: Delay Buckets for Five Delays From a 10-bit PRBS with a Tolerance of 450

A search is made of selections from each bucket of delay/tap combinations to find the
most suitable.

Thus it can be seen that multiple PRBS m-sequences can be formed from a single PRBS
generator. Actually it is the same m-sequence viewed at different instances. Providing the
length of each m-sequence used at any time is not too long, ie. a sequence does not overlap
with another, the degree of correlation will be low. These sequences from the PRBS may

be used as separate noise sources.

5.3.4 PRBS to Random Number Conversion

To be able to utilise a PRBS sequence as a random number it must be correctly converted
from a series of bits. The basic technique is to form a sequence of bits output by the
PRBS generator into a digital word and to treat this word as a random value. To form
subsequent random values the generator is advanced so that new random bits are advanced
into the register holding the digital word. It is necessary to advance the generator by more

than the size of the digital word otherwise a correlation will exist between random values,

Figure 5.9.

5.4 Simulated Annealing

Simulated Annealing, SA, is an optimisation process with its roots based on the processes
of annealing within condensed matter physics. The analogy made is with thermodynamic
processes. For example, at the start of the annealing process the matter will be at a high
temperature and in a fluid phase. The fluid is allowed to cool slowly so that the molecules

are able to align themselves as thermal mobility is lost. Cooling further will enable the
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formation of crystals and solids as the state of minimum energy for the system is found.
As the temperature tends towards zero so the energy of the system tends to a minimum.
More specifically, [95], at a given temperature, 7', when thermal equilibrium has been
reached the material state can be characterised by the probability of it being in a state
with energy, £, given by the Boltzmann Distribution.
1 __E_

Pr{E=FE}= Tt)e kT (5.4)
Z(t) is known as the partition function and acts as a normalisation function dependent
upon the temperature. The term e_“'l% is the Boltzmann Factor, where kp is the Boltz-
mann constant. Slowly decreasing the temperature concentrates the Boltzmann distribu-
tion into the state with the least energy. As the temperature approaches zero only the
minimum energy state has a non-zero probability of occurrence.

Metropolis et al, [96], modelled the annealing process in matter. Using a Monte Carlo
method to select the sequence of states for the matter, a state being characterised by
the position of the particles of matter, the energy of the configuration was calculated. A
new state was generated by a random perturbation of the existing state. The amount of
perturbation depends on the temperature of the system, a higher temperature causing a
greater disturbance, the difference in energies, AF, between the existing state and the
new state being used as a basis for determining if the new state should be maintained. If
AFE <0, ie. a decrease of energy in the system, the new state’is kept and used as the base
for restarting the cycle. If AF AZEO the acceptance of the new state is probabilistic. The

probability of acceptance is e ¥57

1 ifAE <0
placcept) = _am (5.5)
e T IfAE>0

therefore it is possible for a new present state to be reached with a higher energy require-
ment.

This acceptance rule is the Metropolis criterion. Repeating the perturbation process
many times results in a distribution approaching that of a Boltzmann distribution. The
entire process is known as the Metropolis Algorithm.

Transferring the idea of annealing to general optimisation problems requires the asso-
ciation of temperature, energy and state within the new domain. This was first achieved
by Kirkpatrick et al, [97], in their application to the physical design of computers eg. inte-
grated circuit placement and wiring routes. Subsequently the technique has been widely
applied. The state in the new domain is the organisation, configuration or set of values
taken to represent that state. To this configuration is assigned a cost function, C', which

represents the amount of energy within the system, the aim is to minimise the value of
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the cost function. Temperature is represented by a control parameter, ¢, which initially
has a high value. For a randomly selected combination of system parameters, configura-
tion 7, the cost function is evaluated, C(z). A random selection of new elements in the
neighbourhood of : is made, configuration j, for which the cost is also evaluated, C(j).
Whether or not this new configuration is accepted as the basis for further improvements

depen‘ds on the Metropolis criterion applied to the difference in costs, AC;;.
AC; = C(j) - CG) (5.6)
The probability that configuration j is used as the next base configuration is,

( 9 1 if AC;; <0
p(accept) = AC;;
et if AC; >0

(5.7)

If A;; > 0 it is possible for a new configuration to be reached with a higher cost function
value associated with it.

The value of ¢ is reduced in steps, the system being allowed to reach an equilibrium at
each value of the control parameter. The algorithm is stopped when the control parameter
reaches a predetermined small value. Simulated annealing is thus a series of applications
of the Metropolis algorithm for decreasing values of ¢. As an alternative the control
parameter is reduced continuously with time rather than in steps. The above two formats
divide simulated annealing into two categories, [95], the former an homogeneous algorithm
which can be described by a series of homogeneous Markov chains, and the latter an
inhomogeneous algorithm described by one inhomogeneous Markov chain.

Applying the simulated annealing technique to optimising the tap combinations se-
lected for the PRBS generator a cost function must be defined. Relevant parameters to
be considered in this function are the number of taps required to form a delay, F, the
loading the delay configurations places upon the shift register elements, L, and finally the

distance, d, of a delay from its nominal delay.

C=f(F)+g¢(L)+ h(d) (5.8)
For the generic cost function, Equation 5.8, a low cost must be produced for favourable
configurations and a high cost for unfavourable ones. For f(F') the less taps required
to form a delay the simpler the XOR. gate required, while the function for the loading
placed upon individual shift register elements, g(L), the more evenly distributed the taps
are across all elements of the shift register the better. Non-linear penalties were applied
to these factors such that a small increase in the number of taps required for a delay, F', or
the overall loading placed on a shift register element, L, becomes increasingly expensive.

For the cost factor attached to the distance of the actual delay selected from the desired
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nominal delay, h(d), it was found that very large differences in the delay were necessary
which outweighed the combined cost of f(F') and g(L), therefore the difference in delay,
d, was scaled down to a similar order of magnitude. The delay difference is still accounted

for but is not the predominant concern. The resulting specific cost function is

Y X d

X
C =Y (F) Ly)? — :
2B+ 2 (1) + 2. 50 (5.9)

y=1 =1

where X is the number of m-sequences required from the shift register and Y is the number
of elements which make up the shift register.
The simulated annealing technique was applied in two ways which varied in the amount

of perturbation the system received, the cooling schedule and the Metropolis criterion.

Scheme 1. From an initial random state with a known cost a new state is formed by
selecting at random a delay for each m-sequence in turn. After each m-sequence has
been adjusted the cost of the configuration is calculated. The Metropolis criterion
is applied where p(accept) is tested against a control parameter 'warmth’. 'warmth’
is decreased at regular intervals but has no bearing on the amount the system is

perturbed. Once all m-sequences have been subjected to adjustment the first one is

revisited.

This variant of simulated annealing ensures that a new state is a close neighbour to
the existing state since between two consecutive states 30 of the 31 m-sequences are

the same.

Scheme 2. This second formulation of simulated annealing causes a greater disturbance
of the configuration between one state and the next. Each element in the configura-
tion is subjected to the possibility of change depending upon the value of 'warmth’.
Initially, when 'warmth’ has a high value many new m-sequences are selected for the
next state, but as the system cools and 'warmth’ is not as great less m-sequences

alter between one state and the next.

The form of Metropolis criterion used for accepting or rejecting a state is dependent
both on the change in cost and the value of 'warmth’. This method is more akin to

Metropolis’s, [96], and Kirkpatrick’s, [97], implementation than the previous scheme.

Two sets of data were available to evaluate the performance of the above two schemes.
The sets of data were 31 buckets of delays and associated tap patterns, where 6 = 10000
and 2 < F < 5. The second set of data differed from the first in that in each bucket
a delay existed which matched the optimal value, associated with the delay was a tap
pattern of all zeros. This second set was to test the ability of simulated annealing to
seek out a known global minimum for a given cost function, ie. each m-sequence would be

for optimal delay and have no cost, likewise the all zero tap pattern would incur no cost
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either.

5.5 Genetic Algorithms

Genetic Algorithms, GA, are a type of optimisation technique which like simulated an-
nealing have their roots in the natural world. Genetic algorithms take their lead from
nature. In nature information about an organism is coded into the biological structure
known as a chromosome. The information is stored in genes which are a constituent part
of the chromosome. The value of the gene is known as an allele. For a species to evolve
these chromosomes reproduce, crossover (chromosomes exchange section or genes) and
mutate (a section of chromosome or an individual gene alters). During the life of the new
organisms formed only the fittest will normally survive in a population of many varieties.
Much of the early work in the field of genetic algorithms was conducted by Holland, [98].

For genetic algorithms a string is defined for the system which is an encoded description
of the state of the system, a string being analogous to a chromosome. To determine the
fitness of a string, ie. the set of conditions, for an environment a cost function is used
similar to that used with the above simulated annealing technique. An individual string
would be the same as a single state description in sim_ula,ted' annealing. Rather than just
one string a population of strings is used each with an associated fitness value computed
from the cost function. A new population is produced by selecting strings from the existing
population with a probability proportional to the strings fitness. Strings with large fitness
value have a higher probability of selection and are therefore more likely to survive the
reproduction phase to the next generation. It is possible that a string will be replicated
several times in the new population.

The next stage of the genetic algorithm is crossover. Two strings are selected at
random from the child population. Within these two strings a common point is randomly
selected and the two strings are exchanged at this point with a probability of crossover,
P.. Normally the value of P, is quite high, eg. P, > 0.6. This operation is the one point
crossover and is illustrated in Figure 5.10 for binary encoded strings. Variations on this
scheme can and have been used such as the n-point crossover and crossover between more
than two strings at a time. The aim of crossover is to cause a blending of fit strings to
produce fitter ones. ’

Finally in the genetic algorithm cycle each feature of each string is subjected to the
possibility of mutation with probability P,,. A feature which is mutated has its value
modified to another value within its parameter set. This modification is a random selection
and may or may not include the features present value. The probability of mutation is
usually quite low otherwise the entire algorithm would degenerate into a random search
of available configurations. The purpose of mutation is to introduce diversification and

new features into the population which may not be present in any of the parent strings.
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The whole genetic algorithm cycle is restarted with this new population as the base for
reproduction. Note, if crossover and mutation are pursued too aggressively salient feature
groups may not be able to be sustained through generations.

The basic algorithm is simple, straightforward and has been found to be robust when
applied to many combinational optimisation problems and searches of a result space.
Overall genetic algorithms are distinguished from other optimisation techniques by the

following properties,

1. direct manipulation of the coding.
2. search from a population of possible solutions, not from a single point.
3. search is conducted via sampling from a population, a blind search.

4. the search uses stochastic operators, not a deterministic process.

Similar to simulated annealing a cost function exists which is used to evaluate candidates
produced by a pass through the algorithm. The basic algorithms operation proceeds in a
very straight forward manner.

How then are genetic algorithms to be applied to the combinatorial optimisation prob-
lem of PRBS tap optimisation? Firstly a string must be designed to represent the tap
patterns selected, secondly a cost function to evaluate the fitness of such a string must Be
defined. The string used is composed of a set of 31 numbers, each number representing
one tap pattern from each of the tap buckets in sequence. Using this format the same cost
function used to calculate the performance for simulated annealing can be used to drive
the genetic algorithm, Equation 5.9. A look up table to correlate the tap pattern numbers
in a bucket to an actual pattern is used. -

The genetic algorithm is impleméﬁted as follows. From a set of parents a next gener-
ation of children is formed by selecting two parents. Rather than a one point crossover
occurring between the parents a multiple point crossover takes place. The two parent
strings are divided at random between the two children. If the first parent’s feature is
assigned to the first child the second parent’s feature is assigned to the second child. The
probability that the first child has the first parent’s feature is the probability of crossover.
After generating all children each child has each of its features subjected to the possibility
of mutation. Since a feature is a number representing a delay/tap pattern combination in
a bucket a random number representing a new delay/tap pattern combination is gener-
ated if mutation occurs. The probability of selecting a feature during mutation is inversely
proportional to the number of features in a bucket. Once the desired number of children
have been produced the fittest are selected as suitable parents for the next generation.
The same two sets of data were used to assess the performance of this genetic algorithm
as had been used for simulated annealing.

The data used to evaluate the performance of the GA was the same as has been

specified for testing of the SA above.
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5.6 Results

The following plots demonstrate the performance of simulated annealing and the genetic
algorithm’s ability to seek the lowest cost function and thus the best PRBS tap combi-
nations for the data. Two data sets were formed with which to evaluate the performance
of the simulated annealing algorithm and the genetic algorithm. The sets of data were
31 buckets of delays and associated tap patterns, where é = 10000 and 2 < F < 5. The
first set of data consisted of all real tap combinations and associated delays within each
tap/delay bucket. This data has an unknown global minima which the above algorithmic
techniques are to seek. The second set of data has an artificial global minima created by
setting an artificial tap combination in each bucket to all zeros and the delay difference
to zero, this pattern would never occur in practice. The aim of this known, forced, global

minima was to ascertain the ability of the algorithms in finding this known global minima.

5.6.1 Simulated Annealing

It has previously been explained that simulated annealing has a probability that it will
climb out of a minima to a configuration with a higher cost function penalty. Since this
higher costing configuration becomes the new working configuration it will not represent
the best configuration found by the algorithm. The following result plots display the cost
of the best configuration found so far, not the configuration being annealed at that point.

Figure 5.11 and Figure 5.12 show the performance of Scheme 1 and Scheme 2, §5.4,
respectively for the first data set with an unknown global minima. It can be seen that
Scheme 1, which perturbs a single m-sequence between each cost calculation, descends
faster and to a configuration with a lower cost than Scheme 2 which perturbs more m-
sequences between each calculation.

Figure 5.13 and Figure 5.14 display the ability of both schemes to find the artificial
global minima introduced into the second data set. Again the first annealing scheme
out performs the second. Scheme 1 does in fact find the artificial global minima of tap
combinations which are all zeros with zero delay difference.

These results demonstrate that simulated annealing is able to find an improved system
configuration by means of perturbations of the existing system configuration. Simulated
annealing can even find a global minima in a non-exhaustive search of system configura-
tions, the success of this will depend on how striking the global minima is compared with
local minima, the case tested here was perhaps over emphasised. However, the speed with
which improved configurations are found and how significantly they are an improvement
over an initial random configuration depends upon the format of the simulated annealing
algorithm. Possible causes for the poor performance of the second scheme relative to the
first are that too much heat existed within the system and so it could not settle into an

appropriate configuration. Another cause is that it was cooled too rapidly and became
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frozen into a poor configuration. No attempt was made to find the optimal parameters

for each scheme rather to find adequate working parameters.

5.6.2 Genetic Algorithm

Genetic algorithms are stated to be fairly robust to parameter variation, particularly with
respect to the crossover rate. To verify this fact the effects of varying the crossover rate
and mutation rate were evaluated when the genetic algorithm was applied to the first data
set which has an unknown global minima. The ratio of parents:children was fixed for the
trials.

For 10 parents and 20 children Figure 5.15 and Figure 5.16 show the effect of varying the
crossover rate. The mutation rate was set at 3% or P,, = 0.03 which is in the range which
texts, [98], recommend. This mutation rate is sufficient to introduce new characteristics
into the evolutionary process, but not too large so that the genetic algorithm degenerates
into a random search. It can be seen that for this instantiation of a genetic algorithm the
rates of cost reduction are very similar as the crossover rate is varied.

For 10 parents, 20 children the mutation rate was varied, Figure 5.17. The crossover
rate was fixed at P, = 0.5, since the algorithm has shown to be relatively robust to this
parameter its exact value is not too important providing it is constant for all trials. The
amount of variation of mutation rate was small but it can be seen that given this fact
the algorithm is robust to changes. It was found that if the mutation rate was very low
few new features are introduced into the search space and a search of parameter orderings
only occurs caused by the crossover, an unsatisfactory reduction in cost function resulted.
Likewise if the mutation rate was too large the crossover had little effect since the strings
became randomised by the excessive mutation rate.

With the crossover and mutation rate fixed at P. = 0.5 and P,,, = 0.03 the ratio of
parents:children was varied, Figure 5.18 and Figure 5.19. For the genetic a,lgofithm to
operate the number of children must be greater than the number of parents since the next
set of parents is selected from the present set of children. If the number of parents was
greater than the number of children some children would need to be duplicated to form a
complete parent group. With the number of parents fixed at 20 and the number of children
varied little variation occurs in the rate of cost reduction. Where there is a small group of
parents the number of children has little effect since the fittest parents will be the most
likely to breed children. Although the pool of children for the next parent generation may
be varied in size all children will be of similar capabilities whether this group is large or
small. With the number of children fixed and the quantity of parents varied differences in
performance can be seen. Poorest performance occurs with a large numbef of parents and
a large number of children. Part of the genetic algorithm is to select the fittest children,
thus if a large number of present children are selected to become parents singling out the

fittest will not be effective and a strong group of parents will not be formed.
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Finally, to test the ability of the genetic algorithm at finding a known global minima
in a large search space the second data set was operated upon by the genetic algorithm.
Figure 5.20 shows the performance of the algorithm when the ratio of parents:children
is varied with phe number of children fixed at 50, Po = 0.5 and P,, = 0.03. The same
effect for the variation in the number of parents is exhibited as for the first data set, that
is that for less parents a faster reduction in cost function occurs. Although the known
global minima of zero cost is not found within the number of configurations inspected by
the genetic algorithm it has certainly got very close. Given more time it would probably
cover the remaining reduction.

Comparing the simulated annealing and genetic algorithm results it must be pointed
out that 100 more configurations were inspected by the simulated annealing algorithm
schemes than by the genetic algorithm. Within a given time, number of configurations
inspected, the genetic algorithm outperforms the simulated annealing for reducing the
value of the cost function and therefore in finding good tap pattern combinations for
multiple PRBS. The smoother curves for genetic algorithms are achieved by averaging
several trails with the same parameter set. This was possible due to the faster operation

of the genetic algorithm over that of simulated annealing.

5.7 Conclusions

With the aim of being able to encode deterministic information into a stochastic pulse rate
signal for manipulation by the processes of §4 an examination of random number generators
both in hardware and software has been made. It can be seen that the techniques available
are, many and various. One method in particular has been highlighted which can built
easily in hardware or modelled in software, the PRBS generator. The PRBS generator
consists of an LFSR with an appropriately selected XOR feedback circuit which performs
modulo two arithmetic. If the feedback combination is correctly chosen an m-sequence is
produced with the shift register passing through all its possible states except the all zero
state.

Methods for generating delayed variants of the fundamental sequence have been dis-
cussed with a view to forming multiple PRBSs from a single generator. The problems of
uneven loading upon the LFSR which may be caused by several delayed sequences created
from a single PRBS has been drawn attention to before the description of a solution by
Alspector which has been implemented for practical use. Alspector left open the question
of searching the solution space for an optimum result. To close this gap two methods of -
combinational optimisation have been experimented with, simulated annealing and genetic
algorithms. Both of these techniques utilise stochastic operators.

Simulated annealing and genetic algorithms have both been found worthwhile imple-

mentations for the combinational optimisation of PRBS delay tap selection. Two formats
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of the simulated annealing scheme were tested which can be equated to the amount of
energy in the system and the rate of cooling. A difference in performance between the two
simulated annealing schemes was noted, thus the exact implementation of simulated an-
nealing to a particular problem is significant. The simulated annealing approach has been
found to be several orders of magnitude slower for this problem than the genetic algorithm
approach. Intuitively this result is not really surprising in that, although both algorithms
involve probabilistic processes, the annealing process does not generate as broad a search
space as the genetic algorithm. The genetic algorithm has also been found to satisfy its
claim to robustness in the adjustment of some of its main parameters, eg. crossover rate,
but more sensitive to other parameters, eg. the number of parents. For this combinational
optimisation problem genetic algorithms appear to be the better individual algorithm of
the two inspected. Considering the implementation process, simulated annealing is more
complicated with the concept of agitating the system, whereas the genetic algorithm in-
volves simply manipulating the string through crossover and mutation.

Simulated annealing and genetic algorithms are not the only optimisation approaches
which can be applied, Very Fast Simulated Re-annealing, VFSR, as developed by Ingber
and Rosen, [99, 100], is another candidate but this has not been experimented with.
Alternatively a hybrid technique drawing on features of both simulated annealing and
genetic algorithms could be developed.

All component parts for an artificial neuron operating by the use of stochastic pulse
rate computation can now be seen to exist. In the following chapters an actual hardware
design is described, implemented and tested before consideration of a suitable training

paradigm which may be overlayed onto the fabricated hardware.
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Figure 5.1: Format of a shift register. The output, Q, of a given D-type flip-flop stage in
the shift register feeds the input, D, of the following stage.
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Figure 5.2: Linear feedback shift register, LFSR, configuration. The input to the first
stage of the LFSR is a combination of the outputs from all stages of the shift register.

145



Normalised Autocorrelation

_———— ———— } Relative
L \ —— l__\ e I 5 \ Delay In Bits

Figure 5.3: Autocorrelation for a PRBS. The correlation for all except synchronous se-
quences of the PRBS are negligible.
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Figure 5.4: Extended PRBS generator. Delayed versions of a sequence can be obtained by
teking outputs from the extensions to the shift register, stages 11-15.
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Figure 5.5: Generation of delayed PRBS as illustrated by Tsao. Modulo two arithmetic

and the shift-and-add property of an m-sequence is used to generate delayed versions of a
sequence. '
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Figure 5.6: Delay variance by moving tap position. A difference in delay can be obtained
by adjusting a tap position up or down the shift register.
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Figure 5.7: Delay variance by moving a set of tap positions. By eztenston of the principle
tllustrated in Figure 5.6 delays generated by tap combinations can be shifted by moving the
complete tap combination up or down the shift register.
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Figure 5.8: Example of essential taps. For essential tap patterns the LSB is always unity,
near delays are obtained by shifting the tap pattern along the shift register.
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Figure 5.9: Example of correlation between random numbers formed from successive bits.
It is necessary to advance a shift register by the number of bits it contains to prevent this
correlation being exhibited.
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Figure 5.10: Illustration of One Point Crossover with Two Strings. A common point is
selected in two strings and the string components are changed at this point.
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Figure 5.11: Simulated Annealing Scheme 1: Unknown Global Minima. The cost of tap

pattern configurations steadily reduces until 600000 have been inspected at which point the
energy minimisation levels off.
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Figure 5.12: Simulated Annealing Scheme 2: Unknown Global Minima. The cost of tap
patterns used decreases but does not reach as low a final configuration and reaches a plateau

SOoner.
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Figure 5.13: Simulated Annealing Scheme 1: Known Global Minima. This simulated
annealing scheme has been able to find the global minima within the search time allocated.
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Figure 5.14: Simulated Annealing Scheme 2: Known Global Minima. This simnulated an-

nealing scheme has been unable to find the global minima within the search time allocated,
but has tended towards a plateau. Compare this to the alternate scheme Figure 5.13.
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Figure 5.15: Genetic Algorithm: Unknown Global Minima: Varying Crossover Rate. The
genetic algorithm shows little variance in performance for small adjustments in crossover
rate. It has reached a comparable minima to that of Scheme 1 for simulated annealing,
Figure 5.11.
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Figure 5.16: Genetic Algorithm: Unknown Global Minima: Varying Crossover Rate. The
genetic algorithm shows little variance in performance for large adjustments in crossover
rate, the system tis robust for changes in crossover rate. It has reached a comparable
minima to that of Scheme 1 for simulated annealing, Figure 5.11.
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Figure 5.17: Genetic Algorithm: Unknown Global Minima: Varying Mutation Rate. The
genetic algorithm shows little variance in performance for small adjustments in mutation
rate. It has reached a comparable minima to that of Scheme 1 for simulated annealing,
Figure 5.11.
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Figure 5.18: Genetic Algorithm: Unknown Global Minima: Varying Parents:Children
Ratio. The genetic algorithm shows little variance in performance for adjustments to the
number of children. It has reached a comparable minima to that of Scheme 1 for simulated

annealing, Figure 5.11.
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Figure 5.19: Genetic Algorithm: Unknown Global Minima: Varying Parents:Children Ra-
tio. The genetic algorithm shows quite a degree of variance in performance for adjustments
to the number of parents. It is not as robust to adjustments in this parameter.
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Figure 5.20: Genetic Algorithm: Known Global Minima: Varying Parents:Children Ratio.
As above genetic algorithm shows quite a degree of variance in performance for adjustments
to the number of parents. It has tended towards the known global minima quicker for small

number of parents.

153



Chapter 6

An Artificial Neuron VLSI

Design and Implementation

In preceding chapters of this thesis theoretical considerations have been made regarding
stochastic pulse rate computation §4 and the random number generation system to be
used in such an environment §5. These studies were undertaken with the aim of designing
and constructing an ANN operating by the use of stochastic pulse rate encoded signals.
An individual neuron must first be designed using these techniques before a whole network
may be built. From §3 it can be seen that Banzhaf [57], Kondo et ol [60], Van Den Bout (55,
56]) and Tomlinson [42] have already put forward designs for neurons and ANN. However,
these designs either do not operate entirely in the stochastic pulse rate domain, rely upon
.inexact calculations or are for a particular NN architecture. The design put forward here
is for a neuron operating using SLB signals and with all processing performed within the
digital domain.

Following an overview of the basic requirements for the neuron architecture to be
designed a brief description is made of the design and implementation routes available
within the School of Engineering, University of Durham and the reasons for selecting the
ASIC design package Solo 1400. The next section of this chapter is concerned with the -
design and development of working sub-circuits before they are connected together to form
a working neuron. Finally, there follows a description of the test system used and the tests

applied to a fabricated neuron device.

6.1 Neuron Overview

For a neuron to be practically realised in hardware several factors must be examined.
Firstly, the method of computation and communication must be considered. This has been

decided upon as being stochastic pulse rate encoded signals, but should this be unipolar,
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bipolar, single line, dual line, linear or non-linear? Since many of the constituent parts
of a neuron (multipliers and summers) have not been considered for non-linear encoding
strategies the design must be a linear one. Linear dual line circuits tend to be larger
than their single line counterparts, using a single line scheme will lead to smaller circuits.
In addition the routeing of signals between component parts will be easier for the single
line rather than for the dual line case. Overall the signal computation should be bipolar
although it may be found that unipolar signals are more appropriate for some applications
within the neuron.

Secondly, the size of the neuron must be considered, what fan-in should it have ie. how
many inputs will there be? This will be governed ostensibly by the task the NN has to
-perform in which the neuron is placed. If the neuron has excess inputs it is possible to
set unused inputs to zero so they do not contribute to the processing, whereas if there are
insufficient neuron inputs additional inputs cannot be added. Too many inputs will lead
to a large neuron which may prove unwieldy in this proof of principle exercise. For these
reasons a fan-in of 16 was selected. From an estimate of the circuitry size and complexity
to implement the design it should not prove too large to fabricate and test. In addition
the design is not too small that a computationally useful task cannot be performed.

Thirdly, the technology with which the neuron is to be built must be considered.
Whether to use discrete ICs or VLSI design tools? Whether it will be TTL or CMOS? If
a VLSI design is implemented what level of design is necessary, eg. full custom, standard
cell? These questions about realisation are considered more completely in the following
section.

To summarise a general artificial neuron using SLB stochastic pulse rate encoded
signals with 16 inputs is to be built. The basic layout of neuron is as per Figure 2.2 a
sum of weighted inputs passed through an activation function, a sigmoid transform in this
design. The performance of the neuron can be adjusted by varying the weights and so
these weights must be programmable. If the neuron is to be used in a circuit which learns
and adapts on-line then the weights must be able to be varied as the neuron operates.

The block diagram for the neuron is Figure 6.1.

6.2 Design Tools

Within the School of Engineering several options exist for the fabrication and test of an
artificial neuron. The three options considered are the construction from discrete TTL or
CMOS components, design/simulation/layout via the Solo 1400 CAD package and finally
design/layout/simulation using a combination of ChipWise, SPICE and System HILO 4 CAD
tools. Each of these three options offers varying degrees of sophistication, adaptability,

testability, expense and lead time. Each option will now be described in turn before

reviewing slightly more deeply the selected option.
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Construction using discrete TTL or CMOS components offers the most flexibility in the
built hardware. Standard components may be used to perform specific tasks and circuits
easily adapted if a design alters. This flexibility is also the weakness in that construction
becomes prone to errors. For a single neuron device this may be the best option to take,
but if many neurons are to be built the job becomes highly repetitive with the increased
liability of errors. There is little delay between design and test as the circuit exists from
the outset. The discrete nature also means that there are more points at which a circuit
can be externally monitored to verify performance.

The second option is the use of the Solo 1400 ASIC design package. This tool allows
the design, simulation, circuit layout and packaging to be accomplished in a unified envi-
ronment before dispatching the design to be fabricated by a third party. Solo 1400 makes
use of fully characterised standard cells of devices and circuits in 1.2m, 1.5um and 2.0pum
CMOS technology which can be interconnected to form higher level functional circuits.
Libraries of intermediate circuits, eg. counters and registers, are available to speed the
prototyping phase. Once the neuron design is complete many can be fabricated at the
same time. It is not feasible to make changes to a design once it has been fabricated,
thorough design and simulation is therefore necessary.

The third and final option is also an integrated circuit approach. The aim would be
to utilise a combination of ChipWise, SPICE and System HILO 4 to produce a full custom
designed neuron. It would be necessary to design the individual logic gates through the
more complex sub-circuits to the final complete neuron. In effect a personal library of
components must be built and tested. The components gates can be simulated and char-
acterised using the SPICE circuit simulation tool which could be used to extract timings
and drive capability information for example. The extracted parameters would be inserted
into a circuit description within System HILO 4 to allow simulation of the functionality of
connected circuits over a period of time as the circuits run. Circuit layout and routeing of
a design must all be accomplished manually. Once a design had been completed it would
need to be fabricated and packaged by a third party. This option has potentially the most
sophisticated result but requires a prohibitive quantity of work to be undertaken.

In fabricating a neuron a balance has to be struck between design flexibility and
adjustment, ease of testing, level of integration, sophistication of design and repeatability
of fabrication. Each of the three above systems has strengths in some but not all areas.
Solo 1400 with its unified environment offers the best compromise since this will allow
the production of ASICs with their high level of integration and a structured format of
design simulation and test. Through the use of standard cells the individual design and
characterisation of many circuit components has already been accomplished allowing the
structuring of the design with relative ease. The integrated simulation should enable the

highest probability of a functioning neuron to be designed.
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6.2.1 The Solo 1400 Program Suite

Solo 1400 consists of several separate programs instantiated from within a Solo 1400 envi-
ronment shell, in this case running under the X11 windowing system upon a Unix work-

station. The programs used can be classified into five general groups,
Design entry using draft or an ordinary text editor.
Circuit compilation with the model language compiler model.

Simulation and test with the waveform compiler wdl, simulator mads and output

inspection utility wave.

Layout and encapsulation of the design using place, gate, pinout, route, draw,

artview and package utilities.
Design management using audit, padaudit and shipdes.

This is not a full list of the extensive Solo 1400 programs complete details of which can

be found in the reference manuals {101].

Design Entry

Two systems were used to enter a design, the first being the schematic entry utility draft,
the second an ordinary text editor with which to write a circuit description using the
model hardware description language, HDL.

With the draft tool a GUI interface is used to select, place and connect components
together. Libraries of pre-designed circuits, either standard or user written, can be called
upon to be added to the schematic. The resulting circuit may then be encapsulated within
a symbol as a new component for use in a higher level circuit. A hierarchy of building
blocks is constructed for a design such that at the highest level all that may be seen is
a number of interconnected black boxes with input/output pads attached. The resulting
output from draft is a compilable text file of model code.

Textual entry of a circuit design uses the model HDL. The structure of the language
is simple and clean, it is not unlike writing a conventional software program. With the
experience of using draft a hierarchy of circuits can be written in either library files
<library>.inc or actual compilable circuit files <circuit>.mod.

Both systems had their place in the design process. Initially schematic entry provides
good visual feedback of the design of the circuit but it is much slower for design entry as
the size of a circuit grows. Due to the name checking facility of draft circuit intercon-
nection can be a problem as names on buses, wires may not agree even though such a
connection is valid. It was found that often a base design could be produced using draft
and the model code produced extracted and incorporated into a textual library where

minor variations were made for specific needs. Conversely text based designs would be
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bound into a schematic so that pads could be connected and the sub-circuit exported for

standalone simulation and testing.

Circuit Compilation

Following the entry of the circuit(s) and the formation of a model file the code is compiled
using the model utility. model expands a <circuit>.mod file to a <circuit>.mdl file
which is compiled into a <circuit>.id1 file for the simulation of the design. Checks upon

the design for integrity are made with errors and anomalies adequately reported.

Circuit Simulation and Test

Having produced a valid circuit design it is necessary to verify its operation and perfor-
mance. Solo 1400 offers several tools for this task, the main one used was mads (Multi-level
Analogue and Digital Simulator) together with the wave utility for displaying the output.

mads takes as its input a <circuit>.wdl file which describes how the circuit inputs
are to be driven, outputs of the circuit and specified monitor points within the design are
logged as the simulation progresses. The <circuit>.wdl is a text file written in WDL
(Waveform Description Language) which is very similar to C but with notable differences,
eg. no array handling. A well written exercise routine greatly aids in the verification of
a design and in debugging should this be necessary. It is not possible to specify what
an output or monitor point should be at any given time, this must be deduced from the
wave output and checked manually. These same test ﬁlesA for a circuit can/are used at a
later stage in the design process after the circuit layout and encapsulation when a greater
knowledge of the timing considerations are available and when testing with actual device

parameters occurs accounting for propagation delays, device loadings, tolerances etc.

Circuit Layout and Encapsulation

Given that a circuit operates as expected the next stage is to lay the design out on
silicon and if desired encapsulate within an appropriate package. Most of this process is
mechanical but user intervention is possible to fine tune parameters if desired. Normally
the default performance will prove satisfactory. S

The first step is the execution of place, a utility which resolves the design hierarchy
into basic logic gates. The resolved hierarchy as implemented by a series of stages is
drawn out into a long line and then set out in a regular structure of rows and columns by
repeatedly folding the long line of stages back and forth to form an approximate square
format.

The gate utility constructs each actual gate upon the output from the place utility.

The next stage of the circuit layout is the routeing of wires between gates and out

to the pads. User intervention is required to organise the pads on the die to a desired
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format, the pinout utility provides a GUI based system for performing this operation.
Included in pinout is the ability to select the desired package in which the resulting
die will be encapsulated, it was found that for experimental designs the default package
selected based upon the die size was satisfactory. Once the pad organisation is complete
route can be executed which performs the actual placement of interconnections. User
intervention for the routeing process will have taken place at the design stage with the
specification of time critical signals. , ..

It is possible to inspect the resufting artwork from the placement and routeing using
draw and artview. draw translates the final output from route into Caltech Interchange
Format!, ie. it generates a .cif file. The .cif file can be inspected graphically using
artview which allows the mask design to be viewed at various levels of detail. It is feasible
to zoom into areas of the mask and to measure distances between circuit elements.

The final stage is to encapsulate the design into the specified package from the pinout
phase. This entails placing the bonding wires between the die pads and the pins of the
physical package using package. package is similar to pinout in the layout of the GUI
and the package type selected should correlate with that selected in pinout else it will be
necessary to cycle back to the pinout stage.

After placement and routeing it is required to return to the simulation and test phase
where the simulations can be rerun but with greater detail of device parameters and
propagation delays. Simulation runs accounting for maximum, minimum and nominal

expected timings should be successfully executed.

Design Management

To aid and maintain consistency of a design through its various stages Solo 1400 has several
utilities for automatically generating templates of required files extract and of analysing
the circuit produced audit and padaudit. shipdes is used to check the integrity of the
overall design process, that all the required utilities have been executed successfully in
the correct order, that all the test phases have been executed and any special concessions

have been agreed with the fabrication institution.

6.3 Artificial Neuron Design

Each of the sub-circuits of the artificial neuron design will be specified before amalgamation
into a single neuron unit for simulation and fabrication. A modular approach to design has
been adopted since an artificial neuron can then be constructed from tested sub-assemblies
with known modes of operation. Many of the sub-circuits are reused, by designing in a

modular format new occurrences of a module can be instantiated reducing the risk of

LCIF Caltech Intermediate Format is a system for describing graphics items, mask layouts, in a machine
readable form for nuse by an output device.

159



errors and keeping the circuit description fo a minimum. For example, in the case of the
N pulse divider weight encoders §6.3.5 a basic module was adapted and renamed for each
of the required weights. The sub-circunits are now presented either as draft printouts or
in the form of sample model code. Example wdl test files are shown together with the

associated wave output plots.

6.3.1 PRBS Generator

A PRBS generator is required to create the random numbers which are to be used for
the encoding of the neuron input weights, the N pulse divider weights and the sigmoidal
transform. By the use of Alspector’s technique [94] as discussed in §5.3.3 multiple PRBS
sequences from a single generator may be formed, actually the same sequence but at
different positions in its run length. The total number of sequences required for the
neuron is 34, made up of 17 for encoding the neuron input weight values, 16 for encoding
the N pulse divider weights and a single sequence for the sigmoidal transform.

A 27 bit PRBS is used, a schematic of which is shown in Figure 6.2 and the model
code listing for the variable length shift register is shown in Figure 6.3. The appropriate
PRBS feedback points were obtained from a table of primitive polynomials [102] which
are known to produce maximal length sequences. In order to allow for additional PRBS
sequences which may be required the software developed for the implementation of Al-
spector’s technique §5.3.3 was used to find a total of 38 sequences with a minimum of two
taps and a maximum five taps used. The delay variation, édelay, from the nominal was

set at 100000. Thus, the nominal spacing between sequences is

: 227 _
Maximal length 1 ~ 3539045

Number of sequences T

and the worst case spacing between sequences will be
Nominal space — 2 x 6delay = 3332045

A suitable configuration for the tap off sequence gating was found by the use of the
simulated annealing software §5.4. A sample of the model file for prbs27to38 which
generates the circuit is given in Figure 6.4.

No simulation of the tap off sequences were made but the basic PRBS generator was
exercised using mads and the wdl file of Figure 6.5. For this wdl file the generator is
reset such that all the individual elements are 1 and then run for 50 clock cycles at which
time it is reset again and run for a second 50 clock cycles, both should produce the same
results. It can be seen from the waveform plot of Figure 6.6 how the generator operates

for this short period of time and that it is successfully reset at time = 102500.
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6.3.2 12-bit Comparator

In the following two sections the storage and encoding for the neuron input weights and
the N pulse divider weights will be explained. Central to the transformation from a
deterministic value to a stochastic pulse is a circuit for comparing a weight register value
W with a random number R which has the same number of bits. If W > R a one is
required as an output else a zero is output. For the basic one-bit case the circuit of
Figure 6.7 will achieve the objective for arbitrary values of A and B. However, it is
required to compare two n-bit numbers. For example, consider two n-bit numbers where
n = 3 such that X = X3X2X; and Y = Y3Y,Y;. A possible algorithm for comparing these

values is

1. Examine the MSBs, X3 and Y3

if X3>Y3then X >Y
if X3 <Y;then X <Y
if X3 = Y3 then no decision

2. Examine the next two bits, X5 and Y5

if Xo>Yyand X3g=Y3then X >Y
if Xo <Yy and Xsg =Yz then X <Y
if Xo =Y5 and X3 = Y3 then no decision

3. Finally, examine the last two bits X; and 11

if Xy >Yrand Xg=VY3, Xo =Yy then X > Y
if X1 <Yiand Xsg=VY3, Xo =Y then X <Y
ifX1=Y1 andX3=Y3,X2=Y§thenX=Y

This algorithm could be expanded in logical form as follows where E,, is the equivalence

of any individual p bits.
E3 = X3Y3 + X3Y3

Ey = XoYs + XoYs
B = X1Y1 + X1
therefore :
X =Y :E3EsF,
X>Y : X3V 4+ E3XoYs + E3Ey Xa1h
X<Y: Xng + EngYEz + E3E2)—(1Y1

The logic gating even for only this 3-bit case is becoming quite involved. Fortunately

there is a more efficient system, in terms of gating, which can be utilised, the iterative
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comparator.

It can be seen from the explanation of the 3-bit comparator operation above that a
pattern of operation is emerging ie. given that no decision has been possible as to which is
greater X or Y then compare the next MSBs. In the worst case it is necessary to compare
all bits of the two numbers to form a decision. Some logic design books eg. Holdsworth
[103] and Roth [104] provide the derivation for the iterative comparator which is illustrated
in Figure 6.8 and Figure 6.9. The operation is that with a¢g and by, which are equivalent
to Z7 and Z; reset to zero, to compare the two bit streams of X and Y a bit at a time
starting with the MSB and recycle the result at each clock pulse for each subsequent bit.
A valid comparison result may occur before all bits have been compared but it is necessary
to wait for the final bit comparison to be certain of the correct result.

The iterative comparator circuit is sequential whereas the original comparator de-
scribed was made only from combinational logic. It is true to say that the iterative
comparator is slower than the combinational comparator at actually testing the two num-
bers but the combinational comparator has to wait for the full numbers to be formed,
probably in shift registers, before the computation can take place. There is thus no time
disadvantage to using the iterative comparator in this case but there is a great benefit in
terms of the circuit complexity and component count. The length of the numbers that
can be compared by this iterative technique is determined by the clocking and reading
arrangement not by the fundamental logic design of the comparator.

Figure 6.10 and Figure 6.11 illustrate the model code used to generate the iterative
comparator. After compiling an encapsulation of this design it was exercised using the
wdl file of Figure 6.12 the results of which are seen in Figure 6.13. For this simulation
three 4-bit comparisons were undertaken (1011,1100) = (10,12) starting at time 240,
(1101,1011) = (13,11) at time 750 and (0101,0101) = (5,5) at time 1250. The reset line
is taken low before each comparison begins to clear the output latches of any value they
may hold. It can be seen that R goes high and T goes high at the points the conditions
X <Y and X > Y are detected respectively. Both R and T remain low where the
input signals are identical. The extension to 12-bit numbers is achieved by entering 12-bit

numbers, MSBs first, into the comparator and increasing the period between the reset

pulses.

6.3.3 Counters

Solo 1400 contains several libraries of elements including firmlib and synclib, within
these libraries are more sophisticated circuits eg. multiplexors, n-bit shift registers and
counters. For the neuron design two types of counter are required, firstly a basic counter
which can be loaded with a specific value from which to start counting, secondly a more
sophisticated up/down counter which can also be loaded with a specific value. Only the

former exists in the libraries, a synchronous counter. The latter up/down counter will
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need to be constructed from basic logic gates.

Starting with the basic synchronous counter one is required to count up to the number -
of bits being compared by an iterative comparator, 12, and then reset both itself and the
comparators. Another of similar form but with a count of 80 is required for monitoring
of the F-sequence progression in the sigmoidal transform circuit. model files for the two
counters are in Figure 6.14 and Figure 6.15. The format of the two counters is the same
with a synchronous counter at the heart which is reset to all zero either by the count of 12
(80) being reached as detected by the immediate logic gates on its outputs. Alternatively
the counter may be reset to zero by an externally applied reset signal. A single low pulse
rstcnt clocked through a flip-flop when the counter reaches its limit is produced. The wdl
file and associated waveform plot are shown for only the 12-bit counter in Figure 6.16 and
Figure 6.17. The Probe commands in the model code allows signal lines internal to the
circuit to be monitored as well as the external connections which are always monitored.

By probing internal lines spikes can be seen upon rstcnt which propagates to rstes
this is caused by the propagation of signals through the combinational logic on the outputs
of the counter. The spike is hidden from the reset input of the counter by the d-type flip-
flop and causes no problems. A

Moving onto the second type of counter, the up/down counter, a 12-bit variant is
required for the storage and adjustment of the input weight values. An up/down counter
description does not exist in Solo 1400 so rather than redesigning a fairly common system
the 74169 TTL circuit was transcribed and used, Figure 6.18. The 74169 circuit is a 4-bit
up/down counter with both a carry-in and a carry-out, it can be loaded with an arbitrary
4-bit value. By cascading three devices a 12-bit up/down counter could be formed. Since
an up/down counter is required for a total of 17 input weights two variations on the 4-bit
counter were formed one with no carry-in circuitry, Figure 6.19, and one with no carry-out
circuitry, Figure 6.20 enabling the 12-bit up/down counter of Figure 6.21 to be generated.

For 12-bits the range of numbers is 0 — 4095 or for symmetrically distributed bipolar
values -2048 — +2047 which is required here. A means for inhibiting the counter movement
when reaching either of these limits is required which will also allow the counter to move
away from the limit if the opposite direction signal is applied. The final 12-bit up/down
counter circuit with limit stops is displayed in Figure 6.22. For exercising and simulating
this circuit a wdl file was used to verify that any value could be loaded into the counter,
that all the crossings from the use of one 4-bit stage to another operated both ascending
and descending in both positive and negative halves of the number range and finally that
the maximum and minimum limit stops operated satisfactorily. A wdl file and associated
wave plot for the two limit tests are shown in Figure 6.23 and Figure 6.24.

In the simulation, Figure 6.24, the counter is loaded with a value just less than the
maximum ie. Ox7FA at time =~ 2500. With UD set HIGH which is equivalent to up the

counter can be seen to count up, cntout(0:11). When the counter reaches the maximum
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value it stops until the count direction is changed time ~ 22000 when it starts to count
down. The process is mirrored for checking the minimum value limit stop starting at time
= 32700 when a value just greater than the minimum is loaded into the counter.

A 5-bit up/down counter is required in the Gaussian random generator of the sigmoidal
transform. This is required to have a lower limit of O and an upper limit of 80, this counter
does not need to deal with negative numbers. Rather than use the two appropriate 4-bit
counters and limiting the counting as per the 12-bit version it was decided to extend the
principle by which the 4-bit operated to five with no carry-in and no carry-out. The
resulting circuit is shown in Figure 6.25 and with the count limiting circuitry added in
Figure 6.26.

As per the 12-bit variant the counter was exercised and simulated at being loaded with
a valid value, counting up/down and stopping at the two limit points until the direction

of count was changed. No figures illustrate the wdl file or wave output plot.

6.3.4 Input Weight Storage and Encoding

The 12-bit up/down counter with limit stops described in the previous section §6.3.3 forms
the basis for the input weight storage and encoder circuit a diagram of which is shown
in Figure 6.27. In this circuit the 12-bit weight value, —2048 < W < 2047, is held in
the up/down counter. It can be adjusted either by loading a new value explicitly or by
counting up or down thus allowing the weight to change as the artificial neuron operates.
Every 12 clock pﬁlses the value in the counter is transferred to a shift register. In this
transfer the MSB is inverted, the effect of this inversion is to translate the number range
up by 2048. The new 12-bit number is compared a bit at a time with one of the 38 PRBS
sequences from the PRBS generator §6.3.1 by a 12-bit iterative comparator §6.3.2. The
result of this comparison is latched out after the 12th bit has been compared at which
point the new weight value is transferred into the comparator register and the pfocess
repeats itself.

Since the up/down counter receives every clock pulse its value will constantly be count-
ing up or down in this arrangement. In order to maintain a stable value to be encoded
it is necessary that the average number of counts up is equal to the average number of
counts down. A stochastic pulse sequence of value 0.5 should thus be fed to the Up/Down
input. The value of 0.5 corresponds to zero in a SLB stochastic computation scheme.

Originally this part was designed using the draft schematic editor, but after the basic
layout had been produced the model part description was extracted, edited and debugged
resulting in the final description of Figure 6.28. The major components of Figure 6.27
can be identified as follows, Up/Down Counter — ud12bitst, Comparator Register —
es2sreg ps and the 12-Bit Iterative Comparator — comp_iter.

A total of 17 of these circuits are required which could mean many connection points to

the outside world from the ASIC if the 12 weight input lines and the 12 weight output lines
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are all separate. This is resolved by using bi-directional pads for the weight input/output
immediately halving the number of connections at the expense of a little control logic.
Secondly by developing a simple address decoder/demultiplexor to select which input
weight is required for writing to or reading from, together with a multiplexor for selecting
the appropriate lines if a weight value is to be read out the number of connections can be
reduced to one set of 12. The model descriptions of Figure 6.29 and Figure 6.30 illustrates
the address decoder and multiplexor implementations respectively.

Appropriately combining 17 input weight encoders, address decoder, 12 multiplexors
with the necessary drive buffering a unified input weight encoding block can be formed.
This is not illustrated.

Simulation and verification was conducted upon the component parts of the input
weight system before utilising the entire system. Taking first the input weight encoder
itself it was loaded with three values , 0 = 0x000, +1024 = 0x400 and -1024 = 0xc00, which
for a 12 bit range, —2048 < z < 42047, should result in a stochastic pulse stream of value
0.5, 0.75 and 0.25 respectively. This is borne out by the wave plot of Figure 6.31 where T
is the output pulse stream. The LD/EN pulses can clearly be seen with the corresponding
changes in IN(0:11) time = 0, 2400000 and 4800000. UD and CLK, the up/down and clock
signals, appear as solid bands since on the scale of the plot they are varying too quickly to
be able to observe individual movements. Testing the address decoder is trivial with five
input address lines and 17 output select lines. By counting up through the binary codes

addr(0:4) inputs Figure 6.32 demonstrates that each of the select lines select(0:16) is

chosen correctly.

6.3.5 N Pulse Divider Weight Encoder

For the N pulse divider which will be used to bias all 17 weighted input lines it is necessary
to generé.te 17 stochastic pulse streams of value 1;7 for which is needed a series of pulse
streams of 1~17, %, ...etc. By encoding unipolar values of %7 x FS, % x FS, ...the
stochastic pulse streams can be formed. FS is the full scale value. The basic encoding
circuit is illustrated in Figure 6.33 and is similar to the input weight circuit encoder of
Figure 6.27 but slightly simpler since there is no up/down counter to be included. As
the system is used to encode a constant value the inputs to the shift register are tied to
the power rail or to ground so that upon reset it reloads its unique value for encoding.
Due to the uniqueness of the load value a separate description must be produced for each
encoder. Figure 6.34 displays the model code for this encoder for the value of % while
Table 6.1 is a table of values bias register contents.

~ The simulation of this circuit follows the same format of the input weight encoding
simulation of the previous section with the output stochastic pulse streams of the appro-
priate value. This will actually be illustrated in the full simulation of the N pulse divider

when the output of these fixed value unipolar encoders will be probed.
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Register Contents
Bias Register | Decimal | Hexadecimal

= 241 0x0F1
£ 256 0x100
= 273 0x111
& 293 0x125
= 315 0x136
& 341 0x155
i 372 0x174
o 410 0x19A
5 455 0x1C7
3 512 0x200
3 585 0x249
5 683 0x2A6
1 819 0x333
i 1024 0x400
I 1365 0x555
3 2048 0x800

Table 6.1: N Bias Register Contents

6.3.6 NN Pulse Divider

In the proposal of §4.4.1 for an N input adder circuit an extendable circuit for generating
N pulse streams of % is shown, Figure 4.12. This circuit will now be modelled using
Solo 1400. It will be noticed that a basic cell of two AND gates and an inverter exists
which is repeated in a ladder structure. This basic block divide_cell is realised as
an individual element in the model code Figure 6.35 which allows an arbitrary sized N
pulse divider to be specified using the parametrised model code Figure 6.36 where the
divide_cell block is repeatedly used.

For the neuron circuit 17 pulse streams of value ﬁ are required so a simulation using
all pulse divider weight encoder circuits was simulated. By probing the output of the
weight encoders which are internal to the circuit the operation of all the encoder can be
verified at once. The wave plots of Figure 6.37 and Figure 6.38 displays all the encoded
weights n(2:17) are the resultant 117 pulse streams u(1:16) respectively, u(0) = n(17).
Spikes can be seen in the ﬁ pulse streams but due to latching of data in later parts of the

neuron these do not cause problems.
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6.3.7 Multipliers, Gating and Summation

These circuits are as discussed in the review of stochastic computation techniques §4 and
are trivial. For performing the multiplication between the input value and its associated
weight a single XOR gate is used. To make the circuit definition less error prone a
parameterised array of XOR. gates is specified given by the model code of Figure 6.39.

The original N input adder design is used to perform summation of the weighted input
signals. In order to gate these values appropriately the 17 lines of output from the N pulse
divider u(:16) are used to gate the weighted input signals using a parameterised array of
AND gates as per the XOR gate case above Figure 6.40.

Finally, the signals can be summed using an OR gate without the fear of losing in-
formation due to the coincidence of input pulses or performing inexact computation. The
original choice was to use a tree structure of two and three input OR gates. Fortunately
Solo 1400 contains a built in parameterised OR gate circuit which can take N inputs, in
this case N= 17. This component will lead to a more efficient and compact multiple input

OR gate. This is not illustrated.

6.3.8 Sigmoid Transform

The last component part of the artificial neuron is the sigmoidal transform which enables
the neuron to produce a non-linear response. The circuit proposed in Figure 4.27 of §4.7.3
is implemented in model code Figure 6.41. The 80-bit E-sequence listing is omitted, it
consists of connections for the load inputs of the shift register to either the power rail or
to ground as appropriate. It is seen that a new 12-bit comparison is performed every 80
clock cycles, governed by the length of the E-sequence, which has the effect of reducing the
frequency of the resulting output stochastic pulse signal. If this signal is fed into another
neuron this problem should be ameliorated by the slicing action of the input weighting,
but it will be most noticeable in the case of actually decoding the pulse stream.
Specifically testing the sigmoidal transform performance is difficult, however, the gen-
eral operation can be determined by a similar exercise strategy to that of the input weight
encoding. Three values corresponding to 0.2, 0.5 and 0.8 full scale are transformed using
the circuit. A marked difference in the quantity of pulses should be seen between the three
values transformed. The difficulty in producing more exact results is in performing the
average of the output pulses by extraction from the output signal. Figure 6.42 displays
the output waveform for this circuit. It can be seen that as the input values increase
from 0.2 — 0.5 — 0.8 at times 700000, 6900000 and 13002000 the density of the pulses in
the output stream decreases. An error exists which has failed to be corrected in that the
output of the transform should have been inverted. This has propagated throughout the
whole artificial neuron design, fortunately a single inverter on the appropriate output pin

cures this problem. This is the reason the output pulses become less dense rather than
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more dense.

6.3.9 The Whole Neuron

All the component parts required for an artificial neuron have now been designed and
simulated. These circuits are interconnected appropriately to form the complete artificial
neuron. In the process of compiling the whole design the power supply and ground are
specified together with the input, output and bi-directional pad connections. This enables
the remaining phases of the design stage (gate, place etc.) to be run for a unified
ASIC design to be produced. The successful integration of all circuit elements enables a
simulation of the artificial neuron to be performed.

Figure 6.43 displays the concise model code file for the complete neuron, for clarity all
the pad interconnections off the ASIC are omitted. The benefit of the modular approach
to design that Solo 1400 enables can be seen. Each sub-circuit has been designed and
simulated before incorporation into a higher level component resulting in the complete
neuron description in a limited number of lines of model code.

It was found that after the initial layout and routeing the physical die size was large
and a core limited design had resulted ie. the size of the device is predominantly governed
by the size of the chip array Figure 6.44. The smallest off the shelf package in which the
die would fit was an 84-pin leadless chip carrier, LCC. A total of only 64 connections are

necessary for a fully connected device as listed in Table 6.2 leaving 20 unused pins. As this

Signal Quantity Name Type
Clock 1 Clk Input
Read/Write 1 R/W Input
Reset 1 Rst Input
Weight Address 5 Addr(0:4) Input
Weight Data 12 Init(0:11) | Bi-directional
Input Pulse Stream 16 In(0:15) Input
Weight Up/Down Control 17 UD(0:16) Input
Output Pulse Stream 1 Out Output
Power Supply 5 vdd(0:4) Power
Ground 5 Gnd(0:4) Power

Table 6.2: Necessary neuron connections

is a core limited device and rather than wasting the unused package connections additional
output pads were added to the circuit to allow monitoring of internal areas of the device.
In particular the output of the weight encoders were monitored WghtOut(0:16) and the
result of the weighted input summation SumOut. This leaves just two unused pins. With
the benefit of hindsight it would have been wise to have had a monitor on the output of

the PRBS generator.
After recompilation of the circuit following the pad additions and the resulting pro-
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gression through all the layout, routeing and packaging routines of Solo 1400 the pin con-

nections resulting are listed in Table 6.3 and the pin layout is illustrated in Figure 6.45.

Although it is possible within the mads simulator to monitor internal nodes within the
circuit the set of routines written to verify the performance of the neuron concentrated
on the ability to only monitor the external connections since with a fabricated device
probing internally would not be feasible. The set of tests created in the wdl file progress
through the entire neuron exercising it in stages. Diagnostic style tests were included
to verify operation of the internal circuits operation in case any problem occurred. The
simulation consisted of several separate sections to test the address selection, the loading
of input weight register values, the unloading of input weight register values, the ability of
the weight encoders to convert the deterministic values into stochastic pulse streams, the
summer operation and the sigmoidal transform. These tests are a reiteration of the tests
conducted upon the sub-circuits but with the need to use the external chip connections
and preceding circuits for driving the circuits under test. Having successfully verified the
artificial neuron function the device is ready to be fabricated from the .cif file formed in
the design and layout process. The fabrication has been conducted at a third party site
through the EURQCHIP program.

Once the device has been fabricated it is necessary to test and verify the operation
of the physical hardware. The hardware testing system employed is described in the
following section §6.4. Following a description of the successful testing of an individual
artificial neuron device a circuit is presented utilising six neurons operating to perform a

simple standard task, the encoder/decoder problem.

6.4 Hardware Artificial Neuron Testing

To test the fabricated artificial neuron two hardware test configurations were considered.

1. The design and construction of a test board driven by a combination of signal gener-
ators and on board test circuits. Signals would be monitored and analysed via logic

analysers and oscilloscopes.

2. The design and construction of a mounting circuit board with a cabling interface to

a digital I/O card controlled from within a PC.

Each system does of course have its own advantages and disadvantages.

Considering first the construction of a test board driven by signal generators and
‘monitored by logic analysers and oscilloscopes. The coordination of several pieces of
external equipment to produce a unified test system becomes difficult. A total of 53 inputs
are required for a neuron, though for some tests many are driven in parallel, the availability

of equipment with the appropriate number of outputs becomes a problem. The ability
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Pin Name Type Pin | Name | Type
1 Gnd 0 Ground 43 | UD 8 Input
2 OutWght 0 Output 44  UD 9 Input
3 OutWght 1 Output 45 | UD 10 | Input
4 OutWght 2 Output 46 [ UD 11| Input
5 OutWght 3 Output 47 | UD 12 | Input
6 OutWght 4 Output 48 | UD 13 | Input
7 OutWght 5 Output 49 { UD 14 | Input
8 OutWght 6 Output 50 | UD 15 | Input
9 OutWght 7 | Output 51 { UD 16 | Input
10 | OutWght 8 Output 52 | Vdd 4 | Power
11 Not Used Not Used || 53 | Gnd 4 | Ground
12 | OutWght 9 Output. 54 RwW Input
13 | OutWght 10 | Output 55 | Vdd 3 | Power
14 | OutWght 11 | Output 56 | Gnd 3 | Ground
15 Gnd 1 Ground 57 Clk | Control
16 Vdd 1 Power 58 Rst Control
17 | OutWght 12 | Output 59 In0 Input
18 | OutWght 13 | Output 60 Inl Input
19 | OutWght 14 | Output 61 In 2 Input
20 | OutWght 15 | Output 62 In 3 Input
21 | OutWght 16 | Output 63 In 4 Input
22 SumOut Output 64 Inb5 Input
23 Out Output 65 In 6 Input
24 Init 9 Bi-dir 66 In7 Input
25 Init 10 Bi-dir 67 In 8 Input
26 Init 19 Bi-dir 68 In9 Input
27 Addr 0 Control 69 | In 10 | Input

- 28 Addr 1 Control 70 | In11 | Input

29 Addr 2 Control 71 | In 12 | Input
30 Addr 3 Control 72 | In 13 | Input
31 Addr 4 Control 73 | In 14 | Input
32 UD 0 Input 74 | Init 0 | Bi-dir
33 Not Used Not Used || 75 | Init 1 | Bi-dir
34 UD 1 Input 76 | Init 1 | Bi-dir
35 UD 2 Input 77 | Init 2 | Bi-dir
36 UD 3 Input 78 | Init 3 | Bi-dir
37 UD 4 Input 79 { Init 4 | Bi-dir
38 UD 5 Input ‘80 | Init 5 | Bi-dir
39 UD 6 Input 81 | Init 6 | Bi-dir
40 Vdd 2 Power 82 | Init 7 | Bi-dir
41 Gnd 2 Ground 83 | Init 8 | Bi-dir
42 Ub 7 Input 84 | Vdd 0 | Power
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to control the time between operations and signal changes is a definite advantage as are
the measurement capabilities provided by a logic analyser. If several pieces of equipment
are used for driving the device then synchronisation may become a problem. Sampling of
output lines with the resulting pulse counting and averaging will not be straightforward
with this system.

If the second system is adopted a basic breakout of the ASIC pins to connectors is
required which will link to a PC driven digital I/O card under software control. A highly
versatile system will result for the controlling, driving and reading from the communication
lines. The timing information between signals will be limited by the timing capabilities
written into the software. The signal level monitoring, accumulation of output pulses and
processing will be straightforward as this can all be handled by the software. It is still
feasible to use an oscilloscope and logic analyser as external pieces of test equipment for
verifying signal performance if required. The basic trade-off between the two approaches
is hardware complexity vs software complexity.

It was decided to adopt the second system of testing due to the expected relative short
lead time for fabrication of the board and generation of the test software. The simple
hardware test layout is illustrated in Figure 6.47 where two FPC-024 digital I/O cards
were installed in a PC allowing a maximum of 96 lines to be controlled in four groups of
three sets of eight lines. Appendix D lists the 72 interconnections necessary between the
I/0O cards and the neuron chip.

To control, read from and write to these lines through the digital I/O cards software
written using C++ was produced. C++ was chosen since it would allow the development
of a simple class for the digital I/O cards.

The testing software written can be broken down into three areas

1. The FPC-024 class for driving the digital I/O cards.

2. A set of library routines for controlling specific lines eg. CLK, RST, as well as more

complex routines for loading and unloading weight values for a given input signal.

3. The test routines written to exercise the neuron which are built from the component

routines of (1) and (2).
The test routines will now be individually described and discussed.

testWghts() To be able to successfully use the neuron the input weight register must be
able to be written to and read from. With all the data inputs set DATA_HIGH and the
up/down lines set to COUNT_UP each of the 17 weight register is loaded with a preset
value in turn. The weight registers are then immediately unloaded in turn. The
result is that the unloaded value is 16 more than the value originally loaded since each
register will have been clocked 16 times between loading and unloading. The test
also confirms the operation of the address selector, multiplexors and demultiplexors

through the bi-directional sections of the chip.
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testCountUp() Each weight register is tested to verify that the counter will count up a
specified number. With the data value set' DATA_HIGH and the count direction set
at COUNT _UP the weight register is loaded with a mid-range positive value and then
clocked a known number of cycles before reading the value back out. The read out
value from the weight register should be the number of clock cycles in excess of the
value originally loaded in. This test is repeated for a mid-range negative value. All

17 weight registers are tested in this manner.

testCountDown() This is a companion test to testCountUp() in that the same procedure
is followed to test the 17 weight registers except that the count direction is set to
COUNT _DOWN and the value read back in should be the appropriate number of clock

cycles less than the value originally loaded in.

testZeroCross() The zero crossing is tested for each of the weight registers. A value
less than zero is loaded with the count direction set to COUNT_UP and the counter
clocked through zero for a known number of cycles and the correct positive value is
read back out. The chip is reset and loaded with a value just greater than zero with
the count direction set to COUNT _DOWN the counter is clocked back through zero for

another known number of cycles and the correct negative value read back out.

testDirChange() Taking each weight register in turn the register is loaded with a mid-
range positive value. The register is set to COUNT_UP and the register is clocked for a
known number of pulses. The direction of the count is reversed to COUNT _DOWN and
the register clocked another known number of pulses. Finally the count direction is
reset back to COUNT_UP and the counter clocked for a final number of known cycles.
At each change of count direction and at the end of the test the value of the weight
register is read out and confirmed to be correct. The aim of this test is to verify that
as the direction of count is chémged while the counter is in use the counter correctly
changes direction without any loss or gain in its value. The test strategy is repeated

for both for each weight register and in the negative half of the counter range.

testMaxLimit() The aim of this test is to confirm that each weight register will count up
to its maximum value of 2047 and then stop until the direction of the count reverses

to COUNT_DOWN at which point the register should move down.

This test initially failed in that the counters correctly increment to their maximum
limit and stop but on reversal of the count direction they clock over from the max-
imum value to their minimum value at which point the counter is being driven to
COUNT_DOWN and so holds its value at the minimum value. This led to a rethink of the-
clocking and driving strategy such that the time the up/down line changes occurs
when the clock is at CLOCK_HIGH rather than CLOCK_LOW as previously. The weight

counter then correctly stopped at the maximum value and counted down when the
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direction of the up/down signal reversed.

testMinLimit () This is a companion test to testMaxLimit () in that a similar procedure
is used to test the limit stop at the lower end of the count -2048. The weight register
under test is initially loaded with a value just greater than the minimum limit and set
to COUNT_DOWN. Before the timing changes for the direction of the up/down signal
had been corrected the counter would sfop at -2048 until the direction of count
reversed at which time it would clock over to 2047 where it would be attempting to

COUNT_UP and then the counter would again halt.

testWghtEncode() Three values are loaded in turn into each weight register -1024, 0,
1024. For each of these values the circuit is clocked sufficient times to produce
a RUN_LENGTH long output sequence. In effect the number of clock cycles in 12 x
RUN_LENGTH. The output of the pulse coded value from the weight encoder circuit
WghtOut (*) is sampled every 12 clock cycles after each comparison has been per-
formed. The accumulated output pulses divided by the RUN_LENGTH is a measure of
the encoded value given by eq.(4.7). For the three values above the results will be
approximately 0.25, 0.5, 0.75 respectively. The accuracy of this result will depend
upon the actual RUN_LENGTH. The greater the value of RUN_LENGTH the better the

estimate to the desired value.

During the testing the input lines are all set to DATA_HIGH. The up/down control
lines are toggled after every clock pulse so that the weight register counts up by one

and then counts down by one thus maintaining a constant value for encoding.

testPulseDivider() To verify that each of the 17 signals input to the pulse divider circuit
preceding the summer is weighted by %7 the corresponding input weight register is
loaded with its maximum value, the input is set to DATA_HIGH and the direction of
count set to COUNT_UP. This will cause a permanent high signal to be the resulting
weighted input. All the other inputs are set to DATA_LQOW, their count direction set to
COUNT_DOWN and their weight register loaded with the minimum value. This causes

a permanent low signal to be output by the resulting weighted input.

Only one input to the pulse divider circuit will be high and the pulse divider output
for this signal will be value of the weighting applied to it, 11—7 This is monitored at
SumOut the output of the summer which will not be affected by the other inputs as
they are all low. By cycling through which of the 17 weighted inputs is high the 17

pulse divider signals can be tested.

testSummer () By asimple extension of the ideas of the previous test testPulseDivider()
of setting an input to the pulse divider permanently high, by setting several perma-

nently high fixed addition in steps of 11—7 can take place through the summer. Thus
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to test the summer the number of signals permanently high is ramped up and the

L 2 17 can be measured at the pin SumOut.

series 0, 17, 55, - - §

testSigmoid () This final neuron test routine builds upon the previous routine testSummer ()
in that the actual neuron output Out is monitored as the number of inputs set high
is ramped up. The value of Out has to be sampled every 80 clock pulses since
the speed of update is governed by the E-sequence length in the Gaussian random
number generator which is 80-bits long. The value read out will be inverted ie. 1
- actual value but this can be easily corrected by addition of an inverter in the

practical circuit usage of this device.

6.5 A 4-2—4 Encoder/Decoder Implementation

To be able to demonstrate the capabilities of the artificial neuron device operating in a
coherent manner a proposal to design a dedicated hardware network utilising six of the
fabricated neurons was put forward and implemented. This proposal was set aside at a
late stage due to unsurmountable communication problems with each individual neuron.
A second, successful, approach was attempted by writing appropriate driver software to
simulate the operation of a network of six neurons by multiplexing the operation through
a single neuron on the test board of §6.4. A short description of the original proposal
will be given due to to the effort expended upon it. This section will then move onto
the successful multiplexed system implementation, a description of the weights used to

perform the task and the results of operating the network.

6.5.1 System Implementation: 1st Proposal

The first proposal was to use the experience gained in the single test board to design and
build a network of six neuron boards mounted on a backplane motherboard, Figure 6.48.
Control of the system would be effected through the two FPC-024 digital I/O cards as per
the individual neuron test board of §6.4. The addressing space would need to be extended
to allow each neuron board to be addressed independently. Monitoring of individual weight
encoding procedures would no longer be possible without a significant increase in wiring
complexity or switching circuitry. Each neuron’s operation will have been verified initially
using the neuron test board. FEach neuron’s output was however directly monitored.
Appendix E contains the digital I/O card connections and the circuit diagrams for the
dedicated hardware.

After fabrication of the six neuron boards, backplane and writing of the main driver
software, communication between the ASIC socket and the ASIC was found to be inter-
mittent, irregular and lacking continuity. Several sockets from different suppliers were

tested but none with satisfactory results. This problem had been encountered with the
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test board but had been accounted for by the use of a cheap, poorly specified socket.
A special purpose ZIF (Zero Insertion Force) test connector had been used for the test
board to overcome this problem. The cost and size of ZIF sockets are prohibitive for their
use in situations other than as a reusable ASIC chip mount. It was this problem of poor

continuity which led to the design ultimately being set aside.

6.5.2 System Implementation: 2nd Proposal

The second, less visually effective, proposal to demonstrate coherent network operation was
to re-utilise the test board. A network of neurons can be simulated by time-multiplexing
the operation through a single device. Reference to Figure 6.49 a 4-2—4 Encoder/Decoder
feedforward configuration will aid in understanding the following description. Initial input
sequences for the network are generated and held in arrays on the host PC. Since the four
input neurons act as purely distribution points for information Neuron 1, in the hidden
layer, is the first to be driven. The weights, scaled appropriately, for the neuron are
initialised to those necessary for such a hidden neuron and the four input pulse sequences
fed into the neuron. As each input pulse combination is processed the single output pulse
is stored in an array on the host. Once the input sequence has been exhausted the single
neuron is loaded with the weights appropria.te for Neuron 2 and the four input sequences
passed through the neuron with the storage of the single output pulse stream in a new
array on the host.

To process the output layer neurons, 3-6, the process of running pulses through one
neuron at a time and storage of the output pulse stream is repeated. On these occasions
though the pulse sequence is to be input are taken from the two output sequence arrays
for the hidden layer neurons. Decoding of the output pulse sequence can be undertaken
to verify that they are the correct value.

If longer input pulse sequences are required ie. the network is to be run over a longer
time frame, a fresh set of four input streams can be generated and the multiplexing process
can be continued as often as desired. The output value of the network would then need
to be taken over the effective full output sequence length or a software implementation of
one of the output processes of §4.8 used.

By the use of the multiplexing technique it is feasible to describe and run a feedforward
network of arbitrary size for network evaluation purposes. It would not be possible to

adjust weights on-line, each neuron’s weight would need to be pre-determined.

6.5.3 Weight Determination

For the demonstration network of the 4-2—4 encoder/decoder network no on-line adaption
was to be performed. The weight values for each neuron were to be determined in advance

and loaded in as required, (all at once in the first proposal, one neuron at a time in the
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Neuron | Weight | Matlab Value | Scaled Values
1 Bias -0.1221 -81
1 1 0.7312 486
1 2 2.3173 1452
1 3 -2.4702 -1644
1 4 -1.4920 -993
2 Bias -0.6493 -432
2 1 -1.3388 -891
2 2 2.1569 1436
2 3 -3.0768 -2048
2 4 1.6528 1100
3 Bias -2.7767 -2008
3 1 2.8239 2042
3 2 -2.8204 -2039
4 Bias -2.7953 -2021
4 1 2.8107 2032
4 2 2.7569 1993
5 Bias -2.7706 -2003
5 1 -2.8014 -2025
5 2 -2.7512 -1989
6 Bias -2.7854 -2014
6 1 -2.8272 -2044
6 2 2.8327 2048

Table 6.4: Possible weight values to be loaded into each neuron as determined by the use
of a network trained using Matlab. The Scaled Values are those which are to be loaded

wnto the hardware neuron.

second). The values the weights should take could be determined by the use of commonly
available software using the backpropagation learning algorithm for this form of network.
Using the Neural Network Toolbox in Matlab a set of possible weights could be determined
as shown in Table 6.4. Problems will exist with these learned values since although they
operate with a small error in the simulation they do not account for the specific shape of
the sigmoid in the hardware, neither do they account for the reduced output range of the
hardware neurons caused by only a proportion of the inputs being used.

It is known for this problem of encoding and decoding that the hidden layer neuron
weights are such that the hidden layer neurons produce a binary representation of the
input line which is high. The output layer neuron weights are such that the hidden layer
binary representation is decoded back to a single line being high. An appropriate set of
weights for the neuron can thus be configured as shown in Table 6.5. These values should
overcome the limitations of the sigmoid not producing an adequate squashing function

and the limited dynamic range of the output.
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Neuron | Weight | Weight Value

1 Bias 0

1 1 -2040
1 2 2040
1 3 -2040
1 4 2040
2 Bias 0

2 1 -2040
2 2 -2040
2 3 2040
2 4 2040
3 Bias -512
3 1 -2040
3 2 -2040
4 Bias -512
4 1 2040
4 2 -2040
5 Bias -512
5 1 -2040
5 2 2040
6 Bias -512
6 1 2040
6 2 2040

Table 6.5: Weight values for 4-2-4 hardware encoder/decoder. These values are deter-
mined by a combination of inspection of the problem and the solution of the equations
which describe the system.
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6.5.4 Results of System Operation

After the transition from a system of six neurons all operating coherently to a single
neuron simulating the operation of the six by multiplexing its operation it was possible
to demonstrate the system operation. The above second proposal of time multiplexing
process was successfully implemented in software and the single neuron driven in order
to demonstrate the 4-2-4 encoder/decoder. The drawback of this approach is that the
network took six times as long to operate and the benefit of parallel operation is obviously
lost.

The system was first driven with the 'learned’ weight values from the Matlab simu-
lation. Table 6.6 displays the results of this network when run. It can be seen that the
average output values of the neurons are close to 0.5 equivalent to zero when converted
from the SLB repreéentation to a real value. Applying the decoding transform of eq.(4.9)
it can be seen that the hidden layer, neurons 1 and 2, does indeed have a binary repre-
sentation of the input lines being high. However, this does not continue through to the
appropriate line being high for the output layer, neurons 3, 4, 5 and 6.

With the new set of weights, illustrated in Table 6.5, the neuron outputs are as shown
in Table 6.7. Again a binary coding of input values is evident in Neurons 1 and 2 of the
hidden layer. This time they result in the appropriate output layer neuron firing and being
high, neurons 3, 4, 5 and 6.

On re-inspecting the two sets of weight values in Table 6.4 and Table 6.5 it can be
seen that the form of the weight values are of approximately the same configuration with
respect to sign and magnitude. The determined values of Table 6.5 simply drive the
neurons harder to the limits of the output to overcome the poor sigmoid.

A drawback in the NV input adder was observed that had not been previously consid-
ered. When less than a full number of inputs are used, the unused inputs being set to a
value of zero, the range of output values from the adder will restricted to the proportion
of inputs actually used due to the constant % scaling. Thus, if only n of the maximum N

inputs are used the swing in output value of the adder will be .

6.6 Summary

In this chapter we have used the ideas and techniques of the previous two chapters §4 and
§5 to present a novel design of an artificial neuron operating by the use of stochastic pulse
rate encoded signals. The neuron design has been implemented in CMOS VLSI using the
Solo 1400 design package in 1.5um technology. The design uses approximately 5500 gates
and 27000 stages which covers an active chip area of 9.59 x 8.13 = 77.98sq.mm

This chapter began with a specification for a 16 input device operating using SLB
signals and a block diagram of the artificial neuron circuit to be designed. An evaluation

of the design system options available was made which resulted in the selection of the
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Input Configuration | Neuron | Output Value | Converted Output Value
1,0,0,0 0.475356 -1
0.537719 1
0.528606 1
0.473375
0.471869
0.468931
0.444369
0.473919
0.498350
0.501975
0.443256
0.438931
0.534744
0.512819
0.442706
0.440363
0.499894
0.499156
0.515656
0.483288
0.440612
0.441631
0.499956
0.497706

O OO

1
—

0,1,0,0

1
ey

0,0, 1,0

HIO OO O FHFHOOOO

0,0,0,1

|
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oS O OO
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Table 6.6:° Neuron output values for the four input schemes possible with a 4-2-4 en-
coder/decoder, trained weights. Hidden layer neuron output values are converted on the
basis of the sigmoid, while the output layer values have been thresholded at T = 0. NB.
The neuron outputs are SLB representation therefore an output of 0.5 translates to an
actual value of 0.
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Input Configuration | Neuron | Output Value | Converted Output Value
1,0,0,0 0.555506 1
0.556350
0.552144
0.493888
0.491812
0.432456
0.440656
0.556613
0.494569
0.554513
0.434725
0.491325
0.556394
0.442463
0.493244
0.436450
0.551087
0.491881
0.437956
0.442794
0.435781
0.497350
0.494100
0.551037
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Table 6.7: Neuron output values for the four input schemes possible with a 4-2-4 en-
coder/decoder, calculated weights. Hidden layer neuron output values are converted on
the basis of the sigmoid, while the output layer values have been thresholded at T = 0.
NB. The neuron outputs are SLB representation therefore an output of 0.5 translates to
an actual value of 0.
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Solo 1400 design package §6.2. Following a description of Solo 1400’s main tools to be used
in the design process a detailed description of the neuron sub-circuits is made consisting
of either schematic diagrams or HDL descriptions of the circuits §6.3. Simulation test files
are presented with their resulting output which demonstrate the correct operation of the
sub-circuits. The sub-circuits are combined to form a complete artificial neuron which has
subsequently been fabricated.

In section §6.4 the testing system for the fabricated device is outlined together with a
description of the software test routines used to exercise the device. Due to the nature of
the testing system the operation of the device is limited to basically a yes no response. The
artificial neuron device operates as desired producing a weighted sum of 16 inputs using
stochastic pulse rate encoded processing. However the non-linear sigmoidal transform is
limited use due to its poor performance.

Section 6.5 describes how the hardware neurons which have developed throughout
this chapter have been configured into a small example network to perform the 4-2-4
encoder/decoder problem. Two systems were attempted, the first unsuccessful system
used six devices operating in a parallel, the second successful approach used a single
neuron through which all the necessary signalling was multiplexed. The first system
proved unsuccessful because clear and consistent connectivity could not be achieved to all
the designed neuron boards. The bad connectivity has been attributed to a poor design in
the ASIC packaging and associated connector. The second system reused the test board
in the previous chapter but with new driver software.

Given an appropriate set of neuron weight values it was demonstrated that the network
of six neurons could perform the 4-2-4 problem. A set of weights obtained by training
a model of the system in software using backpropagation were found not to be adequate
since they did not drive the neurons sufficiently hard. The model of the sigmoid would
need to be more precise for accurate off-line training to be performed. Using a semi-
heuristic technique to find an alternative set of weights which drove all the neurons either
fully-on or fully-off the network was able to more clearly demonstrate the performance of
the task.

This system implementation highlights several areas of work which may be developed
further: the formation of an N input adder which does not suffer from the scaling difficul-
ties, the formation of an improved sigmoid transform and the development of an accurate
functional model of neuron to enable software simulation of its performance and off-line

training to be performed if desired.
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Figure 6.1: Basic architecture for a stochastic pulse neuron. The neuron produces a
function of a weighted sum of inputs. Signals are of the single line bipolar form.
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Figure 6.2: 27-bit PRBS generator schematic. The basic shift register is composed of vlsr

building blocks with an XOR. feedback circuit.
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HHFH T FH A

part: wvlsr

{
{
! - . L
{ description:  Variable length schift register.

{ Adapted from ES2 cxzample, cach stage

{ outputs its valuec. An asynchronous set s used to
{ set the device to all 1's.

{

HHFFHA R FAA
Part vlsr (n) [ck,d,s] — q(1:n)

Integer i
Signal qi(1:n+1)

If n = 0 Then
d — q(1)
Else
d — qi(1)
Fori=1:n Cycle
bdffs [ck,qi(i),s] — qi(i+1), --
Gi(i+1) — ()
Repeat
Endif
End { end of Part visr declaration

Figure 6.3: model code for variable length shift register. Specifying the variable n deter-
mines the length of the shift register. Note the For - Repeat loop construct simplifying
the design specification.

{ #E###7## A

{ part: prbs27to3s

% rlescﬁpt’ion: Forms 38 sequences from 27 bit PRBS generator.
{ #H#FAFH AR

Part prbs27to38 (in(1:27)] — prbsout(1:38)

Signal inbuf(1:27),
link(0:82)

arraybuffer (27) [in(1:27)] — inbuf(1:27)

—_—

prbsout(1)

xor [inbuf(21),inbuf(24)] — link(0)
xor [inbuf(25),inbuf(26)} — link(1)
xor [link(0),link(1)] — prbsout(1)

—

prbsout(2)

xor [inbuf(8),inbuf(10)] — link(2)

xor [inbuf(19),inbuf(21)] — link(3)
xor [link(2),link(3)] — prbsout(2)

—~

prbsout(3)
xor [inbuf(11),inbuf(18)] — link(4)
xor [link(4),inbuf(23)] — prbsout(3)

Figure 6.4: Sample model code for 38 taps offs from 27-bit PRBS. No input variables to
configure this stage were possible, each gate has to be specified and connected explicitly.
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VAR ot aadd L
// fle: prbos27.andl

// description: Test and ezercise 27 bit Pseudo Random Binary
Sequence Generator.

//
VR i daaadad

/) RABEERRAESH
// function.: clkPulse()

// description: toggle a signal line twice, normally the clock
/] BAERERRRRR

void

clkPulse(signal clock)

Toggle(clock);
Simulate;
Toggle(clock);
Simulate;

Y // end of function clkPulse()

/) FRBRAAAEEA ,
// main function to ewercise the 27-bit PRBS

/] #HESHAF RS

main()

// control lines
Input ck4;
Input rst;

// data lines
Output p(27:1);

Set_Cycle(1000);

wnitialise prbs27
7

ckd = 1;
rst = 1;
clkPulse(ck4);
rst = 0;
clkPulse(ck4);
rst = 1;

// run prbs27 for 50 clock cycles
for (i =0;1 < 50; i++) {
clkPulse(ckd);
} S/ fori

// reset prbs27 and Tun again
rst = 0;
clkPulsc(ck4);
rst = 1;

/7 mun prbs27 for 50 clock cycles
for (i = 0;1 < 50; i++) {

clkPulse(ck4);

Y /) for i

} // end of main()
VR ddaldaadad

Figure 6.5: wdl code for exercising 27-bit PRBS. After initialising all the input lines the
PRBS 1is clocked for 50 cycles before being reset and clocked for another 50 cycles. Note
the use of procedures in the code.
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Figure 6.6: wave output plot for 27-bit PRBS generator. After the initialisation phase
the PRBS has been clocked for 50 cycles, the pulse train can be seen to ripple through the
shift register. Following the reset of the PRBS the same sequence of pulses is repeated.
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Figure 6.7: One-bit comparator. Simple combinational logic circuit for comparing two
nputs.

| D
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Figure 6.8: Iterative comparator cell. Combinational logic building block which will use
current line values together with the previous result to generate a comparison output.
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Figure 6.9: Iterative comparator. Sequential logic circuit utilising the comparator cell of
Figure 6.8 and D-type flip-flops for storing the results of the comparison.
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Labiab b it ot

part: comp_cell

description:  Combinational logic for an iterative comparator

il ddd

Part comp_cell [nota,noth,x,y] — aout,bout

{
{
{
{
{

Signal notx,
noty,
bxyout,
axyout

not [x] — notx
not [y] — noty

nand [notb,notx,y] — bxyout : nand3_bxyout
nand {nota,x,noty] — axyout : nand3_axyout

nand [bxyout,nota} — aout : nand2_aout
nand [axyout,notb] — bout : nand2_bout

" End { end of Part comp_.cell declaration

Figure 6.10: model code for iterative comparator building block. Implementation of the
comparator cell of, Figure 6.8. Note that the circuit has been organised to use simply
NAND gates.

HELFHFHFHH

part: comp_iter

{

{

! - .

{ description: An Iterative Comparator

{ Two control lines clk 6 rst

{ Qutput of comparison changes on rising cdge of clk

{ Output reset to v = 0 & t = 0 when rst held low

{ Two data inputs = & y

{ Three outputs r & t which are defined as follows

% r::q‘(y t::z}y
HHAFREFFRH

Part comp.ter [clk,x,y,rst] — .t

Signal aout, bout,
notr, nott

comp_cell [notr,nott,x,y] — aout,bout

dff rn [clk,aout,rst] — r,notr
dff rn {clk,bout,rst] — t,nott

End { end of Part comp_iter declarartion

Figure 6.11: model code for complete iterative comparator. Note how the modular design
process enables the previously produced module, Figure 6.10, to be included and connected

up to the additional flip-flops.
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// ##########
// fi

comp_test.wdl

// description: Test and cxercise iteratwe comparator circuil.

Wl dsaadaddd

// mamn function to test the comparator for 3 cases,
// only 4-bit numbers used but can be cztended to n-bit numbers.

/ FEHARE A

main()

Input x; Input y;
Input clk; Input rst;
Output r; Input t;

Set_Cycle(50);

x=0;y=10
clk_(] rst = 1;

Toggle(clk);
Simulate;
clkPulse(clk); { defined in a previous wdl file
rst = ()
clkPulse(clk);
rst = 1;
// z: 1010 y: 1100
= 1; clkPulse(clk);
= 1; clkPulse(clk);
= 0; clkPulse(clk);
= 0; clkPulse(clk);

[

HoX XX

// reset comparator

st = (O
clkPulse(clk);
rst = 1;
/e >y g: 1101 y:1011
x = 1; y = 1; clkPulse(clk);
x = 1; y = 0; clkPulse(clk);
x=0;y=1; clkPulse(clk);
x = 1; y = 1; clkPulse(clk);
// reset comparator
rst = 0;
clkPulse(clk);
rst = 1;
/==y z 0101 y: 0101
x = 0; y = 0; clkPulse(clk);
x = 1; y = 1; clkPulse(clk);
x = 0; y = 0; clkPulse(clk);
x = 1; y = 1; clkPulse(clk);

Y // end of main()

Figure 6.12: wdl code for testing iterative comparator. Three 4-bit tests are run, one for
each of the possible input cases.
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Figure 6.13: wave output plot for iterative comparator. The three separate input cases
for X and Y can be seen applied, one after each reset of the comparator. The appropriate
result is visible as an output high on R or T.
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HHEAFREFHH

part: count12a

description: 4 bit counter which counts up to 12 and resets to 0

HHEHFHF FHH
Part countl12a [clk, rst] — cntl2a

{
{
{
{
{
Signal sumlsbs, count(0:3)
Signal rstent, rstes

Probe sumlsbs
Probe rstent
Probe rstes .
Probe count(0:3)

and [count(0:1)] — sumlsbs
ornand (1,2) [count(3),count(2) sumlsbs] — rstent

and [rst,rstcnt] — rstes
es2ctr (4) [clk,Gnd,Gnd,Gnd,Gnd,Gnd,Vdd,rstes] — count(0:3)

bdff [clk,rstent] — --, cnt12a
End { end of Part countl2a declaration

Figure 6.14: model code for countl2. A 4-bit counter, es2ctr, is used which has external
combinational logic to reset itself and generate an output when the circuit reaches 12.

HAFHFFHHAH
part: count80

description: 7 bit counter which counts up to 80 and resets to 0

HHRFFFEFHH
Part count80 [clk, rst} — cnt80

{
{
{
{
{

Signal sumlsbs, count(0:6)
Signal rstent, rstes

and [count(0:3)] — sumlsbs
ornand (1,3) [count(6),count(5),count(4),sumlisbs] — rstent
and [rst,rstent] — rstes

cs2ctr (7) [elk,Gnd,Gnd,Gnd,Gnd,Gnd,Gnd,Gnd,Gnd,Vdd,rstes] — count(0:6)
bdff [clk,rstent] — --,cnt80

End { end of part count80

Figure 6.15: model code for count80. This is a variant of Figure 6.14. A 7-bit counter
15 used which has external combinational logic to reset itself and generate an output when

the circuit reaches 80.
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/] BRERBEREHH
// file: countl2atst.wdl

// description: test an ezercise up counter to 12
/) REABRAA A
main()

Input clk;
Input rst;

Output cntl2a;

Set_Cycle(1000); { described in carlier wdl file

ctk = 1;
rst = 0;
clkPulse(clk);
rst = 1;

for (i = 0;1 < 60; i++) {
if (1t % 33)) {
rst = 0;
} /)it
if (1((i - 1‘) t%_&;))) {
A
clkPulse(clk);
Y // for i

Y // end main()

Figure 6.16: wdl code for testing the countl2. After reseting the counter, it is clocked to
verify it counts and reinitialises itself before undergoing an external reset and continued
clocking.
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Figure 6.17: wave output plot for countl2a testing. The individual bits of the counter
can be seen to count up, while the output, CNT12A, only goes high after 12 cycles except

when the circuit is reset externally on the RST line.
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Figure 6.18: 4-bit counter with carry-in and carry-out. This circuit is a transcription of

the 74169 TTL design.
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Figure 6.19: 4-bit counter with no carry-in. This circuit is a transcription of the 74169

TTL design but the carry-in line and associated gating is removed. Compare this to Fig-

ure 6.18.
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Figure 6.20: 4-bit counter with no carry-out. This circuit is a transcription of the 74169
TTL design but the carry-out line and associated gating is removed. Compare this to

Figure 6.18.
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The counter is formed by cascading the 4-bit counters of

Figure 6.18, Figure 6.19 and Figure 6.20. Cascading the three counter variants marginally

reduces the component count and circuit interconnection required.

Figure 6.21: 12-bit counter.
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Figure 6.22: 12-bit counter with limit stops at -2048 and +2047. The modular design
enables the 12-bit counter to appear as a component around which the limit stop circuitry

is configured.
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VI S dddsd
// file: ud12bitst.wdl

// description: Test and exercise 12-bit Up/Down counter with stops
/) BEREERRRRA A

ur =1;
DOWN = 0;
LOAD =1;
void

rstCount(signal ld, signal inSig(11:0), signal clock)
{

ld = LOAD;
inSig = 0x000;
clkPulse(clock);
Id = 'LOAD;
Y // end of function rstCount()

void
setCount(signal Id, signal inSig(11:0), signal clock, int valuc)

ld = LOAD;
inSig = value;
clkPulse(clock);
Id = ILOAD;
} // end of function setCount()
main()
{
Input in(11:0);
Input ud;
Input Id;
Input clk;

Output cntout(11:0);
Set_Cycle(1000);

in = 0x000;

ud = UP;
Id = 'LOAD;
clk = 1;

rstCount(ld, in, clk);

// werify counter stops at maz wvalue, after 5 clks should be at maz.
// immediately after direction changes should count down.
setCount(ld, in, clk, 0x7FA);
for (i=0;i < 10; i++) {
clkPulse(clk);

// for 1
Toggle(ud);

// after this set of clockings should be back at 0z7FA
for (i=0;1i < 5; i++4) {
clkPulse(clk);
} S/ ford

// verify counter stops at man wvalue, after 5 clks should be at min.
// immediately after direction changes should count up/
setCount(ld, in, clk, 0x805);
for (i = 0;i < 10; i++) {
clkPulse(clk);

} // for i
Toggle(ud);

// after this set of clockings should be back at 0z805
for (i = 0;1 < 5; i++4) {
clkPulse(clk);
y o/ for s

Y // end of main()

Figure 6.23: wdl code for exercising up/down 12-bit counter. The file tests the limit stops
of the counter by loading values just below the limits and driving the counter to those
limits. When the direction of count is reversed the counter should move away from the

limits.
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Figure 6.24: wave plot for an up/down 12-bit counter. The first half of this plot demon-

strates the halting of the counter at the upper limit, 0z7ff, while the second half demon-

strates the counter halting at the lower limit, 02800.
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of the 4-bit counter, Figure 6.18, but has no carry lines assoctated with it.
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Figure 6.26: 5-bit counter with limit stops at 0 and +80. As per the 12-bit design, the

basic counter module has been augmented by the limit stop circuitry.



Up/Down Counter

MSB |---=------------o--ooo- LSB
MSB [-------------oooooooo- LSB

Comparator Register

12-Bit terative SL.U

—

PRBS Output : Comparator Encoded Weight

Figure 6.27: SLB weight encoding. Every 12 cycles the contents of the Up/Down counter
are transferred to the Comparator register. A comparison with a PRBS stream is performed
to encode the counter value. Note the inversion of the MSB during the transfer to shift
the counter value.

FHAFEA R HH

part: wghtenc

description:  Formed by manual extraction from a model file created by ‘draft’

{
{
E
{ ####FTE A _
Part wghtenc [rng, in(0:11), rst, ud, 1d, clk, en] — t,dout(0:11)

Signal din(0:11)

Signal bitwghtout

Signal notclk

Signal clkbuf

. Signal Idit

Signal notrst

Signal rstbuf

Signal tmpt

not [clk] — notclk

buffer2 [notclk] — clkbuf

not [rst] — notrst

buffer2 [notrst] — rstbuf

and [ld, en] — 1dit

compdter [clkbuf,rng bitwghtout,rstbuf] — -~ tmpt
bdff [notrst,tmpt] — --, t

es2sreg ps(12,2) [din(0:11),clkbuf,notrst] — bitwghtout,--
ud12bitst [in(0:11),ud,ldit,clkbuf] — dout(0:11)
not [dout(11)] — din(0)

dout(10) — din(1)

dout(9) — din(2)

dout(8) — din(3)

dout(7) — din(4)

dout(6) — din(5)

dout(5) — din(6)

dout(4) — din(7)

dout(3) — din(8)

dout(2) — din(9)

dout(1) — din(10)

dout(0) — din(11)

End { end of Part wghtenc declaration

Figure 6.28: model code for SLB input weight encoder. The file specifies the circuit of
Figure 6.27. Note the connection of the two buses, dout and din, has had to be done

explicitly line by line.
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HABEAHERHHFH

part: demnzitol 7

register for use.

HAF A AR LA
Part demux5tol7 [addr(0:4)] — sclect(0:16)

{
{
{ - , o .
{ description: Deccoder for sclecting appropriate input weight
{
{
Signal a0(0:3), a0bar(0:3), a1(0:3), albar(0:3)
Signal a2(0:3), a2bar(0:3), a3(0:3), a3bar(0:3)
Signal adbar(0:3)

cs2nbuff (4,2,0) [addr(0)] — a0(0:3)
cs2nbuff (4,2,1) [addr(0)] — aObar(0:3)
es2nbuff (4, 2,0) addr(1)] — a1(0:3)
cs2nbuff (4,2,1) [addr(1)] — albar(0:3)
cs2nbuff (4,2,0) [addr(2)] — a2(0:3)
cs2nbuff (4,2,1) [addr(2)] — a2bar(0:3)
es2nbuff (4,2,0) [addr(3)] — a3(0:3)
es2nbuff (4,2,1) {addr(3)] — a3bar(0:3)
cs2nbuff (4,4,1) [addr(4)] — ad4bar(0:3)

es2and [adbar(0),a3bar(0),a2bar(0),albar(0),a0bar(0)] — sclect(0)
cs2and [adbar(0),a3bar(0),a2bar(0),albar(0), a0(0)] — select(1)
es2and [adbar(0),a3bar(1).a2bar(1), a1(0),a0bar(0)] — seclect(2)
es2and [adbar(0),a3bar(1),a2bar(1), al(0), a0(0)] — select(3)
es2and [adbar(1),a3bar(2), a2(0),albar(1),a0bar(1)] — sclect(4)
cs2and [adbar(1),a3bar(2), a2(0),albar(1), a0(1)] — select(5)
es2and [adbar(1),a3bar(3), a2(1), al(1),a0bar(1)] — select(6)
es2and [adbar(1),a3bar(3), a2(1}), al(1), a0(1)] — select(7)
es2and [adbar(2), a3(0),a2bar(2),albar(2),a0bar(2)] — select(8)
es2and [adbar(2), a3(0),a2bar(2},albar(2), a0(2)] — select(9)
es2and [adbar(2), a3(1),a2bar(3), al(2),a0bar(2)} — select(10)
es2and [adbar(2), a3(1),a2bar(3), al(2), a0(2)] — select(11)
es2and {adbar(3), a3(2), a2(2),albar(3),a0bar(3)] — select(12)
es2and [adbar(3), a3(2), a2(2),albar(3), a0(3)] — select(13)
es2and [adbar(3), a3(3), a2(3), al(3),a0bar(3)] — select(14)
es2and [adbar(3), a3(3), a2(3), al1(3), a0(3)] — sclect(15)

es2and [ addr(4),a3bar(0),a2bar(0),albar(0),a0bar(0)] — select(16)

End

Figure 6.29: model code for address selector/decoder.

address is converted to one of 17 active output lines.

RHAHHREHFFHF

part: mauzntol

description:  An arbitary n-line to 1 multiplezor.

HHEAREHFHH

Part muxntol (elems) [in(0:clems-1},sel(0:clems-1)] — out

{
{
{
{
{

Signal notsel(0:clems-1)
Integer elemlp

If clems < 5 Then
Error "SOLO lib may exist for multiplexor size"
Else
For elemlp= 0 : (elems - 1) Cycle
not [scl{elemlp)] — notsel(elemlp)
tribufl {sel(elemlp),notsel(elemlp),in(elemlp)] — ont
Repeat
Endif

End

{ end of Part demuz5to17 declaration

Bastc five line decoder, a 5-bit

{ end For elemlp
{ end If elems

{ end of Part muzntol declaration.

Figure 6.30: model code for arbitrary N input multiplexor. This circuit description itera-
tively builds a multiplezor of arbitrary size. Note how by use if the If statement feedback
can be sent to the user to notify them of specific conditions.
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Figure 6.31: wave plot for input weight encoder performance. The weight encoder is
loaded with values corresponding to 0.5, 0.75 and 0.25. The output, T, can be seen to have
an on period which corresponds to these conditions. The UD line is constantly toggled to

maintain the counter at a stable value.
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Bias Weight Register

12-Bit Iterative
Comparator

PRBS Output

F— =

SLU
Encoded Weight

Figure 6.33: SLU weight encoding. This circutt is similar to Figure 6.27 but without the

12-bit counter.

HHEHHFFFAE
part: wght10

{
{
{
{
{

FHARHAFFFF
Part wght10 [clk,rst,x] — ¢

Signal y
Signal tmpt
Signal en
Signal notclk

not [clk] — notclk

not [rst] — en

es2sreg ps (12,2) [Gnd,Gnd,Gnd,Vdd,Vdd,Gnd,Gnd,Vdd,Vdd,

description:  Weight encoder for 1/10

comp.iter [notclk,x,y,rst] — --,tmpt

bdff [en, tmpt] — --,t

End

Gnd,Vdd,Gnd clk,en] — y,--

{ end of Part wghti)

Figure 6.34: model code examples of a static SLU encoder. Observe how the shift register
can always be re-initialised to the same value since the load inputs are tied to either Vdd

or Gnd.
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#HFFFFF A FHE

part: dimde.cell

description:  Building block for N pulse divider
HHFRGHEFFHH

Part divide_cell [in,prev] — out,next

{
{
{
{
{

Signal notin

and [in,prev] — out
not [in] — notin
and [prev,notin] — next

End

Figure 6.35: model code for divide cell building block.
repeatedly in Figure 4.12.

FRFFFRFAAA

part: n-pulse_div

description: N pulse divider for input to stochastic summer

kg o o o

Part n_pulse_div (streams) [in(2:streams)] — out(1l:strcams)

{
{
{
{
{

Integer streamlp

Signal prev(1l:streams)
Signal notstream?2

If streams<2 Then

Error "Too few pulse streams specified"
Else

wire[in(streams)] — out(streams)

not [in(streams)] — prev(streams)

For streamlp=(streams - 1):2 By -1 Cycle
divide_cell {in(streamlp),prev(strecamlp + 1)] —
out(streamlp),prev(streamlp) : divide_cell(streamlp)
Repeat

prev(2) — out(1)
Endif

End

Figure 6.36: model code for complete N pulse divider.

{ end of Part dinide_ccll declaration

This butlding block can be seen

{ end For streamlp

{ end If streams

{ end of Part n_pulse_div declaration

This is another parameterised

circuit enabling arbitrary long pulse divide trees to be produced from the divide_cell block

of Figure 6.35.
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Figure 6.37: wave plot demonstrating static weight encoding. The time a line 1s high can

be seen to increase progressively from N(17) to N(2).
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HHRFHEHA A

part: slbep_mal_block

{
{
{
{ description: Single Line Bipolar Multiplicr block. Multiplics two

{ buses of signals z(0:clems) and w(0:clems) by use of
{ : Tor gates.

{ Input parameter ‘elems’ the number of multipliers - 1
{ there will be.

{

ik i ok d

Part slbip_mul.block (elems) [x(0:elems-1), w(0:clems-1)] — xw(0:clems-1)
Integer clemlp

If clems<1 Then
Error "No elements to multiply"
Else
For elemlp =0:clems-1 Cycle
eqv [x(elemlp),w(clemlp)] — xw(clemlp) : xor{clemlp)

Repeat { end For clemlp
Endif { end If clems
End { end of Part slbip_mul_block declaration

Figure 6.39: model code for SLB multiplication of input values and weights. This circuit
1s stmply an array of XOR. gates.

HHHRARFFTS

part: sluni_mul_block

{

!

{ description: Single Line Unipolar Multiplier block, Multiplies two

{ buscs of signals z(0:clems) and w(0:elems) by use of
{ and gates.

{ Can also be used for the gating in o Multiple Input
{ Summer.

{ Input parameter ‘elems’ the number of multipliers - 1
{ there will be.

| #AAHFHHAFS

Part sluni_mul_block (clems) [x(0:elems-1), w(0:elems-1)] —
xw(0:clems-1)

Integer clemlp

If clems<1 Then
Error "No elements to multiply/gate"
Else
For clemlp=0:elems-1 Cycle
and [x(elemlp),w(elemlp)] — xw(elemlp) : and2(elemlp)

Repeat { end For eclemlp
Endif { end If elems
End { end of Part sluni_mul_block declaration

Figure 6.40: model code for SLU multiplication/gating of weighted inputs. This circuit is
simply an array of AND gates. One input to each AND gate is the weighted input, the

. 1 . .
second is a 17 gating signal.
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HHARHHEFF FHA

part: gausl

description: Produce Gaussian numbers

i

{
{
{
{
{
Part gausl [sumin,prbs,clk,rst] — ¢

Signal notrst

Signal cseqbasc(0:79)

Signal cseqout, notescqout

Signal inc, dec, notdec

Signal countout(0:4)

Signal regl2out

Signal tmpt

Signal rst80, rst12

Signal c1k80, notclk80

Signal clk12st, notclk12st

Signal udbrst

Signal notclk

Signal tmp, tmp2, tmpl, tmpinc

Gnd — eseqbase(0)

Vdd — esegbase(79)

not [clk80] — notclk80

count80 [clk,rst] — clk80

and {rst,notclk80] — rst12

countl2 [notclk,rst12] — clk12st

not [rst] — notrst

es2sreg ps (80,2) [eseqbase(0:79),clk,notrst] — eseqout,--

and [prbs,eseqout] — inc
or [notrst,clk80] — udSrst

not [clk] — notclk

or [prbs,udbrst] — tmp
and [tmp,notclk] — tmp2
or [inc,udbrst] — tmpinc

ud5bitst [Gnd,Gnd,Gnd,Gnd,Vdd,tmpinc,ndSrst,tmp2] — countout(0:4)

es2sreg ps (12,2) [countout(4),countont(3),countout(2),countout(1),countout(0),Gnd(0:6),clk,ud5rst] —

regl2out,--
comp_iter [clk,regl2out,sumin,clk12st] — -- tmpt

bdff [notclk80,tmpt] — t.--
End { end of Part gausl declaration

Figure 6.41: model code for sigmoidal transformation circuit. This circuit produces Gaus-
sian distributed random numbers which the weighted sum of products is compared. This
performs the sigmotd transform.
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Figure 6.42: wave plot demonstrating testing of sigmoidal transform. Due to the omission
of a single inverter, as the input values increase from 0.2 — 0.5 — 0.8 the output, T,
becomes less dense rather than more dense, but the appropriate non-linear mapping does

exist.
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HHAERAFH A HT

1)0’!‘ neur

descraption:  The newron.

HHEHBERF A A
Part ncur [clk,in(0:15),addr(0:4),nd(0:16),rw,rst] — out,init(0:11),sumont.outwght(0:16)

{
{
{
{
{

Signal prbsout(1:27)

Signal rng(1:34)

Signal sumin_17(0:16)

Signal sum

Signal clk_n

Signal rst_in

Signal rw_in

Signal rwbuf(0:2)

Signal in_in(0:15)

Signal init_in(0:11), notinit_in(0:11)

Signal addrin(0:4)

Signal ud_in(0:16)

Signal wghtout(0:11)
Signal wghtouta(0:11)
Signal out.n

Signal wghtenc_in(1:16)

Signal clk12a, notclk12a
Signal rst12

Signal clkbuf(0:5)
Signal rstbuf(0:4)

Pad connections omatted

notarray (12) [notinitin(0:11)] — initin(0:11)

4,0) [rw.n] — rwbuf(0:2)
3,0) [rstiin] — rstbuf(0:4)
3.0) [clkin] — clkbuf(0:5)

es2nbuff (3,
es2nbuff (5,
es2nbuff (6,

countl2a [clkbuf(0),rstbuf(4)] — clkl2a
not {clk12a] — notclkl2a
and [rstbuf(4),notclk12a} — rst12

prbs27 [clkbuf(1),rstbuf(0)} — prbsout(1:27)

prbs27to38 [prbsout(1:27)] — rng(1:34),--,--,—-,-

inpwght [ctkbuf(2),in.in(0:15),init_in(0: 11) rng(18 34),udin(0:16),addr_in(0:4),rw_in rstbuf(1),rst12] —
sumin_17(0:16),wghtouta(0:11),wghtenc_in(1:16)

‘;ummcrlﬁ [sumin_17(0:16),rng(2: 17) rstbuf(2),rst12 clkbuf(4)] — sum

gausl {sum,rng(1),clkbuf(5),rstbuf(3)] — out.in

End { end of Part neur declaration

Figure 6.43: Basic model code for the complete neuron. Due to the modular nature of the
design process the final circuit is a concise description of the design.
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Figure 6.44: Example of pad and core limited designs. A pad limited design is one where
the limiting factor on size is dominated by the number of pads which must enclose the
circuit. For a core limited design the basic circuitry has the most influence on eventual

size.
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Figure 6.45: Neuron ASIC pin configuration. In addition to the necessary input/output
connections, unused pins are connected to monitor key points in the system, OutWght and

SumQOut.
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Figure 6.47: Neuron ASIC hardware test configuration. The ASIC pin connections are
broken out into four sets of lines which are controlled and monitored via two FPC-02/

digital I/O cards mounted in a PC. This approach exchanges hardware complexity for
software complexity.
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Figure 6.48: Full 4-2-4 Hardware Neuron System.
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Figure 6.49: 4-2-4 Feedforward neural system. The number of each neuron signifies the
order it was multiplezed through the single neuron device.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

In this thesis the development of a hardware neuron operating by the use of stochastic
pulse rate encoding principles has been undertaken. The study of ANNs and algorithms is
currently a wide area of research with much of the work conducted in the engineering field
through software models and simulations. This is a slow process since ANNs are inherently
a parallel method of information processing based upon many simple processing elements
operating simultaneously. Software models and simulations will not usually be able to take
full advantage of this process. The investigation and development of suitable hardware
implementations of artificial neurons with the ability to adapt and train as they operate
is a key area for research. The hardware realisation will enable the parallel power and
speed of computation possible with such systems to be more fully realised.

The work described in this thesis initially focused upon appropriate architectures and
algorithms for NNs suitable for transition into a hardware implementation. A critical
review was conducted in Chapter 2 which highlighted some of main NN architectures with
their algorithms describing why they may be of interest. The work of Barto et alinto simple
reinforcement learning using Ap—p, which are related to MLPs and backpropagation, was
shown to be of particular interest with its ability to assign credit and enable a network
to adapt to solve a problem especially when hidden layer processing elements behaved
stochastically. The methods proposed by Barto et al were validated by their application
to two standard test problems, the encoder/decoder and the exclusive-OR. It was shown
that the algorithm could enable a feedforward network to adapt to a solution. It was
also shown that a punishment signal in the credit assignment term was important for
the best results to be obtained. The Ap_p reinforcement strategies have been noted to
be particularly interesting due to their comparative ease of transition into a hardware
implementation.

The Agp_p reinforcement schemes have been extended to produce two new models, the
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Q-model Ap_p and the T-model Ap_p which build upon the P-model Ap_p and S-model
Ap_p strategies of Barto et al. These two new systems use the same single reinforcement
signal for all neurons in the network and the output neurons in the network now behave
stochastically. These new models have been demonstrated to work for the test problems
of a 4-2-4 encoder/decoder and an XOR problem. The scalability of these global Ap_p
training strategies to a larger network of neurons is an issue which must be addressed since
it did not prove possible to train an 8-3-8 encoder/decoder network using either of the
two new strategies in the time allocated for training. It may be possible by investigation of
the gain and asymmetry parameters of the adaption algorithm to overcome this potential
scalability issue. These two new schemes do however have the potential to be simpler to
implement in hardware than the original strategies of Barto et al from which they are
developed.

A critical review of hardware implementation issues is conducted in Chapter 3 with
the assessment of analogue and digital techniques for the formation circuits appropriate
to ANNs. The fields of pulse rate encoding, both deterministic and stochastic, are shown
to be attractive for ANN implementation. Stochastic pulse rate encoding is shown to be
of practical interest due to the efficiency and small size of its computational elements and
its robustness to noise.

To be able to design a hardware artifical neuron based upon stochastic pulse rate en-
coding principles a knowledge of the circuits and their operation is required. A description
of stochastic pulse rate encoding strategies, SLU, DLB and SLB, is provided in Chapter 4.

In addition the following three novel circuits are developed.

A Novel Subtracter

A modification of the original addition circuits presented by Leaver enables sub-
traction to be performed between two lines when signals are encoded using SLU
strategies, §4.5.1. The circuit operates by the removal of pulses from one signal line

commensurate with the pulses present on a second signal line.

An N-input Adder
This new N-input adder presented in §4.4.1 enables the addition of N equally

weighted stochastic signals. The adder relies upon the generation of N equally
weighted stochastic signals of value -1}7 for which an extendable process and architec-
ture are presented to achieve the task. The weighting signals are stochastic in nature
and have the property that none of the weighting signals have coincident pulses, a

necessary condition to enable accurate weighted summation.

Sigmoidal Transform Generator

Several possible techniques for the generation of a sigmoidal transform were con-

sidered in section 4.7, all but one were discounted as being difficult to realise in
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practice. The generation of a sigmoid by use of a Gaussian random number gen-
erator was pursued further. An E-sequence method is presented for the generation
of Gaussian random numbers when operating in the stochastic pulse rate encoded
domain. Using this technique the properties of the sigmoidal transform are adjusted
by varying the Gaussian random number distribution. The gradient of the sigmoid
can be varied by adjusting the variance of the distribution and the mid-range point

adjusted by varying the mean of the Gaussian distribution.

For the encoding of signals into the stochastic pulse rate domain a supply of noise
or random numbers is necessary. Chapter 5 develops the principle of the generation of
multiple random numbers from a single PRBS generator. Given that the sequence of
random numbers from a PRBS is sufficiently long it has been demonstrated that it is
possible to generate multiple random numbers from a single sequence by taking a delayed
tap-off of values for the sequence.

Results are presented demonstrating the suitability of the optimisation techniques of

simulated annealing and genetic algorithms to the problem of optimising multiple tap-off

combinations for multiple PRBS sequences. The tap-off combinations are optimised to

produce even loading on the PRBS register elements, minimum number of total taps and
the minimum deviation from the optimum distribution of delays between sequences.

Having discussed and demonstrated all the constituent elements for an artificial neuron
operating using stochastic pulse rate encoding, a complete design for such a neuron is
presented in Chapter 6. The design operates entirely within the stochastic pulse rate
environment producing a function of a weighted sum of 16 inputs. The weights associated
with each input have the ability to be adjusted on-line by means of either an up/down
signal or by loading with a completely new value by external intervention.

The neuron circuit has been fabricated in 1.5 technology using standard cells for
the circuit components and demonstrated to operate. The sigmoidal transform does not
produce as good a sigmoid as expected, but this can be attributed to the limited dynamic
range of the underlying Gaussian distribution. A potential problem of a reduced dynamic
range of output values was identified for the neuron when fewer than the maximum of 16
input to the neuron were utilised, §6.5.

The computational capability of ‘a network of the fabricated neurons to perform a
simple test task, the 4—2—4 encoder/decoder, has been demonstrated by multiplexing the
operation of a network through a single device. The original implementation using a full
network of six devices was set aside due to a problem in continuity between the fabricated
device and its surrounding socket. To be able to perform off-line training of the network
and then loading the learned weights intothe neuron it was found that an accurate model
of the neuron is required, in particular the sigmoid transform.

It has been found overall that, in general, the system of stochastic pulse rate encoded

computation for the hardware realisation of an artificial neuron are a feasible and an
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attractive option due to the rapid rate of computation, the immunity to noise, efficiency
of the circuits and the ability to adjust the weights on-line as the system operates. A
potential Ap_p reinforcement learning strategy for amalgamation with the hardware has
been identified to be worthy of consideration. However, the overhead of the supporting
circuitry for weight storage and encoding, the currently poor sigmoid transform and the
reduction of the output dynamic range must be considered in using this approach as it

currently exists.

7.2 Further Work

The application of stochastic pulse rate computation techniques to the hardware realisation
of an artifical neuron together with a reinforcement technique have demonstrated a good
potential for further research and development in the field of ANNs. Several interesting

areas of work can be identified which include the following.

New N-input Adder

The original N-input adder suffered from a reduction in the dynamic range of the
output when less than the full N input lines were being used. To overcome this
problem a divider tree for the N-input adder is necessary such that unused lines can
be turned off. This will produce as adder which can sum any number of input lines
M : M < N with weighting factor % Such a circuit is possible and is displayed in
Figure 7.1.

For the new circuit for the generation of M pulse streams of value ﬁ the appropriate
Sn_, = Su line is set high for the chain. This sets all outputs above it to low and

the feed into the pulse multiplier below to high.

This new N-input adder could thus be implemented and used in the hardware design.

External addressing would be necessary to turn on the appropriate select lines.

Improved Sigmoid Transform

Investigation into new alternative techniques for the generating the sigmoid trans-
form could be conducted. Two possible approaches may be_taken, the first is to
find an alternative system for the formation of Gaussian random numbers and the
second is to adopt a completely new approach. A new suggestion, therefore, is to
create a piece-wise linear model of the sigmoid transform. A deterministic mapping
is made from the decoded sum of weighted inputs through the sigmoid transform to
be re-encoded stochastically. An additional attraction of this second option is that
by adjusting the piece-wise linear model the characteristic of the transform can be

adjusted and could be made programmable.
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Full Custom Implementation

The present design has been fabricated using standard cells in 1.5u technology, this
has resulted in a physically large ASIC implementation. The use of standard cells
also means that unused circuitry is incorporated into the design and the placement
and routeing of components may not be ideal. With the further work above into the
improved functionality of the adder and sigmoid transform conducted, the design
could be optimised to be implemented using a full custom design system, for example

CADENCE which is now available in the School of Engineering.

Application of Ag_p to Time Series

Information in the stochastic pulse rate encoded domain is inherently held in a
stochastic time series format. The study of the behaviour of Ap_p reinforcement
learning algorithms when applied to both deterministic and stochastic time series
could be investigated. Such work leads to ANN which have recurrence, feedback,
incorporated into their structure. This recurrence may be local ie. from a neuron’s
output back to its own input, or global, ie. from a neuron’s output back to the input

of neurons preceeding it in the network.

Integration of Ax_p.

With an improved set of neuron devices an enlarged network could be considered
for construction to enable the.integration and evaluation of Ap_p reinforcement
learning strategies within a complete hardware system. Alternatively, if an accurate
software model of the neuron performance including the modelling of the sigmoid is

formed a software system could be developed and studied.
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Appendix A

Random Number Generation

A.1 Hardware Random Number Generators

Hardware random number generators can be divided into two types, those which imple-
ment an algorithm which could be achieved in software and those which are based upon a
true random physical process. Use of a physical process can have its drawbacks. The ran-
dom number generator will often require specific hardware to be used and it is not possible
to repeat a sequence unless a record of random numbers generated is maintained. This can
cause problems of repeatability when conducting simulation experiments. Physical noise
sources are often the basis for random number generators. The following noise sources
could be used for the generation of random numbers, thermal sources, noise diodes, gas
discharge tubes and radioactive sources.

Johnson, [105], showed that a resistance with no external applied voltage has a mea-
surable noise across its terminals. Nyquist’s noise theorem, [106], quantifies this noise for
a resistance in a narrow band, Af, as a function of temperature

w? = iRAf

(eFF1)
@2 is the mean square voltage, h is Planck’s constant (6.6 x 10734 J s™1), k is Boltzmann’s
constant (1.38 x 10723 J °K~1), T is absolute temperature, f is frequency and R is the
value of resistance. A hot resistance may thus be used to generate a noise signal from
which random numbers may be formed. The noise is known as thermal noise or Johnson
noise. A thermal noise source is a primary or absolute source.

Secondary or transfer noise sources examples are diodes or gas discharge tubes. ERNIE,
Electronic Random Number Indicator Equipment, [107], the premium bond number gen-
erating machine is a practical demonstration that these noise sources can be successfully

used for random number generation. Noise waveforms from gas discharge tubes were con-
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verted to pulse trains, a random number being formed by counting the number of pulses
produced in a given time. ERNIE has been upgraded since its original construction by
replacing the gas discharge tubes with diodes.

Diodes, BJTs and FETs can utilise shot noise, thermal noise and avalanche noise to
generate adequate levels of noise. A full discussion of the physical processes involved is
given by Buckingham, [108]. The formation of diodes or transistors within integrated
circuits for generating noise to convert to random pulse sequences is an attractive propo-
sition. Alspector et al, [94], states that unfortunately early work using these ideas very
high levels of gain were required to use the noise source in transistors. This could lead to
cross coupling in the amplifiers, particularly if many sources are integrated onto a single
chip. The area required for such a noise source was also considered to be too expensive.

Radioactive decay is a random process. A sequence of random numbers has been
generated using a gamma ray source, [109]. The least significant digit of the gamma ray
count in a given time period was used as the random number. The distribution of the
generated numbers was satisfactory, but implementing a gamma ray source, detector and
conversion circuitry poses a problem in a general process. For this reason the experiment
was used to create a list of random numbers stored on magnetic tape. A different random
number sequence can be gained by starting at a different location on the tape. Tests
conducted using these random numbers are repeatable since the tape can be rerun from
a given starting point.

Digital shift registers can be used to form PRBS Generators. These will be mentioned
only briefly since they are the subject of a more detailed discussion in the main body of
the thesis, §5.3. PRBSs are pseudo generators since the output is not strictly random but
an output of bits from a linear feedback shift register, LFSR, which have been subjected
to modulo two arithmetic. The bi'naf‘y digits output can be used to form random numbers.
The sequence in the shift register cycles round, with appropriate feedback selection this
will be maximal length ie. the shift register will hold all possible combinations of 1’s and
0's, except all 0’s, before repeating the sequence. The maximal length of sequence is 2V —1
for a shift register of length N and can be seen to grow exponentially with register length,

Figure A.1

A.2 Software Random Number Generators

The fundamental problem with using software to create random numbers is that an algo-
rithm must be used. Numbers formed are therefore deterministic since they are calculated
using a precise technique, the numbers only appear to be random. The sequence of num-
bers will cycle around, by forming generators carefully the period of the cycle can be
extremely large so that to all intents and purposes the numbers appear random. Several

suitable algorithms have been formed as are detailed below. Algorithms are known as
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Pseudo Random Number Generators.

A.2.1 Middle Square Generator

An early algorithm which has been considered is the middle-square technique proposed by
John von Neumann [110]. The method is to take the square of the previous number and
extract the middle digits to form a new random number. If the seed is chosen carefully
it is possible to achieve a reasonable sequence. There are several drawbacks, if a zero is
generated in the number it tends to be self perpetuating over several numbers, sequences
often decay into a cycle of repeating numbers and the seed must be carefully selected.
This middle-square technique is considered to be a poor source of random numbers. For

a four digit seed of 5781 the first few random numbers generated are as

5781 — 334199961
4199 — 17651601
6316 — 39891856
8918 — 79530724
9307 —

A.2.2 Linear Congruential Generators

Most software random number generators are based upon Linear Congruential Generators,
LCG’s, although this is not the only system possible. An LLCG is based upon the following

equation,
Xit1 = (aX;+c) mod m

where @ is the multiple, ¢ is the increment, and m is the modulus. All three constants are
positive integérs.

Each generated number is based upon the preceding value. The sequence will cycle
around and repeat itself. The length of the sequence depends upon the selection of a,
¢ and m. A table of suitable choices for these values is provided in Numerical Recipes,
[111], together with a description of implementations using LCGs. The degree of algorithm
complexity and memory usage varies with the quality of result required. The initial value
of X is known as the seed and may be set explicitly. It is therefore possible to repeat a
sequence of random numbers by re-initialising the seed to the same starting value. Knuth,
[110], gives a full description of this technique and the criteria for the selection of parameter
values. Tf ¢ s set to 0 the pseudo-random number generator is called a Multiplicative Linear
Congruential Generator, MLCG. L’Ecuyer, [112], describes how several MLCG’s may be
combined to produce generators with good statistical properties and the ability for the

resultant generator to be split into several independent generators.

Do
Do
3



A.2.3 Lagged-Fibonacci Generators

A sequence based upon a I'ibonacci sequence has been suggested. The values are calculated

as follows,
X1 = (X,j + X,j_l) mod m

m is the modulus. The sequence period is usually longer than m. The algorithm has been

found not to produce sufficiently random results. Extending the above principle such that,
Xit1 = (Xi + Xi—r) mod m (A1)

improves the quality of the random numbers generated. Providing k and m are suitably
chosen eq.(A.1) can produce adequate random numbers. A large table of past values may
need to be maintained for X; to X;_; which will not lend itself to easy seeding of the

sequence as a table of seeds must be formed.

A.2.4 Add-With—Carry and Subtract—With—Borrow

Add-with—carry and subtract—with—borrow random number generator are a relatively re-
cent development introduced by Marsaglia and Zaman, [113]. These generators are related
to lagged-Fibonacci generators described above. Properties of these generators include
being fast at generating sequences since no multiplications are involved and that the se-
quences are very long indeed, lengths greater than 2500 have been quoted.

The add—with—carry, AWC, sequence is generated as follows,

Xi=(Xics + Xi—r + ¢;) mod b

Cit+1 = I(Xi—s +Xirte2> b)

r > s are positive integers called lags, ¢; is the carry and I, the indicator function, is 1 or
0 depending upon whether or not the inequality is true or false.

Similarly the subtract—with-borrow, SWB, sequence is generated as follows,

Xi=(Xi—s — Xi—p —ci;) mod b

civ1=I(Xi—s = X;r —¢; <0)

Again r > s as before, note this time ¢; is a borrow.

Early analysis of these types of generator has been promising {113, 114].

This brief list of a few techniques is by no means complete. Active research is taking
place into the analysis and generation of random numbers. For the present the LCG and

its variants dominate most software implementations due to their easy formulation and
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understanding.

A.3 Random Number Generator Tests

Given that a technique is being used to form random numbers the quality of the distribu-
tion may wish to be ascertained. To achieve this several empirical and statistical tests may
be applied to the sequence of numbers. In general these tests are not pass or fail, rather
an indication is obtained that a sequence may be more or less random than another.

For a truly random number generator producing an even distribution of numbers, a
sequence of 100 zeros in succession is as equally likely as another defined sequence of 100
numbers all of which are different. Yet, if 100 zeros are observed the natural reaction
would be to say that the generator was biased when this is not the case at all. Many of
the tests conducted upon a sequence of numbers assess the distribution of values within
fchem to determine the quality of randomness. A true random number generator may fail
such a test for the above stated reasons.

The tests which can be applied to random number sequences may be divided into
two main categories statistical and empirical. Some of the main tests in each group are
outlined below. A thorough assessment is given by Knuth, [110].

Statistical tests are as follows,

Chi-Square, x?2, Test. A measure of how improbable an outcome is made. An outcome
can be achieved quite naturally but a factor relating its likelihood is calculated. Thus,
if an outcome is improbable the test should be repeated to ensure that there is no

bias in the generator.

Kolmogorev-Smirnov Test. An assessment on the distribution of outcomes versus the
theoretical probabilities of such outcomes are made. This test is particularly useful

for distributions where the result can be over a very large or infinite range of values.

Empirical tests are as follows,

Equidistribution Test. This test requires that the numbers are uniformly distributed

across an entire range. It is basically a form of Kolmogorev-Smirnov test.

Serial Test. Pairs of successive numbers should be uniformly distributed in an indepen-

dent manner within the sequence. This test can be extended to triples etc.
Gap Test. The length of gap between occurrences of values is assessed.

Poker or Partition Test. This test classically considers groups of five successive
integers as outlined in Table A.1. A x? test is performed on the number of quintuples

in each category to determine a performance indication for the generator.
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Sequence Example
All different abcde
One pair aabed
Two pair aabbc
Three of a kind aaabc
Full house aaabb
Four of a kind aaaab
Five of a kind aaaaa

Table A.1: Poker or Partition Test Sequence Combinations

Permutation Test. The input sequence is divided into p groups of ¢t elements. Elements
in each group can have t! possible relative orderings. The occurrence of each ordering

is counted and a x? test applied.

Run Test. A sequence is analysed for run ups and run downs, ie. an inspection of the

lengths of monotonic increasing and decreasing subsequences is made.

This above list of tests is by no means exhaustive. Other tests include analysis of the
serial correlation, assessment of the maxima and minima output. A sequence may produce
acceptable results with one test but not another. As each test is satisfied the chance that

a random number generator produces a good random number sequence is improved.
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Figure A.1: Maximal binary sequence length vs Shift register length. The sequence length
grows exponentially with an increase in generator length.
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Appendix B

Testing the Quality of the
Random Numbers from a PRBS

This appendix describes a series of tests applied to a model of the random number gener-
ator constructed and utilised within the artificial neuron chip. The few tests implemented
are briefly described in Appendix A and are fully discussed by Knuth [110].

The random number generator selected for implementation was a Pseudo Random
Binary Sequence generator of 27-bits. For a 27-bit PRBS feedback is taken from bits 22,
25, 26 and 27 which are XORed to form the input back into the register to obtain a
maximal length sequence. The maximal length sequence of a 27-bit PRBS generator is
134,217,727 bits.

The basic model code for a software PRBS generator is provided in the Appendix C.
It consists of a C++ class for a PRBS generator which allows a PRB.S to be instantiated

and run.

B.1 Correlation Tests

These tests can be performed on two levels and in two forms. The correlation test can
be executed either upon the individual bits output from the PRBS or upon the 12-bit
random numbers which will be formed from the bit stream in the hardware device. The
two forms in which the correlation test can be executed are the auto-correlation and the
cross-correlation.

For the 27-bit PRBS generator that is to be used in the artificial neuron chip a simu-
lation was performed to create sequences of bits and sequences of 12-bit random numbers
as would occur in the actual hardware. It was ensured that sequences of bits and of 12-bit
random numbers were non-overlapping. The auto-correlation and the cross-correlation

tests for pulse streams of 1000 bits and a random number sequence of 1000 values have
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been performed. The results of these four sets of test are shown in Figure B.1 to Figure B.4.
It can be seen from these tests that the degree of correlation in both the auto-
corrletation and cross-correlation tests are low except, obviously, for a shift of zero in

the auto-correlation test. This is a good indication that the quality of the PRBS bit

stream and random numbers is suitable.

B.2 x? Test/Frequency Test

The x? test is a measure of how probable an actual outcome is based upon the expected
theoretical outcome. For a uniformly distributed random number the actual distribution of
numbers from a run of the generator is compared with the theoretical, ideal, distribution.

If the random number can have k values a sequence of n independent random numbers is

formed.
Let ps be the probability each random number is of value s, and let Y, be the number

of such numbers that do actually fall into the category s. A performance measure V is
given by eq.(B.1)

V=S (¥ = np,)* (B.1)
1<s<k Ps

The numerator can be expanded
(Ys - np.e)z = Ys2 —2Y,nps + TLZPE

and knowing that
Yi+Ya+- +Y=n

Pitpett+pp=1

the following can be derived, eq.(B.2)

2
n 1<s<k Ds

Having calculated the performance measure V it is necessary to determine whether or
not such a figure is acceptable. A table of x? distribution values is referred to for v degrees
of freedom where v = k — 1 as shown in Table B.1. The value in the table, z, is such that
V will be less than 6r equal to z with probability p given that sufficient numbers have been
observed. Thus for v = 10 degrees of freedom the 90% entry of 15.9872 means that V will
be greater than this only 10% of the time. In assessing the values of V a figure between
25% and 75% is sort, since for too high values of V doubt is cast upon the likelihood of
such an action and for too low values of V' the result it too good to be trusted.

The number of categories k may often be large, as is the case for the 12-bit random
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v p=1 p=5 p=10 p=25 p=2>50 p=175 p=90 p=95 p=99
1 0.0002 0.0039 0.0158 0.1015 0.4549 1.3233 2.7055 3.8415 6.6349
2 0.0201 0.1026 0.2107 0.5754 1.3863 2.7726 4.6052 5.9915 9.2104
3 0.1148 0.3518 0.5844 1.2125 2.3660 4.1083 6.2514 7.8147 11.3449
4 0.2971 0.7107 1.0636 1.9226 3.3567 5.3853 7.7794 0.4877 13.2767
5 0.5543 1.1455 1.6103 2.6746 4.3515 6.6257 9.2363 11.0705 15.0863
6 0.8721 1.6354 2.2041 3.4546 5.3481 7.8408 10.6446 12.5916 16.8119
7 1.2390 2.1673 2.8331 4.2549 6.3458 9.0371 12.0170 14.0671 18.4753
8 1.6465 2.7326 3.4895 5.0706 7.3441 10.2189 13.3616 15.5073 20.0902
9 2.0879 3.3251 4.1682 5.8988 8.3428 11.3887 14.6837 16.9190 21.6660
10 2.5582 3.9403 4.8652 6.7372 9.3418 12.5489 15.9872 18.3070 23.2093
15 5.2294 7.2609 8.5468 11.0365 14.3389 18.2451 22.3071 24.9958 30.5780
20 8.2604 10.8508 12.4426 15.4518 19.3374 23.8277 28.4120 31.4104 37.5663
25 | 11.5240 14.6114 16.4734 19.9393 24.3366 29.3388 34.3816 37.6525 44.3140
30 | 14.9535 18.4927 20.5992 24.4776 29.3360 34.7997 40.2560 43.7730 50.8922
35 | 18.5089 22.4650 24.7966 29.0540 34.3356 40.2228 46.0588 49.8018 57.3420
40 | 22.1642 26.5093 29.0505 33.6603 39.3353 45.6160 51.8050 55.7585 63.6908
45 | 25.9012 30.6123 33.3504 38.2910 44.3351 50.9849 57.5053 61.6562 69.9569
50 | 29.7067 34.7642 37.6886 42.9421 49.3349 56.3336 63.1671 67.5048 76.1538
75 | 49.4751 56.0541 59.7946 66.4167 74.3344 82.8581 91.0615 96.2167 106.3929
100 | 70.0650 77.92904 82.3581 90.1332 99.3341 109.1412 118.4980 124.3421 135.8069

Table B.1: x? distribution values.

numbers, in which instance they may be grouped together into ranges eg. 16 ranges of 256
numbers, 0-255, 2566-511, - - -. The distribution within these ranges should be uniform and
so the x? test can be performed upon the number of values in each range with probability
p= ql for a number occurring in 1 of the » ranges. This test is known as a Frequency test.

A problem which can occur with the x2/Frequency test is selecting the length of
the random number sequence to assess. A rule of thumb is that the sequence must be
sufficiently long to enable an expected value np, to be greater than 5. However, if n is too
large it may cause local non-random behaviour to be obscured. If n is not large enough a
bias which may exist in the random numbers may not be revealed. These tests should be
run with varying: values of n.

For the 27-bit PRBS generator that is to be used in the artificial neuron chip a simu-
lation was performed to create sequences of 12-bit random numbers as would occur in the
actual hardware. The bit pattern set initially in the PRBS generator was derived from
the system clock of the host computer, this should ensure a different sub-sequence of the
total sequence is assessed each time the test is run. A number of tests were performed
for different values of n, 1000 to 1000000, and different degrees of freedom, 10 and 50.
For each combination of run length and degrees of freedom 10 runs were evaluated and
averaged. The results can be seen in Table B.2 and Table B.3 the mean of which are
plotted in Figure B.5.

By reference to Table B.1 it can be seen that the value of V usually lies well within

the 25%—75% limits and so with respect to this test upon the 12-bit random numbers they

appear to be adequate.
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Run Length 1000 10000 100000 1000000 10000000
7.622  8.806 6.407 12.055 30.681
8.744 10.193 30.596 13.478 23.425
8.744 12.234 24.404 11.957 25.432
6.584 15.002 5.5563 24.545 13.249
7.037 24.041 10.977 8.527 18.204

13.276 24.067 14.083 8.114 24.860

13.012  3.919 3.522 13.185 22.865
5.576  6.727 16.114 9.474 33.344
5.576  7.143 3.747 11.283 12.823
8.876  7.603 10.832 12.434 35.689

Mean 8.505 11.973 12.623 12.505 24.057

Table B.2: x? results for distribution of random numbers generated froam a PRBS, 10
degrees of freedom.

RunLength 1000 10000 100000 1000000 10000000
50.702 44.419 49.110 100.966  378.463
51.110 62.922 67.799 92.601  389.794
44.684 53.722 54.500  85.086  333.268
37.748 35.392 40.311 87.784 - 380.769
56.312 58.781 51.866  70.708  363.466
56.312 44.521 46.852  73.941  365.739
41.318 54.823 41.002 62.579  382.544
57.842 37.993 38.548  78.527  412.450
59.066 60.076 71.452  86.473  406.685
76.508 52.039 53.699  88.964  360.200
Mean 53.160 50.469 51.514  82.763  377.338

Table B.3: x? results for distribution of random numbers generated froam a PRBS, 50°
degrees of freedom
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B.3 Gap Test

For the implementation of the Gap test upon a sequence of random numbers the length of
gap between a number U within a range and the next occurrence of a number in that range
is assessed. A total of n gaps are counted and a x? test performed upon the distribution
of these gaps. For a normalised uniform random number generator, given that the number
U falls within the range of two numbers o and f, « < U < fand 0 < o < B < 1 the

probability that the next number also falls in the same range a gap of zero is
p=p=p0-«

For a gap of one

p1=p(1-p)

In fact the probability is a geometric random variable distribution such that for a gap

length ¢
pg =p(1—p)?

Finally for a gap length equivalent to or greater than a user defined maximum length m

Pm = (1 - P)m

The number of degrees of freedom v which are applicable for the x? test is the value m
the maximum gap length since there are m + 1 different gap categories.

For the 27-bit PRBS generator that is to be used in the artificial neuron a simulation
was performed to create sequences of 12-bit random numbers as per the previous 2 test.
A number of gap tests were performed for different numbers of gaps from 1000 to 100000
and with two different degrees of freedom 10 and 20. The results can be seen in Table B.4
and Table B.5 with the mean of the 10 separate runs plotted in Figure B.6. By reference
to Table B.1 it can be seen that the values of V for the x? distribution test of the gaps
usually lies within the 25%-75% limits and so with respect to this test the 12-bit uniform

random number generator appears to produce adequately distributed numbers.

B.4 Summary

This appendix has detailed tests a,pplied to a PRBS generator model of 27-bits. The
software generates the same bit pattern sequence a hardware realisation of the device.
Four basic tests have been conducted upon the random numbers generated using a PRBS
generator, auto-correlation, cross-correlation, a x? test and a Gap test for the distribution

of values. The basic tests have confirmed that the numbers generated by the use of the
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Run Length 1000 2000 5000 10000 20000 50000 100000

9.252 5044 4.842 11.918 13.498 9.365 15.441

11.117 7.101 8941 4.606 2.626 7.546 12.168

9.505 21.369 10.669 9.006 18.951 8.007 11.892

11.013 4.651 9.713 13.748 5.217 10.863 19.351

11.394 9.334 11.419 10.742 8.208 9.218  4.703

6.546  11.631 12,571 9.669 15.883 19.226  9.105

8.067 12.225 9.383 9.950 6.967 4.597  9.276

4505 14.166 6.290 6.505 10.014 14.936  7.976

9.883 14.1658 12.295 11.632 3.672 4.457  8.687

19.562 12.788 9.400 11.632 16.677 4.179 14.283

Mean 10.084 11.247 9.552  9.941 10.171 9.239 11.288
Table B.4: 10 degrees of freedom for Gap test

Run Length 1000 2000 5000 10000 20000 50000 100000

4930 7.814 11.192 16.379 13.949 31.965 51.181

11.274 14.968 14.597 11.146 11.910 34.132 42.771

10.656 4.134  6.772 30.478 15.076 38.294 42.532

6.382 10.265 6.023 7.178 14.432 38.593 63.688

8.416 9.800 4.493 9.048 13.862 47.532 67.826

9.528 10.075 2.099 10.206 14.407 21.421 24.303

5.720 10.015 8.213 19.559 12.621 14.002 41.494

10.901  9.152 12.544 10.155 16.149 47.094 58.300

16.304 3.508 10.062 8.182 7.044 11.713 25.393

13.344 16.937 4.944 12.948 23.906 38.522 54.162

Mean 9.745 9.667 8.094 13.528 14.336 32.327 47.165

Table B.5: 20 degrees of freedom for Gap test
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PRBS generator are probably suitably random. The above tests are not exhaustive neither

are they conclusive but they do demonstrate that the numbers should be suitably random.
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Figure B.1: Auto-correlation for a 1000 bits. Ezcept for the case of shift = 0 the random
bit stream exhibits limited correlation.
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Figure B.2: Cross-correlation for a 1000 bits. The corrleation between two non-overlapping

bit streams is seen to be low
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Figure B.3: Auto-correlation for a 1000 numbers. As per Figure B.1 except for the case
of shift =0 the 12-bit random number stream exhibits limited correlation.
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Figure B.4: Cross-correlation for a 1000 numbers. The cross-correlation between two non-
overlapping streams of 12-bit random numbers is low.
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Figure B.6: Mean values of Gap test values for distribution of random numbers from
PRBS generator: 10 and 20 degrees of freedom

241



Appendix C

A C++4+ PRBS Class

This Class Prbs provides a simple Pseudo Random Binary Sequence (PRBS) generator
formed from a Linear Feedback Shift Register (LFSR). The maximum length of the register
can be up to 32 bits. A PRBS is used to generate a 0 or a 1 with equal probability. This is
achieved by performing modulo 2 arithmetic upon the bit values of the LFSR. on which the
PRBS is based. The algorithm implementation used to move through the PRBS is that
explained in Numerical Recipes, [111], Method 1 is used in this instance. The sequential
bits from this type of generator should not be used to form a large random integer or
the mantissa of a random float. Knuth, [111], explains that they are not suitable for this

purpose. Uses to which these bits can be put are
1. Multiplying a signal randomly by 0 or 1, £1.

2. A Monte Carlo search of a binary tree where the decision on which direction to

branch is the output of the PRBS.
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Prbs::Prbs
Function
Syntax

Prototype in
Remarks

Constructor for Prbs.

#include "prbs.h"

Prbs RandomBinarySequence(void);

Prbs RandomBinarySequence(const unsigned length,

const unsigned long seed);
prbs.h

Overloaded constructor for Prbs objects. It is usual to specify the length
and seed when first created the object, although they can be set later.

The empty constructor is primarily to enable arrays of Prbs’s to be

created.
Return value none
Prbs::setLength

Function
Syntax

Prototype in
Remarks

Return value

Prbs::seed
Function
Syntax

Prototype in
Remarks

Return value

Set the length of the PRBS.
#include "prbs.h"

int RandomBinarySequence.setLength(const unsigned length);
prbs.h

Explicitly set the length of Prbs to length. If length is greater than the
maximum size allowed the Prbs is set to the maximum possible size and

an error returned. It is still possible to use the Prbs if required.
If successful returns 0, or returns -1 on an error.

Seed the PRBS.
#include "prbs.h"

int RandomBinarySequence.seed(const unsigned long seed);
prbs.h’

Explicitly set the seed of the Prbs to seed. If seed is greater than the
maximum value the this length of PRBS can hold then the seed is set

to 1 and an error returned.
If successful returns 0, or returns -1 on an error.
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Prbs::advance

Function

Syntax

Prototype in
Remarks

Return value

Advance the generator through its sequence.
#include "prbs.h"
int RandomBinarySequence.advance(void);

int RandomBinarySequence.advance(const unsigned long shift);
prbs.h

An overloaded function to advance the Prbs through its sequence. This

can be a single step or a shift number of steps.
Either 0 or 1 is returned, the resultant generator output.
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/] #EEREHEAS A

// file: pros.h

//

// description: Header file for Class Prbs

//

// author: John § Glover )
// address: School of Engineering and Computer Science
// Unaversity of Durham.

// South Road

// Durham

// DH! 3LE

// UK

// phone: +44 91 374 2565

// e-masl: 7.s.glover@durham.ac.uk

//

[/ ##ERE AR A

#ifndef PRBS_H
#define PRBS_H

#ifndef ULong

typedef unsigned long ULong;
typedef unsigned short UShort;
#endif

const ULong LFSR1 = 1;

const ULong LFSR2 = 2;

const ULong LFSR3 = 4;

const ULong LFSR4 = §;

const ULong LFSR5 = 16;

const ULong LFSR6 = 32;

const ULong LFSR7 = 64;

const ULong LFSR8 = 128;

const ULong LFSRY = 256;

const ULong LFSR10 = 512;
const ULong LFSR11 = 1024;
const ULong LFSR12 = 2048;
const ULong LFSR13 = 4096;
const ULong LFSR14 = 8192;
const ULong LESR15 = 16384;
const ULong LFSR16 = 32768;
const ULong LFSR17 = 65536;
const ULong LFSR18 = 131072;
const ULong LFSR19 = 262144;
const ULong LFSR20 = 5244288;
const ULong LFSR21 = 1048676;
const ULong LFSR22 = 2097152;
const ULong LFSR23 = 4194304;
const ULong LFSR24 = 8388608;
const ULong LFSR25 = 16777216;
const ULong LFSR26 = 33554432;
const ULong LFSR27 = 67108864;
const ULong LFSR28 = 134217728;
const ULong LFSR29 = 268435456;
const ULong LFSR30 = 536870912;
const ULong LFSR31 = 1073741824;
const ULong LFSR32 = 2147483648;
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class Prbs{
unsigned length;
ULong prbsValue;
ULong maxPrbsValue;
ULong prbsTaps[33];
ULong randomBit;
ULong mask;
const unsigned MaxGeneratorLength = 32;

public:

Prbs(void); .
Prbs(const unsigned lengthGenerator, const ULong generatorSeed);

int Prbs:setLength(const unsigned lengthGenerator);
int Prbs:seed(const ULong generatorSeed);

int Prbs:advance(void);
int Prbs::advance(const ULong shift);

b

#endif

/] #RERFFAESH
// end of file prbs.h
/] #RFHAFHAAA
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/] #RERAAAEAH

// file: prbs.cc

//

// description: function file for Class Prbs generator
/7

// author: John § Glover

// address: School of Engincering and Computer Science
// University of Durham,

// South Road

// Durham

// DH! 3LE

// UK

// phone: +44 91 37{ 2565

// e-mail: 3.s.glover@durham.ac.uk

/7

/] #EERRE RS

static char rcsid]] = "$Id: prbs.cciv 1.1 1992/11/01 16:59:38 des3jsg Exp $";

#include <iostream.h>
#include ”prbs.h”

/] #EFAEHAA A
// member function: Prbs::Prbs()

//
// Constructor for object, all private variables set to 0.
// Useful if creating an array of Prbs’s
V4 :
// jsg 28/10/92
// BEHFAREFHH
Prbs::Prbs(veid)
{
length = 0;
prbsValue = 0;
maxPrbsValue = 0;
randomBit = 0;
mask = 0;

}

[ #HEREAAAAS
// member function: Prbs::Prbs()

//
// Constructor for object.
// This is the one to be used in general, requires the size of the PRBS

// to be created and its seed to operate correctly.

/!
// isg 28/10/92
/] #EEFAAAAHEH
Prbs::Prbs(const unsigned lengthGenerator, const ULong generatorSeed)
{
prbsTaps[0] = 0;
prbsTaps[l}] = LFSR1;
prbsTaps[2] = LFSR2 + LFSR1;
prbsTaps[3] = LFSR3 + LFSR2;
prbsTaps[4] = LFSR4 + LFSR3;
prbsTaps[5] = LFSR5 4 LFSR3;
prbsTaps[6] = LFSR6 + LFSRS;
prbsTaps[7] = LFSR7 + LFSRG;
prbsTaps[8] = LFSR8 4+ LFSR4 + LFSRS5 + LFSRE;
prbsTaps[9] = LFSR9 + LFSRS;
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prbsTaps[10] = LFSR10 4 LFSRT;

prbsTaps[11] = LFSR11 + LFSRY;

prbsTaps[12] = LFSR12 + LFSR6 + LFSR8 + LFSR11;
prbsTaps[13] = LFSR13 + LFSRI + LFSR10 + LFSR12;
prbsTaps[14] = LFSR14 + LFSR9 + LFSR12 + LFSR13;
prbsTaps[15] = LFSR15 + LFSR14;

prbsTaps[16] = LFSR16 + LFSR11 + LFSR13 4+ LFSR14;
prbsTaps[17] = LFSR17 + LFSR14;

prbsTaps[18] = LFSR18 + LFSR13 + LFSR16 + LFSR1T;
prbsTaps[19] = LFSR19 + LFSR12 + LFSR17 + LFSR18;
prbsTaps[20] = LFSR20 + LFSR1T7;

prbsTaps[21] = LFSR21 4+ LFSR19;

prbsTaps(22] = LFSR22 + LFSR21;

prbsTaps[23] = LFSR23 + LFSR18;

prbsTaps[24] = LFSR24 + LFSR20 + LFSR21 + LFSR23;
prhsTaps[25] = LFSR25 + LFSR3;

prbsTaps[26] = LFSR26 + LFSR20 + LFSR24 + LFSR25;
prbsTaps{27] = LFSR27 + LFSR22 + LFSR25 + LFSR26;
prbsTaps[28] = LFSR28 + LFSR25;

prbsTaps{29] = LFSR29 + LFSR27,;

prbsTaps[30] = LFSR30 + LFSR24 + LFSR26 + LFSR29;
prbsTaps[31] = LFSR31 + LFSR28;

prbsTaps{32] = LFSR32 4+ LFSR25 4+ LFSR27 + LFSR29 + LFSR30;

if (setLength(lengthGenerator) < 0)
cerr € "error Prbs::Prbs: incomplete construction" & endl;
if (sced(gencratorSeed) < 0)
cerr & "error Prbs::Prbs(): incomplete construction" & endl;
}

/] #EEFEAAHAH
// member function: Prbs::setLength()

//

// Set the length of the PRBS to ’lengthGenerator’,

// return 0 on success, -1 on failure ie. ‘lengthGenerator’ too big in which
// case set to ‘maxGeneratorLength’.

// Also set ‘mazPrbsValue’.

/!
// gsg 1/11/92
[/ #RERR AR
int
Prbs::setLength(const unsigned lengthGenerator)
{
int setLengthReturn = 0;
maxPrbsVahie = 1;

if (lengthGenerator > MaxGeneratorLength) {

scetLengthReturn = -1;

corr & "error Prbs::setLength(): length value out of range" <« endl;

length = MaxGenecratorLength;

for (unsigned lengthCount = 0; lengthCount < lengtl; lengthCount++) {
maxPrbsValue €= 1;
maxPrbsValue++;

Y // for ‘lengthCount’

else {
setLengthReturn = 0;
length = lengthGenerator;
for (unsigned lengthConnt = 0; lengthiCount < length; lengthCount++) {
maxPrbsValue €= 1;
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maxPrbsValue++;
Y // for ‘lengthCount’
Y // if (lengthGenerator > MazGeneratorLength)

return setLengthReturn;
Y // function prbs::sctLength()

/] #EEAEAA A
// member function: Prbs::sced()

//

// Seed the PRBS with the value of generatorSeed.

// Returns 0 on success, -1 on failure.

// If the seed is too large for the size of PRBS a seed of 1 is used.

//
// 359 81/10/92
/] FHEAEEFRAAH
int
Prbs::seed(const ULong generatorSeed)
{
int secedReturn = 0;
if (generatorSeed > maxPrbsValue) {
seedReturn = -1; )
cerr K "error Prbs::seed(): seed value out of range" « endl;

prbsValue = 1;
}
else {
seedReturn = 0;
prbsValue = generatorSeed;
Y // if (generatorSeed > maxPrbsValue)

return secedReturn;

} // function Prbs::seed()

249



/] #REAFAAESH

// member function: Prbs::advance()

//

// Clock PRBS by 1 to advance it once through the sequence.
//

// jsg 29/10/92

/] #HARFEARAH

int

Prbs::advance(void)

{

randomBit = 0;
mask = prbsValue & prbsTaps[length];

for (unsigned bit = 0; bit < length; bit++) {
mask >= 1;
randomBit V = mask & 1;

Y // for b’
prbsValue = (prbsValue < 1) | randomBit;

return int(randomBit);

}
/] #HAARAAAEA

// member function: Prbs::advance()

// :

// Clock PRBS ’shift’ times to advance ’shift’ steps through the sequence.

// 3sg 29/10/92

/] #EREESEASH

int '
Prbs::advance(const ULong shift)

for (ULong shift Count = 0; shiftCount-< shift; shiftCount++) {
randomBit = 0;
mask = prbsValue & prbsTaps|length];

for (unsigned bit = 0; bit < length; bit++) {
mask >=1;
randomBit V = mask & 1;
Y // for ‘hat’
prbsValue = (prbsValue <« 1) | randomBit;
Y // for ’shiftCount’

return int(randomBit);

}
/] #EFAREAAES

// end of file prbs.cc
/] #ERFAAHAES
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Appéndix D

Neuron Test Board Configuration

The connections utilised on the test board for verifying the operation of the fabricated
neurons are shown in Table D.1 and Table D.2. The connections relate to those made
from the FPC-024 Digital IO cards to the neuron socket and neuron itself. The pins of
the fabricated neuron have been illustrated in the main body of this thesis, Figure 6.45.
The only additional circuitry required is the provision of a 5V supply suitable to power
the artificial neuron device.

In the actual fabricated test board LEDs were connected via buffers to the output
lines as a visual feedback of their status, this is not necessary for the operation of the
device, conducting the testing of the artificial neuron or as was eventually performed the
simulation of a network of six such devices.
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Name | Connection | Pin | Name | Connection | Pin

Gnd CNI1-1 Gnd CN2-1
Gnd CN1-2 Gnd CN2-2
PA3 "CN1-3 27 NC CN2-3
NC CN1-4 NC CN2-4
PA2 CN1-5 54 NC CN2-5
PA1 CN1-6 58 NC CN2-6
PAO CN1-7 57 NC CN2-7
CLKO CN1-8 NC CN2-8
OouTo CN1-9 NC CN2-9
GATEO CN1-10 NC CN2-10
CLK2 CN1-11 NC CN2-11
ouUT2 CN1-12 NC CN2-12
GATE2 CN1-13 PA1l CN2-13
CLK1 CN1-14 PAO CN2-14
GATE1 CN1-15 PA3 CN2-15
OUT1 CN1-16 PA2 CN2-16

PA4 CN1-17 28 | PAS CN2-17
PA5 CN1-18 29 | PA4 CN2-18
PA6 CN1-19 30 | PAT7 CN2-19 32
PA7 CN1-20 31 | PAG6 CN2-20
PC6 CN1-21 73 | PC6 CN2-21 50
PC7 CN1-22 74 | PC7 CN2-22 51
PC5 CN1-23 72 | PC4 CN2-23 48
PC4 CN1-24 71 | PC5s CN2-24 49
PCO CN1-25 67 | PC1 CN2-25 45
PC1 CN1-26 68 | PCO CN2-26 44
PC2 CN1-27 69 { PB7 CN2-27 43
PB7 CN1-28 66 | PC2 CN2-28 46
PC3 CN1-29 70 | PB6 CN2-29 42
PB6 CN1-30 65 | PC3 CN2-30 47
PBO CN1-31 59 | PB5 CN2-31 39
PB5 CN1-32 64 | PBO CN2-32 34
PB1 CN1-33 60 | PB4 CN2-33 38
PB4 CN1-34 63 | PB1 CN2-34 35
PB2 CN1-35 61 | PB3 CN2-35 37
PB3 CN1-36 62 | PB2 CN2-36 36

-5v CN1-37 -5v CN2-37
+5v CN1-38 +-5v CN2-38
-12v CN1-39 -12v CN2-39
+12v CN1-40 +12v CN2-40

Table D.1: ASIC connections to FPC-024 digital I/O card 1
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Name | Connection | Pin | Name | Connection | Pin

Gnd CN1-1 Gnd CN2-1
Gnd CN1-2 Gnd CN2-2
PA3 CN1-3 78 | NC CN2-3
NC CN1-4 NC CN2-4
PA2 CN1-5 77 | NC CN2-5
PA1 CN1-6 76 | NC CN2-6
PAO CN1-7 75 | NC CN2-7
CLKO CN1-8 NC CN2-8
OUTO CN1-9 NC CN2-9
GATEO | CN1-10 NC CN2-10
CLK2 | CN1-11 NC CN2-11
oUT2 CN1-12 NC CN2-12
GATE2 | CN1-13 PA1 CN2-13 23
CLK1 CN1-14 PAQ CN2-14 22
GATE1 | CN1-15 PA3 CN2-15
OUT1 CN1-16 PA2 CN2-16

PA4 CN1-17 79 | PAS CN2-17
PA5 CN1-18 80 | PA4 CN2-18
PA6 CN1-19 81 | PA7 CN2-19 2
PA7 CN1-20 82 | PAS6 CN2-20

PC6 CN1-21 PC6 CN2-21 20
PC7 CN1-22 PC7 CN2-22 21
PC5 CN1-23 PC4 CN2-23 18
PC4 CN1-24 PC5s CN2-24 19
PCO CN1-25 PC1 CN2-25 13
PC1 CN1-26 PCO CN2-26 12
PC2 CN1-27 PB7 CN2-27 10
PB7 CN1-28 PC2 CN2-28 14
PC3 CN1-29 PB6 CN2-29 9
PB6 CN1-30 PC3 CN2-30 17
PBO CN1-31 83 | PB5 CN2-31 8
PB5 CN1-32 PBO CN2-32 3
PB1 'CN1-33 24 | PB4 CN2-33 7
PB4 CN1-34 PB1 CN2-34 4
PB2 CN1-35 | 25 | PB3 CN2-35 6
PB3 CN1-36 26 | PB2 CN2-36 5
-5v CN1-37 -5v CN2-37
+5v CN1-38 +5v CN2-38
-12v CN1-39 -12v CN2-39
+12v CN1-40 +12v CN2-40

Table D.2: ASIC connections to FPC-024 digital I/O card 2
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Appendix E

4—2—4 Encoder/Decoder Board
Configuration

The basic schematics for a network of six neurons are illustrated in Figure E.1 and Fig-
ure E.2 with the connections made between this system and the two FPC-024 digital 10
boards detailed in Table E.2 and Table E.3. A

Each neuron, Neuron X, is configured similarly but there are variations between hidden
layer and ontput neurons. The two hidden layer neurons, Neurons 1 and 2, have four
input lines which are shared and five independent up/down lines each for driving the
weight register counters. The four output layer neurons, Neurons 3, 4, 5 and 6, have
two shared input lines taken from the outputs of the hidden layer neurons and three
independent up/down lines each for driving the weight register counters. For each neuron
the remaining input lines are commoned together and driven as one with a value of zero,
IN X where X is a given neuron. Similarly for each neuron the remaining up/down lines
are commoned together and driven as one with a value of zero, UD X, so that neuron

weight does not change.

Name Description

RST Reset

CLK Clock :

R/W Read/Write line for each individual neuron driven by a combination of

the global R/W and the selection of the neuron.
ADDR 0-7 | Address lines, 0—4 select the appropriate weight register and 5-7
select the appropriate neuron

In 0-3 The four input driving pulse sequences for the network.
UD X0-n | Up/down signal lines for neuron X and weight registers 0 to n
Init 0-11 | Initialising weight value, if being loaded. .-
WghtOut | Encoded pulse trains for encoded weights.
SumOunut | Result of weighted summation.

Out X Result of sigmoid transform circuit for neuron z.

IN X Remaining unused input lines for a neuron X commoned together
and driven as one.

UD X Remaining unused up/down lines for a neuron X commoned together

and driven as one.

Table E.1: Description of signal line naming convention.
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Global R/W

ADDR 5-7

ADDR 0-4

In 0-n
IN X
UD 0O-n
UD X

Figure E.1: An individual neuron configuration, Neuron X. For the {—2-4 encoder/decoder
siz circuit are required connected to a bus on a motherboard. Input In 0-n are the input
lines either from the outside or from the preceding layer.

74138

3:8 Decoder

Init Bus
B
Dir
74641 } Bi-directional buffer
G —
A nit 0-11
r ~
LN
OutWght 0-16
& Neuron X g
* SumOut
) S J_. Out X
‘ 1

R/W RST
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In 0-1

- UDI1:0-4

UD3:0-2

Out 3
Neuron 3

UD4:0-2

QOut 4

Neuron 1

UD2:0-4

Neuron 4

i

UD5:0-2

Out 5

Neuron 2 Out 2

Figure E.2: Encoder/Decoder system configuration of six neurons. In 0-8 are the input
values to the system from the outside world, while In 0-1 are the output from the hidden
layer fed into the output layer. All neuron outputs have an inverter on them to correct the

velue of the sigmoid transform output.
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Name | Connection | Pin Name | Connection | Pin
Gnd CN1-1 Gnd CN2-1
Gnd CN1-2 Gnd CN2-2
PA3 CN1-3 Addr 3| NC CN2-3
NC CN1-4 NC CN2-4
PA2 CN1-5 Addr 2 | NC CN2-5
PA1 CN1-6 Addr 1} NC CN2-6
PAO CN1-7 Addr 0| NC CN2-7
CLKO CN1-8 NC CN2-8
ouTo CN1-9 NC CN2-9
GATEO CN1-10 NC CN2-10
CLK2 CN1-11 NC CN2-11
OUT2 CN1-12 NC CN2-12
GATE2 CN1-13 PA1l CN2-13 UD 1.1
CLK1 CN1-14 PAO CN2-14 UD 1.0
GATE1 CN1-15 PA3 CN2-15 UD 1.3
OoUT1 CN1-16 PA2 CN2-16 UD 1.2
PA4 CN1-17 Addr 4 | PAS CN2-17
PA5 CN1-18 Addr 51 PAd4 CN2-18 UD 14
PAG6 CN1-19 Addr 6 | PA7 CN2-19
PAT CN1-20 Addr 7 | PA6 CN2-20
PC6 CN1-21 PC6 CN2-21
PC7 CN1-22 PC7 CN2-22
PC5 CN1-23 Out 6 PC4 CN2-23 SumOut 5
PC4 CN1-24 Out 5 PC5 CN2-24 SumOut 6
PCo CN1-25 Out 1 PC1 CN2-25 SumOut 2
PC1 CN1-26 Out 2 PCO CN2-26 SumOut 1
PC2 CN1-27 Out 3 PB7 CN2-27
PB7 CN1-28 RW PC2 CN2-28 SumOut 3
PC3 CN1-29 Out 4 PB6 CN2-29 :
PB6 CN1-30 RST PC3 CN2-30 SumOut 4
PBO CN1-31 In0 PB5 CN2-31
PB5 CN1-32 CLK PBO CN2-32 UD 2.0
PB1 CN1-33 In1l PB4 CN2-33 UD 24
PB4 CN1-34 PB1 CN2-34 UD 2.1
PB2 CN1-35 In 2 PB3 CN2-35 UD 2.3
PB3 CN1-36 In 3 PB2 CN2-36 UD 2.2
-5v CN1-37 -5v CN2-37
+5v CN1-38 +5v CN2-38
-12v CN1-39 -12v CN2-39
+12v CN1-40 +12v CN2-40

Table E.2: Motherboard connections to digital I/O card 1
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Name | Connection Pin Name | Connection Pin
Gnd CN1-1 Gnd CN2-1
Gnd CN1-2 Gnd CN2-2
PA3 CN1-3 Init 3 NC CN2-3
NC CN1-4 NC CN2-4
PA2 CN1-5 Init 2 NC CN2-5
PA1 CN1-6 | Init1 NC CN2-6
PAO CN1-7 Init O NC CN2-7
CLKO CN1-8 NC CN2-8
OoUTOo CN1-9 NC CN2-9
GATEO CN1-10 NC CN2-10
CLK2 CN1-11 NC CN2-11
OoUT2 CN1-12 NC CN2-12
GATE2 CN1-13 PA1l CN2-13 UD 3.1
CLK1 CN1-14 PAO CN2-14 UD 3.0
GATE1 CN1-15 PA3 CN2-15
OUT1 CN1-16 PA2 CN2-16 UD 3.2
PA4 CN1-17 Init 4 | PA5 CN2-17 UD 4.1
PA5 CN1-18 Init 5 | PA4 CN2-18 UD 4.0
PAG6 CN1-19 Init 6 PAT CN2-19
PA7 CN1-20 Init 7 | PA6 CN2-20 UD 4.2
PC6 CN1-21 PC6 CN2-21 IN 6
PC7 CN1-22 PC7 CN2-22 UD 6
PC5 CN1-23 PC4 CN2-23 IN 5
PC4 CN1-24 PC5 CN2-24 UD 5
PCO CN1-25 IN 1 PC1 CN2-25 UD 3
PC1 CN1-26 UD1 PCO CN2-26 IN 3
PC2 CN1-27 IN 2 PB7 CN2-27
PB7 CN1-28 PC2 CN2-28 IN 4
PC3 CN1-29 UD 2 PB6 CN2-29 UD 6.2
PB6 CN1-30 PC3 CN2-30 UD 4
PBO CN1-31 Init 8 | PB5 CN2-31 UD 6.1
PB5 CN1-32 PBO CN2-32 UD 5.0
PB1 CN1-33 Init9 | PB4 CN2-33 UD 6.0
PB4 CN1-34 PB1 CN2-34 UD 5.1
PB2 CN1-35 Init 10 | PB3 CN2-35 UD 5.2
PB3 CN1-36 Init 11 | PB2 CN2-36
-5v CN1-37 -5v CN2-37
+5v CN1-38 +5v CN2-38
-12v CN1-39 -12v CN2-39
+12v CN1-40 +12v CN2-40

Table E.3: Motherboard connections to digital I/O card 2
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