
Durham E-Theses

The hardware implementation of an arti�cial neural

network using stochastic pulse rate encoding

principles

Glover, John Sigsworth

How to cite:

Glover, John Sigsworth (1995) The hardware implementation of an arti�cial neural network using

stochastic pulse rate encoding principles, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/5423/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5423/
 http://etheses.dur.ac.uk/5423/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The Hardware Implementation Of An Artificial

Neural Network

Using Stochastic Pulse Rate Encoding Principles

John Sigsworth Glover

M.Eng. (Leeds)

School of Engineering

University of Durham

A thesis submitted in part ial fulf i l lment of the require

ments of the Council of the University of Durham for

the Degree of Doctor of Philosophy (Ph.D.) .

September 1995

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

2 2 MAY 1996

Abstract

I n this thesis the development of a hardware art if icial neuron device and art if icial

neural network using stochastic pulse rate encoding principles is considered.

A f t e r a review of neural network architectures and algorithmic approaches suitable for

hardware implementat ion, a cri t ical review of hardware techniques which have been consid

ered in analogue and digi ta l systems is presented. New results are presented demonstrating

the potent ia l of two learning schemes which adapt by the use of a single reinforcement

signal.

The techniques for computation using stochastic pulse rate encoding are presented

and extended w i t h new novel circuits relevant to the hardware implementation of an

ar t i f ic ia l neural network. The generation of random numbers is the key to the encoding

of data into the stochastic pulse rate domain. The formation of random numbers and

mult iple random b i t sequences f r o m a single PRBS generator have been investigated. Two

techniques, Simulated Annealing and Genetic Algori thms, have been applied successfully

to the problem of optimising the configuration of a PRBS random number generator for

the format ion of mult iple random bit sequences and hence random numbers.

A complete hardware design for an art if icial neuron using stochastic pulse rate encoded

signals has been described, designed, simulated, fabricated and tested before configuration

of the device into a network to perform simple test problems. The implementation has

shown tha t the processing elements of the art if icial neuron are small and simple, but that

there can be a significant overhead for the encoding of information into the stochastic

pulse rate domain. The stochastic art i f icial neuron has the capability of on-line weight

adaption. The implementation of reinforcement schemes using the stochastic neuron as a

basic element are discussed.

Acknowledgements

The fol lowing people have beeji v i ta l to the production of this rhesis, but many others

have also contributed to my welfare during the development of this thesis.

• Professor Ph i l Mars of the University of Durham - for all his guidance and advice.

• Dr Simon Johnson of the University of Durham ~ for discussions on the hardware

implementat ion techniques available at the University of Durham.

• University of Teesside - for their assistance in the fabrication of the ar t i f ic ial neuron

devices.

• Raghu, Chen, A lan , Jeremy, David, Matthew, M a r t i n and Stephen, my colleagues

in the lab for their support.

Declaration

I hereby declare tha t this thesis is a record of work undertaken by myself, that i t has

not been the subject of any previous application for a degree, and that all sources of

in format ion have been duly acknowledged.

©Copyright 1995, John Sigsworth Glover

The copyright of this thesis rests w i t h the author. No quotation f rom i t should be published

wi thou t his wr i t t en consent, and informat ion derived f rom i t should be acknowledged.

in

Contents

C o n t e n t s iv

L i s t of F i g u r e s vi i i

L i s t of A b b r e v i a t i o n s x iv

1 I n t r o d u c t i o n 1

1.1 Outl ine of Thesis 3

2 A s p e c t s of A r t i f i c i a l N e u r a l Netvvrorks 5

2.1 The Biological Inspiration for Ar t i f i c i a l Neural Networks 6

2.2 Basic Processing Element Model 8

2.3 Single-layer Perceptron and Multi-layer Perceptron 9

2.3.1 SLP and the Perceptron Convergence Procedure 10

2.3.2 M L P and Backpropagation 12

2.3.3 M L P and Backpropagation Implementation 17

2.4 Kohonen Self-Organising Feature Map 19

2.4.1 Training 20

2.4.2 Kohonen Self-Organising Map Implementation 22

2.5 The Hopfield Network 24

2.5.1 Architecture and Operation 25

2.6 Bol tzmann Machine 27

2.6.1 Architecture and Operation 27

2.7 Reinforcement Learning Schemes 29

2.7.1 Bar to Reinforcement Learning 35

I V

2.8 Two New Extensions for Reinforcement Learning: Q-model and T-model

A R _ P 38

2.8.1 Evaluating the Four A j ^ _ p Strategies 39

2.9 Conclusions 41

3 H a r d w a r e Implementa t ion: A C r i t i c a l R e v i e w 65

3.1 Analogue Ar t i f i c i a l Neural Networks 66

3.2 Dig i t a l Ar t i f i c i a l Neural Networks 68

3.3 H y b r i d A r t i f i c i a l Neural Networks 69

3.4 Pulse Coded Hardware Implementations 69

3.4.1 Deterministic Pulse Coding Circuits 71

3.4.2 Stochastic Pulse Coding Circuits 73

3.5 Commercial Hardware Realisations 75

3.6 Conclusions 76

4 Stochas t i c P u l s e R a t e C o m p u t a t i o n 82

4.1 Encoding or Inpu t Mapping into the Stochastic Pulse Rate Domain 83

4.1.1 S L U Inpu t Mapping 83

4.1.2 D L B Input Encoding 86

4.1.3 SLB Inpu t Encoding 88

4.1.4 Non-Hnear Input Encoding 89

4.2 Inversion 90

4.3 Mul t ip l i ca t ion 91

4.4 Add i t i on 94

4.4.1 A n N Input Adder Proposal 97

4.5 Subtraction 98

4.5.1 A Subtracter Proposal 98

4.6 Integrat ion and the A D D I E 99

4.7 Sigmoidal Transform Proposal 103

4.7.1 Even-Shift Orthogonal Sequences 104

4.7.2 Sigmoidal Transform Production Using Gaussian Distr ibuted Ran

dom Numbers 105

4.7.3 Sigmoidal Transform Production Using i?-Sequences 106

4.7.4 i?-Sequence Conclusions 108

4.8 Decoding and Output Interfacing 108

4.9 Summary 110

5 M u l t i p l e R a n d o m N u m b e r G e n e r a t i o n 124

5.1 In t roduct ion 124

5.2 Generation of Random Numbers 125

5.3 Pseudo Random Binary Sequence Generators 125

5.3.1 Basic PRBS Generator Considerations 125

5.3.2 Delayed PRBSs . 127

5.3.3 Mul t ip le PRBS 132

5.3.4 PRBS to Random Number Conversion 135

5.4 Simulated Annealing 135

5.5 Genetic Algor i thms 139

5.6 Results 141

5.6.1 Simulated Annealing 141

5.6.2 Genetic A lgo r i t hm 142

5.7 Conclusions 143

6 A n A r t i f i c i a l N e u r o n V L S I Des ign and Implementa t ion 154

6.1 Neuron Overview 154

6.2 Design Tools 155

6.2.1 The Solo 1400 P r o g r a m Suite 157

6.3 A r t i f i c i a l Neuron Design 159

6.3.1 PRBS Generator 160

6.3.2 12-bit Comparator 161

6.3.3 Counters 162

6.3.4 Inpu t Weight Storage and Encoding 164

6.3.5 N Pulse Divider Weight Encoder 165

6.3.6 N Pulse Divider 166

6.3.7 Mul t ip l ie rs , Gat ing and Summation 167

6.3.8 Sigmoid Transform 167

6.3.9 The Whole Neuron 168

6.4 Hardware A r t i f i c i a l Neuron Testing 169

6.5 A 4-2-4 Encoder/Decoder Implementation 174

V I

6.5.1 System Implementation: 1st Proposal 1.74

6.5.2 System Implementation: 2nd Proposal 175

6.5.3 Weight Determination 175

6.5.4 Results of System Operation 178

6.6 Simrmary 178

7 C o n c l u s i o n s a n d F u r t h e r W o r k 219

7.1 Conclusions 219

7.2 Further Work 222

A R a n d o m N u m b e r G e n e r a t i o n 225

A . l Hardware Random Number Generators 225

A.2 Software Random Number Generators 226

A.2 .1 Middle Square Generator 227

A.2.2 Linear Congruential Generators 227

A.2,3 Lagged-Fibonacci Generators 228

A.2.4 A d d - W i t h - C a r r y and Subt rac t -Wi th-Bor row 228

A. 3 Random Number Generator Tests 229

B T e s t i n g the Q u a l i t y o f the R a n d o m N u m b e r s from a P R B S 232

B . l Correlation Tests 232

B.2 Test/Frequency Test 233

B.3 Gap Test 236

B.4 Summary 236

C A C-1-+ P R B S C l a s s 242

D N e u r o n Tes t B o a r d Conf igurat ion 251

E 4 - 2 - 4 E n c o d e r / D e c o d e r B o a r d Conf igurat ion 254

B i b l i o g r a p h y 259

vu

List of Figures

2.1 I l lus t ra t ion of a Biological Neuron Structure 43

2.2 General A r t i f i c i a l Neuron Architecture of McCulloch and Pit ts 43

2.3 Common Neuron Act iva t ion Functions 44

2.4 Single layer perceptron configuration 44

2.5 Example of A N D and X O R functions for the Perceptron 45

2.6 Three layer f u l l y connected M L P configuration 45

2.7 Example of the file s e t u p . m l p 46

2.8 Error curves for 8-3-8 coder/decoder M L P , Random presentation 47

2.9 Error curves for 8-3-8 coder/decoder M L P , Random presentation 47

2.10 Error curves for 8-3-8 coder/decoder M L P , Random presentation 47

2.11 Error curves for 8-3-8 coder/decoder M L P , Batch presentation 48

2.12 Error curves for 8-3-8 coder/decoder M L P , Batch presentation 48

2.13 Rumelhart et al network architecture to solve the X O R problem 48

2.14 Error curves for 2 -2 -1 X O R M L P 49

2.15 Error curves for 2 -2 -1 X O R M L P 49

2.16 Error curves for 2 -2 -1 X O R M L P 49

2.17 Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 1. . 50

2.18 Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 2. . 50

2.19 Varia t ion in Tra in ing Gain, 77, vs Distance f rom Active Neuron 50

2.20 Ideal U n i f o r m 10 by 10 Mesh 51

2.21 Kohonen Self-Organising Layer, 10 iterations 51

2.22 Kohonen Self-Organising Layer, 1000 iterations. Uni fo rm (x,y) dis tr ibut ion. 52

2.23 Kohonen Self-Organising Layer, 100000 iterations. Uni fo rm (x,y) dis tr ibut ion. 52

2.24 Kohonen Self-Organising Layer, 300000 iterations. Uni form (x,y) distr ibution. 53

2.25 Kohonen Self-Organising Layer, 300000 iterations. Normal (x) . Uni fo rm (y)

d is t r ibut ion 53

vni

2.26 General Architecture of a Hopfield Net, four neurons 54

2.27 General Architecture of a Boltzmann Machine 55

2.28 Criticised A D A L I N E 56

2.29 Associative Search Network Architecture 56

2.30 Cart-Pole balancing system 57

2.31 Associative Search Element (ASE) configuration 57

2.32 Associative Search Element w i th Adaptive Critic Element (ACE) Configu

rat ion 57

2.33 Learning Au tomaton 58

2.34 I n i t i a l adaption rate for 8-3-8 encoder/decoder P-model Aji^p 59

2.35 I n i t i a l adaption rate for 8-3-8 encoder/decoder S-model Aji^p 59

2.36 Long te rm adaption for 8-3-8 encoder/decoder 60

2.37 Long te rm adaption for 8-3-8 encoder/decoder w i t h A > 0 60

2.38 Long te rm adaption for 8-3-8 encoder/decoder wi th smaU A 61

2.39 X O R learning P-model 61

2.40 X O R learning S-model 62

2.41 Poor learning of 8-3-8 by Q and T models 62

2.42 Q-model X O R 63

2.43 T-model X O R 63

2.44 Q-model learning for the 4-2-4 encoder/decoder 64

2.45 T-model learning for the 4-2-4 encoder/decoder 64

3.1 Example weighting conductance circuit configurations 78

3.2 Example activation funct ion circuit configurations 79

3.3 Banzhaf 's stochastic neuron layout w i t h excitatory and inhibi tory inputs. . 79

3.4 Kondo's first proposal 80

3.5 Kondo's second proposal 81

4.1 Sample encoded pulse streams for an SLU input mapping I l l

4.2 Inpu t Probabi l i ty vs Variance for a SLU Encoding I l l

4.3 Non-Unear encoding transfer functions I l l

4.4 Inversion for SLU, SLB and D L B 112

4.5 D L B mul t ip l ica t ion . 112

4.6 SLB mul t ip l ica t ion 112

I X

4.7 S L U / S L B A d d i t i o n 113

4.8 D L B addit ion 113

4.9 SLU addit ion by pulse insertion 114

4.10 Determinist ic sequences for addit ion 114

4.11 I n i t i a l circuit for the generation of N pulse streams of value jj- 115

4.12 Improved circuit for the generation of N pulse streams of value 116

4.13 SLU subtraction by pulse removal 117

4.14 Two input summing integrator for D L B 117

4.15 Two input summing integrator for SLB 117

4.16 Generic two input summing integrator 118

4.17 Schematic of an A D D I E 118

4.18 Schematic of a frequency modulat ion detector 118

4.19 Schematic of an analogue frequency modulation detector 118

4.20 A D D I E circuit to obtain the square-root of a pulse stream 119

4.21 Generic A D D I E circuit to obtain arbi t rary funct ion transformations 119

4.22 16-bit e-sequence autocorrelation funct ion 120

4.23 PDFs w i t h associated CDFs for a U R N 120

4.24 P D F w i t h associated C D F for a Gaussian random number 121

4.25 Sigmoids for adjusted variance values 121

4.26 Sigmoids, resultant CDFs, for adjusted mean values of the generating PDF. 122

4.27 Sigmoidal t ransform generating circuit 122

4.28 Sigmoid produced by encoding circuit simulation 123

4.29 Moving average circuit implementation 123

5.1 Format of a shi f t register 145

5.2 Linear feedback shif t register, LFSR, configuration 145

5.3 Autocorrelat ion for a PRBS 146

5.4 Extended PRBS generator 146

5.5 Generation of delayed PRBS as il lustrated by Tsao 146

5.6 Delay variance by moving tap position 147

5.7 Delay variance by moving a set of tap positions 147

5.8 Example of essential taps 147

5.9 Example of correlation between random numbers formed f rom successive bits. 148

5.10 I l lus t ra t ion of One Point Crossover w i th Two Strings 148

5.11 Simulated Annealing Scheme 1: Unknown Global Min ima 149

5.12 Simulated Annealing Scheme 2: Unknown Global Min ima 149

5.13 Simulated Annealing Scheme 1: Known Global Min ima 150

5.14 Simulated Anneahng Scheme 2: Known Global Min ima 150

5.15 Genetic A lgo r i t hm: Unknown Global Minima: Varying Crossover Rate. . . 151

5.16 Genetic A lgo r i t hm: Unknown Global Minima: Varying Crossover Rate. . . 151

5.17 Genetic A lgo r i t hm: Unknown Global Minima: Varying Muta t ion Rate. . . . 152

5.18 Genetic A lgo r i t hm: Unknown Global Minima: Varying Parents:Children

Ratio 152

5.19 Genetic A lgo r i t hm: Unknown Global Minima: Varying Parents:Children

Rat io 153

5.20 Genetic A lgo r i t hm: Known Global Minima: Varying Parents:Children Ratio. 153

6.1 Basic architecture for a stochastic pulse neuron 182

6.2 27-bit PRBS generator schematic 183

6.3 model code for variable length shift register 184

6.4 Sample model code for 38 taps off"s f rom 27-bit PRBS 184

6.5 wd l code for exercising 27-bit PRBS 185

6.6 wave ou tput plot for 27-bit PRBS generator 186

6.7 One-bit comparator 187

6.8 Iterative comparator cell 187

6.9 I terative comparator 187

6.10 model code for iterative comparator building block 188

6.11 model code for complete iterative comparator 188

6.12 wdl code for testing iterative comparator 189

6.13 wave ou tput plot for iterative comparator 190

6.14 model code for count l2 191

6.15 model code for countSO 191

6.16 wdl code for testing the count l2 192

6.17 wave ou tput plot for count l2a testing 193

6.18 4-bit counter w i t h carry-in and carry-out 194

6.19 4-bit counter w i t h no carry-in 195

X I

6.20 4-bit counter w i t h no carry-out 196

6.21 12-bit counter 197

6.22 12-bit counter w i th l im i t stops at -2048 and -F2047 198

6.23 wd l code for exercising up /down 12-bit counter 199

6.24 wave plot for an up /down 12-bit counter 200

6.25 5-bit counter w i t h no carry-in or carry-out 201

6.26 5-bit counter w i t h l im i t stops at 0 and -f80 202

6.27 SLB weight encoding 203

6.28 model code for SLB input weight encoder 203

6.29 model code for address selector/decoder 204

6.30 model code for arbi t rary N input multiplexor 204

6.31 wave plot for input weight encoder performance 205

6.32 wave plot for demultiplexor/address decoder 206

6.33 SLU weight encoding 207

6.34 model code examples of a static SLU encoder. 207

6.35 model code for divide cell building block 208

6.36 model code for complete N pulse divider 208

6.37 wave plot demonstrating static weight encoding 209

6.38 wave plot demonstrating the ^ gating streams 210

6.39 model code for SLB mult ipl icat ion of input values and weights 211

6.40 model code for SLU mult ip l icat ion/gat ing of weighted inputs 211

6.41 model code for sigmoidal transformation circuit 212

6.42 wave plot demonstrating testing of sigmoidal transform 213

6.43 Basic model code for the complete neuron 214

6.44 Example of pad and core Hmited designs. 215

6.45 Neuron ASIC pin configuration 215

6.46 A photograph displaying the resulting fabricated neuron 216

6.47 Neuron ASIC hardware test configuration 217

6.48 Ful l 4-2-4 Hardware Neuron System 218

6.49 4-2-4 Feedforward neural system 218

7.1 A new circuit for the generation of N pulse streams of value 224

A . l Max ima l binary sequence length vs Shift register length 231

xu

B . l Auto-correlat ion for a 1000 bits 239

B.2 Cross-correlation for a 1000 bits 239

B.3 Auto-correlat ion for a 1000 numbers 240

B.4 Cross-correlation for a 1000 numbers 240

B.5 Mean values of ^ test for distr ibution of random numbers f rom PRBS

generator: 10 and 50 degrees of freedom 241

B.6 Mean values of Gap test values for distr ibution of random numbers f rom

PRBS generator: 10 and 20 degrees of freedom 241

E . l A n indiv idual neuron configuration. Neuron X 255

E.2 Encoder/Decoder system configuration of six neurons 256

xm

List of Abbreviations

A C E Adaptive Cri t ic Element

A D D I E Adaptive Dig i t a l Element

A E Adaptive Element

A N N Ar t i f i c i a l Neural Network

A S E Associative Search Element

A S I C Applicat ion Specific Integrated Circuit

A S N Associative Search Network

B A M Bidirectional Associative Memory

C A M Content-Addressable Memory

C D F Cumulative Dis t r ibut ion Function

D L B Dual Line Bipolar

G A Genetic A lgo r i t hm

G U I Graphical User Interface

H D L Hardware Description Language

I C Integrated Circui t

L M S Least Mean Square

M L P M u l t i Layer Perceptron

N N Neural Network

P D F Probabil i ty Density Function

P E Predictor Element

P R B S Pseudo Random Binary Sequence

S A Simulated Annealing

S L B Single Line Bipolar

S L U Single Line Unipolar

T D N N Time-delay Neural Network

U R N Uni fo rm Random Number

V F S R Very Fast Simulated Re-annealing

V L S I Very Large Scale Integration

X I V

Chapter 1

Introduction

The art of computing is, as ever, advancing rapidly wi th new architectures for machines

and processors, new fabrication techniques for components which enable a reduction in size

and an increase in the speed of operation occurring all the t ime. Programming languages

and operating systems are becoming more tractable and user friendly, command line user

interfaces are being superceded by graphical user interfaces. However, these machines s t i l l

adopt a conventional approach, based upon a von Neumann architecture, of an inherently

complex central processing uni t and attached memory. There are parallel processing

systems available which may have several processing units operating concurrently either

on shared or individual memory but these systems must stih be explicitly programmed

to operate. Despite these advances in speed and sophistication certain tasks s t i l l remain

d i f f i cu l t to program a machine to perform effectively, eg. speech, vision, reasoning or

contents based informat ion processing tasks. However these are tasks which are performed

regularly and w i t h ease by animals.

The structure of the informat ion processing system in animals is different. The brain

and nervous system which performs these tasks is based upon what is thought to be a

basic processing uni t , the neuron, in a massively parallel architecture, w i th a high level

of interconnectivity, distributed memory and a relatively slow speed of operation. In

addi t ion this system is not explici t ly programmed to perform but can learn and adapt to

new situations, experiences and environments.

The rel iabi l i ty and fau l t tolerance of the two diflFerent approaches is interesting to note.

For t radi t ional systems a component or sub-system failure is usually catastrophic unt i l

repaired leading to mult iple systems being operated in parallel for safety crit ical tasks.

Networks of neurons are generally faul t tolerant w i t h their large number of processing

elements and interconnections. In fact, the system is constantly evolving as i t operates

w i t h cells dying and new ones being added.

There therefore must be merit in this alternative method of approach to information

processing and thus there is a desire to study, simulate and model these approaches which

do not need to be programmed to perform a task but can be trained and which have

the potent ial to be fau l t tolerant. The study of networks of neurons is widespread and

conducted in many different fields across science and engineering including electronics,

computing, optics, biology and psychology. The generic t i t le to this area is usually Neural

Networks and in the particular case of synthetic systems Ar t i f i c i a l Neural Networks.

The study of neural networks could be approached in several ways: the investigation

of learning algorithms, the study of the biochemistry of l iv ing neural networks, the exam

inat ion of decision making systems or the development of simplified plausible models in

software and hardware. From an engineering point of view not all of these are relevant

approaches. The study of software and hardware ne.ural network models and implemen

t a t i on is pertinent to engineering since ult imately any feasible system must be developed

and operated.

Much work has been conducted into learning and adaption algorithms wi th systems

which w i l l adapt their behaviour based upon either the system's own experience or by

external influence f r o m the environment. Often incorporated into these systems is a model

of a neuron usually based upon the principle of a funct ion of a weighted sum of inputs. The

system is often simulated in software upon a conventional machine for the relative ease

tha t this offers i n varying the system and model. For development and research purposes

this is often adequate. I f , however, an operational system is required wi th a practical real

t ime response the issue of fabricat ing such developed algorithms and networks in hardware

must be considered which is what this thesis sets out to address.

I n realising a hardware art if ical neural network system several issues must be addressed:

T h e a l g o r i t h m a n d neura l network sys tem archi tecture to be adopted.

Many architectures and algorithms have been, and are continuing to be proposed.

However several approaches, part icularly the more sophisticated, are not necessarily

suitable for the development of a dedicated hardware solution for individual process

ing elements. I n addit ion, the learning and adaption algorithm may not be easily

integrated into a hardware environment. This does not mean that these systems are

wi thou t merit but that they are not currently appropriate for the development of

hardware.

T h e s y s t e m to be used for bui lding the network.

System realisation could be undertaken in many different fields, eg. electronics, op

t ical or perhaps even biological. The latter two fields may be interesting but are

not pertinent for this work, for the electronics approach the assorted analogue and

dig i ta l methods should be assessed.

T h e s ignal l ing a n d communica t ion methods to be adopted.

The method of signalling and control is allied strongly to the approach adopted for

the main hardware realisation.

T h e provis ion for on-l ine learning, adaption or adjustment of performance .

I f a neural network is constructed in hardware is its performance determined at build

t ime, run t ime or can i t be adapted as i t operates? Ideally the latter method should

be feasible but probably bootstrapping the system by the programming of a base

configuration in the network should be enabled.

T h e effectiveness w i t h which the archi tecture can be extended or reconfigured

in the selected hardware .

Is the hardware easy to reconnect into a new configuration? Can the inputs to

hardware devices be adjusted for different architectures and could the number of

neurons in the system be varied easily sti l l allowing the system to trained and operate

effectively.

H o w the approach taken could be enhanced.

Finally, is the hardware implementation the only one feasible or is i t possible to

enhance the system to improve the performance or correct mistakes, ie. does the basic

approach work. This can only really be answered by constructing and demonstrating

the capabilities of a system.

The above issues w i l l be addressed as outlined in the following section, w i t h the selected

hardware solution of stochastic pulse rate encoding explained, justif ied and implemented.

1.1 Outline of Thesis

I n this thesis issues relating to the hardware implementation of an art if ical neuron and

an ar t i f ic ia l neural network using stochastic pulse rate encoding principles are discussed.

The aim is to present a potential solution to the problem of realising art i f ic ial neurons in

hardware since most work is currently conducted via software synthesis and modelling.

The outline of the thesis structure is consequently presented below.

I n Chapter 2 a review of A N N architectures and algorithms which display a rele

vance to hardware implementation is presented. Validation for two of these systems is

conducted, the Mult i- layer Perceptron and the Kohonen Self-Organising Feature Map,

and the scheme of reinforcement learning using A^-p techniques is extended to form

two new models which just use a single reinforcement feedback connection for adaption

purposes. Chapter 3 provides a crit ical review of hardware implementation systems and

describes some currently available dedicated hardware devices. W i t h i n this chapter pulse

rate encoding strategies are introduced, but wi th a f u l l discussion of stochastic pulse rate

encoding techniques deferred to Chapter 4. Included in the crit ical review of Chapter 4

into stochastic pulse rate encoded processing is the presentation of new novel circuits w i th

relevance to the implementation of a neuron using these techniques. Chapter 5 discusses

issues relating to format ion of mult iple random number sequences f rom a single PRBS gen

erator. The two optimisat ion techniques of Simulated Annealing and Genetic Algori thms

are presented and applied to the problem of the opt imum configuration determination for

the PRBS and its ancillary circuitry. Chapter 6 draws together the techniques and issues

raised in the preceding chapters to enable the design of an art if icial neuron operating upon

stochastic pulse rate encoded signals to be presented. The neuron design is described and

has been fabricated enabling the testing and subsequent analysis of its operation in a

l imi ted network to be described. This thesis is concluded in Chapter 7 wi th a summary

of the results presented and suggestions for further work.

Chapter 2

Aspects of Artificial Neural

Networks

I n this chapter a cri t ical review is provided of the some of the key types of neural networks

which have been developed together w i t h associated t ra ining algorithms and strategies.

The fol lowing types of network are explained wi th the aim of gaining an understanding of

different approaches taken in this field and to determine the most appropriate system for

hardware implementation w i t h an on-line learning algori thm.

Perceptron, M L P and Backpropagation. This type of network is one of the most widely

used and provides feedforward connections only through the network. A feedforward

network w i l l u l t imate ly be demonstrated using the designed hardware neuron of §6.

Kohonen Self-Organising Feature Map. This network was investigated since i t does not

require external intervention in the learning process but is able to adapt itself to the

task i t w i l l perform.

Hopfield Net. This network introduces the concept of feedback connections and high

lights the property that energy minimisation wi th in a neural network architecture

is relevant to the learning process.

Bol tzmann Machine. Learning and adaption through random processes are demonstrated

to be achievable and valuable by the study of the Boltzmann machine. The hardware

neuron developed later w i l l use a stochastic signalling strategy to perform inter-

neuron communication and computation.

Reinforcement Learning and A R _ P . Simple learning strategies in which only a single

signal is fed back to the processing elements are reviewed. The Aji-p strategies,

in particular, are relevant since they provide the basis for algorithms which may

be combined w i t h the hardware neuron developed to produce an integrated perfor

mance.

The area of reinforcement learning is expanded upon in this chapter. Af te r an ini t ia l

val idat ion of the work of Bar to et al, [2], into A^-p, two extensions to the learning

strategies called the Q-model and T-model Aji^p are proposed and tested. Results are

presented demonstrating the abil i ty of these new algorithms to adapt and solve basic

feedforward problems.

2.1 The Biological Inspiration for Artificial Neural Net

works.

A r t i f i c i a l neural systems, neurocomputers, connectionist models, parallel distributed pro

cessing models, layered self-adaptive systems, self-organising systems, neuromorphic sys

tems and cyberware are al l terms which can be applied to a technology and ideology which

can be encompassed under the t i t le of Ar t i f i c i a l Neural Networks (A N N) or just Neural

Networks (N N) . The roots and inspiration for ANNs are drawn f rom biology and biologi

cal nervous systems. Such biological systems or wetware consists of a mult i tude of simple

processing elements which are connected together in a massively parallel architecture.

The brain consists of many neurons of different varieties but following the general

fo rmat as i l lustrated in Figure 2.1. A formation of nerve fibres, dendrites, are connected

to a cell body, soma, wi th in which is located a nucleus. A single long fibre, the axon,

leaves the cell body which ends by repeatedly dividing. The terminating points of the

divided axon f o r m t ransmi t t ing connections to the dendrites of other neurons or connect

direct ly to the neurons via synaptic junctions or synapses.

Signalling f r o m one neuron to another is a complex chemical process wi th chemicals

released f r o m the sending side of the synapse. The effect of these chemical releases is to

alter the electrical potential w i th in the cell body. I f the cell potential reaches a given

level the neuron is activated releasing a fixed strength and duration signal along the axon

to other neurons. A f t e r the cell has fired a recovery period follows before the neuron is

able to fire again. (For a more comprehensive explanation of the biological operation of

a neuron a biological/medical text should be studied eg. Gray's Anatomy) . Individual

cells and interconnections are l imited in the task which they can achieve, but the collec

tive behaviour of these structures of biological formations performs a useful task in the

embodying organism. Conservatively i t has been estimated that there are at least 10^^

neurons in the human brain wi th 10 '̂̂ interconnections ie. 10'' synapses for each neuron.

Given the above rudimentary description of a neuron's behaviour two main approaches

can be adopted for the study and development of ANNs. One approach is to study, model

and possibly bi t i ld analogous devices as accurately as possible. The second is to draw

upon ideas f r o m actual systems and develop simple processing element exemplar wi th in

a massively parallel architecture. The former approach is normally adopted by biologists

and psychologists in order to determine the functioning of the brain and nervous system.

The latter approach is usually followed by engineers in pursuit of a system which wi l l

per form a computat ional ly useful task. This is the method that wi l l be followed while st i l l

remembering the inspirat ion for the ideas.

A final few points should be made clear about NNs, that is a N N is not a static

entity. The strengths of interconnections vary wi th time, new ones are formed and old

ones may decay away. Due to the large quantity of parallelism there is redundancy bui l t

in to the system and a level of fau l t tolerance is available. Rather than being explicit ly

programmed a N N evolves to perform an action by learning and adaption. Thus, given

tha t the network changes through damage or the network has to increase its functionali ty

i t is able to adapt to the new situation. I t is necessary therefore to study and develop

learn ing/ t ra in ing algorithms for any network created to enable i t to be taught how to

per form a task or tasks!

W h y study and develop A N N at all? What benefit can they offer beyond a t radi

t iona l von Neumann architectured machine? What task or tasks could they be used to

perform? Hopeful ly a more complete reason for the study of ANNs wi l l become apparent

by answering the lat ter two questions.

Benefits of A N N are their potential robustness and gradual degradation in performance

i f an area of the network becomes damaged. W i t h i n a tradit ional computer a failure in a

processing section is catastrophic in terms of system performance, this is not necessarily

the case w i t h a N N . A von Neumann machine must be explicitly programmed to perform

a task. Even w i t h the use of a high level programming language this may not be a

simple operation for a complex task or the genre of operation which a N N is actually

accomplished at. Certainly for rapid exact algorithmic or mathematical operations a

t rad i t iona l computer is excellent but this is not the case for noisy, inexact information

processing.

A N N can perform as a classifier where the task of a classifier can be divided into the

fol lowing three categories.

T r a d i t i o n a l C lass i f i er . A N N can be used to identify a class to which an input is most

appropriate, eg. to classify types of vehicles as to whether they are cars, vans or

bicycles. The difference a N N classifier exhibits f rom a statistical classifier is that i t

is adaptive and is able to take into account new information as opposed to processing

all t ra in ing data before being used wi th new data. N N may be non-parametric

and make fewer assumptions about a data set's information distr ibut ion than a

t radi t ional classifier.

C o n t e n t - A d d r e s s a b l e or Assoc ia t ive M e m o r y . These are similar operations. In Content-

Addressable Memory (C A M) data are mapped to an address, whereas wi th Asso-

7

ciative Memory data are mapped to data. In this mode of operation a N N may be

used to recall a more complete pattern for a piece of input data eg. a partial image

of a character can be used to reconstruct the entire character or a telephone number

wi l l lead to the retrieval of the name and an address associated wi th i t .

V e c t o r Q u a n t i s e r or Fea ture E x t r a c t o r . In this situation a N N may not be provided

w i t h any a priori informat ion about a data set but is taught to cluster the informa

t ion as i t sees fit by the extraction of information i t considers relevant. These N N

could be used in signal transmission to reduce the information which must be sent

wi thout losing the clarity of the message. Similarly in data compression they may

be used to extract only pertinent information for storage.

Already i t has been stated several times that much of the interest and power of NNs

is the abi l i ty they have to adapt and learn f rom the data presented to them. The two

global classes of t ra in ing available are Supervised Learning and Unsupervised Learning.

These two classes can be sub-divided into learning structural information or temporal

in format ion .

S u p e r v i s e d L e a r n i n g . I n this case the desired output f r o m the N N is known for each

input and is used to improve the N N output performance. This improvement can

be by direct comparison of each desired output and actual output or by the use of

a performance signal which indicates how satisfactorily a N N has performed for the

given input . This case is often referred to as Reinforcement Learning or learning

with a critic, whereas overall Supervised Learning can be referred to as learning with

a teacher.

U n s u p e r v i s e d L e a r n i n g . This system has no external teacher to guide a N N response.

The network is allowed to form its own internal clusters of information. Unsupervised

Learning can be called self-organisation.

The two sub-categories of structural and temporal learning are described as follows.

W i t h s t ructural learning a stable attractor exists for each input which wi l l be learned. For

temporal learning the output could be a sequence or series of patterns. Whether or not

the input is s t ructural or temporal w i l l be problem specific.

2.2 Basic Processing Element Model

The structure of the basic art if icial neuron can be traced back to the work of McCuUoch

and Pi t t s , 1943, [3]. They proposed that a model neuron would be either on, firing, or off,

no t - f i r ing , based upon the weighted sum of inputs exceeding a threshold value. For an n

i npu t neuron where Xi is an input, Wi is the associated weight the response N„ut is such

tha t
7 J,

J2 > r => iv,„„, = 1

else
It.

x,w, <T^ Nout. = 0

where T is the threshold at which the neuron is activated. To make the threshold of

activation easily variable i t can be treated as another weighted input, XQWO, the input

value of which, XQ, is always unity.

^ N„ut = l

^ Nont=0

This basic neuron architecture of McCulloch and Pit ts can be graphically summarised as

i n Figure 2.2.

The step threshold funct ion is only one of several activation functions which an art if icial

neuron may have. Other common neuron activation functions are the linear, clipped linear

and sigmoidal func t ion as i l lustrated in Figure 2.3.

Many different A N N models have been developed including the Perceptron, Multi- layer

Perceptron, Kohonen Self-Organising Feature Map, Hopfield Net, Boltzmann Machine,

Bidirect ional Associative Memory, Adaline, Madaline Each network structure exhibits

its own style of funct ional i ty , structure and learning technique. In order to appreciate the

diversity of the subject and to gain an insight into the operation of A N N several of the

above models w i l l be discussed.

2.3 Single-layer Perceptron and Multi-layer Perceptron

The term perceptron was coined by Rosenblatt for his implementation of the McCul

loch & P i t t style neuron. Rosenblatt studied this form of artif icial neuron extensively

as summarised by himself [4] and more simply by Simpson [5] or Hertz et al [6]. These

two styles of network which are of interest are both feedforward networks, ie. all inter

connections between neurons are in a forward direction only wi th no connections feeding

backwards to previous neurons and no connections feeding across to neurons at an equiv

alent depth in the network, both are feasible in more sophisticated configurations. The

Single-layer Perceptron (SLP) is the most basic network but i t is sti l l able to perform sim

ple pat tern recognition tasks. Training may be achieved by the Perceptron Convergence

Procedure. More complex pattern recognition may be achieved using the Multi-layer Per

ceptron (M L P) which after the development of the Backpropagation algorithm could also

be successfully trained.

2.3 .1 S L P a n d t h e P e r c e p t r o n C o n v e r g e n c e P r o c e d u r e

A single perceptron computes a sum of weighted inputs which after subtraction of the

threshold, T, passes the resultant through a step threshold activation funct ion to produce

either a 1 or -1 as its output . The activation function is the sgn funct ion. The perceptron

may be considered to respond to one class of inputs wi th a 1 and to the rest w i t h a - 1 . I f

the perceptron output is y then

y = sgn x,,Wr - T

Once again the threshold can be subsumed into the summation as an input XQ which

is always unity. A perceptron can be seen to form two decision regions which in a two

input case produces a dividing line, for the three input case a dividing plane and in higher

dimensional cases a d iv id ing hyperplane. The exact position of this decision boundary is

adaptable by adjust ing the weights and training the perceptron to respond correctly.

A SLP architecture is i l lustrated in Figure 2.4. I t can be seen to consist of two layers

only. The first or input layer acts only to distribute the inputs to each perceptron on the

second, processing, layer. The processing layer produces the network outputs.

How can the weights which connect the input layer to the processing layer be adjusted?

Rosenblatt proposed the Perceptron Convergence Procedure which w i l l now be described

step by step. N B . T has been incorporated as XQW\).

1. Initialise all weights, ty,;, to a small random value. 0 < i < n

2. A n input vector X and the desired output vector D are presented to the network of

n perceptrons.

X = {X\,X2, • •. ,Xn}

B = { d i , d 2 , . . . , d n }

3. Calculate the actual output vector of the SLP Y by determining the response of

each perceptron.

Y = {l/l,2/2,---,2/n}

/ „. \
yr{t) = sgn ^ a ; , i u ,

\ , = i /

10

4. Adjus t the weights according to the following scheme.

w,{t + 1) = iu,{t) + 7][d.i{t) - yr{t)]x,it)

0 <i <n

T] a gain term used to specify the proportion of adjustment required, the adaption

rate, 0 < 77 < 1

5. Repeat f r o m step(2) un t i l a satisfactory response is produced f rom the network for

the classes of data.

I t w i l l be seen f r o m step(4) tha t no weight adjustment occurs i f the actual output

is equivalent to the desired input , j / j (t) - di{t) = 0.

The selection of the gain term 77 is important as i t must satisfy two conflicting con

straints, that of producing fast adaption for variances in input and the alternative of

producing stable weight estimates f r o m past events. The greater T] is the quicker adaption

w i l l occur but the less stable the adaption wi l l become. Choice of rj is very much problem

dependent.

Variations on the basic Perceptron convergence procedure can be made by using a

continuously valued activation funct ion output f r o m the perceptron rather than the sgn

func t ion . This w i l l allow the use of gradient descent techniques for perceptron weight

adaption. I f an error or cost funct ion is defined for the SLP output e such that

^ z = l

the change in the weight u;,; can now be made proportional to the gradient of the error at

the present location.

9E
W,,{t + 1) - W,{t) = Awi{t) = T] dw,{t)

n

i=i

The correction in weight value can be made individually leading to

Aw,{t) = r^SMt) (2.1)

6, = d,,{t) - y,{t) (2.2)

The equation eq.(2.1) and eq.(2.2) fo rm the delta rule, adaline rule or Widrow-Hoff rule

[7]. A more common name and the one most often applied in an adaptive signal processing

11

field is the Least Mean Square (LMS) rule.

The SLP is a very simple N N and as such suffers f rom several constraints. For a

perceptron to be able to make a decision the two distr ibut ion domains must be linearly

separable, i t must be feasible to fo rm a dividing plane between the two domains. For

example the two input A N D funct ion is linearly separable whereas the two input exclusive-

OR, X O R , is not Figure 2.5. The X O R problem is the simplest case of a parity decision

problem, the more general class of which is discussed by Minsky & Papert [8]. I f the

domains are not linearly separable no stable decision can be made and the boundary wi l l

alternate for the different input sets. I f the classes are too close together i t may prove

d i f f icu l t for a decision boundary to be formed, but_ given that a set of weights for the

desired association does exist i t has been proved by Minsky & Papert [8] and Hertz et al

[6] amongst others, tha t the Perceptron Convergence Procedure wi l l find them in a finite

immber of iterations. The drawback here for the SLP is thus the potentially long learning

t ime. Due to the SLPs simple decision nature they are poor at generalising a solution.

Before proceeding forward to describe the more powerful M L P systems much emphasis

has been placed upon the work of Minsky & Papert for quashing enthusiasm for the

A N N w i t h i n their book Perceptrons. I n a revised and updated 3rd edition they argue

forceful ly tha t their intention was to highlight considerations which must be borne in mind

when evaluating neural systems and their classification potential through examples of hard

learning problems, eg. the N- input par i ty problem or the determination of connectedness.

I t would be fair to say that no adequate learning algori thm existed at the time for t raining

mult iple layered networks. These problems have subsequently been resolved independently

by several researchers as described in the following section on MLPs.

2.3 .2 M L P a n d B a c k p r o p a g a t i o n

As the name suggests the M L P is an extension of the SLP to create a network of more

than one layer of perceptrons. I f the perceptrons have a continuously valued non-linear

activation func t ion many of the l imitat ions of the SLP can be overcome. I t is this type of

activation func t ion which provides the network w i t h the abi l i ty to perform more complex

tasks. I f the processing elements had linear activation functions then the M L P can be

demonstrated to be reduced to a SLP. The problem w i t h the M L P originally was the

abi l i ty to adjust the weights of all perceptrons in a coherent fashion to improve the network

performance. The advent of the Backpropagation algorithm has removed this hurdle.

Before describing the Backpropagation algorithm i t would be wise to first of all specify

a naming and numbering convention for the M L P . A n M L P consists of a number of layers

of perceptrons as i l lustrated in Figure 2.6. There are three types of layer wi th in an

M L P , input , hidden and output layers. The first layer, the input layer, acts purely as

a d is t r ibut ion layer, each node supplying signals to processing elements in the following

layer. No processing takes place at this level. The last layer, the output layer, receives all

12

the inputs for its processing elements f rom within the network and passes the results back

out to the environment. Between the input and output layers there are one or more hidden

layers, so called because they have no external connections to the environment. Signals

are received f r o m the previous layer, processed and outputted to the following layer. Due

to the isolation of hidden layer processing elements they are often the most diff icul t to

analyse and adapt. A n M L P wi l l be specified by the number of hidden layers plus the

ou tpu t layer that i t contains and by the number of neurons in each layer. This is based

upon the fact tha t processing only occurs in these layers and neurons. Hence, Figure 2.6

is a three layer M L P of configuration 4-3-3 wi th three inputs and three outputs.^

Being able to specify a network is clearly one consideration, another is how is the

number of layers determined? and how the number of perceptrons are determined for

each layer? Quite obviously the number of nodes for input and output w i l l be determined

by the required connections to the environment, for hidden layers the task is not so simple.

L ippman [9] highlights how the decision regions are constrained by the various number

layered networks f r o m the SLP upto the three layer M L P . In theory an arbi trary complex

decision space can be created by a three layer M L P , more layers may be used to aid in

the decision region format ion. The number of perceptrons in a hidden layer must be

sufficient to f o r m decision regions that are as complex as required but no more. Too

many perceptrons may cause the network to overclassify ie. its response is too highly

tuned towards a particular set of inputs rather than a general class of inputs, the network

therefore has d i f f icu l ty generalising.

For a more formal analysis of the number of hidden layer perceptrons required and

their abi l i ty to divide the solution space the work of Mirchandani & Coa [10], Huang &

Huang [11] and Makhal et al [12] should be consulted. These papers'unfortunately place

constraints upon the M L P configuration to obtain their results. In the general case they

may not be so applicable. They do illustrate the complexity of the analysis necessary for

even the simplest of networks.

Given that a network has been formed and i t is possible to alter the weights for the

interconnections, what method should be used to determine how to vary the weights?

For the SLP the Perceptron Convergence rule exists for producing the correct output

or there are the gradient descent technique variations, delta rule etc. for minimising the

error between actual output and desired network output . By extension of this gradient

descent approach for minimising a cost funct ion several researchers have developed the

same appropriate a lgor i thm commonly known know as Backpropagation, Werbos [13],

Parker [14] and Rumelhart et al [15]. The name is taken f r o m the most recent exposition

of the algori thm by Rumelhart et al.

Backpropagation is an iterative gradient descent technique wi th the aim of reducing

the difference between the actual and desired output . The technique relies upon each

Caution: Somo papor.s includo tho input, layer in tlio specification of the .size of tlie network.

13

processing element possessing as its activation funct ion a continuously difterentiable non

linear func t ion . A sigmoidal transform is most often used.

1 - I - e-'--

X —> -|-oo f [x) 1

x = Q /(a;) ^ 0 . 5

X —CO f { x) —> 0

1 - £-2̂ ^
f { x) = tanh(a;) = ^ _^

x +00 f { x) 1

x = 0 f { x) = 0

x —CO f { x) —̂ —1

There follows a step by step description of the backpropagation algorithm as put forward

by Rumelhart et al.

1. Initialise all the weights Wij to small random non zero values.

2. A n input vector X and the desired output vector D are presented to the M L P .

X = { x i , X 2 , . . . , X N - l }

D = {di,d2,... ,dM-i}

3. Forward propagate through the M L P f rom the input layer to the output layer. The

response for each layer is calculated and fed into the following layer unt i l an output

Y is produced.

Y = {yi,y2,---,yM-i}

4. Adapt the weights for each layer starting at the output layer and backpropagating

the adjustment through the hidden layers.

w,j{t + 1) = w,j{t) + r]6jx[

W i j i t) weight for hidden node i or input node i in preceding layer to node j in

current layer at t ime t.

x'- ou tput of node i in preceding hidden layer or actual input value.

77 gain term which determines the degree of adaption to weight.

14

S.j a correction measure based on the error between the desired and actual response.

This is calculated difl:erently for the hidden layer and the output layer.

O u t p u t layer The desired response is d.j while the actual response is yj.

H i d d e n layer There is no known desired response therefore an expected re

sponse is inferred f r o m the following layer.

6j = x'j(l-x'j)Y,h.Wjl,
k

k is for all neurons in the layer after node j.

5. Repeat this procedure f r o m step (2) unt i l the network performance is acceptable.

The above listed basic algori thm suffers f rom the fact that i t can take a long time to

converge and also tha t i t is possible for the system to become caught in a local minima

of the solution space rather than the global minima. One of the most useful and widely

implemented techniques to improve this basic algorithm is to include a momentum term a

at step (4). The momentum takes into account the amount by which the weight changed

on the previous pass through the algori thm. The improved weight update equation is

w^jit +1) = w,,j{t) + r]8jx[+ aAw,,j

Aw,,j = w,,j{t) - w^{t - 1)

0.0 < a < 1.0

The reasoning behind the use of the momentum term is that , as the algorithm changes

the weights downwards towards the global minima, the momentum term wi l l provide

averaging across the different i npu t / ou tpu t pattern pair sets presented. I f local minima

occur the momentum term should enable the algorithm to pass through them more easily

wi thou t being trapped. N B . For a = 0 the update equation reduces to that of the basic

backpropagation algori thm.

As different values of rj and a may be opt imal at different points i t has been proposed

to make them adaptable eg. Vogl [16] and Hertz et al [6]. One such scheme is to vary 77

based upon the effectiveness of 77 at reducing the error. I f 77 did not cause a reduction in

error the weight adjustment 77 is too severe and should perhaps be reduced. Conversely i f

several updates have been made which cause the error to reduce, 77 may be increased as

15

the adjustment tha t i t causes is too conservative.

-|-a ifAE < 0 consistently

A7? = <(-brj ifAE > 0 (2.3)

0 otherwise

eq.(2.3) is a proposed gain adjustment scheme, the gain is improved by a constant step a

i f consistent improvements i n the network performance are made, while a proportional de

duct ion of gain occurs for poor network performance. I t has been suggested that a should

be set to 0 when the gain is reduced and reset to its original value when improvements in

gain are made. The reasoning for this step is that the momentum term takes account of

prior learning experiences Awij, thus when the change in network error AE is positive the

general direction of weight change should reverse, a process which the momentum term

opposes.

Other techniques for improving the scope and performance of the basic backpropaga

t ion algori thm include Scalero & Tepedelenlioglu's [17] system for minimising the mean-

squared error between the actual and desired outputs w i th respect to the inputs to the

non-linearities. Tra in ing in the complex domain can be achieved by using Complex Back-

propagation which may take several variant forms, [18, 19, 20, 21].

The M L P and backpropagation discussed so far are a restricted form of the general class

of feedforward networks. More generally the output of a neuron is able to feedforward to

any neuron in any layer of the network. I t is unnecessary to connect the output of a neuron

to al l the inputs of the neurons in the following layer. This relaxation of conditions f rom the

f u l l y connected M L P lead to much of the fascination wi th the structure of ANNs. I f a l ink

or a neuron fails i t may be possible to readjust the weights to restore the performance of the

network. The system has faul t tolerance and the abil i ty to re-adapt. I f the performance

of the network is affected i t w i l l most likely be a gradual deterioration rather than a

catastrophic failure of the whole system.

I t can be seen tha t overall the backpropagation algorithm is quite numerically inten

sive requiring a lot of in format ion to be passed both forward and backwards. A t each

neuron many calculations must be performed and a record of previous weight conditions

maintained i f the momentum term is to be utilised. Backpropagation is not suited to

direct implementat ion in hardware upon a specialised pla t form which operates on-line.

Usually, learning, t ra in ing and adaption are performed off-line and the learned weights

programmed into hardware which is to run the network, whether that be a conventional

architectured machine or a more highly specialised piece of hardware for running a N N .

16

2.3 .3 M L P a n d B a c k p r o p a g a t i o n I m p l e m e n t a t i o n

To acquire an understanding of the problem of implementing an M L P network and to

apply the backpropagation t raining algorithm in software a simple simulator was pro

duced. I t should be noted that many sophisticated and respected N N simulators exist

bo th commercial eg. NeuroProII or 'public domain' eg. Xerion or Migraines/Aspirin. I t

was felt that benefit would be gained by producing a simple demonstrator wi th which to

experiment.

The simulator enabled simple networks of up to five layers and for ty neurons per layer

to be specified. Configurat ion of the simulator is controlled by a setup file se tup .mlp .

A n example of the file s e tup .mlp is shown in Figure 2.7. The format of the file is slightly

terse and the actual specification of the network is not to the standard described in the

previous section, this was to. s impl i fy coding. The file terms are explained as follows:

l a y e r s the to ta l number of layers in the network (input, hidden and output)

neurons per l a y e r the appropriate number of layers to describe each layer

t r a i n i n g g a i n the value of 77

t r a i n i n g momentum the value of a

tv the number of t ra in ing vector combinations X and D

i n s p e c t r a t e how frequently the RMS error of the network is to be stored in the file

r e s u l t s . m l p

t r a i n i n g group s i z e the number of times a t raining vector pair is to be presented to a

network before the next t ra in ing pair is selected

epochs the number of diff'erent t ra in ing vector pairs to be presented

i p / o p the appropriate number of t ra in ing vector combinations

The output of the software is an ascii file r e s u l t s .mlp which firstly reiterates the network

parameters followed by a table of the RMS error of the network against t ime.

Two standard demonstration problems were investigated using the simulator, the 8-

3-8 coder/decoder and the two input Exclusive-OR (X O R) . These problems were chosen

to validate the l i terature on the general characteristics of an M L P network.

E n c o d e r / D e c o d e r P r o b l e m

The encoder/decoder problem is an a u t o - a s s o c i a t i v e problem in which the network

ou tpu t Y matches the original network input X . ^ The aim is for the M L P to find a

^In a hctc.TO-a,.<!.^ociativc problem tho iintwork output Y difFer.s from tlio network input X.

17

suitable coding scheme to pass the input pattern through a reduced number of hidden

layer neurons back out to the same number of output neurons as inputs. This type of

problem may also be referred to as an N - M - N problem where M < N. The difficulty of

the learning problem depends upon how much smaller M is than N. Specifically a two layer

MLP was used to solve the 8-3-8 encoder/decoder problem. There are eight input/output

patterns each with a single input set high in each input pattern and only the corresponding

line set high in the output, in fact Figure 2.7 illustrates the eight training vectors. The

obvious solution to the 8-3-8 problem is for the three hidden layer neurons to learn the

binary codes.

A group of simulation runs were performed with various combinations oft], a, t r a i n i n g

group size, and whether the patterns are presented individually at random or sequen

tially as a batch. Figure 2.7 is actually a setup file for such a problem, there being eight

training vector combinations. The results of these simulation runs can be seen in Figure 2.8

to Figure 2.12.

The first set of runs had zero momentum, a = 0, and individual training vector pairs

were presented at random. Figure 2.8. I t can be seen that increasing the gain term for

backpropagation increases the rate of error reduction. However, although for larger gains

a faster rate of convergence occurs, the descent is more noisy and the system varies around

the convergence point more as i t over corrects.

The next two sets of runs had a non-zero momentum term and again individual train

ing vector pairs were presented at random, Figure 2.9 and Figure 2.10. These figures

illustrate that increasing the momentum term increases the speed of the error reduction, a

combination of relatively large gain and momentum produce the fastest converging results.

The two terms cannot be increased continuously or else the system becomes unstable.

Finally for the encoder/decoder case two sets of batched runs were performed as shown

in Figure 2.11 and. Figure 2.12. In these runs all of the training pairs were passed through

the network and the average RMS error for all pairs used as the means of network train

ing by backpropagation. Both figures demonstrate what has already been shown that

increased gain or momentum can increase the rate of adaption.

The overall speed of adaption is generally comparable for both the individual and

batch methods of pattern presentation but the batch system produces a smoother RMS

error curve and will be a smoother path across the error surface of the system.

The analysis of a cross section of runs for many gains and momentum combinations

reveals that the limiting values for both are interdependent. In general, the larger the

value of one parameter the lower the limit of its counterpart. A possible solution to this

interdependence and noisy convergence is to use adjustable values. Initially large values

for both parameters are selected, first the momentum term is reduced and later the gain

term. In this way a rapid descent of the error surface could be achieved initially, but

as a solution is reached the noise in the gradient following will be reduced first as the

18

momentum and then as the gain is reduced.

X O R Problem

The XOR problem is a hard learning problem so called because the input/output rela

tionship is not linearly separable, as illustrated in Figure 2.5. The XOR problem is the

simplest form of the more general A^-input parity problem given hy Minsky and Papert,

[8]. For an XOR there are two inputs and one output. The output is high if either one

or other of the inputs is high, but not both. The more general iV-input parity problem is

such that the single output is high if either an odd or even number of the A'' inputs are

high depending whether odd or even parity is required.

For these tests a fully connected two layer MLP with two hidden layer neurons and

one output neuron is used. I t should be noted that Runielhart et al [15] demonstrate

a simplified feedforward network solution to this XOR problem using the network of

Figure 2.13. In this case though it can be seen that connections are utilised which skip

the intermediate hidden layer allowable in a general feedforward structure but not in our

restricted case of an MLP.

A group of simulation runs were performed with various combinations of gain and

momentum. The results of these simulation runs can be seen in Figure 2.14 to Figure 2.16.

I t can be seen that similar characteristics are exhibited as for the 8-3-8 encoder/decoder

problem in that larger values of gain or momentum produce faster rates of error reduction.

However, with this problem it can be seen that, within the duration of the runs, the

network did not always converge to a satisfactory solution, Figure 2.14 for 7] = 0.5 and

a = 0.0, or Figure 2.16 for rj = 0.7 and a = 0.4. I t was found that often re-initialising the

weights at random values enabled the system to converge for the same system training

parameters. For these runs i t can also be seen that the rate of error reduction once it does

start to occur is rapid.

2.4 Kohonen Self-Organising Feature Map

Supervised learning as demonstrated by the Multi-Layer Perceptron is only one form of

learning. It is not always necessary to have a formal teacher to train a neural network.

Teuvo Kohonen has developed the self-organising neural network in his work, [22, 23,

24]. This type of network performs its classification and learning in an unsupervised

manner. No explicit tutorial set of inputs and outputs is required.

The biological origin of the Kohonen Self-Organising Map is the competition exhibited

within sectors of physiological neural systems and the resulting spatial organisation of

response. There is direct evidence of the localisation of functions inside the brain. Within

localised areas maps exist for variations of a given type of stimulus. For example, an

area of the brain responds to sound stimuli, but slightly different sections are excited for

19

different notes.

The Kohonen network operates on a winner takes all policy for the neurons. Each

neuron receives identical inputs. Neighbouring neurons in the network compete in their

activities by mutual lateral interaction. Pattern detection of the inputs occurs as the

lieurons adaptively form specific feature detectors, each neuron becoming a separate de

coder. The format of the neuron is different to that of the perceptron. The neuron whose

weights most closely resemble the input vector is said to be the active neuron and pro

duces a response. The neuron with the active response has its weight values for its inputs

adjusted towards the stimulus to improve the response, while other input weights in the

net are decreased or left alone. Rather than adjust the values for only one neuron a re

sponse neighbourhood structure may be used in which nearest neighbours of an active

neuron also have their weights adjusted in favour of a response for the given input vector.

Gradually the size of the neighbourhood is reduced as is the degree to which the neuron

weights are changed. Types of neuron neighbourhood maps are illustrated in Figure 2.17

and Figure 2.18.

I t has been stated above that all neurons receive that same inputs. This does not

strictly have to be the case. Kohonen originally proposed the use of a switching or relay

network between the network inputs and neuron inputs. Each neuron received a set of

signals from the environment which may not be identical but are coherent. I t was demon

strated that self-organisation would still occur provided the input events to the neurons

are uniquely determined by the input events to the network. Using the Kohonen training

algorithm, self-organisation of a set of signal values is only possible if the relationship

between signals is simple. For practical applications preprocessing will often be necessary

to form a simple association, eg. for image processing.

2.4.1 Tra in ing

Unlike feedforward networks, such as the MLP presented earlier, no explicit response is

required from the network. Input patterns are presented to the network during training

to enable neuron responses to group themselves into areas of similar action.

The unsupervised training algorithm for Kohonen Self-Organising Feature Maps may

be described as follows.

i) Initialise all weight values to small random values. Often the weights are normalised

for improved network performance.

ii) An input vector, X , is presented to the net.

X = {xo,Xi,X2, . . . , X N - I }

i i i) Calculate the distances between the input vector and the weight vectors for each

20

neuron.
N-l

= E(^ ' ; (^) -^ '• /(^)) '^ (2-4)
»:=o

where

d.j distance between input and output of neuron j.

input to node i at time t.

w , j { t) weight for input node i to output node j at time t .

iv) Determine the node j* with the minimum value of dj. This is the active neuron.

v) Improve the weights of neuron j* such that its response for this type of input is a

closer match, ie. dj is smaller. Enhance the weights values for all neurons in the

designated neighbourhood by the following system.

w.jit + 1) = w,j{t) + vit)ix,_{t) - w,j{t)) (2.5)

0 < i < - 1

r)(t) training gain at time, t, 0 < r]{t) < 1

Note the similarity between the perceptron weight updating, eq.(2.11), and the Ko-

honen weight updating, eq.(2.5).

vi) Adjust the training gain, r]{t), if required. Training gain should be reduced mono-

tonically with time.

vii) Adjust the size of the neighbourhood if required. The size of the neighbourhood

should be reduced monotonically with time.

viii) Repeat training from step (ii) with a new input pattern until a satisfactory response

is achieved from the Kohonen Self-Organising network.

In steps (vi) and (vii) of the training algorithm, how would it be best to vary the

training gain, rj, and the size of the neighbourhood?

Taking the size of the neighbourhood first. A wide neighbourhood should be specified

initially to provide general ordering of the neurons in relation to the inputs. The size

could be up to half the total number of neurons. As learning progresses the area should

be reduced to produce improved local ordering. I t may finally occur that only one neuron

is adjusted for a given input. The specific method of area reduction is not particularly

important, linear, exponential or proportional to time are all successful. Due to neurons

being discrete entities the reduction will need to be quantitised.

21

Training gain may be adapted in a similar feishion. The gain is specified to be between

zero and unity. For values close to unity the adjustment of weights is large and may be

used to provide general ordering. For values close to zero the adjustment will not be as

significant to the reordering of the network, but more towards the fine tuning of neuron

responses. Again it is not significant which particular method is used for reducing the

gain. Unlike the neighbourhood size, adjustment of the gain will be continuous.

The two ideas of reducing the influence of training gain and neighbourhood size may

be combined in the use of a training gain that is variable with the distance from the active

neuron. Figure 2.19.

The active neuron has the most adaptation, as one moves towards the outer layers of

the neighbourhood the gain is reduced. A bell shaped gain centred on the active neuron

is often used. As learning progresses i t is still necessary to reduce the overall gain and

neighbourhood size with time.

I t has been found that the maps formed by Kohonen networks have the following

convergence properties

i) representation of the divisions of the data amongst the inputs are formed along the

most pronounced dimensions.

ii) preservation of the neighbourhood relationship between inputs.

iii) transform regions of input domain which are more frequent to larger regions of the

output domain with greater detail and vice versa.

2.4.2 K o h o n e n Self-Organising M a p Implementation

To acquire an understanding of the problem of implementing a Kohonen Self-Organising

feature map and to apply the learning rule in software, a simple simulator was produced

as per the MLP, §2.3.3. The basic algorithm implementation Wcis straightforward, but ad

dition of varying learning rates, neighbourhood sizes and the input/output of information

proved more time consuming.

A simple problem was addressed, that of ordering two-component input vectors , {x,y)

where 1.0 < a; < 10.0 and 1.0 < y < 10.0. A two dimensional array of two input neurons

was used. An ideal mesh can be visualised for uniform response. Figure 2.20 shows a

10 by 10 ideal mesh. One corner of the Kohonen layer responds to input vector (1,1) and

the diagonally opposite corner responds to (10,10).

For an arbitrary input vector the neuron with the closest match, minimum value of dj,

fires. For input (5.1,7.8) the neuron (5,8) in the mesh fires. No orientation is specified

for the mesh output, so in Figure 2.20 (1,1) could equally be the top right, bottom left or

bottom right after training but with (10,10) always diagonally opposite to preserve the

neighbourhood relationship between inputs.

22

The algorithm of §2.4.1 was adopted with a neighbourhood style of Figure 2.17. The

weight vector values were set to random values near the mid range of the training space,

(5.0,5.0). Uniformly distributed random vectors were presented to the network with dif

ferent values of yo, neighbourhood size and the rate of their reduction.

By displaying the mesh created by the neuron weights at successive intervals the organ

isation of the network can be viewed graphically. Initially for large value of 770 and large

neuron neighbourhoods the mesh dynamics are large, large changes in the mesh layout oc

cur as general ordering occurs. The neurons orientate themselves towards an appropriate

topology. Once topologically correct the refinement of the weight values occurs.

The concept of reducing 77 and the neighbourhoods size can be considered as the amount

of energy or heat which the system possesses. At high values much movement of weight

values and hence mesh layout are possible due to the high energy of the system. The

reduction of 77 and neighbourhood size may be likened to a cooling process enabling the

system to settle into an ordered state.

The series of figures. Figure 2.21 to Figure 2.24, illustrates the organising process

of the Kohonen layer. I t can be seen how the network organisation settles down with

increELsed number of pair presentation. In these figures the data in the (x,y) pair are

uniformly distributed throughout the input space. Due to the simplicity of the input set

it is difficult to demonstrate the principle that the division of data amongst inputs has

occurred along the most pronounced dimensions. A two-dimensional layer is being used

to divide a two input vector. The neighbourhood relationship is preserved in the Kohonen

Layer.

The uniform distribution of data does not allow the demonstration of the transfer

between domains, ie. the areas of the input domain which are most frequently excited are

mapped to larger regions, more neurons, in the output domain. To verify that this occurs

the distribution of the (x) component of {x,y) was changed to a normal distribution. The

normal distribution is centred at the middle of the range.

Figure 2.25 illustrates the effect that this has on the output domain. Firstly, the spread

in the x direction is reduced, for the uniform case the distribution of x and y was the same.

Secondly, in the centre of the distribution more neurons are active hence the outputs are

closer together produce greater detail. Al l input weights are adjusted when neuron weight

values are improved; this has the effect of causing the y dimension to be drawn in at the

top and the bottom.

Kohonen, [22], notes several effects within these feature maps.

Magnification factor which is ba.sically a restatement of the network property that

regions of the input domain which are most frequently excited will map to the most

neurons in the output domain to produce the greatest resolution.

Boundary effect which forms since the training of neurons occurs in neighbourhoods,

those neurons which are near to the edge will suffer an effect due to not having the

23

same number of neurons with which to interact. In general this will cause the map
to contract and pull away from the edges of the output domain.

Pinch/Collapse/Focusing Phenomena are all related since they are beheved to be

caused by the interaction between neurons being incorrect, ie. the wrong parameters

for neighbourhood size and strength of interaction. Pinch occurs when the neigh

bourhood is too small, and means that the distribution of neuron response does

not spread out across the entire output domain. Collapse can occur when the neigh

bourhood is too large and results in many neurons having basically the same output.

Focusing can occur if the neighbourhood interaction is too weak, in which case one

or two elements take over responding to virtually every input vector presented to

the network.

I t is found that a balance exists between the rate of reduction of 77 and 770- Similarly

for the neighbourhood size. Too large a value of 770 or too slow a rate of reduction and

the network takes a long time to settle down and organise into a sensible state. Too

small a value of 770 or too fast a rate of reduction and the network cannot unravel itself

into an ordered condition, but remains contorted. Despite these potential pitfalls and the

undesirable effects above the Kohonen Self-Organising feature map has been found to be

remarkably robust at learning this data set. This must be qualified by stating that the

data are not particularly complex and are suitably conditioned to the output domain.

2.5 The Hopfield Network

In the previous sections of this chapter the NN structures of the MLP and the Kohonen

Self-Organising Feature Map were reviewed and investigated. In this section a brief dis

cussion of the Hopfield Network is conducted. This NN structure was first presented by

Hopfield in 1982 and 1984, [25, 26]. The Hopfield Network is worthy of review because:

1. the network exhibits Associative Memory properties ie. given part of a piece of input

data the network is able to more fully recall the entire piece of information.

2. in its original form, the network operates asynchronously.

3. the simple nature and operation has led to its use as the basis for the investigation

of hardware implementations of NNs as pointed out by Murray et al, [27].

4. the network can be adapted and used to solve a difficult but well designed optimi

sation problem, including the Travelling Salesman Problem, [28, 29].

24

2.5.1 Arch i tec ture and Operat ion

The basic architecture of a Hopfield Net is illustrated in Figure 2.26. From this diagram it

can be seen that this NN consists of a single layer of neurons which are fed both from the

inputs to the network and from every output of the network except their own. The input

connections are used to simply load the network. A form of recurrence or feedback exists

in the network through the strong coupling of connections from output to input. The aim

of the connections is to provide mutual excitation if associated connection weights are

positive and inhibition if connection weights are negative.

In the original format each neuron had a step response function with an output value

which could be classed as -1 or - | -1, a sgn function. Given that a set of neuron weights has

been determined, to operate the Hopfield Net the following procedure is followed,

1. Load the Hopfield Net with the initial values of the input pattern, X

2/j(0) = Xi

Q<i<N -I

2. Update each neuron, j , output according to the following rule

%•(* + !) = sgn E u ; , , y , (i) (2.6)
V ?:=o /

The update method of the neurons given by Hopfield is asynchronous as this is more

akin to the way the brain operates. The asynchronous update may be implemented

in one of two ways:

(a) at each time step select a neuron, j, at random to be updated and apply eq.(2.6).

(b) each neuron independently updates by using eq.(2.6) with respect to a given

probability per unit time.

As Hertz et al [6] point out, the former is best suited for the simulation of Hopfield

Nets allowing central control, while the latter is more appropriate for hardware

implementations. Both methods equate to the same principal of update but with a

different distribution in time.

How are the weights, ty,.,-, initially determined for a Hopfield Net? Rather than a

training algorithm as per the above two previously discussed systems, the neuron inter

connection weights are initially calculated and fixed within the network. The mathemat

ical format for calculating the connection weights as given by Hertz et al will be briefly

outlined.

25

Consider first asingle pattern to be held within the network, P = {p(i,pi,p2, • • • , p A ' - i } -

For the Hopfield net to be stable then

\ 3 J
The updating equation of eq.(2.6) will produce no change.

W^j OC PiPj

The proportional constant may be taken to be with N the number of neurons in the

network.
1

W^J = —V^P,

I f a few of the initial values entered into the network are incorrect, the overall summation

at a node will swamp the errors producing the desired pattern; after the network has been

allowed to update itself over several time steps, the network relaxes.

The expansion to storing many patterns within the Hopfield Net is to allow the super

position of terms for each pattern such that

1 ^

/ / , = !

Q is the total number of patterns to be stored in the network. NB. The weights of the

Hopfield Net are symmetric, Wij = Wji.

Overall this weight setting rule is known as the 'generalised Hebb rule' due to its

closeness to the proposal by Hebb, [30], regarding the interaction of synaptic strengths in

the brain due to experience. Hebb actually wrote:

"When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing i t , some growth process or metabolic change

takes place in one or both cells such that A's efficiency, 3S one of the cells firing

B, is increased."

The Hopfield Net as an associative memory, or content addressable memory, has two

main limitations. Firstly, the total number of patterns which may be stored is small

compared to the number of network connections. The attempted storage of too many

patterns within the net may cause the network to relax to spurious patterns unlike any of

its stored patterns. The second major limitation is that if two patterns show too many

bits in common to one of the other patterns, the'pattern may be unstable such that

the net relaxes to the other pattern with which the original input shares many common

bits. Orthoganilisation procedures have been specified to ameliorate the second of these

26

drawbacks.

In general, when operating, a Hopfield Net relaxes to the stored pattern which is the

closest with respect to its Hamming distance from the actual input.

2.6 Boltzmann Machine

The last specific NN structure which will be reviewed is the Boltzmann Machine developed

by Ackley et al [31]. Discussion and descriptions are also given by Rumelhart et al [15]

and Hertz et al [6]. The Boltzmann Machine has much in common with the Hopfield Net

previously described in §2.5, in that it extends many of the principles to a multiple layer

architecture if required. As with the Hopfield Net, the processing elements are in one of

two states, either on or off, however which state a neuron adopts is probabilistic. Similar

to the Hopfield Net links between processing elements are symmetric. Any element, i,

which is connected to an element, j, has a weight associated with the link Wij; there is an

equivalent connection from j to i of value Wji.

A review of the Boltzmann Machine is worthwhile since, as has already been stated,

i t can be considered an extension of the Hopfield Net. Secondly the neurons operate

stochastically and have a stochastic output, yet their collective behaviour can be trained

to perform a coherent and computationally useful task. Thirdly the neurons operate in

a stochastic manner upon signals which are deterministic, in §6 an artificial neuron is

examined in which the reverse is the case, the neurons operate in a deterministic manner

upon signals which are stochastic.

Ackley et al demonstrated the ability of the Boltzmann Machine using the 4-2-4

encoder/decoder problem which has been used earher to assess the MLP, §2.3.3.

2.6.1 Arch i tec ture and Operat ion

The basic architecture of a Boltzmann Machine, consists of a network of interconnected

neurons. I t is not necessary for each neuron to be connected to every other neuron and,

due to the bidirectional nature of the connections, i t is not a feedforward only network,

as with the MLP.

A general arrangement of neurons as shown in Figure 2.27 is thus achieved. The main

constraint is that the neurons of the network can be divided into two classes visible and

invisible. Visible neurons have connections to the outside world, while hidden neurons are

simply connected to other neurons. As has been already stated, the neurons are stochastic

ie. the output adopts a value of 1 or -1 according to the following rule

S, = -1-1 p = g(/i,)
(2.7)

S, =-I p = l-g{hr)

27

h-i is the sum of weighted inputs for a neuron i as is usual for a neuron.

and the probability g{hi) is given by the Boltzmann function

l + er

where T is a measure of the temperature of the system and h is Boltzmann's constant.

With neurons operating in a stochastic manner, how can network training of a Boltz

mann Machine be achieved? Ackley et a/proposed, and demonstrated, a gradient descent

based technique which uses only locally available information to optimise the global net

work performance. The training is a form of Hebbian learning as described in the previous

section. To adapt the Boltzmann Machine i t is operated in two configurations, damped

and undamped. Statistics are gathered regarding the output values of connected neurons

in the two conditions of the network.

In the clamped state the visible neurons are held at their desired values and the network

is operated at a given value of T until i t reaches equilibrium. A measure of the correlation

is made between the output of neuron i and neuron j both being on together. This

clamping, stabilisation and measurement process must be repeated for each of the desired

network input/output formats or a group of subsets of a content addressable memory

format. The clamped correlation values for each of the neuron pairs are averaged.

In the undamped state, the network is allowed to run without any imposed external

constraint on the visible neurons. Again a measure is made of the correlation between the

output of neuron i and neuron j once the network has reached equihbrium.

The bidirectional interconnection links are updated according to the following rule

^-^^3 = f[{S^S,)^^^^^^-{S.S,l^,^^^^^^ (2.8)

) is the average of the correlation between the outputs of neurons i and j
\ I clamped

for each of the clamped input conditions.

(S',;S'j)̂ jî [̂_̂ ĵ p̂̂ .̂| is the correlation between the outputs of neurons i and j for the un

damped input condition.

7] is the training gain, rate of adaption, used for the gradient descent.

T is the temperature at which the system is operated. As training of the system pro

gresses the value of T is slowly reduced.

A complete derivation and alternative descriptions of the Boltzmann Machine training

28

procedure can be found in the previous references, [15, 6, 31]. I t is interesting to note that

due to the stochastic nature of operation of each neuron a weight change may be in the

wrong direction thus enabling the system to avoid local minima.

When operating a Boltzmann Machine in software it is usual to select a neuron at

random for output update based upon eq.(2.7). For the system to reach equilibrium at a

given temperature, in a clamped or undamped condition, can take some time. Often the

speed of reaching equilibrium can be increased by approaching the desired value of T at

which a network is to operate through the Simulated Annealing process. The process of

Simulated Annealing will be describe more fully in §5.4.

There is clearly a lot of work to be performed in the operation of a Boltzmann Machine

which leads to its main drawback; a Boltzmann Machine operates slowly. As Hertz et al

highlight there are four nested layers of operation:

1. many weights require updating using eq.(2.8).

2. the calculation of (5,;5j) in an undamped condition and all the desired clamped

configurations.

3. attainment of an equilibrium of operation at a temperature T.

4. the network must operate for many cycles with neurons selected at random for output

update via eq.(2.7).

Despite the limitations caused by complexity and slow speed of operation the Boltz

mann Machine can and does operate successfully. The network demonstrates that con

structive collective behaviour can be obtained in a stochastically operating NN. Finally, i t

is the first truly recurrent NN which feeds information both backwards and forwards via

its bidirectional weights.

2.7 Reinforcement Learning Schemes

Reinforcement learning undertaken by the use of a simple signal transmitted to the neuron

elements has taken various forms, and will probably have several more in the future.

I t differs from other supervised learning strategies, such as backpropagation, which are

used for adapting multi-layer feedforward networks. Only a single qualitative response of

good/bad performance of the network is provided, an error value. Backpropagation and

algorithms of its genre produce a specific response to the network performance, an error

vector.

Widrow et al, [32], using a single ADALINE, demonstrated 'learning with a critic'.

The ADALINE is the artificial neuron developed by Widrow and Hoff, [7]. The ADALINE

29

consists of a sum of weighted inputs passed through a signum, eq.(2.9).

N

1=0

sgn X
1, X . < 0

(2.9)

Normally within the inputs xo will be one set to +1 such that adjusting its weight value

will have the effect of adjusting the switching point for the signum function. The learning

with a critic architecture is illustrated in Figure 2.28. I f the response by the ADALINE

is deemed to be good the Critic Switch, bj, is set to the positive, reward, position. The

weights of the ADALINE are adjusted by the Least Mean Square (LMS) algorithm or

any other appropriate adaption algorithm to improve the tendency of the ADALINE to

produce the same response. However, if the ADALINE performance is bad the Critic

Switch is set to the punish position and the weights are adjusted to produce the opposite

response.

The above configuration was applied to a temporal problem of playing the card game

Blackjack. The ADALINE circuits had the role of a player in the game. The critic response

was a good if the game was won by the ADALINE player or bad if the ADALINE player

lost. The series of inputs to the ADALINE were the cards as played. The output was

whether another card should be taken by the ADALINE player. Only at the completion of

the game was the critic involved. The same game was advanced through and each input

state rewarded/punished depending upon the overall result of the game. An optimal

decision strategy exists for the player's actions in the game of blackjack and it was found

that the ADALINE performance improved as more games were played tending towards

this optimal decision.

Barto et al have worked upon several schemes employing reinforcement learning as the

means of training individual or a network of neuron-like elements. The first formulation

was the Associative Search Network (ASN) [33, 34, 35]. The second scheme was the

Associative Search Element (ASE) and the Adaptive Critic Element (ACE) [36].

The ASN is an associative memory structure. The network learns to output a pattern,

Y , based upon a given input key, X , for and environment, E . An association is formed

between the key supplied to the network and the pattern output by the network. The

network is not explicitly informed of the key/pattern relationship but is trained to max

imise a reinforcement signal or performance parameter. The performance of the network is

determined by the environment evaluating the pattern output based upon the key input.

A ful l ASN is illustrated in Figure 2.29. I t can be seen that the ASN as shown consists of

two types of processing elements, the basic adaptive elements, AE, and a single predictor

element, PE. The aim of the PE is to aid in the training of the AEs by anticipating the

30

reinforcement/payoff from the environment.
At a given time, t,

71.

5.(0 = E^'v(*)^jW
.7 = 1

, , f 1, if s,{t) + NOISE > 0
yi[t) = <

0, if s,,{t) + NOISE <0

The update of the AE weights uses a previous output of the prediction element.

n

p{t) = Y,wpjii)xj{t)
3 = 1

Two update processes are required one for the AEs and one for the PE. For the AEs

the update is based upon the reinforcement/payoff received from the environment, z{t),

previous AE output values, y{t - 1), and previously predicted reinforcement/payoff, p{t).

w.jit + 1) = w,j{t) + a[zit) - p{t - l)][yit - 1) - y{t - 2)]xj{t - 1)

The update of the predictor weights is achieved by the following expression,

Wpj{t + 1) = Wpj{t) + a.p[z{t) - p{t - l)]xj{t - 1)

The predictor aims to anticipate the payoff from the environment. The term a and are

learning constants determining the rate of learning for w-ij and Wpj respectively.

The second system investigated by Barto et al also had two processing elements, ASEs

and ACEs. These two processing elements were used together to learn to control the

cart-pole balancing problem. The cart-pole balancing problem consists of a movable cart

on which a pole has to be balanced vertically. Normally the cart and pole are restricted

to move in a single horizontal direction. Figure 2.30. The pole is maintained in balance

by applying impulses to move the cart. This control problem is also known as the broom

balancing problem.

The ABE network of Barto's and his colleagues was trained to avoid failure of the

cart pole balancing system, ie. the pole fell over or the cart reaching the end of its track.

The ASE control and learning system configuration is illustrated in Figure 2.31. This is

particularly difficult since failure of the system may occur after a long series of individual

control decisions. This system differs from the ASN in that not only is a single control

output, y, required but also the status of the environment is fed through a decoder before

entering the ASE. The environment is divided into regions by the decoder. For each region

a control action is to be associated. The regions are constructed from four parameters, the

31

position of the cart, the velocity of the cart, the angle of the pole and the rate of change
of pole angle. These regions are similar to fuzzy regions. The decoder selects just a single
region or input to the ASE to be active.

The output of the ASE is given by

yit) = f Y,w,{t)x,{t) + NOISE
L i = i

^. , f -t-1 if X > 0 (right)

- 1 if x < 0 (left)

Due to the random noise term the weight, Wi, only corresponds to the probability that an

action will be taken. Learning in this system therefore updates the probability of these

actions. The learning rule for the ASE is

w,{t + I) = w^{t) + ar{t)e,{t)

where

Q : is the learning constant controlling the rate of change of Wi

r(t) is a real-valued reinforcement

e,:(t) is the eligibility of an input.

The eligibility term is based upon the premise that inputs should have a maximum in

fluence a short time after firing and decay to zero afterwards, ie. an input becomes less

significant the longer it remains inactive. A simple exponential decay of eligibility may be

used.

e,{t + I) = 5e,it) + {I - 5)yit)x,Xt)

0 < (5 < 1 determines the rate of decay of eligibility.

This overall system is fairly complex and upon testing the results were found to be

poor. This was due to the fact that reinforcement is zero for the majority of the time only

taking the value -1 at failure of the system. The more successful an ASE becomes the less

frequent the occurrence of a failure signal and the slower the learning.

To improve the performance of the ASE the ACE was added to the configuration,

Figure 2.32. The ACE performs a similar function to that of the predictor in the ASN in

that the aim of the ACE is to produce a better reinforcement, f . This reinforcement is for

every input to the system and output combination from the decoder, so that reinforcement

occurs continuously, not just at failure of the system.

Continuous reinforcement is generated in a similar manner to that of the predictor

32

within the ASN,
I).

p{i) = Eu,:(t),x-,:(t)
7 = 1

where

p{t) is a prediction of the eventual reinforcement,

Vi is a weight applied to an input a;,;.

The ACE weights are updated by the following scheme,

v,,{t + 1) = v , i t) + a,,[r{t) + j p { t) - pit - l)] x , i t)

0 < 7 < 1

OLp is the constant determining the rate of change of Vi,

r{t) is the reinforcement from the environment,

7 is a discount factor which will provide for the prediction to decay to zero if no external

reinforcement occurs and

Xi is a trace of x, value calculated in similar fashion to the eligibility parameter of the

ASE.

x,(t + l) = Xx,_{t) + {1 - X)x,{t)

0 < A < 1 which determines the decay rate of Xi as per 6 for ê .

The estimated reinforcement, f , is updated by

f { t) = T { t) + y p { t) - p { t - l)

This system of ASE with ACE was found to be far more satisfactory than the single

ASE, due to the continuous reinforcement applied to the ASE.

Although these descriptions of ASE and ASE with ACE have been brief i t can be seen

that both rely upon a single global signal provided by the environment to improve the

performance of the controlling network.

Stochastic learning automatons, as reviewed by Narendra and Thathachar, [37], can

employ various reinforcement learning schemes to improve their behaviour in acting with

an environment. Figure 2.33 illustrates the link between a stochastic automaton and its

environment. As Narendra and Thathachar state, a stochastic automaton has six parts,

a sextuple, {x, (p,a,p, A,G}.

33

X is the set of inputs.

4> is the set of internal states {(pi,4>2, • • • ,<P.f}-

a is the action/ontput set {ai,a2, • • •, ex.,.} such that r < s.

p are the state probability vectors which determine the state chosen at each stage, for a

given stage n, p(n) = (pi{n),p2{n),... ,p.,(n)y.

a is the updating or reinforcement scheme which produces p{n + 1) from p{n).

G is the output function which may be either deterministic or stochastic, G : 0 —» a.

The operation of these learning automatons is to update their action probabilities,

on the basis of the environmental response.

The idea of the reinforcement schemes is simple. When a learning automaton selects

an action a,; at stage n, if the input from the environment is not a penalty, x{n) = 0,

the action probability, p,:(n) is increased while the alternative action probabilities are

decreased. I f the environment inputs a penalty, x{n) = 1, the opposite adjustments are

made, Pi{n) is decreased while the other action probabilities are increased. The above can

be summarised by the following equations, for when the action at n is the pj{n + 1)

terms, where j ^ i, are adjusted by

Pj{n + 1) = Pj{n) — fj{p{n)) x{n) = 0 nonpenalty

Pj{n + 1) = Pj{n) + gj{p{n)) x{n) = 1 penalty

The equation for p,;(n + 1) are as follows

p^{n + 1) = Pi{n) + ^ fjivi'^)) ^ (^) = 0 nonpenalty

p,,{n + 1) = p,:(n) - ^ Q j i p i n)) x{n) = 1 penalty

The algorithms and continuous functions fj{-) and gj{-) are such that

r

J2Pk{n + l) = l
k=l

p,.{n + l) 6 (0,1) V k = l,...,r

whenever every p / . (n)e (0 , l)

Using the two conditions of non penalty and penalty several variations on the rein

forcement scheme may be employed. The updating may be linear or non linear and

applied with a combination of reward, penalty or inaction for the non penalty-penalty

34

conditions, ie. Reward-Penalty, Reward-Inaction, Reward-Reward, Penalty-Penalty and
Inaction-Penalty.

Note the difference in the approach to learning to that of the ADALINE and ASE

formats. Stochastic learning automatons perform updates within the probability space,

whereas the others perform updates within the parameter's space based upon the rein

forcement signal. As the action selected for an environment is probabilistic, the stochastic

learning automaton is able to find the global minimum rather than becoming trapped in

a local minima, which can occur for the previous architectures.

2.7.1 B a r t o Reinforcement Learn ing

Barto and Jordan, [2], describe a method for performing nonlinear supervised learning

upon a multi-layer feedforward network. Instead of the exact solution to the network

being used, a qualitative response is created to describe the network's performance. A

critic is used to train the network punishing or rewarding the system depending upon its

response to inputs. A scalar quantity is fed back through the network to each of the neural

elements. In backpropagation an error vector is fed back through the network. The error

vector which backpropagation uses contains more information on the differences between

the desired output and actual network output.

Barto and Jordan in fact use two variants of an Associative Reward-Penalty or Aji-p

algorithm an element of stochasticism is introduced into the weight updating mechanism.

These two algorithmic variants will now be described. In the following section, §2.8, of this

thesis two extensions to these mechanisms are proposed commensurate with the hardware

neuron which will be developed.

As already stated, the algorithm operates upon a multi-layer feedforward network.

Input signals are applied to the input layer of the network which propagate through to

the output layer. Besides the connections to the preceding layer, each processing element

also has an input which is permanently at +1, a bias. The input layer processing elements

do not actually perform any computation, but act as a distribution point for the signals.

Hidden layer processing elements and output layer processing elements generate an output

value in different ways.

Output layer elements, j, produce an output value Xj which is a function of its inputs,

X,, from the preceding layer(s) and the weight for the connection between the processing

elements i to j, Wij.
n

The output units are the same as for a Multi-Layer Perceptron network and the back-

propagation algorithm by Rumelhart et al, [15]. Element input XQ is the bias term fixed

35

at - f 1.

Hidden layer elements behave the same as those in a Boltzmann network, [31], having

stochastic behaviour,

{ 1, probability f{vj)

0, probabiUty 1 - f{vj)

I t should be noted that all the processing elements use asigmoidal, squashing or logistic

function. Output layer units use the function directly to form their output values whereas,

for hidden layer units, the function generates the probability of the neuron producing a

one or firing. The hidden layer processing elements have a stochastic behaviour. In

this network expected activity does not propagate'from hidden units in the way that

deterministic activations in an MLP network do.

The performance of the network to produce the desired output must be assessed and

the network trained to produce a better approximation to the desired output.

Denoting the actual network output as Y ,

Y = (2/i,2/2,---,2/iv)

where the y,, are N output units, this is purely a renaming of the Xj values to yj values

for the output layer, and letting the desired network output be D ,

D = {di,d2, •.. ,dM)

A performance measure can be defined as the mean square of the difference between

desired and actual output.

^ = ^E(d^-y^)' (2-10)
?:=i

This performance measure or network error is used as the basis for improving the network

response. Output layer processing elements and hidden layer processing elements have

their weights updated differently.

Output layer processing elements again operate for updating as per Rumelhart et al,

[15], in that the weights are updated by the backpropagation method, that is, a gradient

descent occurs.

Aw,j = p{dj - yj)f'{vj)x,,

where f'{vj) is the derivative of the function f{vj),

f'{vj) = f{v,){l-f{v,)) = y , { l - y ,)

36

p is a training gain term which affects how great the adjustment in the weight, Wij, is

made. As the hidden layer processing elements have a stochastic behaviour the error, £,

is random thus the adjustment in weights for the output layer will be random.

Hidden layer processing element weight update is accomplished by means of a broad

cast reinforcement signal, r , which is sent to all hidden processing elements. This is simpler

than backpropagating an error through previous processing elements from output towards

the input. A l l weight updates can be performed simultaneously rather than waiting for

other layers of elements to complete their updates as is the case for example in the back-

propagation algorithm. Two schemes were proposed by Barto and Jordan [2], for weight

updating in the hidden layers using the value oie, the mean squared error between desired

and actual network output, eq.(2.10). These schemes are the the P-model Aji-p and the

S-model Aji-p. The P-model Au-p is a binary reinforcement technique for hidden ele

ment weight updating, while the S-model Aji^p is a proportional reinforcement method

for updating the hidden element weights.

P-model A R _ P

The reinforcement signal r for updating the hidden layer weights has a probabilistic binary

value depending upon s,
f

1, probability (1 - ff)

0, probability e

The better the network is at producing the desired output the greater the probability of

a 1, implying success. Hidden processing elements have their weights updated according

to the following rule,

A z . , = / = ^ (2.11)
I \p{\-x,-j{v,y)x, i f r = 0

p is the training gain affecting how much weights are adjusted, while A is the degree of

asymmetry between the size of the weight change for r = 1, viewed as success, and r = 0,

viewed as failure, 0 < A < 1 . I f A = 0 then the weight update strategy is a Reward-

Inaction, else for A > 0 the strategy is a Reward-Punish.

The qualitative way this scheme works for hidden elements is that for success, r = 1,

the weights, w-tj, alter so that the probability of the processing element producing the

same response for the same input pattern increases. Thus in a similar situation the same

actions will be more likely to be performed by the network. I f r = 0 and the network fails

the weight changes are such that the probability of the processing elements producing the

same response for similar input patterns are reduced. The weight changes for failure are

governed by A so weight adjustment can also be scaled for failure of the network relative

to success by the network. The reward and punish could be decoupled such that two

37

separate gain terms are used, ie. p for reward and A for punish, by removal of the p factor
from the equation for the case ?• = 0 in eq.(2.11).

S-model A R ^ _ P

This scheme is simpler than the P-model with a real valued reinforcement signal, r, directly

derived from the error, e, as opposed to a probabilistic binary value for r.

r = 1 - £

The better the network performance the smaller e will be and the stronger the reinforce

ment, r. There is only the need for one weight updating algorithm,

^w,, = p{r{x, - fiv,)) + A(l - r) (l - x, - f{v,)))x, (2.12)

This scheme is simpler than the P-model AR-P. I t can be seen to reduce to the P-model

A]i^P for values of r = 0 or r = 1.

2.8 Two New Extensions for Reinforcement Learning: Q-

model and T-model A R _ P

For the basic P-model and S-model A^^p schemes tested by Barto and Jordan and re

viewed in §2.7.1 two forms of weight adjustment are used in each method, namely the

gradient descent at the output layer processing elements and the reinforcement at the

hidden layer processing elements. To have just a single weight adjustment scheme would

be better for hardware implementation purposes to keep the design as simple and uniform

as possible. By eliminating the gradient descent at the output processing elements two

new architectures may be evolved, the Q-model Ap-p and the T-model Ap^p based upon

the P-model Ap-p and the S-model Ap-p respectively.

A second variation which was incorporated into the Q.and T-model Ap^p was that

all the neurons in the underlying network model now operate stochcistically. The neurons

have a binary output based on the sigmoid transform of the weighted sum of inputs. In the

original form only the hidden layer neurons had a stochastic output while the output layer

neurons operated deterministically. The weight values for the network are still real valued

and continuous. This network model with associated learning strategy is now beginning

to model the style of network that can be formed from the developed hardware stochastic

neuron, and this is one of the reasons for investigating the reinforcement learning approach.

Q-model A R _ P The Q-model Ap^p is derived from the P-model Ap^p with all weights

subjected to probabilistic binary reinforcement. The adaption strategy for all neuron

38

weights in all layers are based on a reinforcement signal, r, which has a probabilistic
binary value dependant upon the network error, £.

1 "

di is the desired neuron output value and y,, is the actual neuron output value for N

neurons.

Thus
f

1, probability (1 - e)

0, probability e
As a network produces an output closer to that desired, the greater the probability of a

favourable reinforcement signal, r = 1. Al l processing elements now have their weights

adjusted according to the following rule

l^^ . =) /'(^J - / K)) ^ ' i f r = 1
^ \p{\-x,-j{vj))x,, i f r = 0

p is the training gain affecting how much weights are adjusted, while A is the degree of

asymmetry between the size of the weight change for r = 1, viewed as success, and r = 0,

viewed as failure, 0 < A < 1 . I f A = 0 then the weight update strategy is a Reward-

Inaction, else for A > 0 the strategy is a Reward-Punish.

T-model Aj^_p The T-model Aji^p is similarly derived from the S-model Aji^p adap

tion strategy. A l l weights are now varied due to a real valued reinforcement signal, r,

derived directly from the error, e.

r = l - £

As the network produces an output closer to that desired the greater the value of the

reinforcement signal. A l l processing elements in this model have their weights adjusted

according to the following rule

Atz;,, = p{r{x, - f{v,)) + A(l - r) (l - x^ - f{vj)))x,

2.8.1 E v a l u a t i n g the Four A R _ P Strategies

In §2.3.3 simple feedforward networks were used to assess the capabilities and learning

rates of an MLP with the backpropagation algorithm. As a comparison the two styles of

problem which had been used with the MLP evaluation were repeated for the four Ap-p

39

algorithm variants, namely the encoder/decoder problem and X O R problem.
The encoder/decoder problem was the same style of 8-3-8 network of artificial neurons

while the X O R used a 2-2-1 architecture of artificial devices. After difficulty was expe

rienced gaining favourable results for the Q and T-model algorithm simulations with the

8-3-8 problem, but success was achieved with the 2-2-1 X O R , a new set of simulations

for a reduced 4-2-4 encoder/decoder network were performed for the Q and T-model. A

spread of training parameters were used with varying training gain p and asymmetry A

for each of the learning models.

A simulation run consisted of presenting a pattern to the network and noting the

network's response. The weights_of each artificial neuron were updated and a new pattern

selected at random from the input set and presented. After a given number of pattern

presentations the network performance was calculated by presenting each of the input

patterns in turn and determining the RMS error value. The average of the RMS error

value is taken as a measure of the overall performance of the network.

P-model and S-model A R _ P For both the P and S schemes rapid initial descent

governed by the value of p the training gain is observed. In general the greater the value

of p the faster the rate of descent but with diminishing returns, Figure 2.34 and Figure 2.35.

In both these cases the long term adaption levels out to an offset value greater than zero

as illustrated in Figure 2.36. NB. For all of these simulation runs A = 0.

By addition of a degree of asymmetry, A > 0, both the P and S models are able to

produce an improved adaption result as illustrated by Figure 2.37. Even a very small

value of A is significant in improving the adaption capabilities. Figure 2.38. If, however,

the value of A is too large, then the P and S algorithms fail to adapt to an optimum

solution but as with the case of A = 0 tend to a non-zero value. The error oscillates more

vigorously about this offset level though.

Using the P and S-model algorithms to train a 2-2-1 network of neurons to perform the

non-linearly separable problem of the X O R proved as difficult as with more sophisticated

algorithms. For any of the combinations of p and A attempted the network could not be

trained to the appropriate value with either algorithm. I t was found that a very small

degree of asymmetry was required and that the number of pattern presentations made to

the network was extremely large for the network error to tend to zero, Figure 2.39 and

Figure 2.40. For this case there is a rapid initial descent as with the 8-3-8 encoder/decoder

but the improvement to remove the last portion of error is very slow.

Q-model and T-model Af i_p As with the previous two P and S variants the 8-3-8

encoding problem was tackled with these new Q and T-model versions. As each output

neuron now produces an integer response 1 or 0 the performance measure, RMS Error, will

now be in discrete levels. The trend of increasing the gain p to increase the rate of learning

could not be observed in the performance plots. Varying the amount of asymmetry did

40

not aid in the adaption process for either the Q or T-models, unlike the P and S-models,

the network performance was poor and varied widely even with small value eg. A = 0.005

as exemplified by Figure 2.41.

Surprisingly, when the Q and T-models are applied to the X O R problem with a small

non-zero value for A the problem could be adapted to. Figure 2.42 and Figure 2.43. Note

the highly quantitised performance measure for the network and learning algorithms which

provide a possible insight into the problem of adaption with the 8-3-8 encoder/decoder.

Wi th the output of each neuron being either correct or incorrect with respect to the

probability given by a function of its weighted inputs the opportunity for the network to

obtain a strong reinforcement signal, ie. the probability that all outputs are correct, to

enhance its performance is limited. The training time necessary may therefore be longer

than that allocated for the above experiments.

Returning now to the encoder/decoder style configuration but with a reduced size of

problem, ie. 4-2-4, i t can be seen from Figure 2.44 and Figure 2.45 that the network

with either the Q or T-model reinforcement training algorithm can now work in the time

allocated. The assortment of values for gain and asymmetry presented are due to the fact

that conversion to a satisfactory result is not always possible. Given one set of gain and

asymmetry values the algorithm may not converge, but given new initial random weight

values the network may converge. I t can be seen in Figure 2.44 that for p = 0.9 and

A = 0.03 the system is probably stuck in a local minimum before being able to escape at

around 50000 presentations.

2.9 Conclusions

In this chapter the aim has been to provide a critical review of four key neural network

architectures, the MLP §2.3.2, the Kohonen Self-Organising Feature Map §2.4, the Hop-

field Net §2.5 and Boltzmann Machine §2.6 in order to determine the most appropriate

attributes for hardware implementation and on-line learning. The first two networks were

simulated in software in order to gain a fuller appreciation and understanding of their

functionality.

Several architectures and paradigms utilising reinforcement learning techniques have

been reviewed §2.7. These algorithms are of particular interest since they usually use the

minimum amount of information which has to be fed back through the network. The two

learning models, P and S, presented by Barto et al have been demonstrated to function

as specified. The two systems were found to rely on a small punishment signal in order to

gain their best performance.

Building on these two models their respective reinforcement strategies were extended

to the output layer of a network. In addition, the output layer neurons were configured

such that their Output was probabilistic as per the hidden layer. I t was found that feeding

41

a single reward or punishment signal to every neuron, it was possible to train the network

to perform the two demonstration tasks of the 4-2-4 encoder/decoder and the 2-2-1 X O R

problem. Again it was found that the asymmetry term, A, was important in the network

adaption performance. When the larger 8-3-8 encoder/decoder problem was attempted

with these new learning algorithms they did not converge in the time used to train them,

there may thus be a scalability issue which needs to be addressed in using these methods.

I t can be seen that there are many and varied algorithms used in the study of ANNs.

The research into these algorithms is normally conducted in software models. I t has been

highlighted throughout that NNs are essentially a parallel processing technique consisting

of many simple processing elements which are interconnected. The hardware design of

the processing elements is thus a key issue if the most benefit is to be gained from these

systems. The following chapter, §3, provides a review of possible hardware techniques

which may be used to form ANNs. Included in this review are several commercially

available devices.

The method of stochastic pulse rate encoded signals is discussed in the hardware

review, i t is pursued further by an explanation of the coding techniques and processing

circuits in §4. This suite of circuits is extended with novel circuit designs relevant to ANNs

before an actual hardware neuron design is discussed, developed, tested and operated in

the following chapters of this thesis.

42

Dendrites

Nucleus

Soma

Synapse

Axon

Figure 2.1: Illustration of a Biological Neuron Structure. Artificial neurons model a
simplified structure of a biological neuron. A single, simple, processing element with many
inputs and one output.

Activation
Function

Figure 2.2: General Artificial Neuron Architecture of McCulloch and Pitts. This con
sists of weighted input values which are summated and then passed through an activation
function.

43

Step Function Linear Activation Function

Clipped Linear Activation Function Sigmoidal Activation Function

Figure 2.3: Common Neuron Activation Functions. The Step Threshold function was the
original proposed by McCulloch and Pitt. Alternative activation functions are illustrated,
all but the Linear Activation Function constrain the output range of the neuron.

Inputs Perceptrons Outputs

Figure 2.4: Single layer perceptron configuration. There is only a single processing layer
in this structure with no feedback connections and no connections across the network from
one perceptron to another.

44

AND Function

A B Response

0 0 0

0 1 0

I

1

0

[

0

1

B
\

<^—
Possible decision line

boundary

A

XOR Function

A B Response

0 0 0

0 1 1

1 0 I

1 1 0

B

o o

Possible decision line

boundaries

Figure 2.5: Example of AND and XOR functions for the Perceptron. The AND function
is linearly separable, a single decision line can divide the two output domains. The XOR
function is not linearly separable, more than one decision line is necessary to divide the
two output domains.

Input Layer Output Layer Outputs
First Hidden Second Hidden

Layer Layer

Figure 2.6: Three layer fully connected MLP configuration. As for the SLP, all connections
are feedforward to the next layer only with no connections between neurons in the same
layer.

45

l a y e r s • 3
neurons per l a y e r 8 3 8
t r a i n i n g gain 0.5
t r a i n i n g momentum 0.2
tv 8
t r a i n i n g type r
inspect rate 10
t r a i n i n g group s i z e 1
epochs 2000
i p 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
op 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ip 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
op 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
ip 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
op 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
ip 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
op 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
ip 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
op 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
ip 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
op 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
ip 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
op 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
ip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
op 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Figure 2.7: Exaniple of the file setup.mlp. This file is used to configure the basic MLP
simulator written to demonstrate and verify the operation of MLPs.

46

0.9 -

0.8 -

0.7 -
u o u 0.6 -
u
ta 0.5
en

0.5
R

M

0.4 -

0.3 -

0.2 -

0.1 -

0 -
0

Momentum

1000 2000 3000 7000 8000 9000 10000 4000 5000 6000

Presentations

Figure 2.8: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing
the gain term for backpropagation increases the rate of reduction in RMS Error.

I

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Momentum

1000 2000 3000 10000 4000 5000 6000 7000 8000 9000

Presentations

Figure 2.9: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing
the momentum term for backpropagation increases the rate of reduction in RMS Error.

1

0.9

0.8 -I
0.7

S 0.6 -I

0.5

0.4

0.3

0.2

0.1 H
0

Momentum

0 1000 2000 3000 4000 5000 6000 7000 ' 8000 9000 10000

Presentations

Figure 2.10: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing
the momentum term for backpropagation increases the rate of reduction in RMS Error,
but for large values of gam and momentum the decrease in RMS Error is noisier and the
convergence point is noisier, this is not obvious from these though.

47

Gain Momenlum

1000 2000 3000 7000 8000 9000 10000 4000 5000 6000

Presentations

Figure 2.11: Error curves for 8-3-8 coder/decoder MLP, Batch presentation. Increasing
the gain term for backpropagation increases the rate of reduction in RMS Error.

1 •

0.9 -

0.8 -

0.7 -
o u 0.6
u

0.5 -
1/3

0.5 -

R
M

0.4 -

0.3 -

0.2 -

0.1 -

0 -

Gain Momentum

1000 2000 3000 7000 8000 9000 10000 4000 5000 6000

Presentations

Figure 2.12: Error curves for 8-3-8 coder/decoder MLP, Batch presentation. Increasing
the momentum term for backpropagation increases the rate of reduction in RMS Error.

Hidden
Layer

Output
Layer

Figure 2.13: Rumelhart et al network architecture to solve the XOR problem. Simplified
network for solving the XOR problem. Note, however, that feedforward connections from
the input layer pass directly to the output layer.

48

Gam Momentum

0.2 H

0 1000 2000 3000 4000 5000 6000 7000 8000 900O 10000

Presentations

Figure 2.14: Error curves for 2-2-1 XOR MLP. In general, increasing the gain term for
backpropagation increases the rate of reduction in RMS Error. Note, a system will not
always converge, eg. 77 = 0.5, a = 0.0

Gam Momentum

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Presentations

Figure 2.15: Error curves for 2-2-1 XOR MLP. Increasing the momentum term for back-
propagation increases the rate of reduction in RMS Error.

0.6

£

u

05

0.5

0.4

0.3

0.2

0.1

Gain Momentum

0.7 0.0

1 i l/l. , . ,ihjaf|Q | j l .J.'*^ A , j J \ l ^ ' M , ' s i 0.7 0.4

0.7 0.8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Presentations

Figure 2.16: Error curves for 2-2-1 XOR MLP. In general, increasing the momentum term
for backpropagation increases the rate of reduction in RMS Error. Note a system will not
always converge, eg. rj = 0.7, a = 0.4

49

NEjdo)

o o o o o
N E | { t ,)

o o o
NE|(t2)

o o o
o o o o o

Active Neuron

Figure 2.17: Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 1.
Each neuron has eight nearest neighbours and the neighbourhood scales as 1-8-16.

o/ o
NEj(t i) o /o
NEj(t2) o <o

o \o
o\ o

Active Neuron

Figure 2.18: Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 2.
Each neuron has six nearest neighbours and the neighbourhood scales as 1-6-12.

o
611
B

-0.2

Distance From Active Neuron

Figure 2.19: Variation in Training Gain, rj, vs Distance from Active Neuron. The influence
of gain and neighbourhood size are combined within this single distribution. Negative
values for gain as generated by this 'Mexican Hat' curve have proved successful in training
Kohonen Self-Organising feature maps.

50

(1,1)
11

(5,8)
i I

i (10,10)

Figure 2.20: Ideal Uniform 10 by 10 Mesh. A two dimensional array of 10 x 10 elements
can he arranged as a uniformly spaced regular grid.

Figure 2.21: Kohonen Self-Organising Layer, 10 iterations. After only a few iterations of
the training algorithm the majority of the neuron responses are still concentrated around
the central value. A large value of rj and neighbourhood will he used to disperse the neuron
responses throughout the output domain.

51

Figure 2.22: Kohonen Self-Organising Layer, 1000 iterations, Uniform (x,y) distribution.
The neuron.responses have heen distributed throughout the output domain. A 'twist' in the
output map appears to exist. Provided there is enough energy within the system ie. large
rj and neighbourhood, the training algorithm should unravel this twist.

Figure 2.23: Kohonen Self-Organising Layer, 100000 iterations, Uniform (x,y) distribution.
The basic structure of the regular grid has been formed. The twist in the response has been
undone.

52

Figure 2.24: Kohonen Self-Organising Layer, 300000 iterations. Uniform (x,y) distribu
tion. The output grid has stabilised to the expected uniform structure for the uniformly
distributed two dimensional inputs. Small values of rj and neighbourhood will be used to
continue fine tuning the network response.

Figure 2.25: Kohonen Self-Organising Layer, 300000 iterations, Normal (x). Uniform
(y) distribution. With a concentration of information about the central value for the
x-dimension the output map is pulled into a form where more neurons are used for areas
where most information is present.

53

^0 ^3 initially loaded input pattern

- ^5 output pattern which will be atable after convergence

Figure 2.26: General Architecture of a Hopfield Net, four neurons. A Hopfield Net con
sists of a single layer of neurons with the feedback of their output to every neuron except
themselves.

54

Visible Invisible/Hidden

Input

Output

Figure 2.27: General Architecture of a Boltzmann Machine. Neurons generate a stochastic
output and can be divided into two classes, Visible and Invisible. Only visible neurons are
connected to the outside and these can he further divided into Input and Output sub-classes.

55

Input
Patterns

ADALINE

b.
Critic Switch
+ve: Reward
-ve : Punish

Figure 2.28: Criticised ADALINE. Learning with a critic architecture, only a single +1,
Reward, or -1, Punish, signal is used to update neuron weights.

ASN

Predictor

Wi2

>

W22

W2n

A.

Figure 2.29: Associative Search Network Architecture. The ASN has two types of pro
cessing elements, many Adaptive Elements, AE, and a single Predictor Element, PE. All
processing elements are connected to the environment, E.

56

Impulse V

Figure 2.30: Cart-Pole balancing system. By moving the cart appropriately the aim is to
keep the pole in an upright position.

Reinforcement, r

^ _ ! _

Decoder ASE
Action, y

+1
-I

System

State Vector

Figure 2.31: Associative Search Element (ASE) configuration. The system environment
status is decoded before feeding into the ASE. The reinforcement signal is only set at times
of system failure. The system responses and rate of adaption were found to be poor.

Reinforcement, r

ACE Internal Reinforcement, r

Decoder ASE
Action, y

-Kl

-1

System

State Vector

Figure 2.32: Associative Search Element with Adaptive Critic Element (ACE) Configura
tion. Basic performance of the ASE system Figure 2.31, is enhanced by the inclusion of
the ACE which generates a continuous value of internal reinforcement signal for every set
of decoded outputs and reinforcement inputs.

57

Penalty
Probability Set

{ C i , 02, ... c j

Environment

{P,A)

Action

a £ {a,, ... a^}

Stochastic
Automaton

Input

xe{0,l}

Figure 2.33: Learning Automaton.

58

50 100 150

Presentations

Gain Asyminelry

0.1 0.0

0.5 0.0

0.9 0.0

200 250

Figure 2.34: Initial adaption rate for 8-3-8 encoder/decoder P-model Aji-p. It will be
noted that increasing the gain, p, produces an increase in learning rate. There exists a
constant error which the training algorithm can not overcome.

0.7 -•

50 100 150

Presentations

Gain Asymmetry

0.1 0.0

0.5 0.0

0.9 0.0 h 0.4

200 250

Figure 2.35: Initial adaption rate for 8-3-8 encoder/decoder S-model A^-p. It will be
noted that increasing the gain, p, produces an increase in learning rate. There exists
a constant error which the training algorithm can not overcome. By comparison with
Figure 2.34 the P-model Aji-p is marginally faster at error reduction.

59

0.7

0.6

0.5

o

1/3
s 0.3 ^

0.2

0.1

0

Gain A.symmeiry

0.5 0.0 P-mod

0.5 0.0 S-mod

-n—it.

5000 10000 15000 20000 25000 30000 35000 40000

Presentations
Figure 2.36: Long term adaption for 8-3-8 encoder/decoder. The two models of network
of Figure 2.34 o.'<^d Figure 2.35 have be trained for a long period of time but remain with
the same amount of network error.

0.7

0.6

0.5

o
u, 0-4

M

S 0.3
OS

0.2

0.1

Gain Asymmetry

0.7 02 P-mod

0.7 0.2 S-mod

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Presentations

Figure 2.37: Long term adaption for 8-3-8 encoder/decoder with A > 0. It can be seen
that increasing the value of asymmetry from zero aids the training of the network by
reinforcement learning.

60

0.7 1

0.6

0.5

i: 0 '' u
S 0.3
a

0.2

0.1

0

Gain A.symmelry

0.5 0.05 P-mod

0.5 0.05 S-mod

0 5000 10000 15000 20000 2500O 30000 35000 40000 45000 50000

Presentations

Figure 2.38: Long term adaption for 8-3-8 encoder/decoder with small A. By comparison
with the previous Figure 2.34 o-'n-d Figure 2.35 it can be seen that even a small degree of
asymmetry is beneficial.

0.7

0.6

0.5

o u u 0.4 •
a

0.3 -
ai

0.2 -

0.1 -

0 -

Gain Asymmetry

0.1 0.005

0.5 0.005

' 0.9 0.005

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Presentations

Figure 2.39: X O R learning P-model. For adaption to occur such that the network error
tends to zero it is necessary to use a very small value of X and a long training period.

61

0.7

0.6

0.5

0.4

0.3 -I

0.2

0.1

Gain A.symnielry

0.1 0.005

0.5 0.005

• 0.9 0.005

100000 200000 300000 400000

Presentations

500000 600000 700000

Figure 2.40: X O R learning S-model. per the P-model, Figure 2.39, a small value of X
was found to be necessary combined with a long training period for network error to tend
to zero.

0.7

0.6

0.5

o
0.4

0.3
PS

0.2

0.1

Gain Asymmetry

0.7 0.005 Q-mod

0.7 0.005 T-mod

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Presentations

Figure 2.41: Poor learning of 8-3-8 by Q and T models. This is an example of the poor
adaption of the new AR-P models and the inability to reduce the network error to zero
even for small degrees of asymmetry.

62

Gain Asymmetry

0.1 0.05

0.3 0.05

0.9 0.05

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Presentations

Figure 2.42: Q-model X O R . Note that by comparison with the P-model results of Fig
ure 2.39 the rate of adaption and learning is of the order of ten times faster. A highly
quantised response is evident.

Gain Asymmetry

0.1 0.05

0.3 0.05

50OO 10000 15000 20000 25000 30000 35000 40000 45000 50000

Presentations

Figure 2.43: T-model X O R . Note that by comparison with the P-model results of Fig
ure 2.40 the rate of adaption and learning is of the order of ten times faster. A highly
quantised response is evident.

63

Gain Asymmetry

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Presentations

Figure 2.44: Q-model learning for the 4-2-4 encoder/decoder. With a reduced problem
size the Q-model is able to adapt to form the necessary weight values. The system can still
get caught in an apparent local minima as exemplified by the plot for p = 0.9 and X = 0.03.

0.7

0.6

0.5

o u u 0.4

0.3

0.2

0.1

0

Gam Asymmetry

m
10000 20000 30000 40000 50000 60000

Presentations

70000 80000 90000 100000

Figure 2.45: T-model learning for the 4-2-4 encoder/decoder, per the Q-model, Fig
ure 2.44> with a reduced problem size the system is able to adapt to form the necessary
weights to converge.

64

Chapter 3

Hardware Implementation: A

Critical Review

The previous chapter has discussed ANN architectures and the classes of learning algo

rithms which may be implemented. One of the problems which exists with many of these

architectures and algorithms is that they exist only as mathematical models or are imple

mented as a software solution upon a standard von Neumann style architecture machine.

The power of ANNs is derived from the high degree of parallelism that can be achieved.

Despite the high speed of modern computer platforms for the simulation of ANNs, the

platforms are often not fast enough for very large networks or real-time applications. The

following difficulties, as highlighted by Atlas and Suziki [38] are to blame.

Massive interconnections can be required.

Most architectures involve tens, hundreds even thousands of neurons requiring inter

connection. This is particularly acute in a fully connected NN. Each connection will

require a multiplication and each neuron will therefore need many multiplications

and- summations of results.

Learn ing .

Many of the problems thought best suited to the solution by NNs have large data

sets. Most algorithms are slow to converge to a solution due to adjusting the many

weights that exist and this may necessitate many iterations.

T r i a l and error .

NNs do not always converge to a solution. When they do converge this may not be

to a global minimum. Different training runs may be needed to be tried with various

initial conditions to enable the best results to be selected.

65

Flexibility.

ANN algorithms and architectures are continuously evolving. A hardware solution

must l̂ e as adaptable and adjustable as possible.

Therefore, it is worthwhile developing hardware realisations of ANN to increase the

rate of processing and the size of problem which can be tackled in a rational timescale.

What possible systems are there for implementing an ANN in hardware? Analogue

electronics, digital electronics, optical devices or any other system which may currently

be in vogue. Points to be considered are the complexity of the resulting system (on top

of the interconnectivity of the neurons), stability of the system, the ability of the system

to learn on or off line.

3.1 Analogue Artificial Neural Networks

The basic operation of an ANN processing element as described in §2.2 can be summarised

as
NouT = F [^ (n) '

therefore within analogue hardware i t is necessary to perform the three operations of

multiplication 11, summation J] and activation function F. Graf & Jackal [39] and Foo

et al [40] provide a general introduction into analogue implementations, while IVIead [41]

provides a greater depth and more specialised viewpoint for using analogue circuits.

The basic instantiation of these three operations within an ANN is as follows

Multiplication. A single transistor could be used to perform multiplication, but a bet

ter approach would be to represent the strength of a connection by a resistor. In

the latter case the output from a neuron i is input to a neuron j through a con

ductance representing the connection strength or weight Tij. I f the voltage at the

input to neuron j is held at ground a current lij will flow through the conductance

representing the weighted signal.

Uj = VouTiTtj

The realisation of this weighting conductance can be achieved in several ways, in

cluding a CMOS switch operating in its active region, a switch-capacitor network,

a switched-resistor network or a switched-ladder resistor network, all are illustrated

in Figure 3.1.

Summation. The addition of input signals, currents, can be achieved by connecting

the input wires together at a single node. An example would be the input of an

operational amplifier (Op Amp) which is considered to be at virtual ground.

66

Pros Cons
Speed of operation

Asynchronous behaviour
Easy implementations

Simple circuits
Small circuit elements

Direct interfacing
Basic storage of weights

Smooth neural activation function
Massive parallelism

Lack of thermal stability
Low noise immunity

Interconnection problems
Limited accuracy

Hard to test
Basic components hard to fabricate

Lack of design tools
Signed storage of weights
Non-uniform processing

Table 3.1: Implementation considerations for analogue neural networks

Activation Function. The format of activation realised will depend upon the configu

ration of the Op Amp at whose input the currents are summed. At the simplest

level an Op Amp can be configured as an analogue comparator, a step function

can thus be formed. A basic clipped linear activation function can be created us

ing a non-inverting Op Amp configuration. Finally, a bcisic sigmoidal function may

be achieved using two Op Amps in series. These three concepts are illustrated in

Figure 3.2.

There are several advantages to following an analogue solution to hardware implemen

tation, amongst them are the relatively simple circuits necessary, their small size and the

ease with which they can be designed. This can lead to a high level of integration and

a massively parallel design. As there does not need to be an overall clock to control the

operation, this can be both fast and asynchronous. Finally, the connection strengths are

represented by basic electronic components, eg. resistors and capacitors, no sophisticated

circuit control mechanism is required.

However, analogue solutions are not without their problems. Analogue circuits lack

thermal stability and have a low threshold to noise immunity. Despite being small and

offering the possibility of a high level of parallelism how are the large number of connecting

wires to be routed? The basic components which can be used for weight representation,

resistors and capacitors, are hard to fabricate accurately and repeatedly. How are signed

weights to be represented and stored? Analogue design tools for integrated circuits are

not as well developed as their digital counterparts making the design of a circuit more

difficult.

The pros and cons for the analogue implementation of ANN are summarised in Ta

ble 3.1

67

3.2 Digital Artificial Neural Networks

In a digital implementation of an ANN processing element i t is obviously necessary to per

form the same operations as with an analogue approach. A number of approaches can be

taken to generating a network. One is to form all the components of a neuron separately

using digital technology. A second is to generate digital architectures and processors tai

lored towards ANN implementation and application, ie. to design neurocomputer devices

and accelerator boards. A third is to make use of existing high performance parallel com

puters and devices to construct purpose built machines, for example using transputers,

or parallel DSP devices. Atlas & Suziki [38] provide a general introduction to digital NN

systems.

Yet another approach using digital circuits is to use pulse coded computation as ex

emplified by Murray et al [27] with a deterministic approach and Tomlinson et al [42] and

Leaver [43] with a stochcistic approach. The pulse coded idea will be enlightened upon

further in §3.4. .

Whichever of the above techniques is selected, digital technology has several consistent

characteristics. The method of using binary data provides excellent noise immunity. The

level of computation precision and accuracy does not depend upon the transistor size but

on the number of bits used. The dynamic range of the system is influenced by the number

of bits used. Digital circuits are relatively eeisy to design with many packages available

for design and analysis before committing to silicon and the testing of the final fabricated

product. Programmable components can be incorporated into a design to enable a system

to be reconfigured by a software controller. Large matrices of synaptic weights can be

stored in digital memory. Digital input/output can be multiplexed to reduce the number

of physical connections both internally within a device and from device to device while

maintaining a high level of connectivity for an overall network; this will of course be at

the expense of an increase in complexity and a reduction in speed.

There are drawbacks to the use of digital hardware for the implementation of ANNs.

Due to the switching action of transistors as devices operate and the constant charg

ing/discharging of capacitors a higher power rating results. Digital circuits for addition,

multiplication etc. are complex requiring many components and are expensive with respect

to semiconductor usage. Despite the high level of integration that is possible and further

advances in the reduction of device size the amount of semiconductor substrate required

will be high. Digital processing at present is inherently a sequential operation leading to

slower networks with respect to the number of interconnections per second which can be

achieved. Finally, i t must be remembered that the world is analogue in nature and an

additional overhead of analogue to digital and digital to analogue conversion may need to

be accounted for. I t is likely that these conversions will only be upon the initial input and

final output from the network and may not place too great an overhead upon performance.

The pros and cons for the digital implementation of ANNs are summarised in Table 3.2.

68

Pros Cons
High noise immunity

Precision
Existing design tools

Programmable components are possible
Store fixed and adaptive weights

High speed individual computations
Multiplex/Demultiplex

Speed of operation
High component count
High power dissipation
A / D and D / A required
Synchronous behaviour

Multiplexors occupy large area

Table 3.2: Implementation considerations for digital neural networks

3.3 Hybrid Artificial Neural Networks

A mixture of analogue and digital techniques for the hardware implementation of ANNs

could be combined to provide a hybrid solution. This could lead to the best, or the worst

features, of both disciplines being combined.

In a hybrid system weight storage and update can be performed digitally since this

provides a more stable method than their analogue counterparts. Actual computation

could be performed using analogue processing circuits as this often provides the smaller,

faster circuits. Inter-element communication could be a mixture of digital and analogue.

Analogue communication links could be used internally within an individual neural chip.

Digital communication links could be used inter-chip or through a complete neural pro

cessing system.

Alternatively, pseudo analogue systems could be realised using digital signals by means

of pulse encoding.

3.4 Pulse Coded Hardware Implementations

Digital encoding techniques for coding analogue information are highly developed espe

cially for the field of communications. The aim in this section is to briefly describe meth

ods and possible schemes for processing analogue signals as pulse sequences. I t will be

explained how the schemes offer several potential advantages over conventional analogue

signal processing and numerical digital signal processing.

Pulse stream coded information has been implemented in several ways by various re

searchers into their application for neural networks. The neuron elements of these networks

wil l be described.

Several pulse coding techniques exist for coding information into a pulse domain. These

schemes can be divided into deterministic and stochastic methods which will be further

elaborated on.

69

Pulse modulation techniques have been widely developed and include

• Pulse Width Modulation

• Pulse Position Modulation

• Pulse Amplitude Modulation

• Pulse Code Modulation

• Phase and Delay Modulation

• Pulse Frequency Modulation, or Deterministic Pulse Rate Encoding

• Stochastic Pulse Rate Encoding

W i t h all these schemes the information is contained within the properties of the pulse or

a specified group of pulses.

A complete description of most the above coding schemes can be found in Stremler,

[44]. Three more pulse encoding schemes which are not described by Stremler are as

follows:

Phase and Delay Modulation. Two output lines are required for this method. The

signal is represented by the phase difference which occurs between the two lines. One line

is a regular pulse stream while the delay of the pulses in the second line is relative to the

first in proportion to the size of the signal.

Pulse Frequency Modulation, P F M , or Deterministic Pulse Rate Encoding.

Pulses of constant amplitude and duration are generated but at a rate proportional to the

signal. Within a given time period the signal can be deduced from the number of pulses

received. For a specific signal level the pulses are produced in a regular deterministic

manner.

Stochastic Pulse Rate Encoding. Pulses of constant width and amplitude are

generated. The pulse sequence generated has the probability of a one appearing on the

line proportional to the signal value to be encoded. Single line or dual line, unipolar and

bipolar systems exist. These techniques are more fully discussed later in this thesis, §4.

The pulse encoding schemes described above have been developed for different envi

ronments. They are often most suited for the transmission of data and not necessarily the

manipulation of data as required for numerical computation. This does not mean that

calculations could not be achieved, rather that the schemes are not appropriate for these

operations.

The basic desired numerical operations have already been outlined as addition and

multiplication. Combining the pulse encoding schemes and numerical operations is not

always satisfactorily achieved. PWM and PPM implementations of these operations are

not known about although the design of suitable circuits is obviously feasible.

70

PAM signals may be used to perform these operations if the pulse sequences are syn

chronised. Analogue adders and multipliers operating upon the pulses may be used. Using

the PA system would not offer any computational advantage when compared to complete

analogue signal manipulation. Problems of stability and noise immunity for these oper

ations exist. Improving these qualities increases the complexity of circuits. I t would be

necessary to maintain synchronism between the pulse streams.

PCM is suitable for numerical computation, particularly where a linear coding method

is employed. Digital computers manipulating data encoded as binary information are all

too common. Processing engines for addition, multiplication and other mathematical

operations, eg. Fast Fourier Transforms, are highly developed. These implementations

vary from the specific Digital Signal Processor, DSP, circuits, eg. Motorola DSP96002 or

Texas Instruments TMS320 series, to the more general purpose implementations within

microprocessors, eg. Intel 80x86 series or Motorola 68000 series. The basic building blocks

for addition and multiplication are well known, the disadvantage is that the circuits are

complex but their operation is consistent.

The use of stochastic pulse rate encoded sequences for numerical computation is sur

prisingly direct. Basic logic gates can be used to perform multiplication, addition and

inversion. The accuracy of the result obtained depends upon the time taken to observe

the output pulse stream since the information is represented as a probability or expected

value.

3.4.1 Deterministic Pulse Coding Circuits

Much work has been conducted by Murray, at the University of Edinburgh, into the

hardware implementation of NNs using deterministic encoding strategies.

The original system investigated was based upon asynchronous pulses, [45, 46]. The

neuron could adopt one of the two states, on or off. When on and firing the output is a

stream of pulses of fixed frequency and width. The pulses are generated by a ring oscillator.

The parameters of the pulse stream are fixed by the time constants of the oscillator. As

with many neuron circuits the condition as to whether or not to fire is based upon the

weighted sum of inputs. Here the inputs are divided into excitatory and inhibitory pulse

streams which both feed an integrator. I f the excitatory pulses exceed the inhibitory ones

the integrator charges up turning on the oscillator, else the integrator is discharged and

the neuron does not fire.

The input pulse streams in a synapse are weighted deterministically using the contents

of standard R A M . The MSB is the sign bit which determines if the pulses are to excite or

inhibit the neuron. The remaining bits are used to gate the Chopping Clock signals which

have Mark:Space ratios 1 : 1, 1 : 3, 1 : 7, . . . , 1 : (2?'"^ - 1), where p is the number of

bits in the weight. The pulses from the synapse are added to the overall pulse streams

by using O R gates. I t is not necessary for the pulse stream inputs to be synchronous for

71

the neuron to operate, but the chopping clocks in the individual synapse circuits must be

synchronous to obtain the correct weighting.

This topology does not provide for any learning in hardware. All training is performed

off line and the weight R A M for the synapses loaded with the appropriate values.

The above idea proved unsatisfactory for a number of reasons. The digital weight

storage required too large an area. The separate lines for the excitatory and the inhibitory

pulse streams were considered clumsy and inefficient. The pseudo-clocks were not thought

of as either aesthetically pleasing or smooth enough for dynamic behaviour.

A second system was designed in collaboration with the University of Oxford, [47, 48,

49, 50]. The level of neural activity is again represented by a regular pulse stream of fixed

magnitude pulses. The rate of these pulses is dependent upon the level of neural activity

as they are produced by a voltage controlled oscillator, VCO. The' input to the VCO is

from the sum of the synapse values.

The synapses are formed from MOST transconductance multipliers. These multipliers

generate the product of two voltages as a current. One voltage input is the constant

magnitude pulse stream from a previous level of varying frequency. The second voltage

is the weight value to be applied to this pulse stream. This is an analogue voltage on

a capacitor which is refreshed from a value stored externally on RAM. The resulting

scaled pulses from each synapse will affect the charge accumulation on an integrator. The

integrator voltage feeds the VCO of the neuron.

The basic neuron design is very simple and is able to produce an analogue output

representation. Simulation and actual circuit fabrication have proved highly successful in

the specific problem of position location for a robot.

Wi th the signals being represented not only as the frequency of pulses but also as the

amplitude of these pulses, how susceptible are they to analogue noise? How stably can the

weight values on the capacitor be maintained? I t must be admitted that these analogue

values only exist locally within the neuron, the main signalling being a digital waveform.

A third mixed analogue digital pulse rate system has been presented by Murray et al

recently, [51]. This system is specifically orientated towards a multi-layer perceptron

configuration. The system varies from earlier ones in that the coding of information is in

the pulse widths and that the system is synchronous. A constant pulse frequency is used

which is controlled by a master clock. Computations occur during the first half of the

cycle, the results are transmitted through a sigmoidal function during the second half of

the cycle. The Mark:Space ratio of the pulses contains the neural state information. Fully

on, 1.0, is represented by 1:1; fully oflF, 0.0, by no pulse at all; half on, 0.5, by a pulse of

1:3 Mark:Space ratio. Benefits of the system are the high throughput of calculations in

conjunction with the parallel nature of the network. No learning has yet been incorporated

into the network.

The above circuits and implementations can be found in Murray and Tarassenko's

72

recent book, [27].

At the University of Kent, [52], a neural circuit has been designed which uses an ana

logue voltage input and produces an analogue output voltage. The neuron conducts inter

nal processing using pulse streams. The pulse streams for each signal are asynchronous.

Analogue inputs to the neuron are converted to pulse streams of fixed width but variable

frequency by a VCO. Weighting of these pulse streams is achieved by PWM. The resulting

weighted pulses are summed using an O R gate before integrating the total, so forming

an analogue output voltage. The neuron is designed so that the maximum Mark:Space

ratio of the input pulse stream is 1:10. After weighting the Mark:Space ratio value will

be reduced. The incidence of coincident pulses at the summing O R gate will be low. An

inhibition signal is applied to the resultant pulse stream before integration, again this is

carried out by P W M . The problem of weight storage was not resolved, the possibility of

external R A M refreshing an analogue voltage on the gate of a transistor was stated. No

on-line learning was presented. Frequency of operation of the circuits was high to reduce

the RC component values in the timing sections of the neuron. This had the bonus of

keeping a high throughput of data. Maintaining consistent and stable timing using the

RC time constants was a problem with the idea.

3.4.2 Stochastic Pulse Coding Circuits

The previous section concentrated on work which used regular pulse streams to perform

computation. In this section an overview of some neural circuit implementations based

upon stochastic pulse encoding techniques is presented. The mechanics of this style of

encoding, computation and decoding are fully discussed in the following chapter, §4. The

possibility of using stochastic pulse systems for NNs was highlighted by Gaines [53].

An associative memory neural network simulation was reported by Nguyen and Holt,

[54], in which stochastic processing elements were used. Encoding of signals used a pseudo-

noise source formed from a Pseudo Random Binary Sequence, PRBS, shift register config

uration. They highlighted the advantage of a stochastic implementation in terms of a low

gate count, easier routeing of signals in parallel and improved noise immunity, the penalty

being an increase in processing time compared to the direct DSP implementations. One

reason is that the results are gained by time averaging the output pulses. As a network

grows the multiplier of a DSP chip would become an increasing bottleneck reducing the

speed differential. The accuracy of Nguyen and Holt's system was comparable with a

10-bit digital parallel multiplier.

A stochastic implementation of a Hopfield net has been achieved by Van Den Bout

and Miller, [55, 56]. This design made extensive use of shift registers and counters which

occupied a significant amount of silicon. The design was expandable to allow the Hopfield

net to grow to larger sizes. Two interesting points were raised by this work. First, the

dynamic range of the weights could be increased by use of an exponential distribution of

73

the random numbers used to encode them. This will lead to a logarithmic distribution of

weight values. Computational circuits are unaffected since i t is the interpretation placed

upon the resulting pulse streams which is important. Second, by adjustment of the Prob

ability Density Function, PDF, for the random number generator controlling the output

of the neuron circuit, the output function can be varied. A uniform PDF will produce a

linear transfer function with hard limits, a sigmoidal transfer function can be achieved by

using a Gaussian distribution.

Investigation of a stochastic neural circuit has been conducted by Banzhaf, [57], Fig

ure 3.3. The neurons made use of A N D and O R gates for computation. The aim was to

realise primitive neuron-type functions, not to perform accurate algebraic manipulation.

This was evident mainly in the performance of addition by use of a single O R gate, as

pulses became more dense and the result less accurate, the output begins to saturate at

unity. By implementing a gate structure which allowed excitatory and inhibitory signals,

a sigmoid style non-linearity could be formed. The effect of representation of weight pulses

was assessed. The weighting pulses were produced on different time scales and with differ

ent quantities of dead-time. The latter point could cause synaptic gates to operate near

to their points of instability.

Tomlinson et al [42] discuss a stochastic pulse rate NN implementation system which

was subsequently fabricated into a chip set, the Neural Semiconductor SU3232 and NU32.

Similar to Banzhaf above inexact summation of the excitatory and inhibitory net input is

performed but this time a W I R E D - O R is utilised. The W I R E D - O R conserves on chip

substrate area and allows scalable summation of many inputs to be performed. Eguchi

et al [58, 59] also use the ideas of TomUnson et alto produce their experimental NN chip.

Kondo et al [60] utilised stochastically encoded data in their two proposed architectures

of Figure 3.4 and Figure 3.5. Their first proposal, Figure 3.4, iteratively cycles through

each input and associated weight before generating an output pulse. The weighted in

put value pulses are summed in an up/down counter before passing through a sigmoid

transform. Their second proposal, Figure 3.5, weights each input in parallel before per

forming an analogue summation of the resultant values. The result of the summation is

then passed through a sigmoid transform. In both designs i t is interesting to note that

the sigmoid transform is performed by comparison of the weighted sum of inputs with a

Gaussian random number. This technique will be returned to and developed in §4.7 using

an entirely digital circuit.

A thesis by Hyland, [61], investigated the use of stochastic pulse encoding and compu

tation to a particular type of model for neural networks, the Boltzmann Machine. Several

encoding systems were discussed and simulated. Hyland's tests mirrored Ackley's, Hin-

ton's and Sejnowski's, [31], original experiments. Learning of the 4-2-4, 4-3-4 and 8-3-8

encoder mappings was achieved with varying degrees of success. Due to the simulation be

ing conducted on a serial computer rather than a parallel network or a dedicated hardware

74

configuration, Hyland found the processing to be exceedingly labourious. The requirement

to use specific hardware for improved performance was evident.

3.5 Commercial Hardware Realisations

Few commercial hardware realisations of dedicated neurons or network devices have been

produced and marketed. Devices which have been include the ETANN and NilOOO by In

tel, SU3232 and NU32 chip set by Neural Semiconductors, the NiSP by MCE and finally

the NEUR04 by Mitsubishi. There are many forms of accelerator boards which incorpo

rate DSP chips eg. TMS320C40 or fast co-processors eg. 1860, which have been produced

together with supporting software libraries for driving these systems. These boards are of

a more general purpose nature and not necessarily to be used for NN applications.

ETANN

The ETANN, Electronically Trainable Analog Neural Network, [62, 63], produced by

Intel is an analogue device consisting of 64 neurons. No on-chip learning is provided

for the device, instead all learning and training is conducted off-line using third

party development systems hosted on a PC, eg. IDynaMind by NeuroDynamX or

iBrainMaker by California Scientific Software. Neuron weights are downloaded to

program the device once adaption has taken place.

NilOOO

The NilOOO is another device NN device developed by Intel, [64]. Unlike the previ

ously developed ETANN this device is digital with a resolution of 5-bits. The NilOOO

has a maximum 256 input vectors which it is able to classify into 64 groups by means

of a Radial Basis Function style algorithms. Operating several of these devices to

gether will allow the number of degrees of classification to be increased. The NilOOO

has been integrated into an accelerator board by Nestor Inc., which together with

their emulation software allows the development of NN based systems,

NU32/SU3232 Chip Set

Rather than produce a unified device Neural Semiconductors produced a set of

devices, NU32 and SU3232. The SU3232 is a matrix multiplier with 32 inputs.

There are 1024 weights in the device organised as a 32x32 weight matrix. The

output function for a neuron is incorporated in the NU32 device member of the set.

The format of computation used by Neural Semiconductor is a stochastic pulse rate

method as described previously and which they refer to as Digital Neural Network

Architecture, DNNA.^

' D N N A is a. trademark of Neural Semiconductors, Inc.

75

NiSP

The NiSP (Neural Instruction Set Processor) is a RISC based processor designed

specifically for NN operation, [65]. The device has an overall 12-bit data resolution

and can have any desired activation function loaded into it . The device is optimised

for feedforward network operation with only seven instructions in its entire instruc

tion set. The size of feedforward network both in terms of the number of neurons

and layers is limited by the amount of RAM connected to the processor which is

32k. The device is aimed at the embedded control system market, but as with all the

above mentioned devices, a development board and emulation software is available.

NEUR04

Limited information is available on this device from Mitsubishi, but the device is

digital containing 12 processors. The NEUR04 processor operates using 24 bit

floating point representation. Currently the device is available in sets of four chips

configured upon an accelerator board suitable for driving from a workstation. In

addition the device can be used as an external set of processors for general purpose

parallel processing.

3.6 Conclusions

In this chapter a review of the requirements for a hardware implementation of an artificial

neuron or an ANN have been specified which include a high level of interconnectivity,

small neuron size, ability for the neuron weights to be adapted on-line ie. the neuron

to be trainable in a hardware implementation. I t has been shown that the two principal

approaches of analogue or digital circuitry may be used to formulate a neuron with sample

circuits shown where relevant. The benefits and drawbacks of these two methods have been

tabulated. A possible compromise may be a hybrid of the two approaches.

The techniques of pulse processing have been highlighted. Pulse processing is essen

tially a digital process but may be used to represent analogue values by varying pulse

width, amplitude or frequency. The many and varied deterministic approaches adopted

by Murray et al have been reviewed. Additionally, stochastic piilse rate encoding imple

mentations by many researchers have been reviewed. These stochastic approaches have

often been found to be deficient in a particular area eg. they perform inexact computation

or move out of the digital domain for certain sections of their circuitry.

A hardware stochastic pulse rate computation approach would seem beneficial due to

the ease of connectivity of the neuron, the potential simplicity of the circuitry and their

improved immunity to noise compared to alternative systems. In the following chapter, §4,

a thorough review of stochastic pulse rate encoding and processing techniques is conducted.

New novel circuits are presented to maintain the accuracy of computation and to ensure

76

that all the processing for an artificial neuron is kept within the digital stochastic pulse rate

encoded domain. These circuits will then enable a hardware neuron to be designed and

fabricated as described in Chapter 6. This neuron should also have the ability to have its

weights, and therefore its performance, adjusted as a network is running. Demonstartion

of the processing capability of the new hardware neuron will be provided by implementing

a basic network for a simple test problem, the 4-2-4 encoder/decoder.

77

A
dd

Vdd

CMOS switch network

'B

Switched capacitor network

R

elk

Switched resistor network

R 2 R 4 R 2 R

Switched-ladder resistor network

Figure 3.1: Example weighting conductance circuit configurations. Note the simplicity of
the circuits and the small number of components required.

78

Step activation function

R.

Fixed clipped linear
activation function

out

Fixed sigmoid
activation function

Figure 3.2: Example activation function circuit configurations. As per Figure 3.1 note the
simplicity of the circuits and the low component count.

Wj SP

On

On

Wj THR

Neuron
Output

Figure 3.3: Banzhaf's stochastic neuron layout with excitatory and inhibitory inputs.

79

Synpase
Memory Counter

elk

Bx.x.

(Sign Bil)

Comparator

u J

Uniiorm

Up/Down
Counter

U/D
>clk

Updating
Pulse

Gaussian
RNG

Comparator

Output

Figure 3.4: Kondo's first proposal. Serial weighting of the inputs is performed with the
result accumulated in an up/down counter. The more inputs there are to the neuron the
longer it will take to realise an output pulse. Note how the sigmoid transform is performed
by comparison with a Gaussian random number.

80

Synaptic Weight
Counter

(Sign B i t)

Comparator

(bxcualory)

(Inhibitory)

Analogue Noise
Source

Analogue
Comparator

Neuron
Output

Figure 3.5: Kondo's second proposal. Parallel weighting of the inputs occurs in this design,
but the operation moves out of the digital into the analogue domain for summing these
values. Again the sigmoid transform is performed by comparison with a Gaussian random
number.

81

Chapter 4

Stochastic Pulse Rate

Computat ion

I n earlier chapters of this thesis the broad concepts of ANNs have been introduced. I n

part icular Chapter 2 made reference to several architectures and algorithms namely, the

M L P , the Kohonen self-organising feature map, the Hopfield network and the Boltzmann

machine. Besides software models and simulations hardware concepts for the implemen

t a t i on of A N N s have been reviewed in Chapter 3. From the review of hardware i t can

be seen tha t a need exists for a hardware implementation system that is cheap to con

struct ie. requires few components and uses non-complex fabrication techniques, is stable

and accurate w i t h respect to the storage of interconnection weight values, may be easily

reprogrammed to perform a new task and finally the interconnection weight values may

be easily adjusted by a learning scheme which is operating on-line. So far most of the

hardware approaches offered are deficient in one or several of these areas.

Pulse rate computat ion has been proposed for hardware implementation to gain the

benefit of bo th the analogue and digi ta l worlds. Murray et al [45, 46, 66, 47, 48, 67, 50,

51 , 27], Meador et al [68], Cotter et al [69], Tomberg et al [70] and Daniell et al [52] adopt

a deterministic approach whereby communication and processing can be effected by using

deterministic pulse sequences. Nguyen et aZ[54], Eguchi et a/[58, 59], Tomlinson et a/[42],

Banzhaf [57] and Kondo et al [60] have followed a stochastic pulse rate encoded sequence

policy. These proposals have involved analogue circuit forms or have performed inexact

computations. The pulse rate method, in particular the stochastic pulse rate methods,

are at tractive since there is biological evidence that neurons signal via stochastic pulse

streams, for example see Churchland et al [71].

I f use is to be made of stochastic pulse rate encoding and computation techniques, i t

is f i rs t necessary to understand the operation of the basic component parts and why they

w i l l be of benefit. A cri t ical review follows of stochastic encoding techniques, transfer-

82

r ing in format ion f r o m a deterministic value into a stochastic pulse stream representation.

Circuits are presented to perform mult ipl icat ion, addition, subtraction and funct ion ap

proximat ion . New circuits are proposed for single line unipolar subtraction but more

impor t an t ly the addi t ion of bipolar signals w i th an exact result. W i t h the aim of de

signing an ar t i f ic ia l neuron operating by use of these techniques i t is necessary to derive

an appropriate circuit for performing a non-linear transformation. The non-linearity cir

cui t developed performs a sigmoidal transformation in the stochastic pulse rate encoded

domain.

The techniques of stochastic pulse rate encoding and computation were first committed

to paper in 1965 bo th by researchers at the Standard Telecommunications Laboratories

[72, 73] and at the University of Il l inois [74]. The technique relies upon the principle

tha t the probabi l i ty of a binary variable being a one is a representation of the required

analogue in format ion . I n general, observing a signal at an instant wi l l only produce an

expected value result. To gain an increasingly accurate value i t is necessary to average

the number of pulses received over a given number of time slots. Several problems arise

immediately, firstly, how is informat ion translated into this domain? Secondly, how can

negative numbers be accounted for? Finally, how can pulse streams be manipulated to

per form mathematical computat ion. The input encoding strategies wi l l be demonstrated

first before considering the mathematics which may be performed.

4.1 Encoding or Input Mapping into the Stochastic Pulse

Rate Domain

Several encoding strategies are put forward by Gaines [53] and Mars & Poppelbaum [75]

including linear or non-linear mappings, unipolar or bipolar signals and whether one or

two lines are to be used to transmit information between computation elements. The basic

principles of input mapping can be understood by reference to three linear schemes, the

simple Single Line Unipolar (SLU) strategy which w i l l be developed into the Dual Line

Bipolar (D L B) and finally Single Line Bipolar (SLB) strategies. Non-linear schemes for

encoding w i t h an inf in i te range in at least one direction w i l l be briefly presented.

4 .1 .1 S L U I n p u t M a p p i n g

Given an input value x w i t h i n the range 0 < a; < X which i t is desired to represent upon

a single line as the probabi l i ty of observing a pulse, a binary variable Xh may be defined

w i t h a generating probabi l i ty p by the following transform.

p = p(Xb = 1) = —

83

Thus X, the upper boundary l i m i t , w i l l be represented by a signal which is always O N ,

and zero the lower boundary l i m i t , w i l l be represented by a signal which is always OFF.

To actually generate a binary pulse t ra in of x^'s to represent x, x would be normalised

by d iv id ing by X and the resultant compared wi th a uniform normalised noise source n,

0 < n < l . I f x > n a one is produced as an output else a zero is produced. The comparison

is undertaken at regular clock intervals so producing a stochastic pulse t ra in . B y this

fo rmat ion x^ is seen to be a Bernoull i random variable [76]. Figure 4.1 demonstrates an

example of two values of x encoded as stochastic pulse streams.

Analysing the characteristics of the Bernoulli sequence, the value of Xf, may be noted

at each of the N clock intervals. Denoting the sample as for that at the i ' t h clock

pulse, an estimate of the generating probabil i ty p is

N

N
2 = 1

The expected value of this estimate is

Exp \p]=p

as would be expected for a Bernoull i sequence ie. the expected value is the original gen

erating probabi l i ty and is independent of the number of samples N taken. A Bernoulli

sequence is a zero-order Markov chain. The accuracy of this estimate is a funct ion of the

number of samples taken and is determined by the variance of the expected value Ya,i{p)}

V^r(p) = E x p [i p - p f]

= Exp
/ 1 ^ \

21

2 ^
-Y^x,^p-\-p^

t = i

(4.1)

Now,

1 / ^ V 1 ^

\ j = l /

^Tlie variance of a value A measures the expected square of the deviation of A from its expected vahie.

84

therefore

E x p [p

Replacing eq.(4.2) i n eq.(4.1)

TV N

?: ijij

N N

1. r<J

Exp [N'-f] = ^ ^ E x p [p2j
iV iV

iV^Exp \ f] = Exp [^ X f c , 2 + 2 ^ Xfc,xft.]

iV iV

= ^ E x p [xfc,2] + 2 ^ Exp [x^JExp [xft.]

0 2
Xb, = \ ^ ^ = Xb-

iV^Exp [p2] = TVp + ^CaExp [x f t jExp [x j .]

= iVp + NiN - l)p2

2, p + (i V - i y

TV

E x p [p - p] ^ = ^ (^ - ^) ^ ' - ^ ^ '

TV

This leads to a standard deviation for p of

(4.2)

iV

Var (p) = ^ (4.3)

N

The expected error is zero for p = 0 or p = 1, and reaches its maximum value at p = 0.5 ,

as i l lustrated on Figure 4.2. This diagram also illustrates the balance between accuracy

and speed of determining the value of p. The more accurate a result required the more

samples need to be averaged and therefore the longer i t w i l l take. Further effects of the

t ime averaging period for converting f r o m a stochastic pulse sequence to a deterministic

signal are discussed in §4.8

85

4 .1 .2 D L B I n p u t E n c o d i n g

B o t h positive and negative values of a;, —X < x < X, can be represented by extending

the S L U case to tha t using two lines, one line upon which positive values are encoded, the

UP line (U) and the other line upon which negative values are encoded, the D O W N line

(D) . This can be accomplished by defining

p{U = l) - p { D = l) = j (4.4)

No unique association exists between the probabilities represented by each line and the

overall value represented . This is because there are two signal lines w i th a possibility of

4 signal conditions being used to represent a single value and for example an overall value

of 0.6 can be represented by an UP line value of 0.6 and a D O W N line value of 0.0 or

an U P line value of 0.8 and a D O W N line value of 0.2. The former case is known as the

min imum variance fo rm . Very distinct polarised starting pulse sequences can be defined

w i t h positive values only on the UP line and negative values only on the D O W N line.

Each pulse sequence in this dual line case is defined independently as follows for the

m i n i m u m variance f o r m of the value.

a; > 0

a; < 0:

x = 0=>

p{U = l) =

p{D = l) = 0

p{U = l) = 0

piD = l) = -

p(U = l) = 0

p{D = 1) = 0

For the purposes of analysis the following four values are defined

p (j j = Q^D = 0) = v

p(U = l,D = 0) = u

p(U = 0,D = l) = d

p({7 = l , D = l) = c

which obviously leads to

c + d + u + v = I

86

We have

p{U = l)=u + c

p{D = l) = d + c
by eq.(4.4)

^ ^ - = | : (4.5)

I f bo th the UP line and D O W N line are in the same condition this w i l l correspond to zero

and w i l l not contribute towards the resultant.

For the D L B system the mean and variance may be obtained using a three-level random

value Bi at the i ' t h clock pulse.

1

B,^{ 0

- 1

where [/,; = 1 for the UP line on and Di = I for the D O W N line on. Af te r N clock pulses

the mean value of Bi is

B = v.O + u.l + d. - l + c.O

B = u-d= - J

The variance of B is determined by

Exp [B,2] _ 52 Var (B) =

Var (B) =

N

v.O + u.l + d.l + c.O - (u - df

N

u + d - (u - d f
N

u{l -u) + d{l - d) + 2ud

(4.6)

N

I t can be seen tha t the variance is minimised i f either d = 0, (u > d) ov u = 0, {u < d)

and leads to the min imum variance mapping

— X > 0
X
0 X < 0

f 0 X > 0

A unique probabi l i ty for c, d, u and v does not exist due to the equivalence oi {U = 1, D =

87

1) both on and {U = 0, Z) = 0) both off. I f i t is assumed both lines are never on together

(simple gating can ensure this in practice) then c = 0.

4 .1 .3 S L B I n p u t E n c o d i n g

The f ina l linear t ransformation scheme to be considered is tha t of representing bipolar

quantities on a single line. For an input value a;, —X < x < X , the binary variable xi,

w i t h a generating probabi l i ty p, the following transform is used,

p = p{xh = 1) = ^ + ^ (4.7)

M a x i m u m positive value, X, is given by a logic level of always on, maximum negative

value, — X , by a logic level of always off and zero by a random fluctuat ing logic level w i th

an equal probabi l i ty of being either on or off.

I f p is an estimate of p as for the SLU case then

| : = 2 p - l (4.9)

The variance of this estimate may be gained in the following manner.

Var (^ - |) = V a r (2 p - l)

For two independent random variables R and S

Var {R + S) = Var (R) + Var (5)

therefore

which by use of eq.(4.3)

Var (^ | r j = Var (2^) - Var (1)

= E x p [(2 p - 2 p) 2]

= 4 E x p [(p - p) 2]

V a r (4 U ^ ^ ^ ' " ^)
XJ N

which by use of eq.(4.7) is

Va r /
. X j N

The variance of the estimate of x is zero for maximum positive and negative values but a

v . . a) - (4.10)

maximum for x = 0.

4 .1 .4 N o n - l i n e a r I n p u t E n c o d i n g

The transforms listed in the above three sections have been linear transforms wi th a finite

range of values which may be encoded. For completeness there now follows some examples

of non-linear transforms which have an infinite range in at least one direction. No analysis

of variance is presented as the schemes are shown for information only.

Using a single line an input range 0 < x < -t-oo can be encoded as a probabili ty p of

observing a one on the line as
X

P = — —
e + X

e is defined as the centre value for encoding, i t is the point at which p = 0.5.

X 0 ^ p 0

X = e ^ p = 0.5

X —> -l-oo =^ p 1

For X < e the value of p w i l l vary rapidly, but for x > e the probabili ty varies more slowly.

Figure 4.3 shows a sample transformation for e = 5. The eff"ect of varying e is to alter the

posit ion of the 'knee' of the transformation curve. To retrieve values f rom the stochastic

domain
ep

X =
1 - p

Bipolar values of x in the input range —oo < x < oo can be encoded onto a single line

by
_ x - e + v/(x^ + e^)

^ ~ 2x

not a simple t ransform. Decoding is achieved by

^ ^ e (l - 2 p)

2p(p - 1)

This scheme allows completely arbi t rary values to be encoded into the stochastic pulse

domain and is also i l lustrated in Figure 4.3 for a value e = 5. The eff'ect of varying e is to

alter the gradient of the t ransformation curve.

Having reviewed the main forms and principles of stochastic pulse rate encoding the

basic mathematical operations of inversion (negation), mult ipl icat ion and addition w i l l

now be presented together w i t h Boolean logic circuits to perform the required tasks in

hardware. Only the linear encoding schemes w i l l be considered. Due to the complexity of

inpu t encoding and decoding for the non-linear strategies they wi l l not be considered.

89

4.2 Inversion

Inversion, negation or complementation can be achieved by using at most a single logical

inverter for the three linear encoding schemes. For the SLU and SLB a single logical

inverter in the line w i l l suffice, while for the D L B case merely exchanging the two signal

lines performs the necessary action, ie. UP —> D O W N and D O W N —+ UP, Figure 4.4

I n the SLU case the inverter complements the input sequence a;, so that the output x„

is

a;„ = 1 - a;i

Exp [x„] = Exp [1 - x i] = 1 - Exp [xi]

Po = l-Pi
a t r i v i a l result.

I n the D L B case where the two lines are exchanged

E x p [x i] = E x p [a : f] - E x p [a ; f]

= piUi)-piD,)

Exp [x„] = Exp [a;^] - Exp [a;f]

= p(Dr)-piUi)

=^ Xo = - X i

The output inverted signal is equivalent to the negative of the input signal.

I n the SLB case

x„ = l - x i

Exp [xo] = 1 - Exp [xi]

Po = l - p i

as for the SLU above but ,

1 Xi

^' = 2^2X

— = 1 - / ^ - 4 - —
2 2 X \2 2X

x„ = -xi

and the ou tpu t signal is the negative equivalent of the input signal.

90

4.3 Multiplication

Taking each of the three linear encoding schemes in turn i t w i l l be demonstrated how

Boolean logic gates may be used to achieve the mult ipl ication of two stochastic pulse

streams.

For the SLU case w i t h two input streams p i and pi an A N D w i l l perform mult ipl icat ion

to generate the output p,,.

Vo = PlP2

when
X ,

^ ' = X

therefore
Xo_ _ X i X 2

X ' X.X
X1X2

" " ^ ^

The normalised product of inputs x i and X2 w i th respect to the range oi X is found. This

is always representable.

The variance of this product Var (po) is obtained by using eq.(4.3),

thus

Var(W = ™ 5 f l ^ (411)

this can be verified to be

Var (p„) = p iVar (p2) -t- P2Var (p i) - A^Var (p i)Var (p2) (4.12)

The equivalence of eq.(4.11) and eq.(4.12) can be demonstrated by expansion of eq.(4.12).

For the D L B representation i t is necessary that two positive or two negative quantities

produce a positive result which implies that when both the UP inputs are on or both the

D O W N inputs are on the output UP should be on. However, i f an UP and a D O W N

are on together the the output D O W N must be on. Figure 4.5 demonstrates the required

gat ing arrangement. Using the previously defined probabilities for a dual line system (-y.

91

u, d and c) the ou tpu t probabilities of the multiplier are given by

Vo — Vi + V2 — ViV2

U„ =UiU2 + did2

d„ —Uid2 — diU2

Co = C i (l - V2) + C 2 (l - Vi) - CiC2

(4.13)

therefore
u„- d„ = U1U2 + did2 - {uid2 - diU2)

= {ui - di){u2 - d2)

B y using eq.(4.5)

we obtain

Xi

a;ia;2
Xn X

Given tha t bo th the input values to the multiplier are in the minimum-variance format

i t is possible for only one at most of the following terms to be non-zero, ^ 1 ^ 2 , d\d2, uid2

or diU2- B y inspection of eq.(4.13) i t can be seen tha t only one of u„ or dn may be non

zero and thus the resultant of the mult ipl ier w i l l be in minimum-variance format. From

eq.(4.6)

Var [—\ ^ + ~ ~ '̂ 'Ô
XJ N

=^ Var (I) = + (4.14)
\X N ^ '

this can be shown to be

Var (%) = (u i + cii)Var f |) + {u2 + ci2)Var { %] - iVVar (%] Var (%] (4.15)

by expanding f u l l y bo th eq.(4.14) and eq.(4.15).

For the SLB representation the gating is required to produce an output pulse when

bo th signal lines are in the same state, both on or both off and no signal when the two

inpu t lines are different states. A n appropriate circuit is shown in Figure 4.6. The circuit

can be recognised as an X N O R gate.

The ou tpu t generating probabi l i ty p„ can be expressed in terms of the two input

generating probabilities.

Po = PiP2 + (l - p i) (l - P 2)

92

since

Exp [x„] = Exp [x i X 2 -f- X1X2]

where

This can be demonstrated as follows given that the two input sequences are independent.

Exp [x„] = Exp [x i]Exp [X2] -l-cov (x i , X 2) -1- Exp [x i]Exp [x i] -|- cov (x i , X 2)

cov (x i , X 2) = Exp [(1 - x i) (l - X2)] - Exp [1 - x i] E x p [1 - X2]

= Exp [1 - x i - X2 - I - X1X2] - (1 - Exp [x i]) (l - Exp [x2])

= Exp [X1X2] - Exp [x i]Exp [X2]

=> cov (x i , X 2) = cov (x i , X 2)

Exp [x„] = Exp [x i]Exp [X2] - I - Exp [x i]Exp [X2] - I - 2cov (x i , X 2)

As x i and X2 are independent then

cov (x i , X 2) = 0

thus

= P i P 2 + (1 - p i) (l - P 2)

Using the fact tha t (f rom eq.(4.8))

X,: 1

^ ' = 2 X + 2

X1X2

As w i t h the S L U case the output p„ is the normalised product of x i , X2 w i t h respect to

the range of X is formed.

Assessing the variance of the output of the SLB mult ipl icat ion eq.(4.10) can be used

.XJ N

and produce
X o \ / X l X 2 \

Var (f j = V a r y-^j

93

This can be demonstrated to be

Var (^1 = Var f ^] + Var f ^] - TVVar f Var ^'^^
- \ x j • \ x j - \ x j • \x

4.4 Addition

I n the simplest case for the mult ipl icat ion of two stochastic pulse streams of the previous

section §4.3 ie. S L U signals, a single A N D gate would suffice. To perform addition of two

stochastic pulse streams a corollary might be to use a single O R gate. Several problems

exist w i t h this suggestion. First ly, i f two probabilities in the range [0,1] are summed the

resultant probabi l i ty could be greater than unity ie. in the range [0, 2], this is not realisable!

Secondly, i f an O R gate is used and there are two coincident pulses arriving at its inputs

only a single pulse w i l l be produced by the gate, a b i t of data is lost. Possible solutions

to overcome these l imitat ions have been put forward by Gaines [53] and by Leaver [43].

Gaines' main proposal is to perform a weighted sum of inputs, a system which can be

used for all linear encoding schemes. Gaines' circuits are reviewed for the three linear

strategies followed by Leaver's technique which relies upon insertion of excessive number

of pulses into the resulting output stochastic pulse stream. A new appropriate efficient

ga t ing circuit is put forward for an N input summer operating upon Gaines' principles.

For the case of the SLU signals, the circuit of Figure 4.7 can be used to perform a

weighted sum of two inputs. The two generating probabilities p i and p2 exist for the

inputs x i and X2, a t h i r d unipolar line S generating probabil i ty pa acts as a gating signal

to determine which of x i or X2 should be switched to the output x„. A strong resemblance

can be seen between Figure 4.6 and Figure 4.7 f rom which i t can be deduced that

Po = P3P1 + {I - P3)P2 (4.16)

Using eq.(4.3) the variance of the output can be verified to be

Var (p„) = psVar (p i) + (1 - p3)Var (p2) + (p i - p2)^Var (pa) (4.17)

f r o m
. (piP3 + {1- P3)P2)(1 - (P1P3 + (1 - P3)P2))

Var (p„) =

The output of this circuit is

a;o =P3a;i + (1-P3)a;2 (4-18)

I f p3 = 0.5 then
Xi - I - X2

x„ = - ^

The D L B case is slightly more complex. An in i t ia l system would be to use two circuits

94

of Figure 4.7 one for the UP lines and one for the D O W N lines. Thus using eq.(4.16)

Uo =P3Ui + (1 - P3)U2

do=P3di + (1 -p3)d2

x„ = u „ - d„= pz{ui - di) -f- (1 - pz){y'2 - d2)

B y subst i tut ing the respective values of and d„ into eq.(4.17) the variance for the result

is

Var (p„) = paVar (p i) + (1 - p3)Var (ps) + (p i - P2)^Var (pa)

From the above equation i t can be seen that i f x\ and a;2 are in a minimum variance

f o r m then x„ w i l l not necessarily be in a minimum variance form. This can be explained

by the fol lowing example, i f (-ui, ^2) and (u2, c^i) are non-zero ie. the two quantities are

of opposite sign, then (u„, dg) w i l l bo th be non-zero and the result is not in min imum

variance fo rm.

Another circuit approach is tha t of Figure 4.8 f rom which i t is possible to produce the

sum of two inputs in a min imum variance form. This circuit cancels the positive signals

on one set of inputs w i t h negative signals upon the other input set.

u„ = pz{l - d2)ui + {I - pz){l - di)u2

d„ = P3(l - U2)di -h (1 - P3)(l - Ui)d2

=^U„- d„= P3{ui - di) - j - (1 - P3){U2 - d2) + (1 - 2p3){uid2 - U2di)

which in the case of pa = 0.5

ui-di U2- d2
u„-d„ = + —

From eq.(4.5)
Xi + X2

I f u„ and d„ are summed f r o m the above equations

Ui + di U2 + d2 , ,
u„ + do = — 1 uid2 - U2di

the values of u„ — d„ and u„ + d„ may be substituted into eq.(4.6). The resulting variance

value is

Var (^ ") _ W , W , i ^ ^ f {uid2-U2d,)

XJ 2 2 m N

The f ina l linear coding scheme of the SLB case is similar to the SLU addition case.

95

The circuit of Figure 4.7 wi l l suffice again wi th the result of

= PJ.XI + (1 - P 3) X 2

This t ime i t is generated via the substi tution of the generic version of eq.(4.7) into eq.(4.16).

Once again i f p3 = 0.5 the result
x i - I - X2

is arrived at.

This weighted summation format is not the only approach to stochastic addit ion.

Leaver [43] puts forward an alternative strategy that of pulse insertion. One of the prob

lems stated above w i t h using an O R gate for the purpose of addition is the gate's failure

to account for the condit ion of coincident pulses upon its inputs. Rather than weight each

inpu t pulse t r a in they are both added together using an O R gate w i t h any coincident

pulses detected by an additional A N D gate. The output of this A N D gate is used to

increment a counter which holds a record of outstanding coincident pulses. I f no pulses are

detected as being emit ted by the adding O R gate and the coincident pulse counter holds

a value greater than zero a pulse is generated, inserted back into the output pulse t ra in

and the counter decremented. Figure 4.9 shows a circuit which can perform the coincident

pulse detection and insertion. For the SLU addition only a single circuit is required, but

for D L B addi t ion i t is necessary to use one for the UP lines and one for the D O W N lines.

I n the SLB case a system which detects and accounts for both coincident spaces as well

as coincident pulses is required. I f there is an excess of pulse pairs then additional pulses

must be inserted into the output sequence and i f there is an excess of space pairs pulses

should be removed f r o m the output sequence.

For all instances of Leaver's adders [43] no scaling of either inputs or output occurs and

the ou tpu t probabi l i ty can t r y to exceed the range [0,1] producing an incorrect addit ion.

Using the S L U system as an example, before the out of bounds condition occurs the

probabi l i ty of coincident pulse pairs w i l l increase requiring a large counter to maintain

a record of how many pulses must be inserted. W i t h the output sequence becoming

increasingly f u l l as the l i m i t of the adder is approached so a lag may build up for the

insertion of pulses back into the output sequence when the input sequences change. This

lag w i l l be par t icular ly acute i f the result of the summation would be greater than a

probabi l i ty of 1. I t is possible to pre-scale the input values into a Leaver adder so as not

to exceed the dynamic range, but i f this is going to be performed then the extra complexity

of using the counter does not appear worthwhile.

96

4.4 .1 A n I n p u t A d d e r P r o p o s a l

I n this section a new circuit for the addition of N input signals is proposed since Gaines

[53] makes only a passing reference to the problem of the accurate summation of more

than two stochastic signals. The simple cascading of summation circuits presented so

far w i l l not suffice in the general case. For Leaver's adders the result is more likely to

tend towards a l i m i t i n g factor of a saturated pulse stream so reducing the accuracy of the

addi t ion or the magnitude of signals which could be summed unless pre-scaling the inputs

occurs. Using Gaines's two input weighted summer the result for three sequences would

be
5 ^ 1 X 2 X3

4 4 2

However, i t can be seen that i f the number of sequences to be added is a power of two such

a system would succeed. This may not be practical for a particular application. W h a t is

desired is, for in the case of three lines, three weighting sequences of value ^ w i t h no two

weighting sequences having coincident pulses giving the result of eq.(4.19).

x„ -
X i + X2 + X3

(4.19)

For the general case of adding N sequences i t is necessary to weight each of the sequences

by ^ ensuring that all pulses in each sequence are mutual ly exclusive. This last condition

w i l l mean tha t the weighting sequences are not statistically independent.

Let us assume tha t the summation of N pulse streams is desired. First a unipolar

sequence of is generated, the f irst ^ sequence. Complementing this sequence using an

inverter w i l l generate (1 — -^) = (^^^^^^- A new sequence of is generated which by

taking the product of (7 7 ^) (n ^) ^o™^ ^ second jj- sequence. This process is continued

w i t h the sequence generated and mult ipl ied by the complements of both ^ and

to f o r m another jj-. This process is f u l l y illustrated by Table 4.1.

Pulse Sequence of N Weighting Calculation
1

Output Weight

N
1_

N

1
N
1_
N

N

N

N

(1 " i f)

Table 4 .1 : Weighting calculations for iV pulse sequences of value jf

This process of forming N jf sequences is effective because the complement of a pulse

sequence has no coincident pulses w i t h its original. The product of complements wi l l thus

97

have no coincident pulse with any of the generating sequences thus by multiplying by the

next will produce a new suitable pulse sequence.

What actual form should the base • • • > I sequence take? I t can be demon

strated graphically that deterministic pulse sequences would need to be judiciously selected

or else unsatisfactory results are produced. Figure 4.10 illustrates clearly the problem

with deterministic sequences for four | signals. The mathematical operations of multi

plication and addition dealt with so far have been conducted in the stochastic domain.

Using stochastic pulse sequences for this divider does produce the desired response. A

short piece of computer code can be produced to demonstrate this principle operating

effectively.

Finally, this stochastic N pulse stream weights must be sensibly realised in hardware.

I t can be seen from the equations describing the weight functions that a cascade of com

plementer (inverters) and multipliers (AND gates) is all that is required, Figure 4.11.

Two problems are immediately apparent from the schematic of Figure 4.11 as follows,

1. the loading upon the inverters at the top of the cascade will be detrimental to the

performance.

2. the required fan-in of the AND gates at the bottom of the cascade will be large.

The greater the number of sequences the more acute the two problems will become. Due

to the repetitive and modular nature of the expansion to create the sequences the circuit

of Figure 4.11 can be improved upon to Figure 4.12. Figure 4.12 takes advantage of

the repetitiveness with an improved circuit design. No undue loading is placed upon the

inverters at the top of the cascade and the fan-in of all the AND gates remains at two

regardless of their position in the cascade. This second design is not without its drawbacks,

the greater the value of N the greater the propagation delay for the pulses to ripple down

the cascade, resulting in the output pulses not being synchronised and spikes forming by

partial results. Despite this, A'' pulse sequences can be adequately generated and used

to weight the input to an OR gate adder.

4.5 Subtraction

The subtraction operation only really needs to be considered for unipolar signals. For

bipolar signals subtraction is achieved by the addition of negative or complements of the

desired signals.

4.5.1 A Subtracter Proposal

For unipolar signals a negative signal representation does not exist, but translating Leaver's

technique of pulse insertion for addition to one of pulse removal for subtraction the de

sired operation can be effected. Figure 4.13 illustrates schematically a circuit proposal

98

to achieve subtraction for unipolar signals. For this circuit, pulse stream y is being sub

tracted from pulse stream x. Pulses on y are accumulated in a counter the output of

which is active if the counter's content is greater than zero. The AND gate will produce

an output with the next pulse upon x which is removed from the output by means of the

XOR gate. The output from the AND gate also decrements the counter, since one less

pulse has to be removed from x.

Problems with this circuit will occur if the number of pulses in y is greater than those

in X for a sustained period of time, y > x. In effect an attempt will be made to exceed

the lower probability bound of zero. The counter will count up thus when y is less than x

again and a valid subtraction can be performed a lag results ELS the counter removes pulses

and decrements before settling down to produce a correct result. Although this system is

not ideal and no account is taken as to whether a negative result would be the outcome it

does demonstrate that subtraction could be achieved. In general i t is required that x > y

for valid subtractions to be performed.

4.6 Integration and the A D D I E

The preceding sections of this chapter have discussed computations which use only combi

national logic elements and have no knowledge of the previous events. More sophisticated

operations eg. square-rooting and function generation, may be formulated using integra

tors. Integration requires knowledge of previous events and thus memory is required.

Integration is the summing of preceding events which can be accomplished by use of a

digital up/down counter. The counter increments by one if the UP line is active on a

clock pulse, decrements by one if the DOWN line is active on a clock pulse and remains

unaltered if both lines are in the same state, assuming a DLB system.

The counter can be considered to have A'"-!-1 states, S = S(),Si, - • • ,S]^ where is the

numerical value of each state and also the output of the counter when it is the I ' th state.

A possible linear mapping from the value held in the counter into the range (0,1) is

i

At a given time the counter is in a state S = Si with output s = Si. Driving the

counter with stochastic sequences means that the actual counter state is unpredictable

but i t may be expressed as a probability tTj. The output is now a random variable with

expected value s defined as
N

2 = 0

Using a Bernoulli sequence to drive the UP and DOWN lines of the counter, such that the

probability of the UP line being on and the DOWN line being off is and the probability

99

that the UP line is OFF and the DOWN line is on is e, the expected change of the counter

output is
w - e

Over a clock period T seconds the expected counter output change is

m —1 m —1 / m \ / r r i \

. > T) - m = E *»("T) = E (4^20)
n=0 ,11=0

eq.(4.20) is a simple zero-order numerical integration formula for w{t) — e(t) which can be

reorganised and rewritten as

1
sit) = 3(0) + ^ W{T) - e{T)dr

SLU, DLB and SLB mappings can be used to implement this integration technique with

a counter as will now be considered.

Only positive quantities exist for SLU signals and the counter can only count up. The

data line is connected to the up port of the counter with the down port set to off. The

quantity being integrated is xi, the quantity represented by the counter is x„,

e = 0

C,{t) = X„iO)+^ l^XliT)dl

In the DLB representation the UP and DOWN lines for the signal can be connected

directly to the up and down ports of the counter respectively. A transformation mapping

is now appropriate for the output of the counter since bipolar quantities are represented.

I = (2 . - - :)

100

that the UP line is OFF and the DOWN line is on is e, the expected change of the counter

output is
w - e

Over a clock period T seconds the expected counter output change is

11=0 11=0

eq.(4.20) is a simple zero-order numerical integration formula for w{t) - e{t) which can be

reorganised and rewritten as

Kt) = s{0) + ^ [Hr) - e{r)d7

SLU, DLB and SLB mappings can be used to implement this integration technique with

a counter as will now be considered.

Only positive quantities exist for SLU signals and the counter can only count up. The

data line is connected to the up port of the counter with the down port set to off. The

quantity being integrated is xi, the quantity represented by the counter is x„,

Xl

e = 0

x„

C„{t) = X„{0)+~ j \ l [T) &

In the DLB representation the UP and DOWN lines for the signal can be connected

directly to the up and down ports of the counter respectively. A transformation mapping

is now appropriate for the output of the counter since bipolar quantities are represented.

100

Let xi be the value on the input lines with the following probabilities defined, then

w = Ui

e = di

Y=ui-di=w-e

Xo{t) = x„(0) + ^ xirdT

Due to the transformation mapping the effective gain of the integrator has increased by a

factor of two.

For the final encoding scheme of SLB the integrator is formed by connecting the signal

line directly to the up port of the counter and connecting an inverted form to the down

port. The quantity xi is represented by the generating probability pi, therefore

w = pi

e = l - p i

and
^ - € = 2 ^ 1 - 1 = ^

2 /•* 2

The next advance from these single input integrators is to dual input integrators. Quite

obviously i t is feasible to precede the single input integrator with a two input addition

circuit from §4.4, but for the bipolar systems a saving in hardware can be gained by

judicious gating prior to the counter to form a two input summing integrator. A sHghtly

more sophisticated counter is required in the case of the dual line representation.

Using the circuit of Figure 4.14 for DLB signals, which necessitates a counter which

can increment and decrement by two, an equally weighted integration can be performed.

I f the UP2 line is on when both UPi and UP2 lines are on then the counter increments

by two. The U P I line is on if only one UP line is on and similarly for the down lines.

I f the UP and DOWN lines of each input are subscripted 1 and 2 respectively then the

expected change in output s, ^s, is given by

2uiU2 + ui{l - U2 - (̂ 2) + ^2(1 - ui - di) - di{l -U2 - ^2) - ^̂ 2(1 - ui- di) - 2did2
OS =

6s

N

ui - di + U2 — d2 w - e
N " N

1 /•*
Coit) = x„(i) + 1^ iM^) + ^2{r)dT

101

For the SLB case, the integration of the sum of two inputs is achieved by utilisation
of the three possible input conditions. The counter increments if both lines indicate up,
the counter decrements if both lines indicate down and no change occurs if the two inputs
are opposite. Figure 4.15 shows the required gating,

w = pip2

e = (1 - P i) (l -P2)

(2pi - 1) + {2p2 - 1)
w-e=pi+p2-l =

Xl + X2
w — e =

2X
1

The output of all the integrator circuits discussed have been a state 5,; with a value

s,; which can be read out from the counter as either a parallel or serial bit values. This

value is no longer within the stochastic pulse domain. To continue pulse processing i t is

necessary to re-encode the value Si back into the stochastic pulse domain. Re-encoding is

achieved cis with the basic encoding strategies of §4.1 dependant upon the representation

scheme adopted. The integrator can be summarised as Figure 4.16.

The ADDIE, Adaptive Digital Element, is formed from a two input summing integra

tor. Its operation depends upon the stochastic input sequence and the probability of the

feedback sequence from the current state of the integrator. Figure 4.17. The ADDIE is

used as the basis for output interfaces discussed in a following section, §4.8. The operation

of the ADDIE can be explained by reference to a passive frequency modulation detector,

[77]. The input to the circuit of Figure 4.18 is a fixed frequency train of pulses. A steady

state voltage will be output depending upon the frequency of the incoming sequence when

the rate of charging by the pulses is balanced by the discharge rate through the resistor.

The ideal case will be that the voltage across the capacitor will be directly proportional

to the rate of discharge.
dv

\ogv = - ^ * + c

at t = 0

V = Vbe"^ (4.21)

The RC network realises eq.(4.21). Moving forward to a pulse train which has a varying

frequency but that the frequency is around a fixed mean value, the voltage across the

capacitor will vary but with a fixed mean value. Advancing again to the analogue circuit

representation of this frequency detector, Figure 4.19, the output voltage is now dependant

102

upon the ratio of the two resistors, j^. For a circuit with purely capacitive feedback, inte

gration is performed equivalent to that of the up/down counter of the stochastic circuits.

The negative feedback resistor is equivalent to the inverted output fed back in the stochas

tic circuit. Figure 4.17. The ADDIE operating upon stochastic pulse sequences thus has

similar characteristics to the RC network upon an operational amplifier. The state of

the counter is a binary number proportional to the probability of the input stochastic se

quence. The value of the ADDIE time constant is varied by adjusting the counter length

or applying a multiplier to the feedback stochastic pulse train.

The ADDIE may be used as the basis for function formation as described by Gaines

[53]. For example, the square root of a number may be extracted by feeding back the

square of the inverse of the ADDIE output rather than simply the inverse, Figure 4.20.

Note, in this circuit, the D-type flip-flop delays the fed back pulse stream by one cycle

effectively isolating the pulse stream from itself and making i t statistically independent,

hence enabling squares at the multiplier to occur.

The functionality of the ADDIE may be further extended by connecting a gating circuit

to the ADDIE's counter. The integrator's counter will contain an increasingly accurate

estimate of the probability that the input line is on. Thus, the counter gating may be used

to apply arbitrary transformations to the stored count. The transformed quantity can be

re-encoded into a stochastic pulse sequence for further processing. Figure 4.21 illustrates

the conflguration for such a system.

4.7 Sigmoidal Transform Proposal

I t is aimed to produce a sigmoidal transfer function for use in a neuron design operating

using stochastic pulse sequences. I t is desired to keep all operations digital and within the

stochastic processing domain. Several options can be considered for forming this sigmoidal

transfer function, forming the sigmoid function equation stochastically using the ADDIEs,

implementing a look-up table of input to output values and flnally a non-linear stochastic

transform. Each of these three will be considered in turn.

Using ADDIEs to formulate the sigmoid function equations would require one of the

following equations to be produced,

f{x) = (4.22)

or 2̂
fix) = tanh(x) = (4.23)

Directly realising the exponential function is not feasible using stochastic circuits, but

eq.(4.22) and eq.(4.23) could be represented by a power series using a Maclaurin's expan-

103

sion. For eq.(4.22) this produces

1 1 1 1 ^

^ (^ ^ = T T ^ " 2 + r - 4 8 ^

and for eq.(4.23) produces,

N l - e - 2 " 1 o 2 r

NB. These are not the only sigmoidal equations but they are the ones most commonly

used.

The accuracy of these expansions is limited. The scaling terms could be formed in

a similar manner to that used in the A" -|- 1 pulse divider but would require large pulse

divider circuits. Therefore, this method for forming a sigmoid from a base equation is not

recommended.

Using a look-up table requires that the input values to the table from the output

value formed from an ADDIE are a stable quantity. This quantity is used to reference a

corresponding value which is encoded into the stochastic pulse domain. The profile and

accuracy of the sigmoid formed will depend upon the number of elements in the table and

thus the length of the counter in the ADDIE. Using a look-up table requires the transfer

out from and back into the stochastic pulse domain. This is an entirely digital system.

The third option is a non linear stochastic transform which will now be demonstrated

in the following sections. This transform utilises Even-Shift orthogonal sequences which

can used to form a Gaussian random number (GRN) generator. This GRN is used to

perform the actual transform by comparison with a stochastic pulse sequence. A circuit

is presented to actually carry out the transfer function.

4.7.1 Even-Shift Orthogonal Sequences

An Even-Shift Orthogonal Sequence, E-sequence, is defined as a sequence of length n,

S = {si,S2,... ,Sn) whose elements Sj {j = l , 2 , . . . , n) are either 1 or -1 and whose

auto-correlation function $. , . , (2) is zero for all even shifts except the zero shift, [78].

n-\^\
= J2 = 0 (4-24)

fc=l

i = ± 2 , ± 4 , . . . ± (T i - 2)

Figure 4.22 illustrates the auto-correlation function for the following 16 element i?-sequence,

(-1, 1, - 1 , 1, 1, 1, - 1 , - 1 , - 1 , 1, 1, - 1 , 1, 1, 1, 1). £^sequences are derived from and have

a one-to-one correspondence with complementary sequences discussed by Golay, [79]. As

104

such it can be shown that the length n of an ii^sequence is an integral multiple of four and

that n must be twice the sum of at most two square numbers. These are not apparently

sufficient conditions though.

Given an E'-sequence, 5, as defined above, the sequence can be decomposed into the

form

S = {X-Y) (4.25)

where
Xr = (s i , S 3 , . . . , s „ . _ i)

Yr = (s 2 , S 4 , - - - , S n)

X expresses the sequence of odd-number subscripted elements, while Y is the even-number

subscripted elements of S. These two sequences X and Y, form a pair of complementary

sequences of length | . Thus, given a pair of complementary sequences X and Y, the

binary sequence formed by eq.(4.25) is an jE-sequence.

I t can be demonstrated and verified that for an £!-sequence {X;Y) the following com

binations are also R- sequences: {Y;X), {X^;Y), (X-Y^), (X^-Y^), i-X;Y), iX;-Y),

{-X;-Y), iXA„;yA„), {XA„;YAJ, (XA^^YAJ, {XA/,YA,.). The superscript H stands for

reversing the order of the elements. The subscripts A„ and stand for inverting the sign

of the odd or even elements of the subsequence respectively.

Although methods exist for forming one E^sequence from another E-sequence and from

complementary pair sequences, no reference could be found for a method determining

the number of £^sequences of a given length or calculating them all, other than by an

exhaustive search through all sequences to find those which satisfy eq.(4.24). Software

was written using Borland Turbo C++ version 2 to test all possible sequences. A problem

immediately becomes apparent with this search; as the number of bits for prospective E-

sequences increase by one, the search space doubles. The runtime of the program increases

exponentially with n.

4.7.2 Sigmoidal Transform Production Using Gaussian Distributed Ran

dom Numbers

In §4.1 encoding or input mapping techniques have been discussed using uniform dis

tributed random numbers to map a deterministic value into a stochastic pulse stream of

I's and O's. In general, the probability of observing a one on the output line represents the

normalised deterministic value. These linear transfer functions are the Cumulative Dis

tribution Function (CDF) for a uniform random number which has a Probability Density

Function (PDF) as illustrated in Figure 4.23.

I f we require a sigmoidal transfer function, ie. CDF as Van Den Bout [56] explains, it

is necessary to find an appropriate PDF to encode the variable against. The Gaussian or

105

Normal distribution function has the following PDF eq.(4.26)

1 ^-if
fix) = — = e - (X)< re < (X) (4.26)

where // is the mean value of the distribution and is the variance. The associated CDF

is eq.(4.27)

Fix) = / ——e-^^dx (4.27)
J-oo a\J2'K

For / i = 0 and cr̂ = 1 Figure 4.24 shows the respective graphs.

I t can be seen from eq.(4.26) and eq.(4.27) that the offset of the PDF and therefore

the CDF is governed by the mean value of the Gaussian distribution. The variance of the

distribution affects the peakiness of the PDF which in turn affects the sharpness of the

sigmoidal transform of the CDF. The results of adjusting the mean and variance upon the

CDF output are illustrated in Figure 4.25 and Figure 4.26.

Increasing the variance reduces the gradient of the sigmoid, decreasing the variance in

creases the gradient. Increasing the mean moves the sigmoid to the right, while decreasing

the mean moves the sigmoid, in the opposite direction, to the left. Thus by manipulation

of the variance and mean the resulting sigmoid can be altered. These two sets of results

were plotted from the output generated by a simple software model.

4.7.3 Sigmoidal Transform Production Using i?-Sequences

I t is well known that a Gaussian random signal may be generated via the Central Limit

Theorem?. Broadly the central Hmit theorem states that the sum of n identically generated

independent random variables tends towards a Gaussian distribution as n ^ oo. An

approximation can be realised by the addition of n binary random variables with a digital

filter which has a weighting function of n weight elements.

Izumi [81] proposes the use of an E^sequence for the digital filter weighting function

based upon the ideas of Davies [82] and his own earlier work [83]. An i?-sequence weighting

function is selected since i t is an optimum weighting function for the production of a

Gaussian distribution. The quality of the produced Gaussian distribution is measured in

^ C e n t r a l L i m i t T h e o r e m [80]
Let. X i , . . . , Xn 1)0 independent random variables that, have the same distribution function and therefore
the same mean ii and the same variance a^. Let Yn = Xi + ... + X „ , then the random variable

Yn - nil.
- 1=—

is a s y m p t o t i c a l l y n o r m a l with mean 0 and variance 1; ie. the distribution function i^a(a;) of Z„ satisfies

hm = * (x) = - = / c~d.u

106

terms of the coefficient of skewness^ and the coefficient of kurtosis.'^ Izumi subsequently

demonstrates the suitability of an i?-sequence.

Developing the circuit used by Izumi to create a Gaussian random number the desired

sigmoidal transform can be formed by using the Gaussian random number to map a value

into a stochastic pulse stream. A block diagram of the proposed circuit is shown in

Figure 4.27.

Pulses from a Pseudo Random Binary Sequence (PRBS) are weighted by the values of

an i?-sequence. The resultant products are accumulated in an Up/Down Counter which

has been pre-loaded with the offset for the Gaussian mean. After the entire £^sequence

has been cycled through, n products, the value of the counter is output to a comparator to

map the required value x into the probability of a pulse according to a sigmoidal transform.

I f the number of bits for x is more than produced by the counter, the output of the counter

has zeros padded for the least significant bits.

Binary values are being manipulated so the E^sequence is represented in terms of I's

and O's as opposed to I's and -I's. The derivation for the Increment and Decrement signals

is shown in Table 4.2.

PRBS Bit r,: £^Sequence Bit Wi Increment Decrement
Bipolar Binary Bipolar Binary Binary

0 -1 0 0 0 0
0 1 1 0 0 0
1 -1 0 -1 0 1
1 1 1 1 1 0

Table 4.2: Derivation of Increment and Decrement Gating for Gaussian Random Number
Generator

What does the sigmoid look Uke which is produced by this circuit? What effect does

the zero padding have? To investigate these two areas, a simple software model was writ

ten. This produces results of the input/output relationship for the sigmoidal transform.

Figure 4.28 illustrates a typical sigmoid formed for a given E-sequence. In fact, all sig

moids were found to have this appearance regardless of the number of zeros used for LSB

padding provided the input encoding range had a similar number of bits. This is due to

^ C o e f f i c i e n t o f S k e w n e s s [84] is the 3rd moment of X* and is denoted by 71.

- y i = E (X - ^) = a - ^ E { (X - / .) ^)

I f the distribution of X is symmetrical about eg. uniform distribution, binomial distribution then 71 - 0.
If X has a long tail to the right, eg. geometric distribution, Poisson distribution, 71 > 0 the distribution
is said to be positively skewed. If X has a long tail to the left 71 < 0 and the distribution is negatively
skewe<l.

' ' C o e f f i c i e n t o f K u r t o s i s [84] is 3 less than the 4th moment of X* and is denoted by 72.

7 2 = E (X * ' ') - 3 = < 7 - ^ E { (X - y < ,) n - 3

T h e 4th moment is decreased by 3 so that a Gaussian distribution has 72 =: 0. A distribution with thicker
tails than the Gauss ian distribution will have 72 > 0, while one with thinner tails will have 72 < 0.

107

the fact that the relative dynamic range of the Gaussian random number will be the same.

It should also be noted that the sigmoid transform produced is very subtle, but it does

exist.

A Gaussian distributed random number with a greater dynamic range is necessary

to produce a better quality sigmoidal transform. For a greater dynamic range a larger

E^sequence is required which will reduce the frequency with which a Gaussian random

number can be generated from a PRBS. The size of the shift register to hold the i?-sequence

will also increase possibly leading to problems of hardware realisation, but nothing which

can not be accommodated.

4.7.4 E-Sequence Conclusions

Following a very brief summary of the properties of £^sequences relevant to their formation

and application to the production of sigmoidal transforms, the transformations possible

when moving from a PDF to a CDF for a random number are discussed with particular

reference to Gaussian distributed random numbers. The effects of adjusting the mean and

variance for a Gaussian random number upon the transformation are demonstrated. Fi

nally, a circuit for producing a sigmoidal transformation entirely digitally in the stochastic

pulse rate encoded domain is proposed.

The sigmoidal transformation circuit proposed has several limitations which include

the need for a long shift register to hold the ^sequence, limited dynamic range of the

Gaussian random number produced and poor resulting sigmoidal transform. Yet, a sig

moidal transform is produced. Due to the length of the E-sequence a Gaussian random

number can only be produced every n clock cycles, where n is the length of the £^sequence.

By investigating other £!-sequences of the same length or longer, more suitable sequences

may be found. Software has been produced to find £^-sequences of a given length although

at present i t is serial and slow for jE-sequences of length greater than 24 bits.

4.8 Decoding and Output Interfacing

The majority of the elements described so far have consisted of basic logic gates and

have been concerned with processing stochastic pulse signals. At some stage it will be

necessary to view the results of any computation. The stochastic value must be converted

to a deterministic value.

At a basic level the number of ON pulses for a stochastic pulse sequence are summated

over a known number of clock cycles. The ratio of ON pulses to the total number of

clock cycles represents an estimate of the sequence value. Increasing the number of clock

intervals over which the calculation is performed improves the accuracy but also increases

the time over which the measurement is made. I f the sequence is stationary, a fixed

quantity, this does not pose a problem, however, if the signal is time-varying it is necessary

108

to continually track the signal. Therfore, any system to perform this decoding must have
the following characteristics, [75].

• Minimum bias error in the steady-state.

• Minimum variance in the steady-state.

• Minimum response time to a minimum bias error for a step input.

• Minimum response time to minimum variance for a step input.

• Abili ty to track non-stationary input quickly and accurately.

The solution to this problem is normally a form of Moving Average or Exponential calcu

lation.

A moving average can be maintained by keeping a record of the previous sequence

values and calculating the average pulse rate. For the next clock cycle the oldest sequence

value is removed and replaced by the new sequence value and the average is recalculated.

I f the value on the signal line is represented by J4J(0, 1) then the estimate of the sequence

value is
1 / ^ " ^ \

this can be shown to be
An-Ao

PN = P N - 1 + N

The shorter the sampling period the greater the effect the new sequence value will have,

but the quicker the system response. The inverse is true that the longer the sequence the

less influence the new value has but the slower the system is to respond, the bandwidth has

been reduced. A major problem with this system is the necessity to store the N previous

sequence values. An appropriately long shift register can be utihsed as illustrated in the

practical circuit Figure 4.29 (cf. Figure 4.15) which performs the second form of moving

average calculation.

More sophisticated systems for generating an output can be achieved by adjusting the

weighting coefficients applied to the pulse sequence, from the uniform value of j j , providing

that the sum of the weights is always unity. Using the ADDIE of §4.6 Mars et al, [75], fully

explain the use of two ADDIE variants. The first is an ordinary noise ADDIE to produce

an output which is an exponential average. The second uses a deterministic pulse stream

for feedback and is the Binary Rate Multiplier (BRM) ADDIE. The speed of response of

an ADDIE for output is related to the number of bits it uses, the more bits the slower

the response to changes in input probability. However, the more bits used the greater the

accuracy of the exponential average achieved for a stationary signal.

109

4.9 Summary

The main aim of this chapter has been to provide an overall critical review of stochastic

pulse rate computation by the use of three linear encoding schemes SLU, DLB and SLB.

In reviewing this material, primarily of Gaines, the mathematics and logic circuits for

performing encoding, inversion, multipUcation, addition, subtraction, integration, function

formation and decoding have been presented.

In the process of this review a system for actually accurately summating N stochastic

pulse sequences has been proposed together with an efficient logic circuit implementation,

§4.4.1. Leaver's principle of addition by pulse insertion for SLU signals has been considered

and a circuit operating in a similar manner put forward for performing subtraction by pulse

removal, §4.5.1. The final new material considered is that of developing a suitable circuit

to perform sigmoidal transformations. A circuit using GRNs generated from E-sequences

is explained and has been simulated, §4.7. The limitations of this approach are slowness of

operation, requirement for a long E-sequence for a reasonable dynamic range and limited

quality sigmoid produced but nevertheless anon-linear transformation, sigmoid transform,

is generated

Stochastic pulse rate computation relies heavily upon the ability to encode information

efficiently using many noise source or suitable random number generators. The following

chapter, §5, discusses the generation of random numbers with a view to the efficient par

allel generation of several random numbers at once for use in a stochastic pulse processing

circuit. With all the constituent parts for an artificial neuron considered the design, im

plementation and test of an artificial neuron operating using stochastic pulse rate encoded

signals is described in Chapter 6.

110

T r — 1 — I — T — — r — I 1 1 — r

X =0.4

X =0.7

Figure 4.1: Sample encoded pulse streams for an SLU input mapping. The signal value is
the probability of reading a one from the signal line.

0.025 10 Samples

100 Samples

tu 0.015 H

> 0.01

0.1 0.2 0.3 0.4 0.5 0.6

Input Probability

0.7 0.8 0.9

Figure 4.2: Input Probability vs Variance for a SLU Encoding. This illustrates that the
greatest variance occurs at p = 0.5 and the balance between speed and accuracy. The more
samples obtained the smaller the variance but the longer it will take.

X!
03

3

3
O

SLU. 0<x<lnf

SLB. -Inf <x<+Inf

-20 0 20

Input value

100

Figure 4.3: Non-linear encoding transfer functions. Using non-linear encoding systems an
infinite range of values can be encoded into the stochastic pulse rate domain.

I l l

SLU

SLB
-P,

Up Down

DLB p^

Down Up

Figure 4.4: Inversion for SLU, SLB and DLB. A single logical inverter may be used for
SL U and SLB signals. Exchanging the two lines is sufficient for DLB signals.

Figure 4.5: DLB multiplication. If ui and U2 are high or di or d2 are high Uo must be
high, else d„ is high.

-Oo—L

-C>o—T

Figure 4.6: SLB multiplication. An output high is produced if both input signals are in the
same state, else an output low is produced.

112

_ y • P3P|+(1-P3)P2

Figure 4.7: SLU/SLB Addition. The weighted summation of two signals, pi andp2, by a
third p3.

1

O

1

— I

— I

Figure 4.8: DLB addition. This circuit produces the minimum variance summation of two
input signals.

113

D

Down

Counter

x+y

Figure 4.9: SLU addition by pulse insertion. Coincident pulses upon X CLTid y ave ciccu-
mulated, when both x and y are zero an accumulated pulse is inserted back into the pulse
stream.

A ni

A B

A B

A B C

A B C

_n n n__rL Ji n_

A ^ u u u u u u

n n n n
J

_n n_n n^i rui rm_j~un

A B

A B

A B C

A B C

Figure 4.10: Deterministic sequences for addition. This diagram demonstrates that deter
ministic selection of scaling signals can lead to an unequal distribution of pulses.

114

1
N

1
N

N-1

1
N

N-2
1

N

N-3

1
N

N-4

1
N

Figure 4.11: Initial circuit for the generation of N pulse streams of value j^. Note the
large loading placed upon inverters at the top of the cascade and the large number of inputs
for the AND gate at the bottom of the cascade.

115

D

1
N

1
N

1
N

1
N

1

Figure 4.12: Improved circuit for the generation of A'' pulse streams of value j f . Note the
modest and consistent fan-out and fan-in for all stages of the circuit.

116

Down

Counter

x-y

Figure 4.13: SLU subtraction by pulse removal. In this circuit y is subtracted from x
by counting the pulses on y and by means of the A N D and X O R gates detecting and
removing the pulse from x.

UP,

UP.

DOWN, •-

DOWN2 »-

^ UP 2

^ UP 1

Counter
^DOWN 1

^ DOWN 2

Figure 4.14: Two input summing integrator for DLB. This circuit requires a counter which
will increment and decrement by two. The circuit performs equally weighted integration of
the two DLB inputs.

Counter
DOWN

Figure 4.15: Two input summing integrator for SLB.

117

U P

D O W N

Digital
Noise Generator

Digital Comparator

Counter

Figure 4.16: Generic two input summing integrator. This circuit performs integration of
the two input signals and re-encodes the resultant deterministic value into the stochastic
pulse rate encoded domain.

Figure 4.17: Schematic of an ADDIE. The ADDIE is used as the basis for output interfaces.

Figure 4.18: Schematic of a frequency modulation detector. For a source of fixed frequency
input pulses the output will be a steady state voltage dependant on the input frequency. This
will occur when the rate of charging of the capacitor by the pulse stream is equal to the
rate of discharge through the resistor.

A A / V -

Figure 4.19: Schematic of an analogue frequency modulation detector. The output voltage
for an input pulse stream is dependant upon the ratios of the resistors.

118

Figure 4.20: ADDIE circuit to obtain the square-root of a pulse stream. The square of
the inverse of the output is fed back in this configuration.

Combmational Logic

Digital Comparator

Digital
Noise Generator

Figure 4.21: Generic ADDIE circuit to obtain arbitrary function transformations.

119

o
U

3

<

Figure 4.22: 16-bit e-sequence autocorrelation function. All even shifts, except zero, pro
duce a zero result.

PDF •
<v>

<v>

PDF CDF/Transfer Function

Figure 4.23: PDFs with associated CDFs for a URN. Adjusting the probability density
function (PDF) distribution varies the cumulative distribution function (CDF) distribution
given a uniform random number (URN).

120

-1.5 -0.5 0

X

0.5 1.5

Figure 4.24: PDF with associated CDF for a Gaussian random number. The mean and
variance for the PDF are 0 and 1 respectively.

« 0.6

Vanance

0.002

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Input

0.8 0.9

Figure 4.25: Sigmoids for adjusted variance values. Decreasing the variance of the gener
ating PDF increases the sharpness of gradient of the CDF.

121

^ 0.6

0.1 0.2 0.3 0.4 0.5

Input

0.6 0.7 0.8 0.9

Figure 4.26: Sigmoids, resultant CDFs, for adjusted mean values of the generating PDF.
Increasing the PDF mean moves the sigmoid to the right, while decreasing the PDF mean
shifts the sigmoid to the left.

PRBS

Shift Register

£ -Sequence Weight, n

o
Mean Offset

INC
Up/Down
Counter

D E C

Up/Down
Counter

Gaussian Distributed
Random Number

O'sLSB

MSB Comparator

Figure 4.27: Sigmoidal transform generating circuit. A Gaussian Random Number (GRN)
is generated using an e-sequence. The GRN is compared to the input value, x, to produce
the probability of a pulse output according to a sigmoidal transform.

122

3
O- 0.7

O 0.6

a 0.4

o 0.3 i
U

0.2 H

0.1 0.2 0.3 0.4 0.5 0.6

Gaussian Input

0.7 0.8 0.9

Figure 4.28: Sigmoid produced by encoding circuit simulation. The sigmoid produced is
only slight but it does exist. A more pronounced sigmoid could be produced by a GRN with
a greater dynamic range, a larger e-sequence.

J
Counter

DOWN

Register

Figure 4.29: Moving average circuit implementation. The shift register is used to hold the
N previous sequence samples. Compare this circuit to that of Figure 4-15.

123

Chapter 5

Mul t ip l e Random Number

Generation

5.1 Introduction

The previous chapter, §4, has discussed a pulse rate computation technique using stochas

tic pulse rate encoded signals. This technique relies heavily upon a noise or random

number source for encoding deterministic information into the stochastic pulse rate do

main. A simple efficient technique for the generation of noise or random numbers for the

purpose of encoding is needed. Since stochastic pulse rate computation operates digitally

it would be preferable if the random number generator also operated by the use of digital

circuits, i t could then be fabricated in the same format as the rest of the processing struc

ture. Many signals will need to encoded therefore the generation of multiple numbers will

be investigated.

In this chapter a short review of techniques and implementation of random number

generators is made together with possible tests which may be applied to the resulting

sequence to assess their quality. Particular attention is paid to a class of generators known

as Pseudo Random Binary Sequence (PRBS) generators from which it is possible to obtain

more than one random number at a time. A technique is discussed for forming multiple

sequences from a single PRBS. The technique leaves open ended the final stage of the

selection of the appropriate circuits for sequence formation. The optimisation and search

techniques of simulated annealing and genetic algorithms were applied to the selection

process. I t will be demonstrated that, in general, provided either algorithm is suitably

configured i t can be used for determination of the necessary circuits.

124

5.2 Generation of Random Numbers

A random number is a number, possibly within a specified range, which has no prearranged

order and its value can not be determined in advance. A random number may be described

probabilistically. For uniformly distributed random numbers each number has an exactly

equal chance of being selected, but other distributions may be produced, eg. Gaussian,

Poisson. Random numbers are required for many applications for modelling and simulation

of processes, selection of input patterns to a neural network during a training phase, even

the selection of a Premium Bond winner.

Random numbers can be generated either by using hardware or software algorithms.

Hardware random number generators are frequently specialised pieces of equipment not

usually suitable for integration into a general process. They are based upon naturally

occurring random physical processes and produce excellent results. Software random

number generators are algorithms that require direct calculation within a computer. They

can be manipulated easily and are often implemented as functions or subroutines. Many

computer languages have a random number function included in a standard hbrary if not

the main language eg. functions rand() and drand48() in C. A user should be aware

that the quality of these functions can often leave much to be desired. Software random

number generators do possess the advantageous property of repeatability by resetting the

seed of the generator.

A description of hardware and software random number generators together with the

tests which may be applied to them is given in Appendix A.

5.3 Pseudo Random Binary Sequence Generators

PRBSs are formed using digital circuits constructed from Linear Feedback Shift Registers,

LFSRs. The feedback applied to the shift register determines the type of sequence formed.

The type that is of interest in this case is that which performs modulo two arithmetic,

X O R gates being used to achieve this.

5.3.1 B a s i c P R B S Generator Considerations

A shift register is a cascade connection of binary memory elements controlled in such a way

that the contents may be transferred, shifted, along the register by applying an external

clock pulse. Usually the direction of shift is fixed, although bi-directional shift registers

exist. In practice a shift register is formed from an array of flip-flops in series. The output

Q of each stage drives the input D of the following stage. The clock inputs of each stage

are driven simultaneously. Figure 5.1

The size of a shift register with iV stages is said to be of degree n or of order n. When

clocked the contents of stage moves into stage g^+i. I f no connection is made to the nth

125

stage output back to the input, its contents are lost from the register. The value the first

stage adopts depends upon the value its input is set to. The register holds n digits into

the past and can be said to have a memory span of n.

I f feedback from later stages is introduced to supply the input value to the first stage

the future values of the shift register depend upon the present state of the register and

the format of the feedback. Figure 5.2. For example, i f the output of the last stage is fed

directly back into the iSrst stage an n-bit ring counter can be formed, or if the output of

the last stage is fed back inverted an n-bit twisted ring counter can be formed. I t is the

configuration of the feedback for the shift register that is of interest to the generation of

random numbers. The feedback network, /(a;i, 2:2, • • •,a;„), may be any combination of

binary logic function.

Tausworthe, [85], developed a random number generator based upon the above prin

ciple of linear feedback. Modulo 2 arithmetic is applied to the feedback, ie. X O R gates

are used to form the feedback network. Appropriately selected feedback on the shift reg

ister will enable an output bit sequence of length 2" — 1, maximal length known as an

m-sequence. The feedback configuration for a Tausworthe generator is described by its

characteristic equation

where D is the delay operator, n is the length of the generator and s is an output from

another stage in the shift register. The PRBS configuration may also be described in terms

of the feedback stages, x^', used to generate the next bit in the sequence to be moved into

the register.

The characteristic equation is a primitive polynomial, ie. i t is an irreducible polynomial.

Other X O R feedback combinations can be used but the sequence will not necessarily be

maximal length. Tables of irreducible polynomials have been published to reduce the

need to calculate them, [86]. During production of the bit stream the shift register will

cycle once through all its possible states, except the all zeros state, before repeating. The

all zero state is self replicating. The sequence of bits output is a Bernoulli sequence of

probability 0.5. Since the sequence length is odd the number of I's and O's will vary by

only one, the number of consecutive logic levels of a particular state is directly related to

the length of the run, ie. half the runs will be of length one, a quarter of length two, an

eighth of length three, etc.

The realisation of a PRBS can be achieved efficiently in software by a few lines of code,

but for the fast generation of values a hardware method is preferable. Several architectures

have been used from a simple single shift register to more elaborate schemes using multiple

shift registers, [87, 88, 89], the latter allowing increased speed in the formation of random

numbers when many steps are required to advance the generator beyond correlation.

126

5.3.2 Delayed P R B S s

Having produced a single pseudo random bit stream, how can multiple instances be gen

erated which can be considered independent? I f the sequence is sufficiently long then

the autocorrelation between delayed versions is small except where the two sequences are

synchronous. For an n-stage binary shift register generator a maximal length sequence

the normalised autocorrelation function for a period L bits is given by

k denotes discrete time delay, and the sequence is expressed as -|-1 and - 1 rather than 1

and 0. The transformation from Xi to is given by

y, = {-ir' =l-2x,

1 - 1 , 0 ^ 1

The autocorrelation function has the appearance of Figure 5.3. I t can be seen that for

all except synchronous sequences the correlation is negligible and they can be considered

as independent sequences. I t is feasible to have g generators each of the same feedback

configuration but with a different seed state producing g sequences. This method is

inefficient in its realisation requiring the formation of many generators.

Viewing the configuration of a single PRBS generator i t can be seen that adjacent

cells of the register will cycle through the same sequence as that produced by the output

but delayed by the appropriate number of bits. A single PRBS could be produced with

multiple cells after the base n cells to store the delayed sequence in, Figure 5.4. For

sequences of long length and large delays the overall shift register length will become

prohibitive for practical formulation.

Tsao, [1], demonstrated how, using modulo two arithmetic and the shift-and-add prop

erty of m-sequences, specified delayed versions of a sequence can be realised. Figure 5.5

illustrates the initial steps needed. I t can be seen that the number of X O R gates needed

depends upon the delay and number of serial additions required. The overall speed of

operation of the generator will be hampered by the propagation delay through the X O R

gate tree. A problem is to determine the necessary tap combinations for a given delay.

This problem has been resolved in several ways.

Tsao resolves the problem of determining the required tap points by manipulation of

the characteristic equation,

0̂ 7̂-0 . . . QD''®D' = D-^

127

=> D" ffi DJ'+^ ffi • • • © D'-+^ ® D'+^ © = 0

This is best illustrated using the three Tsao examples for a four-stage PRBS. These three

cases will be reiterated for other techniques which have been developed.

For a four-stage PRBS the characteristic equation is;

D^®D^ = loT D'^®D^®D'^ = 0

The delay combinations for D^, D^ and D^^ are to be deduced.

1.

Rearranging the characteristic equation.

0^ = 00" = D{D^®D")

2.

3. Finally D 13

Extract from characteristic equation,

D'^iD^ ®D®D-'^) = 0

^ 0

D^®D®D-'^ = 0

p-2 = D^^D

The mathematical manipulations necessary for each individual delay are not always ob

vious. As the characteristic equation and delays desired become longer the modulo two

algebra becomes more demanding.

Davies, [90], observed that if the required delay, D\ is divided into the characteristic

128

equation, f{D), then

where q(D) is the quotient and r{d) is the remainder, ie.

For the m-sequence

thus

= f{D)q{D)®riD)

f{D) = 0^f{D)q{D) = 0

= r{D)

The coefficients of the remainder, are the desired tap off points from the shift

register. Practical considerations for the calculation oir{D) are considered by Davies, [91]

and Van Luyn, [92]. The division technique will now be used to calculate the connections

for the previous three cases.

1. D=

4 3 2 1 0 5 4 3 2 1 0

1 1 0 0 1) 1 0 0 0 0 0

1 1 0 0 1

1 0 0 1

1 1 0 0 1

1 0 1 1

£ » 5 ® ©

8 1)1

129

2.

4 3 2 1 0 G 5 4 3 2 1 0

1 1 0 0 1) 1 0 0 0 0 0 0

1 1 0 0 1

1 0 0 1

1 1 0 0 1

1 0 1 1

1 1 0 0 1

1 1 1 1

3. D 13

4 3 2 1 0 13 12 11 10 9 7 8 6 5 4 3 2 1 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1

1 0 0 1

1 1 0 0 1

1 0 1 1

1 1 0 0 1

1 1 1 1

1 1 0 0 1

1 1 1

1 1 0 0 1

1 0 1

1 1 0 0 1

1 1 0 1

1 1 0 0 1

1 1

130

L » " f f i £) i " ® D''

® L»» ® n « ® £1^

® Z)̂ ®

D« ® ® £)*

© D'^

£) « ® £>5 ffi Z)2

i?^ ® ©

® ®

®

Gardiner, [93], provides a third general purpose method for determining feedback com

bination delays. The basic principle is to increment all the delays in the characteristic

equation by one and when a delay is produced that is outside the bounds of those which

can be directly obtained from the generator to reduce the equation to terms which can.

Illustration by example is probably the best method to understand this technique, there

fore repeating for the last time the example generator for delays Z)^, and D^^ we have

the characteristic equation in the form

© I?2 = 1

D^ = D^®D^ (5.1)

1. Increment delays

cannot be obtained from the PRBS directly, but substituting from eq.(5.1) pro

duces:

2. Again increment the previous equation

= D'^®D^®

131

Again using eq.(5.1) this can be reduced to the minimal configuration

3. D^^ Increment delay by three from that of

= D'^ ® D^'® ®

= (D^ ® ® ® D^) ® (D^ ® ® D'^) ® {D^ ® D'^) ®

Note that D'® D' = 0
D' = D^®

Increment delay by four

^ D^®D^

= (D^ ®D^®D^® © (D^ ® D^)

= D'^®D^

In the last example, D^^, rather than increment by a single delay and reduce the

subsequent equation, an increment of multiple delays is used before reduction of the

resulting equation.

I t can be seen from the above three techniques that any one may be suitable to find

a tap combination to produce a single delay of the fundamental sequence. However, i t is

not possible prior to the calculation to determine how many tap off points will be required

for a delay and where they will lie. In addition, if several delayed sequences are required,

many taps from a single shift register cell may be required causing uneven loading upon the

shift register. Considering these points the following section considers a possible solution

to these problems of forming multiple PRBS sequences from a single generator.

5.3.3 Multiple P R B S

The methods described above for obtaining the tap pattern required for a single delay

are in general adequate for most needs. I f multiple pulse sequences are required from a

single generator these techniques are no longer practical since other considerations besides

absolute delay must be considered. Firstly, the number of taps which must be XORed

to form a delay must be a reasonable size. I f this fan-in is too large it will result in

complications when attempting to connect up a circuit. The algorithms of section §5.3.2

do not provide any knowledge of the number of taps required to form a delay prior to their

calculation. Secondly, if the number of delays which require a tap from a given element of

132

the shift register is too large the loading will adversely affect the shift register performance.

Alspector et al, [94], highlights these problems and offers a possible solution.

Alspector's solution for resolving the dilemma, the basic principle of which is the

reverse of the methods outlined in §5.3.2, has been implemented in software. The technique

will now be outlined. Groups or buckets of tap combinations are first formed that satisfy

the following three constraints.

1. The number of taps required to produce a delay, F, is bounded eg.

2 < F < 5

F is used since i t represents the fan-in to the X O R gate necessary to produce the

delay.

2. The delay, d, created by a given tap combination is to be within a given bound of

the optimal value, D.

d = D±8

8 is the delay tolerance.

3. The loading, L , placed upon elements of the shift register shall be evenly distributed

and as low as possible.

After generating all tap combinations which satisfy condition (1) and placing them in

buckets where their associated delays satisfy (2), i t is then necessary to select from each

bucket a tap combination which minimises a cost function based upon all three constraints.

Note, not all tap combinations which satisfy (1) will have a suitable delay. The number of

possible combinations of selection from each bucket will be large. Hypothetically, for 31

equally spaced delayed sequences 31 buckets would be required, if each contained just two

tap patterns the number of configurations to evaluate is 2^^ = 2147183647. In practice

there will be more tap patterns per bucket and an even larger search space. An exhaus

tive search of all these possible solutions is prohibitive in the amount of computation time

required. In. Alspector et al [94] paper i t was suggested that the search process may be

conducted by random or deterministic techniques and possibly simulated annealing. Thus,

in section §5.4 and §5.5 a discussion of the implementation of two random search algo

rithms, Simulated Annealing and Genetic Algorithms, is made. These two algorithms were

experimented with to find an optimal form for the taps from all the possible combinations.

An example of Alspector's system may best illustrate the whole procedure.

Given a PRBS generator of 10-bits from which we require five sequences the nominal

spacing between delays is:

m-sequence length _ 2" - 1 _ „
Number of sequences

133

Therefore delays of 0, 205, 410, 615 and 820 are required. A range of taps that are suitable

is specified. The range two to four will be used in this case. I t will be observed that a delay

difference of ± 1 can be achieved by moving a tap up/down the shift register, Figure 5.6.

Similarly by moving complete tap patterns up and down the shift register the overall delay

can be adjusted. Figure 5.7. A set of essential tap patterns can be defined where a single

tap is always the least/most significant bit. Near delays are determined by shifting the

tap patterns by p and adjusting the delay by p. For two taps per pattern the essential

taps are illustrated in Figure 5.8. By extrapolation the principle can be expanded to any

other number of taps.

The number of tap patterns for a given number of taps is

iV'
(5.2) N\{N -K)\

whereas the number of essential tap patterns is

[N - 1)! iV - 1
{K - 1)\{N - K)\

(5.3)

Here N is the length of the PRBS generator and K is the number of taps to be used. For

the example of the 10-bit PRBS with the range of taps from two to four the total number

of tap patterns is
10 \ E

but the number of essential tap patterns is

- K=2\K J
= 375

= 129

A table of essential tap patterns will exist for two, three and four taps per pattern. The

correct delay must now be associated with these patterns. Three methods are proffered by

Alspector for the solution of tap patterns and delays, the Simple Shifting Method, the Gi

ant Step/Baby Step Method and the Discrete Logarithm Method. The techniques increase

the speed of association of a delay with a pattern but also increases the complexity of the

implementation. The Simple Shifting Method was adopted for ease of implementation and

wil l be detailed, refer to Alspector's paper for details of the other two methods.

For a given tap combination from the PRBS determine the output that produces from

n clocks of the PRBS. n is the length of the PRBS. This n bit output vector, g, is stored.

The PRBS is reset to its initial base value and clocked. An n bit rolling output vector

from the PRBS is maintained. This rolling output vector is compared with the vector

134

g. When these two vectors are equivalent the number of clock cycles required is the shift

associated with the tap combination.

Having calculated the delay for each of the 129 essential tap combinations the table

of delay/tap pairs can be expanded to cover all 375 tap combinations. A tolerance band

is placed round each of the nominal delays to create a bucket into which delay/tap pairs

are placed. For a tolerance of ±50 the delay buckets are illustrated in Table 5.1.

Lower Delay Limit Nominal Delay Upper Delay Limit
974 0 50
155 205 255
360 410 460
365 615 665
770 820 870

Table 5.1: Delay Buckets for Five Delays From a 10-bit PRBS with a Tolerance of ±50

A search is made of selections from each bucket of delay/tap combinations to find the

most suitable.

Thus i t can be seen that multiple PRBS m-sequences can be formed from a single PRBS

generator. Actually i t is the same m-sequence viewed at different instances. Providing the

length of each m-sequence used at any time is not too long, ie. a sequence does not overlap

with another, the degree of correlation will be low. These sequences from the PRBS may

be used as separate noise sources.

5.3.4 P R B S to Random Number Conversion

To be able to utilise a PRBS sequence as a random number i t must be correctly converted

from a series of bits. The basic technique is to form a sequence of bits output by the

PRBS generator into a digital word and to treat this word as a random value. To form

subsequent random values the generator is advanced so that new random bits are advanced

into the register holding the digital word. I t is necessary to advance the generator by more

than the size of the digital word otherwise a correlation will exist between random values.

Figure 5.9.

5.4 Simulated Annealing

Simulated Annealing, SA, is an optimisation process with its roots based on the processes

of annealing within condensed matter physics. The analogy made is with thermodynamic

processes. For example, at the start of the annealing process the matter will be at a high

temperature and in a fluid phase. The fluid is allowed to cool slowly so that the molecules

are able to align themselves as thermal mobility is lost. Cooling further will enable the

135

formation of crystals and solids as the state of minimum energy for the system is found.

As the temperature tends towards zero so the energy of the system tends to a minimum.

More specifically, [95], at a given temperature, T, when thermal equilibrium has been

reached the material state can be characterised by the probability of i t being in a state

with energy, E, given by the Boltzmann Distribution.

Pr{^ = E} = - ^ f ^ (5.4)

Z { f) is known as the partition function and acts as a normalisation function dependent

upon the temperature. The term e '•B ' ' is the Boltzmann Factor, where fcs is the Boltz

mann constant. Slowly decreasing the temperature concentrates the Boltzmann distribu

tion into the state with the least energy. As the temperature approaches zero only the

minimum energy state has a non-zero probability of occurrence.

Metropolis et al, [96], modelled the annealing process in matter. Using a Monte Carlo

method to select the sequence of states for the matter, a state being characterised by

the position of the particles of matter, the energy of the configuration was calculated. A

new state was generated by a random perturbation of the existing state. The amount of

perturbation depends on the temperature of the system, a higher temperature causing a

greater disturbance, the difference in energies, A ^ , between the existing state and the

new state being used as a basis for determining if the new state should be maintained. I f

AE < 0, ie. a decrease of energy in the system, the new state is kept and used as the base

for restarting the cycle. I f AE > 0 the acceptance of the new state is probabilistic. The

probability of acceptance is e '•'B^

' \ \iAE<^
p{accept) = < _ j V B . (5.5)

e 'BT i{AE>0

therefore i t is possible for a new present state to be reached with a higher energy require

ment.

This acceptance rule is the Metropolis criterion. Repeating the perturbation process

many times results in a distribution approaching that of a Boltzmann distribution. The

entire process is known as the Metropolis Algorithm.

Transferring the idea of annealing to general optimisation problems requires the asso

ciation of temperature, energy and state within the new domain. This was first achieved

by Kirkpatrick et al, [97], in their application to the physical design of computers eg. inte

grated circuit placement and wiring routes. Subsequently the technique has been widely

applied. The state in the new domain is the organisation, configuration or set of values

taken to represent that state. To this configuration is assigned a cost function, C, which

represents the amount of energy within the system, the aim is to minimise the value of

136

the cost function. Temperature is represented by a control parameter, c, which initially

has a high value. For a randomly selected combination of system parameters, configura

tion i , the cost function is evaluated, C(i). A random selection of new elements in the

neighbourhood of i is made, configuration j, for which the cost is also evaluated, C(j).

Whether or not this new configuration is accepted as the basis for further improvements

depends on the Metropolis criterion applied to the difference in costs, ACjj.

AC,, = C{j) - C{i) (5.6)

The probability that configuration j is used as the next base configuration is,

, 1 if AC„ < 0
p{accept) = { ACu (5.7)

e — ^ if AC,j > 0

I f Aij > 0 i t is possible for a new configuration to be reached with a higher cost function

value associated with i t .

The value of c is reduced in steps, the system being allowed to reach an equilibrium at

each value of the control parameter. The algorithm is stopped when the control parameter

reaches a predetermined small value. Simulated annealing is thus a series of applications

of the Metropolis algorithm for decreasing values of c. As an alternative the control

parameter is reduced continuously with time rather than in steps. The above two formats

divide simulated annealing into two categories, [95], the former an homogeneous algorithm

which can be described by a series of homogeneous Markov chains, and the latter an

inhomogeneous algorithm described by one inhomogeneous Markov chain.

Applying the simulated annealing technique to optimising the tap combinations se

lected for the PRBS generator a cost function must be defined. Relevant parameters to

be considered in this function are the number of taps required to form a delay, i ^ , the

loading the delay configurations places upon the shift register elements, L, and finally the

distance, d, of a delay from its nominal delay.

C = fiF) + giL) + h{d) (5.8)

For the generic cost function. Equation 5.8, a low cost must be produced for favourable

configurations and a high cost for unfavourable ones. For f{F) the less taps required

to form a delay the simpler the X O R gate required, while the function for the loading

placed upon individual shift register elements, g{L), the more evenly distributed the taps

are across all elements of the shift register the better. Non-linear penalties were applied

to these factors such that a small increase in the number of taps required for a delay, F , or

the overall loading placed on a shift register element, L, becomes increasingly expensive.

For the cost factor attached to the distance of the actual delay selected from the desired

137

nominal delay, h{d), i t was found that very large differences in the delay were necessary

which outweighed the combined cost of f{F) and g{L), therefore the difference in delay,

d, was scaled down to a similar order of magnitude. The delay difference is still accounted

for but is not the predominant concern. The resulting specific cost function is

c=E(i ' . f+i;(i ,) '+i; j4

where X is the number of m-sequences required from the shift register and Y is the number

of elements which make up the shift register.

The simulated annealing technique was applied in two ways which varied in the amount

of perturbation the system received, the cooling schedule and the Metropolis criterion.

Scheme 1. From an initial random state with a known cost a new state is formed by

selecting at random a delay for each m-sequence in turn. After each m-sequence has

been adjusted the cost of the configuration is calculated. The Metropolis criterion

is applied where p(accept) is tested against a control parameter 'warmth', 'warmth'

is decreased at regular intervals but has no bearing on the amount the system is

perturbed. Once all m-sequences have been subjected to adjustment the first one is

revisited.

This variant of simulated annealing ensures that a new state is a close neighbour to

the existing state since between two consecutive states 30 of the 31 m-sequences are

the same.

Scheme 2. This second formulation of simulated annealing causes a greater disturbance

of the configuration between one state and the next. Each element in the configura

tion is subjected to the possibility of change depending upon the value of 'warmth'.

Initially, when 'warmth' has a high value many new m-sequences are selected for the

next state, but as the system cools and 'warmth' is not as great less m-sequences

alter between one state and the next.

The form of Metropolis criterion used for accepting or rejecting a state is dependent

both on the change in cost and the value of 'warmth'. This method is more akin to

Metropolis's, [96], and Kirkpatrick's, [97], implementation than the previous scheme.

Two sets of data were available to evaluate the performance of the above two schemes.

The sets of data were 31 buckets of delays and associated tap patterns, where 6 = 10000

and 2 < F < 5. The second set of data differed from the first in that in each bucket

a delay existed which matched the optimal value, associated with the delay was a tap

pattern of all zeros. This second set was to test the ability of simulated annealing to

seek out a known global minimum for a given cost function, ie. each m-sequence would be

for optimal delay and have no cost, likewise the all zero tap pattern would, incur no cost

138

either.

5.5 Genetic Algori thms

Genetic Algorithms, GA, are a type of optimisation technique which like simulated an

nealing have their roots in the natural world. Genetic algorithms take their' lead from

nature. In nature information about an organism is coded into the biological structure

known as a chromosome. The information is stored in genes which are a constituent part

of the chromosome. The value of the gene is known as an allele. For a species to evolve

these chromosomes reproduce, crossover (chromosomes exchange section or genes) and

mutate (a section of chromosome or an individual gene alters). During the life of the new

organisms formed only the fittest will normally survive in a population of many varieties.

Much of the early work in the field of genetic algorithms was conducted by Holland, [98].

For genetic algorithms a string is defined for the system which is an encoded description

of the state of the system, a string being analogous to a chromosome. To determine the

fitness of a string, ie. the set of conditions, for an environment a cost function is used

similar to that used with the above simulated annealing technique. An individual string

would be the same as a single state description in simulated annealing. Rather than just

one string a population of strings is used each with an associated fitness value computed

from the cost function. A new population is produced by selecting strings from the existing

population with a probability proportional to the strings fitness. Strings with large fitness

value have a higher probability of selection and are therefore more likely to survive the

reproduction phase to the next generation. I t is possible that a string will be replicated

several times in the new population.

The next stage of the genetic algorithm is crossover. Two strings are selected at

random from the child population. Within these two strings a common point is randomly

selected and the two strings are exchanged at this point with a probability of crossover,

Pr.. Normally the value of Pr. is quite high, eg. Pc > 0.6. This operation is the one point

crossover and is illustrated in Figure 5.10 for binary encoded strings. Variations on this

scheme can and have been used such as the n-point crossover and crossover between more

than two strings at a time. The aim of crossover is to cause a blending of fit strings to

produce fitter ones.

Finally in the genetic algorithm cycle each feature of each string is subjected to the

possibility of mutation with probability P^. A feature which is mutated has its value

modified to another value within its parameter set. This modification is a random selection

and may or may not include the features present value. The probability of mutation is

usually quite low otherwise the entire algorithm would degenerate into a random search

of available configurations. The purpose of mutation is to introduce diversification and

new features into the population which may not be present in any of the parent strings.

139

The whole genetic algorithm cycle is restarted with this new population as the base for

reproduction. Note, i f crossover and mutation are pursued too aggressively salient feature

groups may not be able to be sustained through generations.

Tlie basic algorithm is simple, straightforward and has been found to be robust when

applied to many combinational optimisation problems and searches of a result space.

Overall genetic algorithms are distinguished from other optimisation techniques by the

following properties,

1. direct manipulation of the coding.

2. search from a population of possible solutions, not from a single point.

3. search is conducted via sampling from a population, a blind search.

4. the search uses stochastic operators, not a deterministic process.

Similar to simulated annealing a cost function exists which is used to evaluate candidates

produced by a pass through the algorithm. The basic algorithms operation proceeds in a

very straight forward manner.

How then are genetic algorithms to be applied to the combinatorial optimisation prob

lem of PRBS tap optimisation? Firstly a string must be designed to represent the tap

patterns selected, secondly a cost function to evaluate the fitness of such a string must be

defined. The string used is composed of a set of 31 numbers, each number representing

one tap pattern from each of the tap buckets in sequence. Using this format the same cost

function used to calculate the performance for simulated annealing can be used to drive

the genetic algorithm. Equation 5.9. A look up table to correlate the tap pattern numbers

in a bucket to an actual pattern is used.

The genetic algorithm is implemented as follows. From a set of parents a next gener

ation of children is formed by selecting two parents. Rather than a one point crossover

occurring between the parents a multiple point crossover takes place. The two parent

strings are divided at random between the two children. I f the first parent's feature is

assigned to the first child the second parent's feature is assigned to the second child. The

probability that the first child has the first parent's feature is the probability of crossover.

After generating all children each child has each of its features subjected to the possibility

of mutation. Since a feature is a number representing a delay/tap pattern combination in

a bucket a random immber representing a new delay/tap pattern combination is gener

ated if mutation occurs. The probability of selecting a feature during mutation is inversely

proportional to the number of features in a bucket. Once the desired number of children

have been produced the fittest are selected as suitable parents for the next generation.

The same two sets of data were used to assess the performance of this genetic algorithm

as had been used for simulated annealing.

The data used to evaluate the performance of the GA was the same as has been

specified for testing of the SA above.

140

5.6 Results

The following plots demonstrate the performance of simulated annealing and the genetic

algorithm's ability to seek the lowest cost function and thus the best PRBS tap combi

nations for the data. Two data sets were formed with which to evaluate the performance

of the simulated annealing algorithm and the genetic algorithm. The sets of data were

31 buckets of delays and associated tap patterns, where 8 ~ 10000 and 2 < F < 5. The

first set of data consisted of all real tap combinations and associated delays within each

tap/delay bucket. This data has an unknown global minima which the above algorithmic

techniques are to seek. The second set of data has an artificial global minima created by

setting an artificial tap combination in each bucket to all zeros and the delay difference

to zero, this pattern would never occur in practice. The aim of this known, forced, global

minima was to ascertain the ability of the algorithms in finding this known global minima.

5.6.1 Simulated Annealing

I t has previously been explained that simulated annealing has a probability that it will

climb out of a minima to a configuration with a higher cost function penalty. Since this

higher costing configuration becomes the new working configuration i t will not represent

the best configuration found by the algorithm. The following result plots display the cost

of the best configuration found so far, not the configuration being annealed at that point.

Figure 5.11 and Figure 5.12 show the performance of Scheme 1 and Scheme 2, §5.4,

respectively for the first data set with an unknown global minima. I t can be seen that

Scheme 1, which perturbs a single m-sequence between each cost calculation, descends

faster and to a configuration with a lower cost than Scheme 2 which perturbs more m-

sequences between each calculation.

Figure 5.13 and Figure 5.14 display the ability of both schemes to find the artificial

global minima introduced into the second data set. Again the first annealing scheme

out performs the second. Scheme 1 does in fact find the artificial global minima of tap

combinations which are all zeros with zero delay difference.

These results demonstrate that simulated annealing is able to find an improved system

configuration by means of perturbations of the existing system configuration. Simulated

annealing can even find a global minima in a non-exhaustive search of system configura

tions, the success of this will depend on how striking the global minima is compared with

local minima, the case tested here was perhaps over emphasised. However, the speed with

which improved configurations are found and how significantly they are an improvement

over an initial random configuration depends upon the format of the simulated annealing

algorithm. Possible causes for the poor performance of the second scheme relative to the

first are that too much heat existed within the system and so i t could not settle into an

appropriate configuration. Another cause is that i t was cooled too rapidly and became

141

frozen into a poor configuration. No attempt was made to find the optimal parameters
for each scheme rather to find adequate working parameters.

5.6.2 Genetic Algorithm

Genetic algorithms are stated to be fairly robust to parameter variation, particularly with

respect to the crossover rate. To verify this fact the effects of varying the crossover rate

and mutation rate were evaluated when the genetic algorithm was applied to the first data

set which has an unknown global minima. The ratio of parentsxhildren was fixed for the

trials.

For 10 parents and 20 children Figure 5.15 and Figure 5.16 show the effect of varying the

crossover rate. The mutation rate was set at 3% or Pm. = 0.03 which is in the range which

texts, [98], recommend. This mutation rate is sufficient to introduce new characteristics

into the evolutionary process, but not too large so that the genetic algorithm degenerates

into a random search. I t can be seen that for this instantiation of a genetic algorithm the

rates of cost reduction are very similar as the crossover rate is varied.

For 10 parents, 20 children the mutation rate was varied. Figure 5.17. The crossover

rate was fixed at = 0.5, since the algorithm has shown to be relatively robust to this

parameter its exact value is not too important providing it is constant for all trials. The

amount of variation of mutation rate was small but it can be seen that given this fact

the algorithm is robust to changes. It was found that if the mutation rate was very low

few new features are introduced into the search space and a search of parameter orderings

only occurs caused by the crossover, an unsatisfactory reduction in cost function resulted.

Likewise if the mutation rate was too large the crossover had little effect since the strings

became randomised by the excessive mutation rate.

With the crossover and mutation rate fixed at = 0.5 and P,„ = 0.03 the ratio of

parentsxhildren was varied. Figure 5.18 and Figure 5.19. For the genetic algorithm to

operate the number of children must be greater than the number of parents since the next

set of parents is selected from the present set of children. I f the number of parents was

greater than the number of children some children would need to be duplicated to form a

complete parent group. With the number of parents fixed at 20 and the number of children

varied little variation occurs in the rate of cost reduction. Where there is a small group of

parents the number of children has little effect since the fittest parents will be the most

likely to breed children. Although the pool of children for the next parent generation may

be varied in size all children will be of similar capabilities whether this group is large or

small. With the number of children fixed and the quantity of parents varied differences in

performance can be seen. Poorest performance occurs with a large number of parents and

a large number of children. Part of the genetic algorithm is to select the fittest children,

thus if a large number of present children are selected to become parents singling out the

fittest will not be effective and a strong group of parents will not be formed.

142

Finally, to test the ability of the genetic algorithm at finding a known global minima

in a large search space the second data set was operated upon by the genetic algorithm.

Figure 5.20 shows the performance of the algorithm when the ratio of parents:children

is varied with the number of children fixed at 50, PQ = 0.5 and P„, = 0.03. The same

effect for the variation in the number of parents is exhibited as for the first data set, that

is that for less parents a faster reduction in cost function occurs. Although the known

global minima of zero cost is not found within the number of configurations inspected by

the genetic algorithm it has certainly got very close. Given more time it would probably

cover the remaining reduction.

Comparing the simulated annealing and genetic algorithm results it must be pointed

out that 100 more configurations were inspected by the simulated annealing algorithm

schemes than by the genetic algorithm. Within a given time, number of configurations

inspected, the genetic algorithm outperforms the simulated annealing for reducing the

value of the cost function and therefore in finding good tap pattern combinations for

multiple PRBS. The smoother curves for genetic algorithms. are achieved by averaging

several trails with the same parameter set. This was possible due to the faster operation

of the genetic algorithm over that of simulated annealing.

5.7 Conclusions

With the aim of being able to encode deterministic information into a stochastic pulse rate

signal for manipulation by the processes of §4 an examination of random number generators

both in hardware and software has been made. I t can be seen that the techniques available

are, many and various. One method in particular has been highlighted which can built

easily in hardware or modelled in software, the PRBS generator. The PRBS generator

consists of an LFSR with an appropriately selected X O R feedback circuit which performs

modulo two arithmetic. I f the feedback combination is correctly chosen an m-sequence is

produced with the shift register passing through all its possible states except the all zero

state.

Methods for generating delayed variants of the fundamental sequence have been dis

cussed with a view to forming multiple PRBSs from a single generator. The problems of

uneven loading upon the LFSR which may be caused by several delayed sequences created

from a single PRBS has been drawn attention to before the description of a solution by

Alspector which has been implemented for practical use. Alspector left open the question

of searching the solution space for an optimum result. To close this gap two methods of

combinational optimisation have been experimented with, simulated annealing and genetic

algorithms. Both of these techniques utiUse stochastic operators.

Simulated annealing and genetic algorithms have both been found worthwhile imple

mentations for the combinational optimisation of PRBS delay tap selection. Two formats

143

of the simulated annealing scheme were tested which can be equated to the amount of

energy in the system and the rate of cooling. A difference in performance between the two

simulated annealing schemes was noted, thus the exact implementation of simulated an

nealing to a particular problem is significant. The simulated annealing approach has been

found to be several orders of magnitude slower for this problem than the genetic algorithm

approach. Intuitively this result is not really surprising in that, although both algorithms

involve probabilistic processes, the annealing process does not generate as broad a search

space as the genetic algorithm. The genetic algorithm has also been found to satisfy its

claim to robustness in the adjustment of some of its main parameters, eg. crossover rate,

but more sensitive to other parameters, eg. the number of parents. For this combinational

optimisation problem genetic algorithms appear to be the better individual algorithm of

the two inspected. Considering the implementation process, simulated annealing is more

complicated with the concept of agitating the system, whereas the genetic algorithm in

volves simply manipulating the string through crossover and mutation.

Simulated annealing and genetic algorithms are not the only optimisation approaches

which can be applied, Very Fast Simulated Re-annealing, VFSR, as developed by Ingber

and Rosen, [99, 100], is another candidate but this has not been experimented with.

Alternatively a hybrid technique drawing on features of both simulated annealing and

genetic algorithms could be developed.

A l l component parts for an artificial neuron operating by the use of stochastic pulse

rate computation can now be seen to exist. In the following chapters an actual hardware

design is described, implemented and tested before consideration of a suitable training

paradigm which may be overlayed onto the fabricated hardware.

144

CLK
RESET

Figure 5.1: Format of a shift register. The output, Q, of a given D-type flip-flop stage in
the shift register feeds the input, D , of the following stage.

Shift Register

1 2 3 4 5 n-1

f(x., x̂ , x ,̂. . . , x_)

Feedback Function

Figure 5.2: Linear feedback shift register, LFSR, configuration. The input to the first
stage of the LFSR is a combination of the outputs from all stages of the shift register.

145

Normalised Autocorrelation

^ Relative
Delay In Bits

Figure 5.3: Autocorrelation for a PRBS. The correlation for all except synchronous se
quences of the PRBS are negligible.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.4: Extended PRBS generator. Delayed versions of a sequence can be obtained by
taking outputs from the extensions to the shift register, stages 11-15.

3 2 1 0

-N, -̂3

K+)J 1

Figure 5.5: Generation of delayed PRBS as illustrated by Tsao. Modulo two arithmetic
and the shift-and-add property of an m-sequence is used to generate delayed versions of a
sequence.

146

X5 X4 A3 - 2 •̂ 0

1

D'

Figure 5.6: Delay variance by moving tap position. A difference in delay can be obtained
by adjusting a tap position up or down the shift register.

^6 ^5 ^4 ^3 -2

Figure 5.7: Delay variance by moving a set of tap positions. By extension of the principle
illustrated in Figure 5.6 delays generated by tap combinations can be shifled by moving the
complete tap combination up or down the shift register.

1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1

Figure 5.8: Example of essential taps. For essential tap patterns the LSB is always unity,
near delays are obtained by shifting the tap pattern along the shift register.

147

4 2 1
Direction of shift —>
Before Advance 1
After One Advance X
After Two Advances X

0
1
X

0
0
1

0 = 8
0 > 4
0 > 2

Figure 5.9: Example of correlation between random numbers formed from successive bits.
It is necessary to advance a shift register by the number of bits it contains to prevent this
correlation being exhibited.

Before Crossover
0 0 1 1 1
0 1 0 1 0

0 1 0 1
1 0 1 1

After Crossover
0 0 1 1 1
0 1 0 1 0

1 0 1 1
0 1 0 1

Figure 5.10: Illustration of One Point Crossover with Two Strings. A common point is
selected in two strings and the string components are changed at this point.

148

7000

" 6000

a 5000

3000

200000 400000 600000

Configuration Inspected

800000 1000000

Figure 5.11: Simulated AnneaHng Scheme 1: Unknown Global Minima. The cost of tap
pattern configurations steadily reduces until 600000 have been inspected at which point the
energy minimisation levels o f f .

7000

- 6000

e

« 5000
3
en
c
o

4000

3000
200000 400000 600000

Configuration Inspected

800000 1000000

Figure 5.12: Simulated Annealing Scheme 2: Unknown Global Minima. The cost of tap
patterns used decreases but does not reach as low a final configuration and reaches a plateau
sooner.

149

200000 400000 600000

Configuration Inspected

800000 1000000

Figure 5.13: Simulated Annealing Scheme 1: Known Global Minima. This simulated
annealing scheme has been able to find the global minima within the search time allocated.

7000

6000 -

a 5000
U
e _o 4000 •

u
3
en

3000 •
G
C o

U
2000 •

1000 -

0 -
200000 400000 600000

Configuration Inpected

800000 1000000

Figure 5.14: Simulated Annealing Scheme 2: Known Global Minima. This simulated an
nealing scheme has been unable to find the global minima within the search time allocated,
but has tended towards a plateau. Compare this to the alternate scheme Figure 5.15.

150

9000

8000

o
U 7000 -
a _o
M 6000 '
3
00

"a
Q

5000 -
U

4000

3000

P(cro.ssovcr)

0.6

0.5

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Configuration Inspected

Figure 5.15: Genetic Algorithm: Unknown Global Minima: Varying Crossover Rate. The
genetic algorithm shows little variance in performance for small adjustments in crossover
rate. It has reached a comparable minima to that of Scheme 1 for simulated annealing.
Figure 5.11.

9000

P{crossover)

3000

1000 2000 3000 4000 5000 6000 7000

Configuration Inspected

8000 9000 10000

Figure 5.16: Genetic Algorithm: Unknown Global Minima: Varying Crossover Rate. The
genetic algorithm shows little variance in performance for large adjustments in crossover
rate, the system is robust for changes in crossover rate. It has reached a comparable
minima to that of Scheme 1 for simulated annealing. Figure 5.11.

151

9000

8000

O 7000
e

M 6000

1 5000

P(mutation)

0.02

0.03

0.04

4000

3000

1000 2000 3000 4000 5000 6000 7000

Configuration Inspected

8000 9000 10000

Figure 5.17: Genetic Algorithm: Unknown Global Minima: Varying Mutation Rate. The
genetic algorithm shows little variance in performance for small adjustments in mutation
rate. It has reached a comparable minima to that of Scheme 1 for simulated annealing.
Figure 5.11.

9000

8000

o
U

7000 -

io
n

a
t.. 6000 -

if
ig

ui

c o 5000 -
U

4000

3000

20 Parents

30 Children

40 Children

50 Children

1000 2000 3000 4000 5000 6000 7000

Configuration Inspected

8000 9000 10000

Figure 5.18: Genetic Algorithm: Unknown Global Minima: Varying Parents:Children
Ratio. The genetic algorithm shows little variance in performance for adjustments to the
number of children. It has reached a comparable minima to that of Scheme 1 for simulated
annealing. Figure 5.11.

152

9000

8000

o
O 7000
a _o
CO
La

6000 -
3
sn sa
3 5000 -
o

5000 -

u
4000

3000

,50 Children

- - 20Parent.s

30 Parents

40 Parenl.s

1000 2000 3000 4000 5000 6000 7000

Configuration Inspected

8000 9000 10000

Figure 5.19: Genetic Algorithm: Unknown Global Minima: Varying Parents:Children Ra
tio. The genetic algorithm shows quite a degree of variance in performance for adjustments
to the number of parents. It is not as robust to adjustments in this parameter.

50 Children

20 Parents

6000 30 Parents

.2 5000 40 Parents

g 3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Configuration Inspected

Figure 5.20: Genetic Algorithm: Known Global Minima: Varying Parents:Children Ratio.
.As above genetic algorithm shows quite a degree of variance in performance for adjustments
to the number of parents. It has tended towards the known global minima quicker for small
number of parents.

153

Chapter 6

A n Artificial Neuron V L S I

Design and Implementation

In preceding chapters of this thesis theoretical considerations have been made regarding

stochastic pulse rate computation §4 and the random number generation system to be

used in such an environment §5. These studies were undertaken with the aim of designing

and constructing an ANN operating by the use of stochastic pulse rate encoded signals.

An individual neuron must first be designed using these techniques before a whole network

may be built. From §3 i t can be seen that Banzhaf [57], Kondo et al [60], Van Den Bout [55,

56] and Tomlinson [42] have already put forward designs for neurons and ANN. However,

these designs either do not operate entirely in the stochastic pulse rate domain, rely upon

.inexact calculations or are for a particular NN architecture. The design put forward here

is for a neuron operating using SLB signals and with all processing performed within the

digital domain.

Following an overview of the ba^ic requirements for the neuron architecture to be

designed a brief description is made of the design and implementation routes available

within the School of Engineering, University of Durham and the reasons for selecting the

ASIC design package Solo 1400. The next section of this chapter is concerned with the

design and development of working sub-circuits before they are connected together to form

a working neuron. Finally, there follows a description of the test system used and the tests

applied to a fabricated neuron device.

6.1 Neuron Overview

For a neuron to be practically realised in hardware several factors must be examined.

Firstly, the method of computation and communication must be considered. This has been

decided upon as being stochastic pulse rate encoded signals, but should this be unipolar,

154

bipolar, single line, dual line, hnear or non-linear? Since many of the constituent parts

of a neuron (multipHers and summers) have not been considered for non-linear encoding

strategies the design must be a linear one. Linear dual line circuits tend to be larger

than their single line counterparts, using a single line scheme will lead to smaller circuits.

In addition the routeing of signals between component parts will be easier for the single

line rather than for the dual line case. Overall the signal computation should be bipolar

although it may be found that unipolar signals are more appropriate for some applications

within the neuron.

Secondly, the size of the neuron must be considered, what fan-in should i t have ie. how

many inputs will there be? This will be governed ostensibly by the task the NN has to

perform in which the neuron is placed. I f the neuron has excess inputs it is possible to

set unused inputs to zero so they do not contribute to the processing, whereas if there are

insufficient neuron inputs additional inputs cannot be added. Too many inputs will lead

to a large neuron which may prove unwieldy in this proof of principle exercise. For these

reasons a fan-in of 16 was selected. From an estimate of the circuitry size and complexity

to implement the design it should not prove too large to fabricate and test. In addition

the design is not too small that a computationally useful ta.sk cannot be performed.

Thirdly, the technology with which the neuron is to be built must be considered.

Whether to use discrete ICs or VLSI design tools? Whether i t will be T T L or CMOS? If

a VLSI design is implemented what level of design is necessary, eg. full custom, standard

cell? These questions about realisation are considered more completely in the following

section.

To summarise a general artificial neuron using SLB stochastic pulse rate encoded

signals with 16 inputs is to be built. The basic layout of neuron is as per Figure 2.2 a

sum of weighted inputs passed through an activation function, a sigmoid transform in this

design. The performance of the neuron can be adjusted by varying the weights and so

these weights must be programmable. I f the neuron is to be used in a circuit which learns

and adapts on-line then the weights must be able to be varied as the neuron operates.

The block diagram for the neuron is Figure 6.1.

6.2 Design Tools

Within the School of Engineering several options exist for the fabrication and test of an

artificial neuron. The three options considered are the construction from discrete T T L or

CMOS components, design/simulation/layout via the Solo 1400 CAD package and finally

design/layout/simulation using a combination of ChipWise, SPICE and System HILO 4 CAD

tools. Each of these three options offers varying degrees of sophistication, adaptability,

testability, expense and lead time. Each option will now be described in turn before

reviewing slightly more deeply the selected option.

155

Construction using discrete T T L or CMOS components offers the most flexibility in the

built hardware. Standard components may be used to perform specific tasks and circuits

easily adapted i f a design alters. This flexibility is also the weakness in that construction

becomes prone to errors. For a single neuron device this may be the best option to take,

but i f many neurons are to be built the job becomes highly repetitive with the increased

liability of errors. There is little delay between design and test as the circuit exists from

the outset. The discrete nature also means that there are more points at which a circuit

can be externally monitored to verify performance.

The second option is the use of the Solo 1400 ASIC design package. This tool allows

the design, simulation, circuit layout and packaging to be accomplished in a unified envi

ronment before dispatching the design to be fabricated by a third party. Solo 1400 makes

use of fully characterised standard cells of devices and circuits in 1.2^m, 1.5/im and 2.0/iim

CMOS technology which can be interconnected to form higher level functional circuits.

Libraries of intermediate circuits, eg. counters and registers, are available to speed the

prototyping phase. Once the neuron design is complete many can be fabricated at the

same time. I t is not feasible to make changes to a design once it has been fabricated,

thorough design and simulation is therefore necessary.

The third and final option is also an integrated circuit approach. The aim would be

to utilise a combination of ChipWise, SPICE and System HILO 4 to produce a full custom

designed neuron. I t would be necessary to design the individual logic gates through the

more complex sub-circuits to the final complete neuron. In eflFect a personal library of

components must be built and tested. The components gates can be simulated and char

acterised using the SPICE circuit simulation tool which could be used to extract timings

and drive capability information for example. The extracted parameters would be inserted

into a circuit description within System HILO 4 to allow simulation of the functionality of

connected circuits over a period of time as the circuits run. Circuit layout and routeing of

a design must all be accomplished manually. Once a design had been completed i t would

need to be fabricated and packaged by a third party. This option has potentially the most

sophisticated result but requires a prohibitive quantity of work to be undertaken.

In fabricating a neuron a balance has to be struck between design flexibility and

adjustment, ease of testing, level of integration, sophistication of design and repeatability

of fabrication. Each of the three above systems has strengths in some but not all areas.

Solo 1400 with its unified environment offers the best compromise since this will allow

the production of ASICs with their high level of integration and a structured format of

design simulation and test. Through the use of standard cells the individual design and

characterisation of many circuit components has already been accompHshed allowing the

structuring of the design with relative ease. The integrated simulation should enable the

highest probability of a functioning neuron to be designed.

156

6.2.1 T h e Solo 1400 P r o g r a m Suite

Solo 1400 consists of several separate programs instantiated from within a Solo 1400 envi

ronment shell, in this case running under the X l l windowing system upon a Unix work

station. The programs used can be classified into five general groups.

Design entry using draft or an ordinary text editor.

Circuit compilation with the model language compiler model.

Simulation and test with the waveform compiler wdl, simulator mads and output

inspection utility wave.

Layout and encapsulation of the design using place, gate, pinout, route, drawr,

artview and package utihties.

Design management using audit, padaudit and shipdes.

This is not a ful l list of the extensive Solo 1400 programs complete details of which can

be found in the reference manuals [101].

Design Entry

Two systems were used to enter a design, the first being the schematic entry utihty draft,

the second an ordinary text editor with which to write a circuit description using the

model hardware description language, HDL.

Wi th the draft tool a GUI interface is used to select, place and connect components

together. Libraries of pre-designed circuits, either standard or user written, can be called

upon to be added to the schematic. The resulting circuit may then be encapsulated within

a symbol as a new component for use in a higher level circuit. A hierarchy of building

blocks is constructed for a design such that at the highest level all that may be seen is

a number of interconnected black boxes with input/output pads attached. The resulting

output from draft is a compilable text file of model code.

Textual entry of a circuit design uses the model HDL. The structure of the language

is simple and clean, i t is not unlike writing a conventional software program. With the

experience of using draft a hierarchy of circuits can be written in either library files

< l i b r a r y > . inc or actual compilable circuit files <circuit> .mod.

Both systems had their place in the design process. Initially schematic entry provides

good visual feedback of the design of the circuit but i t is much slower for design entry as

the size of a circuit grows. Due to the name checking facility of draft circuit intercon

nection can be a problem ELS names on buses, wires may not agree even though such a

connection is valid. I t was found that often a base design could be produced using draft

and the model code produced extracted and incorporated into a textual library where

minor variations were made for specific needs. Conversely text based designs would be

157

bound into a schematic so that pads could be connected and the sub-circuit exported for
standalone simulation and testing.

Circuit Compilation

Following the entry of the circuit(s) and the formation of a model .file the code is compiled

using the model utility, model expands a <circuit>.mod file to a <c i rcu i t> .mdl file

which is compiled into a < c i r c u i t > . i d l file for the simulation of the design. Checks upon

the design for integrity are made with errors and anomalies adequately reported.

Circuit Simulation and Test

Having produced a valid circuit design it is necessary to verify its operation and perfor

mance. Solo 1400 offers several tools for this task, the main one used was mads (Multi-level

Analogue and Digital Simulator) together with the wave utility for displaying the output.

mads takes as its input a < c i r c u i t > . w d l file which describes how the circuit inputs

are to be driven, outputs of the circuit and specified monitor points within the design are

logged as the simulation progresses. The < c i r c u i t > . w d l is a text file written in WDL

(Waveform Description Language) which is very similar to C but with notable differences,

eg. no array handling. A well written exercise routine greatly aids in the verification of

a design and in debugging should this be necessary. It is not possible to specify what

an output or monitor point should be at any given time, this must be deduced from the

wave output and checked manually. These same test files for a circuit can/are used at a

later stage in the design process after the circuit layout and encapsulation when a greater

knowledge of the timing considerations are available and when testing with actual device

parameters occurs accounting for propagation delays, device loadings, tolerances etc.

Circuit Layout and Encapsulation

Given that a circuit operates as expected the next stage is to lay the design out on

silicon and if desired encapsulate within an appropriate package. Most of this process is

mechanical but user intervention is possible to fine tune parameters if desired. Normally

the default performance will prove satisfactory.

The first step is the execution of place, a utility which resolves the design hierarchy

into basic logic gates. The resolved hierarchy as implemented by a series of stages is

drawn out into a long line and then set out in a regular structure of rows and columns by

repeatedly folding the long line of stages back and forth to form an approximate square

format.

The gate ut i l i ty constructs each actual gate upon the output from the place utility.

The next stage of the circuit layout is the routeing of wires between gates and out

to the pads. User intervention is required to organise the pads on the die to a desired

158

format, the pinout utility provides a GUI based system for performing this operation.

Included in pinout is the ability to select the desired package in which the resulting

die will be encapsulated, it was found that for experimental designs the default package

selected bEised upon the die size was satisfactory. Once the pad organisation is complete

route can be executed which performs the actual placement of interconnections. User

intervention for the routeing process will have taken place at the design stage with the

specification of time critical signals. , .

I t is possible to inspect the resulting artwork from the placement and routeing using

draw and artview. draw translates the final output from route into Caltech Interchange

Format^, ie. i t generates a . c i f file. The . c i f file can be inspected graphically using

artview which allows the mask design to be viewed at various levels of detail. I t is feasible

to zoom into arccis of the mask and to mccisure distances between circuit elements.

The final stage is to encapsulate the design into the specified package from the pinout

phase. This entails placing the bonding wires between the die pads and the pins of the

physical package using package, package is similar to pinout in the layout of the GUI

and the package type selected should correlate with that selected in pinout else i t will be

necessary to cycle back to the pinout stage.

After placement and routeing it is required to return to the simulation and test phase

where the simulations can be rerun but with greater detail of device parameters and

propagation delays. Simulation runs accounting for maximum, minimum and nominal

expected timings should be successfully executed.

Design Management

To aid and maintain consistency of a design through its various stages Solo 1400 has several

utilities for automatically generating templates of required files extract and of analysing

the circuit produced audit and padaudit. shipdes is used to check the integrity of the

overall design process, that all the required utilities have been executed successfully in

the correct order, that all the test phases have been executed and any special concessions

have been agreed with the fabrication institution.

6.3 Artificial Neuron Design

Each of the sub-circuits of the artificial neuron design will be specified before amalgamation

into a single neuron unit for simulation and fabrication. A modular approach to design has

been adopted since an artificial neuron can then be constructed from tested sub-assemblies

with known modes of operation. Many of the sub-circuits are reused, by designing in a

modular format new occurrences of a module can be instantiated reducing the risk of

^CIF Caltecli Intermediate Format is a system for describing graphics items, mask layouts, in a machine
readal)le form for use by an otitput device.

159

errors and keeping the circuit description to a minimum. For example, in the case of the

N pulse divider weight encoders §6.3.5 a basic module was adapted and renamed for each

of the required weights. The sub-circuits are now presented either as d ra f t printouts or

in the form of sample model code. Example w d l test files are shown together with the

associated wave output plots.

6.3.1 P R B S Generator

A PRBS generator is required to create the random numbers which are to be used for

the encoding of the neuron input weights, the N pulse divider weights and the sigmoidal

transform. By the use of Alspector's technique [94] as discussed in §5.3.3 multiple PRBS

sequences from a single generator may be formed, actually the same sequence but at

different positions in its run length. The total number of sequences required for the

neuron is 34, made up of 17 for encoding the neuron input weight values, 16 for encoding

the N pulse divider weights and a single sequence for the sigmoidal transform.

A 27 bit PRBS is used, a schematic of which is shown in Figure 6.2 and the model

code listing for the variable length shift register is shown in Figure 6.3. The appropriate

PRBS feedback points were obtained from a table of primitive polynomials [102] which

are known to produce maximal length sequences. In order to allow for additional PRBS

sequences which may be required the software developed for the implementation of Al

spector's technique §5.3.3 was used to find a total of 38 sequences with a minimum of two

taps and a maximum five taps used. The delay variation, 5delay, from the nominal was

set at 100000. Thus, the nominal spacing between sequences is

Maximal length 2 '̂'' - 1 „ „„„
^ - - 3532045 Number of sequences 38

and the worst case spacing between sequences will be

Nominal space - 2 x 5delay = 3332045

A suitable configuration for the tap off sequence gating was found by the use of the

simulated annealing software §5.4. A sample of the model file for prbs27to38 which

generates the circuit is given in Figure 6.4.

No simulation of the tap off sequences were made but the basic PRBS generator was

exercised using mads and the wdl file of Figure 6.5. For this wdl file the generator is

reset such that all the individual elements are 1 and then run for 50 clock cycles at which

time i t is reset again and run for a second 50 clock cycles, both should produce the same

results. I t can be seen from the waveform plot of Figure 6.6 how the generator operates

for this short period of time and that i t is successfully reset at time = 102500.

160

6.3.2 12-bit Comparator

In the following two sections the storage and encoding for the neuron input weights and

the N pulse divider weights will be explained. Central to the transformation from a

deterministic value to a stochastic pulse is a circuit for comparing a weight register value

W with a random number R which has the same number of bits. I f W > i j a one is

required as an output else a zero is output. For the basic one-bit case the circuit of

Figure 6.7 will achieve the objective for arbitrary values of A and B. However, it is

required to compare two n-bit numbers. For example, consider two n-bit numbers where

n = 3 such that X = X3X2X1 and Y = Y3Y2Y1. A possible algorithm for comparing these

values is

1. Examine the MSBs, X3 and Y3

i f X 3 > ^3 then X>Y

i f X 3 < ^3 then X <Y

if X 3 = Y3 then no decision

2. Examine the next two bits, X2 and Y2

i f X2 > Y2 and X 3 = Y3 then X>Y

i f X2 < Y2 and X 3 = ^3 then X <Y

i f X2 — Y2 and X 3 = Y3 then no decision

3. Finally, examine the last two bits Xi and Yi

i f Xi > Yi and X3 = Y3, X2 = Y2 then X >Y

i f X i < Yi and X3 = 13, X2 = Y2 then X <Y

i f Xi = Yi and X3 = F3 , X2 = Y2 then X = Y

This algorithm could be expanded in logical form as follows where Ep is the equivalence

of any individual p bits.
^3 = X3Y3 + ^3^3

E2 - X2Y2 + X2Y2

El = XiYi + XiYi

therefore
X = Y: E3E2E1

X > Y : X3Y3 + 5:3^2^2 + ^ 3 ^ ^ 2 X 1 ^

X <Y: X3Y3 + E3X2Y2 + E3E2X1Y1

The logic gating even for only this 3-bit case is becoming quite involved. Fortunately

there is a more efficient system, in terms of gating, which can be utilised, the iterative

161

comparator.
I t can be seen from the explanation of the 3-bit comparator operation above that a

pattern of operation is emerging ie. given that no decision has been possible as to which is

greater X or Y then compare the next MSBs. In the worst case it is necessary to compare

all bits of the two numbers to form a decision. Some logic design books eg. Holdsworth

[103] and Roth [104] provide the derivation for the iterative comparator which is illustrated

in Figure 6.8 and Figure 6.9. The operation is that with ao and 6o) which are equivalent

to Zi and Z2 reset to zero, to compare the two bit streams of X and Y a bit at a time

starting with the MSB and recycle the result at each clock pulse for each subsequent bit.

A valid comparison result may occur before all bits have been compared but i t is necessary

to wait for the final bit comparison to be certain of the correct result.

The iterative comparator circuit is sequential whereas the original comparator de

scribed was made only from combinational logic. I t is true to say that the iterative

comparator is slower than the combinational comparator at actually testing the two num

bers but the combinational comparator has to wait for the full numbers to be formed,

probably in shift registers, before the computation can take place. There is thus no time

disadvantage to using the iterative comparator in this case but there is a great benefit in

terms of the circuit complexity and component count. The length of the numbers that

can be compared by this iterative technique is determined by the clocking and reading

arrangement not by the fundamental logic design of the comparator.

Figure 6.10 and Figure 6.11 illustrate the model code used to generate the iterative

comparator. After compiling an encapsulation of this design it was exercised using the

wdl file of Figure 6.12 the results of which are seen in Figure 6.13. For this simulation

three 4-bit comparisons were undertaken (1011,1100) = (10,12) starting at time 240,

(1101,1011) = (13,11) at time 750 and (0101,0101) = (5,5) at time 1250. The reset line

is taken low before each comparison begins to clear the output latches of any value they

may hold. I t can be seen that R goes high and T goes high at the points the conditions

X < Y and X > Y are detected respectively. Both R and T remain low where the

input signals are identical. The extension to 12-bit numbers is achieved by entering 12-bit

numbers, MSBs first, into the comparator and increasing the period between the reset

pulses.

6.3.3 Counters

Solo 1400 contains several libraries of elements including f i r m l i b and syncl ib , within

these libraries are more sophisticated circuits eg. multiplexors, n-bit shift registers and

counters. For the neuron design two types of counter are required, firstly a basic counter

which can be loaded with a specific value from which to start counting, secondly a more

sophisticated up/down counter which can also be loaded with a specific value. Only the

former exists in the libraries, a synchronous counter. The latter up/down counter will

162

need to be constructed from basic logic gates.

Starting with the basic synchronous counter one is required to count up to the number

of bits being compared by an iterative comparator, 12, and then reset both itself and the

comparators. Another of similar form but with a count of 80 is required for monitoring

of the S-sequence progression in the sigmoidal transform circuit, model files for the two

counters are in Figure 6.14 and Figure 6.15. The format of the two counters is the same

with a synchronous counter at the heart which is reset to all zero either by the count of 12

(80) being reached as detected by the immediate logic gates on its outputs. Alternatively

the counter may be reset to zero by an externally applied reset signal. A single low pulse

r s t en t clocked through a flip-flop when the counter reaches its limit is produced. The wdl

file and associated waveform plot are shown for only the 12-bit counter in Figure 6.16 and

Figure 6.17. The Probe commands in the model code allows signal fines internal to the

circuit to be monitored as well as the external connections which are always monitored.

By probing internal lines spikes can be seen upon r s tcn t which propagates to rstes

this is caused by the propagation of signals through the combinational logic on the outputs

of the counter. The spike is hidden from the reset input of the counter by the d-type flip-

flop and causes no problems.

Moving onto the second type of counter, the up/down counter, a 12-bit variant is

required for the storage and adjustment of the input weight values. An up/down counter

description does not exist in Solo 1400 so rather than redesigning a fairly common system

the 74169 T T L circuit was transcribed and used. Figure 6.18. The 74169 circuit is a 4-bit

up/down counter with both a carry-in and a carry-out, i t can be loaded with an arbitrary

4-bit value. By cascading three devices a 12-bit up/down counter could be formed. Since

an up/down counter is required for a total of 17 input weights two variations on the 4-bit

counter were formed one with no carry-in circuitry. Figure 6.19, and one with no carry-out

circuitry. Figure 6.20 enabling the 12-bit up/down counter of Figure 6.21 to be generated.

For 12-bits the range of numbers is 0 —> 4095 or for symmetrically distributed bipolar

values -2048 —> -1-2047 which is required here. A means for inhibiting the counter movement

when reaching either of these limits is required which will also allow the counter to move

away from the limit i f the opposite direction signal is applied. The final 12-bit up/down

counter circuit with Hmit stops is displayed in Figure 6.22. For exercising and simulating

this circuit a wdl file was used to verify that any value could be loaded into the counter,

that all the crossings from the use of one 4-bit stage to another operated both ascending

and descending in both positive and negative halves of the number range and finally that

the maximum and minimum limit stops operated satisfactorily. A wdl file and associated

wave plot for the two l imit tests are shown in Figure 6.23 and Figure 6.24.

In the simulation, Figure 6.24, the counter is loaded with a value just less than the

maximum ie. 0x7FA at time !^ 2500. With UD set HIGH which is equivalent to up the

counter can be seen to count up, cntout(0:11) . When the counter reaches the maximum

163

value i t stops until the count direction is changed time « 22000 when it starts to count

down. The process is mirrored for checking the minimum value limit stop starting at time

~ 32700 when a value just greater than the minimum is loaded into the counter.

A 5-bit up/down counter is required in the Gaussian random generator of the sigmoidal

transform. This is required to have a lower limit of 0 and an upper limit of 80, this counter

does not need to deal with negative numbers. Rather than use the two appropriate 4-bit

counters and limiting the counting as per the 12-bit version i t was decided to extend the

principle by which the 4-bit operated to five with no carry-in and no carry-out. The

resulting circuit is shown in Figure 6.25 and with the count limiting circuitry added in

Figure 6.26.

As per the 12-bit variant the counter was exercised and simulated at being loaded with

a valid value, counting up/down and stopping at the two limit points until the direction

of count was changed. No figures illustrate the wdl file or wave output plot.

6.3.4 Input Weight Storage and Encoding

The 12-bit up/down counter with limit stops described in the previous section §6.3.3 forms

the basis for the input weight storage and encoder circuit a diagram of which is shown

in Figure 6.27. In this circuit the 12-bit weight value, -2048 < W < 2047, is held in

the up/down counter. I t can be adjusted either by loading a new value explicitly or by

counting up or down thus allowing the weight to change as the artificial neuron operates.

Every 12 clock pulses the value in the counter is transferred to a shift register. In this

transfer the MSB is inverted, the effect of this inversion is to translate the number range

up by 2048. The new 12-bit number is compared a bit at a time with one of the 38 PRBS

sequences from the PRBS generator §6.3.1 by a 12-bit iterative comparator §6.3.2. The

result of this comparison is latched out after the 12th bit has been compared at which

point the new weight value is transferred into the comparator register and the process

repeats itself.

Since the up/down counter receives every clock pulse its value will constantly be count

ing up or down in this arrangement. In order to maintain a stable value to be encoded

it is necessary that the average number of counts up is equal to the average number of

counts down. A stochastic pulse sequence of value 0.5 should thus be fed to the Up/Down

input. The value of 0.5 corresponds to zero in a SLB stochastic computation scheme.

Originally this part was designed using the d ra f t schematic editor, but after the basic

layout had been produced the model part description was extracted, edited and debugged

resulting in the final description of Figure 6.28. The major components of Figure 6.27

can be identified as follows, Up/Down Counter ud l2b i t s t , Comparator Register —̂

es2sreg ps and the 12-Bit Iterative Comparator -+ comp_iter.

A total of 17 of these circuits are required which could mean many connection points to

the outside world from the ASIC if the 12 weight input lines and the 12 weight output lines

164

are all separate. This is resolved by using bi-directional pads for the weight input/output

immediately halving the number of connections at the expense of a little control logic.

Secondly by developing a simple address decoder/demultiplexor to select which input

weight is required for writing to or reading from, together with a multiplexor for selecting

the appropriate lines if a weight value is to be read out the number of connections can be

reduced to one set of 12. The model descriptions of Figure 6.29 and Figure 6.30 illustrates

the address decoder and multiplexor implementations respectively.

Appropriately combining 17 input weight encoders, address decoder, 12 multiplexors

with the necessary drive buffering a unified input weight encoding block can be formed.

This is not illustrated.

Simulation and verification was conducted upon the component parts of the input

weight system before utilising the entire system. Taking first the input weight encoder

itself i t was loaded with three values , 0 = 0x000, -t-1024 = 0x400 and -1024 = OxcOO, which

for a 12 bit range, —2048 < a; < +2047, should result in a stochastic pulse stream of value

0.5, 0.75 and 0.25 respectively. This is borne out by the wave plot of Figure 6.31 where T

is the output pulse stream. The LD/EN pulses can clearly be seen with the corresponding

changes in IM(0:11) time ^ 0, 2400000 and 4800000. UD and CLK, the up/down and clock

signals, appear as solid bands since on the scale of the plot they are varying too quickly to

be able to observe individual movements. Testing the address decoder is trivial with five

input address lines and 17 output select lines. By counting up through the binary codes

addr(0 :4) inputs Figure 6.32 demonstrates that each of the select fines select (0:16) is

chosen correctly.

6.3.5 N Pu l se D iv ider Weight E n c o d e r

For the N pulse divider which will be used to bias all 17 weighted input lines i t is necessary

to generate 17 stochastic pulse streams of value for which is needed a series of pulse

streams of j^, j^, ...etc. By encoding unipolar values of x F S , jq x F S , . . . the

stochastic pulse streams can be formed. F S is the full scale value. The basic encoding

circuit is illustrated in Figure 6.33 and is similar to the input weight circuit encoder of

Figure 6.27 but slightly simpler since there is no up/down counter to be included. As

the system is used to encode a constant value the inputs to the shift register are tied to

the power rail or to ground so that upon reset i t reloads its unique value for encoding.

Due to the uniqueness of the load value a separate description must be produced for each

encoder. Figure 6.34 displays the model code for this encoder for the value of ^ while

Table 6.1 is a table of values bias register contents.

The simulation of this circuit follows the same format of the input weight encoding

simulation of the previous section with the output stochastic pulse streams of the appro

priate value. This will actually be illustrated in the ful l simulation of the N pulse divider

when the output of these fixed value unipolar encoders will be probed.

165

Regist er Contents

Bias Register Decimal Hexadecimal
1

17 241 OxOFl
1

IG 256 0x100
1

15 273 0x111
1

14 293 0x125
1

13 315 0x136
1

12 341 0x155
1

11 372 0x174
1

10 410 Oxl9A
1
9 455 0xlC7
1
8 512 0x200
1
7 585 0x249
1
0 683 0x2A6
1
5 819 0x333
1
4 1024 0x400
1
3 1365 0x555
1
2 2048 0x800

Table 6.1: N Bias Register Contents

6.3.6 N P u l s e D i v i d e r

In the proposal of §4.4.1 for an N input adder circuit an extendable circuit for generating

N pulse streams of ^ is shown. Figure 4.12. This circuit will now be modelled using

Solo 1400. I t will be noticed that a basic cell of two A N D gates and an inverter exists

which is repeated in a ladder structure. This basic block d iy ide_ce l l is realised as

an individual element in the model code Figure 6.35 which allows an arbitrary sized N

pulse divider to be specified using the parametrised model code Figure 6.36 where the

d i v i d e _ c e l l block is repeatedly used.

For the neuron circuit 17 pulse streams of value are required so a simulation using

all pulse divider weight encoder circuits was simulated. By probing the output of the

weight encoders which are internal to the circuit the operation of all the encoder can be

verified at once. The wave plots of Figure 6.37 and Figure 6.38 displays all the encoded

weights n(2:17) are the resultant ^ pulse streams u (l : 1 6) respectively, u(0) = n(17).

Spikes can be seen in the jf pulse streams but due to latching of data in later parts of the

neuron these do not cause problems.

166

6.3.7 Mult ip l iers , G a t i n g and Summation

These circuits are as discussed in the review of stochastic computation techniques §4 and

are trivial. For performing the multiplication between the input value and its associated

weight a single X O R gate is used. To make the circuit definition less error prone a

parameterised array of X O R gates is specified given by the model code of Figure 6.39.

The original N input adder design is used to perform summation of the weighted input

signals. In order to gate these values appropriately the 17 lines of output from the N pulse

divider u (: 16) are used to gate the weighted input signals using a parameterised array of

A N D gates as per the X O R gate case above Figure 6.40.

Finally, the signals can be summed using an O R gate without the fear of losing in

formation due to the coincidence of input pulses or performing inexact computation. The

original choice was to use a tree structure of two and three input O R gates. Fortunately

Solo 1400 contains a built in parameterised O R gate circuit which can take N inputs, in

this case N = 17. This component will lead to a more efficient and compact multiple input

O R gate. This is not illustrated.

6.3.8 Sigmoid Trans form

The last component part of the artificial neuron is the sigmoidal transform which enables

the neuron to produce a non-linear response. The circuit proposed in Figure 4.27 of §4.7.3

is implemented in model code Figure 6.41. The 80-bit £^sequence listing is omitted, i t

consists of connections for the load inputs of the shift register to either the power rail or

to ground as appropriate. I t is seen that a new 12-bit comparison is performed every 80

clock cycles, governed by the length of the E-seqaence, which has the eflPect of reducing the

frequency of the resulting output stochastic pulse signal. I f this signal is fed into another

neuron this problem should be ameliorated by the slicing action of the input weighting,

but i t will be most noticeable in the case of actually decoding the pulse stream.

Specifically testing the sigmoidal transform performance is diflicult, however, the gen

eral operation can be determined by a similar exercise strategy to that of the input weight

encoding. Three values corresponding to 0.2, 0.5 and 0.8 ful l scale are transformed using

the circuit. A marked difference in the quantity of pulses should be seen between the three

values transformed. The difficulty in producing more exact results is in performing the

average of the output pulses by extraction from the output signal. Figure 6.42 displays

the output waveform for this circuit. I t can be seen that as the input values increase

from 0.2 ^ 0.5 -> 0.8 at times 700000, 6900000 and 13002000 the density of the pulses in

the output stream decreases. An error exists which has failed to be corrected in that the

output of the transform should have been inverted. This has propagated throughout the

whole artificial neuron design, fortunately a single inverter on the appropriate output pin

cures this problem. This is the reason the output pulses become less dense rather than

167

more dense.

6.3.9 T h e W h o l e Neuron

A l l the component parts required for an artificial neuron have now been designed and

simulated. These circuits are interconnected appropriately to form the complete artificial

neuron. In the process of compiling the whole design the power supply and ground are

specified together with the input, output and bi-directional pad connections. This enables

the remaining phases of the design stage (gate, place etc.) to be run for a unified

ASIC design to be produced. The successful integration of all circuit elements enables a

simulation of the artificial neuron to be performed.

Figure 6.43 displays the concise model code file for the complete neuron, for clarity all

the pad interconnections off the ASIC are omitted. The benefit of the modular approach

to design that Solo 1400 enables can be seen. Each sub-circuit has been designed and

simulated before incorporation into a higher level component resulting in the complete

neuron description in a limited number of lines of model code.

I t was found that after the initial layout and routeing the physical die size was large

and a core limited design had resulted ie. the size of the device is predominantly governed

by the size of the chip array Figure 6.44. The smallest off the shelf package in which the

die would fit was an 84-pin leadless chip carrier, LCC. A total of only 64 connections are

necessary for a fully connected device as listed in Table 6.2 leaving 20 unused pins. As this

Signal Quantity Name Type
Clock 1 Clk Input

Read/Write 1 R / W Input
Reset 1 Rst Input

Weight Address 5 Addr(0:4) Input
Weight Data 12 ln i t (0 : l l) Bi-directional

Input Pulse Stream 16 In(0:15) Input
Weight Up/Down Control 17 UD(0:16) Input

Output Pulse Stream 1 Out Output
Power Supply 5 Vdd(0:4) Power

Ground 5 Gnd(0:4) Power

Table 6.2: Necessary neuron connections

is a core limited device and rather than wasting the unused package connections additional

output pads were added to the circuit to allow monitoring of internal areas of the device.

In particular the output of the weight encoders were monitored Wght0ut(0:16) and the

result of the weighted input summation SumDut. This leaves just two unused pins. With

the benefit of hindsight i t would have been wise to have had a monitor on the output of

the PRBS generator.

After recompilation of the circuit following the pad additions and the resulting pro-

168

gression through all the layout, routeing and packaging routines of Solo 1400 the pin con

nections resulting are listed in Table 6.3 and the pin layout is illustrated in Figure 6.45.

Although it is possible within the mads simulator to monitor internal nodes within the

circuit the set of routines written to verify the performance of the neuron concentrated

on the abifity to only monitor the external connections since with a fabricated device

probing internally would not be feasible. The set of tests created in the wdl file progress

through the entire neuron exercising i t in stages. Diagnostic style tests were included

to verify operation of the internal circuits operation in case any problem occurred. The

simulation consisted of several separate sections to test the address selection, the loading

of input weight register values, the unloading of input weight register values, the abifity of

the weight encoders to convert the deterministic values into stochastic pulse streams, the

summer operation and the sigmoidal transform. These tests are a reiteration of the tests

conducted upon the sub-circuits but with the need to use the external chip connections

and preceding circuits for driving the circuits under test. Having successfully verified the

artificial neuron function the device is ready to be fabricated from the . c i f file formed in

the design and layout process. The fabrication has been conducted at a third party site

through the EUROCHIP program.

Once the device has been fabricated i t is necessary to test and verify the operation

of the physical hardware. The hardware testing system employed is described in the

following section §6.4. Following a description of the successful testing of an individual

artificial neuron device a circuit is presented utilising six neurons operating to perform a

simple standard task, the encoder/decoder problem.

6.4 Hardware Artificial Neuron Testing

To test the fabricated artificial neuron two hardware test configurations were considered.

1. The design and construction of a test board driven by a combination of signal gener

ators and on board test circuits. Signals would be monitored and analysed via logic

analysers and oscilloscopes.

2. The design and construction of a mounting circuit board with a cabfing interface to

a digital I /O card controlled from within a PC.

Each system does of course have its own advantages and disadvantages.

Considering first the construction of a test board driven by signal generators and

monitored by logic analysers and oscilloscopes. The coordination of several pieces of

external equipment to produce a unified test system becomes difficult. A total of 53 inputs

are required for a neuron, though for some tests many are driven in parallel, the availability

of equipment with the appropriate number of outputs becomes a problem. The ability

169

Pin Name Type Pin Name Type
1 Gnd 0 Ground 43 UD 8 Input
2 OutWght 0 Output 44 UD 9 Input
3 OutWght 1 Output 45 UD 10 Input
4 OutWght 2 Output 46 UD 11 Input
5 OutWght 3 Output 47 UD 12 Input
6 OutWght 4 Output 48 UD 13 Input
7 OutWght 5 Output 49 UD 14 Input
8 OutWght 6 Output 50 UD 15 Input
9 OutWght 7 Output 51 UD 16 Input
10 OutWght 8 Output 52 Vdd 4 Power
11 Not Used Not Used 53 Gnd 4 Ground
12 OutWght 9 Output 54 RW Input
13 OutWght 10 Output 55 Vdd 3 Power
14 OutWght 11 Output 56 Gnd 3 Ground
15 Gnd 1 Ground 57 Clk Control
16 Vdd 1 Power 58 Rst Control
17 OutWght 12 Output 59 In 0 Input
18 OutWght 13 Output 60 In 1 Input
19 OutWght 14 Output 61 In 2 Input
20 OutWght 15 Output 62 In 3 Input
21 OutWght 16 Output 63 In 4 Input
22 SumOut Output 64 In 5 Input
23 Out Output 65 In 6 Input
24 Init 9 Bi-dir 66 In 7 Input
25 Init 10 Bi-dir 67 In 8 Input
26 Init 19 Bi-dir 68 In 9 Input
27 Addr 0 Control 69 In 10 Input
28 Addr 1 Control 70 In 11 Input
29 Addr 2 Control 71 In 12 Input
30 Addr 3 Control 72 In 13 Input
31 Addr 4 Control 73 In 14 Input
32 UD 0 Input 74 Init 0 Bi-dir
33 Not Used Not Used 75 Init 1 Bi-dir
34 UD 1 Input 76 Init 1 Bi-dir
35 UD 2 Input 77 Init 2 Bi-dir
36 UD 3 Input 78 Init 3 Bi-dir
37 UD 4 Input 79 Init 4 Bi-dir
38 UD 5 Input •80 Init 5 Bi-dir
39 UD 6 Input 81 Init 6 Bi-dir
40 Vdd 2 Power 82 Init 7 Bi-dir
41 Gnd 2 Ground 83 Init 8 Bi-dir
42 UD 7 Input 84 Vdd 0 Power

Table 6.3: Artificial neuron chip pin connections

170

to control the time between operations and signal changes is a definite advantage as are

the measurement capabilities provided by a logic analyser. I f several pieces of equipment

are used for driving the device then synchronisation may become a problem. Sampling of

output lines with the resulting pulse counting and averaging will not be straightforward

with this system.

I f the second system is adopted a basic breakout of the ASIC pins to connectors is

required which will link to a PC driven digital I /O card under software control. A highly

versatile system will result for the controlfing, driving and reading from the communication

lines. The timing information between signals will be limited by the timing capabilities

written into the software. The signal level monitoring, accumulation of output pulses and

processing will be straightforward as this can all be handled by the software. I t is still

feasible to use an oscilloscope and logic analyser as external pieces of test equipment for

verifying signal performance if required. The basic trade-off between the two approaches

is hardware complexity vs software complexity.

I t was decided to adopt the second system of testing due to the expected relative short

lead time for fabrication of the board and generation of the test software. The simple

hardware test layout is illustrated in Figure 6.47 where two FPC-024 digital I / O cards

were installed in a PC allowing a maximum of 96 fines to be controlled in four groups of

three sets of eight lines. Appendix D lists the 72 interconnections necessary between the

I / O cards and the neuron chip.

To control, read from and write to these lines through the digital I /O cards software

written using C-|—|- was produced. C++ was chosen since i t would allow the development

of a simple class for the digital I /O cards.

The testing software written can be broken down into three areas

1. The FPC-024 class for driving the digital I /O cards.

2. A set of fibrary routines for controUing specific fines eg. CLK, RST, as well as more

complex routines for loading and unloading weight values for a given input signal.

3. The test routines written to exercise the neuron which are built from the component

routines of (1) and (2).

The test routines will now be individually described and discussed.

testWghtsO To be able to successfully use the neuron the input weight register must be

able to be written to and read from. With all the data inputs set DATA_HIGH and the

up/down fines set to COUNT_UP each of the 17 weight register is loaded with a preset

value in turn. The weight registers are then immediately unloaded in turn. The

result is that the unloaded value is 16 more than the value originaUy loaded since each

register will have been clocked 16 times between loading and unloading. The test

also confirms the operation of the address selector, multiplexors and demultiplexors

through the bi-directional sections of the chip.

171

testCountUpO Each weight register is tested to verify that the counter will count up a

specified number. With the data value set DATA_HIGH and the count direction set

at CQUNT_UP the weight register is loaded with a mid-range positive value and then

clocked a known number of cycles before reading the value back out. The read out

value from the weight register should be the number of clock cycles in excess of the

value originally loaded in. This test is repeated for a mid-range negative value. Al l

17 weight registers are tested in this manner.

testCountDownC) This is a companion test to testCountUp() in that the same procedure

is followed to test the 17 weight registers except that the count direction is set to

COUNT_DOWN and the value read back in should be the appropriate number of clock

cycles less than the value originally loaded in.

testZeroCrossO The zero crossing is tested for each of the weight registers. A value

less than zero is loaded with the count direction set to COUNT_UP and the counter

clocked through zero for a known number of cycles and the correct positive value is

read back out. The chip is reset and loaded with a value just greater than zero with

the count direction set to COUNT_D0WN the counter is clocked back through zero for

another known number of cycles and the correct negative value read back out.

testDirChangeO Taking each weight register in turn the register is loaded with a mid-

range positive value. The register is set to COUNT_UP and the register is clocked for a

known number of pulses. The direction of the count is reversed to COUNT_DOWN and

the register clocked another known number of pulses. Finally the count direction is

reset back to COUNT_UP and the counter clocked for a final number of known cycles.

At each change of count direction and at the end of the test the value of the weight

register is read out and confirmed to be correct. The aim of this test is to verify that

as the direction of count is changed while the counter is in use the counter correctly

changes direction without any loss or gain in its value. The test strategy is repeated

for both for each weight register and in the negative half of the counter range.

testMaxLimit 0 The aim of this test is to confirm that each weight register will count up

to its maximum value of 2047 and then stop until the direction of the count reverses

to COUNT_DOWN at which point the register should move down.

This test initially failed in that the counters correctly increment to their maximum

limit and stop but on reversal of the count direction they clock over from the max

imum value to their minimum value at which point the counter is being driven to

COUNT_DOWN and so holds its value at the minimum value. This led to a rethink of the •

clocking and driving strategy such that the time the up/down line changes occurs

when the clock is at CLOCK_HIGH rather than CLOCK_LOW as previously. The weight

counter then correctly stopped at the maximum value and counted down when the

172

direction of the up/down signal reversed.

t e s t M i n L i m i t O This is a companion test to testMaxLimit () in that a similar procedure

is used to test the limit stop at the lower end of the count -2048. The weight register

under test is initially loaded with a value just greater than the minimum limit and set

to COUNT J30WN. Before the timing changes for the direction of the up/down signal

had been corrected the counter would stop at -2048 until the direction of count

reversed at which time it would clock over to 2047 where i t would be attempting to

COUNT_UP and then the counter would again halt.

testWghtEncodeO Three values are loaded in turn into each weight register -1024, 0,

1024. For each of these values the circuit is clocked sufficient times to produce

a RUN_LENGTH long output sequence. In effect the number of clock cycles in 12 x

RUNJLENGTH. The output of the pulse coded value from the weight encoder circuit

WghtOut(*) is sampled every 12 clock cycles after each comparison has been per

formed. The accumulated output pulses divided by the RUNJLENGTH is a measure of

the encoded value given by eq.(4.7). For the three values above the results will be

approximately 0.25, 0.5, 0.75 respectively. The accuracy of this result will depend

upon the actual RUN_LENGTH. The greater the value of RUN_LENGTH the better the

estimate to the desired value.

During the testing the input lines are all set to DATAJilGH. The up/down control

lines are toggled after every clock pulse so that the weight register counts up by one

and then counts down by one thus maintaining a constant value for encoding.

tes tPulseDivider () To verify that each of the 17 signals input to the pulse divider circuit

preceding the summer is weighted by the corresponding input weight register is

loaded with its maximum value, the input is set to DATA_HIGH and the direction of

count set to COUNT_UP. This will cause a permanent high signal to be the resulting

weighted input. Al l the other inputs are set to DATA_LOW, their count direction set to

COUNT_DOWN and their weight register loaded with the minimum value. This causes

a permanent low signal to be output by the resulting weighted input.

Only one input to the pulse divider circuit will be high and the pulse divider output

for this signal will be value of the weighting applied to i t , ^f- This is monitored at

SumOut the output of the summer which will not be affected by the other inputs as

they are all low. By cycfing through which of the 17 weighted inputs is high the 17

pulse divider signals can be tested.

testSummerO By asimple extension of the ideas of the previous test testPulseDivider ()

of setting an input to the pulse divider permanently high, by setting several perma

nently high fixed addition in steps of can take place through the summer. Thus

173

to test the summer the number of signals permanently high is ramped up and the
series 0, p^, . . . jy can be measured at the pin SumOut.

testSigmoidO This final neuron test routine builds upon the previous routine testSummer ()

in that the actual neuron output Out is monitored as the number of inputs set high

is ramped up. The value of Out has to be sampled every 80 clock pulses since

the speed of update is governed by the i?-sequence length in the Gaussian random

number generator which is 80-bits long. The value read out will be inverted ie. 1

- actual value but this can be easily corrected by addition of an inverter in the

practical circuit usage of this device.

6.5 A 4—2—4 Encoder/Decoder Implementation

To be able to demonstrate the capabilities of the artificial neuron device operating in a

coherent manner a proposal to design a dedicated hardware network utilising six of the

fabricated neurons was put forward and implemented. This proposal was set aside at a

late stage due to unsurmountable communication problems with each individual neuron.

A second, successful, approach was attempted by writing appropriate driver software to

simulate the operation of a network of six neurons by multiplexing the operation through

a single neuron on the test board of §6.4. A short description of the original proposal

will be given due to to the effort expended upon i t . This section will then move onto

the successful multiplexed system implementation, a description of the weights used to

perform the task and the results of operating the network.

6.5.1 Sys tem Implementat ion: 1st Proposa l

The first proposal was to use the experience gained in the single test board to design and

build a network of six neuron boards mounted on a backplane motherboard. Figure 6.48.

Control of the system would be effected through the two FPC-024 digital I /O cards as per

the individual neuron test board of §6.4. The addressing space would need to be extended

to allow each neuron board to be addressed independently. Monitoring of individual weight

encoding procedures would no longer be possible without a significant increase in wiring

complexity or switching circuitry. Each neuron's operation will have been verified initially

using the neuron test board. Each neuron's output was however directly monitored.

Appendix E contains the digital I /O card connections and the circuit diagrams for the

dedicated hardware.

After fabrication of the six neuron boards, backplane and writing of the main driver

software, communication between the ASIC socket and the ASIC was found to be inter

mittent, irregular and lacking continuity. Several sockets from different suppliers were

tested but none with satisfactory results. This problem had been encountered with the

174

test board but had been accounted for by the use of a cheap, poorly specified socket.

A special purpose ZIF (Zero Insertion Force) test connector had been used for the test

board to overcome this problem. The cost and size of ZIF sockets are prohibitive for their

use in situations other than as a reusable ASIC chip mount. I t was this problem of poor

continuity which led to the design ultimately being set aside.

6.5.2 Sys tem Implementation: 2nd Proposal

The second, less visually effective, proposal to demonstrate coherent network operation was

to re-utilise the test board. A network of neurons can be simulated by time-multiplexing

the operation through a single device. Reference to Figure 6.49 a 4-2-4 Encoder/Decoder

feedforward configuration will aid in understanding the following description. Initial input

sequences for the network are generated and held in arrays on the host PC. Since the four

input neurons act as purely distribution points for information Neuron 1, in the hidden

layer, is the first to be driven. The weights, scaled appropriately, for the neuron are

initialised to those necessary for such a hidden neuron and the four input pulse sequences

fed into the neuron. As each input pulse combination is processed the single output pulse

is stored in an array on the host. Once the input sequence has been exhausted the single

neuron is loaded with the weights appropriate for Neuron 2 and the four input sequences

passed through the neuron with the storage of the single output pulse stream in a new

array on the host.

To process the output layer neurons, 3-6, the process of running pulses through one

neuron at a time and storage of the output pulse stream is repeated. On these occasions

though the pulse sequence is to be input are taken from the two output sequence arrays

for the hidden layer neurons. Decoding of the output pulse sequence can be undertaken

to verify that they are the correct value.

I f longer input pulse sequences are required ie. the network is to be run over a longer

time frame, a fresh set of four input streams can be generated and the multiplexing process

can be continued as often as desired. The output value of the network would then need

to be taken over the effective full output sequence length or a software implementation of

one of the output processes of §4.8 used.

By the use of the multiplexing technique i t is feasible to describe and run a feedforward

network of arbitrary size for network evaluation purposes. I t would not be possible to

adjust weights on-fine, each neuron's weight would need to be pre-determined.

6.5.3 Weight Determinat ion

For the demonstration network of the 4-2-4 encoder/decoder network no on-line adaption

was to be performed. The weight values for each neuron were to be determined in advance

and loaded in as required, (all at once in the first proposal, one neuron at a time in the

175

Neuron Weight Matlab Value Scaled Values
1 Bias -0.1221 -81
1 1 0.7312 486
1 2 2.3173 1452
1 3 -2.4702 -1644
1 4 -1.4920 -993
2 Bias -0.6493 -432
2 1 -1.3388 -891
2 2 2.1569 1436
2 3 -3.0768 -2048
2 4 1.6528 1100
3 Bias -2.7767 -2008
3 1 2.8239 2042
3 2 -2.8204 -2039
4 Bias -2.7953 -2021
4 1 2.8107 2032
4 2 2.7569 1993
5 Bias -2.7706 -2003
5 1 -2.8014 -2025
5 2 -2.7512 -1989
6 Bias -2.7854 -2014
6 1 -2.8272 -2044
6 2 2.8327 2048

Table 6.4: Possible weight values to be loaded into each neuron as determined by the use
of a network trained using Matlab. The Scaled Values are those which are to be loaded
into the hardware neuron.

second). The values the weights should take could be determined by the use of commonly

available software using the backpropagation learning algorithm for this form of network.

Using the Neural Network Toolbox in Matlab a set of possible weights could be determined

as shown in Table 6.4. Problems will exist with these learned values since although they

operate with a small error in the simulation they do not account for the specific shape of

the sigmoid in the hardware, neither do they account for the reduced output range of the

hardware neurons caused by only a proportion of the inputs being used.

I t is known for this problem of encoding and decoding that the hidden layer neuron

weights are such that the hidden layer neurons produce a binary representation of the

input line which is high. The output layer neuron weights are such that the hidden layer

binary representation is decoded back to a single line being high. An appropriate set of

weights for the neuron can thus be configured as shown in Table 6.5. These values should

overcome the limitations of the sigmoid not producing an adequate squashing function

and the limited dynamic range of the output.

176

Neuron Weight Weight Value
1 BicLS 0
1 1 -2040
1 2 2040
1 3 -2040
1 4 2040
2 Bias 0
2 1 -2040
2 2 -2040
2 3 2040
2 4 2040
3 Bias -512
3 1 -2040
3 2 -2040
4 Bias -512
4 1 2040
4 2 -2040
5 Bias -512
5 1 -2040
5 2 2040
6 Bias -512
6 1 2040
6 2 2040

Table 6.5: Weight values for 4-2-4 hardware encoder/decoder. These values are deter
mined by a combination of inspection of the problem and the solution of the equations
which describe the system.

177

6.5.4 Resu l t s of Sys tem Operat ion

After the transition from a system of six neurons all operating coherently to a single

neuron simulating the operation of the six by multiplexing its operation it was possible

to demonstrate the system operation. The above second proposal of time multiplexing

process was successfully implemented in software and the single neuron driven in order

to demonstrate the 4-2-4 encoder/decoder. The drawback of this approach is that the

network took six times as long to operate and the benefit of parallel operation is obviously

lost.

The system was first driven with the 'learned' weight values from the Matlab simu

lation. Table 6.6 displays the results of this network when run. It can be seen that the

average output values of the neurons are close to 0.5 equivalent to zero when converted

from the SLB representation to a real value. Applying the decoding transform of eq.(4.9)

i t can be seen that the hidden layer, neurons 1 and 2, does indeed have a binary repre

sentation of the input lines being high. However, this does not continue through to the

appropriate line being high for the output layer, neurons 3, 4, 5 and 6.

Wi th the new set of weights, illustrated in Table 6.5, the neuron outputs are as shown

in Table 6.7. Again a binary coding of input values is evident in Neurons 1 and 2 of the

hidden layer. This time they result in the appropriate output layer neuron firing and being

high, neurons 3, 4, 5 and 6.

On re-inspecting the two sets of weight values in Table 6.4 and Table 6.5 i t can be

seen that the form of the weight values are of approximately the same configuration with

respect to sign and magnitude. The determined values of Table 6.5 simply drive the

neurons harder to the limits of the output to overcome the poor sigmoid.

A drawback in the A'' input adder WELS observed that had not been previously consid

ered. When less than a ful l number of inputs are used, the unused inputs being set to a

value of zero, the range of output values from the adder will restricted to the proportion

of inputs actually used due to the constant jj- scaling. Thus, if only n of the maximum A'̂

inputs are used the swing in output value of the adder will be

6.6 Summary

In this chapter we have used the ideas and techniques of the previous two chapters §4 and

§5 to present a novel design of an artificial neuron operating by the use of stochastic pulse

rate encoded signals. The neuron design has been implemented in CMOS VLSI using the

Solo 1400 design package in 1.5/im technology. The design uses approximately 5500 gates

and 27000 stages which covers an active chip area of 9.59 x 8.13 = 77.98sq.mm

This chapter began with a specification for a 16 input device operating using SLB

signals and a block diagram of the artificial neuron circuit to be designed. An evaluation

of the design system options available was made which resulted in the selection of the

178

Input Configuration Neuron Output Value Converted Output Value
1, 0, 0, 0 1 0.475356 -1

. 2 0.537719 1
3 0.528606 1
4 0.473375 0
5 0.471869 0
6 0.468931 0

0, 1, 0, 0 1 0.444369 -1
2 0.473919 -1
3 0.498350 0
4 0.501975 0
5 0.443256 0
6 0.438931 0

0, 0, 1, 0 1 0.534744 1
2 0.512819 1
3 0.442706 0
4 0.440363 0
5 0.499894 0
6 0.499156 0

0, 0, 0, 1 1 0.515656 1
2 0.483288 -1
3 0.440612 0
4 0.441631 0
5 0.499956 0
6 0.497706 0

Table 6.6: Neuron output values for the four input schemes possible with a 4-2-4 en
coder/decoder, trained weights. Hidden layer neuron output values are converted on the
basis of the sigmoid, while the output layer values have been thresholded at T = 0. NB.
The neuron outputs are SLB representation therefore an output of 0.5 translates to an
actual value of 0.

179

Input Configuration Neuron Output Value Converted Output Value
1, 0, 0, 0 1 0.555506 1

2 0.556350 1
3 0.552144 1
4 0.493888 0
5 0.491812 0
6 0.432456 0

0, 1, 0, 0 1 0.440656 -1
2 0.556613 1
3 0.494569 0
4 0.554513 1
5 0.434725 0
6 0.491325 0

0, 0, 1, 0 1 0.556394 1
2 0.442463 -1
3 0.493244 0
4 0.436450 0
5 0.551087 1
6 0.491881 0

0, 0, 0, 1 1 0.437956 -1
2 0.442794 -1
3 0.435781 0
4 0.497350 0
5 0.494100 0
6 0.551037 1

Table 6.7: Neuron output values for the four input schemes possible with a 4-2-4 en
coder/decoder, calculated weights. Hidden layer neuron output values are converted on
the basis of the sigmoid, while the output layer values have been thresholded at T = 0.
NB. The neuron outputs are SLB representation therefore an output of 0.5 translates to
an actual value of 0.

180

Solo 1400 design package §6.2. Following a description of Solo 1400's main tools to be used

in the design process a detailed description of the neuron sub-circuits is made consisting

of either schematic diagrams or HDL descriptions of the circuits §6.3. Simulation test files

are presented with their resulting output which demonstrate the correct operation of the

sub-circuits. The sub-circuits are combined to form a complete artificial neuron which has

subsequently been fabricated.

In section §6.4 the testing system for the fabricated device is outlined together with a

description of the software test routines used to exercise the device. Due to the nature of

the testing system the operation of the device is limited to basically a yes no response. The

artificial neuron device operates as desired producing a weighted sum of 16 inputs using

stochastic pulse rate encoded processing. However the non-linear sigmoidal transform is

limited use due to its poor performance.

Section 6.5 describes how the hardware neurons which have developed throughout

this chapter have been configured into a small example network to perform the 4-2-4

encoder/decoder problem. Two systems were attempted, the first unsuccessful system

used six devices operating in a parallel, the second successful approach used a single

neuron through which all the necessary signalling was multiplexed. The first system

proved unsuccessful because clear and consistent connectivity could not be achieved to all

the designed neuron boards. The bad connectivity has been attributed to a poor design in

the ASIC packaging and associated connector. The second system reused the test board

in the previous chapter but with new driver software.

Given an appropriate set of neuron weight values it was demonstrated that the network

of six neurons could perform the 4-2-4 problem. A set of weights obtained by training

a model of the system in software using backpropagation were found not to be adequate

since they did not drive the neurons sufficiently hard. The model of the sigmoid would

need to be more precise for accurate off-line training to be performed. Using a semi-

heuristic technique to find an alternative set of weights which drove all the neurons either

fully-on or fully-off the network was able to more clearly demonstrate the performance of

the task.

This system implementation highlights several areas of work which may be developed

further: the formation of an N input adder which does not suffer from the scaling difficul

ties, the formation of an improved sigmoid transform and the development of an accurate

functional model of neuron to enable software simulation of its performance and oflf-line

training to be performed if desired.

181

N+1 Pulse
Divider

Block
Multiplier

Summer
Gating

Di -

Gating

Di - 1 ^ x-Wf D. X.W.-

Neuron
Output

Figure 6.1: Basic architecture for a stochastic pulse neuron. The neuron produces a
function of a weighted sum of inputs. Signals are of the single line bipolar form.

182

0̂

1

I

L

vi
s

- " J 2

"1

1 L

>
-a

1 L

1
T3

u

00
0)

•a

M l

Q

X)

CO

Figure 6.2: 27-bit PRBS generator schematic. The basic shift register is composed of vlsr
building blocks with an X O R feedback circuit.

183

##########
pari: iilfir

dr..icri:ption: Vario.hlc. Ir.nyth. .'schift register.
Adapted from ES2 example, eaeh. .itage
outputs its value. An n..syneh.ronoii.s set is used to
set the deviee to all 1 's.

P a r t vl.sr (n) lck,fl,s] -* q(l .n)

In teger i

S i g n a l q i (l :n+ l)

I f n = 0 T h e n
a ^ q(l)

E l s e
a ^ qi(l)
F o r i = 1 : I I C y c l e

baffs (ck,qi(i),s] - qi(i+l) , --
q i (i+l) q(i)

R e p e a t
E n d i f

E n d { <^nd of Part vlsr declaration

Figure 6.3: model code for variable length shift register. Specifying the variable n deter
mines the length of the shift register. Note the For - Repeat loop construct simplifying
the design specification.

{ ##########
part: prhs27toS8

description: Forms 38 sequences from. 27 bit PRBS genera.ior.
##########

P a r t pibs27to38 [in(l:27)] - prbsout(l:38)

S i g n a l inbuf(l:27).
link(0:82)

arraybuffer (27) [in{l:27)) - inbuf(l:27)

{ prhsout(l)
xor
xor
xor

inbuf(21),inbuf(24) link(O)
inbuf{25),inbuf(2C) - l ink(l)
link(0),lmk(l)) -> prbsout(l)

{ prhsout(2)
xor inbuf(8),inb.if{10)] link(2)
xor inbuf(19),inbuf(21)] link(3)
xor link(2),link(3)] -» prbsout(2)

{ prhsout(3)
xor inbuf(ll),inbiif(18)] -> link(4)
xor lmk(4),inbuf(23)] prbsout(3)

Figure 6.4: Sample model code for 38 taps offs from 27-bit PRBS. A'̂ o input variables to
configure this stage were possible, each gate has to be specified and connected explicitly.

184

/ / ##########
/ / file: prh.'!27.v,dl.
/ /
/ / dcsmption: Test and exercise 27 bit Pseudo Random Binary
/ / Sequence Gencra.tor.

/ / ##########

/ / ##########
/ / function: r.lkPuhr.Q
/ /
/ / dr..<i(:ription: togylc. a .lignal line, twice, normally the clock
/ / ##########
void
r.lkPulso(signal clock)
{

Toggle(clock);
S imulate;
Toggle(clock);
S imulate;

) / / end of function clkPuhcQ
// ##########
/ / w.ain function to exercise the 27-hit PRBS
// .##########
main()
{
/ / control lines

I n p u t ck4;
I n p u t rst;

/ / d.o.tti lines
O u t p u t p(27:l);
Sct.Cycle(lOOO);

/ / initialise •prhs2y
ck4 = 1;
rst = 1;
clkPulse(ck4):
rst = 0:
clkPulse{ck4);
rst = 1;

/ / -nm •prbs27 for 50 clock cycles
for (i = 0; i < 50: i+-l-) {

clkPulse(ck4);

/ / reset prhs27 a.nd r\i.n again
rst = 0;
clkPulsc(ck4):
rst = 1;

/ / run prbs27 for 50 clock, cycles
for (i = 0; i < 50; i++) {

clkPulse(ck4);
} / / f o r ^

} / / end. of inain(J

// ##########

Figure 6.5: wdl code for exercising 27-bit PRBS. After initialising all the input lines the
PRBS is clocked for 50 cycles before being reset and clocked for another 50 cycles. Note
the use of procedures in the code.

185

Figure 6.6: wave output plot for 27-bit PRBS generator. After the initialisation phase
the PRBS has been clocked for 50 cycles, the pulse train can be seen to ripple through the
shift register. Following the reset of the PRBS the same sequence of pulses is repeated.

186

B

o -

-Oo-

5> A>B

A<B

Figure 6.7: One-bit comparator. Simple combinational logic circuit for comparing two
inputs.

-{>o- 3>
H>o-

5>
Figure 6.8: Iterative comparator cell. Combinational logic building block which will use
current line values together with the previous result to generate a comparison output.

Comparator
> >

> > >

5>

Clk • -

Figure 6.9: Iterative comparator. Sequential logic circuit utilising the comparator cell of
Figure 6.8 and D-type flip-flops for storing the results of the comparison.

187

{ ##########
•part: comp .cell

description: CowJmio.tion.al logic for an iterative comparator
:##########

P a r t comp.ccll [nota,notb,x,y] —• aout.boiit

S i g n a l notx,
noty.
bxyout,
axyout

not X —» uotx
not y —> uoty

nana notb,notx,y] —• bxyout : nana3_bxyout
nana nota.x.noty] —» axyout : nana3j.xyout

nana bxyout,nota -* ao)it : nana2-aout
nana axyout,notb —> bout : nana2_bout

E n d { end of Part comp.ccll declaration

Figure 6.10: model code for iterative comparator building block. Implementation of the
comparator cell of, Figure 6.8. Note that the circuit has been organised to use simply
N A N D gates.

##########
part: compSter

description: An Iterative Comparator
Tina control lines elk P3 rst
Output of com.po.rison ch.a.nges on rising edge of elk
Output reset to r = 0 & t = 0 when rst held low
Two data, inputs x & y
Three outputs r & t which a.rc def}.ned. as follows

\ r == X < y t == X > y
{ # # # # # # # # # #
P a r t compjter [clk,x,y,rst] —» r.t

S i g n a l aout, bout,
notr, nott

r.omp_ccll [notr,nott,x,yJ —• aout,bout

aff rn elk,aout,rst —> r.notr
atF rn elk,bout,rst —> t,nott

E n d { end of Pa.rt computer dccla.rartion

Figure 6.11: model code for complete iterative comparator. Note how the modular design
process enables the previously produced module, Figure 6.10, to be included and connected
up to the additional flip-flops.

188

// ##########
/ / fi.le: eowq)J.est.wd.l
/ / . .
/ / descrijytion: Test a.nd. exercise iterative comparo.tor circuit.
// ##########
/ / main function to test the coiwpa.ra.tor for S cases,
/ / only 4-bit numbers used, but ca.n be extended, to n-bit num.bers.
// ##########
main()
{

I n p u t x; I n p u t y;
I n p u t elk; I n p u t rst;
O u t p u t r; I n p u t t;
Sct.Cyclc(50);

X = 0; y = 0;
elk = 0; rst = 1;

Toggle(clk);
S imulate ;
clkPulsc(clk); { defined in a previous wdl file
rst = 0;
elkPulse(clk);
rst = 1:

/ / ^- < y
X = 1; y :
X = 0: y = 1
X = 1; y = 0:
X = 0; y = 0:

x: 1010 y: 1100
1; clkPulse(clk);

:lkPnlse(cIk)
elkPulse(clk)
elkPulse(clk)

/ / reset compn.ra.tor
rst = 0;
clkPulse(elk);
rst = 1;

/ / X > y x: 1101 y:1011
X = 1; y = 1; clkPulse(clk);
X = 1; y = 0
X = 0: y = 1
X = 1; y = 1

clkPulse(clk)
elkPulse(clk)
clkPulse(clk)

/ / reset compara.tor
rst = 0;
elkPiilsc(clk);
rst = 1;

/ / x = = y x: 0101 y: 0101
X = 0; y = 0; clkPulse(elk);
X = 1; y = 1; clkPulse(clk):
X = 0; y = 0; elkPulse(clk);
X = 1: y = 1; clkPulse(clk):

} / / end of •tna.in()

Figure 6.12: wdl co
each of the possible input cases

ide for testing iterative comparator. Three 4 - b i t tests are run, one for

189

u

(N

>
<

o
o

00

Figure 6.13: wave output plot for iterative comparator. The three separate input cases
for X and Y can be seen applied, one after each reset of the comparator. The appropriate
result is visible as an output high on R or T.

190

{ ##########
•pa.rt: count 12a.

description: 4 ''^^ counter which counts up to 12 and. resets to 0

##########
P a r t eountl2a [elk, rst] — cntl2a

S i g n a l sumlsb.s, eount(0:3)
S i g n a l rstent, rstes

P r o b e sumlsbs
P r o b e rstent
P r o b e rstes .
P r o b e count(0:3)

and [eount(0:l)] —• siimlsbs
ornaiid (1,2) [count(3),eount(2),sumlsbs] —• rstent
and [rst,rstent] —» rstes
es2ctr (4) [e l k , G n d , G n d , G n d , G n d , G n d , V d d , r s t e s] -» connt(0:3)
bdiF [elk,rstcnt] -» - , entl2a

E n d { end, of Part countl2a d.ecla.ra.tion

Figure 6.14: model code for countl2. A 4-bit counter, es2ctr, is used which has external
combinational logic to reset itself and generate an output when the circuit reaches 12.

{ ##########
I part: countSO

description: 7 bit counter which counts up to SO a.nd. resets to 0
• ##########
P a r t eountSO [elk, rst] entSO

S i g n a l siimlsbs, eoiint(0:G)
S i g n a l rstent, rstes

and [count(0:3)] —• sumlsbs
ornand (1,3) [eount(6),connt(5),eount(4),.sumlsbs] —> rstent
and [rst,rstcnt] —• rstes
cs2ctr (7) [e l k , G n d , G n d , G n d , G n d , G n d , G n d , G n d , G n d , V d d , r s t c s] - . eonnt(0:6)
bdiF [elk,rstent] -» - ,cnt80

E n d { end of pa.rt countSO

Figure 6.15: model code for count80. This is a variant of Figure 6.14- A 7-bit counter
is used which has external combinational logic to reset itself and generate an output when
the circuit reaches 80.

191

/ / ##########
/ / fi.le: countl2n.tst.wdl

/ / . .
/ / d.escription: test o.n exercise up counter to 12
// #########
m a i n ()

{
I n p u t elk;
I n p u t vst;

O u t p u t cut 12a;

Sct_Cyele(1000); { aeserlbea in earlier wai file

cik = 1;
rst = 0;
elkPulse(elk);
rst = 1;

for (i = 0; i < 60; 1++) {
if (!(i % 33)) {

rst = 0;
} / / ' / ' :
i f { ! { (i - l) % 3 3)) {

rst = 1;
}
elkPulse(elk);

} / / for z

) / / end m.a.in()

Figure 6.16: wdl code for testing the countl2. After reseting the counter, it is clocked to
verify it counts and reinitialises itself before undergoing an external reset and continued
clocking.

192

O

8 O _£2

O

> <

o

o
00

o

s
Jo

H 2
o

z
D
O
u 8

z
3
o u

H
Z

- J
2
D

z u
CJ

Figure 6.17: wave output plot for countl2a testing. The individual bits of the counter
can be seen to count up, while the output, CNTISA, only goes high after 12 cycles except
when the circuit is reset externally on the RST line.

193

T V

S S E

6

A

4_
a

6

a
0

A

J I I \ I I 1 1 I

1)

Q

00

Figure 6.18: 4-bit counter with carry-in and carry-out. This circuit is a transcription of
the 74169 TTL design.

194

Figure 6.19: 4-bit counter with no carry-in. This circuit is a transcription of the 74169
TTL design but the carry-in line and associated gating is removed. Compare this to Fig
ure 6.18.

195

~ l t r
•=

E If 1

"5 3
u

1°
i"a

i

6

A

A

6 0
1 1

a

A 6

A

00

Figure 6.20: 4-bit counter with no carry-out. This circuit is a transcription of the 74169
TTL design but the carry-out line and associated gating is removed. Compare this to
Figure 6.18.

196

o

0

i n

7777

c c c .c
•5 S '5 -a c.c c c

•3 S 'o ^ 'U

WW \ \ \ \

_ A \ ZA

6 6 6

PQ

c/2

• a

Q

Figure 6.21: 12-bit counter. The counter is formed by cascading the 4-bit counters of
Figure 6.18, Figure 6.19 and Figure 6.20. Cascading the three counter variants marginally
reduces the component count and circuit interconnection required.

197

oo

i n

(N

L o

CM o
•o

^ 2 ^ r

[In

i r?

T3

Figure 6.22: 12-bit counter with limit stops at -2048 and -1-2047. The modular design
enables the 12-bit counter to appear as a component around which the limit stop circuitry
is configured.

198

/ / ##########
/ / file: udl2tntst.wdl.

/ / . .
/ / description: Test and exercise l2-bit (Jp/Down counter with, stops
// ##########
U r = 1;
D O W N = 0:
L O A D = 1;

void
r.stCoiint(signal Id, signal inSig(l l:0), signal clock)

^ Id = L O A D ;
inSig = 0x000:
r.lkPul.so(cloc.k);
Id = ! L O A D ;

} / / r.nd of fv.nctinn rstCountQ

void
sotCoiint(signal Id, signal inSig(l l:0), signal clock, int value)

Id = L O A D ;
inSig = value;
clkPul.'ie(clock);
Id = ! L O A D ;

) / / end of function sctCountf)

main{)
{

Input in(l l :0) ;
Input ud;
Input Id;
Input elk:
Output cntoiit(ll:0);

Set.Cycle(lOOO);

in = 0x000;
ud = UP:
Id = ! L O A D :
elk = 1:
r.stCount(ld, in, elk);

/ / verify counter stops at max value, after 5 elks should he at max.
/ / im,m.ediately after direction changes should count down.

setCount{ld, in, elk, 0x7FA);
for (i = 0; i < 10: i++) {

elkPulsc(clk):
} / / f o r z
Toggle(ud);

/ / n.fter this set of clockings should he hack a.t OxlFA
for (i = 0; i < 5; i++) {

elkPulse(elk):
) //^or^

/ / verify counter .stops a.t min value, after 5 elks .should he at min.
/ / imm.ed.ia.tely after direction changes should count up/

.setCount(ld, in, elk, 0x805);
for (i = 0; i < 10; i+-t-) {

dkPnl.sc(clk);
} / / f o r i
Toggle(ud);

/ / n.fter this set of clockings should, he hack a.t 0x805
for (i = 0: i < 5; i++) {

elkPulsc(clk);
} / / for ^

} / / end. of via.in()

Figure 6.23: wdl code for exercising up/down 12-bit counter. The file tests the limit stops
of the counter by loading values just below the limits and driving the counter to those
limits. When the direction of count is reversed the counter should move away from the
limits.

199

O — (N m oo a\ o —

O C J U U U U U U U

- O
" o cn <r-> cn

r-- o »n c - (S o m
t-l o

L >
- o
- o - 00
" o

o
- t~-*o o 3
- Co

c
o - o

- CO
" o

o c
cd - cn o oo o. - o o

- 3
_ UJ

Figure 6.24: wave plot for an up/down 12-bit counter. The first half of this plot demon
strates the halting of the counter at the upper limit, 0x7ff, while the second half demon
strates the counter halting at the lower limit, 0x800.

200

M

on
• a

c

(D
Q

U Q U

Figure 6.25: 5-bit counter with no carry-in or carry-out. This circuit extends the method
of the 4-bit counter, Figure 6.18, but has no carry lines associated with it.

201

SU8U6

Figure 6.26: 5-bit counter witli limit stops at 0 and 4-80. As per the 12-bit design, the
basic counter module has been augmented by the limit stop circuitry.

202

Up/Down Counter

Comparator Register

PRBS Output

12-Bit Iterative
Comparator

MSB LSB MSB LSB

\

MSB LSB MSB LSB

SLU
Encoded Weight

Figure 6.27: S L B weight encoding. Every 12 cycles the contents of the Up/Down counter
are transferred to the Comparator register. A comparison with a PRBS stream is performed
to encode the counter value. Note the inversion of the MSB during the transfer to shift
the counter value.

{ ##########
{ part: wghtenc

{ description: Forined by manual extraction from a model file cren.ted by 'draft'
{ ##########
Part wghtcne [rng, in (0: l l) , rst, ud, Id, elk, en] t,dout(0:ll)

Signal din(0: l l)
Signal bitwglitout
Signal notclk
Signal elkbuf

. Signal Idit
Signal notrst
Signal rstbiif
Signal tmpt

not [elk] —» notelk
buffer2 [notelk] elkbuf
not [rst] —> notrst
buffer2 [notrst] — rstbuf
and [Id, en] Idit
compjter [elkbuf,rng,bitwghtout,rstbuf] —• —.tmpt
bdff [notrst,tmpt] - • --, t
es2sreg ps(12,2) [din{0:il),clkbuf,notrst] -> bitwglitout,-
udl2bitst [in(0:ll),ud,ldit,elkbuf] -» dout(0:ll)
not [dout(ll)] -» din(O)
dout(lO) ^ dln(l)
dout(9) din(2)
dout(8) — din(3)
dout(7) — din(4)
dout(G) — din(5)
dout(5) -» din(6)
dout(4) - . din(7)
dout(3) -« din(8)
dout(2) din(9)
dout(l) - . din(lO)
dout(O) — d i n (l l)

E n d end of Part wghtenc declaration

Figure 6.28: model code for S L B input weight encoder. The file specifies the circuit of
Figure 6.27. Note the connection of the two buses, dout and din, has had to be done
explicitly line by line.

203

##########
•part: dcviux5tol7

dcscHption: Decoder for selecting appro'pri.ate inpni.t weight
{ register for use.
{ ##########
Part domux5tol7 [addr(0:4)j -> soloct(0:lG)

Signal a0(0:3), a0bai(0:3). al(0:3). albar(0:3)
Signal a2(0:3), a2bar(0:3), a3(0:3), a3bai(0:3)
Signal a4bar(0:3)

0R2nbiiff
o.s2nbuff
os2nbuff
e.s2nbufF
o.s2nbuff
os2iibuff
os2nbuiF
fi.s2nbufF
o.s2nbuff

(4,2,0)
(4,2,1)
(4,2,0)
(4,2,1)
(4,2,0)
(4,2,1)
(4,2,0)
(4,2,1)
(4,4,1)

aadr(O) a0(0:3)
adar(O) - » a0bai-(0:3)
addr(l) —t al(0:3)
addr(l) albar(0;3)
addr(2) —t a2(0;3)
addr(2) —. a2bai(0:3)
addr(3) —> a3(0:3)
addr(3) —t a3bar(0:3)
addi-(4) - * a4bar(0:3)

fis2and
c.<i2and
CIS 2 and
es2and
e.s2aiid
o.'i2and
e.s2and
cs2aiid
es2and
c.s2and
c;s2and
o.s2and
Gs2and
os2and
es2and
es2and
os2and

a4bar(0)
a4bar(0)
a4bar(0)
a4bai(0)
a4bar(l)
a4bar(l)
a4bai(l)
a4bar(l)
a4bar(2)
a4bar(2)
a4bar{2)
a4bar(2)
a4bar(3)
a4bar(3)
a4bar(3)
a4bar(3)
addr(4)

,a3bar(0),a2bar(0).albar(0).a0bai(0)] - sclect(O)
,a3bai(0).a2bar(0).albai(0), a0(0) - .seloct(l)
,a3bar(l) .a2bar(l), al(0).a0bar(0) - solect{2)
,a3bar(l) .a2bar(l) . a l (0) . aO(0)] -> sclect(3)
a3bar(2), a2(0).albar(l).a0bai<l)l .sdect(4)
a3bar(2). a2(0) .albar(l) . a0(l) - seloct(5)
a3bar(3), a2(l) . a l (l) .aObar(l) - .select(C)

,a3bar(3), a2(l) . a l (l) . aO(l)l SRlect(7)
a3(0),a2bar(2),albar(2).a0bar(2)J - sp.lect(8)
a3(0).a2bar(2).albar(2). a0(2)l - selcct(O)
a3(l).a2bar(3). al(2).aObar(2)] - selcct(lO)
a3(l),a2bar(3). a l (2) . aO(2)] - .select(ll)
a3{2), a2(2).albar(3).a0bar(3)J - select(12)

. a3(2), a2(2).albar(3). a0(3) ^ select(13)

. a3(3), a2(3). al(3).a0'bar(3) — select(14)

. a3(3). a2(3). a l (3) . a0(3) — solect(15)
a3bar(Q),a2bar(0).aibar(0 .aObai(0)] seloct(lC)

E n d { r.nd of Part demux5tol7 declaration

Figure 6.29: model code for address selector/decoder. Basic five line decoder, a 5-bit
address is converted to one of 17 active output lines.

##########
part: muxntol

description: An n.rbitary n-line to 1 multiplexor.
##########

Part muxntol (elems) [in(0:olems-l),sel(0:clcms-l)] —• out

Signal notsel(0:elem.s-l)

Integer elemlp
If olem.s < 5 Then

Error "SOLO l ib may exist for multiplexor size"
Else

For elomlp= 0 : (eloms - 1) Cycle
not [.scl(elemlp)] —> uotsel(elemlp)
tribufl (sel(eIenilp),notaal(elcmlp),in(elemlp)] —» out

Repeat
Endif

E n d

{ end For elcralp
{ end If elem.<s

end of Part iniLxntol declaration.

Figure 6.30: model code for arbitrary N input multiplexor. This circuit description itera-
tively builds a multiplexor of arbitrary size. Note how by use if the I f statement feedback
can be sent to the user to notify them of specific conditions.

204

8

Q 00 ^ S S S S s S S S s ^ S s " " ^

Figure 6.31: wave plot for input weight encoder performance. The weight encoder is
loaded with values corresponding to 0.5, 0.75 and 0.25. The output, T, can be seen to have
an on period which corresponds to these conditions. The UD line is constantly toggled to
maintain the counter at a stable value.

205

W U J W P J U J U J U J t l J U J

u j w w w u j u j u j u j u j u j
M c/o - - - - - - - - -

H H H H H H H
U U O U O O U
W 111 UJ tu w u u

00 00 00 00 CO C/D CO

Figure 6.32: wave plot for demultiplexor/address decoder. By counting up through the
32 address combinations an output on the correct address line occurs only for addresses 0
to 16.

206

MSB LSB MSB LSB

Bias Weight Register

PRBS Output

12-Bit Iterative
Comparator

SLU
Encoded Weight

Figure 6.33: S L U weight encoding. This circuit is similar to Figure 6.27 but without the
12-bit counter.

{ ##########
part: wghtlO

{ description: Weight encoder for 1/10

{ # # # # # # # # # #
Part wghtlO [clk,rat,x] -> t

Signal y
Signal tmpt
Signal en
Signal notclk

not [elk] —» notclk

not [rst] —• cn
ea2sreg ps (12,2) [Gnd,Gnd,Gnd,Vdd,Vdd,Gnd,Gnd,Vdd,Vdd,Gnd,Vdd,Gnd,clk,en]
compJter [notcIk,x,y,rat] —» —,tmpt
bdff [cn, tmpt] — -,t

y,--

E n d { end of Part wghtlO

Figure 6.34: model code examples of a static S L U encoder. Observe how the shift register
can always be re-initialised to the same value since the load inputs are tied to either Vdd
or Gnd.

207

{ ##########
{ part: divide^cell

{ description: BuiUling block for N pulse divider
{ ##########
Part divido-cell [in,prev] —• out,next

Signal notin

and [in.picvj —* out
not [in] —> notin
and [prev,notinj —• next

E n d { end of Part divide^ccll declaration

Figure 6.35: model code for divide cell building block. This building block can be seen
repeatedly in Figure 4-12.

{ ##########
part: njpulse.d.iv

description: N pulse d.ivider for input to stochastic summer
; ##########
Part n_pulse_div (streams) [in(2:streams)] —• out(l:strcams)

Integer streamlp

Signal prev(l:streams)
Signal notstrcam2

If streanis<2 Then
Error "Too few pulse streeims specified"

Else
wire in(streams) —» out(streams)
not in(streams)] —• prev(streams)

For streamlp=(streams - 1):2 By -1 Cycle
divide-cell [in(streamlp),prev(streamlp + 1)] —>

o\it(streamlp),prev(streamlp) : divide_ccll(streamlp)
Repeat

prcv(2) — out(l)
Endif

E n d

{ end. For .Hreamlp

{ end If streams

{ end of Pa.rt njpulse.d.iv declaration

Figure 6.36: model code for complete N pulse divider. This is another parameterised
circuit enabling arbitrary long pulse divide trees to be produced from the divide.cell block
of Figure 6.35.

208

Figure 6.37: wave plot demonstrating static weight encoding. The time a line is high can
be seen to increase progressively from N(17) to N(2).

209

Figure 6.38: w a v e plot demonstrating the gating streams. Each of the 17 bus lines
has a probability of j j of being high. The spikes are filtered out by the latching of the U
values.

210

##########
•part: slbipjinuljilock

dcscHpiion: Single. Line. Bipolar Mv.ltiplicr block. Multiplies tv)0
buses of signals x(0:clr.ins) and v)(0:clc.vis) by use of
xor gates.
Input parameter 'elenis'' the number of multipliers - 1
there will be.

^ ########## .
Part slbipjrmLblock (olom.s) [x(():elcms-l). w(0:olnm.'!-l)] —> xw(0:cloms-l)

Integer olenilp

If oloms<l Then
Error "No elements to multiply"

Else
For elcmlp =0:olc;ms-l Cycle

oqv [x(elemlp);w(olcmlp)] —• xw(olemlp) : xor(olcmlp)
Repeat { end For clcmlp

Endif { end If clems

E n d { end of Part slbipjinuLbloek declaration

Figure 6.39: model code for SLB mult ipl icat ion of input values and weights. This circuit

is simply an array o / X O R gates.

##########
part: sluni.nni.Lblock

description: Single Line Umpolar Multiplier block, Multiplies two
buses of signals x(0:elems) and w(n:elems) by use of
and gates.
Can n.lso be used for the gating in a Multiple Input
Sum.mer.
Input parameter 'elem,s' the num.ber of multipliers - 1
there uiill be.

, # # # # # # # # # #
Part shini_muLblor.k (clom.s) [x(0:elems-l). w(0:elems-l)] —>

xw(0;olems-l)

Integer elcmlp

If clcnis<l Then
Error "No elements to multiply/gate"

Else
For elemlp=0:clcm.s-l Cycle

and (x(olomlp),w(elenilp)] —• xw(elcmlp) : an<12(elemlp)
Repeat { end For elr.mlp

Endif { end If elcms

E n d { end of Part slunijmuljblock declaration

Figure 6.40: model code for SLU mult ipl icat ion/gat ing of weighted inputs. This circuit is

simply an array of A N D gates. One input to each A N D gate is the weighted input, the

second is a ^ gating signal.

211

{ ##########
{ pii.rt: gausl
{
{ description: Produce Gaufi.fitm numbers
{ ##########
Part gau.sl [.siimin,prb.s,r.lk,ist] —> t

Signal notist
Signal oseqbaso(0;79)
Signal csGqout, notcsnqout
Signal inc, doc, notdoc
Signal countout(0:4)
Signal regl2oiit
Signal tmpt
Signal riitSO, r.stl2
Signal clkSO'. iiotclkSO
Signal clkl2.st, notclkl2st
Signal ud5rst
Signal notclk

Signal tmp, tmp2, tmpl, tmpinc

Gnd —• eseqbase(O)

Vdd -* oseqbase(79)

not [clkSO] -» notclkSO
cCTintSO [r.lk^rstj clkSO
and (rst,notclk80] -» r.stl2
coiintl2 [notclk,r.stl2] — clkl2st
not [r.st] —t notr.st
es2sreg p."; (80,2) [Rseqbase(0:70),olk,notrst] —• e.seqout,-

and [prbs,cseqout] —• inc
or [notrst,clk80] nd5rst

not [elk] —» notclk
or [prbs,nd5r.st] —> tmp
and [tmp,notclk) —* tmp2
or [inc.ndSrst] —> tmpinc
nd5bitst [Gnd,Gnd,Gnd,Gnd,Vdd,tmpinc,ud5ist,tmp2] -> countout(0:4)

o.s2Rreg ps (12,2) [countoiit(4),conntont(3),co\intout(2),conntout(l),countont(0),Gnd(0:G),clk,ud5r.'it) —»
rcgl2ont,—

compjtcr [clk,regl2out,sumin,clkl2st] —• -.tmpt

bdff (notclk80,tmpt] t,-

E n d { end of Part gausl declaration

Figure 6.41: model code for sigmoidal transformation circuit. This circuit produces Gaus
sian distributed random numbers which the weighted sum of products is compared. This
performs the sigmoid transform.

212

>

>

5

s
00

Figure 6.42: wave plot demonstrating testing of sigmoidal transform. Due to the omission
of a single inverter, as the input values increase from 0.2 —> 0.5 —> 0.8 the output, T,
becomes less dense rather than more dense, but the appropriate non-linear mapping does
exist.

213

##########
•pari: nc.ur

description: The neuron.
{ ##########
Part nciir [clk,in(0:15),addr(0:4),nd(0:lG),rw,rstj -» out,init(0:H),sumout,outwght(0:lG)

Signal prbsoiit(l:27)
Signal ing(l:34)
Signal sumin_17(0:lC)
Signal sum
Signal clkJn
Signal rst Jn
Signal rwJn
Signal rwbuf(0:2)
Signal in_in(0:15)
Signal initjn(0:ll), notinitJn(0:ll)
Signal addrjn(0:4)
Signal udJn(0:16)
Signal wglitout(0:ll)
Signal wghtonta(0:ll)
Signal outjn
Signal wglitcnc-in(l:16)

Signal clkl2a, notclkl2a
Signal rstl2

Signal clkbuf(0:5)
Signal r.qtbnf(0:4)

Pa.d. connections omitted.

notarray (12) [notinitJn(0:ll)J -» initJn(0:H)

es2nbufF (3,4,0)
es2nbuff (5,3,0)
e,s2nb>iff (6!3,0)

rwJn —» rwbuf(0:2)
rstJn - . r.stbuf(0:4)
clkJn clkbuf(0:5)

countl2a [clkbuf(0),rstbuf(4)] — clkl2a
not [dkl2a] — notclkl2a
and [rstbuf(4),notclkl2al — rstl2

prbs27 [clkbuf(l),rstbnf(0)l prbsout(l:27)
prbs27to38 [prbsout(l:27)] -> rng(l:34),-,-,-,-
inpwght [clkbuf(2),inin(0:15),initJn(0:ll),rng(18:34),>idJn(0:16),addrJn(0:4),rwjn,rstbuf(l),r.'rtl2j ->

sumin.l7(0:lC),wghtouta(0:ll),wghtcncJn(l:16)

es2regd (12) [clkbuf(3),wghtouta(0:ll)] -» wghtout(0:ll),-,-,-,-
.summerie [sumin_17(0:10),rng(2:17),rstb<if(2),r.stl2,clkbuf(4)] -> sum
gausl [sum,rng(l),clkbuf(5),rstbuf(3)) —» outJn

E n d { end of Part ncur declaration

Figure 6.43: Basic model code for the complete neuron. Due to the modular nature of the
design process the final circuit is a concise description of the design.

214

Pads

• • • B -

• •
• Array •
• Core •
• •

• • • •

• •

• Array
Core •

•
• •

Pad Limited Core Limited

Figure 6.44: Example of pad and core l imited designs. A pad limited design is one where
the limiting factor on size is dominated by the number of pads which must enclose the
circuit. For a core limited design the basic circuitry has the most influence on eventual
size.

Not Used 33

UD 1 34

U D 2 IZ 35

U D 3 c 36

U D 4 37
U D 5 c 38

U D 6 c 39

V d d 2 c 40

G n d 2 c 41

U D 7 c 42
U D 8 c 43

U D 9 c 44

U D 10 c 45
U D 11 c 46

UD 12 c 47

U D 13 c 48
U D 14 c: 49
UD 15 c 50
UD16 c 51

Vdd4 c 52

G n d 4 c 53

on (N — O _ o
O V - t. VH V .
_ -O -O Td T3
Q -o -a -a -a ^ < < < <

3 OO 00 CO CO 00

•a • - • - • - 3 5 = 3 3 - 3 - a

< = . s a o ^ o 0 0 0 o >
n n n n n n n n n n n n n n n n n

00 00 00

z ^
C 3 3 3
0 0 0 0
n n n n

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

Artificial Neuron
ASIC

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

u
c N m - ^ i n v o r ^ o o c ^ o — < N m - r f i y - i m n ^ tS o —

T3 -O (J Di S S
> O

11 • Not Used

10 • OutWght 8

9 • OutWght 7

8 • OutWght 6
7 • OutWght 5

6 • OutWght 4

5 • OutWght 3
4 • OutWght 2

3 • OutWght 1

2 • OutWght 0

• GndO
84 • VddO

83 • InitS

82 • Ink 7

81 • Init6

80 • InitS
79 • Init4

78 • Init3
77 • Init2

76 • Init 1

75 • InitO

Figure 6.45: Neuron ASIC pin configuration. In addition to the necessary input/output
connections, unused pins are connected to monitor key points in the system, OutWght and
SumOut.

215

Figure 6.46: A photograph displaying the resulting fabricated neuron.

216

Outputs

PC with two FPC-024

digital I/O cards

y\—
Control Data and Inputs

Up/Down Counter Inputs

Bi-directional Input weight Lines

ASIC

Figure 6.47: Neuron ASIC hardware test configuration. The ASIC pin connections are
broken out into four sets of lines which are controlled and monitored via two FPC-024
digital I/O cards mounted in a PC. This approach exchanges hardware complexity for
software complexity.

217

PC with two FPC-024

digital I/O cards

Address, Control & Signal
Lines

Network Backplane/Motherboard

N
e
u
r
o
n

B
o
a
r
d

T
y
p

N
e
u
r
o
n

B
o
a
r
d

T
y
p
e

N
e
u
r
o
n

B
o
a
r
d

T
y
p
e

N
e
u
r
o
n

B
0
a
r
d

T
y
P
e

N
e
u
r
o
n

B
o
a
r
d

Hidden
Layer

Output
- Layer

Figure 6.48: Full 4-2-4 Hardware Neuron System.

N
e
u
r
0
n

B
o
a
r
d

T
y
P

Output
Points

Input
Layer/Neurons

Output
Layer/Neurons

Figure 6.49: 4-2-4 Feedforward neural system. The number of each neuron signifies the
order it was multiplexed through the single neuron device.

218

Chapter 7

Conclusions and Further Work

7.1 Conclusions

I n this thesis the development of a hardware neuron operating by the use of stochastic

pulse rate encoding principles has been undertaken. The study of ANNs and algorithms is

currently a wide area of research w i t h much of the work conducted in the engineering field

through software models and simulations. This is a slow process since ANNs are inherently

a parallel method of informat ion processing based upon many simple processing elements

operating simultaneously. Software models and simulations w i l l not usually be able to take

f u l l advantage of this process. The investigation and development of suitable hardware

implementations of ar t i f ic ia l neurons w i t h the abil i ty to adapt and t ra in as they operate

is a key area for research. The hardware realisation wi l l enable the parallel power and

speed of computat ion possible w i t h such systems to be more fu l ly reaUsed.

The work described in this thesis in i t ia l ly focused upon appropriate architectures and

algorithms for NNs suitable for transit ion into a hardware implementation. A crit ical

review was conducted in Chapter 2 which highlighted some of main N N architectures w i th

their algorithms describing why they may be of interest. The work of Barto et a/into simple

reinforcement learning using A^-p, which are related to MLPs and backpropagation, was

shown to be of particular interest w i t h its abil i ty to assign credit and enable a network

to adapt to solve a problem especially when hidden layer processing elements behaved

stochastically. The methods proposed by Barto et al were validated by their application

to two standard test problems, the encoder/decoder and the exclusive-OR. I t was shown

tha t the a lgor i thm could enable a feedforward network to adapt to a solution. I t was

also shown tha t a punishment signal in the credit assignment term was important for

the best results to be obtained. The Ajfi^p reinforcement strategies have been noted to

be par t icular ly interesting due to their comparative ease of transit ion into a hardware

implementat ion.

The Aji-p reinforcement schemes have been extended to produce two new models, the

219

Q-model and the T-model A / j - p which build upon the P-model A f f - p and S-model

Aji^P strategies of Bar to et al. These two new systems use the same single reinforcement

signal for all neurons in the network and the output neurons in the network now behave

stochastically. These new models have been demonstrated to work for the test problems

of a 4-2-4 encoder/decoder and an X O R problem. The scalability of these global Aii_p

t ra in ing strategies to a larger network of neurons is an issue which must be addressed since

i t d id not prove possible to t ra in an 8-3-8 encoder/decoder network using either of the

two new strategies in the time allocated for training. I t may be possible by investigation of

the gain and asymmetry parameters of the adaption algorithm to overcome this potential

scalability issue. These two new schemes do however have the potential to be simpler to

implement in hardware than the original strategies of Bar to et al f r o m which they are

developed.

A cri t ical review of hardware implementation issues is conducted in Chapter 3 w i t h

the assessment of analogue and digi ta l techniques for the formation circuits appropriate

to A N N s . The fields of pulse rate encoding, both deterministic and stochastic, are shown

to be attractive for A N N implementation. Stochastic pulse rate encoding is shown to be

of practical interest due to the efiiciency and small size of its computational elements and

its robustness to noise.

To be able to design a hardware art i f ical neuron based upon stochastic pulse rate en

coding principles a knowledge of the circuits and their operation is required. A description

of stochastic pulse rate encoding strategies, SLU, D L B and SLB, is provided in Chapter 4.

I n addit ion the fol lowing three novel circuits are developed.

A N o v e l S u b t r a c t e r

A modif icat ion of the original addition circuits presented by Leaver enables sub

tract ion to be performed between two Hues when signals are encoded using SLU

strategies, §4.5 .1 . The circuit operates by the removal of pulses f rom one signal line

commensurate w i t h the pulses present on a second signal line.

A n A'^-input A d d e r

This new A/'-input adder presented in §4.4.1 enables the addition of N equally

weighted stochcistic signals. The adder relies upon the generation of A'' equally

weighted stochcistic signals of value j j for which an extendable process and architec

ture are presented to achieve the task. The weighting signals are stochastic in nature

and have the property tha t none of the weighting signals have coincident pulses, a

necessary condit ion to enable accurate weighted summation.

Sigmoida l T r a n s f o r m G e n e r a t o r

Several possible techniques for the generation of a sigmoidal transform were con

sidered in section 4.7, all but one were discounted as being dif f icul t to realise in

220

practice. The generation of a sigmoid by use of a Gaussian random number gen

erator was pursued further . A n i?-sequence method is presented for the generation

of Gaussian random numbers when operating in the stochastic pulse rate encoded

domain. Using this technique the properties of the sigmoidal transform are adjusted

by varying the Gaussian random number dis tr ibut ion. The gradient of the sigmoid

can be varied by adjusting the variance of the distr ibution and the mid-range point

adjusted by varying the mean of the Gaussian dis tr ibut ion.

For the encoding of signals into the stochastic pulse rate domain a supply of noise

or random numbers is necessary. Chapter 5 develops the principle of the generation of

mult iple random numbers f r o m a single PRBS generator. Given that the sequence of

random numbers f r o m a PRBS is sufficiently long i t has been demonstrated that i t is

possible to generate mult iple random numbers f rom a single sequence by taking a delayed

tap-off of values for the sequence.

Results are presented demonstrating the suitabil i ty of the optimisation techniques of

simulated annealing and genetic algorithms to the problem of optimising multiple tap-off

combinations for mult iple PRBS sequences. The tap-off combinations are optimised to

produce even loading on the PRBS register elements, min imum number of tota l taps and

the min imum deviation f r o m the op t imum distr ibut ion of delays between sequences.

Having discussed and demonstrated all the constituent elements for an art if icial neuron

operating using stochastic pulse rate encoding, a complete design for such a neuron is

presented in Chapter 6. The design operates entirely wi th in the stochastic pulse rate

environment producing a funct ion of a weighted sum of 16 inputs. The weights associated

w i t h each input have the abi l i ty to be adjusted on-line by means of either an up/down

signal or by loading w i t h a completely new value by external intervention.

The neuron circuit has been fabricated in 1.5;̂ technology using standard cells for

the circuit components and demonstrated to operate. The sigmoidal transform does not

produce as good a sigmoid as expected, but this can be at tr ibuted to the l imited dynamic

range of the underlying Gaussian dis t r ibut ion. A potential problem of a reduced dynamic

range of output values was identified for the neuron when fewer than the maximum of 16

inpu t to the neuron were utilised, §6.5.

The computat ional capability of a network of the fabricated neurons to perform a

simple test task, the 4-2-4 encoder/decoder, has been demonstrated by multiplexing the

operation of a network through a single device. The original implementation using a f u l l

network of six devices was set aside due to a problem in continuity between the fabricated

device and its surrounding socket. To be able to perform off-line training of the network

and then loading the learned weights into the neuron i t was found that an accurate model

of the neuron is required, in particular the sigmoid transform.

I t has been found overall that , in general, the system of stochastic pulse rate encoded

computat ion for the hardware realisation of an art if icial neuron are a feasible and an

221

attractive opt ion due to the rapid rate of computation, the immuni ty to noise, efficiency

of the circuits and the abi l i ty to adjust the weights on-line as the system operates. A

potential Aa-p reinforcement learning strategy for amalgamation w i t h the hardware has

been identified to be worthy of consideration. However, the overhead of the supporting

c i rcui t ry for weight storage and encoding, the currently poor sigmoid transform and the

reduction of the output dynamic range must be considered in using this approach as i t

currently exists.

7.2 Further Work

The application of stochastic pulse rate computation techniques to the hardware realisation

of an ar t i f ical neuron together w i t h a reinforcement technique have demonstrated a good

potent ia l for fur ther research and development in the field of ANNs. Several interesting

areas of work can be identified which include the following.

N e w A'^-input A d d e r

The original iV-input adder suffered f rom a reduction in the dynamic range of the

output when less than the f u l l A'' input lines were being used. To overcome this

problem a divider tree for the A''-input adder is necessary such that unused lines can

be turned off. This w i l l produce as adder which can sum any number of input lines

M : M < N w i t h weighting factor j^. Such a circuit is possible and is displayed in

Figure 7.1.

For the new circuit for the generation of M pulse streams of value the appropriate

SN-X = SM line is set high for the chain. This sets al l outputs above i t to low and

the feed into the pulse mult ipher below to high.

This new A''-input adder could thus be implemented and used in the hardware design.

External addressing would be necessary to tu rn on the appropriate select lines.

I m p r o v e d S igmoid T r a n s f o r m

Investigation into new alternative techniques for the generating the sigmoid trans

f o r m could be conducted. Two possible approaches may be taken, the first is to

find an alternative system for the formation of Gaussian random numbers and the

second is to adopt a completely new approach. A new suggestion, therefore, is to

create a piece-wise linear model of the sigmoid transform. A deterministic mapping

is made f r o m the decoded sum of weighted inputs through the sigmoid transform to

be re-encoded stochastically. A n additional at traction of this second option is that

by adjusting the piece-wise linear model the characteristic of the t ransform can be

adjusted and could be made programmable.

222

F u l l C u s t o m I m p l e m e n t a t i o n

The present design has been fabricated using standard cells in 1.5^ technology, this

has resulted in a physically large ASIC implementation. The use of standard cells

also means that unused circui try is incorporated into the design and the placement

and routeing of components may not be ideal. W i t h the further work above into the

improved funct ionabty of the adder and sigmoid transform conducted, the design

could be optimised to be implemented using a f u l l custom design system, for example

C A D E N C E which is now available in the School of Engineering.

A p p l i c a t i o n of Aj|^_p to T i m e Series

In fo rmat ion in the stochastic pulse rate encoded domain is inherently held in a

stochastic t ime series format . The study of the behaviour of Aji-p reinforcement

learning algorithms when applied to both deterministic and stochastic t ime series

could be investigated. Such work leads to A N N which have recurrence, feedback,

incorporated into their structure. This recurrence may be local ie. f rom a neuron's

output back to its own input , or global, ie. f rom a neuron's output back to the input

of neurons preceeding i t in the network.

In tegra t ion of A j ^ _ p .

W i t h an improved set of neuron devices an enlarged network could be considered

for construction to enable the integration and evaluation of Ap-p reinforcement

learning strategies w i t h i n a complete hardware system. Alternatively, i f an accurate

software model of the neuron performance including the modelling of the sigmoid is

formed a software system could be developed and studied.

223

1

N

1

N

1

N

1

N

Figure 7.1: A new circuit for the generation of N pulse streams of value

224

Appendix A

Random Number Generation

A . l Hardware Random Number Generators

Hardware random number generators can be divided into two types, those which imple

ment an algorithm which could be achieved in software and those which are bcised upon a

true random physical process. Use of a physical process can have its drawbacks. The ran

dom number generator will often require specific hardware to be used and it is not possible

to repeat a sequence unless a record of random numbers generated is maintained. This can

cause problems of repeatability when conducting simulation experiments. Physical noise

sources are often the basis for random number generators. The following noise sources

could be used for the generation of random numbers, thermal sources, noise diodes, gas

discharge tubes and radioactive sources.

Johnson, [105], showed that a resistance with no external applied voltage has a mea

surable noise across its terminals. Nyquist's noise theorem, [106], quantifies this noise for

a resistance in a narrow band. A / , as a function of temperature

V? is the mean square voltage, h is Planck's constant (6.6 x 10"" '̂' J s~-̂), k is Boltzmann's

constant (1.38 x 10~^^ J °K~^), T is absolute temperature, / is frequency and R is the

value of resistance. A hot resistance may thus be used to generate a noise signal from

which random numbers may be formed. The noise is known as thermal noise or Johnson

noise. A thermal noise source is a primary or absolute source.

Secondary or transfer noise sources examples are diodes or gas discharge tubes. ERNIE,

Electronic Random Number Indicator Equipment, [107], the premium bond number gen

erating machine is a practical demonstration that these noise sources can be successfully

used for random number generation. Noise waveforms from gas discharge tubes were con-

225

verted to pulse trains, a random number being formed by counting the number of pulses

produced in a given time. ERNIE has been upgraded since its original construction by

replacing the gas discharge tubes with diodes.

Diodes, BJTs and FETs can utilise shot noise, thermal noise and avalanche noise to

generate adequate levels of noise. A ful l discussion of the physical processes involved is

given by Buckingham, [108]. The formation of diodes or transistors within integrated

circuits for generating noise to convert to random pulse sequences is an attractive propo

sition. Alspector et al, [94], states that unfortunately early work using these ideas very

high levels of gain were required to use the noise source in transistors. This could lead to

cross coupling in the amplifiers, particularly if many sources are integrated onto a single

chip. The area required for such a noise source was also considered to be too expensive.

Radioactive decay is a random process. A sequence of random numbers has been

generated using a gamma ray source, [109]. The least significant digit of the gamma ray

count in a given time period was used as the random number. The distribution of the

generated numbers was satisfactory, but implementing a gamma ray source, detector and

conversion circuitry poses a problem in a general process. For this reason the experiment

was used to create a list of random numbers stored on magnetic tape. A different random

number sequence can be gained by starting at a different location on the tape. Tests

conducted using these random numbers are repeatable since the tape can be rerun from

a given starting point.

Digital shift registers can be used to form PRBS Generators. These will be mentioned

only briefly since they are the subject of a more detailed discussion in the main body of

the thesis, §5.3. PRBSs are pseudo generators since the output is not strictly random but

an output of bits from a linear feedback shift register, LFSR, which have been subjected

to modulo two arithmetic. The binary digits output can be used to form random numbers.

The sequence in the shift register cycles round, with appropriate feedback selection this

wil l be maximal length ie. the shift register will hold all possible combinations of I's and

O's, except all O's, before repeating the sequence. The maximal length of sequence is 2^ — 1

for a shift register of length iV and can be seen to grow exponentially with register length.

Figure A . l

A.2 Software Random Number Generators

The fundamental problem with using software to create random numbers is that an algo

ri thm must be used. Numbers formed are therefore deterministic since they are calculated

using a precise technique, the numbers only appear to be random. The sequence of num

bers will cycle around, by forming generators carefully the period of the cycle can be

extremely large so that to all intents and purposes the numbers appear random. Several

suitable algorithms have been formed as are detailed below. Algorithms are known as

226

Pseudo Random Number Generators.

A.2.1 Middle Square Generator

An early algorithm which has been considered is the middle-square technique proposed by

John von Neumann [110]. The method is to take the square of the previous number and

extract the middle digits to form a new random number. I f the seed is chosen carefully

i t is possible to achieve a reasonable sequence. There are several drawbacks, if a zero is

generated in the number i t tends to be self perpetuating over several numbers, sequences

often decay into a cycle of repeating numbers and the seed must be carefully selected.

This middle-square technique is considered to be a poor source of random numbers. For

a four digit seed of 5781 the first few random numbers generated are as

5781 ^ 334199961

4 1 9 9 ^ 17631601

6 3 1 6 ^ 39891856

8 9 1 8 ^ 7953072i

5307 ^

A . 2 . 2 L i n e a r Congruent ia l Generators

Most software random number generators are based upon Linear Congruential Generators,

LCG's, although this is not the only system possible. An LCG is based upon the following

equation,

Xi+i = {aXi + c) mod m

where a is the multiple, c is the increment, and m is the modulus. All three constants are

positive integers.

Each generated number is based upon the preceding value. The sequence will cycle

around and repeat itself. The length of the sequence depends upon the selection of a,

c and m. A table of suitable choices for these values is provided in Numerical Recipes,

[111], together with a description of implementations using LCGs. The degree of algorithm

complexity and memory usage varies with the quality of result required. The initial value

of X is known as the seed and may be set explicitly. It is therefore possible to repeat a

sequence of random numbers by re-initialising the seed to the same starting value. Knuth,

[110], gives a ful l description of this technique and the criteria for the selection of parameter

values. I f c is set to 0 the pseudo-random number generator is called a Multiplicative Linear

Congruential Generator, MLCG. L'Ecuyer, [112], describes how several MLCG's may be

combined to produce generators with good statistical properties and the ability for the

resultant generator to be split into several independent generators.

227

A.2 .3 Lagged-Fibonacc i Generators

A sequence based upon a Fibonacci sequence has been suggested. The values are calculated

as follows,

Xi+i = (X,: + mod m

m is the modulus. The sequence period is usually longer than m. The algorithm has been

found not to produce sufficiently random results. Extending the above principle such that,

= (X, + mod m (A . l)

improves the quality of the random numbers generated. Providing k and m are suitably

chosen eq.(A.l) can produce adequate random numbers. A large table of past values may

need to be maintained for Xi to Xi-k which will not lend itself to easy seeding of the

sequence as a table of seeds must be formed.

A.2 .4 A d d - W i t h - C a r r y and S u b t r a c t - W i t h - B o r r o w

Add-with-carry and subtract-with-borrow random number generator are a relatively re

cent development introduced by Marsaglia and Zaman, [113]. These generators are related

to lagged-Fibonacci generators described above. Properties of these generators include

being fast at generating sequences since no multiplications are involved and that the se

quences are very long indeed, lengths greater than 2^^^ have been quoted.

The add-with-carry, AWC, sequence is generated as follows,

Xi = - I - Xi-r + c,) mod b

r > s are positive integers called lags, Ci is the carry and / , the indicator function, is 1 or

0 depending upon whether or not the inequality is true or false.

Similarly the subtract-with-borrow, SWB, sequence is generated as fofiows,

Xi = (Xi-s — Xi-r — Ci) mod b

C,+ l = / (X , _ , - Xi-r - < 0)

Again r > s as before, note this time c, is a borrow.

Early analysis of these types of generator has been promising [113, 114].

This brief list of a few techniques is by no means complete. Active research is taking

place into the analysis and generation of random numbers. For the present the LCG and

its variants dominate most software implementations due to their easy formulation and

228

understanding.

A.3 Random Number Generator Tests

Given that a technique is being used to form random numbers the quality of the distribu

tion may wish to be ascertained. To achieve this several empirical and statistical tests may

be applied to the sequence of numbers. In general these tests are not pass or fail, rather

an indication is obtained that a sequence may be more or less random than another.

For a truly random number generator producing an even distribution of numbers, a

sequence of 100 zeros in succession is as equally likely as another defined sequence of 100

numbers all of which are different. Yet, if 100 zeros are observed the natural reaction

would be to say that the generator was biased when this is not the case at all. Many of

the tests conducted upon a sequence of numbers assess the distribution of values within

them to determine the quality of randomness. A true random number generator may fail

such a test for the above stated reasons.

The tests which can be applied to random number sequences may be divided into

two main categories statistical and empirical. Some of the main tests in each group are

outlined below. A thorough assessment is given by Knuth, [110].

Statistical tests are as follows,

Chi-Square, x^? Test. A measure of how improbable an outcome is made. An outcome

can be achieved quite naturally but a factor relating its likelihood is calculated. Thus,

if an outcome is improbable the test should be repeated to ensure that there is no

bias in the generator.

Kolmogorev-Smirnov Test. An assessment on the distribution of outcomes versus the

theoretical probabilities of such outcomes are made. This test is particularly useful

for distributions where the result can be over a very large or infinite range of values.

Empirical tests are as follows,

Equidistribution Test. This test requires that the numbers are uniformly distributed

across an entire range. I t is basically a form of Kolmogorev-Smirnov test.

Serial Test. Pairs of successive numbers should be uniformly distributed in an indepen

dent manner within the sequence. This test can be extended to triples etc.

Gap Test. The length of gap between occurrences of values is assessed.

Poker or Partition Test. This test classically considers groups of five successive

integers as outlined in Table A . l . A test is performed on the number of quintuples

in each category to determine a performance indication for the generator.

229

Sequence Example
Al l different abcde

One pair aabcd
Two pair aabbc

Three of a kind aaabc
Full house aaabb

Four of a kind aaaab
Five of a kind aaaaa

Table A . l : Poker or Partition Test Sequence Combinations

Permutation Test. The input sequence is divided into p groups oit elements. Elements

in each group can have t\ possible relative orderings. The occurrence of each ordering

is counted and a test applied.

R u n Test. A sequence is analysed for run ups and run downs, ie. an inspection of the

lengths of monotonic increasing and decreasing subsequences is made.

This above list of tests is by no means exhaustive. Other tests include analysis of the

serial correlation, assessment of the maxima and minima output. A sequence may produce

acceptable results with one test but not another. As each test is satisfied the chance that

a random number generator produces a good random number sequence is improved.

230

10000000

1000000 -

M
c

100000 -
<u

0)
u

10000 -
c
9
a-
<u

1000 -
(Zl
C/3

R
B

100 -

10 -

6 8 10 12 14

PRBS Generator Length

16 18 20

Figure A . l : Maximal binary sequence length vs Shift register length. The sequence length
grows exponentially with an increase in generator length.

231

Appendix B

Testing the Quality of the

Random Numbers f rom a PRBS

This appendix describes a series of tests applied to a model of the random number gener

ator constructed and utilised within the artificial neuron chip. The few tests implemented

are briefly described in Appendix A and are fully discussed by Knuth [110].

The random number generator selected for implementation was a Pseudo Random

Binary Sequence generator of 27-bits. For a 27-bit PRBS feedback is taken from bits 22,

25, 26 and 27 which are XORed to form the input back into the register to obtain a

maximal length sequence. The maximal length sequence of a 27-bit PRBS generator is

134,217,727 bits.

The basic model code for a software PRBS generator is provided in the Appendix C.

I t consists of a C++ class for a PRBS generator which allows a PRBS to be instantiated

and run.

B . l Correlation Tests

These tests can be performed on two levels and in two forms. The correlation test can

be executed either upon the individual bits output from the PRBS or upon the 12-bit

random numbers which will be formed from the bit stream in the hardware device. The

two forms in which the correlation test can be executed are the auto-correlation and the

cross-correlation.

For the 27-bit PRBS generator that is to be used in the artificial neuron chip a simu

lation was performed to create sequences of bits and sequences of 12-bit random numbers

as would occur in the actual hardware. I t was ensured that sequences of bits and of 12-bit

random numbers were non-overlapping. The auto-correlation and the cross-correlation

tests for pulse streams of 1000 bits and a random number sequence of 1000 values have

232

been performed. The results of these four sets of test are shown in Figure B . l to Figure B.4.

I t can be seen from these tests that the degree of correlation in both the auto-

corrletation and cross-correlation tests are low except, obviously, for a shift of zero in

the auto-correlation test. This is a good indication that the quality of the PRBS bit

stream and random numbers is suitable.

B.2 Test/Frequency Test

The x^ test is a measure of how probable an actual outcome is based upon the expected

theoretical outcome. For a uniformly distributed random number the actual distribution of

numbers from a run of the generator is compared with the theoretical, ideal, distribution.

I f the random number can have k values a sequence of n independent random numbers is

formed.

Let p., be the probability each random number is of value s, and let Y, be the number

of such numbers that do actually fall into the category s. A performance measure V is

given by eq.(B.l)

l<.s<k ^P-'

The numerator can be expanded

(F, - np,,)' = - 2F,np., + nV,

and knowing that
Yi + Y2 + ---.+ Y,,=n

Pi + P2 + --- + Pk = i

the following can be derived, eq.(B.2)

1 / y 2 \

^ i<.<it V I

Having calculated the performance measure Y it is necessary to determine whether or

not such a figure is acceptable. A table of x^ distribution values is referred to for v degrees

of freedom where v = k — \ •&& shown in Table B . l . The value in the table, a;, is such that

V will be less than or equal to x with probability p given that sufficient numbers have been

observed. Thus for v = \0 degrees of freedom the 90% entry of 15.9872 means that V will

be greater than this only 10% of the time. In assessing the values of V a figure between

25% and 75% is sort, since for too high values of Y doubt is cast upon the likelihood of

such an action and for too low values of Y the result it too good to be trusted.

The number of categories k may often be large, as is the case for the 12-bit random

233

; / p= I = 5 J) = 10 p = 25 p = 50 P = 75 p = 90 p = 95 p = 99
1 0.0002 0.0039 0.0158 0.1015 0.4549 1.3233 2.7055 3.8415 6.6349
2 0.0201 0.1026 0.2107 0.5754 1.3863 2.7726 4.6052 5.9915 9.2104

3 0.1148 0.3518 0.5844 1.2125 2.3660 4.1083 6.2514 7.8147 11.3449
4 0.2971 0.7107 1.0636 1.9226 3.3567 5.3853 7.7794 9.4877 13.2707

5 0.5543 1.1455 1.6103 2.6746 4.3515 6.6257 9.2363 11.0705 15.0863
C 0.8721 1.6354 2.2041 3.4546 5.3481 7.8408 10.6446 12.5910 16.8119

7 1.2390 2.1673 2.8331 4.2549 6.3458 9.0371 12.0170 14.0671 18.4753

8 1.6465 2.7326 3.4895 5.0706 7.3441 10.2189 13.3616 15.5073 20.0902

9 2.0879 3.3251 4.1682 5.8988 8.3428 11.3887 14.6837 16.9190 21.6660

10 2.5582 3.9403 4.8652 6.7372 9.3418 12.5489 15.9872 18.3070 23.2093

15 5.2294 7.2609 8.5468 11.0365 14.3389 18.2451 22.3071 24.9958 30.5780
20 8.2604 10.8508 12.4426 15.4518 19.3374 23.8277 28.4120 31.4104 37.5663

25 11.5240 14.6114 16.4734 19.9393 24.3366 29.3388 34.3816 37.6525 44.3140

30 14.9535 18.4927 20.5992 24.4776 29.3360 34.7997 40.2560 43.7730 50.8922

35 18.5089 22.4650 24.7966 29.0540 34.3356 40.2228 46.0588 49.8018 57.3420

40 22.1642 26.5093 29.0505 33.6603 39.3353 45.6160 51.8050 55.7585 63.6908

45 25.9012 30.6123 33.3504 38.2910 44.3351 50.9849 57.5053 61.6562 69.9569

50 29.7067 34.7642 37.6886 42.9421 49.3349 56.3336 63.1671 67.5048 76.1538

75 49.4751 56.0541 59.7946 66.4167 74.3344 82.8581 91.0615 96.2167 106.3929

100 70.0650 77.9294 82.3581 90.1332 99.3341 109.1412 118.4980 124.3421 135.8069

Table B . l : distribution values.

numbers, in which instance they may be grouped together into ranges eg. 16 ranges of 256

numbers, 0-255, 256-511, • • •. The distribution within these ranges should be uniform and

so the x^ test can be performed upon the number of values in each range with probability

p = i for a number occurring in 1 of the r ranges. This test is known as a Frequency test.

A problem which can occur with the /Frequency test is selecting the length of

the random number sequence to assess. A rule of thumb is that the sequence must be

sufficiently long to enable an expected value np,, to be greater than 5. However, if n is too

large i t may cause local non-random behaviour to be obscured. If n is not large enough a

bias which may exist in the random numbers may not be revealed. These tests should be

run with varying values of n.

For the 27-bit PRBS generator that is to be used in the artificial neuron chip a simu

lation was performed to create sequences of 12-bit random numbers as would occur in the

actual hardware. The bit pattern set initially in the PRBS generator was derived from

the system clock of the host computer, this should ensure a different sub-sequence of the

total sequence is assessed each time the test is run. A number of tests were performed

for different values of n, 1000 to 1000000, and different degrees of freedom, 10 and 50.

For each combination of run length and degrees of freedom 10 runs were evaluated and

averaged. The results can be seen in Table B.2 and Table B.3 the mean of which are

plotted in Figure B.5.

By reference to Table B . l i t can be seen that the value of V usually lies well within

the 25%-75% limits and so with respect to this test upon the 12-bit random numbers they

appear to be adequate.

234

Run Length 1000 10000 100000 1000000 10000000
7.622 8.806 6.407 12.055 30.681
8.744 10.193 30.596 13.478 23.425
8.744 12.234 24.404 11.957 25.432
6.584 15.002 5.553 24.545 13.249
7.037 24.041 10.977 8.527 18.204

13.276 24.067 14.083 8.114 24.860
13.012 3.919 3.522 13.185 22.865
5.576 6.727 16.114 9.474 33.344
5.576 7.143 3.747 11.283 12.823
8.876 7.603 10.832 12.434 35.689

Mean 8.505 11.973 12.623 12.505 24.057

Table B.2: x' results for distribution of random numbers generated froam a PRBS, 10
degrees of freedom.

RunLength 1000 10000 100000 1000000 10000000
50.702 44.419 49.110 100.966 378.463
51.110 62.922 67.799 92.601 389.794
44.684 53.722 54.500 85.086 333.268
37.748 35.392 40.311 87.784 • 380.769
56.312 58.781 51.866 70.708 363.466
56.312 44.521 46.852 73.941 365.739
41.318 54.823 41.002 62.579 382.544
57.842 37.993 38.548 78.527 412.450
59.066 60.076 71.452 86.473 406.685
76.508 52.039 53.699 88.964 360.200

Mean 53.160 50.469 51.514 82.763 377.338

Table B.3: x^ results for distribution of random numbers generated froam a PRBS, 50
degrees of freedom

235

B.3 Gap Test

For the implementation of the Gap test upon a sequence of random numbers the length of

gap between a number U within a range and the next occurrence of a number in that range

is assessed. A total of n gaps are counted and a x^ test performed upon the distribution

of these gaps. For a normalised uniform random number generator, given that the number

U falls within the range of two numbers a and P, a < U < /3 and 0 < a < /3 < 1 the

probability that the next number also falls in the same range a gap of zero is

PQ=p = P -a

For a gap of one

In fact the probability is a geometric random variable distribution such that for a gap

length g

Pg=p{i-pr

Finally for a gap length equivalent to or greater than a user defined maximum length m

p™ = (i - p r

The number of degrees of freedom v which are applicable for the yc' test is the value m

the maximum gap length since there are m-\-l different gap categories.

For the 27-bit PRBS generator that is to be used in the artificial neuron a simulation

was performed to create sequences of 12-bit random numbers as per the previous x^ test.

A number of gap tests were performed for different numbers of gaps from 1000 to 100000

and with two different degrees of freedom 10 and 20. The results can be seen in Table B.4

and Table B.5 with the mean of the 10 separate runs plotted in Figure B.6. By reference

to Table B . l i t can be seen that the values of Y for the distribution test of the gaps

usually lies within the 25%-75% limits and so with respect to this test the 12-bit uniform

random number generator appears to produce adequately distributed numbers.

B.4 Summary

This appendix has detailed tests applied to a PRBS generator model of 27-bits. The

software generates the same bit pattern sequence a hardware realisation of the device.

Four basic tests have been conducted upon the random numbers generated using a PRBS

generator, auto-correlation, cross-correlation, a x'̂ test and a Gap test for the distribution

of values. The basic tests have confirmed that the numbers generated by the use of the

236

Run Length 1000 2000 5000 10000 20000 50000 100000
9.252 5.044 4.842 11.918 13.498 9.365 15.441

11.117 7.101 8.941 4.606 2.626 7.546 12.168
9.505 21.369 10.669 9.006 18.951 8.007 11.892

11.013 4.651 9.713 13.748 5.217 10.863 19.351
11.394 9.334 11.419 10.742 8.208 9.218 4.703
6.546 11.631 12.571 9.669 15.883 19.226 9.105
8.067 12.225 9.383 9.950 6.967 4.597 9.276
4.505 14.166 6.290 6.505 10.014 14.936 7.976
9.883 14.1658 12.295 11.632 3.672 4.457 8.687

19.562 12.788 9.400 11.632 16.677 4.179 14.283
Mean 10.084 11.247 9.552 9.941 10.171 9.239 11.288

Table B.4: 10 degrees of freedom for Gap test

Run Length 1000 2000 5000 10000 20000 50000 100000
4.930 7.814 11.192 16.379 13.949 31.965 51.181

11.274 14.968 14.597 11.146 11.910 34.132 42.771
10.656 4.134 6.772 30.478 15.076 38.294 42.532
6.382 10.265 6.023 7.178 14.432 38.593 63.688
8.416 9.800 4.493 9.048 13.862 47.532 67.826
9.528 10.075 2.099 10.206 14.407 21.421 24.303
5.720 10.015 8.213 19.559 12.621 14.002 41.494

10.901 9.152 12.544 10.155 16.149 47.094 58.300
16.304 3.508 10.062 8.182 7.044 11.713 25.393
13.344 16.937 4.944 12.948 23.906 38.522 54.162

Mean 9.745 9.667 8.094 13.528 14.336 32.327 47.165

Table B.5: 20 degrees of freedom for Gap test

237

PRBS generator are probably suitably random. The above tests are not exhaustive neither

are they conclusive but they do demonstrate that the numbers should be suitably random.

238

o

3

<

00 -400

Figure B . l : Auto-correlation for a 1000 bits. Except for the case of shift = 0 the random
bit stream exhibits limited correlation.

o
U

U

400 600

-0.75 -

Figure B.2: Cross-correlation for a 1000 bits. The corrleation between two non-overlapping
bit streams is seen to be low

239

o
a

o
U
o
3

Figure B.3: Auto-correlation for a 1000 numbers. As per Figure B.l except for the case
of shift = 0 the 12-bit random number stream exhibits limited correlation.

6

0.50 ^

Figure B.4: Cross-correlation for a 1000 numbers. The cross-correlation between two non-
overlapping streams of 12-bit random numbers is low.

240

400.000

350.000

TS 300.000

3 250.000
1/3

150.000

100.000 i

50.000

0.000 $

1000

10 Degrees Freedom

50 Degree.s Freedom

10000 100000

Run Length

1000000 10000000

Figure B.5: Mean values of test for distribution of random numbers from PRBS gen
erator: 10 and 50 degrees of freedom

10 degrees treedom

20 degrees freedom

1000 10000

Number of Gaps

100000

Figure B.6: Mean values of Gap test values for distribution of random numbers from
PRBS generator: 10 and 20 degrees of freedom

241

Appendix C

A C + + P R B S Class

This Class Prbs provides a simple Pseudo Random Binary Sequence (PRBS) generator

formed from a Linear Feedback Shift Register (LFSR). The maximum length of the register

can be up to 32 bits. A PRBS is used to generate a 0 or a 1 with equal probability. This is

achieved by performing modulo 2 arithmetic upon the bit values of the LFSR on which the

PRBS is based. The algorithm implementation used to move through the PRBS is that

explained in Numerical Recipes, [111], Method 1 is used in this instance. The sequential

bits from this type of generator should not be used to form a large random integer or

the mantissa of a random float. Knuth, [111], explains that they are not suitable for this

purpose. Uses to which these bits can be put are

1. Multiplying a signal randomly by 0 or 1, ± 1 .

2. A Monte Carlo- search of a binary tree where the decision on which direction to

branch is the output of the PRBS.

242

Prbs::Prbs
Function

Syntax

Prototype in

Remarks

Return value

Constructor for Prbs.

i n c l u d e "prbs.h"
Prbs RandomBinarySequence(void);
Prbs RandomBinarySequence(const unsigned length,

const unsigned long seed);

prbs.h

Overloaded constructor for Prbs objects. I t is usual to specify the length

and seed when first created the object, although they can be set later.

The empty constructor is primarily to enable arrays of Prbs's to be
created,
none

Prbs::setLength
Function

Syntax

Prototype in

Remarks

Return value

Set the length of the PRBS.

#include "prbs . h "

i n t RandomBinarySequence.setLength(const unsigned length);
prbs.h

Explicitly set the length of Prbs to length. I f length is greater than the

maximum size allowed the Prbs is set to the maximum possible size and

an error returned. I t is still possible to use the Prbs i f required.
I f successful returns 0, or returns -1 on an error.

Prbs::seed
Function

Syntax

Prototype in

Remarks

Return value

Seed the PRBS.

#include "prbs.h"

i n t RandomBinarySequence.seed(const unsigned long seed);
prbs.h

Explicitly set the seed of the Prbs to seed. I f seed is greater than the

maximum value the this length of PRBS can hold then the seed is set

to 1 and an error returned.
I f successful returns 0, or returns -1 on an error.

243

Prbs::advance
Function Advance the generator through its sequence.

Syntax # i n c l u d e "prbs . h "

i n t RandomBinarySequence.advance(void);
i n t RandomBinarySequence.advance(const unsigned long shift);

Prototype in prbs.h

Remarks An overloaded function to advance the Prbs through its sequence. This

can be a single step or a shift number of steps.
Return value Either 0 or 1 is returned, the resultant generator output.

244

/ / ##########
/ / file: inhs.h
/ / '
/ / dcicription: Header file for Clas.i Prh.t
/ /

Joh.n S Glover
School of Engineering and Computer Science

University of Durham.
South. Road
Durh.a,m.
DHl 3LE
UK

+44 91 374 2565
j..f. glover® durh. am., ac. uk

/ / autli.or:
/ / addres.'i:
/ /
/ /
/ /
/ /
/ /
/ / phone:
/ / e-m,ail:
/ /
// ##########
i f n d e f PRBS-H
#def ine PRBS_H

i f n d e f ULong
typedef unsigned long ULong;
typedef unsigned short USliort;
#end i f

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong
ULong

L F S R l =
LFSR2 =
LFSR3 =
LFSR4 =
LFSR5 =
LFSR6 =
LFSR7 =
LFSR8 =
LFSR9 =
LFSRIO
L F S R l 1
LFSRl2
LFSR13
LFSR14
LFSR15
LFSR16
LFSR17
LFSR18
LFSRIO
LFSR20
LFSR21 :
LFSR22 :
LFSR23 :
LFSR24 :
LFSR25 :
LFSR26 :
LFSR27 :
LFSR28 :
LFSR29 :
LFSR30 :
LFSR31 :
LFSR32 :

1;
2;
4;
8;
16;
32;
64;
128;
256;

= 512;
= 1024;
z 2048;
= 4096;
= 8192;
= 16384;
= 32768;
= 65536;

131072;
= 262144;
-- 5244288;
: 1048676;
= 2097152;
: 4194304;
: 8388608;
: 16777216;
: 33554432;
: 67108864;
: 134217728;
: 268435456;
: 536870912;
: 1073741824;
: 2147483648;

245

class Prh.s{
unsigned length;
ULong prbs Value;
ULong maxPrhsValue;
ULong prhsTap.s[33l;
ULong randomBit.;
ULong mask;

const unsigned MaxGeneratorLengtli = 32;

public:

Prl)s(void);
Prl)s(const unsigned lengt.liGenerat.or, const ULong generatorSeed);
int Prhs::sctLengtli(const unsigned lengtliGenerator);
int Prbs::sced(const ULong geueratorSeed);

int Pibs::advance(void);
int Prbs::advance(const ULong shift);

};

#endi f

/ / ##########
/ / end of file prb.s.h
// ##########

246

/ / ##########
/ / file: prh.t.cc

/ /

/ / dcicription: function fi.le for Cla.i.i Prh.i tjcneratoT
/ /
/ / author: Joli.n S Glover
/ / addre.i.'i: School of Engineering and Computer Science
/ / University of Durham
/ / South Road
/ / Durham.
/ / DHl 3LE
/ / UK
/ / phone: +44 91 374 2565
/ / e-ma.il: j..^.glover@d.urham..ac.uk
/ /
// ##########
stat ic char rcsid[) = "$Id: prbs.ccXv 1.1 1992/11/01 16:59:38 des3jsg Exp $";

#include <iostrecim.h>
#include "prbs.h"

/ / ##########
/ / member function: Prh.i::Prl).i()
/ /
/ / Con.structor for object, all priva,te variable.i .let to 0.
/ / U.'ieful if creating an array of Prh.i'.'i

.//
/ / P9 28/10/92
// ##########
Pibs::Prbs(void)

{
length = 0;
prbsValue = 0;
maxPrbsValue = 0;
randomBit = 0;
mask = 0;

}

/ / ##########
/ / m.em.ber function: Prhi::Prbs()
/ /
/ / Con.Hructor for object.
/ / Thi.i i.i the one to be used in general, requires the .size of the PRBS
/ / to be cren.ted and its seed to operate correctly.
/ /
/ / 'Pg 28/10/92
// ##########
Prl)s::Prbs(const unsigned lengthGenerator, const ULong generatorSeed)

{
prbsTaps[0) = 0;
prbsTaps[l) = L F S R l ;
prhsTaps[2] = LFSR2 + L F S R l ;
prbsTaps[3) = LFSR3 + LFSR2;
prbsTaps[4] = LFSR4 + LFSR3;
prbsTaps[5] = LFSR5 + LFSR3;
prbsTaps[6] = LFSRC + LFSR5;
prbsTaps[7) = LFSR7 + LFSRC;
prbsTaps[8] = LFSR8 + LFSR4 + LFSR5 + LFSR6;
prl)sTaps[9) = LFSR9 + LFSR5;

247

}

prb.sTap.sflO] = LFSRIO + LFSR7;
prl).sTap,s[ll] = L F S R l l + LFSR9;
prl)sTap.s[12] = LFSR12 + LFSR6 + LFSR8 + L F S R l l ;
prbsTap.s[13] = LFSR13 + LFSR9 + LFSRIO + LFSR12;
prl).sTaps[14] = LFSR14 + LFSR9 + LFSR12 + LFSR13;
prl)sTap.s[15] = LFSR15 + LFSR14;
prl).sTaps[10] = LFSR16 + L F S R l l + LFSR13 + LFSR14;
prhsTap,s[17j = LFSR17 + LFSR14;
prbsTap.s[18l = LFSR18 + LFSR13 + LFSR16 + LFSR17;
prl).sTaps[19] = LFSR19 + LFSR12 + LFSR17 + LFSR18;
prh.sTap.s[20] = LFSR20 + LFSR17;
prb,sTap.s[21] = LFSR21 + LFSRIO;
prbsTap,s[22] = LFSR22 + LFSR21;
prbsTap.s(23] = LFSR23 + LFSR18;
prb.sTaps[24] = LFSR24 + LFSR20 + LFSR21 + LFSR23;
prbsTap.s[25l = LFSR25 + LFSR3;
prb.sTaps[26] = LFSR26 + LFSR20 + LFSR24 + LFSR25;
prbsTap.s[271 = LFSR27 + LFSR22 + LFSR25 + LFSR26;
prb.sTap,s[28] - LFSR28 + LFSR25;
prb.sTap.s[20] - LFSR20 + LFSR27;
prbsTap.s[30] = LFSR30 + LFSR24 + LFSR26 + LFSR20;
prh.sTaps[31] = LFSR31 + LFSR28;
prbsTap.s[32) = LFSR32 + LFSR25 + LFSR27 + LFSR29 + LFSR30;

i f (,set,Lengt,li(lengtliGenerat,or) < 0)
ccrr <g " e r r o r Prbs: :Prbs: incomplete cons t ruc t ion" <^ endl;

i f (secd(generat.orSeed) < 0)
con- <g " e r r o r Prbs: :Prbs() : incomplete cons t ruc t ion" C endl;

/ / ##########
/ / m.em.l)er function: Prh.<i::.ietLengtIi.()
/ /
/ / Set the length of the PRBS to •length.Genera.tor'.
/ / return 0 on .si/.cce.s,?, -1 on. fa.ilure ie. ''length.Genera.tor'' too hig in which.
/ / ca.<>e .tet to 'm.a.xGenera.1.orLength'.
/ / Aho .let hnaxPrl/.tValue'.
/ /
/ / 1/11/92
// ##########
i n t
Prb.s::sfitLcngt,li(const uns igned IcngtliGenerator)

{ _
i n t .setLengtliRoturn = 0;
maxPrbsVahio = 1;

i f (lengtliGenerator > MaxGenorat.orLength) {
sntLongtliRoturn = - 1 ;
cnrr -C " e r r o r Prbs: : se tLengthO: l eng th value out of raiige" <g eudl;
length = MaxGenorat.orLengtli;
f o r (uns igned lengtliCount = 0; lengtliCount < length; lengthCount+ +) {

maxPrb.sValue <^= 1;
maxPrl).sValne++;

} / / /or 'lengthCount'
}
else {

set.LengtliRetum = 0;
length = IcngthGonerator;
f o r (uns igned lengthCount = 0; lengthCount. < length; lengthCount++) {

maxPibsValue < = 1;

248

maxPrb,sValue++;
} / / for 'lengthCount'

] / / if (length.Genern.tor > Mn.xGcneratorLength.)

r e t u r n setLengthReturn;
} / / function prbs::setLength.()

// ##########
/ / m,em,ber function: Prbs::seed()
//
/ / Seed the PRBS with the value of generatorSeed.
/ / Returns 0 on .tuccess, -1 on failure.
/ / If the seed is too large for the size of PRBS a seed of 1 is used.
/ /
/ / pg 31/10/92
/ / # # # # # # # # # #
int
Prbs::seed(const ULong generatorSeed)

{
int .seedReturn = 0;
i f (generatorSeed > maxPrbsValue) {

seedRcturn = - 1 ;
ccrr <C " e r r o r Prbs: :seed() : seed value out of range" <C endl:
prbsVabie = 1;

}
else {

seedReturn = 0;
prbsValue = generatorSeed;

} / / '/ (generatorSeed > m,a.xPrbsValue)

re turn seedReturn;
} / / function Prbs::seed,()

249

/ / ##########
/ / mem.her function: Prh.i::ad'iiance()
/ /

/ / Clock PRBS liy 1 to advance it once through the .tequence.

/ /
/ / pg 20/10/02
// ##########
int
Pi'l)S::a(lvanco(void)
{

randoniBit — 0;
ma.sk = prbsValue & prbsTap.s[lnngth];

for (unsigned bit. = 0; bit < length; b i t + +) {
ma.sk 3>= 1;
randomBit V = mask & 1;

) / / f o r 'Int'

prh.sValuc = (prbsValue < 1) | randomBit;

re turn int (randomBit):

}
/ / ##########
/ / m.em.her function: Prh.'i::adva.nce()

/ /
/ / Clock PRBS '.ih.ift.' timet to advance '.thift.' .Hep.i through the .sequence.

/ /
/ / pg 20/10/02
// ##########
int
Prbs::advance(const ULong shift)

{
for (ULong shiftCount = 0; shiftCount.< shift; shif tCount++) {

randomBit = 0;
mask = prbsValue & prbsTaps[length];

for (unsigned bit = 0; bit < length; b i t + +) {
mask ;:j>= 1;
randomBit V — mask & 1;

} / / for 'Int'
prbsValue = (prbsValue C 1) | randomBit;

} / / .for '.ihiftCount'

re turn int(randomBit):

}

/ / ##########
/ / end of fi.le prb.i.cc
// ##########

250

Appendix D

Neuron Test Board Configuration

The connections utilised on the test board for verifying the operation of the fabricated
neurons are shown in Table D . l and Table D.2. The connections relate to those made
from the FPC-024 Digital 10 cards to the neuron socket and neuron itself. The pins of
the fabricated neuron have been illustrated in the main body of this thesis, Figure 6.45.
The only additional circuitry required is the provision of a 5V supply suitable to power
the artificial neuron device.

In the actual fabricated test board LEDs were connected via buffers to the output
lines as a visual feedback of their status, this is not necessary for the operation of the
device, conducting the testing of the artificial neuron or as was eventually performed the
simulation of a network of six such devices.

251

Name Connection Pin Name Connection Pin
Gnd CNl-1 Gnd CN2-1
Gnd CNl-2 Gnd CN2-2
PAS CNl-3 27 NC CN2-3
NC CNl-4 NC CN2-4
PA2 CNl-S 54 NC CN2-S
P A l CNl-6 58 NC CN2-6
PAO CNl-7 57 NC CN2-7

CLKO CNl-8 NC CN2-8
OUTO CNl-9 NC CN2-9

GATEO CNl-10 NC CN2-10
CLK2 CNl-11 NC CN2-11
0UT2 CNl-12 NC CN2-12

GATE2 CNl-lS P A l CN2-13
C L K l CNl-14 PAO CN2-14

G A T E l CNl-15 PAS CN2-15
O U T l CNl-16 PA2 CN2-16
PA4 CNl-17 28 PAS CN2-17
PAS CNl-18 29 PA4 CN2-18
PA6 CNl-19 SO PA7 CN2-19 32
PAT CNl-20 31 PA6 CN2-20
PC6 CNl-21 73 PC6 CN2-21 50
PC7 CNl-22 74 PC7 CN2-22 51
PCS CNl-23 72 PC4 CN2-23 48
PC4 CNl-24 71 PCS CN2-24 49
PCO CN1-2S 67 PCI CN2-25 45
P C I CNl-26 68 PCO CN2-26 44
PC2 CNl-27 69 PB7 CN2-27 43
PB7 CNl-28 66 PC2 CN2-28 46
PCS CNl-29 70 PB6 CN2-29 42
PB6 CNl-30 65 PC3 CN2-S0 47
PBO CNl-Sl 59 PB5 CN2-31 39
PBS CNl-32 64 PBO CN2-32 34
P B l CNl-33 60 PB4 CN2-S3 38
PB4 CNl-34 63 P B l CN2-S4 35
PB2 CNl-35 61 PBS CN2-35 37
PBS CNl-36 62 PB2 CN2-36 36
-Sv CNl-37 -Sv CN2-S7
+Sv CNl-38 +Sv CN2-S8
-12v CNl-39 -12v CN2-S9
+12v CNl-40 -|-12v CN2-40

Table D . l : ASIC connections to FPC-024 digital I /O card 1

2S2

Name Connection Pin Name Connection Pin
Gnd CNl-1 Gnd CN2-1
Gnd CNl-2 Gnd CN2-2
PAS CNl-S 78 NC CN2-3
NC CNl-4 NC CN2-4
PA2 CNl-5 77 NC CN2-5
P A l CNl-6 76 NC CN2-6
PAO CNl-7 75 NC CN2-7

CLKO CNl-8 NC CN2-8
OUTO CNl-9 NC CN2-9

GATED CNl-10 NC CN2-10
CLK2 CNl-11 NC CN2-11
0UT2 CNl-12 NC CN2-12

GATE2 CNl-13 P A l CN2-13 23
C L K l CNl-14 PAO CN2-14 22

G A T E l CNl-15 PAS CN2-15
O U T l CNl-16 PA2 CN2-16
PA4 CNl-17 79 PAS CN2-17
PAS CNl-18 80 PA4 CN2-18
PA6 CNl-19 81 PA7 CN2-19 2
PA7 CNl-20 82 PA6 CN2-20
PC6 CNl-21 PC6 CN2-21 20
PC7 CNl-22 PC7 CN2-22 21
PCS CNl-23 PC4 CN2-23 18
PC4 CNl-24 PCS CN2-24 19
PCO CN1-2S PCI CN2-25 IS
PCI CNl-26 PCO CN2-26 12
PC2 CNl-27 PB7 CN2-27 10
PB7 CNl-28 PC2 CN2-28 14
PCS CNl-29 PB6 CN2-29 9
PB6 CNl-30 PCS CN2-30 17
PBO CNl-31 83 PBS CN2-31 8
PBS CN1-S2 PBO CN2-S2 S
P B l CNl-SS 24 PB4 CN2-S3 7
PB4 CN1-S4 P B l CN2-S4 4
PB2 CN1-3S 25 PBS CN2-35 6
PBS CNl-36 26 PB2 CN2-36 5
-Sv CNl-37 -Sv CN2-S7
+5v CNl-38 -|-5v CN2-38
-12v CNl-39 -12v CN2-S9
+12v CNl-40 +12v CN2-40

Table D.2: ASIC connections to FPC-024 digital I /O card 2

253

Appendix E

4—2—4 Encoder/Decoder Board
Configuration

The basic schematics for a network of six neurons are illustrated in Figure E . l and Fig
ure E.2 with the connections made between this system and the two FPC-024 digital 10
boards detailed in Table E.2 and Table E.S.

Each neuron, Neuron X, is configured similarly but there are variations between hidden
layer and output neurons. The two hidden layer neurons, Neurons 1 and 2, have four
input lines which are shared and five independent up/down lines each for driving the
weight register counters. The four output layer neurons. Neurons 3, 4, 5 and 6, have
two shared input lines taken from the outputs of the hidden layer neurons and three
independent up/down lines each for driving the weight register counters. For each neuron
the remaining input lines are commoned together and driven as one with a value of zero,
I N X where X is a given neuron. Similarly for each neuron the remaining up/down lines
are commoned together and driven as one with a value of zero, UD X , so that neuron
weight does not change.

Name Description
RST
CLK
R / W

ADDR 0-7

In 0-3
UD XO-Ti
Init 0-11
WghtOut
SumOut
Out X
IN X

UD X

Reset
Clock
Read/Write line for each individual neuron driven by a combination of
the global R / W and the selection of the neuron.
Address lines, 0-4 select the appropriate weight register and 5-7
select the appropriate neuron
The four input driving pulse sequences for the network.
Up/down signal lines for neuron X and weight registers 0 to n
Initialising weight value, if being loaded. • -
Encoded pulse trains for encoded weights.
Result of weighted summation.
Result of sigmoid transform circuit for neuron x.
Remaining unused input lines for a neuron X commoned together
and driven as one.
Remaining unused up/down lines for a neuron X commoned together
and driven as one.

Table E . l : Description of signal line naming convention.

254

Global R/W

ADDR 5-7

ADDR 0-4

In 0-n _

I N X

UDO-n

U D X

3:8 Decoder

oo
Dir

Init Bus
\

/

74641

\

/

Bi-directional buffer

A Init 0-11

Neuron X OutWght 0-16

SumOut

Ou tX

CLK

RAV RST

Figure E . l : An individual neuron configuration, Neuron X. For the 4^2-4 encoder/decoder
six circuit are required connected to a bus on a motherboard. Input In 0-^ are the input
lines either from the outside or from the preceding layer.

255

UD 1:0-4
xl I

In 0-3

Neuron

UD2:0-4

Neuron 2

UD3:0-2
xl I

In 0-1 Neuron 3

Out 3

UD4:0-2

Neuron 4

UD5:0-2

Out 2 Neuron 5

UD6:0-2

Neuron 6

Out 4

Out 5

Out 6

Figure E.2: Encoder/Decoder system configuration of six neurons. In 0-3 are the input
values to the system from the outside world, while In 0-1 are the output from the hidden
layer fed into the output layer. All neuron outputs have an inverter on them to correct the
value of the sigmoid transform output.

256

Name Connection Pin Name Connection Pin
Gnd CNl-1 Gnd CN2-1
Gnd CNl-2 Gnd CN2-2
PAS CNl-S Addr S NC CN2-3
NC CNl-4 NC CN2-4
PA2 CNl-S Addr 2 NC CN2-S
P A l CNl-6 Addr 1 NC CN2-6
PAO CNl-7 Addr 0 NC CN2-7

CLKO CNl-8 NC CN2-8
OUTO CNl-9 NC CN2-9

GATEO CNl-10 NC CN2-10
CLK2 CNl-11 NC CN2-11
0UT2 CNl-12 NC CN2-12

GATE2 CNl-lS PAl CN2-13 UD 1.1
C L K l CNl-14 PAO CN2-14 UD 1.0

G A T E l CNl-lS PA3 CN2-1S UD 1.3
O U T l CNl-16 PA2 CN2-16 UD 1.2
PA4 CNl-17 Addr 4 PAS CN2-17
PA5 CNl-18 Addr S PA4 CN2-18 UD 1.4
PA6 CNl-19 Addr 6 PA7 CN2-19
PA7 CNl-20 Addr 7 PA6 CN2-20
PC6 CNl-21 PC6 CN2-21
PC7 CNl-22 PC7 CN2-22
PCS CNl-23 Out 6 PC4 CN2-23 SumOut S
PC4 CNl-24 Out S PCS CN2-24 SumOut 6
PCO CN1-2S Out 1 PCI CN2-25 SumOut 2
PCI CNl-26 Out 2 PCO CN2-26 SumOut 1
PC2 CNl-27 Out 3 PB7 CN2-27
PB7 CNl-28 RW PC2 CN2-28 SumOut 3
PC3 CNl-29 Out 4 PB6 CN2-29
PB6 CNl-30 RST PC3 CN2-30 SumOut 4
PBO CNl-31 In 0 PBS CN2-S1
PBS CN1-S2 CLK PBO CN2-32 UD 2.0
P B l CNl-SS In 1 PB4 CN2-3S UD 2.4
PB4 CNl-34 P B l CN2-34 UD 2.1
PB2 CN1-S5 In 2 PBS CN2-SS UD 2.3
PBS CN1-S6 In 3 PB2 CN2-S6 UD 2.2
-Sv CNl-37 -Sv CN2-37
+Sv CNl-38 +Sv CN2-38
-12v CN1-S9 -12v CN2-39
+12v CNl-40 -t-12v CN2-40

Table E.2: Motherboard connections to digital I /O card 1

257

Name Connection Pin Name Connection Pin
Gnd CNl-1 Gnd CN2-1
Gnd CNl-2 Gnd CN2-2
PAS CNl-3 Init 3 NC CN2-3
NC CNl-4 NC CN2-4
PA2 CNl-5 Init 2 NC CN2-S
P A l CNl-6 Init 1 NC CN2-6
PAO CNl-7 Init 0 NC CN2-7

CLKO CNl-8 NC CN2-8
OUTO CNl-9 NC CN2-9

GATED CNl-10 NC CN2-10
CLK2 CNl-11 NC CN2-11
0UT2 CNl-12 NC CN2-12

GATE2 CNl-13 P A l CN2-13 UD 3.1
C L K l CNl-14 PAO CN2-14 UD 3.0

G A T E l CNl-lS PA3 CN2-15
O U T l CNl-16 PA2 CN2-16 UD 3.2
PA4 CNl-17 Init 4 PAS CN2-17 UD 4.1
PA5 CNl-18 Init S PA4 CN2-18 UD 4.0
PA6 CNl-19 Init 6 PA7 CN2-19
PA7 CNl-20 Init 7 PA6 CN2-20 UD 4.2
PC6 CNl-21 PC6 CN2-21 IN 6
PC7 CNl-22 PC7 CN2-22 UD 6
PCS CNl-23 PC4 CN2-23 IN 5
PC4 CNl-24 PCS CN2-24 UD S
PCO CN1-2S I N 1 PCI CN2-25 UD 3
PCI CNl-26 UD 1 PCO CN2-26 IN 3
PC2 CNl-27 IN 2 PB7 CN2-27
PB7 CNl-28 PC2 CN2-28 IN 4
PC3 CNl-29 UD 2 PB6 CN2-29 UD 6.2
PB6 CNl-30 PC3 CN2-30 UD 4
PBO CNl-31 Init 8 PBS CN2-31 UD 6.1
PBS CNl-32 PBO CN2-32 UD 5.0
P B l CNl-33 Init 9 PB4 CN2-33 UD 6.0
PB4 CNl-34 P B l CN2-34 UD S.l
PB2 CNl-35 Init 10 PB3 CN2-35 UD S.2
PB3 CNl-36 Init 11 PB2 CN2-36
-Sv CNl-37 -Sv CN2-37
+5v CNl-38 +Sv CN2-38
-12v CNl-39 -12v CN2-39

+12v CNl-40 + 12v CN2-40

Table E.3: Motherboard connections to digital I /O card 2

258

Bibl iography

[1] S H Tsao. Generation of delayed replicas of maximal-length linear binary sequences.
Procs. of the lEE, 111(11):1803-1806, Nov 1964.

[2] A G Barto and M I Jordan. Gradient following without back-propagation in layered
networks. In Proc. 1st Annual Conference on Neural Networks, 1987.

[3] W S McCulloch and W Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[4] F Rosenblatt. The perceptron: A probalistic model for information storage and
organization in the brain. Psychological Review, 6S(6):386-408, 1958.

[5] P K Simpson. Artificial Neural Systems: foundations, paradigms, applications and
implementations. Pergamon Press, 1990. ISBN 0-08-037894-3.

[6] J A Hertz, A S Krogh, and R G Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, 1991. ISBN 0-201-51560-1.

[7] B Widrow and M E Hoff. Adaptive switching circuits. 1960 IRE Western Electric
Show and Convention Record, (4):96-104, Aug 1960.

[8] M Minsky and S Papert. Perceptrons: An introduction to computational geometry.
M I T Press Massachusetts, 1969. ISBN 0-262-13043-2.

[9] R P Lippman. An introduction to computing with neural nets. IEEE ASSP Maga
zine, 4(2):4-22, April 1987.

[10] G Mirchandani and W Cao. On hidden nodes for neural nets. IEEE Trans, on
Circuits and Systems, 36(5):661-664, May 1989.

[11] S-C Huang and Y-H Huang. Bounds on the number of hidden neurons in multilayer
perceptrons. IEEE Trans, on Neural Networks, 2(1):47-S5, Jan 1991.

[12] J Makhoul, A El-Jaroudi, and R Schwartz. Partioning capabilities of two-layer
neural networks. IEEE Trans, on Signal Processing, 39(6):1435-1440, June 1991.

[13] P Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Be
havioral Sciences. PhD thesis, Harvard University, 1974.

[14] D B Parker. Learning logic. Technical Report Rechnical Report TR-47, Center
for Computational Research in Economics and Management Science, Massachusetts
Institute of Technology, 1985.

259

[15] D E Rumelhart, J L McClelland, and the PDP Research Group. Parallel Distributed
Processing, volume 1, chapter 8. Learning Internal Representation of Error Propa
gation, pages 318-364. The MIT Press, 1986. ISBN 0-262-18120-7.

[16] T P Vogl, J K Mangis, A K Rigler, W T Zink, and D L Alkon. Accelerating the
convergence of the bacl-propagation method. Biological Cybernetics, 59:257-263,
1988.

[17] R S Scalero and N Tepedelenlioglu. A fcist new algorithm for training feedforward
neural networks. IEEE Trans, on Signal Processing, 40(1):202-210, January 1992.

[18] G R Little, S C Gustafson, and R A Senn. Generalization of the backpropaga-
tion neural network learning algorithm to permit complex weights. Applied Optics,
29(11):1S91-1592, April 1990.

[19] H Leung and S Haykin. The complex backpropagation algorithm. IEEE Trans, on
Signal Processing, 39(9):2101-2104, Sept 1991.

[20] N Benvenuto and F Piazza. On the complex backpropogation algorithm. IEEE
Trans, on Signal Processing, 40(4):967-969, April 1992.

[21] G M Georgiou and C Koutsougeras. Complex domain backpropagation. IEEE Trans,
on Circuits and Systems—//.• Analog and Digital Signal Processing, 39(5).'330-334,
May 1992.

[22] T Kohonen. Self-organized formation of topologically correct feature maps. Biolog
ical Cybernetics, 43(l):S9-69, 1982.

[23] T Kohonen. Analysis of a simple self-organizing process. Biological Cybernetics,
44:135-140, 1982.

[24] T Kohonen. The self-organising map. Procs. of the IEEE, 78(9):1464-1480, Sept
1990.

[25] J J Hopfield. Neural networks and physical systems with emergent collective com
putational abilities. Procs. National Academy of Scierices of the USA, 79:2554-2558,
April 1982.

[26] J J Hopfield. Neurons with graded response have collective computational properties
like those of two-state neurons. Procs. National Academy of Sciences of the USA,
81:3088-3092, May 1984.

[27] A Murray and L Tarassenko. Analogue Neural VLSI: A pulse stream approach.
Chapman & Hall, 1994. ISBN 0-412-45060-7.

[28] J J Hopfield and D W Tank. "Neural" computation of decisions in optimization
problems. Biological Cybernetics, 52:141-152, 1985.

[29] D W Tank and J J Hopfield. Simple 'neural' optimization networks: An A / D
convertor, signal decision circuit and a linear programming circuit. IEEE Trans, on
Circuits and Systems, 33:533-541, 1986.

[30] D O Hebb. The Organization of Behaviour: A Neuropsychological Theory. John
Wiley & Sons, 1949.

260

[31] D H Ackley, G E Hinton, and T J Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9(1):147-169, 1985.

[32] B Widrow, N K Gupta, and S Maitra. Punish/reward: Learning with a critic
in adaptive threshold systems. IEEE Trans, on Systems, Man and Cybernetics,
3(S):4SS-46S, Sept 1973.

[33] A G Barto, R S Sutton, and P S Brouwer. Associative search network: A reinforce
ment learning associative memory. Biological Cybernetics, 40:201-211, 1981.

[34] A G Barto and R S Sutton. Landmark learning: An illustration of associative search.
Biological Cybernetics, 42:1-8, 1981.

[35] A G Barto, C W Anderson, and R S Sutton. Synthesis of nonlinear control surfaces
by a layered associative search network. Biological Cybernetics, 43:175-185, 1982.

[36] A G Barto, R S Sutton, and G W Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Trans, on Systems, Man and
Cybernetics, 13(5):834-846, Sept/Oct 1983.

[37] K S Narendra and M A L Thathachar. Learning automata — a survey. IEEE Trans,
on Systems, Man and Cybernetics, 4(4):323-334, July 1974.

[38] L E Atlas and Y Suziki. Digital systems for artificial neural networks. IEEE Circuits
and Devices Magazine, 5(6):20-24, Nov 1989.

[39] H P Graf and L D Jackal. Analog electronic neural network circuits. IEEE Circuits
and Devices Magazine, 5(4):44-49, July 1989.

[40] S Y Foo, L R Anderson, and Y Takefufi. Analog components for the VLSI of neural
networks. IEEE Circuits and Devices Magazine, 6(4):18-26, July 1990.

[41] C Mead. Analog VLSI and Neural Syst ems. Addison-Wesley, 1989.

[42] M S Tomlinson Jr, D J Walker, and M A Sivilotti. A digital neural network archi
tecture for VLSI. In Proc. IEEE IJCNN, volume I I , pages 545-550, San Diego, CA,
1990.

[43] R A Leaver. Stochastic Arrays and Learning Networks. PhD thesis. University of
Durham, 1988.

[44] F G Stremler. Introduction to Communication Systems. Addison-Wesley, 2nd edi
tion, 1982. ISBN 0-201-07259-9.

[45] A F Murray and A J W Smith. Asynchronous arithmetic for VLSI neural systems.
Electronics Letters, 23(12):642, June 1987.

[46] A F Murray and A J W Smith. Asynchronous VLSI neural networks using pulse-
stream arithmetic. IEEE Jour, of Solid-State Circuits, 23(3):688-697, June 1988.

[47] M Brownlow, L Tarassenko, A F Murray, A Hamilton, I S Han, and H M Reekie.
Pulse-firing neural chips for hundreds of neurons. Advances in Neural Information
Processing Systems, pages 785-792, 1990.

[48] M J Brownlow, L Tarassenko, and A F Murray. Analogue computation using VLSI
neural network devices. Electronics Letters, 26(16):1297-1299, 1990.

261

[49] A F Murray, D Delcorso, and L Tarassenko. Pulse-stream VLSI neural networks
mixing analog and digital techniques. IEEE Trans, on Neural Networks, 2(2):222-
229,1991.

[50] A Hamilton, A F Murray, D J Baxter, S Churcher, H M Reekie, and L Tarassenko.
Integrated pulse stream neural networks: Results, issues, and pointers. IEEE Trans,
on Neural Networks, 3(3):385-393, 1992.

[51] J N Tombs, L Tarassenko, and A F Murray. A novel analogue VLSI design for multi
layer networks. lEE Proceedings—Radar and Signal Processing, 139(6):426-430,
1992.

[52] P M Daniell, W A J Waller, and D L Bisset. An implementation of fully analogue
sum-of-product neural models in VLSI. In Proc. 1st lEE Conference on Artificial
Neural Networks, pages 52-56, 1989.

[53] B R Gaines. Stochastic computing systems. In J T Ton, editor. Advances in Infor
mation System Science, volume 2, pages 37-172. Plenum Press, 1969.

[54] D Nguyen and F Holt. Stochastic processing in a neural network. In IEEE First
International Conference on Neural Networks, pages 281-291, 1987.

[55] D E Van Den Bout and T K Miller I I I . A stochastic architecture for neural nets. In
IEEE 2nd International Conference on Neural Networks, pages 481-488, 1988.

[56] D E Van Den Bout and T K Miller I I I . A digital architecture employing stochasticism
for the simulation of Hopfield neural nets. IEEE Trans, on Circuits and Systems,
36(5):732-738, May 1989.

[57] W Banzhaf. On a simple stochastic neuron-Uke unit. Biological Cybernetics, 60:153-
160, 1988.

[58] H Eguchi, T Furuta, H Horiguchi, and S Oteki. Neural network hardware with
learning function using pulse-density modulation. Electronics and Communications
in Japan, 74(ll):66-74, 1991.

[59] H Eguchi, T Furuta, H Horiguchi, S Oteki, and T Kitaguchi. Neural network LSI
chip with on-chip learning. In Proc. IEEE IJCNN, volume I , pages 453-456. Seattle,
1991.

[60] Y Kondo and Y Sawada. Functional abilities of a stochastic logic neural network.
IEEE Trans, on Neural Networks, 3(3):434-443, May 1992.

[61] P Hyland. On the Implementation of Neural Networks Using Stochastic Architecture.
PhD thesis, University College of North Wales. Bangor, 1992.

[62] 80170NX Electronically Trainable Analog Neural Network, June 1991. Experimental
datasheet.

[63] J Brauch, S M Tam, M A Holler, and A L Shmurun. Analog VLSI neural networks
for impact signal processing. IEEE Micro, 12(6):34-4S, Dec 1992.

[64] NIIOOO Recognition Accelerator, 1994.

[65] MT19003, Neural Instruction Set Processor, May 1994.

262

[66] A F Murray. Pulse arithmetic in VLSI neural networks. IEEE Micro, 9(6):64-74,
Dec 1989.

[67] A F Murray. Silicon implementations of neural networks. lEE Proceedings—F Radar
and Signal Processing, 138(1):3-12, 1991.

[68] J L Meador, A Wu, C Cole, and N Nintunze an P Chintrakulchai. Programmable
impulse neural circuits. IEEE Trans, on Neural Networks, 2(1):101-109, Jan 1991.

[69] N E Cotter and O N Mian. A pulsed neural network capable of universal approxi
mation. IEEE Trans, on Neural Networks, 3(2):308-314, Mar 1992.

[70] J E Tomberg and K K K Kaski. Pulse-density modulation technique in VLSI im
plementations of neural network algorithms. IEEE Jour, of Solid-State Circuits,
25(5):1277-1286, Oct 1990.

[71] P S Churchland and T J Sejnowski. The Computational Brain. The MIT Press,
1992. ISBN 0-262-03188-4.

[72] B R Gaines. A stochastic analog computer. Standard Telecommunication Labora
tories, Internal Memorandum, 1-10, Dec 1965.

[73] B R Gaines and J H Andreae. A learning machine in the context of the general
control problem. In Proceedings of the 3rd Congress of the International Federation
for Automatic Control. Butterworths, London, 1966.

[74] W J Poppelbaum and C Afusco. Noise computer. Technical report, University of
Illinois: Dept. of Computer Science, 1965. Quarterly Technical Progress Reports
Apri l 1965 - January 1966.

[75] P Mars and W J Poppelbaum. Stochastic and Deterministic Averaging Processors.
Peter Peregrinus Ltd. , 1981. ISBN 0-906048-44-3.

[76] S M Ross. Introduction to Probability Models. Academic Press, 4th edition, 1989.
ISBN 0-12-598464-2.

[77] A J Miller. Digital Stochastic Computation. PhD thesis, University of Aberdeen,
1976.

[78] Y Taki, H Miyakawa, M Hatori, and S Namba. Even-shift orthogonal sequences.
IEEE Trans, on Information Theory, 15(2):295-300, Mar 1969.

[79] M J E Golay. Complementary series. IRE Trans, on Information Theory, 7(2):82-87,
April 1961.

[80] E Kreyszig. Advanced Engineering Mathematics. Wiley, 7th edition, 1993. ISBN
0-471-59989-1.

[81] T Izumi. Fast generation of a white and normal random signal. IEEE Trans, on
Instrumentation and Measurement, 37(2):316-318, June 1988.

[82] A C Davies. Probability distribution of noislike waveforms generated by a digital
technique. Electronics Letters, 4(19):421-423, 1968.

[83] I Izumi. A method of generating multidimensional normally distributed random
signals. Trans. Japan Soc. Instrum. Control Eng., 13:517-522, 1977.

263

[84] J G Kalbfleisch. Probability and Statistical Inference: 1. Springer-Verlog, 1979.

[85] R C Tausworthe. Random numbers generated by linear recurrence modulo two.
Mathematics of Computation, 19:201-209, 1965.

[86] S W Golomb. Shift Register Sequences. Aegean Park Press, 2nd edition, 1982. ISBN
0-89412-048-4.

[87] R B Pearson, J L Richardson, and D Toussaint. A fast processor for monte-carlo
simulation. Journal of Computational Physics, Sl(2):241-249, Aug 1983.

[88] A Hoogland, J Spaa, B Selman, and A Compagner. A special-purpose processor for
the monte carlo simulation of ising spin systems. Journal of Computational Physics,
Sl(2):250-260, Aug 1983.

[89] J Saarinen, J Tomberg, L Vehmanen, and K Kaski. VLSI implementation of
Tausworthe random number generator for parallel processing environment. lEE
Proceedings—E, 138(3):138-146, May 1991.

[90] A C Davies. Delayed versions of maximal-length linear binary sequences. Electronics
Letters, l(3):61-62, 1965.

[91] A C Davies. Further notes on delayed versions of linear binary sequences. Electronics
Letters, 1(7):190-191, 1965.

[92] A N Van Luyn. Shift-register connections for delayed versions of m-sequences. Elec
tronics Letters, 14(22):713-715, 1978.

[93] A B Gardiner. Logic PRBS delay calculator and delayed-version generator with
automatic delay-changing facility. Electronics Letters, 1(5):123-124, 1965.

[94] J Alspector, J W Gannett, S Haber, M B Parker, and R Chu. A VLSI efficient
technique for generating multiple uncorrelated noise sources and its application to
stochastic neural networks. IEEE Trans, on Circuits and Systems, 38(1):109-123,
Jan 1991.

[95] P J M van Laarhoven and E H L Arts. Simulated Annealing: Theory and Applica
tions. D Reidel PubHshing Company, 1987. ISBN 90-277-2513-6.

[96] N Metropolis, A W Rosenbluth, M N Rosenbluth, and A H Teller. Equation of state
calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087-
1092, June 1953.

[97] S Kirkpatrick, C D Gelatt Jr., and M P Vecchi. Optimization by simulated annealing.
Science, 220(4S98):671-680, May 1983.

[98] J H Holland. Adaption in Natural and Artificial Systems. 1975.

[99] L Ingber and B Rosen. Genetic algorithms and very fast simulated reannealing: A
comparison. Mathematical and Computer Modelling, 16(11):87-100, 1992.

[100] L Ingber. Simulated annealing: Practice versus theory. Statistics and Computing,
1993. To be Published.

[101] European Silicon Structures. Solo I4OO Reference Manuals and Databooks, June
1991. Release V3.1. .

264

[102] E J Watson. Primitive polynomials (mod 2). Mathematics of Computation, 16:368-
369, 1962.

[103] B Holdsworth. Digital Logic Design. 2nd edition, 1987. ISBN 0408015667.

[104] C H Roth. Fundementals of Logic Design. 3rd edition, 1985. ISBN 0314852921.

[105] J B Johnson. Thermal agitation of electricity in conductors. Physical Review, 32:97-
109, July 1928.

[106] H Nyquist. Thermal agitation of electric charge in conductors. Physical Review,
32:110-113, July 1928.

[107] W E Thomson. ERNIE - a mathematical and statistical analysis. Jour, of the Royal
Statistical Society. Series A, 122(3):301-333, 1959.

[108] M J Buckingham. Noise in Electronic Devices and Systems. Ellis Horwood Ltd.,
1983.

[109] H Inoue, H Kumahora, Y Yoshizawa, M Ichimura, and O Miyatake. Random num
bers generated by a physical device. Applied Statistics, 32(1):115-120, 1983.

[110] D E Knuth. The Art of Computer Programming: Seminumerical Algorithms, vol
ume 2. Addison-Wesley, 2nd edition, 1981. ISBN 0-201-03822-6.

[I l l] W H Press, B P Flannery, S A Teukolsky, and W T Vetterling. Numerical recipes
in C. The art of scientific computing. Cambridge University Press, 1988. ISBN
0-521-35465-X.

[112] P L'Ecuyer. Efficient and portable combined random number generators. Commu
nications of the ACM, 31(6):742-749,774, June 1988.

[113] G Marsaglia and A Zaman. A new class of random number generator. The Annals
of Applied Probability, l(3):462-480, Aug 1991.

[114] S Tezuka and P L'Ecuyer. Analysis of add-with-carry and subtract-with-borrow
generators. In Procs. of the 1991 Winter Simulation Conference, pages 443-447,
Dec 1992. ISBN 0-7803-0798-4.

