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Abstract 

I n this thesis the development of a hardware art if icial neuron device and art if icial 

neural network using stochastic pulse rate encoding principles is considered. 

A f t e r a review of neural network architectures and algorithmic approaches suitable for 

hardware implementat ion, a cri t ical review of hardware techniques which have been consid

ered in analogue and digi ta l systems is presented. New results are presented demonstrating 

the potent ia l of two learning schemes which adapt by the use of a single reinforcement 

signal. 

The techniques for computation using stochastic pulse rate encoding are presented 

and extended w i t h new novel circuits relevant to the hardware implementation of an 

ar t i f ic ia l neural network. The generation of random numbers is the key to the encoding 

of data into the stochastic pulse rate domain. The formation of random numbers and 

mult iple random b i t sequences f r o m a single PRBS generator have been investigated. Two 

techniques, Simulated Annealing and Genetic Algori thms, have been applied successfully 

to the problem of optimising the configuration of a PRBS random number generator for 

the format ion of mult iple random bit sequences and hence random numbers. 

A complete hardware design for an art if icial neuron using stochastic pulse rate encoded 

signals has been described, designed, simulated, fabricated and tested before configuration 

of the device into a network to perform simple test problems. The implementation has 

shown tha t the processing elements of the art if icial neuron are small and simple, but that 

there can be a significant overhead for the encoding of information into the stochastic 

pulse rate domain. The stochastic art i f icial neuron has the capability of on-line weight 

adaption. The implementation of reinforcement schemes using the stochastic neuron as a 

basic element are discussed. 
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Chapter 1 

Introduction 

The art of computing is, as ever, advancing rapidly wi th new architectures for machines 

and processors, new fabrication techniques for components which enable a reduction in size 

and an increase in the speed of operation occurring all the t ime. Programming languages 

and operating systems are becoming more tractable and user friendly, command line user 

interfaces are being superceded by graphical user interfaces. However, these machines s t i l l 

adopt a conventional approach, based upon a von Neumann architecture, of an inherently 

complex central processing uni t and attached memory. There are parallel processing 

systems available which may have several processing units operating concurrently either 

on shared or individual memory but these systems must stih be explicitly programmed 

to operate. Despite these advances in speed and sophistication certain tasks s t i l l remain 

d i f f i cu l t to program a machine to perform effectively, eg. speech, vision, reasoning or 

contents based informat ion processing tasks. However these are tasks which are performed 

regularly and w i t h ease by animals. 

The structure of the informat ion processing system in animals is different. The brain 

and nervous system which performs these tasks is based upon what is thought to be a 

basic processing uni t , the neuron, in a massively parallel architecture, w i th a high level 

of interconnectivity, distributed memory and a relatively slow speed of operation. In 

addi t ion this system is not explici t ly programmed to perform but can learn and adapt to 

new situations, experiences and environments. 

The rel iabi l i ty and fau l t tolerance of the two diflFerent approaches is interesting to note. 

For t radi t ional systems a component or sub-system failure is usually catastrophic unt i l 

repaired leading to mult iple systems being operated in parallel for safety crit ical tasks. 

Networks of neurons are generally faul t tolerant w i t h their large number of processing 

elements and interconnections. In fact, the system is constantly evolving as i t operates 

w i t h cells dying and new ones being added. 

There therefore must be merit in this alternative method of approach to information 

processing and thus there is a desire to study, simulate and model these approaches which 



do not need to be programmed to perform a task but can be trained and which have 

the potent ial to be fau l t tolerant. The study of networks of neurons is widespread and 

conducted in many different fields across science and engineering including electronics, 

computing, optics, biology and psychology. The generic t i t le to this area is usually Neural 

Networks and in the particular case of synthetic systems Ar t i f i c i a l Neural Networks. 

The study of neural networks could be approached in several ways: the investigation 

of learning algorithms, the study of the biochemistry of l iv ing neural networks, the exam

inat ion of decision making systems or the development of simplified plausible models in 

software and hardware. From an engineering point of view not all of these are relevant 

approaches. The study of software and hardware ne.ural network models and implemen

t a t i on is pertinent to engineering since ult imately any feasible system must be developed 

and operated. 

Much work has been conducted into learning and adaption algorithms wi th systems 

which w i l l adapt their behaviour based upon either the system's own experience or by 

external influence f r o m the environment. Often incorporated into these systems is a model 

of a neuron usually based upon the principle of a funct ion of a weighted sum of inputs. The 

system is often simulated in software upon a conventional machine for the relative ease 

tha t this offers i n varying the system and model. For development and research purposes 

this is often adequate. I f , however, an operational system is required wi th a practical real 

t ime response the issue of fabricat ing such developed algorithms and networks in hardware 

must be considered which is what this thesis sets out to address. 

I n realising a hardware art if ical neural network system several issues must be addressed: 

T h e a l g o r i t h m a n d neura l network sys tem archi tecture to be adopted. 

Many architectures and algorithms have been, and are continuing to be proposed. 

However several approaches, part icularly the more sophisticated, are not necessarily 

suitable for the development of a dedicated hardware solution for individual process

ing elements. I n addit ion, the learning and adaption algorithm may not be easily 

integrated into a hardware environment. This does not mean that these systems are 

wi thou t merit but that they are not currently appropriate for the development of 

hardware. 

T h e s y s t e m to be used for bui lding the network. 

System realisation could be undertaken in many different fields, eg. electronics, op

t ical or perhaps even biological. The latter two fields may be interesting but are 

not pertinent for this work, for the electronics approach the assorted analogue and 

dig i ta l methods should be assessed. 

T h e s ignal l ing a n d communica t ion methods to be adopted. 

The method of signalling and control is allied strongly to the approach adopted for 

the main hardware realisation. 



T h e provis ion for on-l ine learning, adaption or adjustment of performance . 

I f a neural network is constructed in hardware is its performance determined at build 

t ime, run t ime or can i t be adapted as i t operates? Ideally the latter method should 

be feasible but probably bootstrapping the system by the programming of a base 

configuration in the network should be enabled. 

T h e effectiveness w i t h which the archi tecture can be extended or reconfigured 

in the selected hardware . 

Is the hardware easy to reconnect into a new configuration? Can the inputs to 

hardware devices be adjusted for different architectures and could the number of 

neurons in the system be varied easily sti l l allowing the system to trained and operate 

effectively. 

H o w the approach taken could be enhanced. 

Finally, is the hardware implementation the only one feasible or is i t possible to 

enhance the system to improve the performance or correct mistakes, ie. does the basic 

approach work. This can only really be answered by constructing and demonstrating 

the capabilities of a system. 

The above issues w i l l be addressed as outlined in the following section, w i t h the selected 

hardware solution of stochastic pulse rate encoding explained, justif ied and implemented. 

1.1 Outline of Thesis 

I n this thesis issues relating to the hardware implementation of an art if ical neuron and 

an ar t i f ic ia l neural network using stochastic pulse rate encoding principles are discussed. 

The aim is to present a potential solution to the problem of realising art i f ic ial neurons in 

hardware since most work is currently conducted via software synthesis and modelling. 

The outline of the thesis structure is consequently presented below. 

I n Chapter 2 a review of A N N architectures and algorithms which display a rele

vance to hardware implementation is presented. Validation for two of these systems is 

conducted, the Mult i- layer Perceptron and the Kohonen Self-Organising Feature Map, 

and the scheme of reinforcement learning using A^-p techniques is extended to form 

two new models which just use a single reinforcement feedback connection for adaption 

purposes. Chapter 3 provides a crit ical review of hardware implementation systems and 

describes some currently available dedicated hardware devices. W i t h i n this chapter pulse 

rate encoding strategies are introduced, but wi th a f u l l discussion of stochastic pulse rate 

encoding techniques deferred to Chapter 4. Included in the crit ical review of Chapter 4 

into stochastic pulse rate encoded processing is the presentation of new novel circuits w i th 

relevance to the implementation of a neuron using these techniques. Chapter 5 discusses 



issues relating to format ion of mult iple random number sequences f rom a single PRBS gen

erator. The two optimisat ion techniques of Simulated Annealing and Genetic Algori thms 

are presented and applied to the problem of the opt imum configuration determination for 

the PRBS and its ancillary circuitry. Chapter 6 draws together the techniques and issues 

raised in the preceding chapters to enable the design of an art if icial neuron operating upon 

stochastic pulse rate encoded signals to be presented. The neuron design is described and 

has been fabricated enabling the testing and subsequent analysis of its operation in a 

l imi ted network to be described. This thesis is concluded in Chapter 7 wi th a summary 

of the results presented and suggestions for further work. 



Chapter 2 

Aspects of Artificial Neural 

Networks 

I n this chapter a cri t ical review is provided of the some of the key types of neural networks 

which have been developed together w i t h associated t ra ining algorithms and strategies. 

The fol lowing types of network are explained wi th the aim of gaining an understanding of 

different approaches taken in this field and to determine the most appropriate system for 

hardware implementation w i t h an on-line learning algori thm. 

Perceptron, M L P and Backpropagation. This type of network is one of the most widely 

used and provides feedforward connections only through the network. A feedforward 

network w i l l u l t imate ly be demonstrated using the designed hardware neuron of §6. 

Kohonen Self-Organising Feature Map. This network was investigated since i t does not 

require external intervention in the learning process but is able to adapt itself to the 

task i t w i l l perform. 

Hopfield Net. This network introduces the concept of feedback connections and high

lights the property that energy minimisation wi th in a neural network architecture 

is relevant to the learning process. 

Bol tzmann Machine. Learning and adaption through random processes are demonstrated 

to be achievable and valuable by the study of the Boltzmann machine. The hardware 

neuron developed later w i l l use a stochastic signalling strategy to perform inter-

neuron communication and computation. 

Reinforcement Learning and A R _ P . Simple learning strategies in which only a single 

signal is fed back to the processing elements are reviewed. The Aji-p strategies, 

in particular, are relevant since they provide the basis for algorithms which may 



be combined w i t h the hardware neuron developed to produce an integrated perfor

mance. 

The area of reinforcement learning is expanded upon in this chapter. Af te r an ini t ia l 

val idat ion of the work of Bar to et al, [2], into A^-p, two extensions to the learning 

strategies called the Q-model and T-model Aji^p are proposed and tested. Results are 

presented demonstrating the abil i ty of these new algorithms to adapt and solve basic 

feedforward problems. 

2.1 The Biological Inspiration for Artificial Neural Net

works. 

A r t i f i c i a l neural systems, neurocomputers, connectionist models, parallel distributed pro

cessing models, layered self-adaptive systems, self-organising systems, neuromorphic sys

tems and cyberware are al l terms which can be applied to a technology and ideology which 

can be encompassed under the t i t le of Ar t i f i c i a l Neural Networks ( A N N ) or just Neural 

Networks ( N N ) . The roots and inspiration for ANNs are drawn f rom biology and biologi

cal nervous systems. Such biological systems or wetware consists of a mult i tude of simple 

processing elements which are connected together in a massively parallel architecture. 

The brain consists of many neurons of different varieties but following the general 

fo rmat as i l lustrated in Figure 2.1. A formation of nerve fibres, dendrites, are connected 

to a cell body, soma, wi th in which is located a nucleus. A single long fibre, the axon, 

leaves the cell body which ends by repeatedly dividing. The terminating points of the 

divided axon f o r m t ransmi t t ing connections to the dendrites of other neurons or connect 

direct ly to the neurons via synaptic junctions or synapses. 

Signalling f r o m one neuron to another is a complex chemical process wi th chemicals 

released f r o m the sending side of the synapse. The effect of these chemical releases is to 

alter the electrical potential w i th in the cell body. I f the cell potential reaches a given 

level the neuron is activated releasing a fixed strength and duration signal along the axon 

to other neurons. A f t e r the cell has fired a recovery period follows before the neuron is 

able to fire again. (For a more comprehensive explanation of the biological operation of 

a neuron a biological/medical text should be studied eg. Gray's Anatomy) . Individual 

cells and interconnections are l imited in the task which they can achieve, but the collec

tive behaviour of these structures of biological formations performs a useful task in the 

embodying organism. Conservatively i t has been estimated that there are at least 10^^ 

neurons in the human brain wi th 10 '̂̂  interconnections ie. 10'' synapses for each neuron. 

Given the above rudimentary description of a neuron's behaviour two main approaches 

can be adopted for the study and development of ANNs. One approach is to study, model 

and possibly bi t i ld analogous devices as accurately as possible. The second is to draw 



upon ideas f r o m actual systems and develop simple processing element exemplar wi th in 

a massively parallel architecture. The former approach is normally adopted by biologists 

and psychologists in order to determine the functioning of the brain and nervous system. 

The latter approach is usually followed by engineers in pursuit of a system which wi l l 

per form a computat ional ly useful task. This is the method that wi l l be followed while st i l l 

remembering the inspirat ion for the ideas. 

A final few points should be made clear about NNs, that is a N N is not a static 

entity. The strengths of interconnections vary wi th time, new ones are formed and old 

ones may decay away. Due to the large quantity of parallelism there is redundancy bui l t 

in to the system and a level of fau l t tolerance is available. Rather than being explicit ly 

programmed a N N evolves to perform an action by learning and adaption. Thus, given 

tha t the network changes through damage or the network has to increase its functionali ty 

i t is able to adapt to the new situation. I t is necessary therefore to study and develop 

learn ing/ t ra in ing algorithms for any network created to enable i t to be taught how to 

per form a task or tasks! 

W h y study and develop A N N at all? What benefit can they offer beyond a t radi

t iona l von Neumann architectured machine? What task or tasks could they be used to 

perform? Hopeful ly a more complete reason for the study of ANNs wi l l become apparent 

by answering the lat ter two questions. 

Benefits of A N N are their potential robustness and gradual degradation in performance 

i f an area of the network becomes damaged. W i t h i n a tradit ional computer a failure in a 

processing section is catastrophic in terms of system performance, this is not necessarily 

the case w i t h a N N . A von Neumann machine must be explicitly programmed to perform 

a task. Even w i t h the use of a high level programming language this may not be a 

simple operation for a complex task or the genre of operation which a N N is actually 

accomplished at. Certainly for rapid exact algorithmic or mathematical operations a 

t rad i t iona l computer is excellent but this is not the case for noisy, inexact information 

processing. 

A N N can perform as a classifier where the task of a classifier can be divided into the 

fol lowing three categories. 

T r a d i t i o n a l C lass i f i er . A N N can be used to identify a class to which an input is most 

appropriate, eg. to classify types of vehicles as to whether they are cars, vans or 

bicycles. The difference a N N classifier exhibits f rom a statistical classifier is that i t 

is adaptive and is able to take into account new information as opposed to processing 

all t ra in ing data before being used wi th new data. N N may be non-parametric 

and make fewer assumptions about a data set's information distr ibut ion than a 

t radi t ional classifier. 

C o n t e n t - A d d r e s s a b l e or Assoc ia t ive M e m o r y . These are similar operations. In Content-

Addressable Memory ( C A M ) data are mapped to an address, whereas wi th Asso-
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ciative Memory data are mapped to data. In this mode of operation a N N may be 

used to recall a more complete pattern for a piece of input data eg. a partial image 

of a character can be used to reconstruct the entire character or a telephone number 

wi l l lead to the retrieval of the name and an address associated wi th i t . 

V e c t o r Q u a n t i s e r or Fea ture E x t r a c t o r . In this situation a N N may not be provided 

w i t h any a priori informat ion about a data set but is taught to cluster the informa

t ion as i t sees fit by the extraction of information i t considers relevant. These N N 

could be used in signal transmission to reduce the information which must be sent 

wi thout losing the clarity of the message. Similarly in data compression they may 

be used to extract only pertinent information for storage. 

Already i t has been stated several times that much of the interest and power of NNs 

is the abi l i ty they have to adapt and learn f rom the data presented to them. The two 

global classes of t ra in ing available are Supervised Learning and Unsupervised Learning. 

These two classes can be sub-divided into learning structural information or temporal 

in format ion . 

S u p e r v i s e d L e a r n i n g . I n this case the desired output f r o m the N N is known for each 

input and is used to improve the N N output performance. This improvement can 

be by direct comparison of each desired output and actual output or by the use of 

a performance signal which indicates how satisfactorily a N N has performed for the 

given input . This case is often referred to as Reinforcement Learning or learning 

with a critic, whereas overall Supervised Learning can be referred to as learning with 

a teacher. 

U n s u p e r v i s e d L e a r n i n g . This system has no external teacher to guide a N N response. 

The network is allowed to form its own internal clusters of information. Unsupervised 

Learning can be called self-organisation. 

The two sub-categories of structural and temporal learning are described as follows. 

W i t h s t ructural learning a stable attractor exists for each input which wi l l be learned. For 

temporal learning the output could be a sequence or series of patterns. Whether or not 

the input is s t ructural or temporal w i l l be problem specific. 

2.2 Basic Processing Element Model 

The structure of the basic art if icial neuron can be traced back to the work of McCuUoch 

and Pi t t s , 1943, [3]. They proposed that a model neuron would be either on, firing, or off, 

no t - f i r ing , based upon the weighted sum of inputs exceeding a threshold value. For an n 

i npu t neuron where Xi is an input, Wi is the associated weight the response N„ut is such 



tha t 
7 J, 

J2 > r => iv,„„, = 1 

else 
It. 

x,w, <T^ Nout. = 0 

where T is the threshold at which the neuron is activated. To make the threshold of 

activation easily variable i t can be treated as another weighted input, XQWO, the input 

value of which, XQ, is always unity. 

^ N„ut = l 

^ Nont=0 

This basic neuron architecture of McCulloch and Pit ts can be graphically summarised as 

i n Figure 2.2. 

The step threshold funct ion is only one of several activation functions which an art if icial 

neuron may have. Other common neuron activation functions are the linear, clipped linear 

and sigmoidal func t ion as i l lustrated in Figure 2.3. 

Many different A N N models have been developed including the Perceptron, Multi- layer 

Perceptron, Kohonen Self-Organising Feature Map, Hopfield Net, Boltzmann Machine, 

Bidirect ional Associative Memory, Adaline, Madaline . . . . Each network structure exhibits 

its own style of funct ional i ty , structure and learning technique. In order to appreciate the 

diversity of the subject and to gain an insight into the operation of A N N several of the 

above models w i l l be discussed. 

2.3 Single-layer Perceptron and Multi-layer Perceptron 

The term perceptron was coined by Rosenblatt for his implementation of the McCul

loch & P i t t style neuron. Rosenblatt studied this form of artif icial neuron extensively 

as summarised by himself [4] and more simply by Simpson [5] or Hertz et al [6]. These 

two styles of network which are of interest are both feedforward networks, ie. all inter

connections between neurons are in a forward direction only wi th no connections feeding 

backwards to previous neurons and no connections feeding across to neurons at an equiv

alent depth in the network, both are feasible in more sophisticated configurations. The 

Single-layer Perceptron (SLP) is the most basic network but i t is sti l l able to perform sim

ple pat tern recognition tasks. Training may be achieved by the Perceptron Convergence 

Procedure. More complex pattern recognition may be achieved using the Multi-layer Per

ceptron ( M L P ) which after the development of the Backpropagation algorithm could also 

be successfully trained. 



2.3 .1 S L P a n d t h e P e r c e p t r o n C o n v e r g e n c e P r o c e d u r e 

A single perceptron computes a sum of weighted inputs which after subtraction of the 

threshold, T, passes the resultant through a step threshold activation funct ion to produce 

either a 1 or -1 as its output . The activation function is the sgn funct ion. The perceptron 

may be considered to respond to one class of inputs wi th a 1 and to the rest w i t h a - 1 . I f 

the perceptron output is y then 

y = sgn x,,Wr - T 

Once again the threshold can be subsumed into the summation as an input XQ which 

is always unity. A perceptron can be seen to form two decision regions which in a two 

input case produces a dividing line, for the three input case a dividing plane and in higher 

dimensional cases a d iv id ing hyperplane. The exact position of this decision boundary is 

adaptable by adjust ing the weights and training the perceptron to respond correctly. 

A SLP architecture is i l lustrated in Figure 2.4. I t can be seen to consist of two layers 

only. The first or input layer acts only to distribute the inputs to each perceptron on the 

second, processing, layer. The processing layer produces the network outputs. 

How can the weights which connect the input layer to the processing layer be adjusted? 

Rosenblatt proposed the Perceptron Convergence Procedure which w i l l now be described 

step by step. N B . T has been incorporated as XQW\). 

1. Initialise all weights, ty,;, to a small random value. 0 < i < n 

2. A n input vector X and the desired output vector D are presented to the network of 

n perceptrons. 

X = {X\,X2, • •. ,Xn} 

B = { d i , d 2 , . . . , d n } 

3. Calculate the actual output vector of the SLP Y by determining the response of 

each perceptron. 

Y = {l/l,2/2,---,2/n} 

/ „. \ 
yr{t) = sgn ^ a ; , i u , 

\ , = i / 
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4. Adjus t the weights according to the following scheme. 

w,{t + 1) = iu,{t) + 7][d.i{t) - yr{t)]x,it) 

0 <i <n 

T] a gain term used to specify the proportion of adjustment required, the adaption 

rate, 0 < 77 < 1 

5. Repeat f r o m step(2) un t i l a satisfactory response is produced f rom the network for 

the classes of data. 

I t w i l l be seen f r o m step(4) tha t no weight adjustment occurs i f the actual output 

is equivalent to the desired input , j / j ( t ) - di{t) = 0. 

The selection of the gain term 77 is important as i t must satisfy two conflicting con

straints, that of producing fast adaption for variances in input and the alternative of 

producing stable weight estimates f r o m past events. The greater T] is the quicker adaption 

w i l l occur but the less stable the adaption wi l l become. Choice of rj is very much problem 

dependent. 

Variations on the basic Perceptron convergence procedure can be made by using a 

continuously valued activation funct ion output f r o m the perceptron rather than the sgn 

func t ion . This w i l l allow the use of gradient descent techniques for perceptron weight 

adaption. I f an error or cost funct ion is defined for the SLP output e such that 

^ z = l 

the change in the weight u;,; can now be made proportional to the gradient of the error at 

the present location. 

9E 
W,,{t + 1) - W,{t) = Awi{t) = T] dw,{t) 

n 

i=i 

The correction in weight value can be made individually leading to 

Aw,{t) = r^SMt) (2.1) 

6, = d,,{t) - y,{t) (2.2) 

The equation eq.(2.1) and eq.(2.2) fo rm the delta rule, adaline rule or Widrow-Hoff rule 

[7]. A more common name and the one most often applied in an adaptive signal processing 
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field is the Least Mean Square (LMS) rule. 

The SLP is a very simple N N and as such suffers f rom several constraints. For a 

perceptron to be able to make a decision the two distr ibut ion domains must be linearly 

separable, i t must be feasible to fo rm a dividing plane between the two domains. For 

example the two input A N D funct ion is linearly separable whereas the two input exclusive-

OR, X O R , is not Figure 2.5. The X O R problem is the simplest case of a parity decision 

problem, the more general class of which is discussed by Minsky & Papert [8]. I f the 

domains are not linearly separable no stable decision can be made and the boundary wi l l 

alternate for the different input sets. I f the classes are too close together i t may prove 

d i f f icu l t for a decision boundary to be formed, but_ given that a set of weights for the 

desired association does exist i t has been proved by Minsky & Papert [8] and Hertz et al 

[6] amongst others, tha t the Perceptron Convergence Procedure wi l l find them in a finite 

immber of iterations. The drawback here for the SLP is thus the potentially long learning 

t ime. Due to the SLPs simple decision nature they are poor at generalising a solution. 

Before proceeding forward to describe the more powerful M L P systems much emphasis 

has been placed upon the work of Minsky & Papert for quashing enthusiasm for the 

A N N w i t h i n their book Perceptrons. I n a revised and updated 3rd edition they argue 

forceful ly tha t their intention was to highlight considerations which must be borne in mind 

when evaluating neural systems and their classification potential through examples of hard 

learning problems, eg. the N- input par i ty problem or the determination of connectedness. 

I t would be fair to say that no adequate learning algori thm existed at the time for t raining 

mult iple layered networks. These problems have subsequently been resolved independently 

by several researchers as described in the following section on MLPs. 

2.3 .2 M L P a n d B a c k p r o p a g a t i o n 

As the name suggests the M L P is an extension of the SLP to create a network of more 

than one layer of perceptrons. I f the perceptrons have a continuously valued non-linear 

activation func t ion many of the l imitat ions of the SLP can be overcome. I t is this type of 

activation func t ion which provides the network w i t h the abi l i ty to perform more complex 

tasks. I f the processing elements had linear activation functions then the M L P can be 

demonstrated to be reduced to a SLP. The problem w i t h the M L P originally was the 

abi l i ty to adjust the weights of all perceptrons in a coherent fashion to improve the network 

performance. The advent of the Backpropagation algorithm has removed this hurdle. 

Before describing the Backpropagation algorithm i t would be wise to first of all specify 

a naming and numbering convention for the M L P . A n M L P consists of a number of layers 

of perceptrons as i l lustrated in Figure 2.6. There are three types of layer wi th in an 

M L P , input , hidden and output layers. The first layer, the input layer, acts purely as 

a d is t r ibut ion layer, each node supplying signals to processing elements in the following 

layer. No processing takes place at this level. The last layer, the output layer, receives all 
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the inputs for its processing elements f rom within the network and passes the results back 

out to the environment. Between the input and output layers there are one or more hidden 

layers, so called because they have no external connections to the environment. Signals 

are received f r o m the previous layer, processed and outputted to the following layer. Due 

to the isolation of hidden layer processing elements they are often the most diff icul t to 

analyse and adapt. A n M L P wi l l be specified by the number of hidden layers plus the 

ou tpu t layer that i t contains and by the number of neurons in each layer. This is based 

upon the fact tha t processing only occurs in these layers and neurons. Hence, Figure 2.6 

is a three layer M L P of configuration 4-3-3 wi th three inputs and three outputs.^ 

Being able to specify a network is clearly one consideration, another is how is the 

number of layers determined? and how the number of perceptrons are determined for 

each layer? Quite obviously the number of nodes for input and output w i l l be determined 

by the required connections to the environment, for hidden layers the task is not so simple. 

L ippman [9] highlights how the decision regions are constrained by the various number 

layered networks f r o m the SLP upto the three layer M L P . In theory an arbi trary complex 

decision space can be created by a three layer M L P , more layers may be used to aid in 

the decision region format ion. The number of perceptrons in a hidden layer must be 

sufficient to f o r m decision regions that are as complex as required but no more. Too 

many perceptrons may cause the network to overclassify ie. its response is too highly 

tuned towards a particular set of inputs rather than a general class of inputs, the network 

therefore has d i f f icu l ty generalising. 

For a more formal analysis of the number of hidden layer perceptrons required and 

their abi l i ty to divide the solution space the work of Mirchandani & Coa [10], Huang & 

Huang [11] and Makhal et al [12] should be consulted. These papers'unfortunately place 

constraints upon the M L P configuration to obtain their results. In the general case they 

may not be so applicable. They do illustrate the complexity of the analysis necessary for 

even the simplest of networks. 

Given that a network has been formed and i t is possible to alter the weights for the 

interconnections, what method should be used to determine how to vary the weights? 

For the SLP the Perceptron Convergence rule exists for producing the correct output 

or there are the gradient descent technique variations, delta rule etc. for minimising the 

error between actual output and desired network output . By extension of this gradient 

descent approach for minimising a cost funct ion several researchers have developed the 

same appropriate a lgor i thm commonly known know as Backpropagation, Werbos [13], 

Parker [14] and Rumelhart et al [15]. The name is taken f r o m the most recent exposition 

of the algori thm by Rumelhart et al. 

Backpropagation is an iterative gradient descent technique wi th the aim of reducing 

the difference between the actual and desired output . The technique relies upon each 

Caution: Somo papor.s includo tho input, layer in tlio specification of the .size of tlie network. 
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processing element possessing as its activation funct ion a continuously difterentiable non

linear func t ion . A sigmoidal transform is most often used. 

1 - I - e-'--

X —> -|-oo f [ x ) 1 

x = Q /(a;) ^ 0 . 5 

X —CO f { x ) —> 0 

1 - £-2̂ ^ 
f { x ) = tanh(a;) = ^ _^ 

x +00 f { x ) 1 

x = 0 f { x ) = 0 

x —CO f { x ) —̂  —1 

There follows a step by step description of the backpropagation algorithm as put forward 

by Rumelhart et al. 

1. Initialise all the weights Wij to small random non zero values. 

2. A n input vector X and the desired output vector D are presented to the M L P . 

X = { x i , X 2 , . . . , X N - l } 

D = {di,d2,... ,dM-i} 

3. Forward propagate through the M L P f rom the input layer to the output layer. The 

response for each layer is calculated and fed into the following layer unt i l an output 

Y is produced. 

Y = {yi,y2,---,yM-i} 

4. Adapt the weights for each layer starting at the output layer and backpropagating 

the adjustment through the hidden layers. 

w,j{t + 1) = w,j{t) + r]6jx[ 

W i j i t ) weight for hidden node i or input node i in preceding layer to node j in 

current layer at t ime t. 

x'- ou tput of node i in preceding hidden layer or actual input value. 

77 gain term which determines the degree of adaption to weight. 
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S.j a correction measure based on the error between the desired and actual response. 

This is calculated difl:erently for the hidden layer and the output layer. 

O u t p u t layer The desired response is d.j while the actual response is yj. 

H i d d e n layer There is no known desired response therefore an expected re

sponse is inferred f r o m the following layer. 

6j = x'j(l-x'j)Y,h.Wjl, 
k 

k is for all neurons in the layer after node j. 

5. Repeat this procedure f r o m step (2) unt i l the network performance is acceptable. 

The above listed basic algori thm suffers f rom the fact that i t can take a long time to 

converge and also tha t i t is possible for the system to become caught in a local minima 

of the solution space rather than the global minima. One of the most useful and widely 

implemented techniques to improve this basic algorithm is to include a momentum term a 

at step (4). The momentum takes into account the amount by which the weight changed 

on the previous pass through the algori thm. The improved weight update equation is 

w^jit +1) = w,,j{t) + r]8jx[ + aAw,,j 

Aw,,j = w,,j{t) - w^{t - 1) 

0.0 < a < 1.0 

The reasoning behind the use of the momentum term is that , as the algorithm changes 

the weights downwards towards the global minima, the momentum term wi l l provide 

averaging across the different i npu t / ou tpu t pattern pair sets presented. I f local minima 

occur the momentum term should enable the algorithm to pass through them more easily 

wi thou t being trapped. N B . For a = 0 the update equation reduces to that of the basic 

backpropagation algori thm. 

As different values of rj and a may be opt imal at different points i t has been proposed 

to make them adaptable eg. Vogl [16] and Hertz et al [6]. One such scheme is to vary 77 

based upon the effectiveness of 77 at reducing the error. I f 77 did not cause a reduction in 

error the weight adjustment 77 is too severe and should perhaps be reduced. Conversely i f 

several updates have been made which cause the error to reduce, 77 may be increased as 
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the adjustment tha t i t causes is too conservative. 

-|-a ifAE < 0 consistently 

A7? = <( -brj ifAE > 0 (2.3) 

0 otherwise 

eq.(2.3) is a proposed gain adjustment scheme, the gain is improved by a constant step a 

i f consistent improvements i n the network performance are made, while a proportional de

duct ion of gain occurs for poor network performance. I t has been suggested that a should 

be set to 0 when the gain is reduced and reset to its original value when improvements in 

gain are made. The reasoning for this step is that the momentum term takes account of 

prior learning experiences Awij, thus when the change in network error AE is positive the 

general direction of weight change should reverse, a process which the momentum term 

opposes. 

Other techniques for improving the scope and performance of the basic backpropaga

t ion algori thm include Scalero & Tepedelenlioglu's [17] system for minimising the mean-

squared error between the actual and desired outputs w i th respect to the inputs to the 

non-linearities. Tra in ing in the complex domain can be achieved by using Complex Back-

propagation which may take several variant forms, [18, 19, 20, 21]. 

The M L P and backpropagation discussed so far are a restricted form of the general class 

of feedforward networks. More generally the output of a neuron is able to feedforward to 

any neuron in any layer of the network. I t is unnecessary to connect the output of a neuron 

to al l the inputs of the neurons in the following layer. This relaxation of conditions f rom the 

f u l l y connected M L P lead to much of the fascination wi th the structure of ANNs. I f a l ink 

or a neuron fails i t may be possible to readjust the weights to restore the performance of the 

network. The system has faul t tolerance and the abil i ty to re-adapt. I f the performance 

of the network is affected i t w i l l most likely be a gradual deterioration rather than a 

catastrophic failure of the whole system. 

I t can be seen tha t overall the backpropagation algorithm is quite numerically inten

sive requiring a lot of in format ion to be passed both forward and backwards. A t each 

neuron many calculations must be performed and a record of previous weight conditions 

maintained i f the momentum term is to be utilised. Backpropagation is not suited to 

direct implementat ion in hardware upon a specialised pla t form which operates on-line. 

Usually, learning, t ra in ing and adaption are performed off-line and the learned weights 

programmed into hardware which is to run the network, whether that be a conventional 

architectured machine or a more highly specialised piece of hardware for running a N N . 
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2.3 .3 M L P a n d B a c k p r o p a g a t i o n I m p l e m e n t a t i o n 

To acquire an understanding of the problem of implementing an M L P network and to 

apply the backpropagation t raining algorithm in software a simple simulator was pro

duced. I t should be noted that many sophisticated and respected N N simulators exist 

bo th commercial eg. NeuroProII or 'public domain' eg. Xerion or Migraines/Aspirin. I t 

was felt that benefit would be gained by producing a simple demonstrator wi th which to 

experiment. 

The simulator enabled simple networks of up to five layers and for ty neurons per layer 

to be specified. Configurat ion of the simulator is controlled by a setup file se tup .mlp . 

A n example of the file s e tup .mlp is shown in Figure 2.7. The format of the file is slightly 

terse and the actual specification of the network is not to the standard described in the 

previous section, this was to. s impl i fy coding. The file terms are explained as follows: 

l a y e r s the to ta l number of layers in the network (input, hidden and output) 

neurons per l a y e r the appropriate number of layers to describe each layer 

t r a i n i n g g a i n the value of 77 

t r a i n i n g momentum the value of a 

tv the number of t ra in ing vector combinations X and D 

i n s p e c t r a t e how frequently the RMS error of the network is to be stored in the file 

r e s u l t s . m l p 

t r a i n i n g group s i z e the number of times a t raining vector pair is to be presented to a 

network before the next t ra in ing pair is selected 

epochs the number of diff'erent t ra in ing vector pairs to be presented 

i p / o p the appropriate number of t ra in ing vector combinations 

The output of the software is an ascii file r e s u l t s .mlp which firstly reiterates the network 

parameters followed by a table of the RMS error of the network against t ime. 

Two standard demonstration problems were investigated using the simulator, the 8-

3-8 coder/decoder and the two input Exclusive-OR ( X O R ) . These problems were chosen 

to validate the l i terature on the general characteristics of an M L P network. 

E n c o d e r / D e c o d e r P r o b l e m 

The encoder/decoder problem is an a u t o - a s s o c i a t i v e problem in which the network 

ou tpu t Y matches the original network input X . ^ The aim is for the M L P to find a 

^In a hctc.TO-a,.<!.^ociativc problem tho iintwork output Y difFer.s from tlio network input X. 
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suitable coding scheme to pass the input pattern through a reduced number of hidden 

layer neurons back out to the same number of output neurons as inputs. This type of 

problem may also be referred to as an N - M - N problem where M < N. The difficulty of 

the learning problem depends upon how much smaller M is than N. Specifically a two layer 

MLP was used to solve the 8-3-8 encoder/decoder problem. There are eight input/output 

patterns each with a single input set high in each input pattern and only the corresponding 

line set high in the output, in fact Figure 2.7 illustrates the eight training vectors. The 

obvious solution to the 8-3-8 problem is for the three hidden layer neurons to learn the 

binary codes. 

A group of simulation runs were performed with various combinations oft], a, t r a i n i n g 

group size, and whether the patterns are presented individually at random or sequen

tially as a batch. Figure 2.7 is actually a setup file for such a problem, there being eight 

training vector combinations. The results of these simulation runs can be seen in Figure 2.8 

to Figure 2.12. 

The first set of runs had zero momentum, a = 0, and individual training vector pairs 

were presented at random. Figure 2.8. I t can be seen that increasing the gain term for 

backpropagation increases the rate of error reduction. However, although for larger gains 

a faster rate of convergence occurs, the descent is more noisy and the system varies around 

the convergence point more as i t over corrects. 

The next two sets of runs had a non-zero momentum term and again individual train

ing vector pairs were presented at random, Figure 2.9 and Figure 2.10. These figures 

illustrate that increasing the momentum term increases the speed of the error reduction, a 

combination of relatively large gain and momentum produce the fastest converging results. 

The two terms cannot be increased continuously or else the system becomes unstable. 

Finally for the encoder/decoder case two sets of batched runs were performed as shown 

in Figure 2.11 and. Figure 2.12. In these runs all of the training pairs were passed through 

the network and the average RMS error for all pairs used as the means of network train

ing by backpropagation. Both figures demonstrate what has already been shown that 

increased gain or momentum can increase the rate of adaption. 

The overall speed of adaption is generally comparable for both the individual and 

batch methods of pattern presentation but the batch system produces a smoother RMS 

error curve and will be a smoother path across the error surface of the system. 

The analysis of a cross section of runs for many gains and momentum combinations 

reveals that the limiting values for both are interdependent. In general, the larger the 

value of one parameter the lower the limit of its counterpart. A possible solution to this 

interdependence and noisy convergence is to use adjustable values. Initially large values 

for both parameters are selected, first the momentum term is reduced and later the gain 

term. In this way a rapid descent of the error surface could be achieved initially, but 

as a solution is reached the noise in the gradient following will be reduced first as the 
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momentum and then as the gain is reduced. 

X O R Problem 

The XOR problem is a hard learning problem so called because the input/output rela

tionship is not linearly separable, as illustrated in Figure 2.5. The XOR problem is the 

simplest form of the more general A^-input parity problem given hy Minsky and Papert, 

[8]. For an XOR there are two inputs and one output. The output is high if either one 

or other of the inputs is high, but not both. The more general iV-input parity problem is 

such that the single output is high if either an odd or even number of the A'' inputs are 

high depending whether odd or even parity is required. 

For these tests a fully connected two layer MLP with two hidden layer neurons and 

one output neuron is used. I t should be noted that Runielhart et al [15] demonstrate 

a simplified feedforward network solution to this XOR problem using the network of 

Figure 2.13. In this case though it can be seen that connections are utilised which skip 

the intermediate hidden layer allowable in a general feedforward structure but not in our 

restricted case of an MLP. 

A group of simulation runs were performed with various combinations of gain and 

momentum. The results of these simulation runs can be seen in Figure 2.14 to Figure 2.16. 

I t can be seen that similar characteristics are exhibited as for the 8-3-8 encoder/decoder 

problem in that larger values of gain or momentum produce faster rates of error reduction. 

However, with this problem it can be seen that, within the duration of the runs, the 

network did not always converge to a satisfactory solution, Figure 2.14 for 7] = 0.5 and 

a = 0.0, or Figure 2.16 for rj = 0.7 and a = 0.4. I t was found that often re-initialising the 

weights at random values enabled the system to converge for the same system training 

parameters. For these runs i t can also be seen that the rate of error reduction once it does 

start to occur is rapid. 

2.4 Kohonen Self-Organising Feature Map 

Supervised learning as demonstrated by the Multi-Layer Perceptron is only one form of 

learning. It is not always necessary to have a formal teacher to train a neural network. 

Teuvo Kohonen has developed the self-organising neural network in his work, [22, 23, 

24]. This type of network performs its classification and learning in an unsupervised 

manner. No explicit tutorial set of inputs and outputs is required. 

The biological origin of the Kohonen Self-Organising Map is the competition exhibited 

within sectors of physiological neural systems and the resulting spatial organisation of 

response. There is direct evidence of the localisation of functions inside the brain. Within 

localised areas maps exist for variations of a given type of stimulus. For example, an 

area of the brain responds to sound stimuli, but slightly different sections are excited for 
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different notes. 

The Kohonen network operates on a winner takes all policy for the neurons. Each 

neuron receives identical inputs. Neighbouring neurons in the network compete in their 

activities by mutual lateral interaction. Pattern detection of the inputs occurs as the 

lieurons adaptively form specific feature detectors, each neuron becoming a separate de

coder. The format of the neuron is different to that of the perceptron. The neuron whose 

weights most closely resemble the input vector is said to be the active neuron and pro

duces a response. The neuron with the active response has its weight values for its inputs 

adjusted towards the stimulus to improve the response, while other input weights in the 

net are decreased or left alone. Rather than adjust the values for only one neuron a re

sponse neighbourhood structure may be used in which nearest neighbours of an active 

neuron also have their weights adjusted in favour of a response for the given input vector. 

Gradually the size of the neighbourhood is reduced as is the degree to which the neuron 

weights are changed. Types of neuron neighbourhood maps are illustrated in Figure 2.17 

and Figure 2.18. 

I t has been stated above that all neurons receive that same inputs. This does not 

strictly have to be the case. Kohonen originally proposed the use of a switching or relay 

network between the network inputs and neuron inputs. Each neuron received a set of 

signals from the environment which may not be identical but are coherent. I t was demon

strated that self-organisation would still occur provided the input events to the neurons 

are uniquely determined by the input events to the network. Using the Kohonen training 

algorithm, self-organisation of a set of signal values is only possible if the relationship 

between signals is simple. For practical applications preprocessing will often be necessary 

to form a simple association, eg. for image processing. 

2.4.1 Tra in ing 

Unlike feedforward networks, such as the MLP presented earlier, no explicit response is 

required from the network. Input patterns are presented to the network during training 

to enable neuron responses to group themselves into areas of similar action. 

The unsupervised training algorithm for Kohonen Self-Organising Feature Maps may 

be described as follows. 

i) Initialise all weight values to small random values. Often the weights are normalised 

for improved network performance. 

ii) An input vector, X , is presented to the net. 

X = {xo,Xi,X2, . . . , X N - I } 

i i i ) Calculate the distances between the input vector and the weight vectors for each 
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neuron. 
N-l 

= E(^ ' ; (^ ) -^ '• /(^)) '^ (2-4) 
»:=o 

where 

d.j distance between input and output of neuron j. 

input to node i at time t. 

w , j { t ) weight for input node i to output node j at time t . 

iv) Determine the node j* with the minimum value of dj. This is the active neuron. 

v) Improve the weights of neuron j* such that its response for this type of input is a 

closer match, ie. dj is smaller. Enhance the weights values for all neurons in the 

designated neighbourhood by the following system. 

w.jit + 1) = w,j{t) + vit)ix,_{t) - w,j{t)) (2.5) 

0 < i < - 1 

r)(t) training gain at time, t, 0 < r]{t) < 1 

Note the similarity between the perceptron weight updating, eq.(2.11), and the Ko-

honen weight updating, eq.(2.5). 

vi) Adjust the training gain, r]{t), if required. Training gain should be reduced mono-

tonically with time. 

vii) Adjust the size of the neighbourhood if required. The size of the neighbourhood 

should be reduced monotonically with time. 

viii) Repeat training from step (ii) with a new input pattern until a satisfactory response 

is achieved from the Kohonen Self-Organising network. 

In steps (vi) and (vii) of the training algorithm, how would it be best to vary the 

training gain, rj, and the size of the neighbourhood? 

Taking the size of the neighbourhood first. A wide neighbourhood should be specified 

initially to provide general ordering of the neurons in relation to the inputs. The size 

could be up to half the total number of neurons. As learning progresses the area should 

be reduced to produce improved local ordering. I t may finally occur that only one neuron 

is adjusted for a given input. The specific method of area reduction is not particularly 

important, linear, exponential or proportional to time are all successful. Due to neurons 

being discrete entities the reduction will need to be quantitised. 
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Training gain may be adapted in a similar feishion. The gain is specified to be between 

zero and unity. For values close to unity the adjustment of weights is large and may be 

used to provide general ordering. For values close to zero the adjustment will not be as 

significant to the reordering of the network, but more towards the fine tuning of neuron 

responses. Again it is not significant which particular method is used for reducing the 

gain. Unlike the neighbourhood size, adjustment of the gain will be continuous. 

The two ideas of reducing the influence of training gain and neighbourhood size may 

be combined in the use of a training gain that is variable with the distance from the active 

neuron. Figure 2.19. 

The active neuron has the most adaptation, as one moves towards the outer layers of 

the neighbourhood the gain is reduced. A bell shaped gain centred on the active neuron 

is often used. As learning progresses i t is still necessary to reduce the overall gain and 

neighbourhood size with time. 

I t has been found that the maps formed by Kohonen networks have the following 

convergence properties 

i) representation of the divisions of the data amongst the inputs are formed along the 

most pronounced dimensions. 

ii) preservation of the neighbourhood relationship between inputs. 

iii) transform regions of input domain which are more frequent to larger regions of the 

output domain with greater detail and vice versa. 

2.4.2 K o h o n e n Self-Organising M a p Implementation 

To acquire an understanding of the problem of implementing a Kohonen Self-Organising 

feature map and to apply the learning rule in software, a simple simulator was produced 

as per the MLP, §2.3.3. The basic algorithm implementation Wcis straightforward, but ad

dition of varying learning rates, neighbourhood sizes and the input/output of information 

proved more time consuming. 

A simple problem was addressed, that of ordering two-component input vectors , {x,y) 

where 1.0 < a; < 10.0 and 1.0 < y < 10.0. A two dimensional array of two input neurons 

was used. An ideal mesh can be visualised for uniform response. Figure 2.20 shows a 

10 by 10 ideal mesh. One corner of the Kohonen layer responds to input vector (1,1) and 

the diagonally opposite corner responds to (10,10). 

For an arbitrary input vector the neuron with the closest match, minimum value of dj, 

fires. For input (5.1,7.8) the neuron (5,8) in the mesh fires. No orientation is specified 

for the mesh output, so in Figure 2.20 (1,1) could equally be the top right, bottom left or 

bottom right after training but with (10,10) always diagonally opposite to preserve the 

neighbourhood relationship between inputs. 
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The algorithm of §2.4.1 was adopted with a neighbourhood style of Figure 2.17. The 

weight vector values were set to random values near the mid range of the training space, 

(5.0,5.0). Uniformly distributed random vectors were presented to the network with dif

ferent values of yo, neighbourhood size and the rate of their reduction. 

By displaying the mesh created by the neuron weights at successive intervals the organ

isation of the network can be viewed graphically. Initially for large value of 770 and large 

neuron neighbourhoods the mesh dynamics are large, large changes in the mesh layout oc

cur as general ordering occurs. The neurons orientate themselves towards an appropriate 

topology. Once topologically correct the refinement of the weight values occurs. 

The concept of reducing 77 and the neighbourhoods size can be considered as the amount 

of energy or heat which the system possesses. At high values much movement of weight 

values and hence mesh layout are possible due to the high energy of the system. The 

reduction of 77 and neighbourhood size may be likened to a cooling process enabling the 

system to settle into an ordered state. 

The series of figures. Figure 2.21 to Figure 2.24, illustrates the organising process 

of the Kohonen layer. I t can be seen how the network organisation settles down with 

increELsed number of pair presentation. In these figures the data in the (x,y) pair are 

uniformly distributed throughout the input space. Due to the simplicity of the input set 

it is difficult to demonstrate the principle that the division of data amongst inputs has 

occurred along the most pronounced dimensions. A two-dimensional layer is being used 

to divide a two input vector. The neighbourhood relationship is preserved in the Kohonen 

Layer. 

The uniform distribution of data does not allow the demonstration of the transfer 

between domains, ie. the areas of the input domain which are most frequently excited are 

mapped to larger regions, more neurons, in the output domain. To verify that this occurs 

the distribution of the (x) component of {x,y) was changed to a normal distribution. The 

normal distribution is centred at the middle of the range. 

Figure 2.25 illustrates the effect that this has on the output domain. Firstly, the spread 

in the x direction is reduced, for the uniform case the distribution of x and y was the same. 

Secondly, in the centre of the distribution more neurons are active hence the outputs are 

closer together produce greater detail. Al l input weights are adjusted when neuron weight 

values are improved; this has the effect of causing the y dimension to be drawn in at the 

top and the bottom. 

Kohonen, [22], notes several effects within these feature maps. 

Magnification factor which is ba.sically a restatement of the network property that 

regions of the input domain which are most frequently excited will map to the most 

neurons in the output domain to produce the greatest resolution. 

Boundary effect which forms since the training of neurons occurs in neighbourhoods, 

those neurons which are near to the edge will suffer an effect due to not having the 
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same number of neurons with which to interact. In general this will cause the map 
to contract and pull away from the edges of the output domain. 

Pinch/Collapse/Focusing Phenomena are all related since they are beheved to be 

caused by the interaction between neurons being incorrect, ie. the wrong parameters 

for neighbourhood size and strength of interaction. Pinch occurs when the neigh

bourhood is too small, and means that the distribution of neuron response does 

not spread out across the entire output domain. Collapse can occur when the neigh

bourhood is too large and results in many neurons having basically the same output. 

Focusing can occur if the neighbourhood interaction is too weak, in which case one 

or two elements take over responding to virtually every input vector presented to 

the network. 

I t is found that a balance exists between the rate of reduction of 77 and 770- Similarly 

for the neighbourhood size. Too large a value of 770 or too slow a rate of reduction and 

the network takes a long time to settle down and organise into a sensible state. Too 

small a value of 770 or too fast a rate of reduction and the network cannot unravel itself 

into an ordered condition, but remains contorted. Despite these potential pitfalls and the 

undesirable effects above the Kohonen Self-Organising feature map has been found to be 

remarkably robust at learning this data set. This must be qualified by stating that the 

data are not particularly complex and are suitably conditioned to the output domain. 

2.5 The Hopfield Network 

In the previous sections of this chapter the NN structures of the MLP and the Kohonen 

Self-Organising Feature Map were reviewed and investigated. In this section a brief dis

cussion of the Hopfield Network is conducted. This NN structure was first presented by 

Hopfield in 1982 and 1984, [25, 26]. The Hopfield Network is worthy of review because: 

1. the network exhibits Associative Memory properties ie. given part of a piece of input 

data the network is able to more fully recall the entire piece of information. 

2. in its original form, the network operates asynchronously. 

3. the simple nature and operation has led to its use as the basis for the investigation 

of hardware implementations of NNs as pointed out by Murray et al, [27]. 

4. the network can be adapted and used to solve a difficult but well designed optimi

sation problem, including the Travelling Salesman Problem, [28, 29]. 
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2.5.1 Arch i tec ture and Operat ion 

The basic architecture of a Hopfield Net is illustrated in Figure 2.26. From this diagram it 

can be seen that this NN consists of a single layer of neurons which are fed both from the 

inputs to the network and from every output of the network except their own. The input 

connections are used to simply load the network. A form of recurrence or feedback exists 

in the network through the strong coupling of connections from output to input. The aim 

of the connections is to provide mutual excitation if associated connection weights are 

positive and inhibition if connection weights are negative. 

In the original format each neuron had a step response function with an output value 

which could be classed as -1 or - | -1, a sgn function. Given that a set of neuron weights has 

been determined, to operate the Hopfield Net the following procedure is followed, 

1. Load the Hopfield Net with the initial values of the input pattern, X 

2/j(0) = Xi 

Q<i<N -I 

2. Update each neuron, j , output according to the following rule 

%•(* + ! ) = sgn E u ; , , y , ( i ) (2.6) 
V ?:=o / 

The update method of the neurons given by Hopfield is asynchronous as this is more 

akin to the way the brain operates. The asynchronous update may be implemented 

in one of two ways: 

(a) at each time step select a neuron, j, at random to be updated and apply eq.(2.6). 

(b) each neuron independently updates by using eq.(2.6) with respect to a given 

probability per unit time. 

As Hertz et al [6] point out, the former is best suited for the simulation of Hopfield 

Nets allowing central control, while the latter is more appropriate for hardware 

implementations. Both methods equate to the same principal of update but with a 

different distribution in time. 

How are the weights, ty,.,-, initially determined for a Hopfield Net? Rather than a 

training algorithm as per the above two previously discussed systems, the neuron inter

connection weights are initially calculated and fixed within the network. The mathemat

ical format for calculating the connection weights as given by Hertz et al will be briefly 

outlined. 
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Consider first asingle pattern to be held within the network, P = {p(i,pi,p2, • • • , p A ' - i } -

For the Hopfield net to be stable then 

\ 3 J 
The updating equation of eq.(2.6) will produce no change. 

W^j OC PiPj 

The proportional constant may be taken to be with N the number of neurons in the 

network. 
1 

W^J = —V^P, 

I f a few of the initial values entered into the network are incorrect, the overall summation 

at a node will swamp the errors producing the desired pattern; after the network has been 

allowed to update itself over several time steps, the network relaxes. 

The expansion to storing many patterns within the Hopfield Net is to allow the super

position of terms for each pattern such that 

1 ^ 

/ / , = ! 

Q is the total number of patterns to be stored in the network. NB. The weights of the 

Hopfield Net are symmetric, Wij = Wji. 

Overall this weight setting rule is known as the 'generalised Hebb rule' due to its 

closeness to the proposal by Hebb, [30], regarding the interaction of synaptic strengths in 

the brain due to experience. Hebb actually wrote: 

"When an axon of cell A is near enough to excite a cell B and repeatedly 

or persistently takes part in firing i t , some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, 3S one of the cells firing 

B, is increased." 

The Hopfield Net as an associative memory, or content addressable memory, has two 

main limitations. Firstly, the total number of patterns which may be stored is small 

compared to the number of network connections. The attempted storage of too many 

patterns within the net may cause the network to relax to spurious patterns unlike any of 

its stored patterns. The second major limitation is that if two patterns show too many 

bits in common to one of the other patterns, the'pattern may be unstable such that 

the net relaxes to the other pattern with which the original input shares many common 

bits. Orthoganilisation procedures have been specified to ameliorate the second of these 
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drawbacks. 

In general, when operating, a Hopfield Net relaxes to the stored pattern which is the 

closest with respect to its Hamming distance from the actual input. 

2.6 Boltzmann Machine 

The last specific NN structure which will be reviewed is the Boltzmann Machine developed 

by Ackley et al [31]. Discussion and descriptions are also given by Rumelhart et al [15] 

and Hertz et al [6]. The Boltzmann Machine has much in common with the Hopfield Net 

previously described in §2.5, in that it extends many of the principles to a multiple layer 

architecture if required. As with the Hopfield Net, the processing elements are in one of 

two states, either on or off, however which state a neuron adopts is probabilistic. Similar 

to the Hopfield Net links between processing elements are symmetric. Any element, i, 

which is connected to an element, j, has a weight associated with the link Wij; there is an 

equivalent connection from j to i of value Wji. 

A review of the Boltzmann Machine is worthwhile since, as has already been stated, 

i t can be considered an extension of the Hopfield Net. Secondly the neurons operate 

stochastically and have a stochastic output, yet their collective behaviour can be trained 

to perform a coherent and computationally useful task. Thirdly the neurons operate in 

a stochastic manner upon signals which are deterministic, in §6 an artificial neuron is 

examined in which the reverse is the case, the neurons operate in a deterministic manner 

upon signals which are stochastic. 

Ackley et al demonstrated the ability of the Boltzmann Machine using the 4-2-4 

encoder/decoder problem which has been used earher to assess the MLP, §2.3.3. 

2.6.1 Arch i tec ture and Operat ion 

The basic architecture of a Boltzmann Machine, consists of a network of interconnected 

neurons. I t is not necessary for each neuron to be connected to every other neuron and, 

due to the bidirectional nature of the connections, i t is not a feedforward only network, 

as with the MLP. 

A general arrangement of neurons as shown in Figure 2.27 is thus achieved. The main 

constraint is that the neurons of the network can be divided into two classes visible and 

invisible. Visible neurons have connections to the outside world, while hidden neurons are 

simply connected to other neurons. As has been already stated, the neurons are stochastic 

ie. the output adopts a value of 1 or -1 according to the following rule 

S, = -1-1 p = g(/i,) 
(2.7) 

S, =-I p = l-g{hr) 
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h-i is the sum of weighted inputs for a neuron i as is usual for a neuron. 

and the probability g{hi) is given by the Boltzmann function 

l + er 

where T is a measure of the temperature of the system and h is Boltzmann's constant. 

With neurons operating in a stochastic manner, how can network training of a Boltz

mann Machine be achieved? Ackley et a/proposed, and demonstrated, a gradient descent 

based technique which uses only locally available information to optimise the global net

work performance. The training is a form of Hebbian learning as described in the previous 

section. To adapt the Boltzmann Machine i t is operated in two configurations, damped 

and undamped. Statistics are gathered regarding the output values of connected neurons 

in the two conditions of the network. 

In the clamped state the visible neurons are held at their desired values and the network 

is operated at a given value of T until i t reaches equilibrium. A measure of the correlation 

is made between the output of neuron i and neuron j both being on together. This 

clamping, stabilisation and measurement process must be repeated for each of the desired 

network input/output formats or a group of subsets of a content addressable memory 

format. The clamped correlation values for each of the neuron pairs are averaged. 

In the undamped state, the network is allowed to run without any imposed external 

constraint on the visible neurons. Again a measure is made of the correlation between the 

output of neuron i and neuron j once the network has reached equihbrium. 

The bidirectional interconnection links are updated according to the following rule 

^-^^3 = f[{S^S,)^^^^^^-{S.S,l^,^^^^^^ (2.8) 

) is the average of the correlation between the outputs of neurons i and j 
\ I clamped 

for each of the clamped input conditions. 

(S',;S'j)̂ jî [̂_̂ ĵ p̂̂ .̂| is the correlation between the outputs of neurons i and j for the un

damped input condition. 

7] is the training gain, rate of adaption, used for the gradient descent. 

T is the temperature at which the system is operated. As training of the system pro

gresses the value of T is slowly reduced. 

A complete derivation and alternative descriptions of the Boltzmann Machine training 
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procedure can be found in the previous references, [15, 6, 31]. I t is interesting to note that 

due to the stochastic nature of operation of each neuron a weight change may be in the 

wrong direction thus enabling the system to avoid local minima. 

When operating a Boltzmann Machine in software it is usual to select a neuron at 

random for output update based upon eq.(2.7). For the system to reach equilibrium at a 

given temperature, in a clamped or undamped condition, can take some time. Often the 

speed of reaching equilibrium can be increased by approaching the desired value of T at 

which a network is to operate through the Simulated Annealing process. The process of 

Simulated Annealing will be describe more fully in §5.4. 

There is clearly a lot of work to be performed in the operation of a Boltzmann Machine 

which leads to its main drawback; a Boltzmann Machine operates slowly. As Hertz et al 

highlight there are four nested layers of operation: 

1. many weights require updating using eq.(2.8). 

2. the calculation of (5,;5j) in an undamped condition and all the desired clamped 

configurations. 

3. attainment of an equilibrium of operation at a temperature T. 

4. the network must operate for many cycles with neurons selected at random for output 

update via eq.(2.7). 

Despite the limitations caused by complexity and slow speed of operation the Boltz

mann Machine can and does operate successfully. The network demonstrates that con

structive collective behaviour can be obtained in a stochastically operating NN. Finally, i t 

is the first truly recurrent NN which feeds information both backwards and forwards via 

its bidirectional weights. 

2.7 Reinforcement Learning Schemes 

Reinforcement learning undertaken by the use of a simple signal transmitted to the neuron 

elements has taken various forms, and will probably have several more in the future. 

I t differs from other supervised learning strategies, such as backpropagation, which are 

used for adapting multi-layer feedforward networks. Only a single qualitative response of 

good/bad performance of the network is provided, an error value. Backpropagation and 

algorithms of its genre produce a specific response to the network performance, an error 

vector. 

Widrow et al, [32], using a single ADALINE, demonstrated 'learning with a critic'. 

The ADALINE is the artificial neuron developed by Widrow and Hoff, [7]. The ADALINE 

29 



consists of a sum of weighted inputs passed through a signum, eq.(2.9). 

N 

1=0 

sgn X 
1, X . < 0 

(2.9) 

Normally within the inputs xo will be one set to +1 such that adjusting its weight value 

will have the effect of adjusting the switching point for the signum function. The learning 

with a critic architecture is illustrated in Figure 2.28. I f the response by the ADALINE 

is deemed to be good the Critic Switch, bj, is set to the positive, reward, position. The 

weights of the ADALINE are adjusted by the Least Mean Square (LMS) algorithm or 

any other appropriate adaption algorithm to improve the tendency of the ADALINE to 

produce the same response. However, if the ADALINE performance is bad the Critic 

Switch is set to the punish position and the weights are adjusted to produce the opposite 

response. 

The above configuration was applied to a temporal problem of playing the card game 

Blackjack. The ADALINE circuits had the role of a player in the game. The critic response 

was a good if the game was won by the ADALINE player or bad if the ADALINE player 

lost. The series of inputs to the ADALINE were the cards as played. The output was 

whether another card should be taken by the ADALINE player. Only at the completion of 

the game was the critic involved. The same game was advanced through and each input 

state rewarded/punished depending upon the overall result of the game. An optimal 

decision strategy exists for the player's actions in the game of blackjack and it was found 

that the ADALINE performance improved as more games were played tending towards 

this optimal decision. 

Barto et al have worked upon several schemes employing reinforcement learning as the 

means of training individual or a network of neuron-like elements. The first formulation 

was the Associative Search Network (ASN) [33, 34, 35]. The second scheme was the 

Associative Search Element (ASE) and the Adaptive Critic Element (ACE) [36]. 

The ASN is an associative memory structure. The network learns to output a pattern, 

Y , based upon a given input key, X , for and environment, E . An association is formed 

between the key supplied to the network and the pattern output by the network. The 

network is not explicitly informed of the key/pattern relationship but is trained to max

imise a reinforcement signal or performance parameter. The performance of the network is 

determined by the environment evaluating the pattern output based upon the key input. 

A ful l ASN is illustrated in Figure 2.29. I t can be seen that the ASN as shown consists of 

two types of processing elements, the basic adaptive elements, AE, and a single predictor 

element, PE. The aim of the PE is to aid in the training of the AEs by anticipating the 
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reinforcement/payoff from the environment. 
At a given time, t, 

71. 

5.(0 = E^'v(*)^jW 
.7 = 1 

, , f 1, if s,{t) + NOISE > 0 
yi[t) = < 

0, if s,,{t) + NOISE <0 

The update of the AE weights uses a previous output of the prediction element. 

n 

p{t) = Y,wpjii)xj{t) 
3 = 1 

Two update processes are required one for the AEs and one for the PE. For the AEs 

the update is based upon the reinforcement/payoff received from the environment, z{t), 

previous AE output values, y{t - 1), and previously predicted reinforcement/payoff, p{t). 

w.jit + 1) = w,j{t) + a[zit) - p{t - l)][yit - 1) - y{t - 2)]xj{t - 1) 

The update of the predictor weights is achieved by the following expression, 

Wpj{t + 1) = Wpj{t) + a.p[z{t) - p{t - l)]xj{t - 1) 

The predictor aims to anticipate the payoff from the environment. The term a and are 

learning constants determining the rate of learning for w-ij and Wpj respectively. 

The second system investigated by Barto et al also had two processing elements, ASEs 

and ACEs. These two processing elements were used together to learn to control the 

cart-pole balancing problem. The cart-pole balancing problem consists of a movable cart 

on which a pole has to be balanced vertically. Normally the cart and pole are restricted 

to move in a single horizontal direction. Figure 2.30. The pole is maintained in balance 

by applying impulses to move the cart. This control problem is also known as the broom 

balancing problem. 

The ABE network of Barto's and his colleagues was trained to avoid failure of the 

cart pole balancing system, ie. the pole fell over or the cart reaching the end of its track. 

The ASE control and learning system configuration is illustrated in Figure 2.31. This is 

particularly difficult since failure of the system may occur after a long series of individual 

control decisions. This system differs from the ASN in that not only is a single control 

output, y, required but also the status of the environment is fed through a decoder before 

entering the ASE. The environment is divided into regions by the decoder. For each region 

a control action is to be associated. The regions are constructed from four parameters, the 
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position of the cart, the velocity of the cart, the angle of the pole and the rate of change 
of pole angle. These regions are similar to fuzzy regions. The decoder selects just a single 
region or input to the ASE to be active. 

The output of the ASE is given by 

yit) = f Y,w,{t)x,{t) + NOISE 
L i = i 

^. , f -t-1 if X > 0 (right) 

- 1 if x < 0 (left) 

Due to the random noise term the weight, Wi, only corresponds to the probability that an 

action will be taken. Learning in this system therefore updates the probability of these 

actions. The learning rule for the ASE is 

w,{t + I ) = w^{t) + ar{t)e,{t) 

where 

Q : is the learning constant controlling the rate of change of Wi 

r(t) is a real-valued reinforcement 

e,:(t) is the eligibility of an input. 

The eligibility term is based upon the premise that inputs should have a maximum in

fluence a short time after firing and decay to zero afterwards, ie. an input becomes less 

significant the longer it remains inactive. A simple exponential decay of eligibility may be 

used. 

e,{t + I ) = 5e,it) + {I - 5)yit)x,Xt) 

0 < (5 < 1 determines the rate of decay of eligibility. 

This overall system is fairly complex and upon testing the results were found to be 

poor. This was due to the fact that reinforcement is zero for the majority of the time only 

taking the value -1 at failure of the system. The more successful an ASE becomes the less 

frequent the occurrence of a failure signal and the slower the learning. 

To improve the performance of the ASE the ACE was added to the configuration, 

Figure 2.32. The ACE performs a similar function to that of the predictor in the ASN in 

that the aim of the ACE is to produce a better reinforcement, f . This reinforcement is for 

every input to the system and output combination from the decoder, so that reinforcement 

occurs continuously, not just at failure of the system. 

Continuous reinforcement is generated in a similar manner to that of the predictor 
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within the ASN, 
I). 

p{i) = Eu,:(t),x-,:(t) 
7 = 1 

where 

p{t) is a prediction of the eventual reinforcement, 

Vi is a weight applied to an input a;,;. 

The ACE weights are updated by the following scheme, 

v,,{t + 1) = v , i t ) + a,,[r{t) + j p { t ) - pit - l ) ] x , i t ) 

0 < 7 < 1 

OLp is the constant determining the rate of change of Vi, 

r{t) is the reinforcement from the environment, 

7 is a discount factor which will provide for the prediction to decay to zero if no external 

reinforcement occurs and 

Xi is a trace of x, value calculated in similar fashion to the eligibility parameter of the 

ASE. 

x,(t + l ) = Xx,_{t) + {1 - X)x,{t) 

0 < A < 1 which determines the decay rate of Xi as per 6 for ê . 

The estimated reinforcement, f , is updated by 

f { t ) = T { t ) + y p { t ) - p { t - l ) 

This system of ASE with ACE was found to be far more satisfactory than the single 

ASE, due to the continuous reinforcement applied to the ASE. 

Although these descriptions of ASE and ASE with ACE have been brief i t can be seen 

that both rely upon a single global signal provided by the environment to improve the 

performance of the controlling network. 

Stochastic learning automatons, as reviewed by Narendra and Thathachar, [37], can 

employ various reinforcement learning schemes to improve their behaviour in acting with 

an environment. Figure 2.33 illustrates the link between a stochastic automaton and its 

environment. As Narendra and Thathachar state, a stochastic automaton has six parts, 

a sextuple, {x, (p,a,p, A,G}. 
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X is the set of inputs. 

4> is the set of internal states {(pi,4>2, • • • ,<P.f}-

a is the action/ontput set {ai,a2, • • •, ex.,.} such that r < s. 

p are the state probability vectors which determine the state chosen at each stage, for a 

given stage n, p(n) = (pi{n),p2{n),... ,p.,(n)y. 

a is the updating or reinforcement scheme which produces p{n + 1) from p{n). 

G is the output function which may be either deterministic or stochastic, G : 0 —» a. 

The operation of these learning automatons is to update their action probabilities, 

on the basis of the environmental response. 

The idea of the reinforcement schemes is simple. When a learning automaton selects 

an action a,; at stage n, if the input from the environment is not a penalty, x{n) = 0, 

the action probability, p,:(n) is increased while the alternative action probabilities are 

decreased. I f the environment inputs a penalty, x{n) = 1, the opposite adjustments are 

made, Pi{n) is decreased while the other action probabilities are increased. The above can 

be summarised by the following equations, for when the action at n is the pj{n + 1) 

terms, where j ^ i, are adjusted by 

Pj{n + 1) = Pj{n) — fj{p{n)) x{n) = 0 nonpenalty 

Pj{n + 1) = Pj{n) + gj{p{n)) x{n) = 1 penalty 

The equation for p,;(n + 1) are as follows 

p^{n + 1) = Pi{n) + ^ fjivi'^)) ^ (^) = 0 nonpenalty 

p,,{n + 1) = p,:(n) - ^ Q j i p i n ) ) x{n) = 1 penalty 

The algorithms and continuous functions fj{-) and gj{-) are such that 

r 

J2Pk{n + l) = l 
k=l 

p,.{n + l) 6 (0,1) V k = l,...,r 

whenever every p / . (n )e (0 , l ) 

Using the two conditions of non penalty and penalty several variations on the rein

forcement scheme may be employed. The updating may be linear or non linear and 

applied with a combination of reward, penalty or inaction for the non penalty-penalty 
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conditions, ie. Reward-Penalty, Reward-Inaction, Reward-Reward, Penalty-Penalty and 
Inaction-Penalty. 

Note the difference in the approach to learning to that of the ADALINE and ASE 

formats. Stochastic learning automatons perform updates within the probability space, 

whereas the others perform updates within the parameter's space based upon the rein

forcement signal. As the action selected for an environment is probabilistic, the stochastic 

learning automaton is able to find the global minimum rather than becoming trapped in 

a local minima, which can occur for the previous architectures. 

2.7.1 B a r t o Reinforcement Learn ing 

Barto and Jordan, [2], describe a method for performing nonlinear supervised learning 

upon a multi-layer feedforward network. Instead of the exact solution to the network 

being used, a qualitative response is created to describe the network's performance. A 

critic is used to train the network punishing or rewarding the system depending upon its 

response to inputs. A scalar quantity is fed back through the network to each of the neural 

elements. In backpropagation an error vector is fed back through the network. The error 

vector which backpropagation uses contains more information on the differences between 

the desired output and actual network output. 

Barto and Jordan in fact use two variants of an Associative Reward-Penalty or Aji-p 

algorithm an element of stochasticism is introduced into the weight updating mechanism. 

These two algorithmic variants will now be described. In the following section, §2.8, of this 

thesis two extensions to these mechanisms are proposed commensurate with the hardware 

neuron which will be developed. 

As already stated, the algorithm operates upon a multi-layer feedforward network. 

Input signals are applied to the input layer of the network which propagate through to 

the output layer. Besides the connections to the preceding layer, each processing element 

also has an input which is permanently at +1, a bias. The input layer processing elements 

do not actually perform any computation, but act as a distribution point for the signals. 

Hidden layer processing elements and output layer processing elements generate an output 

value in different ways. 

Output layer elements, j, produce an output value Xj which is a function of its inputs, 

X,, from the preceding layer(s) and the weight for the connection between the processing 

elements i to j, Wij. 
n 

The output units are the same as for a Multi-Layer Perceptron network and the back-

propagation algorithm by Rumelhart et al, [15]. Element input XQ is the bias term fixed 
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at - f 1. 

Hidden layer elements behave the same as those in a Boltzmann network, [31], having 

stochastic behaviour, 

{ 1, probability f{vj) 

0, probabiUty 1 - f{vj) 

I t should be noted that all the processing elements use asigmoidal, squashing or logistic 

function. Output layer units use the function directly to form their output values whereas, 

for hidden layer units, the function generates the probability of the neuron producing a 

one or firing. The hidden layer processing elements have a stochastic behaviour. In 

this network expected activity does not propagate'from hidden units in the way that 

deterministic activations in an MLP network do. 

The performance of the network to produce the desired output must be assessed and 

the network trained to produce a better approximation to the desired output. 

Denoting the actual network output as Y , 

Y = (2/i,2/2,---,2/iv) 

where the y,, are N output units, this is purely a renaming of the Xj values to yj values 

for the output layer, and letting the desired network output be D , 

D = {di,d2, •.. ,dM) 

A performance measure can be defined as the mean square of the difference between 

desired and actual output. 

^ = ^E(d^-y^)' (2-10) 
?:=i 

This performance measure or network error is used as the basis for improving the network 

response. Output layer processing elements and hidden layer processing elements have 

their weights updated differently. 

Output layer processing elements again operate for updating as per Rumelhart et al, 

[15], in that the weights are updated by the backpropagation method, that is, a gradient 

descent occurs. 

Aw,j = p{dj - yj)f'{vj)x,, 

where f'{vj) is the derivative of the function f{vj), 

f'{vj) = f{v,){l-f{v,)) = y , { l - y , ) 
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p is a training gain term which affects how great the adjustment in the weight, Wij, is 

made. As the hidden layer processing elements have a stochastic behaviour the error, £, 

is random thus the adjustment in weights for the output layer will be random. 

Hidden layer processing element weight update is accomplished by means of a broad

cast reinforcement signal, r , which is sent to all hidden processing elements. This is simpler 

than backpropagating an error through previous processing elements from output towards 

the input. A l l weight updates can be performed simultaneously rather than waiting for 

other layers of elements to complete their updates as is the case for example in the back-

propagation algorithm. Two schemes were proposed by Barto and Jordan [2], for weight 

updating in the hidden layers using the value oie, the mean squared error between desired 

and actual network output, eq.(2.10). These schemes are the the P-model Aji-p and the 

S-model Aji-p. The P-model Au-p is a binary reinforcement technique for hidden ele

ment weight updating, while the S-model Aji^p is a proportional reinforcement method 

for updating the hidden element weights. 

P-model A R _ P 

The reinforcement signal r for updating the hidden layer weights has a probabilistic binary 

value depending upon s, 
f 

1, probability (1 - ff) 

0, probability e 

The better the network is at producing the desired output the greater the probability of 

a 1, implying success. Hidden processing elements have their weights updated according 

to the following rule, 

A z . , = / = ^ (2.11) 
I \p{\-x,-j{v,y)x, i f r = 0 

p is the training gain affecting how much weights are adjusted, while A is the degree of 

asymmetry between the size of the weight change for r = 1, viewed as success, and r = 0, 

viewed as failure, 0 < A < 1 . I f A = 0 then the weight update strategy is a Reward-

Inaction, else for A > 0 the strategy is a Reward-Punish. 

The qualitative way this scheme works for hidden elements is that for success, r = 1, 

the weights, w-tj, alter so that the probability of the processing element producing the 

same response for the same input pattern increases. Thus in a similar situation the same 

actions will be more likely to be performed by the network. I f r = 0 and the network fails 

the weight changes are such that the probability of the processing elements producing the 

same response for similar input patterns are reduced. The weight changes for failure are 

governed by A so weight adjustment can also be scaled for failure of the network relative 

to success by the network. The reward and punish could be decoupled such that two 

37 



separate gain terms are used, ie. p for reward and A for punish, by removal of the p factor 
from the equation for the case ?• = 0 in eq.(2.11). 

S-model A R ^ _ P 

This scheme is simpler than the P-model with a real valued reinforcement signal, r, directly 

derived from the error, e, as opposed to a probabilistic binary value for r. 

r = 1 - £ 

The better the network performance the smaller e will be and the stronger the reinforce

ment, r. There is only the need for one weight updating algorithm, 

^w,, = p{r{x, - fiv,)) + A(l - r ) ( l - x, - f{v,)))x, (2.12) 

This scheme is simpler than the P-model AR-P. I t can be seen to reduce to the P-model 

A]i^P for values of r = 0 or r = 1. 

2.8 Two New Extensions for Reinforcement Learning: Q-

model and T-model A R _ P 

For the basic P-model and S-model A^^p schemes tested by Barto and Jordan and re

viewed in §2.7.1 two forms of weight adjustment are used in each method, namely the 

gradient descent at the output layer processing elements and the reinforcement at the 

hidden layer processing elements. To have just a single weight adjustment scheme would 

be better for hardware implementation purposes to keep the design as simple and uniform 

as possible. By eliminating the gradient descent at the output processing elements two 

new architectures may be evolved, the Q-model Ap-p and the T-model Ap^p based upon 

the P-model Ap-p and the S-model Ap-p respectively. 

A second variation which was incorporated into the Q.and T-model Ap^p was that 

all the neurons in the underlying network model now operate stochcistically. The neurons 

have a binary output based on the sigmoid transform of the weighted sum of inputs. In the 

original form only the hidden layer neurons had a stochastic output while the output layer 

neurons operated deterministically. The weight values for the network are still real valued 

and continuous. This network model with associated learning strategy is now beginning 

to model the style of network that can be formed from the developed hardware stochastic 

neuron, and this is one of the reasons for investigating the reinforcement learning approach. 

Q-model A R _ P The Q-model Ap^p is derived from the P-model Ap^p with all weights 

subjected to probabilistic binary reinforcement. The adaption strategy for all neuron 
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weights in all layers are based on a reinforcement signal, r, which has a probabilistic 
binary value dependant upon the network error, £. 

1 " 

di is the desired neuron output value and y,, is the actual neuron output value for N 

neurons. 

Thus 
f 

1, probability (1 - e) 

0, probability e 
As a network produces an output closer to that desired, the greater the probability of a 

favourable reinforcement signal, r = 1. Al l processing elements now have their weights 

adjusted according to the following rule 

l^^ . = ) /'(^J - / K ) ) ^ ' i f r = 1 
^ \p{\-x,-j{vj))x,, i f r = 0 

p is the training gain affecting how much weights are adjusted, while A is the degree of 

asymmetry between the size of the weight change for r = 1, viewed as success, and r = 0, 

viewed as failure, 0 < A < 1 . I f A = 0 then the weight update strategy is a Reward-

Inaction, else for A > 0 the strategy is a Reward-Punish. 

T-model Aj^_p The T-model Aji^p is similarly derived from the S-model Aji^p adap

tion strategy. A l l weights are now varied due to a real valued reinforcement signal, r, 

derived directly from the error, e. 

r = l - £ 

As the network produces an output closer to that desired the greater the value of the 

reinforcement signal. A l l processing elements in this model have their weights adjusted 

according to the following rule 

Atz;,, = p{r{x, - f{v,)) + A(l - r ) ( l - x^ - f{vj)))x, 

2.8.1 E v a l u a t i n g the Four A R _ P Strategies 

In §2.3.3 simple feedforward networks were used to assess the capabilities and learning 

rates of an MLP with the backpropagation algorithm. As a comparison the two styles of 

problem which had been used with the MLP evaluation were repeated for the four Ap-p 
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algorithm variants, namely the encoder/decoder problem and X O R problem. 
The encoder/decoder problem was the same style of 8-3-8 network of artificial neurons 

while the X O R used a 2-2-1 architecture of artificial devices. After difficulty was expe

rienced gaining favourable results for the Q and T-model algorithm simulations with the 

8-3-8 problem, but success was achieved with the 2-2-1 X O R , a new set of simulations 

for a reduced 4-2-4 encoder/decoder network were performed for the Q and T-model. A 

spread of training parameters were used with varying training gain p and asymmetry A 

for each of the learning models. 

A simulation run consisted of presenting a pattern to the network and noting the 

network's response. The weights_of each artificial neuron were updated and a new pattern 

selected at random from the input set and presented. After a given number of pattern 

presentations the network performance was calculated by presenting each of the input 

patterns in turn and determining the RMS error value. The average of the RMS error 

value is taken as a measure of the overall performance of the network. 

P-model and S-model A R _ P For both the P and S schemes rapid initial descent 

governed by the value of p the training gain is observed. In general the greater the value 

of p the faster the rate of descent but with diminishing returns, Figure 2.34 and Figure 2.35. 

In both these cases the long term adaption levels out to an offset value greater than zero 

as illustrated in Figure 2.36. NB. For all of these simulation runs A = 0. 

By addition of a degree of asymmetry, A > 0, both the P and S models are able to 

produce an improved adaption result as illustrated by Figure 2.37. Even a very small 

value of A is significant in improving the adaption capabilities. Figure 2.38. If, however, 

the value of A is too large, then the P and S algorithms fail to adapt to an optimum 

solution but as with the case of A = 0 tend to a non-zero value. The error oscillates more 

vigorously about this offset level though. 

Using the P and S-model algorithms to train a 2-2-1 network of neurons to perform the 

non-linearly separable problem of the X O R proved as difficult as with more sophisticated 

algorithms. For any of the combinations of p and A attempted the network could not be 

trained to the appropriate value with either algorithm. I t was found that a very small 

degree of asymmetry was required and that the number of pattern presentations made to 

the network was extremely large for the network error to tend to zero, Figure 2.39 and 

Figure 2.40. For this case there is a rapid initial descent as with the 8-3-8 encoder/decoder 

but the improvement to remove the last portion of error is very slow. 

Q-model and T-model Af i_p As with the previous two P and S variants the 8-3-8 

encoding problem was tackled with these new Q and T-model versions. As each output 

neuron now produces an integer response 1 or 0 the performance measure, RMS Error, will 

now be in discrete levels. The trend of increasing the gain p to increase the rate of learning 

could not be observed in the performance plots. Varying the amount of asymmetry did 

40 



not aid in the adaption process for either the Q or T-models, unlike the P and S-models, 

the network performance was poor and varied widely even with small value eg. A = 0.005 

as exemplified by Figure 2.41. 

Surprisingly, when the Q and T-models are applied to the X O R problem with a small 

non-zero value for A the problem could be adapted to. Figure 2.42 and Figure 2.43. Note 

the highly quantitised performance measure for the network and learning algorithms which 

provide a possible insight into the problem of adaption with the 8-3-8 encoder/decoder. 

Wi th the output of each neuron being either correct or incorrect with respect to the 

probability given by a function of its weighted inputs the opportunity for the network to 

obtain a strong reinforcement signal, ie. the probability that all outputs are correct, to 

enhance its performance is limited. The training time necessary may therefore be longer 

than that allocated for the above experiments. 

Returning now to the encoder/decoder style configuration but with a reduced size of 

problem, ie. 4-2-4, i t can be seen from Figure 2.44 and Figure 2.45 that the network 

with either the Q or T-model reinforcement training algorithm can now work in the time 

allocated. The assortment of values for gain and asymmetry presented are due to the fact 

that conversion to a satisfactory result is not always possible. Given one set of gain and 

asymmetry values the algorithm may not converge, but given new initial random weight 

values the network may converge. I t can be seen in Figure 2.44 that for p = 0.9 and 

A = 0.03 the system is probably stuck in a local minimum before being able to escape at 

around 50000 presentations. 

2.9 Conclusions 

In this chapter the aim has been to provide a critical review of four key neural network 

architectures, the MLP §2.3.2, the Kohonen Self-Organising Feature Map §2.4, the Hop-

field Net §2.5 and Boltzmann Machine §2.6 in order to determine the most appropriate 

attributes for hardware implementation and on-line learning. The first two networks were 

simulated in software in order to gain a fuller appreciation and understanding of their 

functionality. 

Several architectures and paradigms utilising reinforcement learning techniques have 

been reviewed §2.7. These algorithms are of particular interest since they usually use the 

minimum amount of information which has to be fed back through the network. The two 

learning models, P and S, presented by Barto et al have been demonstrated to function 

as specified. The two systems were found to rely on a small punishment signal in order to 

gain their best performance. 

Building on these two models their respective reinforcement strategies were extended 

to the output layer of a network. In addition, the output layer neurons were configured 

such that their Output was probabilistic as per the hidden layer. I t was found that feeding 
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a single reward or punishment signal to every neuron, it was possible to train the network 

to perform the two demonstration tasks of the 4-2-4 encoder/decoder and the 2-2-1 X O R 

problem. Again it was found that the asymmetry term, A, was important in the network 

adaption performance. When the larger 8-3-8 encoder/decoder problem was attempted 

with these new learning algorithms they did not converge in the time used to train them, 

there may thus be a scalability issue which needs to be addressed in using these methods. 

I t can be seen that there are many and varied algorithms used in the study of ANNs. 

The research into these algorithms is normally conducted in software models. I t has been 

highlighted throughout that NNs are essentially a parallel processing technique consisting 

of many simple processing elements which are interconnected. The hardware design of 

the processing elements is thus a key issue if the most benefit is to be gained from these 

systems. The following chapter, §3, provides a review of possible hardware techniques 

which may be used to form ANNs. Included in this review are several commercially 

available devices. 

The method of stochastic pulse rate encoded signals is discussed in the hardware 

review, i t is pursued further by an explanation of the coding techniques and processing 

circuits in §4. This suite of circuits is extended with novel circuit designs relevant to ANNs 

before an actual hardware neuron design is discussed, developed, tested and operated in 

the following chapters of this thesis. 
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Dendrites 

Nucleus 

Soma 

Synapse 

Axon 

Figure 2.1: Illustration of a Biological Neuron Structure. Artificial neurons model a 
simplified structure of a biological neuron. A single, simple, processing element with many 
inputs and one output. 

Activation 
Function 

Figure 2.2: General Artificial Neuron Architecture of McCulloch and Pitts. This con
sists of weighted input values which are summated and then passed through an activation 
function. 
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Step Function Linear Activation Function 

Clipped Linear Activation Function Sigmoidal Activation Function 

Figure 2.3: Common Neuron Activation Functions. The Step Threshold function was the 
original proposed by McCulloch and Pitt. Alternative activation functions are illustrated, 
all but the Linear Activation Function constrain the output range of the neuron. 

Inputs Perceptrons Outputs 

Figure 2.4: Single layer perceptron configuration. There is only a single processing layer 
in this structure with no feedback connections and no connections across the network from 
one perceptron to another. 
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Figure 2.5: Example of AND and XOR functions for the Perceptron. The AND function 
is linearly separable, a single decision line can divide the two output domains. The XOR 
function is not linearly separable, more than one decision line is necessary to divide the 
two output domains. 

Input Layer Output Layer Outputs 
First Hidden Second Hidden 

Layer Layer 

Figure 2.6: Three layer fully connected MLP configuration. As for the SLP, all connections 
are feedforward to the next layer only with no connections between neurons in the same 
layer. 
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l a y e r s • 3 
neurons per l a y e r 8 3 8 
t r a i n i n g gain 0.5 
t r a i n i n g momentum 0.2 
tv 8 
t r a i n i n g type r 
inspect rate 10 
t r a i n i n g group s i z e 1 
epochs 2000 
i p 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
op 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ip 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
op 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
ip 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
op 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
ip 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
op 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
ip 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
op 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
ip 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
op 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
ip 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
op 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
ip 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
op 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

Figure 2.7: Exaniple of the file setup.mlp. This file is used to configure the basic MLP 
simulator written to demonstrate and verify the operation of MLPs. 
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Figure 2.8: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing 
the gain term for backpropagation increases the rate of reduction in RMS Error. 
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Figure 2.9: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing 
the momentum term for backpropagation increases the rate of reduction in RMS Error. 
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Figure 2.10: Error curves for 8-3-8 coder/decoder MLP, Random presentation. Increasing 
the momentum term for backpropagation increases the rate of reduction in RMS Error, 
but for large values of gam and momentum the decrease in RMS Error is noisier and the 
convergence point is noisier, this is not obvious from these though. 
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Figure 2.11: Error curves for 8-3-8 coder/decoder MLP, Batch presentation. Increasing 
the gain term for backpropagation increases the rate of reduction in RMS Error. 
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Figure 2.12: Error curves for 8-3-8 coder/decoder MLP, Batch presentation. Increasing 
the momentum term for backpropagation increases the rate of reduction in RMS Error. 
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Figure 2.13: Rumelhart et al network architecture to solve the XOR problem. Simplified 
network for solving the XOR problem. Note, however, that feedforward connections from 
the input layer pass directly to the output layer. 
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Figure 2.14: Error curves for 2-2-1 XOR MLP. In general, increasing the gain term for 
backpropagation increases the rate of reduction in RMS Error. Note, a system will not 
always converge, eg. 77 = 0.5, a = 0.0 
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Figure 2.15: Error curves for 2-2-1 XOR MLP. Increasing the momentum term for back-
propagation increases the rate of reduction in RMS Error. 
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Figure 2.16: Error curves for 2-2-1 XOR MLP. In general, increasing the momentum term 
for backpropagation increases the rate of reduction in RMS Error. Note a system will not 
always converge, eg. rj = 0.7, a = 0.4 
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Figure 2.17: Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 1. 
Each neuron has eight nearest neighbours and the neighbourhood scales as 1-8-16. 
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Figure 2.18: Kohonen Self-Organising Feature Map Network Neighbourhood Layout, 2. 
Each neuron has six nearest neighbours and the neighbourhood scales as 1-6-12. 
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Figure 2.19: Variation in Training Gain, rj, vs Distance from Active Neuron. The influence 
of gain and neighbourhood size are combined within this single distribution. Negative 
values for gain as generated by this 'Mexican Hat' curve have proved successful in training 
Kohonen Self-Organising feature maps. 
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Figure 2.20: Ideal Uniform 10 by 10 Mesh. A two dimensional array of 10 x 10 elements 
can he arranged as a uniformly spaced regular grid. 

Figure 2.21: Kohonen Self-Organising Layer, 10 iterations. After only a few iterations of 
the training algorithm the majority of the neuron responses are still concentrated around 
the central value. A large value of rj and neighbourhood will he used to disperse the neuron 
responses throughout the output domain. 
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Figure 2.22: Kohonen Self-Organising Layer, 1000 iterations, Uniform (x,y) distribution. 
The neuron.responses have heen distributed throughout the output domain. A 'twist' in the 
output map appears to exist. Provided there is enough energy within the system ie. large 
rj and neighbourhood, the training algorithm should unravel this twist. 

Figure 2.23: Kohonen Self-Organising Layer, 100000 iterations, Uniform (x,y) distribution. 
The basic structure of the regular grid has been formed. The twist in the response has been 
undone. 
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Figure 2.24: Kohonen Self-Organising Layer, 300000 iterations. Uniform (x,y) distribu
tion. The output grid has stabilised to the expected uniform structure for the uniformly 
distributed two dimensional inputs. Small values of rj and neighbourhood will be used to 
continue fine tuning the network response. 

Figure 2.25: Kohonen Self-Organising Layer, 300000 iterations, Normal (x). Uniform 
(y) distribution. With a concentration of information about the central value for the 
x-dimension the output map is pulled into a form where more neurons are used for areas 
where most information is present. 
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^0 ^3 initially loaded input pattern 

- ^5 output pattern which will be atable after convergence 

Figure 2.26: General Architecture of a Hopfield Net, four neurons. A Hopfield Net con
sists of a single layer of neurons with the feedback of their output to every neuron except 
themselves. 
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Figure 2.27: General Architecture of a Boltzmann Machine. Neurons generate a stochastic 
output and can be divided into two classes, Visible and Invisible. Only visible neurons are 
connected to the outside and these can he further divided into Input and Output sub-classes. 
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Figure 2.28: Criticised ADALINE. Learning with a critic architecture, only a single +1, 
Reward, or -1, Punish, signal is used to update neuron weights. 
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Figure 2.29: Associative Search Network Architecture. The ASN has two types of pro
cessing elements, many Adaptive Elements, AE, and a single Predictor Element, PE. All 
processing elements are connected to the environment, E. 
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Impulse V 

Figure 2.30: Cart-Pole balancing system. By moving the cart appropriately the aim is to 
keep the pole in an upright position. 
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Figure 2.31: Associative Search Element (ASE) configuration. The system environment 
status is decoded before feeding into the ASE. The reinforcement signal is only set at times 
of system failure. The system responses and rate of adaption were found to be poor. 
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Figure 2.32: Associative Search Element with Adaptive Critic Element (ACE) Configura
tion. Basic performance of the ASE system Figure 2.31, is enhanced by the inclusion of 
the ACE which generates a continuous value of internal reinforcement signal for every set 
of decoded outputs and reinforcement inputs. 
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Figure 2.33: Learning Automaton. 
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Figure 2.34: Initial adaption rate for 8-3-8 encoder/decoder P-model Aji-p. It will be 
noted that increasing the gain, p, produces an increase in learning rate. There exists a 
constant error which the training algorithm can not overcome. 
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Figure 2.35: Initial adaption rate for 8-3-8 encoder/decoder S-model A^-p. It will be 
noted that increasing the gain, p, produces an increase in learning rate. There exists 
a constant error which the training algorithm can not overcome. By comparison with 
Figure 2.34 the P-model Aji-p is marginally faster at error reduction. 
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Figure 2.36: Long term adaption for 8-3-8 encoder/decoder. The two models of network 
of Figure 2.34 o.'<^d Figure 2.35 have be trained for a long period of time but remain with 
the same amount of network error. 
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Figure 2.37: Long term adaption for 8-3-8 encoder/decoder with A > 0. It can be seen 
that increasing the value of asymmetry from zero aids the training of the network by 
reinforcement learning. 
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Figure 2.38: Long term adaption for 8-3-8 encoder/decoder with small A. By comparison 
with the previous Figure 2.34 o-'n-d Figure 2.35 it can be seen that even a small degree of 
asymmetry is beneficial. 
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Figure 2.39: X O R learning P-model. For adaption to occur such that the network error 
tends to zero it is necessary to use a very small value of X and a long training period. 
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Figure 2.40: X O R learning S-model. per the P-model, Figure 2.39, a small value of X 
was found to be necessary combined with a long training period for network error to tend 
to zero. 
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Figure 2.41: Poor learning of 8-3-8 by Q and T models. This is an example of the poor 
adaption of the new AR-P models and the inability to reduce the network error to zero 
even for small degrees of asymmetry. 
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Figure 2.42: Q-model X O R . Note that by comparison with the P-model results of Fig
ure 2.39 the rate of adaption and learning is of the order of ten times faster. A highly 
quantised response is evident. 
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Figure 2.43: T-model X O R . Note that by comparison with the P-model results of Fig
ure 2.40 the rate of adaption and learning is of the order of ten times faster. A highly 
quantised response is evident. 
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Figure 2.44: Q-model learning for the 4-2-4 encoder/decoder. With a reduced problem 
size the Q-model is able to adapt to form the necessary weight values. The system can still 
get caught in an apparent local minima as exemplified by the plot for p = 0.9 and X = 0.03. 
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Figure 2.45: T-model learning for the 4-2-4 encoder/decoder, per the Q-model, Fig
ure 2.44> with a reduced problem size the system is able to adapt to form the necessary 
weights to converge. 
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Chapter 3 

Hardware Implementation: A 

Critical Review 

The previous chapter has discussed ANN architectures and the classes of learning algo

rithms which may be implemented. One of the problems which exists with many of these 

architectures and algorithms is that they exist only as mathematical models or are imple

mented as a software solution upon a standard von Neumann style architecture machine. 

The power of ANNs is derived from the high degree of parallelism that can be achieved. 

Despite the high speed of modern computer platforms for the simulation of ANNs, the 

platforms are often not fast enough for very large networks or real-time applications. The 

following difficulties, as highlighted by Atlas and Suziki [38] are to blame. 

Massive interconnections can be required. 

Most architectures involve tens, hundreds even thousands of neurons requiring inter

connection. This is particularly acute in a fully connected NN. Each connection will 

require a multiplication and each neuron will therefore need many multiplications 

and- summations of results. 

Learn ing . 

Many of the problems thought best suited to the solution by NNs have large data 

sets. Most algorithms are slow to converge to a solution due to adjusting the many 

weights that exist and this may necessitate many iterations. 

T r i a l and error . 

NNs do not always converge to a solution. When they do converge this may not be 

to a global minimum. Different training runs may be needed to be tried with various 

initial conditions to enable the best results to be selected. 
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Flexibility. 

ANN algorithms and architectures are continuously evolving. A hardware solution 

must l̂ e as adaptable and adjustable as possible. 

Therefore, it is worthwhile developing hardware realisations of ANN to increase the 

rate of processing and the size of problem which can be tackled in a rational timescale. 

What possible systems are there for implementing an ANN in hardware? Analogue 

electronics, digital electronics, optical devices or any other system which may currently 

be in vogue. Points to be considered are the complexity of the resulting system (on top 

of the interconnectivity of the neurons), stability of the system, the ability of the system 

to learn on or off line. 

3.1 Analogue Artificial Neural Networks 

The basic operation of an ANN processing element as described in §2.2 can be summarised 

as 
NouT = F [ ^ ( n ) ' 

therefore within analogue hardware i t is necessary to perform the three operations of 

multiplication 11, summation J] and activation function F. Graf & Jackal [39] and Foo 

et al [40] provide a general introduction into analogue implementations, while IVIead [41] 

provides a greater depth and more specialised viewpoint for using analogue circuits. 

The basic instantiation of these three operations within an ANN is as follows 

Multiplication. A single transistor could be used to perform multiplication, but a bet

ter approach would be to represent the strength of a connection by a resistor. In 

the latter case the output from a neuron i is input to a neuron j through a con

ductance representing the connection strength or weight Tij. I f the voltage at the 

input to neuron j is held at ground a current lij will flow through the conductance 

representing the weighted signal. 

Uj = VouTiTtj 

The realisation of this weighting conductance can be achieved in several ways, in

cluding a CMOS switch operating in its active region, a switch-capacitor network, 

a switched-resistor network or a switched-ladder resistor network, all are illustrated 

in Figure 3.1. 

Summation. The addition of input signals, currents, can be achieved by connecting 

the input wires together at a single node. An example would be the input of an 

operational amplifier (Op Amp) which is considered to be at virtual ground. 
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Pros Cons 
Speed of operation 

Asynchronous behaviour 
Easy implementations 

Simple circuits 
Small circuit elements 

Direct interfacing 
Basic storage of weights 

Smooth neural activation function 
Massive parallelism 

Lack of thermal stability 
Low noise immunity 

Interconnection problems 
Limited accuracy 

Hard to test 
Basic components hard to fabricate 

Lack of design tools 
Signed storage of weights 
Non-uniform processing 

Table 3.1: Implementation considerations for analogue neural networks 

Activation Function. The format of activation realised will depend upon the configu

ration of the Op Amp at whose input the currents are summed. At the simplest 

level an Op Amp can be configured as an analogue comparator, a step function 

can thus be formed. A basic clipped linear activation function can be created us

ing a non-inverting Op Amp configuration. Finally, a bcisic sigmoidal function may 

be achieved using two Op Amps in series. These three concepts are illustrated in 

Figure 3.2. 

There are several advantages to following an analogue solution to hardware implemen

tation, amongst them are the relatively simple circuits necessary, their small size and the 

ease with which they can be designed. This can lead to a high level of integration and 

a massively parallel design. As there does not need to be an overall clock to control the 

operation, this can be both fast and asynchronous. Finally, the connection strengths are 

represented by basic electronic components, eg. resistors and capacitors, no sophisticated 

circuit control mechanism is required. 

However, analogue solutions are not without their problems. Analogue circuits lack 

thermal stability and have a low threshold to noise immunity. Despite being small and 

offering the possibility of a high level of parallelism how are the large number of connecting 

wires to be routed? The basic components which can be used for weight representation, 

resistors and capacitors, are hard to fabricate accurately and repeatedly. How are signed 

weights to be represented and stored? Analogue design tools for integrated circuits are 

not as well developed as their digital counterparts making the design of a circuit more 

difficult. 

The pros and cons for the analogue implementation of ANN are summarised in Ta

ble 3.1 
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3.2 Digital Artificial Neural Networks 

In a digital implementation of an ANN processing element i t is obviously necessary to per

form the same operations as with an analogue approach. A number of approaches can be 

taken to generating a network. One is to form all the components of a neuron separately 

using digital technology. A second is to generate digital architectures and processors tai

lored towards ANN implementation and application, ie. to design neurocomputer devices 

and accelerator boards. A third is to make use of existing high performance parallel com

puters and devices to construct purpose built machines, for example using transputers, 

or parallel DSP devices. Atlas & Suziki [38] provide a general introduction to digital NN 

systems. 

Yet another approach using digital circuits is to use pulse coded computation as ex

emplified by Murray et al [27] with a deterministic approach and Tomlinson et al [42] and 

Leaver [43] with a stochcistic approach. The pulse coded idea will be enlightened upon 

further in §3.4. . 

Whichever of the above techniques is selected, digital technology has several consistent 

characteristics. The method of using binary data provides excellent noise immunity. The 

level of computation precision and accuracy does not depend upon the transistor size but 

on the number of bits used. The dynamic range of the system is influenced by the number 

of bits used. Digital circuits are relatively eeisy to design with many packages available 

for design and analysis before committing to silicon and the testing of the final fabricated 

product. Programmable components can be incorporated into a design to enable a system 

to be reconfigured by a software controller. Large matrices of synaptic weights can be 

stored in digital memory. Digital input/output can be multiplexed to reduce the number 

of physical connections both internally within a device and from device to device while 

maintaining a high level of connectivity for an overall network; this will of course be at 

the expense of an increase in complexity and a reduction in speed. 

There are drawbacks to the use of digital hardware for the implementation of ANNs. 

Due to the switching action of transistors as devices operate and the constant charg

ing/discharging of capacitors a higher power rating results. Digital circuits for addition, 

multiplication etc. are complex requiring many components and are expensive with respect 

to semiconductor usage. Despite the high level of integration that is possible and further 

advances in the reduction of device size the amount of semiconductor substrate required 

will be high. Digital processing at present is inherently a sequential operation leading to 

slower networks with respect to the number of interconnections per second which can be 

achieved. Finally, i t must be remembered that the world is analogue in nature and an 

additional overhead of analogue to digital and digital to analogue conversion may need to 

be accounted for. I t is likely that these conversions will only be upon the initial input and 

final output from the network and may not place too great an overhead upon performance. 

The pros and cons for the digital implementation of ANNs are summarised in Table 3.2. 
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Pros Cons 
High noise immunity 

Precision 
Existing design tools 

Programmable components are possible 
Store fixed and adaptive weights 

High speed individual computations 
Multiplex/Demultiplex 

Speed of operation 
High component count 
High power dissipation 
A / D and D / A required 
Synchronous behaviour 

Multiplexors occupy large area 

Table 3.2: Implementation considerations for digital neural networks 

3.3 Hybrid Artificial Neural Networks 

A mixture of analogue and digital techniques for the hardware implementation of ANNs 

could be combined to provide a hybrid solution. This could lead to the best, or the worst 

features, of both disciplines being combined. 

In a hybrid system weight storage and update can be performed digitally since this 

provides a more stable method than their analogue counterparts. Actual computation 

could be performed using analogue processing circuits as this often provides the smaller, 

faster circuits. Inter-element communication could be a mixture of digital and analogue. 

Analogue communication links could be used internally within an individual neural chip. 

Digital communication links could be used inter-chip or through a complete neural pro

cessing system. 

Alternatively, pseudo analogue systems could be realised using digital signals by means 

of pulse encoding. 

3.4 Pulse Coded Hardware Implementations 

Digital encoding techniques for coding analogue information are highly developed espe

cially for the field of communications. The aim in this section is to briefly describe meth

ods and possible schemes for processing analogue signals as pulse sequences. I t will be 

explained how the schemes offer several potential advantages over conventional analogue 

signal processing and numerical digital signal processing. 

Pulse stream coded information has been implemented in several ways by various re

searchers into their application for neural networks. The neuron elements of these networks 

wil l be described. 

Several pulse coding techniques exist for coding information into a pulse domain. These 

schemes can be divided into deterministic and stochastic methods which will be further 

elaborated on. 
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Pulse modulation techniques have been widely developed and include 

• Pulse Width Modulation 

• Pulse Position Modulation 

• Pulse Amplitude Modulation 

• Pulse Code Modulation 

• Phase and Delay Modulation 

• Pulse Frequency Modulation, or Deterministic Pulse Rate Encoding 

• Stochastic Pulse Rate Encoding 

W i t h all these schemes the information is contained within the properties of the pulse or 

a specified group of pulses. 

A complete description of most the above coding schemes can be found in Stremler, 

[44]. Three more pulse encoding schemes which are not described by Stremler are as 

follows: 

Phase and Delay Modulation. Two output lines are required for this method. The 

signal is represented by the phase difference which occurs between the two lines. One line 

is a regular pulse stream while the delay of the pulses in the second line is relative to the 

first in proportion to the size of the signal. 

Pulse Frequency Modulation, P F M , or Deterministic Pulse Rate Encoding. 

Pulses of constant amplitude and duration are generated but at a rate proportional to the 

signal. Within a given time period the signal can be deduced from the number of pulses 

received. For a specific signal level the pulses are produced in a regular deterministic 

manner. 

Stochastic Pulse Rate Encoding. Pulses of constant width and amplitude are 

generated. The pulse sequence generated has the probability of a one appearing on the 

line proportional to the signal value to be encoded. Single line or dual line, unipolar and 

bipolar systems exist. These techniques are more fully discussed later in this thesis, §4. 

The pulse encoding schemes described above have been developed for different envi

ronments. They are often most suited for the transmission of data and not necessarily the 

manipulation of data as required for numerical computation. This does not mean that 

calculations could not be achieved, rather that the schemes are not appropriate for these 

operations. 

The basic desired numerical operations have already been outlined as addition and 

multiplication. Combining the pulse encoding schemes and numerical operations is not 

always satisfactorily achieved. PWM and PPM implementations of these operations are 

not known about although the design of suitable circuits is obviously feasible. 
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PAM signals may be used to perform these operations if the pulse sequences are syn

chronised. Analogue adders and multipliers operating upon the pulses may be used. Using 

the PA system would not offer any computational advantage when compared to complete 

analogue signal manipulation. Problems of stability and noise immunity for these oper

ations exist. Improving these qualities increases the complexity of circuits. I t would be 

necessary to maintain synchronism between the pulse streams. 

PCM is suitable for numerical computation, particularly where a linear coding method 

is employed. Digital computers manipulating data encoded as binary information are all 

too common. Processing engines for addition, multiplication and other mathematical 

operations, eg. Fast Fourier Transforms, are highly developed. These implementations 

vary from the specific Digital Signal Processor, DSP, circuits, eg. Motorola DSP96002 or 

Texas Instruments TMS320 series, to the more general purpose implementations within 

microprocessors, eg. Intel 80x86 series or Motorola 68000 series. The basic building blocks 

for addition and multiplication are well known, the disadvantage is that the circuits are 

complex but their operation is consistent. 

The use of stochastic pulse rate encoded sequences for numerical computation is sur

prisingly direct. Basic logic gates can be used to perform multiplication, addition and 

inversion. The accuracy of the result obtained depends upon the time taken to observe 

the output pulse stream since the information is represented as a probability or expected 

value. 

3.4.1 Deterministic Pulse Coding Circuits 

Much work has been conducted by Murray, at the University of Edinburgh, into the 

hardware implementation of NNs using deterministic encoding strategies. 

The original system investigated was based upon asynchronous pulses, [45, 46]. The 

neuron could adopt one of the two states, on or off. When on and firing the output is a 

stream of pulses of fixed frequency and width. The pulses are generated by a ring oscillator. 

The parameters of the pulse stream are fixed by the time constants of the oscillator. As 

with many neuron circuits the condition as to whether or not to fire is based upon the 

weighted sum of inputs. Here the inputs are divided into excitatory and inhibitory pulse 

streams which both feed an integrator. I f the excitatory pulses exceed the inhibitory ones 

the integrator charges up turning on the oscillator, else the integrator is discharged and 

the neuron does not fire. 

The input pulse streams in a synapse are weighted deterministically using the contents 

of standard R A M . The MSB is the sign bit which determines if the pulses are to excite or 

inhibit the neuron. The remaining bits are used to gate the Chopping Clock signals which 

have Mark:Space ratios 1 : 1, 1 : 3, 1 : 7, . . . , 1 : (2?'"^ - 1), where p is the number of 

bits in the weight. The pulses from the synapse are added to the overall pulse streams 

by using O R gates. I t is not necessary for the pulse stream inputs to be synchronous for 
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the neuron to operate, but the chopping clocks in the individual synapse circuits must be 

synchronous to obtain the correct weighting. 

This topology does not provide for any learning in hardware. All training is performed 

off line and the weight R A M for the synapses loaded with the appropriate values. 

The above idea proved unsatisfactory for a number of reasons. The digital weight 

storage required too large an area. The separate lines for the excitatory and the inhibitory 

pulse streams were considered clumsy and inefficient. The pseudo-clocks were not thought 

of as either aesthetically pleasing or smooth enough for dynamic behaviour. 

A second system was designed in collaboration with the University of Oxford, [47, 48, 

49, 50]. The level of neural activity is again represented by a regular pulse stream of fixed 

magnitude pulses. The rate of these pulses is dependent upon the level of neural activity 

as they are produced by a voltage controlled oscillator, VCO. The' input to the VCO is 

from the sum of the synapse values. 

The synapses are formed from MOST transconductance multipliers. These multipliers 

generate the product of two voltages as a current. One voltage input is the constant 

magnitude pulse stream from a previous level of varying frequency. The second voltage 

is the weight value to be applied to this pulse stream. This is an analogue voltage on 

a capacitor which is refreshed from a value stored externally on RAM. The resulting 

scaled pulses from each synapse will affect the charge accumulation on an integrator. The 

integrator voltage feeds the VCO of the neuron. 

The basic neuron design is very simple and is able to produce an analogue output 

representation. Simulation and actual circuit fabrication have proved highly successful in 

the specific problem of position location for a robot. 

Wi th the signals being represented not only as the frequency of pulses but also as the 

amplitude of these pulses, how susceptible are they to analogue noise? How stably can the 

weight values on the capacitor be maintained? I t must be admitted that these analogue 

values only exist locally within the neuron, the main signalling being a digital waveform. 

A third mixed analogue digital pulse rate system has been presented by Murray et al 

recently, [51]. This system is specifically orientated towards a multi-layer perceptron 

configuration. The system varies from earlier ones in that the coding of information is in 

the pulse widths and that the system is synchronous. A constant pulse frequency is used 

which is controlled by a master clock. Computations occur during the first half of the 

cycle, the results are transmitted through a sigmoidal function during the second half of 

the cycle. The Mark:Space ratio of the pulses contains the neural state information. Fully 

on, 1.0, is represented by 1:1; fully oflF, 0.0, by no pulse at all; half on, 0.5, by a pulse of 

1:3 Mark:Space ratio. Benefits of the system are the high throughput of calculations in 

conjunction with the parallel nature of the network. No learning has yet been incorporated 

into the network. 

The above circuits and implementations can be found in Murray and Tarassenko's 
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recent book, [27]. 

At the University of Kent, [52], a neural circuit has been designed which uses an ana

logue voltage input and produces an analogue output voltage. The neuron conducts inter

nal processing using pulse streams. The pulse streams for each signal are asynchronous. 

Analogue inputs to the neuron are converted to pulse streams of fixed width but variable 

frequency by a VCO. Weighting of these pulse streams is achieved by PWM. The resulting 

weighted pulses are summed using an O R gate before integrating the total, so forming 

an analogue output voltage. The neuron is designed so that the maximum Mark:Space 

ratio of the input pulse stream is 1:10. After weighting the Mark:Space ratio value will 

be reduced. The incidence of coincident pulses at the summing O R gate will be low. An 

inhibition signal is applied to the resultant pulse stream before integration, again this is 

carried out by P W M . The problem of weight storage was not resolved, the possibility of 

external R A M refreshing an analogue voltage on the gate of a transistor was stated. No 

on-line learning was presented. Frequency of operation of the circuits was high to reduce 

the RC component values in the timing sections of the neuron. This had the bonus of 

keeping a high throughput of data. Maintaining consistent and stable timing using the 

RC time constants was a problem with the idea. 

3.4.2 Stochastic Pulse Coding Circuits 

The previous section concentrated on work which used regular pulse streams to perform 

computation. In this section an overview of some neural circuit implementations based 

upon stochastic pulse encoding techniques is presented. The mechanics of this style of 

encoding, computation and decoding are fully discussed in the following chapter, §4. The 

possibility of using stochastic pulse systems for NNs was highlighted by Gaines [53]. 

An associative memory neural network simulation was reported by Nguyen and Holt, 

[54], in which stochastic processing elements were used. Encoding of signals used a pseudo-

noise source formed from a Pseudo Random Binary Sequence, PRBS, shift register config

uration. They highlighted the advantage of a stochastic implementation in terms of a low 

gate count, easier routeing of signals in parallel and improved noise immunity, the penalty 

being an increase in processing time compared to the direct DSP implementations. One 

reason is that the results are gained by time averaging the output pulses. As a network 

grows the multiplier of a DSP chip would become an increasing bottleneck reducing the 

speed differential. The accuracy of Nguyen and Holt's system was comparable with a 

10-bit digital parallel multiplier. 

A stochastic implementation of a Hopfield net has been achieved by Van Den Bout 

and Miller, [55, 56]. This design made extensive use of shift registers and counters which 

occupied a significant amount of silicon. The design was expandable to allow the Hopfield 

net to grow to larger sizes. Two interesting points were raised by this work. First, the 

dynamic range of the weights could be increased by use of an exponential distribution of 
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the random numbers used to encode them. This will lead to a logarithmic distribution of 

weight values. Computational circuits are unaffected since i t is the interpretation placed 

upon the resulting pulse streams which is important. Second, by adjustment of the Prob

ability Density Function, PDF, for the random number generator controlling the output 

of the neuron circuit, the output function can be varied. A uniform PDF will produce a 

linear transfer function with hard limits, a sigmoidal transfer function can be achieved by 

using a Gaussian distribution. 

Investigation of a stochastic neural circuit has been conducted by Banzhaf, [57], Fig

ure 3.3. The neurons made use of A N D and O R gates for computation. The aim was to 

realise primitive neuron-type functions, not to perform accurate algebraic manipulation. 

This was evident mainly in the performance of addition by use of a single O R gate, as 

pulses became more dense and the result less accurate, the output begins to saturate at 

unity. By implementing a gate structure which allowed excitatory and inhibitory signals, 

a sigmoid style non-linearity could be formed. The effect of representation of weight pulses 

was assessed. The weighting pulses were produced on different time scales and with differ

ent quantities of dead-time. The latter point could cause synaptic gates to operate near 

to their points of instability. 

Tomlinson et al [42] discuss a stochastic pulse rate NN implementation system which 

was subsequently fabricated into a chip set, the Neural Semiconductor SU3232 and NU32. 

Similar to Banzhaf above inexact summation of the excitatory and inhibitory net input is 

performed but this time a W I R E D - O R is utilised. The W I R E D - O R conserves on chip 

substrate area and allows scalable summation of many inputs to be performed. Eguchi 

et al [58, 59] also use the ideas of TomUnson et alto produce their experimental NN chip. 

Kondo et al [60] utilised stochastically encoded data in their two proposed architectures 

of Figure 3.4 and Figure 3.5. Their first proposal, Figure 3.4, iteratively cycles through 

each input and associated weight before generating an output pulse. The weighted in

put value pulses are summed in an up/down counter before passing through a sigmoid 

transform. Their second proposal, Figure 3.5, weights each input in parallel before per

forming an analogue summation of the resultant values. The result of the summation is 

then passed through a sigmoid transform. In both designs i t is interesting to note that 

the sigmoid transform is performed by comparison of the weighted sum of inputs with a 

Gaussian random number. This technique will be returned to and developed in §4.7 using 

an entirely digital circuit. 

A thesis by Hyland, [61], investigated the use of stochastic pulse encoding and compu

tation to a particular type of model for neural networks, the Boltzmann Machine. Several 

encoding systems were discussed and simulated. Hyland's tests mirrored Ackley's, Hin-

ton's and Sejnowski's, [31], original experiments. Learning of the 4-2-4, 4-3-4 and 8-3-8 

encoder mappings was achieved with varying degrees of success. Due to the simulation be

ing conducted on a serial computer rather than a parallel network or a dedicated hardware 
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configuration, Hyland found the processing to be exceedingly labourious. The requirement 

to use specific hardware for improved performance was evident. 

3.5 Commercial Hardware Realisations 

Few commercial hardware realisations of dedicated neurons or network devices have been 

produced and marketed. Devices which have been include the ETANN and NilOOO by In

tel, SU3232 and NU32 chip set by Neural Semiconductors, the NiSP by MCE and finally 

the NEUR04 by Mitsubishi. There are many forms of accelerator boards which incorpo

rate DSP chips eg. TMS320C40 or fast co-processors eg. 1860, which have been produced 

together with supporting software libraries for driving these systems. These boards are of 

a more general purpose nature and not necessarily to be used for NN applications. 

ETANN 

The ETANN, Electronically Trainable Analog Neural Network, [62, 63], produced by 

Intel is an analogue device consisting of 64 neurons. No on-chip learning is provided 

for the device, instead all learning and training is conducted off-line using third 

party development systems hosted on a PC, eg. IDynaMind by NeuroDynamX or 

iBrainMaker by California Scientific Software. Neuron weights are downloaded to 

program the device once adaption has taken place. 

NilOOO 

The NilOOO is another device NN device developed by Intel, [64]. Unlike the previ

ously developed ETANN this device is digital with a resolution of 5-bits. The NilOOO 

has a maximum 256 input vectors which it is able to classify into 64 groups by means 

of a Radial Basis Function style algorithms. Operating several of these devices to

gether will allow the number of degrees of classification to be increased. The NilOOO 

has been integrated into an accelerator board by Nestor Inc., which together with 

their emulation software allows the development of NN based systems, 

NU32/SU3232 Chip Set 

Rather than produce a unified device Neural Semiconductors produced a set of 

devices, NU32 and SU3232. The SU3232 is a matrix multiplier with 32 inputs. 

There are 1024 weights in the device organised as a 32x32 weight matrix. The 

output function for a neuron is incorporated in the NU32 device member of the set. 

The format of computation used by Neural Semiconductor is a stochastic pulse rate 

method as described previously and which they refer to as Digital Neural Network 

Architecture, DNNA.^ 

' D N N A is a. trademark of Neural Semiconductors, Inc. 
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NiSP 

The NiSP (Neural Instruction Set Processor) is a RISC based processor designed 

specifically for NN operation, [65]. The device has an overall 12-bit data resolution 

and can have any desired activation function loaded into it . The device is optimised 

for feedforward network operation with only seven instructions in its entire instruc

tion set. The size of feedforward network both in terms of the number of neurons 

and layers is limited by the amount of RAM connected to the processor which is 

32k. The device is aimed at the embedded control system market, but as with all the 

above mentioned devices, a development board and emulation software is available. 

NEUR04 

Limited information is available on this device from Mitsubishi, but the device is 

digital containing 12 processors. The NEUR04 processor operates using 24 bit 

floating point representation. Currently the device is available in sets of four chips 

configured upon an accelerator board suitable for driving from a workstation. In 

addition the device can be used as an external set of processors for general purpose 

parallel processing. 

3.6 Conclusions 

In this chapter a review of the requirements for a hardware implementation of an artificial 

neuron or an ANN have been specified which include a high level of interconnectivity, 

small neuron size, ability for the neuron weights to be adapted on-line ie. the neuron 

to be trainable in a hardware implementation. I t has been shown that the two principal 

approaches of analogue or digital circuitry may be used to formulate a neuron with sample 

circuits shown where relevant. The benefits and drawbacks of these two methods have been 

tabulated. A possible compromise may be a hybrid of the two approaches. 

The techniques of pulse processing have been highlighted. Pulse processing is essen

tially a digital process but may be used to represent analogue values by varying pulse 

width, amplitude or frequency. The many and varied deterministic approaches adopted 

by Murray et al have been reviewed. Additionally, stochastic piilse rate encoding imple

mentations by many researchers have been reviewed. These stochastic approaches have 

often been found to be deficient in a particular area eg. they perform inexact computation 

or move out of the digital domain for certain sections of their circuitry. 

A hardware stochastic pulse rate computation approach would seem beneficial due to 

the ease of connectivity of the neuron, the potential simplicity of the circuitry and their 

improved immunity to noise compared to alternative systems. In the following chapter, §4, 

a thorough review of stochastic pulse rate encoding and processing techniques is conducted. 

New novel circuits are presented to maintain the accuracy of computation and to ensure 
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that all the processing for an artificial neuron is kept within the digital stochastic pulse rate 

encoded domain. These circuits will then enable a hardware neuron to be designed and 

fabricated as described in Chapter 6. This neuron should also have the ability to have its 

weights, and therefore its performance, adjusted as a network is running. Demonstartion 

of the processing capability of the new hardware neuron will be provided by implementing 

a basic network for a simple test problem, the 4-2-4 encoder/decoder. 
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Figure 3.1: Example weighting conductance circuit configurations. Note the simplicity of 
the circuits and the small number of components required. 
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Figure 3.2: Example activation function circuit configurations. As per Figure 3.1 note the 
simplicity of the circuits and the low component count. 

Wj SP 

On 

On 

Wj THR 

Neuron 
Output 

Figure 3.3: Banzhaf's stochastic neuron layout with excitatory and inhibitory inputs. 
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Figure 3.4: Kondo's first proposal. Serial weighting of the inputs is performed with the 
result accumulated in an up/down counter. The more inputs there are to the neuron the 
longer it will take to realise an output pulse. Note how the sigmoid transform is performed 
by comparison with a Gaussian random number. 
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Figure 3.5: Kondo's second proposal. Parallel weighting of the inputs occurs in this design, 
but the operation moves out of the digital into the analogue domain for summing these 
values. Again the sigmoid transform is performed by comparison with a Gaussian random 
number. 
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Chapter 4 

Stochastic Pulse Rate 

Computat ion 

I n earlier chapters of this thesis the broad concepts of ANNs have been introduced. I n 

part icular Chapter 2 made reference to several architectures and algorithms namely, the 

M L P , the Kohonen self-organising feature map, the Hopfield network and the Boltzmann 

machine. Besides software models and simulations hardware concepts for the implemen

t a t i on of A N N s have been reviewed in Chapter 3. From the review of hardware i t can 

be seen tha t a need exists for a hardware implementation system that is cheap to con

struct ie. requires few components and uses non-complex fabrication techniques, is stable 

and accurate w i t h respect to the storage of interconnection weight values, may be easily 

reprogrammed to perform a new task and finally the interconnection weight values may 

be easily adjusted by a learning scheme which is operating on-line. So far most of the 

hardware approaches offered are deficient in one or several of these areas. 

Pulse rate computat ion has been proposed for hardware implementation to gain the 

benefit of bo th the analogue and digi ta l worlds. Murray et al [45, 46, 66, 47, 48, 67, 50, 

51 , 27], Meador et al [68], Cotter et al [69], Tomberg et al [70] and Daniell et al [52] adopt 

a deterministic approach whereby communication and processing can be effected by using 

deterministic pulse sequences. Nguyen et aZ[54], Eguchi et a/[58, 59], Tomlinson et a/[42], 

Banzhaf [57] and Kondo et al [60] have followed a stochastic pulse rate encoded sequence 

policy. These proposals have involved analogue circuit forms or have performed inexact 

computations. The pulse rate method, in particular the stochastic pulse rate methods, 

are at tractive since there is biological evidence that neurons signal via stochastic pulse 

streams, for example see Churchland et al [71]. 

I f use is to be made of stochastic pulse rate encoding and computation techniques, i t 

is f i rs t necessary to understand the operation of the basic component parts and why they 

w i l l be of benefit. A cri t ical review follows of stochastic encoding techniques, transfer-
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r ing in format ion f r o m a deterministic value into a stochastic pulse stream representation. 

Circuits are presented to perform mult ipl icat ion, addition, subtraction and funct ion ap

proximat ion . New circuits are proposed for single line unipolar subtraction but more 

impor t an t ly the addi t ion of bipolar signals w i th an exact result. W i t h the aim of de

signing an ar t i f ic ia l neuron operating by use of these techniques i t is necessary to derive 

an appropriate circuit for performing a non-linear transformation. The non-linearity cir

cui t developed performs a sigmoidal transformation in the stochastic pulse rate encoded 

domain. 

The techniques of stochastic pulse rate encoding and computation were first committed 

to paper in 1965 bo th by researchers at the Standard Telecommunications Laboratories 

[72, 73] and at the University of Il l inois [74]. The technique relies upon the principle 

tha t the probabi l i ty of a binary variable being a one is a representation of the required 

analogue in format ion . I n general, observing a signal at an instant wi l l only produce an 

expected value result. To gain an increasingly accurate value i t is necessary to average 

the number of pulses received over a given number of time slots. Several problems arise 

immediately, firstly, how is informat ion translated into this domain? Secondly, how can 

negative numbers be accounted for? Finally, how can pulse streams be manipulated to 

per form mathematical computat ion. The input encoding strategies wi l l be demonstrated 

first before considering the mathematics which may be performed. 

4.1 Encoding or Input Mapping into the Stochastic Pulse 

Rate Domain 

Several encoding strategies are put forward by Gaines [53] and Mars & Poppelbaum [75] 

including linear or non-linear mappings, unipolar or bipolar signals and whether one or 

two lines are to be used to transmit information between computation elements. The basic 

principles of input mapping can be understood by reference to three linear schemes, the 

simple Single Line Unipolar (SLU) strategy which w i l l be developed into the Dual Line 

Bipolar ( D L B ) and finally Single Line Bipolar (SLB) strategies. Non-linear schemes for 

encoding w i t h an inf in i te range in at least one direction w i l l be briefly presented. 

4 .1 .1 S L U I n p u t M a p p i n g 

Given an input value x w i t h i n the range 0 < a; < X which i t is desired to represent upon 

a single line as the probabi l i ty of observing a pulse, a binary variable Xh may be defined 

w i t h a generating probabi l i ty p by the following transform. 

p = p(Xb = 1) = — 
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Thus X, the upper boundary l i m i t , w i l l be represented by a signal which is always O N , 

and zero the lower boundary l i m i t , w i l l be represented by a signal which is always OFF. 

To actually generate a binary pulse t ra in of x^'s to represent x, x would be normalised 

by d iv id ing by X and the resultant compared wi th a uniform normalised noise source n, 

0 < n < l . I f x > n a one is produced as an output else a zero is produced. The comparison 

is undertaken at regular clock intervals so producing a stochastic pulse t ra in . B y this 

fo rmat ion x^ is seen to be a Bernoull i random variable [76]. Figure 4.1 demonstrates an 

example of two values of x encoded as stochastic pulse streams. 

Analysing the characteristics of the Bernoulli sequence, the value of Xf, may be noted 

at each of the N clock intervals. Denoting the sample as for that at the i ' t h clock 

pulse, an estimate of the generating probabil i ty p is 

N 

N 
2 = 1 

The expected value of this estimate is 

Exp \p]=p 

as would be expected for a Bernoull i sequence ie. the expected value is the original gen

erating probabi l i ty and is independent of the number of samples N taken. A Bernoulli 

sequence is a zero-order Markov chain. The accuracy of this estimate is a funct ion of the 

number of samples taken and is determined by the variance of the expected value Ya,i{p)} 

V^r(p) = E x p [ i p - p f ] 

= Exp 
/ 1 ^ \ 

21 

2 ^ 
-Y^x,^p-\-p^ 

t = i 

(4.1) 

Now, 

1 / ^ V 1 ^ 

\ j = l / 

^Tlie variance of a value A measures the expected square of the deviation of A from its expected vahie. 
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therefore 

E x p [ p 

Replacing eq.(4.2) i n eq.(4.1) 

TV N 

?: ijij 

N N 

1. r<J 

Exp [N'-f] = ^ ^ E x p [p2j 
iV iV 

iV^Exp \ f ] = Exp [ ^ X f c , 2 + 2 ^ Xfc,xft.] 

iV iV 

= ^ E x p [xfc,2] + 2 ^ Exp [x^JExp [xft.] 

0 2 
Xb, = \ ^ ^ = Xb-

iV^Exp [p2] = TVp + ^CaExp [x f t jExp [ x j . ] 

= iVp + NiN - l)p2 

2, p + ( i V - i y 

TV 

E x p [ p - p ] ^ = ^ ( ^ - ^ ) ^ ' - ^ ^ ' 

TV 

This leads to a standard deviation for p of 

(4.2) 

iV 

Var (p ) = ^ (4.3) 

N 

The expected error is zero for p = 0 or p = 1, and reaches its maximum value at p = 0.5 , 

as i l lustrated on Figure 4.2. This diagram also illustrates the balance between accuracy 

and speed of determining the value of p. The more accurate a result required the more 

samples need to be averaged and therefore the longer i t w i l l take. Further effects of the 

t ime averaging period for converting f r o m a stochastic pulse sequence to a deterministic 

signal are discussed in §4.8 
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4 .1 .2 D L B I n p u t E n c o d i n g 

B o t h positive and negative values of a;, —X < x < X, can be represented by extending 

the S L U case to tha t using two lines, one line upon which positive values are encoded, the 

UP line (U) and the other line upon which negative values are encoded, the D O W N line 

( D ) . This can be accomplished by defining 

p{U = l ) - p { D = l ) = j (4.4) 

No unique association exists between the probabilities represented by each line and the 

overall value represented . This is because there are two signal lines w i th a possibility of 

4 signal conditions being used to represent a single value and for example an overall value 

of 0.6 can be represented by an UP line value of 0.6 and a D O W N line value of 0.0 or 

an U P line value of 0.8 and a D O W N line value of 0.2. The former case is known as the 

min imum variance fo rm . Very distinct polarised starting pulse sequences can be defined 

w i t h positive values only on the UP line and negative values only on the D O W N line. 

Each pulse sequence in this dual line case is defined independently as follows for the 

m i n i m u m variance f o r m of the value. 

a; > 0 

a; < 0: 

x = 0=> 

p{U = l ) = 

p{D = l ) = 0 

p{U = l ) = 0 

piD = l ) = -

p(U = l ) = 0 

p{D = 1) = 0 

For the purposes of analysis the following four values are defined 

p ( j j = Q^D = 0) = v 

p(U = l,D = 0) = u 

p(U = 0,D = l ) = d 

p({7 = l , D = l ) = c 

which obviously leads to 

c + d + u + v = I 
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We have 

p{U = l)=u + c 

p{D = l ) = d + c 
by eq.(4.4) 

^ ^ - = | : (4.5) 

I f bo th the UP line and D O W N line are in the same condition this w i l l correspond to zero 

and w i l l not contribute towards the resultant. 

For the D L B system the mean and variance may be obtained using a three-level random 

value Bi at the i ' t h clock pulse. 

1 

B,^{ 0 

- 1 

where [/,; = 1 for the UP line on and Di = I for the D O W N line on. Af te r N clock pulses 

the mean value of Bi is 

B = v.O + u.l + d. - l + c.O 

B = u-d= - J 

The variance of B is determined by 

Exp [B,2] _ 52 Var (B) = 

Var (B) = 

N 

v.O + u.l + d.l + c.O - (u - df 

N 

u + d - ( u - d f 
N 

u{l -u) + d{l - d ) + 2ud 

(4.6) 

N 

I t can be seen tha t the variance is minimised i f either d = 0, (u > d) ov u = 0, {u < d) 

and leads to the min imum variance mapping 

— X > 0 
X 
0 X < 0 

f 0 X > 0 

A unique probabi l i ty for c, d, u and v does not exist due to the equivalence oi {U = 1, D = 
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1) both on and {U = 0, Z) = 0) both off. I f i t is assumed both lines are never on together 

(simple gating can ensure this in practice) then c = 0. 

4 .1 .3 S L B I n p u t E n c o d i n g 

The f ina l linear t ransformation scheme to be considered is tha t of representing bipolar 

quantities on a single line. For an input value a;, —X < x < X , the binary variable xi, 

w i t h a generating probabi l i ty p, the following transform is used, 

p = p{xh = 1) = ^ + ^ (4.7) 

M a x i m u m positive value, X, is given by a logic level of always on, maximum negative 

value, — X , by a logic level of always off and zero by a random fluctuat ing logic level w i th 

an equal probabi l i ty of being either on or off. 

I f p is an estimate of p as for the SLU case then 

| : = 2 p - l (4.9) 

The variance of this estimate may be gained in the following manner. 

Var ( ^ - | ) = V a r ( 2 p - l ) 

For two independent random variables R and S 

Var {R + S) = Var (R) + Var ( 5 ) 

therefore 

which by use of eq.(4.3) 

Var ( ^ | r j = Var (2^) - Var (1) 

= E x p [ ( 2 p - 2 p ) 2 ] 

= 4 E x p [ ( p - p ) 2 ] 

V a r ( 4 U ^ ^ ^ ' " ^ ) 
XJ N 

which by use of eq.(4.7) is 

Va r / 
. X j N 

The variance of the estimate of x is zero for maximum positive and negative values but a 

v . . a ) - (4.10) 



maximum for x = 0. 

4 .1 .4 N o n - l i n e a r I n p u t E n c o d i n g 

The transforms listed in the above three sections have been linear transforms wi th a finite 

range of values which may be encoded. For completeness there now follows some examples 

of non-linear transforms which have an infinite range in at least one direction. No analysis 

of variance is presented as the schemes are shown for information only. 

Using a single line an input range 0 < x < -t-oo can be encoded as a probabili ty p of 

observing a one on the line as 
X 

P = — — 
e + X 

e is defined as the centre value for encoding, i t is the point at which p = 0.5. 

X 0 ^ p 0 

X = e ^ p = 0.5 

X —> -l-oo =^ p 1 

For X < e the value of p w i l l vary rapidly, but for x > e the probabili ty varies more slowly. 

Figure 4.3 shows a sample transformation for e = 5. The eff"ect of varying e is to alter the 

posit ion of the 'knee' of the transformation curve. To retrieve values f rom the stochastic 

domain 
ep 

X = 
1 - p 

Bipolar values of x in the input range —oo < x < oo can be encoded onto a single line 

by 
_ x - e + v/(x^ + e^) 

^ ~ 2x 

not a simple t ransform. Decoding is achieved by 

^ ^ e ( l - 2 p ) 

2p(p - 1) 

This scheme allows completely arbi t rary values to be encoded into the stochastic pulse 

domain and is also i l lustrated in Figure 4.3 for a value e = 5. The eff'ect of varying e is to 

alter the gradient of the t ransformation curve. 

Having reviewed the main forms and principles of stochastic pulse rate encoding the 

basic mathematical operations of inversion (negation), mult ipl icat ion and addition w i l l 

now be presented together w i t h Boolean logic circuits to perform the required tasks in 

hardware. Only the linear encoding schemes w i l l be considered. Due to the complexity of 

inpu t encoding and decoding for the non-linear strategies they wi l l not be considered. 
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4.2 Inversion 

Inversion, negation or complementation can be achieved by using at most a single logical 

inverter for the three linear encoding schemes. For the SLU and SLB a single logical 

inverter in the line w i l l suffice, while for the D L B case merely exchanging the two signal 

lines performs the necessary action, ie. UP —> D O W N and D O W N —+ UP, Figure 4.4 

I n the SLU case the inverter complements the input sequence a;, so that the output x„ 

is 

a;„ = 1 - a;i 

Exp [x„] = Exp [1 - x i ] = 1 - Exp [xi] 

Po = l-Pi 
a t r i v i a l result. 

I n the D L B case where the two lines are exchanged 

E x p [ x i ] = E x p [ a : f ] - E x p [ a ; f ] 

= piUi)-piD,) 

Exp [x„] = Exp [a;^] - Exp [a;f ] 

= p(Dr)-piUi) 

=^ Xo = - X i 

The output inverted signal is equivalent to the negative of the input signal. 

I n the SLB case 

x„ = l - x i 

Exp [xo] = 1 - Exp [xi] 

Po = l - p i 

as for the SLU above but , 

1 Xi 

^' = 2^2X 

— = 1 - / ^ - 4 - — 
2 2 X \2 2X 

x„ = -xi 

and the ou tpu t signal is the negative equivalent of the input signal. 
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4.3 Multiplication 

Taking each of the three linear encoding schemes in turn i t w i l l be demonstrated how 

Boolean logic gates may be used to achieve the mult ipl ication of two stochastic pulse 

streams. 

For the SLU case w i t h two input streams p i and pi an A N D w i l l perform mult ipl icat ion 

to generate the output p,,. 

Vo = PlP2 

when 
X , 

^ ' = X 

therefore 
Xo_ _ X i X 2 

X ' X.X 
X1X2 

" " ^ ^ 

The normalised product of inputs x i and X2 w i th respect to the range oi X is found. This 

is always representable. 

The variance of this product Var (po) is obtained by using eq.(4.3), 

thus 

Var(W = ™ 5 f l ^ (411) 

this can be verified to be 

Var (p„) = p iVar (p2) -t- P2Var (p i ) - A^Var (p i )Var (p2) (4.12) 

The equivalence of eq.(4.11) and eq.(4.12) can be demonstrated by expansion of eq.(4.12). 

For the D L B representation i t is necessary that two positive or two negative quantities 

produce a positive result which implies that when both the UP inputs are on or both the 

D O W N inputs are on the output UP should be on. However, i f an UP and a D O W N 

are on together the the output D O W N must be on. Figure 4.5 demonstrates the required 

gat ing arrangement. Using the previously defined probabilities for a dual line system (-y. 
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u, d and c) the ou tpu t probabilities of the multiplier are given by 

Vo — Vi + V2 — ViV2 

U„ =UiU2 + did2 

d„ —Uid2 — diU2 

Co = C i ( l - V2) + C 2 ( l - Vi) - CiC2 

(4.13) 

therefore 
u„- d„ = U1U2 + did2 - {uid2 - diU2) 

= {ui - di){u2 - d2) 

B y using eq.(4.5) 

we obtain 

Xi 

a;ia;2 
Xn X 

Given tha t bo th the input values to the multiplier are in the minimum-variance format 

i t is possible for only one at most of the following terms to be non-zero, ^ 1 ^ 2 , d\d2, uid2 

or diU2- B y inspection of eq.(4.13) i t can be seen tha t only one of u„ or dn may be non

zero and thus the resultant of the mult ipl ier w i l l be in minimum-variance format. From 

eq.(4.6) 

Var [—\ ^ + ~ ~ '̂ 'Ô  
XJ N 

=^ Var (I) = + (4.14) 
\X N ^ ' 

this can be shown to be 

Var ( % ) = ( u i + cii)Var f | ) + {u2 + ci2)Var { % ] - iVVar ( % ] Var ( % ] (4.15) 

by expanding f u l l y bo th eq.(4.14) and eq.(4.15). 

For the SLB representation the gating is required to produce an output pulse when 

bo th signal lines are in the same state, both on or both off and no signal when the two 

inpu t lines are different states. A n appropriate circuit is shown in Figure 4.6. The circuit 

can be recognised as an X N O R gate. 

The ou tpu t generating probabi l i ty p„ can be expressed in terms of the two input 

generating probabilities. 

Po = PiP2 + ( l - p i ) ( l - P 2 ) 
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since 

Exp [x„] = Exp [ x i X 2 -f- X1X2] 

where 

This can be demonstrated as follows given that the two input sequences are independent. 

Exp [x„] = Exp [x i ]Exp [X2] -l-cov ( x i , X 2 ) -1- Exp [x i ]Exp [x i ] -|- cov ( x i , X 2 ) 

cov ( x i , X 2 ) = Exp [(1 - x i ) ( l - X2) ] - Exp [1 - x i ] E x p [1 - X2] 

= Exp [1 - x i - X2 - I - X1X2] - (1 - Exp [ x i ] ) ( l - Exp [x2]) 

= Exp [X1X2] - Exp [x i ]Exp [X2] 

=> cov ( x i , X 2 ) = cov ( x i , X 2 ) 

Exp [x„] = Exp [x i ]Exp [X2] - I - Exp [x i ]Exp [X2] - I - 2cov ( x i , X 2 ) 

As x i and X2 are independent then 

cov ( x i , X 2 ) = 0 

thus 

= P i P 2 + (1 - p i ) ( l - P 2 ) 

Using the fact tha t ( f rom eq.(4.8)) 

X,: 1 

^ ' = 2 X + 2 

X1X2 

As w i t h the S L U case the output p„ is the normalised product of x i , X2 w i t h respect to 

the range of X is formed. 

Assessing the variance of the output of the SLB mult ipl icat ion eq.(4.10) can be used 

.XJ N 

and produce 
X o \ / X l X 2 \ 

Var ( f j = V a r y-^j 
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This can be demonstrated to be 

Var ( ^1 = Var f ^ ] + Var f ^ ] - TVVar f Var ^'^^ 
- \ x j • \ x j - \ x j • \x 

4.4 Addition 

I n the simplest case for the mult ipl icat ion of two stochastic pulse streams of the previous 

section §4.3 ie. S L U signals, a single A N D gate would suffice. To perform addition of two 

stochastic pulse streams a corollary might be to use a single O R gate. Several problems 

exist w i t h this suggestion. First ly, i f two probabilities in the range [0,1] are summed the 

resultant probabi l i ty could be greater than unity ie. in the range [0, 2], this is not realisable! 

Secondly, i f an O R gate is used and there are two coincident pulses arriving at its inputs 

only a single pulse w i l l be produced by the gate, a b i t of data is lost. Possible solutions 

to overcome these l imitat ions have been put forward by Gaines [53] and by Leaver [43]. 

Gaines' main proposal is to perform a weighted sum of inputs, a system which can be 

used for all linear encoding schemes. Gaines' circuits are reviewed for the three linear 

strategies followed by Leaver's technique which relies upon insertion of excessive number 

of pulses into the resulting output stochastic pulse stream. A new appropriate efficient 

ga t ing circuit is put forward for an N input summer operating upon Gaines' principles. 

For the case of the SLU signals, the circuit of Figure 4.7 can be used to perform a 

weighted sum of two inputs. The two generating probabilities p i and p2 exist for the 

inputs x i and X2, a t h i r d unipolar line S generating probabil i ty pa acts as a gating signal 

to determine which of x i or X2 should be switched to the output x„. A strong resemblance 

can be seen between Figure 4.6 and Figure 4.7 f rom which i t can be deduced that 

Po = P3P1 + {I - P3)P2 (4.16) 

Using eq.(4.3) the variance of the output can be verified to be 

Var (p„) = psVar (p i ) + (1 - p3)Var (p2) + (p i - p2)^Var (pa) (4.17) 

f r o m 
. (piP3 + {1- P3)P2)(1 - (P1P3 + (1 - P3)P2)) 

Var (p„) = 

The output of this circuit is 

a;o =P3a;i + (1-P3)a;2 (4-18) 

I f p3 = 0.5 then 
Xi - I - X2 

x„ = - ^ 

The D L B case is slightly more complex. An in i t ia l system would be to use two circuits 
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of Figure 4.7 one for the UP lines and one for the D O W N lines. Thus using eq.(4.16) 

Uo =P3Ui + (1 - P3)U2 

do=P3di + (1 -p3)d2 

x„ = u „ - d„= pz{ui - di) -f- (1 - pz){y'2 - d2) 

B y subst i tut ing the respective values of and d„ into eq.(4.17) the variance for the result 

is 

Var (p„) = paVar (p i ) + (1 - p3)Var (ps) + (p i - P2)^Var (pa) 

From the above equation i t can be seen that i f x\ and a;2 are in a minimum variance 

f o r m then x„ w i l l not necessarily be in a minimum variance form. This can be explained 

by the fol lowing example, i f (-ui, ^2) and (u2, c^i) are non-zero ie. the two quantities are 

of opposite sign, then (u„, dg) w i l l bo th be non-zero and the result is not in min imum 

variance fo rm. 

Another circuit approach is tha t of Figure 4.8 f rom which i t is possible to produce the 

sum of two inputs in a min imum variance form. This circuit cancels the positive signals 

on one set of inputs w i t h negative signals upon the other input set. 

u„ = pz{l - d2)ui + {I - pz){l - di)u2 

d„ = P3( l - U2)di -h (1 - P3)(l - Ui)d2 

=^U„- d„= P3{ui - di) - j - (1 - P3){U2 - d2) + (1 - 2p3){uid2 - U2di) 

which in the case of pa = 0.5 

ui-di U2- d2 
u„-d„ = + — 

From eq.(4.5) 
Xi + X2 

I f u„ and d„ are summed f r o m the above equations 

Ui + di U2 + d2 , , 
u„ + do = — 1 uid2 - U2di 

the values of u„ — d„ and u„ + d„ may be substituted into eq.(4.6). The resulting variance 

value is 

Var ( ^ " ) _ W , W , i ^ ^ f {uid2-U2d,) 

XJ 2 2 m N 

The f ina l linear coding scheme of the SLB case is similar to the SLU addition case. 
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The circuit of Figure 4.7 wi l l suffice again wi th the result of 

= PJ.XI + (1 - P 3 ) X 2 

This t ime i t is generated via the substi tution of the generic version of eq.(4.7) into eq.(4.16). 

Once again i f p3 = 0.5 the result 
x i - I - X2 

is arrived at. 

This weighted summation format is not the only approach to stochastic addit ion. 

Leaver [43] puts forward an alternative strategy that of pulse insertion. One of the prob

lems stated above w i t h using an O R gate for the purpose of addition is the gate's failure 

to account for the condit ion of coincident pulses upon its inputs. Rather than weight each 

inpu t pulse t r a in they are both added together using an O R gate w i t h any coincident 

pulses detected by an additional A N D gate. The output of this A N D gate is used to 

increment a counter which holds a record of outstanding coincident pulses. I f no pulses are 

detected as being emit ted by the adding O R gate and the coincident pulse counter holds 

a value greater than zero a pulse is generated, inserted back into the output pulse t ra in 

and the counter decremented. Figure 4.9 shows a circuit which can perform the coincident 

pulse detection and insertion. For the SLU addition only a single circuit is required, but 

for D L B addi t ion i t is necessary to use one for the UP lines and one for the D O W N lines. 

I n the SLB case a system which detects and accounts for both coincident spaces as well 

as coincident pulses is required. I f there is an excess of pulse pairs then additional pulses 

must be inserted into the output sequence and i f there is an excess of space pairs pulses 

should be removed f r o m the output sequence. 

For all instances of Leaver's adders [43] no scaling of either inputs or output occurs and 

the ou tpu t probabi l i ty can t r y to exceed the range [0,1] producing an incorrect addit ion. 

Using the S L U system as an example, before the out of bounds condition occurs the 

probabi l i ty of coincident pulse pairs w i l l increase requiring a large counter to maintain 

a record of how many pulses must be inserted. W i t h the output sequence becoming 

increasingly f u l l as the l i m i t of the adder is approached so a lag may build up for the 

insertion of pulses back into the output sequence when the input sequences change. This 

lag w i l l be par t icular ly acute i f the result of the summation would be greater than a 

probabi l i ty of 1. I t is possible to pre-scale the input values into a Leaver adder so as not 

to exceed the dynamic range, but i f this is going to be performed then the extra complexity 

of using the counter does not appear worthwhile. 
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4.4 .1 A n I n p u t A d d e r P r o p o s a l 

I n this section a new circuit for the addition of N input signals is proposed since Gaines 

[53] makes only a passing reference to the problem of the accurate summation of more 

than two stochastic signals. The simple cascading of summation circuits presented so 

far w i l l not suffice in the general case. For Leaver's adders the result is more likely to 

tend towards a l i m i t i n g factor of a saturated pulse stream so reducing the accuracy of the 

addi t ion or the magnitude of signals which could be summed unless pre-scaling the inputs 

occurs. Using Gaines's two input weighted summer the result for three sequences would 

be 
5 ^ 1 X 2 X3 

4 4 2 

However, i t can be seen that i f the number of sequences to be added is a power of two such 

a system would succeed. This may not be practical for a particular application. W h a t is 

desired is, for in the case of three lines, three weighting sequences of value ^ w i t h no two 

weighting sequences having coincident pulses giving the result of eq.(4.19). 

x„ -
X i + X2 + X3 

(4.19) 

For the general case of adding N sequences i t is necessary to weight each of the sequences 

by ^ ensuring that all pulses in each sequence are mutual ly exclusive. This last condition 

w i l l mean tha t the weighting sequences are not statistically independent. 

Let us assume tha t the summation of N pulse streams is desired. First a unipolar 

sequence of is generated, the f irst ^ sequence. Complementing this sequence using an 

inverter w i l l generate (1 — -^) = (^^^^^^- A new sequence of is generated which by 

taking the product of ( 7 7 ^ ) ( n ^ ) ^o™^ ^ second jj- sequence. This process is continued 

w i t h the sequence generated and mult ipl ied by the complements of both ^ and 

to f o r m another jj-. This process is f u l l y illustrated by Table 4.1. 

Pulse Sequence of N Weighting Calculation 
1 

Output Weight 

N 
1_ 

N 

1 
N 
1_ 
N 

N 

N 

N 

( 1 " i f ) 

Table 4 .1 : Weighting calculations for iV pulse sequences of value jf 

This process of forming N jf sequences is effective because the complement of a pulse 

sequence has no coincident pulses w i t h its original. The product of complements wi l l thus 
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have no coincident pulse with any of the generating sequences thus by multiplying by the 

next will produce a new suitable pulse sequence. 

What actual form should the base • • • > I sequence take? I t can be demon

strated graphically that deterministic pulse sequences would need to be judiciously selected 

or else unsatisfactory results are produced. Figure 4.10 illustrates clearly the problem 

with deterministic sequences for four | signals. The mathematical operations of multi

plication and addition dealt with so far have been conducted in the stochastic domain. 

Using stochastic pulse sequences for this divider does produce the desired response. A 

short piece of computer code can be produced to demonstrate this principle operating 

effectively. 

Finally, this stochastic N pulse stream weights must be sensibly realised in hardware. 

I t can be seen from the equations describing the weight functions that a cascade of com

plementer (inverters) and multipliers ( AND gates) is all that is required, Figure 4.11. 

Two problems are immediately apparent from the schematic of Figure 4.11 as follows, 

1. the loading upon the inverters at the top of the cascade will be detrimental to the 

performance. 

2. the required fan-in of the AND gates at the bottom of the cascade will be large. 

The greater the number of sequences the more acute the two problems will become. Due 

to the repetitive and modular nature of the expansion to create the sequences the circuit 

of Figure 4.11 can be improved upon to Figure 4.12. Figure 4.12 takes advantage of 

the repetitiveness with an improved circuit design. No undue loading is placed upon the 

inverters at the top of the cascade and the fan-in of all the AND gates remains at two 

regardless of their position in the cascade. This second design is not without its drawbacks, 

the greater the value of N the greater the propagation delay for the pulses to ripple down 

the cascade, resulting in the output pulses not being synchronised and spikes forming by 

partial results. Despite this, A'' pulse sequences can be adequately generated and used 

to weight the input to an OR gate adder. 

4.5 Subtraction 

The subtraction operation only really needs to be considered for unipolar signals. For 

bipolar signals subtraction is achieved by the addition of negative or complements of the 

desired signals. 

4.5.1 A Subtracter Proposal 

For unipolar signals a negative signal representation does not exist, but translating Leaver's 

technique of pulse insertion for addition to one of pulse removal for subtraction the de

sired operation can be effected. Figure 4.13 illustrates schematically a circuit proposal 
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to achieve subtraction for unipolar signals. For this circuit, pulse stream y is being sub

tracted from pulse stream x. Pulses on y are accumulated in a counter the output of 

which is active if the counter's content is greater than zero. The AND gate will produce 

an output with the next pulse upon x which is removed from the output by means of the 

XOR gate. The output from the AND gate also decrements the counter, since one less 

pulse has to be removed from x. 

Problems with this circuit will occur if the number of pulses in y is greater than those 

in X for a sustained period of time, y > x. In effect an attempt will be made to exceed 

the lower probability bound of zero. The counter will count up thus when y is less than x 

again and a valid subtraction can be performed a lag results ELS the counter removes pulses 

and decrements before settling down to produce a correct result. Although this system is 

not ideal and no account is taken as to whether a negative result would be the outcome it 

does demonstrate that subtraction could be achieved. In general i t is required that x > y 

for valid subtractions to be performed. 

4.6 Integration and the A D D I E 

The preceding sections of this chapter have discussed computations which use only combi

national logic elements and have no knowledge of the previous events. More sophisticated 

operations eg. square-rooting and function generation, may be formulated using integra

tors. Integration requires knowledge of previous events and thus memory is required. 

Integration is the summing of preceding events which can be accomplished by use of a 

digital up/down counter. The counter increments by one if the UP line is active on a 

clock pulse, decrements by one if the DOWN line is active on a clock pulse and remains 

unaltered if both lines are in the same state, assuming a DLB system. 

The counter can be considered to have A'"-!-1 states, S = S(),Si, - • • ,S]^ where is the 

numerical value of each state and also the output of the counter when it is the I ' th state. 

A possible linear mapping from the value held in the counter into the range (0,1) is 

i 

At a given time the counter is in a state S = Si with output s = Si. Driving the 

counter with stochastic sequences means that the actual counter state is unpredictable 

but i t may be expressed as a probability tTj. The output is now a random variable with 

expected value s defined as 
N 

2 = 0 

Using a Bernoulli sequence to drive the UP and DOWN lines of the counter, such that the 

probability of the UP line being on and the DOWN line being off is and the probability 
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that the UP line is OFF and the DOWN line is on is e, the expected change of the counter 

output is 
w - e 

Over a clock period T seconds the expected counter output change is 

m —1 m —1 / m \ / r r i \ 

. > T ) - m = E *»("T) = E (4^20) 
n=0 ,11=0 

eq.(4.20) is a simple zero-order numerical integration formula for w{t) — e(t) which can be 

reorganised and rewritten as 

1 
sit) = 3(0) + ^ W{T) - e{T)dr 

SLU, DLB and SLB mappings can be used to implement this integration technique with 

a counter as will now be considered. 

Only positive quantities exist for SLU signals and the counter can only count up. The 

data line is connected to the up port of the counter with the down port set to off. The 

quantity being integrated is xi, the quantity represented by the counter is x„, 

e = 0 

C,{t) = X„iO)+^ l^XliT)dl 

In the DLB representation the UP and DOWN lines for the signal can be connected 

directly to the up and down ports of the counter respectively. A transformation mapping 

is now appropriate for the output of the counter since bipolar quantities are represented. 

I = ( 2 . - - : ) 
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that the UP line is OFF and the DOWN line is on is e, the expected change of the counter 

output is 
w - e 

Over a clock period T seconds the expected counter output change is 

11=0 11=0 

eq.(4.20) is a simple zero-order numerical integration formula for w{t) - e{t) which can be 

reorganised and rewritten as 

Kt) = s{0) + ^ [ Hr) - e{r)d7 

SLU, DLB and SLB mappings can be used to implement this integration technique with 

a counter as will now be considered. 

Only positive quantities exist for SLU signals and the counter can only count up. The 

data line is connected to the up port of the counter with the down port set to off. The 

quantity being integrated is xi, the quantity represented by the counter is x„, 

Xl 

e = 0 

x„ 

C„{t) = X„{0)+~ j \ l [ T ) & 

In the DLB representation the UP and DOWN lines for the signal can be connected 

directly to the up and down ports of the counter respectively. A transformation mapping 

is now appropriate for the output of the counter since bipolar quantities are represented. 
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Let xi be the value on the input lines with the following probabilities defined, then 

w = Ui 

e = di 

Y=ui-di=w-e 

Xo{t) = x„(0) + ^ xirdT 

Due to the transformation mapping the effective gain of the integrator has increased by a 

factor of two. 

For the final encoding scheme of SLB the integrator is formed by connecting the signal 

line directly to the up port of the counter and connecting an inverted form to the down 

port. The quantity xi is represented by the generating probability pi, therefore 

w = pi 

e = l - p i 

and 
^ - € = 2 ^ 1 - 1 = ^ 

2 /•* 2 

The next advance from these single input integrators is to dual input integrators. Quite 

obviously i t is feasible to precede the single input integrator with a two input addition 

circuit from §4.4, but for the bipolar systems a saving in hardware can be gained by 

judicious gating prior to the counter to form a two input summing integrator. A sHghtly 

more sophisticated counter is required in the case of the dual line representation. 

Using the circuit of Figure 4.14 for DLB signals, which necessitates a counter which 

can increment and decrement by two, an equally weighted integration can be performed. 

I f the UP2 line is on when both UPi and UP2 lines are on then the counter increments 

by two. The U P I line is on if only one UP line is on and similarly for the down lines. 

I f the UP and DOWN lines of each input are subscripted 1 and 2 respectively then the 

expected change in output s, ^s, is given by 

2uiU2 + ui{l - U2 - (̂ 2) + ^2(1 - ui - di) - di{l -U2 - ^2) - ^̂ 2(1 - ui- di) - 2did2 
OS = 

6s 

N 

ui - di + U2 — d2 w - e 
N " N 

1 /•* 
Coit) = x„(i) + 1^ iM^) + ^2{r)dT 
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For the SLB case, the integration of the sum of two inputs is achieved by utilisation 
of the three possible input conditions. The counter increments if both lines indicate up, 
the counter decrements if both lines indicate down and no change occurs if the two inputs 
are opposite. Figure 4.15 shows the required gating, 

w = pip2 

e = (1 - P i ) ( l -P2) 

(2pi - 1) + {2p2 - 1) 
w-e=pi+p2-l = 

Xl + X2 
w — e = 

2X 
1 

The output of all the integrator circuits discussed have been a state 5,; with a value 

s,; which can be read out from the counter as either a parallel or serial bit values. This 

value is no longer within the stochastic pulse domain. To continue pulse processing i t is 

necessary to re-encode the value Si back into the stochastic pulse domain. Re-encoding is 

achieved cis with the basic encoding strategies of §4.1 dependant upon the representation 

scheme adopted. The integrator can be summarised as Figure 4.16. 

The ADDIE, Adaptive Digital Element, is formed from a two input summing integra

tor. Its operation depends upon the stochastic input sequence and the probability of the 

feedback sequence from the current state of the integrator. Figure 4.17. The ADDIE is 

used as the basis for output interfaces discussed in a following section, §4.8. The operation 

of the ADDIE can be explained by reference to a passive frequency modulation detector, 

[77]. The input to the circuit of Figure 4.18 is a fixed frequency train of pulses. A steady 

state voltage will be output depending upon the frequency of the incoming sequence when 

the rate of charging by the pulses is balanced by the discharge rate through the resistor. 

The ideal case will be that the voltage across the capacitor will be directly proportional 

to the rate of discharge. 
dv 

\ogv = - ^ * + c 

at t = 0 

V = Vbe"^ (4.21) 

The RC network realises eq.(4.21). Moving forward to a pulse train which has a varying 

frequency but that the frequency is around a fixed mean value, the voltage across the 

capacitor will vary but with a fixed mean value. Advancing again to the analogue circuit 

representation of this frequency detector, Figure 4.19, the output voltage is now dependant 
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upon the ratio of the two resistors, j^. For a circuit with purely capacitive feedback, inte

gration is performed equivalent to that of the up/down counter of the stochastic circuits. 

The negative feedback resistor is equivalent to the inverted output fed back in the stochas

tic circuit. Figure 4.17. The ADDIE operating upon stochastic pulse sequences thus has 

similar characteristics to the RC network upon an operational amplifier. The state of 

the counter is a binary number proportional to the probability of the input stochastic se

quence. The value of the ADDIE time constant is varied by adjusting the counter length 

or applying a multiplier to the feedback stochastic pulse train. 

The ADDIE may be used as the basis for function formation as described by Gaines 

[53]. For example, the square root of a number may be extracted by feeding back the 

square of the inverse of the ADDIE output rather than simply the inverse, Figure 4.20. 

Note, in this circuit, the D-type flip-flop delays the fed back pulse stream by one cycle 

effectively isolating the pulse stream from itself and making i t statistically independent, 

hence enabling squares at the multiplier to occur. 

The functionality of the ADDIE may be further extended by connecting a gating circuit 

to the ADDIE's counter. The integrator's counter will contain an increasingly accurate 

estimate of the probability that the input line is on. Thus, the counter gating may be used 

to apply arbitrary transformations to the stored count. The transformed quantity can be 

re-encoded into a stochastic pulse sequence for further processing. Figure 4.21 illustrates 

the conflguration for such a system. 

4.7 Sigmoidal Transform Proposal 

I t is aimed to produce a sigmoidal transfer function for use in a neuron design operating 

using stochastic pulse sequences. I t is desired to keep all operations digital and within the 

stochastic processing domain. Several options can be considered for forming this sigmoidal 

transfer function, forming the sigmoid function equation stochastically using the ADDIEs, 

implementing a look-up table of input to output values and flnally a non-linear stochastic 

transform. Each of these three will be considered in turn. 

Using ADDIEs to formulate the sigmoid function equations would require one of the 

following equations to be produced, 

f{x) = (4.22) 

or 2̂  
fix) = tanh(x) = (4.23) 

Directly realising the exponential function is not feasible using stochastic circuits, but 

eq.(4.22) and eq.(4.23) could be represented by a power series using a Maclaurin's expan-
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sion. For eq.(4.22) this produces 

1 1 1 1 ^ 

^ ( ^ ^ = T T ^ " 2 + r - 4 8 ^ 

and for eq.(4.23) produces, 

N l - e - 2 " 1 o 2 r 

NB. These are not the only sigmoidal equations but they are the ones most commonly 

used. 

The accuracy of these expansions is limited. The scaling terms could be formed in 

a similar manner to that used in the A" -|- 1 pulse divider but would require large pulse 

divider circuits. Therefore, this method for forming a sigmoid from a base equation is not 

recommended. 

Using a look-up table requires that the input values to the table from the output 

value formed from an ADDIE are a stable quantity. This quantity is used to reference a 

corresponding value which is encoded into the stochastic pulse domain. The profile and 

accuracy of the sigmoid formed will depend upon the number of elements in the table and 

thus the length of the counter in the ADDIE. Using a look-up table requires the transfer 

out from and back into the stochastic pulse domain. This is an entirely digital system. 

The third option is a non linear stochastic transform which will now be demonstrated 

in the following sections. This transform utilises Even-Shift orthogonal sequences which 

can used to form a Gaussian random number (GRN) generator. This GRN is used to 

perform the actual transform by comparison with a stochastic pulse sequence. A circuit 

is presented to actually carry out the transfer function. 

4.7.1 Even-Shift Orthogonal Sequences 

An Even-Shift Orthogonal Sequence, E-sequence, is defined as a sequence of length n, 

S = {si,S2,... ,Sn) whose elements Sj {j = l , 2 , . . . , n ) are either 1 or -1 and whose 

auto-correlation function $ . , . , (2) is zero for all even shifts except the zero shift, [78]. 

n-\^\ 
= J2 = 0 (4-24) 

fc=l 

i = ± 2 , ± 4 , . . . ± ( T i - 2 ) 

Figure 4.22 illustrates the auto-correlation function for the following 16 element i?-sequence, 

(-1, 1, - 1 , 1, 1, 1, - 1 , - 1 , - 1 , 1, 1, - 1 , 1, 1, 1, 1). £^sequences are derived from and have 

a one-to-one correspondence with complementary sequences discussed by Golay, [79]. As 
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such it can be shown that the length n of an ii^sequence is an integral multiple of four and 

that n must be twice the sum of at most two square numbers. These are not apparently 

sufficient conditions though. 

Given an E'-sequence, 5, as defined above, the sequence can be decomposed into the 

form 

S = {X-Y) (4.25) 

where 
Xr = ( s i , S 3 , . . . , s „ . _ i ) 

Yr = ( s 2 , S 4 , - - - , S n ) 

X expresses the sequence of odd-number subscripted elements, while Y is the even-number 

subscripted elements of S. These two sequences X and Y, form a pair of complementary 

sequences of length | . Thus, given a pair of complementary sequences X and Y, the 

binary sequence formed by eq.(4.25) is an jE-sequence. 

I t can be demonstrated and verified that for an £!-sequence {X;Y) the following com

binations are also R- sequences: {Y;X), {X^;Y), (X-Y^), (X^-Y^), i-X;Y), iX;-Y), 

{-X;-Y), iXA„;yA„), {XA„;YAJ, (XA^^YAJ, {XA/,YA,.). The superscript H stands for 

reversing the order of the elements. The subscripts A„ and stand for inverting the sign 

of the odd or even elements of the subsequence respectively. 

Although methods exist for forming one E^sequence from another E-sequence and from 

complementary pair sequences, no reference could be found for a method determining 

the number of £^sequences of a given length or calculating them all, other than by an 

exhaustive search through all sequences to find those which satisfy eq.(4.24). Software 

was written using Borland Turbo C++ version 2 to test all possible sequences. A problem 

immediately becomes apparent with this search; as the number of bits for prospective E-

sequences increase by one, the search space doubles. The runtime of the program increases 

exponentially with n. 

4.7.2 Sigmoidal Transform Production Using Gaussian Distributed Ran

dom Numbers 

In §4.1 encoding or input mapping techniques have been discussed using uniform dis

tributed random numbers to map a deterministic value into a stochastic pulse stream of 

I's and O's. In general, the probability of observing a one on the output line represents the 

normalised deterministic value. These linear transfer functions are the Cumulative Dis

tribution Function (CDF) for a uniform random number which has a Probability Density 

Function (PDF) as illustrated in Figure 4.23. 

I f we require a sigmoidal transfer function, ie. CDF as Van Den Bout [56] explains, it 

is necessary to find an appropriate PDF to encode the variable against. The Gaussian or 
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Normal distribution function has the following PDF eq.(4.26) 

1 ^-if 
fix) = — = e - (X)< re < (X) (4.26) 

where // is the mean value of the distribution and is the variance. The associated CDF 

is eq.(4.27) 

Fix) = / ——e-^^dx (4.27) 
J-oo a\J2'K 

For / i = 0 and cr̂  = 1 Figure 4.24 shows the respective graphs. 

I t can be seen from eq.(4.26) and eq.(4.27) that the offset of the PDF and therefore 

the CDF is governed by the mean value of the Gaussian distribution. The variance of the 

distribution affects the peakiness of the PDF which in turn affects the sharpness of the 

sigmoidal transform of the CDF. The results of adjusting the mean and variance upon the 

CDF output are illustrated in Figure 4.25 and Figure 4.26. 

Increasing the variance reduces the gradient of the sigmoid, decreasing the variance in

creases the gradient. Increasing the mean moves the sigmoid to the right, while decreasing 

the mean moves the sigmoid, in the opposite direction, to the left. Thus by manipulation 

of the variance and mean the resulting sigmoid can be altered. These two sets of results 

were plotted from the output generated by a simple software model. 

4.7.3 Sigmoidal Transform Production Using i?-Sequences 

I t is well known that a Gaussian random signal may be generated via the Central Limit 

Theorem?. Broadly the central Hmit theorem states that the sum of n identically generated 

independent random variables tends towards a Gaussian distribution as n ^ oo. An 

approximation can be realised by the addition of n binary random variables with a digital 

filter which has a weighting function of n weight elements. 

Izumi [81] proposes the use of an E^sequence for the digital filter weighting function 

based upon the ideas of Davies [82] and his own earlier work [83]. An i?-sequence weighting 

function is selected since i t is an optimum weighting function for the production of a 

Gaussian distribution. The quality of the produced Gaussian distribution is measured in 

^ C e n t r a l L i m i t T h e o r e m [80] 
Let. X i , . . . , Xn 1)0 independent random variables that, have the same distribution function and therefore 
the same mean ii and the same variance a^. Let Yn = Xi + ... + X „ , then the random variable 

Yn - nil. 
- 1=— 

is a s y m p t o t i c a l l y n o r m a l with mean 0 and variance 1; ie. the distribution function i^a(a;) of Z„ satisfies 

hm = * ( x ) = - = / c~d.u 
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terms of the coefficient of skewness^ and the coefficient of kurtosis.'^ Izumi subsequently 

demonstrates the suitability of an i?-sequence. 

Developing the circuit used by Izumi to create a Gaussian random number the desired 

sigmoidal transform can be formed by using the Gaussian random number to map a value 

into a stochastic pulse stream. A block diagram of the proposed circuit is shown in 

Figure 4.27. 

Pulses from a Pseudo Random Binary Sequence (PRBS) are weighted by the values of 

an i?-sequence. The resultant products are accumulated in an Up/Down Counter which 

has been pre-loaded with the offset for the Gaussian mean. After the entire £^sequence 

has been cycled through, n products, the value of the counter is output to a comparator to 

map the required value x into the probability of a pulse according to a sigmoidal transform. 

I f the number of bits for x is more than produced by the counter, the output of the counter 

has zeros padded for the least significant bits. 

Binary values are being manipulated so the E^sequence is represented in terms of I's 

and O's as opposed to I's and -I's. The derivation for the Increment and Decrement signals 

is shown in Table 4.2. 

PRBS Bit r,: £^Sequence Bit Wi Increment Decrement 
Bipolar Binary Bipolar Binary Binary 

0 -1 0 0 0 0 
0 1 1 0 0 0 
1 -1 0 -1 0 1 
1 1 1 1 1 0 

Table 4.2: Derivation of Increment and Decrement Gating for Gaussian Random Number 
Generator 

What does the sigmoid look Uke which is produced by this circuit? What effect does 

the zero padding have? To investigate these two areas, a simple software model was writ

ten. This produces results of the input/output relationship for the sigmoidal transform. 

Figure 4.28 illustrates a typical sigmoid formed for a given E-sequence. In fact, all sig

moids were found to have this appearance regardless of the number of zeros used for LSB 

padding provided the input encoding range had a similar number of bits. This is due to 

^ C o e f f i c i e n t o f S k e w n e s s [84] is the 3rd moment of X* and is denoted by 71. 

- y i = E ( X - ^ ) = a - ^ E { ( X - / . ) ^ ) 

I f the distribution of X is symmetrical about eg. uniform distribution, binomial distribution then 71 - 0. 
If X has a long tail to the right, eg. geometric distribution, Poisson distribution, 71 > 0 the distribution 
is said to be positively skewed. If X has a long tail to the left 71 < 0 and the distribution is negatively 
skewe<l. 

' ' C o e f f i c i e n t o f K u r t o s i s [84] is 3 less than the 4th moment of X* and is denoted by 72. 

7 2 = E ( X * ' ' ) - 3 = < 7 - ^ E { ( X - y < , ) n - 3 

T h e 4th moment is decreased by 3 so that a Gaussian distribution has 72 =: 0. A distribution with thicker 
tails than the Gauss ian distribution will have 72 > 0, while one with thinner tails will have 72 < 0. 
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the fact that the relative dynamic range of the Gaussian random number will be the same. 

It should also be noted that the sigmoid transform produced is very subtle, but it does 

exist. 

A Gaussian distributed random number with a greater dynamic range is necessary 

to produce a better quality sigmoidal transform. For a greater dynamic range a larger 

E^sequence is required which will reduce the frequency with which a Gaussian random 

number can be generated from a PRBS. The size of the shift register to hold the i?-sequence 

will also increase possibly leading to problems of hardware realisation, but nothing which 

can not be accommodated. 

4.7.4 E-Sequence Conclusions 

Following a very brief summary of the properties of £^sequences relevant to their formation 

and application to the production of sigmoidal transforms, the transformations possible 

when moving from a PDF to a CDF for a random number are discussed with particular 

reference to Gaussian distributed random numbers. The effects of adjusting the mean and 

variance for a Gaussian random number upon the transformation are demonstrated. Fi

nally, a circuit for producing a sigmoidal transformation entirely digitally in the stochastic 

pulse rate encoded domain is proposed. 

The sigmoidal transformation circuit proposed has several limitations which include 

the need for a long shift register to hold the ^sequence, limited dynamic range of the 

Gaussian random number produced and poor resulting sigmoidal transform. Yet, a sig

moidal transform is produced. Due to the length of the E-sequence a Gaussian random 

number can only be produced every n clock cycles, where n is the length of the £^sequence. 

By investigating other £!-sequences of the same length or longer, more suitable sequences 

may be found. Software has been produced to find £^-sequences of a given length although 

at present i t is serial and slow for jE-sequences of length greater than 24 bits. 

4.8 Decoding and Output Interfacing 

The majority of the elements described so far have consisted of basic logic gates and 

have been concerned with processing stochastic pulse signals. At some stage it will be 

necessary to view the results of any computation. The stochastic value must be converted 

to a deterministic value. 

At a basic level the number of ON pulses for a stochastic pulse sequence are summated 

over a known number of clock cycles. The ratio of ON pulses to the total number of 

clock cycles represents an estimate of the sequence value. Increasing the number of clock 

intervals over which the calculation is performed improves the accuracy but also increases 

the time over which the measurement is made. I f the sequence is stationary, a fixed 

quantity, this does not pose a problem, however, if the signal is time-varying it is necessary 

108 



to continually track the signal. Therfore, any system to perform this decoding must have 
the following characteristics, [75]. 

• Minimum bias error in the steady-state. 

• Minimum variance in the steady-state. 

• Minimum response time to a minimum bias error for a step input. 

• Minimum response time to minimum variance for a step input. 

• Abili ty to track non-stationary input quickly and accurately. 

The solution to this problem is normally a form of Moving Average or Exponential calcu

lation. 

A moving average can be maintained by keeping a record of the previous sequence 

values and calculating the average pulse rate. For the next clock cycle the oldest sequence 

value is removed and replaced by the new sequence value and the average is recalculated. 

I f the value on the signal line is represented by J4J(0, 1) then the estimate of the sequence 

value is 
1 / ^ " ^ \ 

this can be shown to be 
An-Ao 

PN = P N - 1 + N 

The shorter the sampling period the greater the effect the new sequence value will have, 

but the quicker the system response. The inverse is true that the longer the sequence the 

less influence the new value has but the slower the system is to respond, the bandwidth has 

been reduced. A major problem with this system is the necessity to store the N previous 

sequence values. An appropriately long shift register can be utihsed as illustrated in the 

practical circuit Figure 4.29 (cf. Figure 4.15) which performs the second form of moving 

average calculation. 

More sophisticated systems for generating an output can be achieved by adjusting the 

weighting coefficients applied to the pulse sequence, from the uniform value of j j , providing 

that the sum of the weights is always unity. Using the ADDIE of §4.6 Mars et al, [75], fully 

explain the use of two ADDIE variants. The first is an ordinary noise ADDIE to produce 

an output which is an exponential average. The second uses a deterministic pulse stream 

for feedback and is the Binary Rate Multiplier (BRM) ADDIE. The speed of response of 

an ADDIE for output is related to the number of bits it uses, the more bits the slower 

the response to changes in input probability. However, the more bits used the greater the 

accuracy of the exponential average achieved for a stationary signal. 
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4.9 Summary 

The main aim of this chapter has been to provide an overall critical review of stochastic 

pulse rate computation by the use of three linear encoding schemes SLU, DLB and SLB. 

In reviewing this material, primarily of Gaines, the mathematics and logic circuits for 

performing encoding, inversion, multipUcation, addition, subtraction, integration, function 

formation and decoding have been presented. 

In the process of this review a system for actually accurately summating N stochastic 

pulse sequences has been proposed together with an efficient logic circuit implementation, 

§4.4.1. Leaver's principle of addition by pulse insertion for SLU signals has been considered 

and a circuit operating in a similar manner put forward for performing subtraction by pulse 

removal, §4.5.1. The final new material considered is that of developing a suitable circuit 

to perform sigmoidal transformations. A circuit using GRNs generated from E-sequences 

is explained and has been simulated, §4.7. The limitations of this approach are slowness of 

operation, requirement for a long E-sequence for a reasonable dynamic range and limited 

quality sigmoid produced but nevertheless anon-linear transformation, sigmoid transform, 

is generated 

Stochastic pulse rate computation relies heavily upon the ability to encode information 

efficiently using many noise source or suitable random number generators. The following 

chapter, §5, discusses the generation of random numbers with a view to the efficient par

allel generation of several random numbers at once for use in a stochastic pulse processing 

circuit. With all the constituent parts for an artificial neuron considered the design, im

plementation and test of an artificial neuron operating using stochastic pulse rate encoded 

signals is described in Chapter 6. 
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Figure 4.1: Sample encoded pulse streams for an SLU input mapping. The signal value is 
the probability of reading a one from the signal line. 
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Figure 4.2: Input Probability vs Variance for a SLU Encoding. This illustrates that the 
greatest variance occurs at p = 0.5 and the balance between speed and accuracy. The more 
samples obtained the smaller the variance but the longer it will take. 
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Figure 4.3: Non-linear encoding transfer functions. Using non-linear encoding systems an 
infinite range of values can be encoded into the stochastic pulse rate domain. 
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SLU 

SLB 
-P, 

Up Down 

DLB p^ 

Down Up 

Figure 4.4: Inversion for SLU, SLB and DLB. A single logical inverter may be used for 
SL U and SLB signals. Exchanging the two lines is sufficient for DLB signals. 

Figure 4.5: DLB multiplication. If ui and U2 are high or di or d2 are high Uo must be 
high, else d„ is high. 

-Oo—L 

-C>o—T 

Figure 4.6: SLB multiplication. An output high is produced if both input signals are in the 
same state, else an output low is produced. 
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_ y • P3P|+(1-P3)P2 

Figure 4.7: SLU/SLB Addition. The weighted summation of two signals, pi andp2, by a 
third p3. 
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Figure 4.8: DLB addition. This circuit produces the minimum variance summation of two 
input signals. 
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Figure 4.9: SLU addition by pulse insertion. Coincident pulses upon X CLTid y ave ciccu-
mulated, when both x and y are zero an accumulated pulse is inserted back into the pulse 
stream. 
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Figure 4.10: Deterministic sequences for addition. This diagram demonstrates that deter
ministic selection of scaling signals can lead to an unequal distribution of pulses. 
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Figure 4.11: Initial circuit for the generation of N pulse streams of value j^. Note the 
large loading placed upon inverters at the top of the cascade and the large number of inputs 
for the AND gate at the bottom of the cascade. 
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Figure 4.12: Improved circuit for the generation of A'' pulse streams of value j f . Note the 
modest and consistent fan-out and fan-in for all stages of the circuit. 

116 



Down 

Counter 

x-y 

Figure 4.13: SLU subtraction by pulse removal. In this circuit y is subtracted from x 
by counting the pulses on y and by means of the A N D and X O R gates detecting and 
removing the pulse from x. 
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Figure 4.14: Two input summing integrator for DLB. This circuit requires a counter which 
will increment and decrement by two. The circuit performs equally weighted integration of 
the two DLB inputs. 

Counter 
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Figure 4.15: Two input summing integrator for SLB. 
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Digital 
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Counter 

Figure 4.16: Generic two input summing integrator. This circuit performs integration of 
the two input signals and re-encodes the resultant deterministic value into the stochastic 
pulse rate encoded domain. 

Figure 4.17: Schematic of an ADDIE. The ADDIE is used as the basis for output interfaces. 

Figure 4.18: Schematic of a frequency modulation detector. For a source of fixed frequency 
input pulses the output will be a steady state voltage dependant on the input frequency. This 
will occur when the rate of charging of the capacitor by the pulse stream is equal to the 
rate of discharge through the resistor. 

A A / V -

Figure 4.19: Schematic of an analogue frequency modulation detector. The output voltage 
for an input pulse stream is dependant upon the ratios of the resistors. 
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Figure 4.20: ADDIE circuit to obtain the square-root of a pulse stream. The square of 
the inverse of the output is fed back in this configuration. 
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Digital Comparator 
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Figure 4.21: Generic ADDIE circuit to obtain arbitrary function transformations. 
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Figure 4.22: 16-bit e-sequence autocorrelation function. All even shifts, except zero, pro
duce a zero result. 
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PDF CDF/Transfer Function 

Figure 4.23: PDFs with associated CDFs for a URN. Adjusting the probability density 
function (PDF) distribution varies the cumulative distribution function (CDF) distribution 
given a uniform random number (URN). 
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Figure 4.24: PDF with associated CDF for a Gaussian random number. The mean and 
variance for the PDF are 0 and 1 respectively. 
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Figure 4.25: Sigmoids for adjusted variance values. Decreasing the variance of the gener
ating PDF increases the sharpness of gradient of the CDF. 
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Figure 4.26: Sigmoids, resultant CDFs, for adjusted mean values of the generating PDF. 
Increasing the PDF mean moves the sigmoid to the right, while decreasing the PDF mean 
shifts the sigmoid to the left. 
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Figure 4.27: Sigmoidal transform generating circuit. A Gaussian Random Number (GRN) 
is generated using an e-sequence. The GRN is compared to the input value, x, to produce 
the probability of a pulse output according to a sigmoidal transform. 
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Figure 4.28: Sigmoid produced by encoding circuit simulation. The sigmoid produced is 
only slight but it does exist. A more pronounced sigmoid could be produced by a GRN with 
a greater dynamic range, a larger e-sequence. 
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Figure 4.29: Moving average circuit implementation. The shift register is used to hold the 
N previous sequence samples. Compare this circuit to that of Figure 4-15. 
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Chapter 5 

Mul t ip l e Random Number 

Generation 

5.1 Introduction 

The previous chapter, §4, has discussed a pulse rate computation technique using stochas

tic pulse rate encoded signals. This technique relies heavily upon a noise or random 

number source for encoding deterministic information into the stochastic pulse rate do

main. A simple efficient technique for the generation of noise or random numbers for the 

purpose of encoding is needed. Since stochastic pulse rate computation operates digitally 

it would be preferable if the random number generator also operated by the use of digital 

circuits, i t could then be fabricated in the same format as the rest of the processing struc

ture. Many signals will need to encoded therefore the generation of multiple numbers will 

be investigated. 

In this chapter a short review of techniques and implementation of random number 

generators is made together with possible tests which may be applied to the resulting 

sequence to assess their quality. Particular attention is paid to a class of generators known 

as Pseudo Random Binary Sequence (PRBS) generators from which it is possible to obtain 

more than one random number at a time. A technique is discussed for forming multiple 

sequences from a single PRBS. The technique leaves open ended the final stage of the 

selection of the appropriate circuits for sequence formation. The optimisation and search 

techniques of simulated annealing and genetic algorithms were applied to the selection 

process. I t will be demonstrated that, in general, provided either algorithm is suitably 

configured i t can be used for determination of the necessary circuits. 
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5.2 Generation of Random Numbers 

A random number is a number, possibly within a specified range, which has no prearranged 

order and its value can not be determined in advance. A random number may be described 

probabilistically. For uniformly distributed random numbers each number has an exactly 

equal chance of being selected, but other distributions may be produced, eg. Gaussian, 

Poisson. Random numbers are required for many applications for modelling and simulation 

of processes, selection of input patterns to a neural network during a training phase, even 

the selection of a Premium Bond winner. 

Random numbers can be generated either by using hardware or software algorithms. 

Hardware random number generators are frequently specialised pieces of equipment not 

usually suitable for integration into a general process. They are based upon naturally 

occurring random physical processes and produce excellent results. Software random 

number generators are algorithms that require direct calculation within a computer. They 

can be manipulated easily and are often implemented as functions or subroutines. Many 

computer languages have a random number function included in a standard hbrary if not 

the main language eg. functions rand() and drand48() in C. A user should be aware 

that the quality of these functions can often leave much to be desired. Software random 

number generators do possess the advantageous property of repeatability by resetting the 

seed of the generator. 

A description of hardware and software random number generators together with the 

tests which may be applied to them is given in Appendix A. 

5.3 Pseudo Random Binary Sequence Generators 

PRBSs are formed using digital circuits constructed from Linear Feedback Shift Registers, 

LFSRs. The feedback applied to the shift register determines the type of sequence formed. 

The type that is of interest in this case is that which performs modulo two arithmetic, 

X O R gates being used to achieve this. 

5.3.1 B a s i c P R B S Generator Considerations 

A shift register is a cascade connection of binary memory elements controlled in such a way 

that the contents may be transferred, shifted, along the register by applying an external 

clock pulse. Usually the direction of shift is fixed, although bi-directional shift registers 

exist. In practice a shift register is formed from an array of flip-flops in series. The output 

Q of each stage drives the input D of the following stage. The clock inputs of each stage 

are driven simultaneously. Figure 5.1 

The size of a shift register with iV stages is said to be of degree n or of order n. When 

clocked the contents of stage moves into stage g^+i. I f no connection is made to the nth 
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stage output back to the input, its contents are lost from the register. The value the first 

stage adopts depends upon the value its input is set to. The register holds n digits into 

the past and can be said to have a memory span of n. 

I f feedback from later stages is introduced to supply the input value to the first stage 

the future values of the shift register depend upon the present state of the register and 

the format of the feedback. Figure 5.2. For example, i f the output of the last stage is fed 

directly back into the iSrst stage an n-bit ring counter can be formed, or if the output of 

the last stage is fed back inverted an n-bit twisted ring counter can be formed. I t is the 

configuration of the feedback for the shift register that is of interest to the generation of 

random numbers. The feedback network, /(a;i, 2:2, • • •,a;„), may be any combination of 

binary logic function. 

Tausworthe, [85], developed a random number generator based upon the above prin

ciple of linear feedback. Modulo 2 arithmetic is applied to the feedback, ie. X O R gates 

are used to form the feedback network. Appropriately selected feedback on the shift reg

ister will enable an output bit sequence of length 2" — 1, maximal length known as an 

m-sequence. The feedback configuration for a Tausworthe generator is described by its 

characteristic equation 

where D is the delay operator, n is the length of the generator and s is an output from 

another stage in the shift register. The PRBS configuration may also be described in terms 

of the feedback stages, x^', used to generate the next bit in the sequence to be moved into 

the register. 

The characteristic equation is a primitive polynomial, ie. i t is an irreducible polynomial. 

Other X O R feedback combinations can be used but the sequence will not necessarily be 

maximal length. Tables of irreducible polynomials have been published to reduce the 

need to calculate them, [86]. During production of the bit stream the shift register will 

cycle once through all its possible states, except the all zeros state, before repeating. The 

all zero state is self replicating. The sequence of bits output is a Bernoulli sequence of 

probability 0.5. Since the sequence length is odd the number of I's and O's will vary by 

only one, the number of consecutive logic levels of a particular state is directly related to 

the length of the run, ie. half the runs will be of length one, a quarter of length two, an 

eighth of length three, etc. 

The realisation of a PRBS can be achieved efficiently in software by a few lines of code, 

but for the fast generation of values a hardware method is preferable. Several architectures 

have been used from a simple single shift register to more elaborate schemes using multiple 

shift registers, [87, 88, 89], the latter allowing increased speed in the formation of random 

numbers when many steps are required to advance the generator beyond correlation. 
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5.3.2 Delayed P R B S s 

Having produced a single pseudo random bit stream, how can multiple instances be gen

erated which can be considered independent? I f the sequence is sufficiently long then 

the autocorrelation between delayed versions is small except where the two sequences are 

synchronous. For an n-stage binary shift register generator a maximal length sequence 

the normalised autocorrelation function for a period L bits is given by 

k denotes discrete time delay, and the sequence is expressed as -|-1 and - 1 rather than 1 

and 0. The transformation from Xi to is given by 

y, = {-ir' =l-2x, 

1 - 1 , 0 ^ 1 

The autocorrelation function has the appearance of Figure 5.3. I t can be seen that for 

all except synchronous sequences the correlation is negligible and they can be considered 

as independent sequences. I t is feasible to have g generators each of the same feedback 

configuration but with a different seed state producing g sequences. This method is 

inefficient in its realisation requiring the formation of many generators. 

Viewing the configuration of a single PRBS generator i t can be seen that adjacent 

cells of the register will cycle through the same sequence as that produced by the output 

but delayed by the appropriate number of bits. A single PRBS could be produced with 

multiple cells after the base n cells to store the delayed sequence in, Figure 5.4. For 

sequences of long length and large delays the overall shift register length will become 

prohibitive for practical formulation. 

Tsao, [1], demonstrated how, using modulo two arithmetic and the shift-and-add prop

erty of m-sequences, specified delayed versions of a sequence can be realised. Figure 5.5 

illustrates the initial steps needed. I t can be seen that the number of X O R gates needed 

depends upon the delay and number of serial additions required. The overall speed of 

operation of the generator will be hampered by the propagation delay through the X O R 

gate tree. A problem is to determine the necessary tap combinations for a given delay. 

This problem has been resolved in several ways. 

Tsao resolves the problem of determining the required tap points by manipulation of 

the characteristic equation, 

0̂ 7̂-0 . . . QD''®D' = D-^ 
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=> D" ffi DJ'+^ ffi • • • © D'-+^ ® D'+^ © = 0 

This is best illustrated using the three Tsao examples for a four-stage PRBS. These three 

cases will be reiterated for other techniques which have been developed. 

For a four-stage PRBS the characteristic equation is; 

D^®D^ = loT D'^®D^®D'^ = 0 

The delay combinations for D^, D^ and D^^ are to be deduced. 

1. 

Rearranging the characteristic equation. 

0^ = 00" = D{D^®D") 

2. 

3. Finally D 13 

Extract from characteristic equation, 

D'^iD^ ®D®D-'^) = 0 

^ 0 

D^®D®D-'^ = 0 

p-2 = D^^D 

The mathematical manipulations necessary for each individual delay are not always ob

vious. As the characteristic equation and delays desired become longer the modulo two 

algebra becomes more demanding. 

Davies, [90], observed that if the required delay, D\ is divided into the characteristic 
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equation, f{D), then 

where q(D) is the quotient and r{d) is the remainder, ie. 

For the m-sequence 

thus 

= f{D)q{D)®riD) 

f{D) = 0^f{D)q{D) = 0 

= r{D) 

The coefficients of the remainder, are the desired tap off points from the shift 

register. Practical considerations for the calculation oir{D) are considered by Davies, [91] 

and Van Luyn, [92]. The division technique will now be used to calculate the connections 

for the previous three cases. 

1. D= 

4 3 2 1 0 5 4 3 2 1 0 

1 1 0 0 1 ) 1 0 0 0 0 0 

1 1 0 0 1 

1 0 0 1 

1 1 0 0 1 

1 0 1 1 

£ » 5 ® © 

8 1)1 
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2. 

4 3 2 1 0 G 5 4 3 2 1 0 

1 1 0 0 1 ) 1 0 0 0 0 0 0 

1 1 0 0 1 

1 0 0 1 

1 1 0 0 1 

1 0 1 1 

1 1 0 0 1 

1 1 1 1 

3. D 13 

4 3 2 1 0 13 12 11 10 9 7 8 6 5 4 3 2 1 0 

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 1 

1 0 0 1 

1 1 0 0 1 

1 0 1 1 

1 1 0 0 1 

1 1 1 1 

1 1 0 0 1 

1 1 1 

1 1 0 0 1 

1 0 1 

1 1 0 0 1 

1 1 0 1 

1 1 0 0 1 

1 1 
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Gardiner, [93], provides a third general purpose method for determining feedback com

bination delays. The basic principle is to increment all the delays in the characteristic 

equation by one and when a delay is produced that is outside the bounds of those which 

can be directly obtained from the generator to reduce the equation to terms which can. 

Illustration by example is probably the best method to understand this technique, there

fore repeating for the last time the example generator for delays Z)^, and D^^ we have 

the characteristic equation in the form 

© I?2 = 1 

D^ = D^®D^ (5.1) 

1. Increment delays 

cannot be obtained from the PRBS directly, but substituting from eq.(5.1) pro

duces: 

2. Again increment the previous equation 

= D'^®D^® 
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Again using eq.(5.1) this can be reduced to the minimal configuration 

3. D^^ Increment delay by three from that of 

= D'^ ® D^'® ® 

= (D^ ® ® ® D^) ® (D^ ® ® D'^) ® {D^ ® D'^) ® 

Note that D'® D' = 0 
D' = D^® 

Increment delay by four 

^ D^®D^ 

= (D^ ®D^®D^® © (D^ ® D^) 

= D'^®D^ 

In the last example, D^^, rather than increment by a single delay and reduce the 

subsequent equation, an increment of multiple delays is used before reduction of the 

resulting equation. 

I t can be seen from the above three techniques that any one may be suitable to find 

a tap combination to produce a single delay of the fundamental sequence. However, i t is 

not possible prior to the calculation to determine how many tap off points will be required 

for a delay and where they will lie. In addition, if several delayed sequences are required, 

many taps from a single shift register cell may be required causing uneven loading upon the 

shift register. Considering these points the following section considers a possible solution 

to these problems of forming multiple PRBS sequences from a single generator. 

5.3.3 Multiple P R B S 

The methods described above for obtaining the tap pattern required for a single delay 

are in general adequate for most needs. I f multiple pulse sequences are required from a 

single generator these techniques are no longer practical since other considerations besides 

absolute delay must be considered. Firstly, the number of taps which must be XORed 

to form a delay must be a reasonable size. I f this fan-in is too large it will result in 

complications when attempting to connect up a circuit. The algorithms of section §5.3.2 

do not provide any knowledge of the number of taps required to form a delay prior to their 

calculation. Secondly, if the number of delays which require a tap from a given element of 
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the shift register is too large the loading will adversely affect the shift register performance. 

Alspector et al, [94], highlights these problems and offers a possible solution. 

Alspector's solution for resolving the dilemma, the basic principle of which is the 

reverse of the methods outlined in §5.3.2, has been implemented in software. The technique 

will now be outlined. Groups or buckets of tap combinations are first formed that satisfy 

the following three constraints. 

1. The number of taps required to produce a delay, F, is bounded eg. 

2 < F < 5 

F is used since i t represents the fan-in to the X O R gate necessary to produce the 

delay. 

2. The delay, d, created by a given tap combination is to be within a given bound of 

the optimal value, D. 

d = D±8 

8 is the delay tolerance. 

3. The loading, L , placed upon elements of the shift register shall be evenly distributed 

and as low as possible. 

After generating all tap combinations which satisfy condition (1) and placing them in 

buckets where their associated delays satisfy (2), i t is then necessary to select from each 

bucket a tap combination which minimises a cost function based upon all three constraints. 

Note, not all tap combinations which satisfy (1) will have a suitable delay. The number of 

possible combinations of selection from each bucket will be large. Hypothetically, for 31 

equally spaced delayed sequences 31 buckets would be required, if each contained just two 

tap patterns the number of configurations to evaluate is 2^^ = 2147183647. In practice 

there will be more tap patterns per bucket and an even larger search space. An exhaus

tive search of all these possible solutions is prohibitive in the amount of computation time 

required. In. Alspector et al [94] paper i t was suggested that the search process may be 

conducted by random or deterministic techniques and possibly simulated annealing. Thus, 

in section §5.4 and §5.5 a discussion of the implementation of two random search algo

rithms, Simulated Annealing and Genetic Algorithms, is made. These two algorithms were 

experimented with to find an optimal form for the taps from all the possible combinations. 

An example of Alspector's system may best illustrate the whole procedure. 

Given a PRBS generator of 10-bits from which we require five sequences the nominal 

spacing between delays is: 

m-sequence length _ 2" - 1 _ „ 
Number of sequences 

133 



Therefore delays of 0, 205, 410, 615 and 820 are required. A range of taps that are suitable 

is specified. The range two to four will be used in this case. I t will be observed that a delay 

difference of ± 1 can be achieved by moving a tap up/down the shift register, Figure 5.6. 

Similarly by moving complete tap patterns up and down the shift register the overall delay 

can be adjusted. Figure 5.7. A set of essential tap patterns can be defined where a single 

tap is always the least/most significant bit. Near delays are determined by shifting the 

tap patterns by p and adjusting the delay by p. For two taps per pattern the essential 

taps are illustrated in Figure 5.8. By extrapolation the principle can be expanded to any 

other number of taps. 

The number of tap patterns for a given number of taps is 

iV' 
(5.2) N\{N -K)\ 

whereas the number of essential tap patterns is 

[N - 1)! iV - 1 
{K - 1)\{N - K)\ 

(5.3) 

Here N is the length of the PRBS generator and K is the number of taps to be used. For 

the example of the 10-bit PRBS with the range of taps from two to four the total number 

of tap patterns is 
10 \ E 

but the number of essential tap patterns is 

- K=2\K J 
= 375 

= 129 

A table of essential tap patterns will exist for two, three and four taps per pattern. The 

correct delay must now be associated with these patterns. Three methods are proffered by 

Alspector for the solution of tap patterns and delays, the Simple Shifting Method, the Gi

ant Step/Baby Step Method and the Discrete Logarithm Method. The techniques increase 

the speed of association of a delay with a pattern but also increases the complexity of the 

implementation. The Simple Shifting Method was adopted for ease of implementation and 

wil l be detailed, refer to Alspector's paper for details of the other two methods. 

For a given tap combination from the PRBS determine the output that produces from 

n clocks of the PRBS. n is the length of the PRBS. This n bit output vector, g, is stored. 

The PRBS is reset to its initial base value and clocked. An n bit rolling output vector 

from the PRBS is maintained. This rolling output vector is compared with the vector 
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g. When these two vectors are equivalent the number of clock cycles required is the shift 

associated with the tap combination. 

Having calculated the delay for each of the 129 essential tap combinations the table 

of delay/tap pairs can be expanded to cover all 375 tap combinations. A tolerance band 

is placed round each of the nominal delays to create a bucket into which delay/tap pairs 

are placed. For a tolerance of ±50 the delay buckets are illustrated in Table 5.1. 

Lower Delay Limit Nominal Delay Upper Delay Limit 
974 0 50 
155 205 255 
360 410 460 
365 615 665 
770 820 870 

Table 5.1: Delay Buckets for Five Delays From a 10-bit PRBS with a Tolerance of ±50 

A search is made of selections from each bucket of delay/tap combinations to find the 

most suitable. 

Thus i t can be seen that multiple PRBS m-sequences can be formed from a single PRBS 

generator. Actually i t is the same m-sequence viewed at different instances. Providing the 

length of each m-sequence used at any time is not too long, ie. a sequence does not overlap 

with another, the degree of correlation will be low. These sequences from the PRBS may 

be used as separate noise sources. 

5.3.4 P R B S to Random Number Conversion 

To be able to utilise a PRBS sequence as a random number i t must be correctly converted 

from a series of bits. The basic technique is to form a sequence of bits output by the 

PRBS generator into a digital word and to treat this word as a random value. To form 

subsequent random values the generator is advanced so that new random bits are advanced 

into the register holding the digital word. I t is necessary to advance the generator by more 

than the size of the digital word otherwise a correlation will exist between random values. 

Figure 5.9. 

5.4 Simulated Annealing 

Simulated Annealing, SA, is an optimisation process with its roots based on the processes 

of annealing within condensed matter physics. The analogy made is with thermodynamic 

processes. For example, at the start of the annealing process the matter will be at a high 

temperature and in a fluid phase. The fluid is allowed to cool slowly so that the molecules 

are able to align themselves as thermal mobility is lost. Cooling further will enable the 
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formation of crystals and solids as the state of minimum energy for the system is found. 

As the temperature tends towards zero so the energy of the system tends to a minimum. 

More specifically, [95], at a given temperature, T, when thermal equilibrium has been 

reached the material state can be characterised by the probability of i t being in a state 

with energy, E, given by the Boltzmann Distribution. 

Pr{^ = E} = - ^ f ^ (5.4) 

Z { f ) is known as the partition function and acts as a normalisation function dependent 

upon the temperature. The term e '•B ' ' is the Boltzmann Factor, where fcs is the Boltz

mann constant. Slowly decreasing the temperature concentrates the Boltzmann distribu

tion into the state with the least energy. As the temperature approaches zero only the 

minimum energy state has a non-zero probability of occurrence. 

Metropolis et al, [96], modelled the annealing process in matter. Using a Monte Carlo 

method to select the sequence of states for the matter, a state being characterised by 

the position of the particles of matter, the energy of the configuration was calculated. A 

new state was generated by a random perturbation of the existing state. The amount of 

perturbation depends on the temperature of the system, a higher temperature causing a 

greater disturbance, the difference in energies, A ^ , between the existing state and the 

new state being used as a basis for determining if the new state should be maintained. I f 

AE < 0, ie. a decrease of energy in the system, the new state is kept and used as the base 

for restarting the cycle. I f AE > 0 the acceptance of the new state is probabilistic. The 

probability of acceptance is e '•'B^ 

' \ \iAE<^ 
p{accept) = < _ j V B . (5.5) 

e 'BT i{AE>0 

therefore i t is possible for a new present state to be reached with a higher energy require

ment. 

This acceptance rule is the Metropolis criterion. Repeating the perturbation process 

many times results in a distribution approaching that of a Boltzmann distribution. The 

entire process is known as the Metropolis Algorithm. 

Transferring the idea of annealing to general optimisation problems requires the asso

ciation of temperature, energy and state within the new domain. This was first achieved 

by Kirkpatrick et al, [97], in their application to the physical design of computers eg. inte

grated circuit placement and wiring routes. Subsequently the technique has been widely 

applied. The state in the new domain is the organisation, configuration or set of values 

taken to represent that state. To this configuration is assigned a cost function, C, which 

represents the amount of energy within the system, the aim is to minimise the value of 
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the cost function. Temperature is represented by a control parameter, c, which initially 

has a high value. For a randomly selected combination of system parameters, configura

tion i , the cost function is evaluated, C(i). A random selection of new elements in the 

neighbourhood of i is made, configuration j, for which the cost is also evaluated, C(j). 

Whether or not this new configuration is accepted as the basis for further improvements 

depends on the Metropolis criterion applied to the difference in costs, ACjj. 

AC,, = C{j) - C{i) (5.6) 

The probability that configuration j is used as the next base configuration is, 

, 1 if AC„ < 0 
p{accept) = { ACu (5.7) 

e — ^ if AC,j > 0 

I f Aij > 0 i t is possible for a new configuration to be reached with a higher cost function 

value associated with i t . 

The value of c is reduced in steps, the system being allowed to reach an equilibrium at 

each value of the control parameter. The algorithm is stopped when the control parameter 

reaches a predetermined small value. Simulated annealing is thus a series of applications 

of the Metropolis algorithm for decreasing values of c. As an alternative the control 

parameter is reduced continuously with time rather than in steps. The above two formats 

divide simulated annealing into two categories, [95], the former an homogeneous algorithm 

which can be described by a series of homogeneous Markov chains, and the latter an 

inhomogeneous algorithm described by one inhomogeneous Markov chain. 

Applying the simulated annealing technique to optimising the tap combinations se

lected for the PRBS generator a cost function must be defined. Relevant parameters to 

be considered in this function are the number of taps required to form a delay, i ^ , the 

loading the delay configurations places upon the shift register elements, L, and finally the 

distance, d, of a delay from its nominal delay. 

C = fiF) + giL) + h{d) (5.8) 

For the generic cost function. Equation 5.8, a low cost must be produced for favourable 

configurations and a high cost for unfavourable ones. For f{F) the less taps required 

to form a delay the simpler the X O R gate required, while the function for the loading 

placed upon individual shift register elements, g{L), the more evenly distributed the taps 

are across all elements of the shift register the better. Non-linear penalties were applied 

to these factors such that a small increase in the number of taps required for a delay, F , or 

the overall loading placed on a shift register element, L, becomes increasingly expensive. 

For the cost factor attached to the distance of the actual delay selected from the desired 
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nominal delay, h{d), i t was found that very large differences in the delay were necessary 

which outweighed the combined cost of f{F) and g{L), therefore the difference in delay, 

d, was scaled down to a similar order of magnitude. The delay difference is still accounted 

for but is not the predominant concern. The resulting specific cost function is 

c=E( i ' . f+i;( i , ) '+i; j4 

where X is the number of m-sequences required from the shift register and Y is the number 

of elements which make up the shift register. 

The simulated annealing technique was applied in two ways which varied in the amount 

of perturbation the system received, the cooling schedule and the Metropolis criterion. 

Scheme 1. From an initial random state with a known cost a new state is formed by 

selecting at random a delay for each m-sequence in turn. After each m-sequence has 

been adjusted the cost of the configuration is calculated. The Metropolis criterion 

is applied where p(accept) is tested against a control parameter 'warmth', 'warmth' 

is decreased at regular intervals but has no bearing on the amount the system is 

perturbed. Once all m-sequences have been subjected to adjustment the first one is 

revisited. 

This variant of simulated annealing ensures that a new state is a close neighbour to 

the existing state since between two consecutive states 30 of the 31 m-sequences are 

the same. 

Scheme 2. This second formulation of simulated annealing causes a greater disturbance 

of the configuration between one state and the next. Each element in the configura

tion is subjected to the possibility of change depending upon the value of 'warmth'. 

Initially, when 'warmth' has a high value many new m-sequences are selected for the 

next state, but as the system cools and 'warmth' is not as great less m-sequences 

alter between one state and the next. 

The form of Metropolis criterion used for accepting or rejecting a state is dependent 

both on the change in cost and the value of 'warmth'. This method is more akin to 

Metropolis's, [96], and Kirkpatrick's, [97], implementation than the previous scheme. 

Two sets of data were available to evaluate the performance of the above two schemes. 

The sets of data were 31 buckets of delays and associated tap patterns, where 6 = 10000 

and 2 < F < 5. The second set of data differed from the first in that in each bucket 

a delay existed which matched the optimal value, associated with the delay was a tap 

pattern of all zeros. This second set was to test the ability of simulated annealing to 

seek out a known global minimum for a given cost function, ie. each m-sequence would be 

for optimal delay and have no cost, likewise the all zero tap pattern would, incur no cost 
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either. 

5.5 Genetic Algori thms 

Genetic Algorithms, GA, are a type of optimisation technique which like simulated an

nealing have their roots in the natural world. Genetic algorithms take their' lead from 

nature. In nature information about an organism is coded into the biological structure 

known as a chromosome. The information is stored in genes which are a constituent part 

of the chromosome. The value of the gene is known as an allele. For a species to evolve 

these chromosomes reproduce, crossover (chromosomes exchange section or genes) and 

mutate (a section of chromosome or an individual gene alters). During the life of the new 

organisms formed only the fittest will normally survive in a population of many varieties. 

Much of the early work in the field of genetic algorithms was conducted by Holland, [98]. 

For genetic algorithms a string is defined for the system which is an encoded description 

of the state of the system, a string being analogous to a chromosome. To determine the 

fitness of a string, ie. the set of conditions, for an environment a cost function is used 

similar to that used with the above simulated annealing technique. An individual string 

would be the same as a single state description in simulated annealing. Rather than just 

one string a population of strings is used each with an associated fitness value computed 

from the cost function. A new population is produced by selecting strings from the existing 

population with a probability proportional to the strings fitness. Strings with large fitness 

value have a higher probability of selection and are therefore more likely to survive the 

reproduction phase to the next generation. I t is possible that a string will be replicated 

several times in the new population. 

The next stage of the genetic algorithm is crossover. Two strings are selected at 

random from the child population. Within these two strings a common point is randomly 

selected and the two strings are exchanged at this point with a probability of crossover, 

Pr.. Normally the value of Pr. is quite high, eg. Pc > 0.6. This operation is the one point 

crossover and is illustrated in Figure 5.10 for binary encoded strings. Variations on this 

scheme can and have been used such as the n-point crossover and crossover between more 

than two strings at a time. The aim of crossover is to cause a blending of fit strings to 

produce fitter ones. 

Finally in the genetic algorithm cycle each feature of each string is subjected to the 

possibility of mutation with probability P^. A feature which is mutated has its value 

modified to another value within its parameter set. This modification is a random selection 

and may or may not include the features present value. The probability of mutation is 

usually quite low otherwise the entire algorithm would degenerate into a random search 

of available configurations. The purpose of mutation is to introduce diversification and 

new features into the population which may not be present in any of the parent strings. 
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The whole genetic algorithm cycle is restarted with this new population as the base for 

reproduction. Note, i f crossover and mutation are pursued too aggressively salient feature 

groups may not be able to be sustained through generations. 

Tlie basic algorithm is simple, straightforward and has been found to be robust when 

applied to many combinational optimisation problems and searches of a result space. 

Overall genetic algorithms are distinguished from other optimisation techniques by the 

following properties, 

1. direct manipulation of the coding. 

2. search from a population of possible solutions, not from a single point. 

3. search is conducted via sampling from a population, a blind search. 

4. the search uses stochastic operators, not a deterministic process. 

Similar to simulated annealing a cost function exists which is used to evaluate candidates 

produced by a pass through the algorithm. The basic algorithms operation proceeds in a 

very straight forward manner. 

How then are genetic algorithms to be applied to the combinatorial optimisation prob

lem of PRBS tap optimisation? Firstly a string must be designed to represent the tap 

patterns selected, secondly a cost function to evaluate the fitness of such a string must be 

defined. The string used is composed of a set of 31 numbers, each number representing 

one tap pattern from each of the tap buckets in sequence. Using this format the same cost 

function used to calculate the performance for simulated annealing can be used to drive 

the genetic algorithm. Equation 5.9. A look up table to correlate the tap pattern numbers 

in a bucket to an actual pattern is used. 

The genetic algorithm is implemented as follows. From a set of parents a next gener

ation of children is formed by selecting two parents. Rather than a one point crossover 

occurring between the parents a multiple point crossover takes place. The two parent 

strings are divided at random between the two children. I f the first parent's feature is 

assigned to the first child the second parent's feature is assigned to the second child. The 

probability that the first child has the first parent's feature is the probability of crossover. 

After generating all children each child has each of its features subjected to the possibility 

of mutation. Since a feature is a number representing a delay/tap pattern combination in 

a bucket a random immber representing a new delay/tap pattern combination is gener

ated if mutation occurs. The probability of selecting a feature during mutation is inversely 

proportional to the number of features in a bucket. Once the desired number of children 

have been produced the fittest are selected as suitable parents for the next generation. 

The same two sets of data were used to assess the performance of this genetic algorithm 

as had been used for simulated annealing. 

The data used to evaluate the performance of the GA was the same as has been 

specified for testing of the SA above. 
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5.6 Results 

The following plots demonstrate the performance of simulated annealing and the genetic 

algorithm's ability to seek the lowest cost function and thus the best PRBS tap combi

nations for the data. Two data sets were formed with which to evaluate the performance 

of the simulated annealing algorithm and the genetic algorithm. The sets of data were 

31 buckets of delays and associated tap patterns, where 8 ~ 10000 and 2 < F < 5. The 

first set of data consisted of all real tap combinations and associated delays within each 

tap/delay bucket. This data has an unknown global minima which the above algorithmic 

techniques are to seek. The second set of data has an artificial global minima created by 

setting an artificial tap combination in each bucket to all zeros and the delay difference 

to zero, this pattern would never occur in practice. The aim of this known, forced, global 

minima was to ascertain the ability of the algorithms in finding this known global minima. 

5.6.1 Simulated Annealing 

I t has previously been explained that simulated annealing has a probability that it will 

climb out of a minima to a configuration with a higher cost function penalty. Since this 

higher costing configuration becomes the new working configuration i t will not represent 

the best configuration found by the algorithm. The following result plots display the cost 

of the best configuration found so far, not the configuration being annealed at that point. 

Figure 5.11 and Figure 5.12 show the performance of Scheme 1 and Scheme 2, §5.4, 

respectively for the first data set with an unknown global minima. I t can be seen that 

Scheme 1, which perturbs a single m-sequence between each cost calculation, descends 

faster and to a configuration with a lower cost than Scheme 2 which perturbs more m-

sequences between each calculation. 

Figure 5.13 and Figure 5.14 display the ability of both schemes to find the artificial 

global minima introduced into the second data set. Again the first annealing scheme 

out performs the second. Scheme 1 does in fact find the artificial global minima of tap 

combinations which are all zeros with zero delay difference. 

These results demonstrate that simulated annealing is able to find an improved system 

configuration by means of perturbations of the existing system configuration. Simulated 

annealing can even find a global minima in a non-exhaustive search of system configura

tions, the success of this will depend on how striking the global minima is compared with 

local minima, the case tested here was perhaps over emphasised. However, the speed with 

which improved configurations are found and how significantly they are an improvement 

over an initial random configuration depends upon the format of the simulated annealing 

algorithm. Possible causes for the poor performance of the second scheme relative to the 

first are that too much heat existed within the system and so i t could not settle into an 

appropriate configuration. Another cause is that i t was cooled too rapidly and became 
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frozen into a poor configuration. No attempt was made to find the optimal parameters 
for each scheme rather to find adequate working parameters. 

5.6.2 Genetic Algorithm 

Genetic algorithms are stated to be fairly robust to parameter variation, particularly with 

respect to the crossover rate. To verify this fact the effects of varying the crossover rate 

and mutation rate were evaluated when the genetic algorithm was applied to the first data 

set which has an unknown global minima. The ratio of parentsxhildren was fixed for the 

trials. 

For 10 parents and 20 children Figure 5.15 and Figure 5.16 show the effect of varying the 

crossover rate. The mutation rate was set at 3% or Pm. = 0.03 which is in the range which 

texts, [98], recommend. This mutation rate is sufficient to introduce new characteristics 

into the evolutionary process, but not too large so that the genetic algorithm degenerates 

into a random search. I t can be seen that for this instantiation of a genetic algorithm the 

rates of cost reduction are very similar as the crossover rate is varied. 

For 10 parents, 20 children the mutation rate was varied. Figure 5.17. The crossover 

rate was fixed at = 0.5, since the algorithm has shown to be relatively robust to this 

parameter its exact value is not too important providing it is constant for all trials. The 

amount of variation of mutation rate was small but it can be seen that given this fact 

the algorithm is robust to changes. It was found that if the mutation rate was very low 

few new features are introduced into the search space and a search of parameter orderings 

only occurs caused by the crossover, an unsatisfactory reduction in cost function resulted. 

Likewise if the mutation rate was too large the crossover had little effect since the strings 

became randomised by the excessive mutation rate. 

With the crossover and mutation rate fixed at = 0.5 and P,„ = 0.03 the ratio of 

parentsxhildren was varied. Figure 5.18 and Figure 5.19. For the genetic algorithm to 

operate the number of children must be greater than the number of parents since the next 

set of parents is selected from the present set of children. I f the number of parents was 

greater than the number of children some children would need to be duplicated to form a 

complete parent group. With the number of parents fixed at 20 and the number of children 

varied little variation occurs in the rate of cost reduction. Where there is a small group of 

parents the number of children has little effect since the fittest parents will be the most 

likely to breed children. Although the pool of children for the next parent generation may 

be varied in size all children will be of similar capabilities whether this group is large or 

small. With the number of children fixed and the quantity of parents varied differences in 

performance can be seen. Poorest performance occurs with a large number of parents and 

a large number of children. Part of the genetic algorithm is to select the fittest children, 

thus if a large number of present children are selected to become parents singling out the 

fittest will not be effective and a strong group of parents will not be formed. 
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Finally, to test the ability of the genetic algorithm at finding a known global minima 

in a large search space the second data set was operated upon by the genetic algorithm. 

Figure 5.20 shows the performance of the algorithm when the ratio of parents:children 

is varied with the number of children fixed at 50, PQ = 0.5 and P„, = 0.03. The same 

effect for the variation in the number of parents is exhibited as for the first data set, that 

is that for less parents a faster reduction in cost function occurs. Although the known 

global minima of zero cost is not found within the number of configurations inspected by 

the genetic algorithm it has certainly got very close. Given more time it would probably 

cover the remaining reduction. 

Comparing the simulated annealing and genetic algorithm results it must be pointed 

out that 100 more configurations were inspected by the simulated annealing algorithm 

schemes than by the genetic algorithm. Within a given time, number of configurations 

inspected, the genetic algorithm outperforms the simulated annealing for reducing the 

value of the cost function and therefore in finding good tap pattern combinations for 

multiple PRBS. The smoother curves for genetic algorithms. are achieved by averaging 

several trails with the same parameter set. This was possible due to the faster operation 

of the genetic algorithm over that of simulated annealing. 

5.7 Conclusions 

With the aim of being able to encode deterministic information into a stochastic pulse rate 

signal for manipulation by the processes of §4 an examination of random number generators 

both in hardware and software has been made. I t can be seen that the techniques available 

are, many and various. One method in particular has been highlighted which can built 

easily in hardware or modelled in software, the PRBS generator. The PRBS generator 

consists of an LFSR with an appropriately selected X O R feedback circuit which performs 

modulo two arithmetic. I f the feedback combination is correctly chosen an m-sequence is 

produced with the shift register passing through all its possible states except the all zero 

state. 

Methods for generating delayed variants of the fundamental sequence have been dis

cussed with a view to forming multiple PRBSs from a single generator. The problems of 

uneven loading upon the LFSR which may be caused by several delayed sequences created 

from a single PRBS has been drawn attention to before the description of a solution by 

Alspector which has been implemented for practical use. Alspector left open the question 

of searching the solution space for an optimum result. To close this gap two methods of 

combinational optimisation have been experimented with, simulated annealing and genetic 

algorithms. Both of these techniques utiUse stochastic operators. 

Simulated annealing and genetic algorithms have both been found worthwhile imple

mentations for the combinational optimisation of PRBS delay tap selection. Two formats 
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of the simulated annealing scheme were tested which can be equated to the amount of 

energy in the system and the rate of cooling. A difference in performance between the two 

simulated annealing schemes was noted, thus the exact implementation of simulated an

nealing to a particular problem is significant. The simulated annealing approach has been 

found to be several orders of magnitude slower for this problem than the genetic algorithm 

approach. Intuitively this result is not really surprising in that, although both algorithms 

involve probabilistic processes, the annealing process does not generate as broad a search 

space as the genetic algorithm. The genetic algorithm has also been found to satisfy its 

claim to robustness in the adjustment of some of its main parameters, eg. crossover rate, 

but more sensitive to other parameters, eg. the number of parents. For this combinational 

optimisation problem genetic algorithms appear to be the better individual algorithm of 

the two inspected. Considering the implementation process, simulated annealing is more 

complicated with the concept of agitating the system, whereas the genetic algorithm in

volves simply manipulating the string through crossover and mutation. 

Simulated annealing and genetic algorithms are not the only optimisation approaches 

which can be applied, Very Fast Simulated Re-annealing, VFSR, as developed by Ingber 

and Rosen, [99, 100], is another candidate but this has not been experimented with. 

Alternatively a hybrid technique drawing on features of both simulated annealing and 

genetic algorithms could be developed. 

A l l component parts for an artificial neuron operating by the use of stochastic pulse 

rate computation can now be seen to exist. In the following chapters an actual hardware 

design is described, implemented and tested before consideration of a suitable training 

paradigm which may be overlayed onto the fabricated hardware. 
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CLK 
RESET 

Figure 5.1: Format of a shift register. The output, Q, of a given D-type flip-flop stage in 
the shift register feeds the input, D , of the following stage. 

Shift Register 

1 2 3 4 5 n-1 

f(x., x̂ , x ,̂. . . , x_) 

Feedback Function 

Figure 5.2: Linear feedback shift register, LFSR, configuration. The input to the first 
stage of the LFSR is a combination of the outputs from all stages of the shift register. 
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Normalised Autocorrelation 

^ Relative 
Delay In Bits 

Figure 5.3: Autocorrelation for a PRBS. The correlation for all except synchronous se
quences of the PRBS are negligible. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 5.4: Extended PRBS generator. Delayed versions of a sequence can be obtained by 
taking outputs from the extensions to the shift register, stages 11-15. 

3 2 1 0 

-N, -̂3 

K+)J 1 

Figure 5.5: Generation of delayed PRBS as illustrated by Tsao. Modulo two arithmetic 
and the shift-and-add property of an m-sequence is used to generate delayed versions of a 
sequence. 
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Figure 5.6: Delay variance by moving tap position. A difference in delay can be obtained 
by adjusting a tap position up or down the shift register. 

^6 ^5 ^4 ^3 -2 

Figure 5.7: Delay variance by moving a set of tap positions. By extension of the principle 
illustrated in Figure 5.6 delays generated by tap combinations can be shifled by moving the 
complete tap combination up or down the shift register. 

1 1 0 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 1 

Figure 5.8: Example of essential taps. For essential tap patterns the LSB is always unity, 
near delays are obtained by shifting the tap pattern along the shift register. 
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Direction of shift —> 
Before Advance 1 
After One Advance X 
After Two Advances X 

0 
1 
X 

0 
0 
1 

0 = 8 
0 > 4 
0 > 2 

Figure 5.9: Example of correlation between random numbers formed from successive bits. 
It is necessary to advance a shift register by the number of bits it contains to prevent this 
correlation being exhibited. 

Before Crossover 
0 0 1 1 1 
0 1 0 1 0 

0 1 0 1 
1 0 1 1 

After Crossover 
0 0 1 1 1 
0 1 0 1 0 

1 0 1 1 
0 1 0 1 

Figure 5.10: Illustration of One Point Crossover with Two Strings. A common point is 
selected in two strings and the string components are changed at this point. 
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Figure 5.11: Simulated AnneaHng Scheme 1: Unknown Global Minima. The cost of tap 
pattern configurations steadily reduces until 600000 have been inspected at which point the 
energy minimisation levels o f f . 
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Figure 5.12: Simulated Annealing Scheme 2: Unknown Global Minima. The cost of tap 
patterns used decreases but does not reach as low a final configuration and reaches a plateau 
sooner. 
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Figure 5.13: Simulated Annealing Scheme 1: Known Global Minima. This simulated 
annealing scheme has been able to find the global minima within the search time allocated. 
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Figure 5.14: Simulated Annealing Scheme 2: Known Global Minima. This simulated an
nealing scheme has been unable to find the global minima within the search time allocated, 
but has tended towards a plateau. Compare this to the alternate scheme Figure 5.15. 
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Figure 5.15: Genetic Algorithm: Unknown Global Minima: Varying Crossover Rate. The 
genetic algorithm shows little variance in performance for small adjustments in crossover 
rate. It has reached a comparable minima to that of Scheme 1 for simulated annealing. 
Figure 5.11. 
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Figure 5.16: Genetic Algorithm: Unknown Global Minima: Varying Crossover Rate. The 
genetic algorithm shows little variance in performance for large adjustments in crossover 
rate, the system is robust for changes in crossover rate. It has reached a comparable 
minima to that of Scheme 1 for simulated annealing. Figure 5.11. 
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Figure 5.17: Genetic Algorithm: Unknown Global Minima: Varying Mutation Rate. The 
genetic algorithm shows little variance in performance for small adjustments in mutation 
rate. It has reached a comparable minima to that of Scheme 1 for simulated annealing. 
Figure 5.11. 
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Figure 5.18: Genetic Algorithm: Unknown Global Minima: Varying Parents:Children 
Ratio. The genetic algorithm shows little variance in performance for adjustments to the 
number of children. It has reached a comparable minima to that of Scheme 1 for simulated 
annealing. Figure 5.11. 
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Figure 5.19: Genetic Algorithm: Unknown Global Minima: Varying Parents:Children Ra
tio. The genetic algorithm shows quite a degree of variance in performance for adjustments 
to the number of parents. It is not as robust to adjustments in this parameter. 
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Figure 5.20: Genetic Algorithm: Known Global Minima: Varying Parents:Children Ratio. 
.As above genetic algorithm shows quite a degree of variance in performance for adjustments 
to the number of parents. It has tended towards the known global minima quicker for small 
number of parents. 
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Chapter 6 

A n Artificial Neuron V L S I 

Design and Implementation 

In preceding chapters of this thesis theoretical considerations have been made regarding 

stochastic pulse rate computation §4 and the random number generation system to be 

used in such an environment §5. These studies were undertaken with the aim of designing 

and constructing an ANN operating by the use of stochastic pulse rate encoded signals. 

An individual neuron must first be designed using these techniques before a whole network 

may be built. From §3 i t can be seen that Banzhaf [57], Kondo et al [60], Van Den Bout [55, 

56] and Tomlinson [42] have already put forward designs for neurons and ANN. However, 

these designs either do not operate entirely in the stochastic pulse rate domain, rely upon 

.inexact calculations or are for a particular NN architecture. The design put forward here 

is for a neuron operating using SLB signals and with all processing performed within the 

digital domain. 

Following an overview of the ba^ic requirements for the neuron architecture to be 

designed a brief description is made of the design and implementation routes available 

within the School of Engineering, University of Durham and the reasons for selecting the 

ASIC design package Solo 1400. The next section of this chapter is concerned with the 

design and development of working sub-circuits before they are connected together to form 

a working neuron. Finally, there follows a description of the test system used and the tests 

applied to a fabricated neuron device. 

6.1 Neuron Overview 

For a neuron to be practically realised in hardware several factors must be examined. 

Firstly, the method of computation and communication must be considered. This has been 

decided upon as being stochastic pulse rate encoded signals, but should this be unipolar, 
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bipolar, single line, dual line, hnear or non-linear? Since many of the constituent parts 

of a neuron (multipHers and summers) have not been considered for non-linear encoding 

strategies the design must be a linear one. Linear dual line circuits tend to be larger 

than their single line counterparts, using a single line scheme will lead to smaller circuits. 

In addition the routeing of signals between component parts will be easier for the single 

line rather than for the dual line case. Overall the signal computation should be bipolar 

although it may be found that unipolar signals are more appropriate for some applications 

within the neuron. 

Secondly, the size of the neuron must be considered, what fan-in should i t have ie. how 

many inputs will there be? This will be governed ostensibly by the task the NN has to 

perform in which the neuron is placed. I f the neuron has excess inputs it is possible to 

set unused inputs to zero so they do not contribute to the processing, whereas if there are 

insufficient neuron inputs additional inputs cannot be added. Too many inputs will lead 

to a large neuron which may prove unwieldy in this proof of principle exercise. For these 

reasons a fan-in of 16 was selected. From an estimate of the circuitry size and complexity 

to implement the design it should not prove too large to fabricate and test. In addition 

the design is not too small that a computationally useful ta.sk cannot be performed. 

Thirdly, the technology with which the neuron is to be built must be considered. 

Whether to use discrete ICs or VLSI design tools? Whether i t will be T T L or CMOS? If 

a VLSI design is implemented what level of design is necessary, eg. full custom, standard 

cell? These questions about realisation are considered more completely in the following 

section. 

To summarise a general artificial neuron using SLB stochastic pulse rate encoded 

signals with 16 inputs is to be built. The basic layout of neuron is as per Figure 2.2 a 

sum of weighted inputs passed through an activation function, a sigmoid transform in this 

design. The performance of the neuron can be adjusted by varying the weights and so 

these weights must be programmable. I f the neuron is to be used in a circuit which learns 

and adapts on-line then the weights must be able to be varied as the neuron operates. 

The block diagram for the neuron is Figure 6.1. 

6.2 Design Tools 

Within the School of Engineering several options exist for the fabrication and test of an 

artificial neuron. The three options considered are the construction from discrete T T L or 

CMOS components, design/simulation/layout via the Solo 1400 CAD package and finally 

design/layout/simulation using a combination of ChipWise, SPICE and System HILO 4 CAD 

tools. Each of these three options offers varying degrees of sophistication, adaptability, 

testability, expense and lead time. Each option will now be described in turn before 

reviewing slightly more deeply the selected option. 
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Construction using discrete T T L or CMOS components offers the most flexibility in the 

built hardware. Standard components may be used to perform specific tasks and circuits 

easily adapted i f a design alters. This flexibility is also the weakness in that construction 

becomes prone to errors. For a single neuron device this may be the best option to take, 

but i f many neurons are to be built the job becomes highly repetitive with the increased 

liability of errors. There is little delay between design and test as the circuit exists from 

the outset. The discrete nature also means that there are more points at which a circuit 

can be externally monitored to verify performance. 

The second option is the use of the Solo 1400 ASIC design package. This tool allows 

the design, simulation, circuit layout and packaging to be accomplished in a unified envi

ronment before dispatching the design to be fabricated by a third party. Solo 1400 makes 

use of fully characterised standard cells of devices and circuits in 1.2^m, 1.5/im and 2.0/iim 

CMOS technology which can be interconnected to form higher level functional circuits. 

Libraries of intermediate circuits, eg. counters and registers, are available to speed the 

prototyping phase. Once the neuron design is complete many can be fabricated at the 

same time. I t is not feasible to make changes to a design once it has been fabricated, 

thorough design and simulation is therefore necessary. 

The third and final option is also an integrated circuit approach. The aim would be 

to utilise a combination of ChipWise, SPICE and System HILO 4 to produce a full custom 

designed neuron. I t would be necessary to design the individual logic gates through the 

more complex sub-circuits to the final complete neuron. In eflFect a personal library of 

components must be built and tested. The components gates can be simulated and char

acterised using the SPICE circuit simulation tool which could be used to extract timings 

and drive capability information for example. The extracted parameters would be inserted 

into a circuit description within System HILO 4 to allow simulation of the functionality of 

connected circuits over a period of time as the circuits run. Circuit layout and routeing of 

a design must all be accomplished manually. Once a design had been completed i t would 

need to be fabricated and packaged by a third party. This option has potentially the most 

sophisticated result but requires a prohibitive quantity of work to be undertaken. 

In fabricating a neuron a balance has to be struck between design flexibility and 

adjustment, ease of testing, level of integration, sophistication of design and repeatability 

of fabrication. Each of the three above systems has strengths in some but not all areas. 

Solo 1400 with its unified environment offers the best compromise since this will allow 

the production of ASICs with their high level of integration and a structured format of 

design simulation and test. Through the use of standard cells the individual design and 

characterisation of many circuit components has already been accompHshed allowing the 

structuring of the design with relative ease. The integrated simulation should enable the 

highest probability of a functioning neuron to be designed. 
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6.2.1 T h e Solo 1400 P r o g r a m Suite 

Solo 1400 consists of several separate programs instantiated from within a Solo 1400 envi

ronment shell, in this case running under the X l l windowing system upon a Unix work

station. The programs used can be classified into five general groups. 

Design entry using draft or an ordinary text editor. 

Circuit compilation with the model language compiler model. 

Simulation and test with the waveform compiler wdl, simulator mads and output 

inspection utility wave. 

Layout and encapsulation of the design using place, gate, pinout, route, drawr, 

artview and package utihties. 

Design management using audit, padaudit and shipdes. 

This is not a ful l list of the extensive Solo 1400 programs complete details of which can 

be found in the reference manuals [101]. 

Design Entry 

Two systems were used to enter a design, the first being the schematic entry utihty draft, 

the second an ordinary text editor with which to write a circuit description using the 

model hardware description language, HDL. 

Wi th the draft tool a GUI interface is used to select, place and connect components 

together. Libraries of pre-designed circuits, either standard or user written, can be called 

upon to be added to the schematic. The resulting circuit may then be encapsulated within 

a symbol as a new component for use in a higher level circuit. A hierarchy of building 

blocks is constructed for a design such that at the highest level all that may be seen is 

a number of interconnected black boxes with input/output pads attached. The resulting 

output from draft is a compilable text file of model code. 

Textual entry of a circuit design uses the model HDL. The structure of the language 

is simple and clean, i t is not unlike writing a conventional software program. With the 

experience of using draft a hierarchy of circuits can be written in either library files 

< l i b r a r y > . inc or actual compilable circuit files <circuit> .mod. 

Both systems had their place in the design process. Initially schematic entry provides 

good visual feedback of the design of the circuit but i t is much slower for design entry as 

the size of a circuit grows. Due to the name checking facility of draft circuit intercon

nection can be a problem ELS names on buses, wires may not agree even though such a 

connection is valid. I t was found that often a base design could be produced using draft 

and the model code produced extracted and incorporated into a textual library where 

minor variations were made for specific needs. Conversely text based designs would be 
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bound into a schematic so that pads could be connected and the sub-circuit exported for 
standalone simulation and testing. 

Circuit Compilation 

Following the entry of the circuit(s) and the formation of a model .file the code is compiled 

using the model utility, model expands a <circuit>.mod file to a <c i rcu i t> .mdl file 

which is compiled into a < c i r c u i t > . i d l file for the simulation of the design. Checks upon 

the design for integrity are made with errors and anomalies adequately reported. 

Circuit Simulation and Test 

Having produced a valid circuit design it is necessary to verify its operation and perfor

mance. Solo 1400 offers several tools for this task, the main one used was mads (Multi-level 

Analogue and Digital Simulator) together with the wave utility for displaying the output. 

mads takes as its input a < c i r c u i t > . w d l file which describes how the circuit inputs 

are to be driven, outputs of the circuit and specified monitor points within the design are 

logged as the simulation progresses. The < c i r c u i t > . w d l is a text file written in WDL 

(Waveform Description Language) which is very similar to C but with notable differences, 

eg. no array handling. A well written exercise routine greatly aids in the verification of 

a design and in debugging should this be necessary. It is not possible to specify what 

an output or monitor point should be at any given time, this must be deduced from the 

wave output and checked manually. These same test files for a circuit can/are used at a 

later stage in the design process after the circuit layout and encapsulation when a greater 

knowledge of the timing considerations are available and when testing with actual device 

parameters occurs accounting for propagation delays, device loadings, tolerances etc. 

Circuit Layout and Encapsulation 

Given that a circuit operates as expected the next stage is to lay the design out on 

silicon and if desired encapsulate within an appropriate package. Most of this process is 

mechanical but user intervention is possible to fine tune parameters if desired. Normally 

the default performance will prove satisfactory. 

The first step is the execution of place, a utility which resolves the design hierarchy 

into basic logic gates. The resolved hierarchy as implemented by a series of stages is 

drawn out into a long line and then set out in a regular structure of rows and columns by 

repeatedly folding the long line of stages back and forth to form an approximate square 

format. 

The gate ut i l i ty constructs each actual gate upon the output from the place utility. 

The next stage of the circuit layout is the routeing of wires between gates and out 

to the pads. User intervention is required to organise the pads on the die to a desired 
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format, the pinout utility provides a GUI based system for performing this operation. 

Included in pinout is the ability to select the desired package in which the resulting 

die will be encapsulated, it was found that for experimental designs the default package 

selected bEised upon the die size was satisfactory. Once the pad organisation is complete 

route can be executed which performs the actual placement of interconnections. User 

intervention for the routeing process will have taken place at the design stage with the 

specification of time critical signals. , . 

I t is possible to inspect the resulting artwork from the placement and routeing using 

draw and artview. draw translates the final output from route into Caltech Interchange 

Format^, ie. i t generates a . c i f file. The . c i f file can be inspected graphically using 

artview which allows the mask design to be viewed at various levels of detail. I t is feasible 

to zoom into arccis of the mask and to mccisure distances between circuit elements. 

The final stage is to encapsulate the design into the specified package from the pinout 

phase. This entails placing the bonding wires between the die pads and the pins of the 

physical package using package, package is similar to pinout in the layout of the GUI 

and the package type selected should correlate with that selected in pinout else i t will be 

necessary to cycle back to the pinout stage. 

After placement and routeing it is required to return to the simulation and test phase 

where the simulations can be rerun but with greater detail of device parameters and 

propagation delays. Simulation runs accounting for maximum, minimum and nominal 

expected timings should be successfully executed. 

Design Management 

To aid and maintain consistency of a design through its various stages Solo 1400 has several 

utilities for automatically generating templates of required files extract and of analysing 

the circuit produced audit and padaudit. shipdes is used to check the integrity of the 

overall design process, that all the required utilities have been executed successfully in 

the correct order, that all the test phases have been executed and any special concessions 

have been agreed with the fabrication institution. 

6.3 Artificial Neuron Design 

Each of the sub-circuits of the artificial neuron design will be specified before amalgamation 

into a single neuron unit for simulation and fabrication. A modular approach to design has 

been adopted since an artificial neuron can then be constructed from tested sub-assemblies 

with known modes of operation. Many of the sub-circuits are reused, by designing in a 

modular format new occurrences of a module can be instantiated reducing the risk of 

^CIF Caltecli Intermediate Format is a system for describing graphics items, mask layouts, in a machine 
readal)le form for use by an otitput device. 

159 



errors and keeping the circuit description to a minimum. For example, in the case of the 

N pulse divider weight encoders §6.3.5 a basic module was adapted and renamed for each 

of the required weights. The sub-circuits are now presented either as d ra f t printouts or 

in the form of sample model code. Example w d l test files are shown together with the 

associated wave output plots. 

6.3.1 P R B S Generator 

A PRBS generator is required to create the random numbers which are to be used for 

the encoding of the neuron input weights, the N pulse divider weights and the sigmoidal 

transform. By the use of Alspector's technique [94] as discussed in §5.3.3 multiple PRBS 

sequences from a single generator may be formed, actually the same sequence but at 

different positions in its run length. The total number of sequences required for the 

neuron is 34, made up of 17 for encoding the neuron input weight values, 16 for encoding 

the N pulse divider weights and a single sequence for the sigmoidal transform. 

A 27 bit PRBS is used, a schematic of which is shown in Figure 6.2 and the model 

code listing for the variable length shift register is shown in Figure 6.3. The appropriate 

PRBS feedback points were obtained from a table of primitive polynomials [102] which 

are known to produce maximal length sequences. In order to allow for additional PRBS 

sequences which may be required the software developed for the implementation of Al 

spector's technique §5.3.3 was used to find a total of 38 sequences with a minimum of two 

taps and a maximum five taps used. The delay variation, 5delay, from the nominal was 

set at 100000. Thus, the nominal spacing between sequences is 

Maximal length 2 '̂'' - 1 „ „„„ 
^ - - 3532045 Number of sequences 38 

and the worst case spacing between sequences will be 

Nominal space - 2 x 5delay = 3332045 

A suitable configuration for the tap off sequence gating was found by the use of the 

simulated annealing software §5.4. A sample of the model file for prbs27to38 which 

generates the circuit is given in Figure 6.4. 

No simulation of the tap off sequences were made but the basic PRBS generator was 

exercised using mads and the wdl file of Figure 6.5. For this wdl file the generator is 

reset such that all the individual elements are 1 and then run for 50 clock cycles at which 

time i t is reset again and run for a second 50 clock cycles, both should produce the same 

results. I t can be seen from the waveform plot of Figure 6.6 how the generator operates 

for this short period of time and that i t is successfully reset at time = 102500. 
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6.3.2 12-bit Comparator 

In the following two sections the storage and encoding for the neuron input weights and 

the N pulse divider weights will be explained. Central to the transformation from a 

deterministic value to a stochastic pulse is a circuit for comparing a weight register value 

W with a random number R which has the same number of bits. I f W > i j a one is 

required as an output else a zero is output. For the basic one-bit case the circuit of 

Figure 6.7 will achieve the objective for arbitrary values of A and B. However, it is 

required to compare two n-bit numbers. For example, consider two n-bit numbers where 

n = 3 such that X = X3X2X1 and Y = Y3Y2Y1. A possible algorithm for comparing these 

values is 

1. Examine the MSBs, X3 and Y3 

i f X 3 > ^3 then X>Y 

i f X 3 < ^3 then X <Y 

if X 3 = Y3 then no decision 

2. Examine the next two bits, X2 and Y2 

i f X2 > Y2 and X 3 = Y3 then X>Y 

i f X2 < Y2 and X 3 = ^3 then X <Y 

i f X2 — Y2 and X 3 = Y3 then no decision 

3. Finally, examine the last two bits Xi and Yi 

i f Xi > Yi and X3 = Y3, X2 = Y2 then X >Y 

i f X i < Yi and X3 = 13, X2 = Y2 then X <Y 

i f Xi = Yi and X3 = F3 , X2 = Y2 then X = Y 

This algorithm could be expanded in logical form as follows where Ep is the equivalence 

of any individual p bits. 
^3 = X3Y3 + ^3^3 

E2 - X2Y2 + X2Y2 

El = XiYi + XiYi 

therefore 
X = Y: E3E2E1 

X > Y : X3Y3 + 5:3^2^2 + ^ 3 ^ ^ 2 X 1 ^ 

X <Y: X3Y3 + E3X2Y2 + E3E2X1Y1 

The logic gating even for only this 3-bit case is becoming quite involved. Fortunately 

there is a more efficient system, in terms of gating, which can be utilised, the iterative 
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comparator. 
I t can be seen from the explanation of the 3-bit comparator operation above that a 

pattern of operation is emerging ie. given that no decision has been possible as to which is 

greater X or Y then compare the next MSBs. In the worst case it is necessary to compare 

all bits of the two numbers to form a decision. Some logic design books eg. Holdsworth 

[103] and Roth [104] provide the derivation for the iterative comparator which is illustrated 

in Figure 6.8 and Figure 6.9. The operation is that with ao and 6o) which are equivalent 

to Zi and Z2 reset to zero, to compare the two bit streams of X and Y a bit at a time 

starting with the MSB and recycle the result at each clock pulse for each subsequent bit. 

A valid comparison result may occur before all bits have been compared but i t is necessary 

to wait for the final bit comparison to be certain of the correct result. 

The iterative comparator circuit is sequential whereas the original comparator de

scribed was made only from combinational logic. I t is true to say that the iterative 

comparator is slower than the combinational comparator at actually testing the two num

bers but the combinational comparator has to wait for the full numbers to be formed, 

probably in shift registers, before the computation can take place. There is thus no time 

disadvantage to using the iterative comparator in this case but there is a great benefit in 

terms of the circuit complexity and component count. The length of the numbers that 

can be compared by this iterative technique is determined by the clocking and reading 

arrangement not by the fundamental logic design of the comparator. 

Figure 6.10 and Figure 6.11 illustrate the model code used to generate the iterative 

comparator. After compiling an encapsulation of this design it was exercised using the 

wdl file of Figure 6.12 the results of which are seen in Figure 6.13. For this simulation 

three 4-bit comparisons were undertaken (1011,1100) = (10,12) starting at time 240, 

(1101,1011) = (13,11) at time 750 and (0101,0101) = (5,5) at time 1250. The reset line 

is taken low before each comparison begins to clear the output latches of any value they 

may hold. I t can be seen that R goes high and T goes high at the points the conditions 

X < Y and X > Y are detected respectively. Both R and T remain low where the 

input signals are identical. The extension to 12-bit numbers is achieved by entering 12-bit 

numbers, MSBs first, into the comparator and increasing the period between the reset 

pulses. 

6.3.3 Counters 

Solo 1400 contains several libraries of elements including f i r m l i b and syncl ib , within 

these libraries are more sophisticated circuits eg. multiplexors, n-bit shift registers and 

counters. For the neuron design two types of counter are required, firstly a basic counter 

which can be loaded with a specific value from which to start counting, secondly a more 

sophisticated up/down counter which can also be loaded with a specific value. Only the 

former exists in the libraries, a synchronous counter. The latter up/down counter will 

162 



need to be constructed from basic logic gates. 

Starting with the basic synchronous counter one is required to count up to the number 

of bits being compared by an iterative comparator, 12, and then reset both itself and the 

comparators. Another of similar form but with a count of 80 is required for monitoring 

of the S-sequence progression in the sigmoidal transform circuit, model files for the two 

counters are in Figure 6.14 and Figure 6.15. The format of the two counters is the same 

with a synchronous counter at the heart which is reset to all zero either by the count of 12 

(80) being reached as detected by the immediate logic gates on its outputs. Alternatively 

the counter may be reset to zero by an externally applied reset signal. A single low pulse 

r s t en t clocked through a flip-flop when the counter reaches its limit is produced. The wdl 

file and associated waveform plot are shown for only the 12-bit counter in Figure 6.16 and 

Figure 6.17. The Probe commands in the model code allows signal fines internal to the 

circuit to be monitored as well as the external connections which are always monitored. 

By probing internal lines spikes can be seen upon r s tcn t which propagates to rstes 

this is caused by the propagation of signals through the combinational logic on the outputs 

of the counter. The spike is hidden from the reset input of the counter by the d-type flip-

flop and causes no problems. 

Moving onto the second type of counter, the up/down counter, a 12-bit variant is 

required for the storage and adjustment of the input weight values. An up/down counter 

description does not exist in Solo 1400 so rather than redesigning a fairly common system 

the 74169 T T L circuit was transcribed and used. Figure 6.18. The 74169 circuit is a 4-bit 

up/down counter with both a carry-in and a carry-out, i t can be loaded with an arbitrary 

4-bit value. By cascading three devices a 12-bit up/down counter could be formed. Since 

an up/down counter is required for a total of 17 input weights two variations on the 4-bit 

counter were formed one with no carry-in circuitry. Figure 6.19, and one with no carry-out 

circuitry. Figure 6.20 enabling the 12-bit up/down counter of Figure 6.21 to be generated. 

For 12-bits the range of numbers is 0 —> 4095 or for symmetrically distributed bipolar 

values -2048 —> -1-2047 which is required here. A means for inhibiting the counter movement 

when reaching either of these limits is required which will also allow the counter to move 

away from the limit i f the opposite direction signal is applied. The final 12-bit up/down 

counter circuit with Hmit stops is displayed in Figure 6.22. For exercising and simulating 

this circuit a wdl file was used to verify that any value could be loaded into the counter, 

that all the crossings from the use of one 4-bit stage to another operated both ascending 

and descending in both positive and negative halves of the number range and finally that 

the maximum and minimum limit stops operated satisfactorily. A wdl file and associated 

wave plot for the two l imit tests are shown in Figure 6.23 and Figure 6.24. 

In the simulation, Figure 6.24, the counter is loaded with a value just less than the 

maximum ie. 0x7FA at time !^ 2500. With UD set HIGH which is equivalent to up the 

counter can be seen to count up, cntout(0:11) . When the counter reaches the maximum 
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value i t stops until the count direction is changed time « 22000 when it starts to count 

down. The process is mirrored for checking the minimum value limit stop starting at time 

~ 32700 when a value just greater than the minimum is loaded into the counter. 

A 5-bit up/down counter is required in the Gaussian random generator of the sigmoidal 

transform. This is required to have a lower limit of 0 and an upper limit of 80, this counter 

does not need to deal with negative numbers. Rather than use the two appropriate 4-bit 

counters and limiting the counting as per the 12-bit version i t was decided to extend the 

principle by which the 4-bit operated to five with no carry-in and no carry-out. The 

resulting circuit is shown in Figure 6.25 and with the count limiting circuitry added in 

Figure 6.26. 

As per the 12-bit variant the counter was exercised and simulated at being loaded with 

a valid value, counting up/down and stopping at the two limit points until the direction 

of count was changed. No figures illustrate the wdl file or wave output plot. 

6.3.4 Input Weight Storage and Encoding 

The 12-bit up/down counter with limit stops described in the previous section §6.3.3 forms 

the basis for the input weight storage and encoder circuit a diagram of which is shown 

in Figure 6.27. In this circuit the 12-bit weight value, -2048 < W < 2047, is held in 

the up/down counter. I t can be adjusted either by loading a new value explicitly or by 

counting up or down thus allowing the weight to change as the artificial neuron operates. 

Every 12 clock pulses the value in the counter is transferred to a shift register. In this 

transfer the MSB is inverted, the effect of this inversion is to translate the number range 

up by 2048. The new 12-bit number is compared a bit at a time with one of the 38 PRBS 

sequences from the PRBS generator §6.3.1 by a 12-bit iterative comparator §6.3.2. The 

result of this comparison is latched out after the 12th bit has been compared at which 

point the new weight value is transferred into the comparator register and the process 

repeats itself. 

Since the up/down counter receives every clock pulse its value will constantly be count

ing up or down in this arrangement. In order to maintain a stable value to be encoded 

it is necessary that the average number of counts up is equal to the average number of 

counts down. A stochastic pulse sequence of value 0.5 should thus be fed to the Up/Down 

input. The value of 0.5 corresponds to zero in a SLB stochastic computation scheme. 

Originally this part was designed using the d ra f t schematic editor, but after the basic 

layout had been produced the model part description was extracted, edited and debugged 

resulting in the final description of Figure 6.28. The major components of Figure 6.27 

can be identified as follows, Up/Down Counter ud l2b i t s t , Comparator Register —̂  

es2sreg ps and the 12-Bit Iterative Comparator -+ comp_iter. 

A total of 17 of these circuits are required which could mean many connection points to 

the outside world from the ASIC if the 12 weight input lines and the 12 weight output lines 
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are all separate. This is resolved by using bi-directional pads for the weight input/output 

immediately halving the number of connections at the expense of a little control logic. 

Secondly by developing a simple address decoder/demultiplexor to select which input 

weight is required for writing to or reading from, together with a multiplexor for selecting 

the appropriate lines if a weight value is to be read out the number of connections can be 

reduced to one set of 12. The model descriptions of Figure 6.29 and Figure 6.30 illustrates 

the address decoder and multiplexor implementations respectively. 

Appropriately combining 17 input weight encoders, address decoder, 12 multiplexors 

with the necessary drive buffering a unified input weight encoding block can be formed. 

This is not illustrated. 

Simulation and verification was conducted upon the component parts of the input 

weight system before utilising the entire system. Taking first the input weight encoder 

itself i t was loaded with three values , 0 = 0x000, -t-1024 = 0x400 and -1024 = OxcOO, which 

for a 12 bit range, —2048 < a; < +2047, should result in a stochastic pulse stream of value 

0.5, 0.75 and 0.25 respectively. This is borne out by the wave plot of Figure 6.31 where T 

is the output pulse stream. The LD/EN pulses can clearly be seen with the corresponding 

changes in IM(0:11) time ^ 0, 2400000 and 4800000. UD and CLK, the up/down and clock 

signals, appear as solid bands since on the scale of the plot they are varying too quickly to 

be able to observe individual movements. Testing the address decoder is trivial with five 

input address lines and 17 output select lines. By counting up through the binary codes 

addr(0 :4) inputs Figure 6.32 demonstrates that each of the select fines select (0:16) is 

chosen correctly. 

6.3.5 N Pu l se D iv ider Weight E n c o d e r 

For the N pulse divider which will be used to bias all 17 weighted input lines i t is necessary 

to generate 17 stochastic pulse streams of value for which is needed a series of pulse 

streams of j^, j^, ...etc. By encoding unipolar values of x F S , jq x F S , . . . the 

stochastic pulse streams can be formed. F S is the full scale value. The basic encoding 

circuit is illustrated in Figure 6.33 and is similar to the input weight circuit encoder of 

Figure 6.27 but slightly simpler since there is no up/down counter to be included. As 

the system is used to encode a constant value the inputs to the shift register are tied to 

the power rail or to ground so that upon reset i t reloads its unique value for encoding. 

Due to the uniqueness of the load value a separate description must be produced for each 

encoder. Figure 6.34 displays the model code for this encoder for the value of ^ while 

Table 6.1 is a table of values bias register contents. 

The simulation of this circuit follows the same format of the input weight encoding 

simulation of the previous section with the output stochastic pulse streams of the appro

priate value. This will actually be illustrated in the ful l simulation of the N pulse divider 

when the output of these fixed value unipolar encoders will be probed. 
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Regist er Contents 

Bias Register Decimal Hexadecimal 
1 

17 241 OxOFl 
1 

IG 256 0x100 
1 

15 273 0x111 
1 

14 293 0x125 
1 

13 315 0x136 
1 

12 341 0x155 
1 

11 372 0x174 
1 

10 410 Oxl9A 
1 
9 455 0xlC7 
1 
8 512 0x200 
1 
7 585 0x249 
1 
0 683 0x2A6 
1 
5 819 0x333 
1 
4 1024 0x400 
1 
3 1365 0x555 
1 
2 2048 0x800 

Table 6.1: N Bias Register Contents 

6.3.6 N P u l s e D i v i d e r 

In the proposal of §4.4.1 for an N input adder circuit an extendable circuit for generating 

N pulse streams of ^ is shown. Figure 4.12. This circuit will now be modelled using 

Solo 1400. I t will be noticed that a basic cell of two A N D gates and an inverter exists 

which is repeated in a ladder structure. This basic block d iy ide_ce l l is realised as 

an individual element in the model code Figure 6.35 which allows an arbitrary sized N 

pulse divider to be specified using the parametrised model code Figure 6.36 where the 

d i v i d e _ c e l l block is repeatedly used. 

For the neuron circuit 17 pulse streams of value are required so a simulation using 

all pulse divider weight encoder circuits was simulated. By probing the output of the 

weight encoders which are internal to the circuit the operation of all the encoder can be 

verified at once. The wave plots of Figure 6.37 and Figure 6.38 displays all the encoded 

weights n(2:17) are the resultant ^ pulse streams u ( l : 1 6 ) respectively, u(0) = n(17). 

Spikes can be seen in the jf pulse streams but due to latching of data in later parts of the 

neuron these do not cause problems. 
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6.3.7 Mult ip l iers , G a t i n g and Summation 

These circuits are as discussed in the review of stochastic computation techniques §4 and 

are trivial. For performing the multiplication between the input value and its associated 

weight a single X O R gate is used. To make the circuit definition less error prone a 

parameterised array of X O R gates is specified given by the model code of Figure 6.39. 

The original N input adder design is used to perform summation of the weighted input 

signals. In order to gate these values appropriately the 17 lines of output from the N pulse 

divider u ( : 16) are used to gate the weighted input signals using a parameterised array of 

A N D gates as per the X O R gate case above Figure 6.40. 

Finally, the signals can be summed using an O R gate without the fear of losing in

formation due to the coincidence of input pulses or performing inexact computation. The 

original choice was to use a tree structure of two and three input O R gates. Fortunately 

Solo 1400 contains a built in parameterised O R gate circuit which can take N inputs, in 

this case N = 17. This component will lead to a more efficient and compact multiple input 

O R gate. This is not illustrated. 

6.3.8 Sigmoid Trans form 

The last component part of the artificial neuron is the sigmoidal transform which enables 

the neuron to produce a non-linear response. The circuit proposed in Figure 4.27 of §4.7.3 

is implemented in model code Figure 6.41. The 80-bit £^sequence listing is omitted, i t 

consists of connections for the load inputs of the shift register to either the power rail or 

to ground as appropriate. I t is seen that a new 12-bit comparison is performed every 80 

clock cycles, governed by the length of the E-seqaence, which has the eflPect of reducing the 

frequency of the resulting output stochastic pulse signal. I f this signal is fed into another 

neuron this problem should be ameliorated by the slicing action of the input weighting, 

but i t will be most noticeable in the case of actually decoding the pulse stream. 

Specifically testing the sigmoidal transform performance is diflicult, however, the gen

eral operation can be determined by a similar exercise strategy to that of the input weight 

encoding. Three values corresponding to 0.2, 0.5 and 0.8 ful l scale are transformed using 

the circuit. A marked difference in the quantity of pulses should be seen between the three 

values transformed. The difficulty in producing more exact results is in performing the 

average of the output pulses by extraction from the output signal. Figure 6.42 displays 

the output waveform for this circuit. I t can be seen that as the input values increase 

from 0.2 ^ 0.5 -> 0.8 at times 700000, 6900000 and 13002000 the density of the pulses in 

the output stream decreases. An error exists which has failed to be corrected in that the 

output of the transform should have been inverted. This has propagated throughout the 

whole artificial neuron design, fortunately a single inverter on the appropriate output pin 

cures this problem. This is the reason the output pulses become less dense rather than 

167 



more dense. 

6.3.9 T h e W h o l e Neuron 

A l l the component parts required for an artificial neuron have now been designed and 

simulated. These circuits are interconnected appropriately to form the complete artificial 

neuron. In the process of compiling the whole design the power supply and ground are 

specified together with the input, output and bi-directional pad connections. This enables 

the remaining phases of the design stage (gate, place etc.) to be run for a unified 

ASIC design to be produced. The successful integration of all circuit elements enables a 

simulation of the artificial neuron to be performed. 

Figure 6.43 displays the concise model code file for the complete neuron, for clarity all 

the pad interconnections off the ASIC are omitted. The benefit of the modular approach 

to design that Solo 1400 enables can be seen. Each sub-circuit has been designed and 

simulated before incorporation into a higher level component resulting in the complete 

neuron description in a limited number of lines of model code. 

I t was found that after the initial layout and routeing the physical die size was large 

and a core limited design had resulted ie. the size of the device is predominantly governed 

by the size of the chip array Figure 6.44. The smallest off the shelf package in which the 

die would fit was an 84-pin leadless chip carrier, LCC. A total of only 64 connections are 

necessary for a fully connected device as listed in Table 6.2 leaving 20 unused pins. As this 

Signal Quantity Name Type 
Clock 1 Clk Input 

Read/Write 1 R / W Input 
Reset 1 Rst Input 

Weight Address 5 Addr(0:4) Input 
Weight Data 12 ln i t ( 0 : l l ) Bi-directional 

Input Pulse Stream 16 In(0:15) Input 
Weight Up/Down Control 17 UD(0:16) Input 

Output Pulse Stream 1 Out Output 
Power Supply 5 Vdd(0:4) Power 

Ground 5 Gnd(0:4) Power 

Table 6.2: Necessary neuron connections 

is a core limited device and rather than wasting the unused package connections additional 

output pads were added to the circuit to allow monitoring of internal areas of the device. 

In particular the output of the weight encoders were monitored Wght0ut(0:16) and the 

result of the weighted input summation SumDut. This leaves just two unused pins. With 

the benefit of hindsight i t would have been wise to have had a monitor on the output of 

the PRBS generator. 

After recompilation of the circuit following the pad additions and the resulting pro-
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gression through all the layout, routeing and packaging routines of Solo 1400 the pin con

nections resulting are listed in Table 6.3 and the pin layout is illustrated in Figure 6.45. 

Although it is possible within the mads simulator to monitor internal nodes within the 

circuit the set of routines written to verify the performance of the neuron concentrated 

on the abifity to only monitor the external connections since with a fabricated device 

probing internally would not be feasible. The set of tests created in the wdl file progress 

through the entire neuron exercising i t in stages. Diagnostic style tests were included 

to verify operation of the internal circuits operation in case any problem occurred. The 

simulation consisted of several separate sections to test the address selection, the loading 

of input weight register values, the unloading of input weight register values, the abifity of 

the weight encoders to convert the deterministic values into stochastic pulse streams, the 

summer operation and the sigmoidal transform. These tests are a reiteration of the tests 

conducted upon the sub-circuits but with the need to use the external chip connections 

and preceding circuits for driving the circuits under test. Having successfully verified the 

artificial neuron function the device is ready to be fabricated from the . c i f file formed in 

the design and layout process. The fabrication has been conducted at a third party site 

through the EUROCHIP program. 

Once the device has been fabricated i t is necessary to test and verify the operation 

of the physical hardware. The hardware testing system employed is described in the 

following section §6.4. Following a description of the successful testing of an individual 

artificial neuron device a circuit is presented utilising six neurons operating to perform a 

simple standard task, the encoder/decoder problem. 

6.4 Hardware Artificial Neuron Testing 

To test the fabricated artificial neuron two hardware test configurations were considered. 

1. The design and construction of a test board driven by a combination of signal gener

ators and on board test circuits. Signals would be monitored and analysed via logic 

analysers and oscilloscopes. 

2. The design and construction of a mounting circuit board with a cabfing interface to 

a digital I /O card controlled from within a PC. 

Each system does of course have its own advantages and disadvantages. 

Considering first the construction of a test board driven by signal generators and 

monitored by logic analysers and oscilloscopes. The coordination of several pieces of 

external equipment to produce a unified test system becomes difficult. A total of 53 inputs 

are required for a neuron, though for some tests many are driven in parallel, the availability 

of equipment with the appropriate number of outputs becomes a problem. The ability 
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Pin Name Type Pin Name Type 
1 Gnd 0 Ground 43 UD 8 Input 
2 OutWght 0 Output 44 UD 9 Input 
3 OutWght 1 Output 45 UD 10 Input 
4 OutWght 2 Output 46 UD 11 Input 
5 OutWght 3 Output 47 UD 12 Input 
6 OutWght 4 Output 48 UD 13 Input 
7 OutWght 5 Output 49 UD 14 Input 
8 OutWght 6 Output 50 UD 15 Input 
9 OutWght 7 Output 51 UD 16 Input 
10 OutWght 8 Output 52 Vdd 4 Power 
11 Not Used Not Used 53 Gnd 4 Ground 
12 OutWght 9 Output 54 RW Input 
13 OutWght 10 Output 55 Vdd 3 Power 
14 OutWght 11 Output 56 Gnd 3 Ground 
15 Gnd 1 Ground 57 Clk Control 
16 Vdd 1 Power 58 Rst Control 
17 OutWght 12 Output 59 In 0 Input 
18 OutWght 13 Output 60 In 1 Input 
19 OutWght 14 Output 61 In 2 Input 
20 OutWght 15 Output 62 In 3 Input 
21 OutWght 16 Output 63 In 4 Input 
22 SumOut Output 64 In 5 Input 
23 Out Output 65 In 6 Input 
24 Init 9 Bi-dir 66 In 7 Input 
25 Init 10 Bi-dir 67 In 8 Input 
26 Init 19 Bi-dir 68 In 9 Input 
27 Addr 0 Control 69 In 10 Input 
28 Addr 1 Control 70 In 11 Input 
29 Addr 2 Control 71 In 12 Input 
30 Addr 3 Control 72 In 13 Input 
31 Addr 4 Control 73 In 14 Input 
32 UD 0 Input 74 Init 0 Bi-dir 
33 Not Used Not Used 75 Init 1 Bi-dir 
34 UD 1 Input 76 Init 1 Bi-dir 
35 UD 2 Input 77 Init 2 Bi-dir 
36 UD 3 Input 78 Init 3 Bi-dir 
37 UD 4 Input 79 Init 4 Bi-dir 
38 UD 5 Input •80 Init 5 Bi-dir 
39 UD 6 Input 81 Init 6 Bi-dir 
40 Vdd 2 Power 82 Init 7 Bi-dir 
41 Gnd 2 Ground 83 Init 8 Bi-dir 
42 UD 7 Input 84 Vdd 0 Power 

Table 6.3: Artificial neuron chip pin connections 
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to control the time between operations and signal changes is a definite advantage as are 

the measurement capabilities provided by a logic analyser. I f several pieces of equipment 

are used for driving the device then synchronisation may become a problem. Sampling of 

output lines with the resulting pulse counting and averaging will not be straightforward 

with this system. 

I f the second system is adopted a basic breakout of the ASIC pins to connectors is 

required which will link to a PC driven digital I /O card under software control. A highly 

versatile system will result for the controlfing, driving and reading from the communication 

lines. The timing information between signals will be limited by the timing capabilities 

written into the software. The signal level monitoring, accumulation of output pulses and 

processing will be straightforward as this can all be handled by the software. I t is still 

feasible to use an oscilloscope and logic analyser as external pieces of test equipment for 

verifying signal performance if required. The basic trade-off between the two approaches 

is hardware complexity vs software complexity. 

I t was decided to adopt the second system of testing due to the expected relative short 

lead time for fabrication of the board and generation of the test software. The simple 

hardware test layout is illustrated in Figure 6.47 where two FPC-024 digital I / O cards 

were installed in a PC allowing a maximum of 96 fines to be controlled in four groups of 

three sets of eight lines. Appendix D lists the 72 interconnections necessary between the 

I / O cards and the neuron chip. 

To control, read from and write to these lines through the digital I /O cards software 

written using C-|—|- was produced. C++ was chosen since i t would allow the development 

of a simple class for the digital I /O cards. 

The testing software written can be broken down into three areas 

1. The FPC-024 class for driving the digital I /O cards. 

2. A set of fibrary routines for controUing specific fines eg. CLK, RST, as well as more 

complex routines for loading and unloading weight values for a given input signal. 

3. The test routines written to exercise the neuron which are built from the component 

routines of (1) and (2). 

The test routines will now be individually described and discussed. 

testWghtsO To be able to successfully use the neuron the input weight register must be 

able to be written to and read from. With all the data inputs set DATA_HIGH and the 

up/down fines set to COUNT_UP each of the 17 weight register is loaded with a preset 

value in turn. The weight registers are then immediately unloaded in turn. The 

result is that the unloaded value is 16 more than the value originaUy loaded since each 

register will have been clocked 16 times between loading and unloading. The test 

also confirms the operation of the address selector, multiplexors and demultiplexors 

through the bi-directional sections of the chip. 
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testCountUpO Each weight register is tested to verify that the counter will count up a 

specified number. With the data value set DATA_HIGH and the count direction set 

at CQUNT_UP the weight register is loaded with a mid-range positive value and then 

clocked a known number of cycles before reading the value back out. The read out 

value from the weight register should be the number of clock cycles in excess of the 

value originally loaded in. This test is repeated for a mid-range negative value. Al l 

17 weight registers are tested in this manner. 

testCountDownC) This is a companion test to testCountUp() in that the same procedure 

is followed to test the 17 weight registers except that the count direction is set to 

COUNT_DOWN and the value read back in should be the appropriate number of clock 

cycles less than the value originally loaded in. 

testZeroCrossO The zero crossing is tested for each of the weight registers. A value 

less than zero is loaded with the count direction set to COUNT_UP and the counter 

clocked through zero for a known number of cycles and the correct positive value is 

read back out. The chip is reset and loaded with a value just greater than zero with 

the count direction set to COUNT_D0WN the counter is clocked back through zero for 

another known number of cycles and the correct negative value read back out. 

testDirChangeO Taking each weight register in turn the register is loaded with a mid-

range positive value. The register is set to COUNT_UP and the register is clocked for a 

known number of pulses. The direction of the count is reversed to COUNT_DOWN and 

the register clocked another known number of pulses. Finally the count direction is 

reset back to COUNT_UP and the counter clocked for a final number of known cycles. 

At each change of count direction and at the end of the test the value of the weight 

register is read out and confirmed to be correct. The aim of this test is to verify that 

as the direction of count is changed while the counter is in use the counter correctly 

changes direction without any loss or gain in its value. The test strategy is repeated 

for both for each weight register and in the negative half of the counter range. 

testMaxLimit 0 The aim of this test is to confirm that each weight register will count up 

to its maximum value of 2047 and then stop until the direction of the count reverses 

to COUNT_DOWN at which point the register should move down. 

This test initially failed in that the counters correctly increment to their maximum 

limit and stop but on reversal of the count direction they clock over from the max

imum value to their minimum value at which point the counter is being driven to 

COUNT_DOWN and so holds its value at the minimum value. This led to a rethink of the • 

clocking and driving strategy such that the time the up/down line changes occurs 

when the clock is at CLOCK_HIGH rather than CLOCK_LOW as previously. The weight 

counter then correctly stopped at the maximum value and counted down when the 
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direction of the up/down signal reversed. 

t e s t M i n L i m i t O This is a companion test to testMaxLimit () in that a similar procedure 

is used to test the limit stop at the lower end of the count -2048. The weight register 

under test is initially loaded with a value just greater than the minimum limit and set 

to COUNT J30WN. Before the timing changes for the direction of the up/down signal 

had been corrected the counter would stop at -2048 until the direction of count 

reversed at which time it would clock over to 2047 where i t would be attempting to 

COUNT_UP and then the counter would again halt. 

testWghtEncodeO Three values are loaded in turn into each weight register -1024, 0, 

1024. For each of these values the circuit is clocked sufficient times to produce 

a RUN_LENGTH long output sequence. In effect the number of clock cycles in 12 x 

RUNJLENGTH. The output of the pulse coded value from the weight encoder circuit 

WghtOut(*) is sampled every 12 clock cycles after each comparison has been per

formed. The accumulated output pulses divided by the RUNJLENGTH is a measure of 

the encoded value given by eq.(4.7). For the three values above the results will be 

approximately 0.25, 0.5, 0.75 respectively. The accuracy of this result will depend 

upon the actual RUN_LENGTH. The greater the value of RUN_LENGTH the better the 

estimate to the desired value. 

During the testing the input lines are all set to DATAJilGH. The up/down control 

lines are toggled after every clock pulse so that the weight register counts up by one 

and then counts down by one thus maintaining a constant value for encoding. 

tes tPulseDivider () To verify that each of the 17 signals input to the pulse divider circuit 

preceding the summer is weighted by the corresponding input weight register is 

loaded with its maximum value, the input is set to DATA_HIGH and the direction of 

count set to COUNT_UP. This will cause a permanent high signal to be the resulting 

weighted input. Al l the other inputs are set to DATA_LOW, their count direction set to 

COUNT_DOWN and their weight register loaded with the minimum value. This causes 

a permanent low signal to be output by the resulting weighted input. 

Only one input to the pulse divider circuit will be high and the pulse divider output 

for this signal will be value of the weighting applied to i t , ^f- This is monitored at 

SumOut the output of the summer which will not be affected by the other inputs as 

they are all low. By cycfing through which of the 17 weighted inputs is high the 17 

pulse divider signals can be tested. 

testSummerO By asimple extension of the ideas of the previous test testPulseDivider () 

of setting an input to the pulse divider permanently high, by setting several perma

nently high fixed addition in steps of can take place through the summer. Thus 
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to test the summer the number of signals permanently high is ramped up and the 
series 0, p^, . . . jy can be measured at the pin SumOut. 

testSigmoidO This final neuron test routine builds upon the previous routine testSummer () 

in that the actual neuron output Out is monitored as the number of inputs set high 

is ramped up. The value of Out has to be sampled every 80 clock pulses since 

the speed of update is governed by the i?-sequence length in the Gaussian random 

number generator which is 80-bits long. The value read out will be inverted ie. 1 

- actual value but this can be easily corrected by addition of an inverter in the 

practical circuit usage of this device. 

6.5 A 4—2—4 Encoder/Decoder Implementation 

To be able to demonstrate the capabilities of the artificial neuron device operating in a 

coherent manner a proposal to design a dedicated hardware network utilising six of the 

fabricated neurons was put forward and implemented. This proposal was set aside at a 

late stage due to unsurmountable communication problems with each individual neuron. 

A second, successful, approach was attempted by writing appropriate driver software to 

simulate the operation of a network of six neurons by multiplexing the operation through 

a single neuron on the test board of §6.4. A short description of the original proposal 

will be given due to to the effort expended upon i t . This section will then move onto 

the successful multiplexed system implementation, a description of the weights used to 

perform the task and the results of operating the network. 

6.5.1 Sys tem Implementat ion: 1st Proposa l 

The first proposal was to use the experience gained in the single test board to design and 

build a network of six neuron boards mounted on a backplane motherboard. Figure 6.48. 

Control of the system would be effected through the two FPC-024 digital I /O cards as per 

the individual neuron test board of §6.4. The addressing space would need to be extended 

to allow each neuron board to be addressed independently. Monitoring of individual weight 

encoding procedures would no longer be possible without a significant increase in wiring 

complexity or switching circuitry. Each neuron's operation will have been verified initially 

using the neuron test board. Each neuron's output was however directly monitored. 

Appendix E contains the digital I /O card connections and the circuit diagrams for the 

dedicated hardware. 

After fabrication of the six neuron boards, backplane and writing of the main driver 

software, communication between the ASIC socket and the ASIC was found to be inter

mittent, irregular and lacking continuity. Several sockets from different suppliers were 

tested but none with satisfactory results. This problem had been encountered with the 
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test board but had been accounted for by the use of a cheap, poorly specified socket. 

A special purpose ZIF (Zero Insertion Force) test connector had been used for the test 

board to overcome this problem. The cost and size of ZIF sockets are prohibitive for their 

use in situations other than as a reusable ASIC chip mount. I t was this problem of poor 

continuity which led to the design ultimately being set aside. 

6.5.2 Sys tem Implementation: 2nd Proposal 

The second, less visually effective, proposal to demonstrate coherent network operation was 

to re-utilise the test board. A network of neurons can be simulated by time-multiplexing 

the operation through a single device. Reference to Figure 6.49 a 4-2-4 Encoder/Decoder 

feedforward configuration will aid in understanding the following description. Initial input 

sequences for the network are generated and held in arrays on the host PC. Since the four 

input neurons act as purely distribution points for information Neuron 1, in the hidden 

layer, is the first to be driven. The weights, scaled appropriately, for the neuron are 

initialised to those necessary for such a hidden neuron and the four input pulse sequences 

fed into the neuron. As each input pulse combination is processed the single output pulse 

is stored in an array on the host. Once the input sequence has been exhausted the single 

neuron is loaded with the weights appropriate for Neuron 2 and the four input sequences 

passed through the neuron with the storage of the single output pulse stream in a new 

array on the host. 

To process the output layer neurons, 3-6, the process of running pulses through one 

neuron at a time and storage of the output pulse stream is repeated. On these occasions 

though the pulse sequence is to be input are taken from the two output sequence arrays 

for the hidden layer neurons. Decoding of the output pulse sequence can be undertaken 

to verify that they are the correct value. 

I f longer input pulse sequences are required ie. the network is to be run over a longer 

time frame, a fresh set of four input streams can be generated and the multiplexing process 

can be continued as often as desired. The output value of the network would then need 

to be taken over the effective full output sequence length or a software implementation of 

one of the output processes of §4.8 used. 

By the use of the multiplexing technique i t is feasible to describe and run a feedforward 

network of arbitrary size for network evaluation purposes. I t would not be possible to 

adjust weights on-fine, each neuron's weight would need to be pre-determined. 

6.5.3 Weight Determinat ion 

For the demonstration network of the 4-2-4 encoder/decoder network no on-line adaption 

was to be performed. The weight values for each neuron were to be determined in advance 

and loaded in as required, (all at once in the first proposal, one neuron at a time in the 
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Neuron Weight Matlab Value Scaled Values 
1 Bias -0.1221 -81 
1 1 0.7312 486 
1 2 2.3173 1452 
1 3 -2.4702 -1644 
1 4 -1.4920 -993 
2 Bias -0.6493 -432 
2 1 -1.3388 -891 
2 2 2.1569 1436 
2 3 -3.0768 -2048 
2 4 1.6528 1100 
3 Bias -2.7767 -2008 
3 1 2.8239 2042 
3 2 -2.8204 -2039 
4 Bias -2.7953 -2021 
4 1 2.8107 2032 
4 2 2.7569 1993 
5 Bias -2.7706 -2003 
5 1 -2.8014 -2025 
5 2 -2.7512 -1989 
6 Bias -2.7854 -2014 
6 1 -2.8272 -2044 
6 2 2.8327 2048 

Table 6.4: Possible weight values to be loaded into each neuron as determined by the use 
of a network trained using Matlab. The Scaled Values are those which are to be loaded 
into the hardware neuron. 

second). The values the weights should take could be determined by the use of commonly 

available software using the backpropagation learning algorithm for this form of network. 

Using the Neural Network Toolbox in Matlab a set of possible weights could be determined 

as shown in Table 6.4. Problems will exist with these learned values since although they 

operate with a small error in the simulation they do not account for the specific shape of 

the sigmoid in the hardware, neither do they account for the reduced output range of the 

hardware neurons caused by only a proportion of the inputs being used. 

I t is known for this problem of encoding and decoding that the hidden layer neuron 

weights are such that the hidden layer neurons produce a binary representation of the 

input line which is high. The output layer neuron weights are such that the hidden layer 

binary representation is decoded back to a single line being high. An appropriate set of 

weights for the neuron can thus be configured as shown in Table 6.5. These values should 

overcome the limitations of the sigmoid not producing an adequate squashing function 

and the limited dynamic range of the output. 
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Neuron Weight Weight Value 
1 BicLS 0 
1 1 -2040 
1 2 2040 
1 3 -2040 
1 4 2040 
2 Bias 0 
2 1 -2040 
2 2 -2040 
2 3 2040 
2 4 2040 
3 Bias -512 
3 1 -2040 
3 2 -2040 
4 Bias -512 
4 1 2040 
4 2 -2040 
5 Bias -512 
5 1 -2040 
5 2 2040 
6 Bias -512 
6 1 2040 
6 2 2040 

Table 6.5: Weight values for 4-2-4 hardware encoder/decoder. These values are deter
mined by a combination of inspection of the problem and the solution of the equations 
which describe the system. 
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6.5.4 Resu l t s of Sys tem Operat ion 

After the transition from a system of six neurons all operating coherently to a single 

neuron simulating the operation of the six by multiplexing its operation it was possible 

to demonstrate the system operation. The above second proposal of time multiplexing 

process was successfully implemented in software and the single neuron driven in order 

to demonstrate the 4-2-4 encoder/decoder. The drawback of this approach is that the 

network took six times as long to operate and the benefit of parallel operation is obviously 

lost. 

The system was first driven with the 'learned' weight values from the Matlab simu

lation. Table 6.6 displays the results of this network when run. It can be seen that the 

average output values of the neurons are close to 0.5 equivalent to zero when converted 

from the SLB representation to a real value. Applying the decoding transform of eq.(4.9) 

i t can be seen that the hidden layer, neurons 1 and 2, does indeed have a binary repre

sentation of the input lines being high. However, this does not continue through to the 

appropriate line being high for the output layer, neurons 3, 4, 5 and 6. 

Wi th the new set of weights, illustrated in Table 6.5, the neuron outputs are as shown 

in Table 6.7. Again a binary coding of input values is evident in Neurons 1 and 2 of the 

hidden layer. This time they result in the appropriate output layer neuron firing and being 

high, neurons 3, 4, 5 and 6. 

On re-inspecting the two sets of weight values in Table 6.4 and Table 6.5 i t can be 

seen that the form of the weight values are of approximately the same configuration with 

respect to sign and magnitude. The determined values of Table 6.5 simply drive the 

neurons harder to the limits of the output to overcome the poor sigmoid. 

A drawback in the A'' input adder WELS observed that had not been previously consid

ered. When less than a ful l number of inputs are used, the unused inputs being set to a 

value of zero, the range of output values from the adder will restricted to the proportion 

of inputs actually used due to the constant jj- scaling. Thus, if only n of the maximum A'̂  

inputs are used the swing in output value of the adder will be 

6.6 Summary 

In this chapter we have used the ideas and techniques of the previous two chapters §4 and 

§5 to present a novel design of an artificial neuron operating by the use of stochastic pulse 

rate encoded signals. The neuron design has been implemented in CMOS VLSI using the 

Solo 1400 design package in 1.5/im technology. The design uses approximately 5500 gates 

and 27000 stages which covers an active chip area of 9.59 x 8.13 = 77.98sq.mm 

This chapter began with a specification for a 16 input device operating using SLB 

signals and a block diagram of the artificial neuron circuit to be designed. An evaluation 

of the design system options available was made which resulted in the selection of the 
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Input Configuration Neuron Output Value Converted Output Value 
1, 0, 0, 0 1 0.475356 -1 

. 2 0.537719 1 
3 0.528606 1 
4 0.473375 0 
5 0.471869 0 
6 0.468931 0 

0, 1, 0, 0 1 0.444369 -1 
2 0.473919 -1 
3 0.498350 0 
4 0.501975 0 
5 0.443256 0 
6 0.438931 0 

0, 0, 1, 0 1 0.534744 1 
2 0.512819 1 
3 0.442706 0 
4 0.440363 0 
5 0.499894 0 
6 0.499156 0 

0, 0, 0, 1 1 0.515656 1 
2 0.483288 -1 
3 0.440612 0 
4 0.441631 0 
5 0.499956 0 
6 0.497706 0 

Table 6.6: Neuron output values for the four input schemes possible with a 4-2-4 en
coder/decoder, trained weights. Hidden layer neuron output values are converted on the 
basis of the sigmoid, while the output layer values have been thresholded at T = 0. NB. 
The neuron outputs are SLB representation therefore an output of 0.5 translates to an 
actual value of 0. 
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Input Configuration Neuron Output Value Converted Output Value 
1, 0, 0, 0 1 0.555506 1 

2 0.556350 1 
3 0.552144 1 
4 0.493888 0 
5 0.491812 0 
6 0.432456 0 

0, 1, 0, 0 1 0.440656 -1 
2 0.556613 1 
3 0.494569 0 
4 0.554513 1 
5 0.434725 0 
6 0.491325 0 

0, 0, 1, 0 1 0.556394 1 
2 0.442463 -1 
3 0.493244 0 
4 0.436450 0 
5 0.551087 1 
6 0.491881 0 

0, 0, 0, 1 1 0.437956 -1 
2 0.442794 -1 
3 0.435781 0 
4 0.497350 0 
5 0.494100 0 
6 0.551037 1 

Table 6.7: Neuron output values for the four input schemes possible with a 4-2-4 en
coder/decoder, calculated weights. Hidden layer neuron output values are converted on 
the basis of the sigmoid, while the output layer values have been thresholded at T = 0. 
NB. The neuron outputs are SLB representation therefore an output of 0.5 translates to 
an actual value of 0. 
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Solo 1400 design package §6.2. Following a description of Solo 1400's main tools to be used 

in the design process a detailed description of the neuron sub-circuits is made consisting 

of either schematic diagrams or HDL descriptions of the circuits §6.3. Simulation test files 

are presented with their resulting output which demonstrate the correct operation of the 

sub-circuits. The sub-circuits are combined to form a complete artificial neuron which has 

subsequently been fabricated. 

In section §6.4 the testing system for the fabricated device is outlined together with a 

description of the software test routines used to exercise the device. Due to the nature of 

the testing system the operation of the device is limited to basically a yes no response. The 

artificial neuron device operates as desired producing a weighted sum of 16 inputs using 

stochastic pulse rate encoded processing. However the non-linear sigmoidal transform is 

limited use due to its poor performance. 

Section 6.5 describes how the hardware neurons which have developed throughout 

this chapter have been configured into a small example network to perform the 4-2-4 

encoder/decoder problem. Two systems were attempted, the first unsuccessful system 

used six devices operating in a parallel, the second successful approach used a single 

neuron through which all the necessary signalling was multiplexed. The first system 

proved unsuccessful because clear and consistent connectivity could not be achieved to all 

the designed neuron boards. The bad connectivity has been attributed to a poor design in 

the ASIC packaging and associated connector. The second system reused the test board 

in the previous chapter but with new driver software. 

Given an appropriate set of neuron weight values it was demonstrated that the network 

of six neurons could perform the 4-2-4 problem. A set of weights obtained by training 

a model of the system in software using backpropagation were found not to be adequate 

since they did not drive the neurons sufficiently hard. The model of the sigmoid would 

need to be more precise for accurate off-line training to be performed. Using a semi-

heuristic technique to find an alternative set of weights which drove all the neurons either 

fully-on or fully-off the network was able to more clearly demonstrate the performance of 

the task. 

This system implementation highlights several areas of work which may be developed 

further: the formation of an N input adder which does not suffer from the scaling difficul

ties, the formation of an improved sigmoid transform and the development of an accurate 

functional model of neuron to enable software simulation of its performance and oflf-line 

training to be performed if desired. 
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Figure 6.1: Basic architecture for a stochastic pulse neuron. The neuron produces a 
function of a weighted sum of inputs. Signals are of the single line bipolar form. 
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Figure 6.2: 27-bit PRBS generator schematic. The basic shift register is composed of vlsr 
building blocks with an X O R feedback circuit. 
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########## 
pari: iilfir 

dr..icri:ption: Vario.hlc. Ir.nyth. .'schift register. 
Adapted from ES2 example, eaeh. .itage 
outputs its value. An n..syneh.ronoii.s set is used to 
set the deviee to all 1 's. 

# # # # # # # # # # 
P a r t vl.sr (n) lck,fl,s] -* q(l .n) 

In teger i 

S i g n a l q i ( l :n+ l ) 

I f n = 0 T h e n 
a ^ q( l ) 

E l s e 
a ^ qi( l ) 
F o r i = 1 : I I C y c l e 

baffs (ck,qi(i),s] - qi( i+l) , --
q i ( i+l ) q(i) 

R e p e a t 
E n d i f 

E n d { <^nd of Part vlsr declaration 

Figure 6.3: model code for variable length shift register. Specifying the variable n deter
mines the length of the shift register. Note the For - Repeat loop construct simplifying 
the design specification. 

{ ########## 
part: prhs27toS8 

description: Forms 38 sequences from. 27 bit PRBS genera.ior. 
########## 

P a r t pibs27to38 [in(l:27)] - prbsout(l:38) 

S i g n a l inbuf(l:27). 
link(0:82) 

arraybuffer (27) [in{l:27)) - inbuf(l:27) 

{ prhsout(l) 
xor 
xor 
xor 

inbuf(21),inbuf(24) link(O) 
inbuf{25),inbuf(2C) - l ink(l) 
link(0),lmk(l)) -> prbsout(l) 

{ prhsout(2) 
xor inbuf(8),inb.if{10)] link(2) 
xor inbuf(19),inbuf(21)] link(3) 
xor link(2),link(3)] -» prbsout(2) 

{ prhsout(3) 
xor inbuf(ll),inbiif(18)] -> link(4) 
xor lmk(4),inbuf(23)] prbsout(3) 

Figure 6.4: Sample model code for 38 taps offs from 27-bit PRBS. A'̂ o input variables to 
configure this stage were possible, each gate has to be specified and connected explicitly. 
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/ / ########## 
/ / file: prh.'!27.v,dl. 
/ / 
/ / dcsmption: Test and exercise 27 bit Pseudo Random Binary 
/ / Sequence Gencra.tor. 

/ / ########## 

/ / ########## 
/ / function: r.lkPuhr.Q 
/ / 
/ / dr..<i(:ription: togylc. a .lignal line, twice, normally the clock 
/ / ########## 
void 
r.lkPulso(signal clock) 
{ 

Toggle(clock); 
S imulate; 
Toggle(clock); 
S imulate; 

) / / end of function clkPuhcQ 
// ########## 
/ / w.ain function to exercise the 27-hit PRBS 
// .########## 
main() 
{ 
/ / control lines 

I n p u t ck4; 
I n p u t rst; 

/ / d.o.tti lines 
O u t p u t p(27:l); 
Sct.Cycle(lOOO); 

/ / initialise •prhs2y 
ck4 = 1; 
rst = 1; 
clkPulse(ck4): 
rst = 0: 
clkPulse{ck4); 
rst = 1; 

/ / -nm •prbs27 for 50 clock cycles 
for (i = 0; i < 50: i+-l-) { 

clkPulse(ck4); 

/ / reset prhs27 a.nd r\i.n again 
rst = 0; 
clkPulsc(ck4): 
rst = 1; 

/ / run prbs27 for 50 clock, cycles 
for (i = 0; i < 50; i++) { 

clkPulse(ck4); 
} / / f o r ^ 

} / / end. of inain(J 

// ########## 

Figure 6.5: wdl code for exercising 27-bit PRBS. After initialising all the input lines the 
PRBS is clocked for 50 cycles before being reset and clocked for another 50 cycles. Note 
the use of procedures in the code. 
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Figure 6.6: wave output plot for 27-bit PRBS generator. After the initialisation phase 
the PRBS has been clocked for 50 cycles, the pulse train can be seen to ripple through the 
shift register. Following the reset of the PRBS the same sequence of pulses is repeated. 
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Figure 6.7: One-bit comparator. Simple combinational logic circuit for comparing two 
inputs. 
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Figure 6.8: Iterative comparator cell. Combinational logic building block which will use 
current line values together with the previous result to generate a comparison output. 
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Figure 6.9: Iterative comparator. Sequential logic circuit utilising the comparator cell of 
Figure 6.8 and D-type flip-flops for storing the results of the comparison. 
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{ ########## 
•part: comp .cell 

description: CowJmio.tion.al logic for an iterative comparator 
:########## 

P a r t comp.ccll [nota,notb,x,y] —• aout.boiit 

S i g n a l notx, 
noty. 
bxyout, 
axyout 

not X —» uotx 
not y —> uoty 

nana notb,notx,y] —• bxyout : nana3_bxyout 
nana nota.x.noty] —» axyout : nana3j.xyout 

nana bxyout,nota -* ao)it : nana2-aout 
nana axyout,notb —> bout : nana2_bout 

E n d { end of Part comp.ccll declaration 

Figure 6.10: model code for iterative comparator building block. Implementation of the 
comparator cell of, Figure 6.8. Note that the circuit has been organised to use simply 
N A N D gates. 

########## 
part: compSter 

description: An Iterative Comparator 
Tina control lines elk P3 rst 
Output of com.po.rison ch.a.nges on rising edge of elk 
Output reset to r = 0 & t = 0 when rst held low 
Two data, inputs x & y 
Three outputs r & t which a.rc def}.ned. as follows 

\ r == X < y t == X > y 
{ # # # # # # # # # # 
P a r t compjter [clk,x,y,rst] —» r.t 

S i g n a l aout, bout, 
notr, nott 

r.omp_ccll [notr,nott,x,yJ —• aout,bout 

aff rn elk,aout,rst —> r.notr 
atF rn elk,bout,rst —> t,nott 

E n d { end of Pa.rt computer dccla.rartion 

Figure 6.11: model code for complete iterative comparator. Note how the modular design 
process enables the previously produced module, Figure 6.10, to be included and connected 
up to the additional flip-flops. 
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// ########## 
/ / fi.le: eowq)J.est.wd.l 
/ / . . 
/ / descrijytion: Test a.nd. exercise iterative comparo.tor circuit. 
// ########## 
/ / main function to test the coiwpa.ra.tor for S cases, 
/ / only 4-bit numbers used, but ca.n be extended, to n-bit num.bers. 
// ########## 
main() 
{ 

I n p u t x; I n p u t y; 
I n p u t elk; I n p u t rst; 
O u t p u t r; I n p u t t; 
Sct.Cyclc(50); 

X = 0; y = 0; 
elk = 0; rst = 1; 

Toggle(clk); 
S imulate ; 
clkPulsc(clk); { defined in a previous wdl file 
rst = 0; 
elkPulse(clk); 
rst = 1: 

/ / ^- < y 
X = 1; y : 
X = 0: y = 1 
X = 1; y = 0: 
X = 0; y = 0: 

x: 1010 y: 1100 
1; clkPulse(clk); 

:lkPnlse(cIk) 
elkPulse(clk) 
elkPulse(clk) 

/ / reset compn.ra.tor 
rst = 0; 
clkPulse(elk); 
rst = 1; 

/ / X > y x: 1101 y:1011 
X = 1; y = 1; clkPulse(clk); 
X = 1; y = 0 
X = 0: y = 1 
X = 1; y = 1 

clkPulse(clk) 
elkPulse(clk) 
clkPulse(clk) 

/ / reset compara.tor 
rst = 0; 
elkPiilsc(clk); 
rst = 1; 

/ / x = = y x: 0101 y: 0101 
X = 0; y = 0; clkPulse(elk); 
X = 1; y = 1; clkPulse(clk): 
X = 0; y = 0; elkPulse(clk); 
X = 1: y = 1; clkPulse(clk): 

} / / end of •tna.in() 

Figure 6.12: wdl co 
each of the possible input cases 

ide for testing iterative comparator. Three 4 - b i t tests are run, one for 
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Figure 6.13: wave output plot for iterative comparator. The three separate input cases 
for X and Y can be seen applied, one after each reset of the comparator. The appropriate 
result is visible as an output high on R or T. 
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{ ########## 
•pa.rt: count 12a. 

description: 4 ''^^ counter which counts up to 12 and. resets to 0 

########## 
P a r t eountl2a [elk, rst] — cntl2a 

S i g n a l sumlsb.s, eount(0:3) 
S i g n a l rstent, rstes 

P r o b e sumlsbs 
P r o b e rstent 
P r o b e rstes . 
P r o b e count(0:3) 

and [eount(0:l)] —• siimlsbs 
ornaiid (1,2) [count(3),eount(2),sumlsbs] —• rstent 
and [rst,rstent] —» rstes 
es2ctr (4) [ e l k , G n d , G n d , G n d , G n d , G n d , V d d , r s t e s ] -» connt(0:3) 
bdiF [elk,rstcnt] -» - , entl2a 

E n d { end, of Part countl2a d.ecla.ra.tion 

Figure 6.14: model code for countl2. A 4-bit counter, es2ctr, is used which has external 
combinational logic to reset itself and generate an output when the circuit reaches 12. 

{ ########## 
I part: countSO 

description: 7 bit counter which counts up to SO a.nd. resets to 0 
• ########## 
P a r t eountSO [elk, rst] entSO 

S i g n a l siimlsbs, eoiint(0:G) 
S i g n a l rstent, rstes 

and [count(0:3)] —• sumlsbs 
ornand (1,3) [eount(6),connt(5),eount(4),.sumlsbs] —> rstent 
and [rst,rstcnt] —• rstes 
cs2ctr (7) [ e l k , G n d , G n d , G n d , G n d , G n d , G n d , G n d , G n d , V d d , r s t c s ] - . eonnt(0:6) 
bdiF [elk,rstent] -» - ,cnt80 

E n d { end of pa.rt countSO 

Figure 6.15: model code for count80. This is a variant of Figure 6.14- A 7-bit counter 
is used which has external combinational logic to reset itself and generate an output when 
the circuit reaches 80. 
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/ / ########## 
/ / fi.le: countl2n.tst.wdl 

/ / . . 
/ / d.escription: test o.n exercise up counter to 12 
// ######### 
m a i n ( ) 

{ 
I n p u t elk; 
I n p u t vst; 

O u t p u t cut 12a; 

Sct_Cyele(1000); { aeserlbea in earlier wai file 

cik = 1; 
rst = 0; 
elkPulse(elk); 
rst = 1; 

for (i = 0; i < 60; 1++) { 
if (!(i % 33)) { 

rst = 0; 
} / / ' / ' : 
i f { ! { ( i - l ) % 3 3 ) ) { 

rst = 1; 
} 
elkPulse(elk); 

} / / for z 

) / / end m.a.in() 

Figure 6.16: wdl code for testing the countl2. After reseting the counter, it is clocked to 
verify it counts and reinitialises itself before undergoing an external reset and continued 
clocking. 
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Figure 6.17: wave output plot for countl2a testing. The individual bits of the counter 
can be seen to count up, while the output, CNTISA, only goes high after 12 cycles except 
when the circuit is reset externally on the RST line. 
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Figure 6.18: 4-bit counter with carry-in and carry-out. This circuit is a transcription of 
the 74169 TTL design. 
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Figure 6.19: 4-bit counter with no carry-in. This circuit is a transcription of the 74169 
TTL design but the carry-in line and associated gating is removed. Compare this to Fig
ure 6.18. 

195 



~ l t r 
•= 

E If 1 

"5 3 
u 

1° 
i"a 

i 

6 

A 

A 

6 0 
1 1 

a 

A 6 

A 

00 

Figure 6.20: 4-bit counter with no carry-out. This circuit is a transcription of the 74169 
TTL design but the carry-out line and associated gating is removed. Compare this to 
Figure 6.18. 
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Figure 6.21: 12-bit counter. The counter is formed by cascading the 4-bit counters of 
Figure 6.18, Figure 6.19 and Figure 6.20. Cascading the three counter variants marginally 
reduces the component count and circuit interconnection required. 
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Figure 6.22: 12-bit counter with limit stops at -2048 and -1-2047. The modular design 
enables the 12-bit counter to appear as a component around which the limit stop circuitry 
is configured. 
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/ / ########## 
/ / file: udl2tntst.wdl. 

/ / . . 
/ / description: Test and exercise l2-bit (Jp/Down counter with, stops 
// ########## 
U r = 1; 
D O W N = 0: 
L O A D = 1; 

void 
r.stCoiint(signal Id, signal inSig(l l:0), signal clock) 

^ Id = L O A D ; 
inSig = 0x000: 
r.lkPul.so(cloc.k); 
Id = ! L O A D ; 

} / / r.nd of fv.nctinn rstCountQ 

void 
sotCoiint(signal Id, signal inSig(l l:0), signal clock, int value) 

Id = L O A D ; 
inSig = value; 
clkPul.'ie(clock); 
Id = ! L O A D ; 

) / / end of function sctCountf) 

main{) 
{ 

Input in( l l :0) ; 
Input ud; 
Input Id; 
Input elk: 
Output cntoiit(ll:0); 

Set.Cycle(lOOO); 

in = 0x000; 
ud = UP: 
Id = ! L O A D : 
elk = 1: 
r.stCount(ld, in, elk); 

/ / verify counter stops at max value, after 5 elks should he at max. 
/ / im,m.ediately after direction changes should count down. 

setCount{ld, in, elk, 0x7FA); 
for (i = 0; i < 10: i++) { 

elkPulsc(clk): 
} / / f o r z 
Toggle(ud); 

/ / n.fter this set of clockings should he hack a.t OxlFA 
for (i = 0; i < 5; i++) { 

elkPulse(elk): 
) //^or^ 

/ / verify counter .stops a.t min value, after 5 elks .should he at min. 
/ / imm.ed.ia.tely after direction changes should count up/ 

.setCount(ld, in, elk, 0x805); 
for (i = 0; i < 10; i+-t-) { 

dkPnl.sc(clk); 
} / / f o r i 
Toggle(ud); 

/ / n.fter this set of clockings should, he hack a.t 0x805 
for (i = 0: i < 5; i++) { 

elkPulsc(clk); 
} / / for ^ 

} / / end. of via.in() 

Figure 6.23: wdl code for exercising up/down 12-bit counter. The file tests the limit stops 
of the counter by loading values just below the limits and driving the counter to those 
limits. When the direction of count is reversed the counter should move away from the 
limits. 
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Figure 6.24: wave plot for an up/down 12-bit counter. The first half of this plot demon
strates the halting of the counter at the upper limit, 0x7ff, while the second half demon
strates the counter halting at the lower limit, 0x800. 
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Figure 6.25: 5-bit counter with no carry-in or carry-out. This circuit extends the method 
of the 4-bit counter, Figure 6.18, but has no carry lines associated with it. 
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Figure 6.26: 5-bit counter witli limit stops at 0 and 4-80. As per the 12-bit design, the 
basic counter module has been augmented by the limit stop circuitry. 
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Figure 6.27: S L B weight encoding. Every 12 cycles the contents of the Up/Down counter 
are transferred to the Comparator register. A comparison with a PRBS stream is performed 
to encode the counter value. Note the inversion of the MSB during the transfer to shift 
the counter value. 

{ ########## 
{ part: wghtenc 

{ description: Forined by manual extraction from a model file cren.ted by 'draft' 
{ ########## 
Part wghtcne [rng, in (0: l l ) , rst, ud, Id, elk, en] t,dout(0:ll) 

Signal din(0: l l ) 
Signal bitwglitout 
Signal notclk 
Signal elkbuf 

. Signal Idit 
Signal notrst 
Signal rstbiif 
Signal tmpt 

not [elk] —» notelk 
buffer2 [notelk] elkbuf 
not [rst] —> notrst 
buffer2 [notrst] — rstbuf 
and [Id, en] Idit 
compjter [elkbuf,rng,bitwghtout,rstbuf] —• —.tmpt 
bdff [notrst,tmpt] - • --, t 
es2sreg ps(12,2) [din{0:il),clkbuf,notrst] -> bitwglitout,-
udl2bitst [in(0:ll),ud,ldit,elkbuf] -» dout(0:ll) 
not [dout(ll)] -» din(O) 
dout(lO) ^ dln( l ) 
dout(9) din(2) 
dout(8) — din(3) 
dout(7) — din(4) 
dout(G) — din(5) 
dout(5) -» din(6) 
dout(4) - . din(7) 
dout(3) -« din(8) 
dout(2) din(9) 
dout(l) - . din(lO) 
dout(O) — d i n ( l l ) 

E n d end of Part wghtenc declaration 

Figure 6.28: model code for S L B input weight encoder. The file specifies the circuit of 
Figure 6.27. Note the connection of the two buses, dout and din, has had to be done 
explicitly line by line. 
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########## 
•part: dcviux5tol7 

dcscHption: Decoder for selecting appro'pri.ate inpni.t weight 
{ register for use. 
{ ########## 
Part domux5tol7 [addr(0:4)j -> soloct(0:lG) 

Signal a0(0:3), a0bai(0:3). al(0:3). albar(0:3) 
Signal a2(0:3), a2bar(0:3), a3(0:3), a3bai(0:3) 
Signal a4bar(0:3) 

0R2nbiiff 
o.s2nbuff 
os2nbuff 
e.s2nbufF 
o.s2nbuff 
os2iibuff 
os2nbuiF 
fi.s2nbufF 
o.s2nbuff 

(4,2,0) 
(4,2,1) 
(4,2,0) 
(4,2,1) 
(4,2,0) 
(4,2,1) 
(4,2,0) 
(4,2,1) 
(4,4,1) 

aadr(O) a0(0:3) 
adar(O) - » a0bai-(0:3) 
addr( l ) —t al(0:3) 
addr(l ) albar(0;3) 
addr(2) —t a2(0;3) 
addr(2) —. a2bai(0:3) 
addr(3) —> a3(0:3) 
addr(3) —t a3bar(0:3) 
addi-(4) - * a4bar(0:3) 

fis2and 
c.<i2and 
CIS 2 and 
es2and 
e.s2aiid 
o.'i2and 
e.s2and 
cs2aiid 
es2and 
c.s2and 
c;s2and 
o.s2and 
Gs2and 
os2and 
es2and 
es2and 
os2and 

a4bar(0) 
a4bar(0) 
a4bar(0) 
a4bai(0) 
a4bar(l) 
a4bar(l) 
a4bai( l ) 
a4bar(l) 
a4bar(2) 
a4bar(2) 
a4bar{2) 
a4bar(2) 
a4bar(3) 
a4bar(3) 
a4bar(3) 
a4bar(3) 
addr(4) 

,a3bar(0),a2bar(0).albar(0).a0bai(0)] - sclect(O) 
,a3bai(0).a2bar(0).albai(0), a0(0) - .seloct(l) 
,a3bar(l) .a2bar(l), al(0).a0bar(0) - solect{2) 
,a3bar(l) .a2bar(l) . a l (0) . aO(0)] -> sclect(3) 
a3bar(2), a2(0).albar(l).a0bai<l)l .sdect(4) 
a3bar(2). a2(0) .albar(l) . a0(l) - seloct(5) 
a3bar(3), a2( l ) . a l ( l ) .aObar( l ) - .select(C) 

,a3bar(3), a2( l ) . a l ( l ) . aO(l)l SRlect(7) 
a3(0),a2bar(2),albar(2).a0bar(2)J - sp.lect(8) 
a3(0).a2bar(2).albar(2). a0(2)l - selcct(O) 
a3(l).a2bar(3). al(2).aObar(2)] - selcct(lO) 
a3(l),a2bar(3). a l (2) . aO(2)] - .select(ll) 
a3{2), a2(2).albar(3).a0bar(3)J - select(12) 

. a3(2), a2(2).albar(3). a0(3) ^ select(13) 

. a3(3), a2(3). al(3).a0'bar(3) — select(14) 

. a3(3). a2(3). a l (3) . a0(3) — solect(15) 
a3bar(Q),a2bar(0).aibar(0 .aObai(0)] seloct(lC) 

E n d { r.nd of Part demux5tol7 declaration 

Figure 6.29: model code for address selector/decoder. Basic five line decoder, a 5-bit 
address is converted to one of 17 active output lines. 

########## 
part: muxntol 

description: An n.rbitary n-line to 1 multiplexor. 
########## 

Part muxntol (elems) [in(0:olems-l),sel(0:clcms-l)] —• out 

Signal notsel(0:elem.s-l) 

Integer elemlp 
If olem.s < 5 Then 

Error "SOLO l ib may exist for multiplexor size" 
Else 

For elomlp= 0 : (eloms - 1) Cycle 
not [.scl(elemlp)] —> uotsel(elemlp) 
tribufl (sel(eIenilp),notaal(elcmlp),in(elemlp)] —» out 

Repeat 
Endif 

E n d 

{ end For elcralp 
{ end If elem.<s 

end of Part iniLxntol declaration. 

Figure 6.30: model code for arbitrary N input multiplexor. This circuit description itera-
tively builds a multiplexor of arbitrary size. Note how by use if the I f statement feedback 
can be sent to the user to notify them of specific conditions. 
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Figure 6.31: wave plot for input weight encoder performance. The weight encoder is 
loaded with values corresponding to 0.5, 0.75 and 0.25. The output, T, can be seen to have 
an on period which corresponds to these conditions. The UD line is constantly toggled to 
maintain the counter at a stable value. 
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Figure 6.32: wave plot for demultiplexor/address decoder. By counting up through the 
32 address combinations an output on the correct address line occurs only for addresses 0 
to 16. 
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Figure 6.33: S L U weight encoding. This circuit is similar to Figure 6.27 but without the 
12-bit counter. 

{ ########## 
part: wghtlO 

{ description: Weight encoder for 1/10 

{ # # # # # # # # # # 
Part wghtlO [clk,rat,x] -> t 

Signal y 
Signal tmpt 
Signal en 
Signal notclk 

not [elk] —» notclk 

not [rst] —• cn 
ea2sreg ps (12,2) [Gnd,Gnd,Gnd,Vdd,Vdd,Gnd,Gnd,Vdd,Vdd,Gnd,Vdd,Gnd,clk,en] 
compJter [notcIk,x,y,rat] —» —,tmpt 
bdff [cn, tmpt] — -,t 

y,--

E n d { end of Part wghtlO 

Figure 6.34: model code examples of a static S L U encoder. Observe how the shift register 
can always be re-initialised to the same value since the load inputs are tied to either Vdd 
or Gnd. 
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{ ########## 
{ part: divide^cell 

{ description: BuiUling block for N pulse divider 
{ ########## 
Part divido-cell [in,prev] —• out,next 

Signal notin 

and [in.picvj —* out 
not [in] —> notin 
and [prev,notinj —• next 

E n d { end of Part divide^ccll declaration 

Figure 6.35: model code for divide cell building block. This building block can be seen 
repeatedly in Figure 4-12. 

{ ########## 
part: njpulse.d.iv 

description: N pulse d.ivider for input to stochastic summer 
; ########## 
Part n_pulse_div (streams) [in(2:streams)] —• out(l:strcams) 

Integer streamlp 

Signal prev(l:streams) 
Signal notstrcam2 

If streanis<2 Then 
Error "Too few pulse streeims specified" 

Else 
wire in(streams) —» out(streams) 
not in(streams)] —• prev(streams) 

For streamlp=(streams - 1):2 By -1 Cycle 
divide-cell [in(streamlp),prev(streamlp + 1)] —> 

o\it(streamlp),prev(streamlp) : divide_ccll(streamlp) 
Repeat 

prcv(2) — out( l ) 
Endif 

E n d 

{ end. For .Hreamlp 

{ end If streams 

{ end of Pa.rt njpulse.d.iv declaration 

Figure 6.36: model code for complete N pulse divider. This is another parameterised 
circuit enabling arbitrary long pulse divide trees to be produced from the divide.cell block 
of Figure 6.35. 
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Figure 6.37: wave plot demonstrating static weight encoding. The time a line is high can 
be seen to increase progressively from N(17) to N(2). 
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Figure 6.38: w a v e plot demonstrating the gating streams. Each of the 17 bus lines 
has a probability of j j of being high. The spikes are filtered out by the latching of the U 
values. 
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########## 
•part: slbipjinuljilock 

dcscHpiion: Single. Line. Bipolar Mv.ltiplicr block. Multiplies tv)0 
buses of signals x(0:clr.ins) and v)(0:clc.vis) by use of 
xor gates. 
Input parameter 'elenis'' the number of multipliers - 1 
there will be. 

^ ########## . 
Part slbipjrmLblock (olom.s) [x(():elcms-l). w(0:olnm.'!-l)] —> xw(0:cloms-l) 

Integer olenilp 

If oloms<l Then 
Error "No elements to multiply" 

Else 
For elcmlp =0:olc;ms-l Cycle 

oqv [x(elemlp);w(olcmlp)] —• xw(olemlp) : xor(olcmlp) 
Repeat { end For clcmlp 

Endif { end If clems 

E n d { end of Part slbipjinuLbloek declaration 

Figure 6.39: model code for SLB mult ipl icat ion of input values and weights. This circuit 

is simply an array o / X O R gates. 

########## 
part: sluni.nni.Lblock 

description: Single Line Umpolar Multiplier block, Multiplies two 
buses of signals x(0:elems) and w(n:elems) by use of 
and gates. 
Can n.lso be used for the gating in a Multiple Input 
Sum.mer. 
Input parameter 'elem,s' the num.ber of multipliers - 1 
there uiill be. 

, # # # # # # # # # # 
Part shini_muLblor.k (clom.s) [x(0:elems-l). w(0:elems-l)] —> 

xw(0;olems-l) 

Integer elcmlp 

If clcnis<l Then 
Error "No elements to multiply/gate" 

Else 
For elemlp=0:clcm.s-l Cycle 

and (x(olomlp),w(elenilp)] —• xw(elcmlp) : an<12(elemlp) 
Repeat { end For elr.mlp 

Endif { end If elcms 

E n d { end of Part slunijmuljblock declaration 

Figure 6.40: model code for SLU mult ipl icat ion/gat ing of weighted inputs. This circuit is 

simply an array of A N D gates. One input to each A N D gate is the weighted input, the 

second is a ^ gating signal. 
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{ ########## 
{ pii.rt: gausl 
{ 
{ description: Produce Gaufi.fitm numbers 
{ ########## 
Part gau.sl [.siimin,prb.s,r.lk,ist] —> t 

Signal notist 
Signal oseqbaso(0;79) 
Signal csGqout, notcsnqout 
Signal inc, doc, notdoc 
Signal countout(0:4) 
Signal regl2oiit 
Signal tmpt 
Signal riitSO, r.stl2 
Signal clkSO'. iiotclkSO 
Signal clkl2.st, notclkl2st 
Signal ud5rst 
Signal notclk 

Signal tmp, tmp2, tmpl, tmpinc 

Gnd —• eseqbase(O) 

Vdd -* oseqbase(79) 

not [clkSO] -» notclkSO 
cCTintSO [r.lk^rstj clkSO 
and (rst,notclk80] -» r.stl2 
coiintl2 [notclk,r.stl2] — clkl2st 
not [r.st] —t notr.st 
es2sreg p."; (80,2) [Rseqbase(0:70),olk,notrst] —• e.seqout,-

and [prbs,cseqout] —• inc 
or [notrst,clk80] nd5rst 

not [elk] —» notclk 
or [prbs,nd5r.st] —> tmp 
and [tmp,notclk) —* tmp2 
or [inc.ndSrst] —> tmpinc 
nd5bitst [Gnd,Gnd,Gnd,Gnd,Vdd,tmpinc,ud5ist,tmp2] -> countout(0:4) 

o.s2Rreg ps (12,2) [countoiit(4),conntont(3),co\intout(2),conntout(l),countont(0),Gnd(0:G),clk,ud5r.'it) —» 
rcgl2ont,— 

compjtcr [clk,regl2out,sumin,clkl2st] —• -.tmpt 

bdff (notclk80,tmpt] t,-

E n d { end of Part gausl declaration 

Figure 6.41: model code for sigmoidal transformation circuit. This circuit produces Gaus
sian distributed random numbers which the weighted sum of products is compared. This 
performs the sigmoid transform. 
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Figure 6.42: wave plot demonstrating testing of sigmoidal transform. Due to the omission 
of a single inverter, as the input values increase from 0.2 —> 0.5 —> 0.8 the output, T, 
becomes less dense rather than more dense, but the appropriate non-linear mapping does 
exist. 
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########## 
•pari: nc.ur 

description: The neuron. 
{ ########## 
Part nciir [clk,in(0:15),addr(0:4),nd(0:lG),rw,rstj -» out,init(0:H),sumout,outwght(0:lG) 

Signal prbsoiit(l:27) 
Signal ing(l:34) 
Signal sumin_17(0:lC) 
Signal sum 
Signal clkJn 
Signal rst Jn 
Signal rwJn 
Signal rwbuf(0:2) 
Signal in_in(0:15) 
Signal initjn(0:ll), notinitJn(0:ll) 
Signal addrjn(0:4) 
Signal udJn(0:16) 
Signal wglitout(0:ll) 
Signal wghtonta(0:ll) 
Signal outjn 
Signal wglitcnc-in(l:16) 

Signal clkl2a, notclkl2a 
Signal rstl2 

Signal clkbuf(0:5) 
Signal r.qtbnf(0:4) 

Pa.d. connections omitted. 

notarray (12) [notinitJn(0:ll)J -» initJn(0:H) 

es2nbufF (3,4,0) 
es2nbuff (5,3,0) 
e,s2nb>iff (6!3,0) 

rwJn —» rwbuf(0:2) 
rstJn - . r.stbuf(0:4) 
clkJn clkbuf(0:5) 

countl2a [clkbuf(0),rstbuf(4)] — clkl2a 
not [dkl2a] — notclkl2a 
and [rstbuf(4),notclkl2al — rstl2 

prbs27 [clkbuf(l),rstbnf(0)l prbsout(l:27) 
prbs27to38 [prbsout(l:27)] -> rng(l:34),-,-,-,-
inpwght [clkbuf(2),inin(0:15),initJn(0:ll),rng(18:34),>idJn(0:16),addrJn(0:4),rwjn,rstbuf(l),r.'rtl2j -> 

sumin.l7(0:lC),wghtouta(0:ll),wghtcncJn(l:16) 

es2regd (12) [clkbuf(3),wghtouta(0:ll)] -» wghtout(0:ll),-,-,-,-
.summerie [sumin_17(0:10),rng(2:17),rstb<if(2),r.stl2,clkbuf(4)] -> sum 
gausl [sum,rng(l),clkbuf(5),rstbuf(3)) —» outJn 

E n d { end of Part ncur declaration 

Figure 6.43: Basic model code for the complete neuron. Due to the modular nature of the 
design process the final circuit is a concise description of the design. 
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Figure 6.44: Example of pad and core l imited designs. A pad limited design is one where 
the limiting factor on size is dominated by the number of pads which must enclose the 
circuit. For a core limited design the basic circuitry has the most influence on eventual 
size. 
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Figure 6.45: Neuron ASIC pin configuration. In addition to the necessary input/output 
connections, unused pins are connected to monitor key points in the system, OutWght and 
SumOut. 
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Figure 6.46: A photograph displaying the resulting fabricated neuron. 
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Figure 6.47: Neuron ASIC hardware test configuration. The ASIC pin connections are 
broken out into four sets of lines which are controlled and monitored via two FPC-024 
digital I/O cards mounted in a PC. This approach exchanges hardware complexity for 
software complexity. 
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Figure 6.48: Full 4-2-4 Hardware Neuron System. 
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Figure 6.49: 4-2-4 Feedforward neural system. The number of each neuron signifies the 
order it was multiplexed through the single neuron device. 
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Chapter 7 

Conclusions and Further Work 

7.1 Conclusions 

I n this thesis the development of a hardware neuron operating by the use of stochastic 

pulse rate encoding principles has been undertaken. The study of ANNs and algorithms is 

currently a wide area of research w i t h much of the work conducted in the engineering field 

through software models and simulations. This is a slow process since ANNs are inherently 

a parallel method of informat ion processing based upon many simple processing elements 

operating simultaneously. Software models and simulations w i l l not usually be able to take 

f u l l advantage of this process. The investigation and development of suitable hardware 

implementations of ar t i f ic ia l neurons w i t h the abil i ty to adapt and t ra in as they operate 

is a key area for research. The hardware realisation wi l l enable the parallel power and 

speed of computat ion possible w i t h such systems to be more fu l ly reaUsed. 

The work described in this thesis in i t ia l ly focused upon appropriate architectures and 

algorithms for NNs suitable for transit ion into a hardware implementation. A crit ical 

review was conducted in Chapter 2 which highlighted some of main N N architectures w i th 

their algorithms describing why they may be of interest. The work of Barto et a/into simple 

reinforcement learning using A^-p, which are related to MLPs and backpropagation, was 

shown to be of particular interest w i t h its abil i ty to assign credit and enable a network 

to adapt to solve a problem especially when hidden layer processing elements behaved 

stochastically. The methods proposed by Barto et al were validated by their application 

to two standard test problems, the encoder/decoder and the exclusive-OR. I t was shown 

tha t the a lgor i thm could enable a feedforward network to adapt to a solution. I t was 

also shown tha t a punishment signal in the credit assignment term was important for 

the best results to be obtained. The Ajfi^p reinforcement strategies have been noted to 

be par t icular ly interesting due to their comparative ease of transit ion into a hardware 

implementat ion. 

The Aji-p reinforcement schemes have been extended to produce two new models, the 
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Q-model and the T-model A / j - p which build upon the P-model A f f - p and S-model 

Aji^P strategies of Bar to et al. These two new systems use the same single reinforcement 

signal for all neurons in the network and the output neurons in the network now behave 

stochastically. These new models have been demonstrated to work for the test problems 

of a 4-2-4 encoder/decoder and an X O R problem. The scalability of these global Aii_p 

t ra in ing strategies to a larger network of neurons is an issue which must be addressed since 

i t d id not prove possible to t ra in an 8-3-8 encoder/decoder network using either of the 

two new strategies in the time allocated for training. I t may be possible by investigation of 

the gain and asymmetry parameters of the adaption algorithm to overcome this potential 

scalability issue. These two new schemes do however have the potential to be simpler to 

implement in hardware than the original strategies of Bar to et al f r o m which they are 

developed. 

A cri t ical review of hardware implementation issues is conducted in Chapter 3 w i t h 

the assessment of analogue and digi ta l techniques for the formation circuits appropriate 

to A N N s . The fields of pulse rate encoding, both deterministic and stochastic, are shown 

to be attractive for A N N implementation. Stochastic pulse rate encoding is shown to be 

of practical interest due to the efiiciency and small size of its computational elements and 

its robustness to noise. 

To be able to design a hardware art i f ical neuron based upon stochastic pulse rate en

coding principles a knowledge of the circuits and their operation is required. A description 

of stochastic pulse rate encoding strategies, SLU, D L B and SLB, is provided in Chapter 4. 

I n addit ion the fol lowing three novel circuits are developed. 

A N o v e l S u b t r a c t e r 

A modif icat ion of the original addition circuits presented by Leaver enables sub

tract ion to be performed between two Hues when signals are encoded using SLU 

strategies, §4.5 .1 . The circuit operates by the removal of pulses f rom one signal line 

commensurate w i t h the pulses present on a second signal line. 

A n A'^-input A d d e r 

This new A/'-input adder presented in §4.4.1 enables the addition of N equally 

weighted stochcistic signals. The adder relies upon the generation of A'' equally 

weighted stochcistic signals of value j j for which an extendable process and architec

ture are presented to achieve the task. The weighting signals are stochastic in nature 

and have the property tha t none of the weighting signals have coincident pulses, a 

necessary condit ion to enable accurate weighted summation. 

Sigmoida l T r a n s f o r m G e n e r a t o r 

Several possible techniques for the generation of a sigmoidal transform were con

sidered in section 4.7, all but one were discounted as being dif f icul t to realise in 
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practice. The generation of a sigmoid by use of a Gaussian random number gen

erator was pursued further . A n i?-sequence method is presented for the generation 

of Gaussian random numbers when operating in the stochastic pulse rate encoded 

domain. Using this technique the properties of the sigmoidal transform are adjusted 

by varying the Gaussian random number dis tr ibut ion. The gradient of the sigmoid 

can be varied by adjusting the variance of the distr ibution and the mid-range point 

adjusted by varying the mean of the Gaussian dis tr ibut ion. 

For the encoding of signals into the stochastic pulse rate domain a supply of noise 

or random numbers is necessary. Chapter 5 develops the principle of the generation of 

mult iple random numbers f r o m a single PRBS generator. Given that the sequence of 

random numbers f r o m a PRBS is sufficiently long i t has been demonstrated that i t is 

possible to generate mult iple random numbers f rom a single sequence by taking a delayed 

tap-off of values for the sequence. 

Results are presented demonstrating the suitabil i ty of the optimisation techniques of 

simulated annealing and genetic algorithms to the problem of optimising multiple tap-off 

combinations for mult iple PRBS sequences. The tap-off combinations are optimised to 

produce even loading on the PRBS register elements, min imum number of tota l taps and 

the min imum deviation f r o m the op t imum distr ibut ion of delays between sequences. 

Having discussed and demonstrated all the constituent elements for an art if icial neuron 

operating using stochastic pulse rate encoding, a complete design for such a neuron is 

presented in Chapter 6. The design operates entirely wi th in the stochastic pulse rate 

environment producing a funct ion of a weighted sum of 16 inputs. The weights associated 

w i t h each input have the abi l i ty to be adjusted on-line by means of either an up/down 

signal or by loading w i t h a completely new value by external intervention. 

The neuron circuit has been fabricated in 1.5;̂  technology using standard cells for 

the circuit components and demonstrated to operate. The sigmoidal transform does not 

produce as good a sigmoid as expected, but this can be at tr ibuted to the l imited dynamic 

range of the underlying Gaussian dis t r ibut ion. A potential problem of a reduced dynamic 

range of output values was identified for the neuron when fewer than the maximum of 16 

inpu t to the neuron were utilised, §6.5. 

The computat ional capability of a network of the fabricated neurons to perform a 

simple test task, the 4-2-4 encoder/decoder, has been demonstrated by multiplexing the 

operation of a network through a single device. The original implementation using a f u l l 

network of six devices was set aside due to a problem in continuity between the fabricated 

device and its surrounding socket. To be able to perform off-line training of the network 

and then loading the learned weights into the neuron i t was found that an accurate model 

of the neuron is required, in particular the sigmoid transform. 

I t has been found overall that , in general, the system of stochastic pulse rate encoded 

computat ion for the hardware realisation of an art if icial neuron are a feasible and an 

221 



attractive opt ion due to the rapid rate of computation, the immuni ty to noise, efficiency 

of the circuits and the abi l i ty to adjust the weights on-line as the system operates. A 

potential Aa-p reinforcement learning strategy for amalgamation w i t h the hardware has 

been identified to be worthy of consideration. However, the overhead of the supporting 

c i rcui t ry for weight storage and encoding, the currently poor sigmoid transform and the 

reduction of the output dynamic range must be considered in using this approach as i t 

currently exists. 

7.2 Further Work 

The application of stochastic pulse rate computation techniques to the hardware realisation 

of an ar t i f ical neuron together w i t h a reinforcement technique have demonstrated a good 

potent ia l for fur ther research and development in the field of ANNs. Several interesting 

areas of work can be identified which include the following. 

N e w A'^-input A d d e r 

The original iV-input adder suffered f rom a reduction in the dynamic range of the 

output when less than the f u l l A'' input lines were being used. To overcome this 

problem a divider tree for the A''-input adder is necessary such that unused lines can 

be turned off. This w i l l produce as adder which can sum any number of input lines 

M : M < N w i t h weighting factor j^. Such a circuit is possible and is displayed in 

Figure 7.1. 

For the new circuit for the generation of M pulse streams of value the appropriate 

SN-X = SM line is set high for the chain. This sets al l outputs above i t to low and 

the feed into the pulse mult ipher below to high. 

This new A''-input adder could thus be implemented and used in the hardware design. 

External addressing would be necessary to tu rn on the appropriate select lines. 

I m p r o v e d S igmoid T r a n s f o r m 

Investigation into new alternative techniques for the generating the sigmoid trans

f o r m could be conducted. Two possible approaches may be taken, the first is to 

find an alternative system for the formation of Gaussian random numbers and the 

second is to adopt a completely new approach. A new suggestion, therefore, is to 

create a piece-wise linear model of the sigmoid transform. A deterministic mapping 

is made f r o m the decoded sum of weighted inputs through the sigmoid transform to 

be re-encoded stochastically. A n additional at traction of this second option is that 

by adjusting the piece-wise linear model the characteristic of the t ransform can be 

adjusted and could be made programmable. 
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F u l l C u s t o m I m p l e m e n t a t i o n 

The present design has been fabricated using standard cells in 1.5^ technology, this 

has resulted in a physically large ASIC implementation. The use of standard cells 

also means that unused circui try is incorporated into the design and the placement 

and routeing of components may not be ideal. W i t h the further work above into the 

improved funct ionabty of the adder and sigmoid transform conducted, the design 

could be optimised to be implemented using a f u l l custom design system, for example 

C A D E N C E which is now available in the School of Engineering. 

A p p l i c a t i o n of Aj|^_p to T i m e Series 

In fo rmat ion in the stochastic pulse rate encoded domain is inherently held in a 

stochastic t ime series format . The study of the behaviour of Aji-p reinforcement 

learning algorithms when applied to both deterministic and stochastic t ime series 

could be investigated. Such work leads to A N N which have recurrence, feedback, 

incorporated into their structure. This recurrence may be local ie. f rom a neuron's 

output back to its own input , or global, ie. f rom a neuron's output back to the input 

of neurons preceeding i t in the network. 

In tegra t ion of A j ^ _ p . 

W i t h an improved set of neuron devices an enlarged network could be considered 

for construction to enable the integration and evaluation of Ap-p reinforcement 

learning strategies w i t h i n a complete hardware system. Alternatively, i f an accurate 

software model of the neuron performance including the modelling of the sigmoid is 

formed a software system could be developed and studied. 
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Figure 7.1: A new circuit for the generation of N pulse streams of value 
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Appendix A 

Random Number Generation 

A . l Hardware Random Number Generators 

Hardware random number generators can be divided into two types, those which imple

ment an algorithm which could be achieved in software and those which are bcised upon a 

true random physical process. Use of a physical process can have its drawbacks. The ran

dom number generator will often require specific hardware to be used and it is not possible 

to repeat a sequence unless a record of random numbers generated is maintained. This can 

cause problems of repeatability when conducting simulation experiments. Physical noise 

sources are often the basis for random number generators. The following noise sources 

could be used for the generation of random numbers, thermal sources, noise diodes, gas 

discharge tubes and radioactive sources. 

Johnson, [105], showed that a resistance with no external applied voltage has a mea

surable noise across its terminals. Nyquist's noise theorem, [106], quantifies this noise for 

a resistance in a narrow band. A / , as a function of temperature 

V? is the mean square voltage, h is Planck's constant (6.6 x 10"" '̂' J s~-̂ ), k is Boltzmann's 

constant (1.38 x 10~^^ J °K~^), T is absolute temperature, / is frequency and R is the 

value of resistance. A hot resistance may thus be used to generate a noise signal from 

which random numbers may be formed. The noise is known as thermal noise or Johnson 

noise. A thermal noise source is a primary or absolute source. 

Secondary or transfer noise sources examples are diodes or gas discharge tubes. ERNIE, 

Electronic Random Number Indicator Equipment, [107], the premium bond number gen

erating machine is a practical demonstration that these noise sources can be successfully 

used for random number generation. Noise waveforms from gas discharge tubes were con-
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verted to pulse trains, a random number being formed by counting the number of pulses 

produced in a given time. ERNIE has been upgraded since its original construction by 

replacing the gas discharge tubes with diodes. 

Diodes, BJTs and FETs can utilise shot noise, thermal noise and avalanche noise to 

generate adequate levels of noise. A ful l discussion of the physical processes involved is 

given by Buckingham, [108]. The formation of diodes or transistors within integrated 

circuits for generating noise to convert to random pulse sequences is an attractive propo

sition. Alspector et al, [94], states that unfortunately early work using these ideas very 

high levels of gain were required to use the noise source in transistors. This could lead to 

cross coupling in the amplifiers, particularly if many sources are integrated onto a single 

chip. The area required for such a noise source was also considered to be too expensive. 

Radioactive decay is a random process. A sequence of random numbers has been 

generated using a gamma ray source, [109]. The least significant digit of the gamma ray 

count in a given time period was used as the random number. The distribution of the 

generated numbers was satisfactory, but implementing a gamma ray source, detector and 

conversion circuitry poses a problem in a general process. For this reason the experiment 

was used to create a list of random numbers stored on magnetic tape. A different random 

number sequence can be gained by starting at a different location on the tape. Tests 

conducted using these random numbers are repeatable since the tape can be rerun from 

a given starting point. 

Digital shift registers can be used to form PRBS Generators. These will be mentioned 

only briefly since they are the subject of a more detailed discussion in the main body of 

the thesis, §5.3. PRBSs are pseudo generators since the output is not strictly random but 

an output of bits from a linear feedback shift register, LFSR, which have been subjected 

to modulo two arithmetic. The binary digits output can be used to form random numbers. 

The sequence in the shift register cycles round, with appropriate feedback selection this 

wil l be maximal length ie. the shift register will hold all possible combinations of I's and 

O's, except all O's, before repeating the sequence. The maximal length of sequence is 2^ — 1 

for a shift register of length iV and can be seen to grow exponentially with register length. 

Figure A . l 

A.2 Software Random Number Generators 

The fundamental problem with using software to create random numbers is that an algo

ri thm must be used. Numbers formed are therefore deterministic since they are calculated 

using a precise technique, the numbers only appear to be random. The sequence of num

bers will cycle around, by forming generators carefully the period of the cycle can be 

extremely large so that to all intents and purposes the numbers appear random. Several 

suitable algorithms have been formed as are detailed below. Algorithms are known as 
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Pseudo Random Number Generators. 

A.2.1 Middle Square Generator 

An early algorithm which has been considered is the middle-square technique proposed by 

John von Neumann [110]. The method is to take the square of the previous number and 

extract the middle digits to form a new random number. I f the seed is chosen carefully 

i t is possible to achieve a reasonable sequence. There are several drawbacks, if a zero is 

generated in the number i t tends to be self perpetuating over several numbers, sequences 

often decay into a cycle of repeating numbers and the seed must be carefully selected. 

This middle-square technique is considered to be a poor source of random numbers. For 

a four digit seed of 5781 the first few random numbers generated are as 

5781 ^ 334199961 

4 1 9 9 ^ 17631601 

6 3 1 6 ^ 39891856 

8 9 1 8 ^ 7953072i 

5307 ^ 

A . 2 . 2 L i n e a r Congruent ia l Generators 

Most software random number generators are based upon Linear Congruential Generators, 

LCG's, although this is not the only system possible. An LCG is based upon the following 

equation, 

Xi+i = {aXi + c) mod m 

where a is the multiple, c is the increment, and m is the modulus. All three constants are 

positive integers. 

Each generated number is based upon the preceding value. The sequence will cycle 

around and repeat itself. The length of the sequence depends upon the selection of a, 

c and m. A table of suitable choices for these values is provided in Numerical Recipes, 

[111], together with a description of implementations using LCGs. The degree of algorithm 

complexity and memory usage varies with the quality of result required. The initial value 

of X is known as the seed and may be set explicitly. It is therefore possible to repeat a 

sequence of random numbers by re-initialising the seed to the same starting value. Knuth, 

[110], gives a ful l description of this technique and the criteria for the selection of parameter 

values. I f c is set to 0 the pseudo-random number generator is called a Multiplicative Linear 

Congruential Generator, MLCG. L'Ecuyer, [112], describes how several MLCG's may be 

combined to produce generators with good statistical properties and the ability for the 

resultant generator to be split into several independent generators. 
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A.2 .3 Lagged-Fibonacc i Generators 

A sequence based upon a Fibonacci sequence has been suggested. The values are calculated 

as follows, 

Xi+i = (X,: + mod m 

m is the modulus. The sequence period is usually longer than m. The algorithm has been 

found not to produce sufficiently random results. Extending the above principle such that, 

= (X, + mod m ( A . l ) 

improves the quality of the random numbers generated. Providing k and m are suitably 

chosen eq.(A.l) can produce adequate random numbers. A large table of past values may 

need to be maintained for Xi to Xi-k which will not lend itself to easy seeding of the 

sequence as a table of seeds must be formed. 

A.2 .4 A d d - W i t h - C a r r y and S u b t r a c t - W i t h - B o r r o w 

Add-with-carry and subtract-with-borrow random number generator are a relatively re

cent development introduced by Marsaglia and Zaman, [113]. These generators are related 

to lagged-Fibonacci generators described above. Properties of these generators include 

being fast at generating sequences since no multiplications are involved and that the se

quences are very long indeed, lengths greater than 2^^^ have been quoted. 

The add-with-carry, AWC, sequence is generated as follows, 

Xi = - I - Xi-r + c,) mod b 

r > s are positive integers called lags, Ci is the carry and / , the indicator function, is 1 or 

0 depending upon whether or not the inequality is true or false. 

Similarly the subtract-with-borrow, SWB, sequence is generated as fofiows, 

Xi = (Xi-s — Xi-r — Ci) mod b 

C,+ l = / ( X , _ , - Xi-r - < 0) 

Again r > s as before, note this time c, is a borrow. 

Early analysis of these types of generator has been promising [113, 114]. 

This brief list of a few techniques is by no means complete. Active research is taking 

place into the analysis and generation of random numbers. For the present the LCG and 

its variants dominate most software implementations due to their easy formulation and 
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understanding. 

A.3 Random Number Generator Tests 

Given that a technique is being used to form random numbers the quality of the distribu

tion may wish to be ascertained. To achieve this several empirical and statistical tests may 

be applied to the sequence of numbers. In general these tests are not pass or fail, rather 

an indication is obtained that a sequence may be more or less random than another. 

For a truly random number generator producing an even distribution of numbers, a 

sequence of 100 zeros in succession is as equally likely as another defined sequence of 100 

numbers all of which are different. Yet, if 100 zeros are observed the natural reaction 

would be to say that the generator was biased when this is not the case at all. Many of 

the tests conducted upon a sequence of numbers assess the distribution of values within 

them to determine the quality of randomness. A true random number generator may fail 

such a test for the above stated reasons. 

The tests which can be applied to random number sequences may be divided into 

two main categories statistical and empirical. Some of the main tests in each group are 

outlined below. A thorough assessment is given by Knuth, [110]. 

Statistical tests are as follows, 

Chi-Square, x^? Test. A measure of how improbable an outcome is made. An outcome 

can be achieved quite naturally but a factor relating its likelihood is calculated. Thus, 

if an outcome is improbable the test should be repeated to ensure that there is no 

bias in the generator. 

Kolmogorev-Smirnov Test. An assessment on the distribution of outcomes versus the 

theoretical probabilities of such outcomes are made. This test is particularly useful 

for distributions where the result can be over a very large or infinite range of values. 

Empirical tests are as follows, 

Equidistribution Test. This test requires that the numbers are uniformly distributed 

across an entire range. I t is basically a form of Kolmogorev-Smirnov test. 

Serial Test. Pairs of successive numbers should be uniformly distributed in an indepen

dent manner within the sequence. This test can be extended to triples etc. 

Gap Test. The length of gap between occurrences of values is assessed. 

Poker or Partition Test. This test classically considers groups of five successive 

integers as outlined in Table A . l . A test is performed on the number of quintuples 

in each category to determine a performance indication for the generator. 
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Sequence Example 
Al l different abcde 

One pair aabcd 
Two pair aabbc 

Three of a kind aaabc 
Full house aaabb 

Four of a kind aaaab 
Five of a kind aaaaa 

Table A . l : Poker or Partition Test Sequence Combinations 

Permutation Test. The input sequence is divided into p groups oit elements. Elements 

in each group can have t\ possible relative orderings. The occurrence of each ordering 

is counted and a test applied. 

R u n Test. A sequence is analysed for run ups and run downs, ie. an inspection of the 

lengths of monotonic increasing and decreasing subsequences is made. 

This above list of tests is by no means exhaustive. Other tests include analysis of the 

serial correlation, assessment of the maxima and minima output. A sequence may produce 

acceptable results with one test but not another. As each test is satisfied the chance that 

a random number generator produces a good random number sequence is improved. 
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Appendix B 

Testing the Quality of the 

Random Numbers f rom a PRBS 

This appendix describes a series of tests applied to a model of the random number gener

ator constructed and utilised within the artificial neuron chip. The few tests implemented 

are briefly described in Appendix A and are fully discussed by Knuth [110]. 

The random number generator selected for implementation was a Pseudo Random 

Binary Sequence generator of 27-bits. For a 27-bit PRBS feedback is taken from bits 22, 

25, 26 and 27 which are XORed to form the input back into the register to obtain a 

maximal length sequence. The maximal length sequence of a 27-bit PRBS generator is 

134,217,727 bits. 

The basic model code for a software PRBS generator is provided in the Appendix C. 

I t consists of a C++ class for a PRBS generator which allows a PRBS to be instantiated 

and run. 

B . l Correlation Tests 

These tests can be performed on two levels and in two forms. The correlation test can 

be executed either upon the individual bits output from the PRBS or upon the 12-bit 

random numbers which will be formed from the bit stream in the hardware device. The 

two forms in which the correlation test can be executed are the auto-correlation and the 

cross-correlation. 

For the 27-bit PRBS generator that is to be used in the artificial neuron chip a simu

lation was performed to create sequences of bits and sequences of 12-bit random numbers 

as would occur in the actual hardware. I t was ensured that sequences of bits and of 12-bit 

random numbers were non-overlapping. The auto-correlation and the cross-correlation 

tests for pulse streams of 1000 bits and a random number sequence of 1000 values have 

232 



been performed. The results of these four sets of test are shown in Figure B . l to Figure B.4. 

I t can be seen from these tests that the degree of correlation in both the auto-

corrletation and cross-correlation tests are low except, obviously, for a shift of zero in 

the auto-correlation test. This is a good indication that the quality of the PRBS bit 

stream and random numbers is suitable. 

B.2 Test/Frequency Test 

The x^ test is a measure of how probable an actual outcome is based upon the expected 

theoretical outcome. For a uniformly distributed random number the actual distribution of 

numbers from a run of the generator is compared with the theoretical, ideal, distribution. 

I f the random number can have k values a sequence of n independent random numbers is 

formed. 

Let p., be the probability each random number is of value s, and let Y, be the number 

of such numbers that do actually fall into the category s. A performance measure V is 

given by eq.(B.l) 

l<.s<k ^P-' 

The numerator can be expanded 

(F, - np,,)' = - 2F,np., + nV, 

and knowing that 
Yi + Y2 + ---.+ Y,,=n 

Pi + P2 + --- + Pk = i 

the following can be derived, eq.(B.2) 

1 / y 2 \ 

^ i<.<it V I 

Having calculated the performance measure Y it is necessary to determine whether or 

not such a figure is acceptable. A table of x^ distribution values is referred to for v degrees 

of freedom where v = k — \ •&& shown in Table B . l . The value in the table, a;, is such that 

V will be less than or equal to x with probability p given that sufficient numbers have been 

observed. Thus for v = \0 degrees of freedom the 90% entry of 15.9872 means that V will 

be greater than this only 10% of the time. In assessing the values of V a figure between 

25% and 75% is sort, since for too high values of Y doubt is cast upon the likelihood of 

such an action and for too low values of Y the result it too good to be trusted. 

The number of categories k may often be large, as is the case for the 12-bit random 
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; / p= I = 5 J) = 10 p = 25 p = 50 P = 75 p = 90 p = 95 p = 99 
1 0.0002 0.0039 0.0158 0.1015 0.4549 1.3233 2.7055 3.8415 6.6349 
2 0.0201 0.1026 0.2107 0.5754 1.3863 2.7726 4.6052 5.9915 9.2104 

3 0.1148 0.3518 0.5844 1.2125 2.3660 4.1083 6.2514 7.8147 11.3449 
4 0.2971 0.7107 1.0636 1.9226 3.3567 5.3853 7.7794 9.4877 13.2707 

5 0.5543 1.1455 1.6103 2.6746 4.3515 6.6257 9.2363 11.0705 15.0863 
C 0.8721 1.6354 2.2041 3.4546 5.3481 7.8408 10.6446 12.5910 16.8119 

7 1.2390 2.1673 2.8331 4.2549 6.3458 9.0371 12.0170 14.0671 18.4753 

8 1.6465 2.7326 3.4895 5.0706 7.3441 10.2189 13.3616 15.5073 20.0902 

9 2.0879 3.3251 4.1682 5.8988 8.3428 11.3887 14.6837 16.9190 21.6660 

10 2.5582 3.9403 4.8652 6.7372 9.3418 12.5489 15.9872 18.3070 23.2093 

15 5.2294 7.2609 8.5468 11.0365 14.3389 18.2451 22.3071 24.9958 30.5780 
20 8.2604 10.8508 12.4426 15.4518 19.3374 23.8277 28.4120 31.4104 37.5663 

25 11.5240 14.6114 16.4734 19.9393 24.3366 29.3388 34.3816 37.6525 44.3140 

30 14.9535 18.4927 20.5992 24.4776 29.3360 34.7997 40.2560 43.7730 50.8922 

35 18.5089 22.4650 24.7966 29.0540 34.3356 40.2228 46.0588 49.8018 57.3420 

40 22.1642 26.5093 29.0505 33.6603 39.3353 45.6160 51.8050 55.7585 63.6908 

45 25.9012 30.6123 33.3504 38.2910 44.3351 50.9849 57.5053 61.6562 69.9569 

50 29.7067 34.7642 37.6886 42.9421 49.3349 56.3336 63.1671 67.5048 76.1538 

75 49.4751 56.0541 59.7946 66.4167 74.3344 82.8581 91.0615 96.2167 106.3929 

100 70.0650 77.9294 82.3581 90.1332 99.3341 109.1412 118.4980 124.3421 135.8069 

Table B . l : distribution values. 

numbers, in which instance they may be grouped together into ranges eg. 16 ranges of 256 

numbers, 0-255, 256-511, • • •. The distribution within these ranges should be uniform and 

so the x^ test can be performed upon the number of values in each range with probability 

p = i for a number occurring in 1 of the r ranges. This test is known as a Frequency test. 

A problem which can occur with the /Frequency test is selecting the length of 

the random number sequence to assess. A rule of thumb is that the sequence must be 

sufficiently long to enable an expected value np,, to be greater than 5. However, if n is too 

large i t may cause local non-random behaviour to be obscured. If n is not large enough a 

bias which may exist in the random numbers may not be revealed. These tests should be 

run with varying values of n. 

For the 27-bit PRBS generator that is to be used in the artificial neuron chip a simu

lation was performed to create sequences of 12-bit random numbers as would occur in the 

actual hardware. The bit pattern set initially in the PRBS generator was derived from 

the system clock of the host computer, this should ensure a different sub-sequence of the 

total sequence is assessed each time the test is run. A number of tests were performed 

for different values of n, 1000 to 1000000, and different degrees of freedom, 10 and 50. 

For each combination of run length and degrees of freedom 10 runs were evaluated and 

averaged. The results can be seen in Table B.2 and Table B.3 the mean of which are 

plotted in Figure B.5. 

By reference to Table B . l i t can be seen that the value of V usually lies well within 

the 25%-75% limits and so with respect to this test upon the 12-bit random numbers they 

appear to be adequate. 
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Run Length 1000 10000 100000 1000000 10000000 
7.622 8.806 6.407 12.055 30.681 
8.744 10.193 30.596 13.478 23.425 
8.744 12.234 24.404 11.957 25.432 
6.584 15.002 5.553 24.545 13.249 
7.037 24.041 10.977 8.527 18.204 

13.276 24.067 14.083 8.114 24.860 
13.012 3.919 3.522 13.185 22.865 
5.576 6.727 16.114 9.474 33.344 
5.576 7.143 3.747 11.283 12.823 
8.876 7.603 10.832 12.434 35.689 

Mean 8.505 11.973 12.623 12.505 24.057 

Table B.2: x' results for distribution of random numbers generated froam a PRBS, 10 
degrees of freedom. 

RunLength 1000 10000 100000 1000000 10000000 
50.702 44.419 49.110 100.966 378.463 
51.110 62.922 67.799 92.601 389.794 
44.684 53.722 54.500 85.086 333.268 
37.748 35.392 40.311 87.784 • 380.769 
56.312 58.781 51.866 70.708 363.466 
56.312 44.521 46.852 73.941 365.739 
41.318 54.823 41.002 62.579 382.544 
57.842 37.993 38.548 78.527 412.450 
59.066 60.076 71.452 86.473 406.685 
76.508 52.039 53.699 88.964 360.200 

Mean 53.160 50.469 51.514 82.763 377.338 

Table B.3: x^ results for distribution of random numbers generated froam a PRBS, 50 
degrees of freedom 
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B.3 Gap Test 

For the implementation of the Gap test upon a sequence of random numbers the length of 

gap between a number U within a range and the next occurrence of a number in that range 

is assessed. A total of n gaps are counted and a x^ test performed upon the distribution 

of these gaps. For a normalised uniform random number generator, given that the number 

U falls within the range of two numbers a and P, a < U < /3 and 0 < a < /3 < 1 the 

probability that the next number also falls in the same range a gap of zero is 

PQ=p = P -a 

For a gap of one 

In fact the probability is a geometric random variable distribution such that for a gap 

length g 

Pg=p{i-pr 

Finally for a gap length equivalent to or greater than a user defined maximum length m 

p™ = ( i - p r 

The number of degrees of freedom v which are applicable for the yc' test is the value m 

the maximum gap length since there are m-\-l different gap categories. 

For the 27-bit PRBS generator that is to be used in the artificial neuron a simulation 

was performed to create sequences of 12-bit random numbers as per the previous x^ test. 

A number of gap tests were performed for different numbers of gaps from 1000 to 100000 

and with two different degrees of freedom 10 and 20. The results can be seen in Table B.4 

and Table B.5 with the mean of the 10 separate runs plotted in Figure B.6. By reference 

to Table B . l i t can be seen that the values of Y for the distribution test of the gaps 

usually lies within the 25%-75% limits and so with respect to this test the 12-bit uniform 

random number generator appears to produce adequately distributed numbers. 

B.4 Summary 

This appendix has detailed tests applied to a PRBS generator model of 27-bits. The 

software generates the same bit pattern sequence a hardware realisation of the device. 

Four basic tests have been conducted upon the random numbers generated using a PRBS 

generator, auto-correlation, cross-correlation, a x'̂  test and a Gap test for the distribution 

of values. The basic tests have confirmed that the numbers generated by the use of the 
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Run Length 1000 2000 5000 10000 20000 50000 100000 
9.252 5.044 4.842 11.918 13.498 9.365 15.441 

11.117 7.101 8.941 4.606 2.626 7.546 12.168 
9.505 21.369 10.669 9.006 18.951 8.007 11.892 

11.013 4.651 9.713 13.748 5.217 10.863 19.351 
11.394 9.334 11.419 10.742 8.208 9.218 4.703 
6.546 11.631 12.571 9.669 15.883 19.226 9.105 
8.067 12.225 9.383 9.950 6.967 4.597 9.276 
4.505 14.166 6.290 6.505 10.014 14.936 7.976 
9.883 14.1658 12.295 11.632 3.672 4.457 8.687 

19.562 12.788 9.400 11.632 16.677 4.179 14.283 
Mean 10.084 11.247 9.552 9.941 10.171 9.239 11.288 

Table B.4: 10 degrees of freedom for Gap test 

Run Length 1000 2000 5000 10000 20000 50000 100000 
4.930 7.814 11.192 16.379 13.949 31.965 51.181 

11.274 14.968 14.597 11.146 11.910 34.132 42.771 
10.656 4.134 6.772 30.478 15.076 38.294 42.532 
6.382 10.265 6.023 7.178 14.432 38.593 63.688 
8.416 9.800 4.493 9.048 13.862 47.532 67.826 
9.528 10.075 2.099 10.206 14.407 21.421 24.303 
5.720 10.015 8.213 19.559 12.621 14.002 41.494 

10.901 9.152 12.544 10.155 16.149 47.094 58.300 
16.304 3.508 10.062 8.182 7.044 11.713 25.393 
13.344 16.937 4.944 12.948 23.906 38.522 54.162 

Mean 9.745 9.667 8.094 13.528 14.336 32.327 47.165 

Table B.5: 20 degrees of freedom for Gap test 
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PRBS generator are probably suitably random. The above tests are not exhaustive neither 

are they conclusive but they do demonstrate that the numbers should be suitably random. 
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Figure B . l : Auto-correlation for a 1000 bits. Except for the case of shift = 0 the random 
bit stream exhibits limited correlation. 
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Figure B.2: Cross-correlation for a 1000 bits. The corrleation between two non-overlapping 
bit streams is seen to be low 
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Figure B.3: Auto-correlation for a 1000 numbers. As per Figure B.l except for the case 
of shift = 0 the 12-bit random number stream exhibits limited correlation. 

6 

0.50 ^ 

Figure B.4: Cross-correlation for a 1000 numbers. The cross-correlation between two non-
overlapping streams of 12-bit random numbers is low. 
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Figure B.5: Mean values of test for distribution of random numbers from PRBS gen
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Figure B.6: Mean values of Gap test values for distribution of random numbers from 
PRBS generator: 10 and 20 degrees of freedom 
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Appendix C 

A C + + P R B S Class 

This Class Prbs provides a simple Pseudo Random Binary Sequence (PRBS) generator 

formed from a Linear Feedback Shift Register (LFSR). The maximum length of the register 

can be up to 32 bits. A PRBS is used to generate a 0 or a 1 with equal probability. This is 

achieved by performing modulo 2 arithmetic upon the bit values of the LFSR on which the 

PRBS is based. The algorithm implementation used to move through the PRBS is that 

explained in Numerical Recipes, [111], Method 1 is used in this instance. The sequential 

bits from this type of generator should not be used to form a large random integer or 

the mantissa of a random float. Knuth, [111], explains that they are not suitable for this 

purpose. Uses to which these bits can be put are 

1. Multiplying a signal randomly by 0 or 1, ± 1 . 

2. A Monte Carlo- search of a binary tree where the decision on which direction to 

branch is the output of the PRBS. 
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Prbs::Prbs 
Function 

Syntax 

Prototype in 

Remarks 

Return value 

Constructor for Prbs. 

# i n c l u d e "prbs.h" 
Prbs RandomBinarySequence(void); 
Prbs RandomBinarySequence(const unsigned length, 

const unsigned long seed); 

prbs.h 

Overloaded constructor for Prbs objects. I t is usual to specify the length 

and seed when first created the object, although they can be set later. 

The empty constructor is primarily to enable arrays of Prbs's to be 
created, 
none 

Prbs::setLength 
Function 

Syntax 

Prototype in 

Remarks 

Return value 

Set the length of the PRBS. 

#include "prbs . h " 

i n t RandomBinarySequence.setLength(const unsigned length); 
prbs.h 

Explicitly set the length of Prbs to length. I f length is greater than the 

maximum size allowed the Prbs is set to the maximum possible size and 

an error returned. I t is still possible to use the Prbs i f required. 
I f successful returns 0, or returns -1 on an error. 

Prbs::seed 
Function 

Syntax 

Prototype in 

Remarks 

Return value 

Seed the PRBS. 

#include "prbs.h" 

i n t RandomBinarySequence.seed(const unsigned long seed); 
prbs.h 

Explicitly set the seed of the Prbs to seed. I f seed is greater than the 

maximum value the this length of PRBS can hold then the seed is set 

to 1 and an error returned. 
I f successful returns 0, or returns -1 on an error. 
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Prbs::advance 
Function Advance the generator through its sequence. 

Syntax # i n c l u d e "prbs . h " 

i n t RandomBinarySequence.advance(void); 
i n t RandomBinarySequence.advance(const unsigned long shift); 

Prototype in prbs.h 

Remarks An overloaded function to advance the Prbs through its sequence. This 

can be a single step or a shift number of steps. 
Return value Either 0 or 1 is returned, the resultant generator output. 
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/ / ########## 
/ / file: inhs.h 
/ / ' 
/ / dcicription: Header file for Clas.i Prh.t 
/ / 

Joh.n S Glover 
School of Engineering and Computer Science 

University of Durham. 
South. Road 
Durh.a,m. 
DHl 3LE 
UK 

+44 91 374 2565 
j..f. glover® durh. am., ac. uk 

/ / autli.or: 
/ / addres.'i: 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / phone: 
/ / e-m,ail: 
/ / 
// ########## 
# i f n d e f PRBS-H 
#def ine PRBS_H 

# i f n d e f ULong 
typedef unsigned long ULong; 
typedef unsigned short USliort; 
#end i f 

const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 
const 

ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 
ULong 

L F S R l = 
LFSR2 = 
LFSR3 = 
LFSR4 = 
LFSR5 = 
LFSR6 = 
LFSR7 = 
LFSR8 = 
LFSR9 = 
LFSRIO 
L F S R l 1 
LFSRl2 
LFSR13 
LFSR14 
LFSR15 
LFSR16 
LFSR17 
LFSR18 
LFSRIO 
LFSR20 
LFSR21 : 
LFSR22 : 
LFSR23 : 
LFSR24 : 
LFSR25 : 
LFSR26 : 
LFSR27 : 
LFSR28 : 
LFSR29 : 
LFSR30 : 
LFSR31 : 
LFSR32 : 

1; 
2; 
4; 
8; 
16; 
32; 
64; 
128; 
256; 

= 512; 
= 1024; 
z 2048; 
= 4096; 
= 8192; 
= 16384; 
= 32768; 
= 65536; 

131072; 
= 262144; 
-- 5244288; 
: 1048676; 
= 2097152; 
: 4194304; 
: 8388608; 
: 16777216; 
: 33554432; 
: 67108864; 
: 134217728; 
: 268435456; 
: 536870912; 
: 1073741824; 
: 2147483648; 
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class Prh.s{ 
unsigned length; 
ULong prbs Value; 
ULong maxPrhsValue; 
ULong prhsTap.s[33l; 
ULong randomBit.; 
ULong mask; 

const unsigned MaxGeneratorLengtli = 32; 

public: 

Prl)s(void); 
Prl)s(const unsigned lengt.liGenerat.or, const ULong generatorSeed); 
int Prhs::sctLengtli(const unsigned lengtliGenerator); 
int Prbs::sced(const ULong geueratorSeed); 

int Pibs::advance(void); 
int Prbs::advance(const ULong shift); 

}; 

#endi f 

/ / ########## 
/ / end of file prb.s.h 
// ########## 
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/ / ########## 
/ / file: prh.t.cc 

/ / 

/ / dcicription: function fi.le for Cla.i.i Prh.i tjcneratoT 
/ / 
/ / author: Joli.n S Glover 
/ / addre.i.'i: School of Engineering and Computer Science 
/ / University of Durham 
/ / South Road 
/ / Durham. 
/ / DHl 3LE 
/ / UK 
/ / phone: +44 91 374 2565 
/ / e-ma.il: j..^.glover@d.urham..ac.uk 
/ / 
// ########## 
stat ic char rcsid[) = "$Id: prbs.ccXv 1.1 1992/11/01 16:59:38 des3jsg Exp $"; 

#include <iostrecim.h> 
#include "prbs.h" 

/ / ########## 
/ / member function: Prh.i::Prl).i() 
/ / 
/ / Con.structor for object, all priva,te variable.i .let to 0. 
/ / U.'ieful if creating an array of Prh.i'.'i 

.// 
/ / P9 28/10/92 
// ########## 
Pibs::Prbs(void) 

{ 
length = 0; 
prbsValue = 0; 
maxPrbsValue = 0; 
randomBit = 0; 
mask = 0; 

} 

/ / ########## 
/ / m.em.ber function: Prhi::Prbs() 
/ / 
/ / Con.Hructor for object. 
/ / Thi.i i.i the one to be used in general, requires the .size of the PRBS 
/ / to be cren.ted and its seed to operate correctly. 
/ / 
/ / 'Pg 28/10/92 
// ########## 
Prl)s::Prbs(const unsigned lengthGenerator, const ULong generatorSeed) 

{ 
prbsTaps[0) = 0; 
prbsTaps[l) = L F S R l ; 
prhsTaps[2] = LFSR2 + L F S R l ; 
prbsTaps[3) = LFSR3 + LFSR2; 
prbsTaps[4] = LFSR4 + LFSR3; 
prbsTaps[5] = LFSR5 + LFSR3; 
prbsTaps[6] = LFSRC + LFSR5; 
prbsTaps[7) = LFSR7 + LFSRC; 
prbsTaps[8] = LFSR8 + LFSR4 + LFSR5 + LFSR6; 
prl)sTaps[9) = LFSR9 + LFSR5; 
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} 

prb.sTap.sflO] = LFSRIO + LFSR7; 
prl).sTap,s[ll] = L F S R l l + LFSR9; 
prl)sTap.s[12] = LFSR12 + LFSR6 + LFSR8 + L F S R l l ; 
prbsTap.s[13] = LFSR13 + LFSR9 + LFSRIO + LFSR12; 
prl).sTaps[14] = LFSR14 + LFSR9 + LFSR12 + LFSR13; 
prl)sTap.s[15] = LFSR15 + LFSR14; 
prl).sTaps[10] = LFSR16 + L F S R l l + LFSR13 + LFSR14; 
prhsTap,s[17j = LFSR17 + LFSR14; 
prbsTap.s[18l = LFSR18 + LFSR13 + LFSR16 + LFSR17; 
prl).sTaps[19] = LFSR19 + LFSR12 + LFSR17 + LFSR18; 
prh.sTap.s[20] = LFSR20 + LFSR17; 
prb,sTap.s[21] = LFSR21 + LFSRIO; 
prbsTap,s[22] = LFSR22 + LFSR21; 
prbsTap.s(23] = LFSR23 + LFSR18; 
prb.sTaps[24] = LFSR24 + LFSR20 + LFSR21 + LFSR23; 
prbsTap.s[25l = LFSR25 + LFSR3; 
prb.sTaps[26] = LFSR26 + LFSR20 + LFSR24 + LFSR25; 
prbsTap.s[271 = LFSR27 + LFSR22 + LFSR25 + LFSR26; 
prb.sTap,s[28] - LFSR28 + LFSR25; 
prb.sTap.s[20] - LFSR20 + LFSR27; 
prbsTap.s[30] = LFSR30 + LFSR24 + LFSR26 + LFSR20; 
prh.sTaps[31] = LFSR31 + LFSR28; 
prbsTap.s[32) = LFSR32 + LFSR25 + LFSR27 + LFSR29 + LFSR30; 

i f (,set,Lengt,li(lengtliGenerat,or) < 0) 
ccrr <g " e r r o r Prbs: :Prbs: incomplete cons t ruc t ion" <^ endl; 

i f (secd(generat.orSeed) < 0) 
con- <g " e r r o r Prbs: :Prbs() : incomplete cons t ruc t ion" C endl; 

/ / ########## 
/ / m.em.l)er function: Prh.<i::.ietLengtIi.() 
/ / 
/ / Set the length of the PRBS to •length.Genera.tor'. 
/ / return 0 on .si/.cce.s,?, -1 on. fa.ilure ie. ''length.Genera.tor'' too hig in which. 
/ / ca.<>e .tet to 'm.a.xGenera.1.orLength'. 
/ / Aho .let hnaxPrl/.tValue'. 
/ / 
/ / 1/11/92 
// ########## 
i n t 
Prb.s::sfitLcngt,li(const uns igned IcngtliGenerator) 

{ _ 
i n t .setLengtliRoturn = 0; 
maxPrbsVahio = 1; 

i f (lengtliGenerator > MaxGenorat.orLength) { 
sntLongtliRoturn = - 1 ; 
cnrr -C " e r r o r Prbs: : se tLengthO: l eng th value out of raiige" <g eudl; 
length = MaxGenorat.orLengtli; 
f o r (uns igned lengtliCount = 0; lengtliCount < length; lengthCount+ + ) { 

maxPrb.sValue <^= 1; 
maxPrl).sValne++; 

} / / /or 'lengthCount' 
} 
else { 

set.LengtliRetum = 0; 
length = IcngthGonerator; 
f o r (uns igned lengthCount = 0; lengthCount. < length; lengthCount++) { 

maxPibsValue < = 1; 
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maxPrb,sValue++; 
} / / for 'lengthCount' 

] / / if (length.Genern.tor > Mn.xGcneratorLength.) 

r e t u r n setLengthReturn; 
} / / function prbs::setLength.() 

// ########## 
/ / m,em,ber function: Prbs::seed() 
// 
/ / Seed the PRBS with the value of generatorSeed. 
/ / Returns 0 on .tuccess, -1 on failure. 
/ / If the seed is too large for the size of PRBS a seed of 1 is used. 
/ / 
/ / pg 31/10/92 
/ / # # # # # # # # # # 
int 
Prbs::seed(const ULong generatorSeed) 

{ 
int .seedReturn = 0; 
i f (generatorSeed > maxPrbsValue) { 

seedRcturn = - 1 ; 
ccrr <C " e r r o r Prbs: :seed() : seed value out of range" <C endl: 
prbsVabie = 1; 

} 
else { 

seedReturn = 0; 
prbsValue = generatorSeed; 

} / / '/ (generatorSeed > m,a.xPrbsValue) 

re turn seedReturn; 
} / / function Prbs::seed,() 
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/ / ########## 
/ / mem.her function: Prh.i::ad'iiance() 
/ / 

/ / Clock PRBS liy 1 to advance it once through the .tequence. 

/ / 
/ / pg 20/10/02 
// ########## 
int 
Pi'l)S::a(lvanco(void) 
{ 

randoniBit — 0; 
ma.sk = prbsValue & prbsTap.s[lnngth]; 

for (unsigned bit. = 0; bit < length; b i t + + ) { 
ma.sk 3>= 1; 
randomBit V = mask & 1; 

) / / f o r 'Int' 

prh.sValuc = (prbsValue < 1) | randomBit; 

re turn int (randomBit): 

} 
/ / ########## 
/ / m.em.her function: Prh.'i::adva.nce() 

/ / 
/ / Clock PRBS '.ih.ift.' timet to advance '.thift.' .Hep.i through the .sequence. 

/ / 
/ / pg 20/10/02 
// ########## 
int 
Prbs::advance(const ULong shift) 

{ 
for (ULong shiftCount = 0; shiftCount.< shift; shif tCount++) { 

randomBit = 0; 
mask = prbsValue & prbsTaps[length]; 

for (unsigned bit = 0; bit < length; b i t + + ) { 
mask ;:j>= 1; 
randomBit V — mask & 1; 

} / / for 'Int' 
prbsValue = (prbsValue C 1) | randomBit; 

} / / .for '.ihiftCount' 

re turn int(randomBit): 

} 

/ / ########## 
/ / end of fi.le prb.i.cc 
// ########## 
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Appendix D 

Neuron Test Board Configuration 

The connections utilised on the test board for verifying the operation of the fabricated 
neurons are shown in Table D . l and Table D.2. The connections relate to those made 
from the FPC-024 Digital 10 cards to the neuron socket and neuron itself. The pins of 
the fabricated neuron have been illustrated in the main body of this thesis, Figure 6.45. 
The only additional circuitry required is the provision of a 5V supply suitable to power 
the artificial neuron device. 

In the actual fabricated test board LEDs were connected via buffers to the output 
lines as a visual feedback of their status, this is not necessary for the operation of the 
device, conducting the testing of the artificial neuron or as was eventually performed the 
simulation of a network of six such devices. 
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Name Connection Pin Name Connection Pin 
Gnd CNl-1 Gnd CN2-1 
Gnd CNl-2 Gnd CN2-2 
PAS CNl-3 27 NC CN2-3 
NC CNl-4 NC CN2-4 
PA2 CNl-S 54 NC CN2-S 
P A l CNl-6 58 NC CN2-6 
PAO CNl-7 57 NC CN2-7 

CLKO CNl-8 NC CN2-8 
OUTO CNl-9 NC CN2-9 

GATEO CNl-10 NC CN2-10 
CLK2 CNl-11 NC CN2-11 
0UT2 CNl-12 NC CN2-12 

GATE2 CNl-lS P A l CN2-13 
C L K l CNl-14 PAO CN2-14 

G A T E l CNl-15 PAS CN2-15 
O U T l CNl-16 PA2 CN2-16 
PA4 CNl-17 28 PAS CN2-17 
PAS CNl-18 29 PA4 CN2-18 
PA6 CNl-19 SO PA7 CN2-19 32 
PAT CNl-20 31 PA6 CN2-20 
PC6 CNl-21 73 PC6 CN2-21 50 
PC7 CNl-22 74 PC7 CN2-22 51 
PCS CNl-23 72 PC4 CN2-23 48 
PC4 CNl-24 71 PCS CN2-24 49 
PCO CN1-2S 67 PCI CN2-25 45 
P C I CNl-26 68 PCO CN2-26 44 
PC2 CNl-27 69 PB7 CN2-27 43 
PB7 CNl-28 66 PC2 CN2-28 46 
PCS CNl-29 70 PB6 CN2-29 42 
PB6 CNl-30 65 PC3 CN2-S0 47 
PBO CNl-Sl 59 PB5 CN2-31 39 
PBS CNl-32 64 PBO CN2-32 34 
P B l CNl-33 60 PB4 CN2-S3 38 
PB4 CNl-34 63 P B l CN2-S4 35 
PB2 CNl-35 61 PBS CN2-35 37 
PBS CNl-36 62 PB2 CN2-36 36 
-Sv CNl-37 -Sv CN2-S7 
+Sv CNl-38 +Sv CN2-S8 
-12v CNl-39 -12v CN2-S9 
+12v CNl-40 -|-12v CN2-40 

Table D . l : ASIC connections to FPC-024 digital I /O card 1 
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Name Connection Pin Name Connection Pin 
Gnd CNl-1 Gnd CN2-1 
Gnd CNl-2 Gnd CN2-2 
PAS CNl-S 78 NC CN2-3 
NC CNl-4 NC CN2-4 
PA2 CNl-5 77 NC CN2-5 
P A l CNl-6 76 NC CN2-6 
PAO CNl-7 75 NC CN2-7 

CLKO CNl-8 NC CN2-8 
OUTO CNl-9 NC CN2-9 

GATED CNl-10 NC CN2-10 
CLK2 CNl-11 NC CN2-11 
0UT2 CNl-12 NC CN2-12 

GATE2 CNl-13 P A l CN2-13 23 
C L K l CNl-14 PAO CN2-14 22 

G A T E l CNl-15 PAS CN2-15 
O U T l CNl-16 PA2 CN2-16 
PA4 CNl-17 79 PAS CN2-17 
PAS CNl-18 80 PA4 CN2-18 
PA6 CNl-19 81 PA7 CN2-19 2 
PA7 CNl-20 82 PA6 CN2-20 
PC6 CNl-21 PC6 CN2-21 20 
PC7 CNl-22 PC7 CN2-22 21 
PCS CNl-23 PC4 CN2-23 18 
PC4 CNl-24 PCS CN2-24 19 
PCO CN1-2S PCI CN2-25 IS 
PCI CNl-26 PCO CN2-26 12 
PC2 CNl-27 PB7 CN2-27 10 
PB7 CNl-28 PC2 CN2-28 14 
PCS CNl-29 PB6 CN2-29 9 
PB6 CNl-30 PCS CN2-30 17 
PBO CNl-31 83 PBS CN2-31 8 
PBS CN1-S2 PBO CN2-S2 S 
P B l CNl-SS 24 PB4 CN2-S3 7 
PB4 CN1-S4 P B l CN2-S4 4 
PB2 CN1-3S 25 PBS CN2-35 6 
PBS CNl-36 26 PB2 CN2-36 5 
-Sv CNl-37 -Sv CN2-S7 
+5v CNl-38 -|-5v CN2-38 
-12v CNl-39 -12v CN2-S9 
+12v CNl-40 +12v CN2-40 

Table D.2: ASIC connections to FPC-024 digital I /O card 2 
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Appendix E 

4—2—4 Encoder/Decoder Board 
Configuration 

The basic schematics for a network of six neurons are illustrated in Figure E . l and Fig
ure E.2 with the connections made between this system and the two FPC-024 digital 10 
boards detailed in Table E.2 and Table E.S. 

Each neuron, Neuron X, is configured similarly but there are variations between hidden 
layer and output neurons. The two hidden layer neurons, Neurons 1 and 2, have four 
input lines which are shared and five independent up/down lines each for driving the 
weight register counters. The four output layer neurons. Neurons 3, 4, 5 and 6, have 
two shared input lines taken from the outputs of the hidden layer neurons and three 
independent up/down lines each for driving the weight register counters. For each neuron 
the remaining input lines are commoned together and driven as one with a value of zero, 
I N X where X is a given neuron. Similarly for each neuron the remaining up/down lines 
are commoned together and driven as one with a value of zero, UD X , so that neuron 
weight does not change. 

Name Description 
RST 
CLK 
R / W 

ADDR 0-7 

In 0-3 
UD XO-Ti 
Init 0-11 
WghtOut 
SumOut 
Out X 
IN X 

UD X 

Reset 
Clock 
Read/Write line for each individual neuron driven by a combination of 
the global R / W and the selection of the neuron. 
Address lines, 0-4 select the appropriate weight register and 5-7 
select the appropriate neuron 
The four input driving pulse sequences for the network. 
Up/down signal lines for neuron X and weight registers 0 to n 
Initialising weight value, if being loaded. • -
Encoded pulse trains for encoded weights. 
Result of weighted summation. 
Result of sigmoid transform circuit for neuron x. 
Remaining unused input lines for a neuron X commoned together 
and driven as one. 
Remaining unused up/down lines for a neuron X commoned together 
and driven as one. 

Table E . l : Description of signal line naming convention. 
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Global R/W 

ADDR 5-7 

ADDR 0-4 

In 0-n _ 

I N X 

UDO-n 

U D X 

3:8 Decoder 

oo 
Dir 

Init Bus 
\ 

/ 

74641 

\ 

/ 

Bi-directional buffer 

A Init 0-11 

Neuron X OutWght 0-16 

SumOut 

Ou tX 

CLK 

RAV RST 

Figure E . l : An individual neuron configuration, Neuron X. For the 4^2-4 encoder/decoder 
six circuit are required connected to a bus on a motherboard. Input In 0-^ are the input 
lines either from the outside or from the preceding layer. 
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UD 1:0-4 
xl I 

In 0-3 

Neuron 

UD2:0-4 

Neuron 2 

UD3:0-2 
xl I 

In 0-1 Neuron 3 

Out 3 

UD4:0-2 

Neuron 4 

UD5:0-2 

Out 2 Neuron 5 

UD6:0-2 

Neuron 6 

Out 4 

Out 5 

Out 6 

Figure E.2: Encoder/Decoder system configuration of six neurons. In 0-3 are the input 
values to the system from the outside world, while In 0-1 are the output from the hidden 
layer fed into the output layer. All neuron outputs have an inverter on them to correct the 
value of the sigmoid transform output. 
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Name Connection Pin Name Connection Pin 
Gnd CNl-1 Gnd CN2-1 
Gnd CNl-2 Gnd CN2-2 
PAS CNl-S Addr S NC CN2-3 
NC CNl-4 NC CN2-4 
PA2 CNl-S Addr 2 NC CN2-S 
P A l CNl-6 Addr 1 NC CN2-6 
PAO CNl-7 Addr 0 NC CN2-7 

CLKO CNl-8 NC CN2-8 
OUTO CNl-9 NC CN2-9 

GATEO CNl-10 NC CN2-10 
CLK2 CNl-11 NC CN2-11 
0UT2 CNl-12 NC CN2-12 

GATE2 CNl-lS PAl CN2-13 UD 1.1 
C L K l CNl-14 PAO CN2-14 UD 1.0 

G A T E l CNl-lS PA3 CN2-1S UD 1.3 
O U T l CNl-16 PA2 CN2-16 UD 1.2 
PA4 CNl-17 Addr 4 PAS CN2-17 
PA5 CNl-18 Addr S PA4 CN2-18 UD 1.4 
PA6 CNl-19 Addr 6 PA7 CN2-19 
PA7 CNl-20 Addr 7 PA6 CN2-20 
PC6 CNl-21 PC6 CN2-21 
PC7 CNl-22 PC7 CN2-22 
PCS CNl-23 Out 6 PC4 CN2-23 SumOut S 
PC4 CNl-24 Out S PCS CN2-24 SumOut 6 
PCO CN1-2S Out 1 PCI CN2-25 SumOut 2 
PCI CNl-26 Out 2 PCO CN2-26 SumOut 1 
PC2 CNl-27 Out 3 PB7 CN2-27 
PB7 CNl-28 RW PC2 CN2-28 SumOut 3 
PC3 CNl-29 Out 4 PB6 CN2-29 
PB6 CNl-30 RST PC3 CN2-30 SumOut 4 
PBO CNl-31 In 0 PBS CN2-S1 
PBS CN1-S2 CLK PBO CN2-32 UD 2.0 
P B l CNl-SS In 1 PB4 CN2-3S UD 2.4 
PB4 CNl-34 P B l CN2-34 UD 2.1 
PB2 CN1-S5 In 2 PBS CN2-SS UD 2.3 
PBS CN1-S6 In 3 PB2 CN2-S6 UD 2.2 
-Sv CNl-37 -Sv CN2-37 
+Sv CNl-38 +Sv CN2-38 
-12v CN1-S9 -12v CN2-39 
+12v CNl-40 -t-12v CN2-40 

Table E.2: Motherboard connections to digital I /O card 1 
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Name Connection Pin Name Connection Pin 
Gnd CNl-1 Gnd CN2-1 
Gnd CNl-2 Gnd CN2-2 
PAS CNl-3 Init 3 NC CN2-3 
NC CNl-4 NC CN2-4 
PA2 CNl-5 Init 2 NC CN2-S 
P A l CNl-6 Init 1 NC CN2-6 
PAO CNl-7 Init 0 NC CN2-7 

CLKO CNl-8 NC CN2-8 
OUTO CNl-9 NC CN2-9 

GATED CNl-10 NC CN2-10 
CLK2 CNl-11 NC CN2-11 
0UT2 CNl-12 NC CN2-12 

GATE2 CNl-13 P A l CN2-13 UD 3.1 
C L K l CNl-14 PAO CN2-14 UD 3.0 

G A T E l CNl-lS PA3 CN2-15 
O U T l CNl-16 PA2 CN2-16 UD 3.2 
PA4 CNl-17 Init 4 PAS CN2-17 UD 4.1 
PA5 CNl-18 Init S PA4 CN2-18 UD 4.0 
PA6 CNl-19 Init 6 PA7 CN2-19 
PA7 CNl-20 Init 7 PA6 CN2-20 UD 4.2 
PC6 CNl-21 PC6 CN2-21 IN 6 
PC7 CNl-22 PC7 CN2-22 UD 6 
PCS CNl-23 PC4 CN2-23 IN 5 
PC4 CNl-24 PCS CN2-24 UD S 
PCO CN1-2S I N 1 PCI CN2-25 UD 3 
PCI CNl-26 UD 1 PCO CN2-26 IN 3 
PC2 CNl-27 IN 2 PB7 CN2-27 
PB7 CNl-28 PC2 CN2-28 IN 4 
PC3 CNl-29 UD 2 PB6 CN2-29 UD 6.2 
PB6 CNl-30 PC3 CN2-30 UD 4 
PBO CNl-31 Init 8 PBS CN2-31 UD 6.1 
PBS CNl-32 PBO CN2-32 UD 5.0 
P B l CNl-33 Init 9 PB4 CN2-33 UD 6.0 
PB4 CNl-34 P B l CN2-34 UD S.l 
PB2 CNl-35 Init 10 PB3 CN2-35 UD S.2 
PB3 CNl-36 Init 11 PB2 CN2-36 
-Sv CNl-37 -Sv CN2-37 
+5v CNl-38 +Sv CN2-38 
-12v CNl-39 -12v CN2-39 

+12v CNl-40 + 12v CN2-40 

Table E.3: Motherboard connections to digital I /O card 2 
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