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Abstract 

The research presented in this thesis investigates the use of fractal compression 

techniques for a real time video distribution system. The motivation for this work was 

that the method has some useful properties which satisfy many requirements for video 

compression. In addition, as a novel technique, the fractal compression method has a 

great potential. 

In this thesis, we initially develop an understanding of the state of the art in image 

and video compression and describe the mathematical concepts and basic terminology 

of the fractal compression algorithm. Several schemes which aim to the improve of the 

algorithm, for still images are then examined. Amongst these, two novel contributions 

are described. The first is the partitioning of the image into sections which resulted in 

significant reduction of the compression time. In the second, the use of the median 

metric as alternative to the RMS was considered but was not finally adopted, since the 

RMS proved to be a more efficient measure. 

The extension of the fractal compression algorithm from still images to image 

sequences is then examined and three different schemes to reduce the temporal redun­

dancy of the video compression algorithm are described. The reduction in the execution 

time of the compression algorithm that can be obtained by the techniques described is 

significant although real time execution has not yet been achieved. 

Finally, the basic concepts of distributed programming and networks, as basic el­

ements of a video distribution system, are presented and the hardware and software 

components of a fractal video distribution system are described. The implementation of 

the fractal compression algorithm on a TMS320C40 is also considered for speed bene­

fits and it is found that a relatively large number of processors are needed for real time 

execution. 
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Chapter 1 Introduction 

Chapter 1 

INTRODUCTION 

The ways in which people communicate are changing rapidly. The conventional 

voice call over a wired network is no longer the only reasonable and reliable method for 

transmitting information. Instead, the options are many and diverse, ranging from voice 

calls over wireless networks to video calls over the conventional telephone network, as 

well as the transmission of arbitrary images or audio signals through a computer 

network (distributed multi-media systems). 

This revolution in communications is being supported by several sources. These 

include continuously improving network performance, widely available modem 

workstations with fast processors and high resolution colour graphics displays as well as 

powerful parallel processors such as DSP systems or transputer networks. While these 

systems can support computationally demanding applications, their cost continues to 

fall as the processing power increases. 

Based on such a hardware evolution, modem telecommunications technology is 

progressing rapidly by developing improved algorithms for digital audio and image 

processing and creating world-wide standards for communication protocols and data 

handling through the network. All the above contribute to an increase in the use of 
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Chapter 1 Introduction 

modem telecommunications in a wide range of fields and the spreading of this technol­

ogy in every day life. 

1.1. Signal Compression 

The rapid increase in the interest of researchers and users, that has recently occurred 

in the area of storage and fast transmission of multimedia information on a distribution 

system, is now well known. One of the biggest challenges and an area of intense 

research related to the construction of such systems, is how to reduce the vast amounts 

of data and processing time, that are required to represent the multimedia signal of any 

form (sound, image,video). This area of signal processing is called signal compression. 

The aim of signal compression is to achieve a low-bit rate in the digital representa­

tion of an input signal, with minimum perceived loss of signal quality. A low-bit rate 

signal decreases the large data storage capacity required and increases the speed of 

storing and transmission, reducing at the same time the cost. In this project, we intend 

to experiment with the realisation of a distribution system for image sequences (video 

frames) and so we will examine image and video compression techniques. 

Video signals are very demanding in terms of processing and transmission due to 

enormous amounts of data that needs to be represented. Normally, a video signal is 

generated by the collection of a large number of digital image frames. Each of these 

frames is created by sampling and quantizing a 2-D light intensity function. Supposing 

that the resulting digital image is 8-bit and of 1024x1024 pixels size, then more than 

one million bytes are needed to store each frame. Thus, providing adequate storage for 

a video distribution system is usually a considerable problem. 

In addition, communication in video distribution systems often involves local com­

munication between different systems and remote communication from one point to 

another for the transmission of the whole video data stream. However, communication 

2 



Chapter 1 Introduction 

across large distances presents an even more serious problem. A typical voice-grade 

telephone line can transmit at a typical rate of 9600 bits/sec. Thus, in order to transmit a 

512x512, 8-bit image at this rate will require nearly five minutes. Although this rate 

continuously improves with the use of new technologies, such as optical fibres instead 

of the traditional cables, ISDN and ATM networks, it is still far from a real-time 

transmission of a video signal. Having the additional dtsadvantage of the high cost of 

new technologies, we can conclude that such a process is not yet trivial. 

A number of image compression techniques have been developed and used in recent 

times to address the problem of low cost transmission of video data. These can be 

classified into two broad categories: 

• Lossless compression techniques, which allow perfect reconstruction without any 

loss of detail of the image. These techniques are necessary in applications where the 

digital image has to be precisely known (as in the storage and transmission of medi-

cal images). 

• Lossy compression techniques, which provide higher levels of data reduction with 

small loss of the image detail. These techniques are useful in applications where a 

certain amount of error is an acceptable trade-off for increased compression per­

formance. Such applications are tele-videoconferencing, broadcast television, fac­

simile transmission systems (FAX) and other multimedia and communication ap-

plications. 

Some of the most widely used image compression techniques, particularly in video-

conferencing systems are H.261 codec, MPEG, M-JPEG (the JPEG analogue for 

video), the vector-quantization method and wavelet-based encoding. These and other 

forms of compression will be discussed in more detail in chapter two. A novel lossy 
hQ.S 

compression technique whichLbecome: very popular is fractal image compression. In 
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Chapter 1 Introduction 

this thesis we will concentrate on the use of this technique and explore several schemes 

based on fractals. 

1.2. Objectives and motivation for the project 

The objective of this project is to investigate the use of fractal image compression 

techniques for a video distribution system and examine ways in which the algorithm 

could be improved in terms of speed and image quality, in order to meet the needs of a 

tele-videoconferencing system. Fractal image compression was chosen instead of other 

more common image compression techniques due to several advantages. 

The first is resolution independence. This property allows the reconstruction of the 

compressed image to any size since the algorithm is able to create artificial data and 

avoid the pixelisation phenomenon, common to enlarged digitised images. In addition, 

fractal image compression can provide very high compression ratios with minimum loss 

of detail. 

Another property is an asymmetry which exists in the time required for the compres­

sion and decompression processes. Indeed, decompression can be implemented at very 

high speed, whereas compression remains slow. This property induces us to examine 

the use of powerful hardware to speed up the compression process. Since the compres­

sion algorithm is based on block partitioning it would seem that it can be readily 

parallelised, which means that it can be implemented on a parallel hardware consisting 

of many processors. 

Considering the potential advantages of fractal image compression outlined above, it 

would seem that this method might be particularly appropriate for a videoconferencing 

system. In this system, the main lecturer will be recorded by a powerful image 

processing system based on a system of parallel processing units, which will be able to 

compress video-frames in real-time and at high compression ratios, and then rapidly 
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transmit them. On the other hand due to the asymmetry mentioned above, the audience 

should be able to use a general purpose computer to decompress and view the video 

frames at video rates (25 complete images per second). 

1.3. Overview of the Thesis 

This thesis has been structured into nine chapters. The first chapter introduces the 

thesis by presenting the tendency of modem telecommunication technology to trans­

form the traditional telecommunication systems into visual or even multimedia ones. In 

addition, the problem of the large amount of data needed for the digital representation 

of images is presented and the consequent need for signal compression is discussed. 

Finally the background and objectives of the project are explained. 

In chapter two, a brief history of image and video compression is given and some of 

the most commonly used techniques are explained. A comparison of their performance 

and a description of their advantages and disadvantages is also presented. 

Chapter three discusses the basic principles of the fractal compression technique 

which are used in this project. A flow-chart of the main algorithm is presented and 

explained in detail. The algorithm in this primitive form has many disadvantages which 

are discussed, the most important being the time needed for the compression and 

decompression process. In chapter four we present a number of different techniques 

which may be used to improve the algorithm and the results of these are discussed. 

The implementation of the fractal compression algorithm on image sequences is 

presented i,n chapter five. The basic aim is the reduction of the compression and 

decompression time by reducing the temporal redundancy. Three different schemes are 

implemented and their performance is compared. 

In chapter six, we introduce the network programming that is required for the 

distribution of video streams. The network philosophy and several network topologies 
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are described. Furthermore, network protocols, sockets and remote procedure calls are 

presented. 

Chapter seven describes hardware and software that is required in a system for video 

distribution through the network. The hardware used in the system, the image pro­

cessor, DCC cameras, workstations and PC's are described. In addition, a TMS320C40 

processor is used to speed up the compression algorithm and an estimate of the total 

number of processors needed for a real time implementation of the fractal image 

compression algorithm is given. The software required, such as the XWindows protocol 

and XView toolkit which is needed for the generation of the graphical interface, are also 

described. 

Finally the overall evaluation of the system is concluded. 
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Chapter2 

STILL AND MOVING IMAGE 
COMPRESSION 

An area in which a lot of on-going research is being done lately is the area of video 

distribution systems. Video-phone, video-mail and video-conferencing systems have 

been already developed on industry and academia. All of these systems require that the 

captured video frames are compressed using a particular compression technique. In this 

chapter we will describe some fundamentals on the image compression and will present 

some of the most commonly used compression techniques m order to be able to 

compare them and evaluate their pros and cons. 

2.1. Mathematical representation of an image 

Before we further proceed to describe the fundamentals and the state-of-the art on 

image compression techniques we have to define the image in mathematical terms and 

view some of its properties. 

~0 
First of all we will assume that all the images we are going to referJ!rom now on are 

digital gray-scaled images. Such an image, can be described as a set of points on the 

space R2 of the 2-D real world images and is represented by a graph of a function 
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z=f(x,y). The values of this function are integers which correspond to the gray level of 

the pixel at position (x,y) and range from 0 up to b-1 where b is the total number of 

possible gray levels. The latter is defined as b=2k where k is the maximum number of 

bits that are used to represent the gray level of each pixel. We will normally consider 

256 gray levels for 8-bit gray-scaled images .. An example of such graphical represen­

tation of the image is shown on figure 2.1. 

300 
250 
200 
150 r--~~ 
100 

X 

50 
0 

y 

Figure 2.1: Lena image as a 3D graph of the function f(x,y) 

2.2. The Need for Compression 

The technology in telecommunication networks is developing rapidly providing 

.,."' increased amount of . '• : available bandwidth. However the need for data compression 

will always remain as the volume of imaging and video data increases exponentially in 

a very wide variety of applications and as the needs for storing, retrieving and transmit-

ting image and video expands. Somebody could assume that in the future the amount of 
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bandwidth and the capacity of the storage media will become practically unlimited but 

this would mean that we are not aware of the situation and the several aspects of the 

problem and even more we don't learn from the past. 

As an example we will refer to the requirement for signal compression due to the 

transmission of colour images for television using a bandwidth that was originally 

allocated for monochrome signals. In addition as the technology of High Definition TV 

(HDTV) comes closer to the public the need for compressing the signal will become a 

matter of urgency due to the increase of the amount of data that needs to be transmitted. 

The usage of the internet and its increased popularity is another example. Although 

until a few years ago the internet was restricted for the use of the academic institutes 

and researchers only it now tends to become a network in which everyone in the world 

would have access. But as its popularity increases so does the demand for immediate 

access on its databases and the demand for improved multimedia facilities such as 

on-line sound, graphics, images and full-motion video. Therefore the available band­

width is never enough. Again the problem has to be addressed by some compression 

algorithms. 

Finally we have to consider the matter of cost. Storing more information will 

provide additional needs to expensive storing media whereas the transmission of this 

information will require more time or more bandwidth which can be translated on high 

payments for the network connectio.p:. Therefore even if there will be in the future 

storing media of big enough capacity and networks which will provide adequate band­

width the issue of cost will remain and the demand for data compression will be again 

pressing. 
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2.3. Some Fundamentals on Image Compression 

The aim of the image compression is to encode images or image sequences into as 

few bits as possible while the original image will be able to be reconstructed with an 

acceptable visual quality using a decoding mechanism. In the two issues of the image 

compression that were mentioned (high compression ratios and resulted image quality) 

we have to add the issue of speed for both the compression and decompression process. 

The latter is very important for real..:...time applications such as the video--conferencing 

systems. 

Digital images can be compressed by eliminating the redundant information. There 

are several types of redundancy that can be exploited by the image compression sys­

tems: 

• Jnterpixel redundancy : It is the redundancy due to the strong correlation between the 

adjacent pixels which results from the structural or geometrical relationship between 

the objects in the natural images. Also referred to as spatial or interframe redundancy. 

In order to reduce this redundant information the 2-D pixel array is transformed to 

another more convenient format using several types of transforms (mappings). 

• Coding redundancy : The spectral values for the same pixel location in images com­

posed from more than one spectral bands are often correlated. This is referred as cod­

ing or spectral redundancy. In general coding redundancy is present when the codes 

that are used to describe some events (i.e. the pixel values) have not b~egelected to take 

full advantage of the probabilities of the events. 

• Psychovisual redundancy : This redundancy refers to the natural property of the 

human eye to respond with equal sensitivity to all visual information. Certain in­

formation has simply less relative ~,importance than other in normal visual proces­

sing. 
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• Temporal redundancy: It is due to the fact that adjacent frames in a video sequence 

often show very small difference. This type of redundancy is removed by techniques 

that only encode the differences between adjacent frames in the sequence, such as 

motion prediction and compensation. 

As mentioned in the introduction of the thesis all image and video compression 

methods can be divided into two main categories, these being the lossless or reversable 

and the lossy or irreversable. Lossless compression is adequate when low compression 

ratios are acceptable or in applications where even little loss of detail is not acceptable 

as in medical imaging or military inspection. On the other hand higher compression 

ratios can be achieved by lossy compression schemes. In most of the applications the 

lossy compression will be acceptable as long as the quality of the resulting image is 

good enough. Since in a video conferencing system as the one proposed here there is 

usually no need for the video signal to be perfectly reconstructed the lossy compression 

techniques will be more appropriate. 

2.3.1. Compression Performance Measures 

Although the evaluation of the quality of the reconstructed images is something 

subjective depending on the eye perception and other certain factors we will however 

try to define some objective measures that will be used to lead the reader throughout 

this thesis. The first measure, the compression ratio is defined as: 

where n1 denotes the number of bits in the original image and n2 the number of bits in 

the compressed image. In addition the measure of the peak signal to noise ratio is 

defined as: 

PSNR = 20 log 10(~Ml) 
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where b denotes again the number of possible gray-levels (typically 256) and RMS is 

the Root Mean Square Error defined as: 

N M 

RMS= N~ I _I(J(i,j)- g(i,j))2 
i= 1 j= 1 

where N and M denote respectively the width and height of the images in pixels, f is the 

function which represents the original image and g the function of the reconstructed 

image. These two images must be of the same size. 

2.4. State-of-the Art in Still and Moving Image Compression 

The subject of digital image compression, often referred to as image coding, has 

been addressed by many researchers. Several methods have been developed such as 

statistical methods and transform coding methods. Most of these methods originate in 

the field of traditional digital signal processing and aim to reduce the different types of 

digital image redundancy (interpixel, coding and psychovisual redundancy) by combin-

ing several techniques. Some other methods that have been investigated are based on 

, the construction of models of the image data. In the following sections a brief descrip-

tion of the most commonly used and investigated compression techniques will be given. 

2.4.1. JPEG and M-JPEG compression 

A few years ago a joint of the ISO and CCITT comrnitties known as JPEG (Joint 

Photographic Experts Group) worked and succeeded to establish the first international 

compression standards for continuous-tone still images both full-color and gray-scale. 

These standards combine several kinds of primitive coding techniques such as the 

transform coding, Huffman coding, vector quantization, run-length coding and others 

in order to obtain better coding efficiency[13]. 

12 



Chapter 2 Still and Moving Image Compression 

The basic aim of the JPEG proposed standard was to be able to support a wide 

variety of application. In order to meet the differing needs of the numerous applications 

the algorithm includes four modes of operation these being the foliowing [7]: 

• Lossless encoding. Although JPEG was proposed as a lossy compression technique 

there is an option based on a predictive method, to operate image encoding which 

guarantees its exact recovery. However in that case the result is low compression 

ration compared with the lossy modes. This encoding mode is the only one which is 

not based on the Discrete Cosine Transform (DCT). 

• Hierarchical encoding. The image is encoded at multiple resolutions so that lower­

resolution versions may be accessed without first having to decompress the image at 

its full resolution. 

• Progressive encoding. In this mode the image is encoded in multiple scans for real 

time transmission applications (the viewer can watch the image to be constructed in 

multiple coarse to clear passes.) 

• Sequential encoding. Each image component is encoded in a single left-to-right top­

to-bottom scan. This encoding mode is the most widely used for the compression of 

real world scenes. 

Generally speaking the JPEG algorithm achieves much of its compression by 

exploiting known limitations of the human eye (For instance small colour details of 

light and dark that are not perceived). 

The key processing steps which are the heart of the DCT -based modes of operation 

are shown in figures 2.2 and 2.3. These figures illustrate the special case of single-com­

ponent (grayscale) image compression. In order to understand the essentials of the 

DCT based compression we have to think of it as compression of a stream of 8x8 
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blocks of grayscale image samples. In the case of colour images the image compression 

can be regarded as compression of multiple grayscale images. 

8 8 bl k oc s 

Source Image 

r-----------------------, 
I 

J Forward ·I ! DCT 
I 
I '---------

I 
...--------, I 

I 
Quontize' I Entropy 

Encoder 1 
L...-------1 

I 
-------- __ J 

Table 
Specifications 

Figure 2.2: DCT-based encoder [7] 
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Figure 2.3: DCT-based decoder [7] 

Compressed 
Image Data 

Reconstructed 
Image 

Each of the 8x8 blocks serves as input and makes its way through the processing 

steps to yield compressed output into the data stream. 

The encoding process involves three successive operations. These are the mapping 

the quantization and the entropy coding. The mapping operation transforms the image 

into an array of transform coefficients in order to de-correlate the image data. This 

reduces the interpixel redundancy and the quantizer and coder in the next stage can be · 

used more efficiently. The decorrelating transform that has been used is the Discrete 

Cosine Transform DCT which has been found to have computational advantages over 
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other possible transforms (i.e. Discrete Fourier Transform, Discrete Hartley Transform 

e.t.c.). 

In the next step, the quantizer divides each DCT coefficient by a step size to reduce 

the accuracy of the mapper's output. This irreversible operation eliminates the psy­

chovisual redundancy of the input image. 

In the final encoder processing step, the entropy coding, additional lossless com­

pression is achieved by encoding the quantized DCT coefficients more compactly based 

on their statistical characteristics. The entropy coding methods that are used for JPEG 

compression are the Huffman coding and arithmetic coding. 

Although JPEG compression was originally meant to address still-frame images, it 

has been found to perform quit well in motion sequence compression and decom­

pression for multimedia, video editing and remote sensing applications. This technology 

has come to be known as Motion JPEG or in short M-JPEG and compresses every 

frame individually using the standard JPEG algorithm for high image quality. 

With its frame approach to sequence compression no images are lost and therefore 

may be manipulated, analysed, archived and viewed discretely. On the other hand the 

algorithm is computationally intensive thus : _ 0 
0 

- )special hardware is needed for 

its implementation. However it seems to grow into a fairly good business for some 

hardware integrators since it affords reasonable cost authoring on the desktop. 

2.4.2. MPEG compression 

For the establishment of a world standard for coded representation of moving pic­

tures another group the Moving Picture Experts Group (MPEG) was created and worked 

under the joint supervision of the ISO and IEC [15]. The basic aim of the group was 

not to specify a particular encoding process but instead to define a compressed bit 

stream which will implicitly define a corresponding decompressor. Therefore the com-
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pression algorithms are up to the individual manufacturers and this is where proprietary 

advantage is obtained within the scope of a publicly available standard. 

Initially the MPEG committee wanted to create a special standard for the delivery, 

storage and retrieval of video and audio on CD-ROM's1. The targeted bit rates for the 

video signal were around 1.2 Mbits per second whereas for the stereo audio signal was 

around 250 Kbits/sec. This target was achieved by the MPEG-1 standard which defines 

a bit stream for compressed video and audio optimized to fit into a bandwidth of 1.5 

Mbits/sec. 

Distribution network industries, such as cable television and narrow channel satellite 

broadcasting realizing the potential of digital compression technology to increase 

services and lower costs, liked the MPEG concept but they were not limited by CD­

ROM data rates. Concequently, MPEG developed a second effort that takes advantage 

of the higher bandwidths available to these networks to deliver higher image resolution 

and picture quality. This second effort targeted to increased image quality in ranges 

from about 3 to 15 Mbps, support of interlaced video formats, and provision for 

multi-resolution scalability. The standard that was developed by this effort is known as 

MPEG-2. 

Additional efforts have been made to further improve the efficiency of these stan­

dards and creating others such as the MPEG-3 and MPEG-4. In particular MPEG-3 

was going to be a higher quality encoding for High Definition Television (HDTV). 

However the effort was abandoned after some studies proved that MPEG-2 at higher 

rates is pretty good. On the other hand MPEG-4 aims at the opposite extreme; that of 

low bandwidth or low storage capacity environments. 

The MPEG standards extend the DCT -based compression approach described in the 

preceding section to include methods for reducing frame-to-frame redundancies[14]. 

1. Compact Disk Read Only Memory 
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The basic scheme is to predict motion from frame to frame in the temporal direction 

and then to use DCT's to reduce the redundancy in the spatial direction. In other words, 

starting with a relatively low resolution video sequence (possibly decimated from the 

original) the MPEG algorithm compresses a starting reference frame using JPEG-like 

DCT -based approach, then it reconstructs the compressed frame and estimates the 

motion of objects between the reconstructed frame and the next frame. Based on the 

amount of motion it decides after that whether to compress the next frame independent­

ly or by using references to the previously coded frame. 

The motion estimation step normally involves the comparison of each reconstructed 

sub-image with every immediate neighbourhood of it, in the next or previous frame 

(there are backward prediction modes where later frames are sent first to allow the 

interpolation between frames). This means that a measure of correlation such as the sum 

of the square of the pixel-by-pixel differences is computed in order to find a close 

match. 

After the DCT is applied, the produced coefficients are divided by some value to 

drop bits out (quantization). During this process hopefully many of the coefficients will 

become zero reducing · :he information that needs to be saved. The resulting 

information from all these steps which include the DCT coefficients the motion vectors 

and the quantization parameters are Huffman coded using fixed tables. 

In practice the scheme that we described is more complicated. There are three types 

of coded frames. The first one is the intra frames which are coded as they were still 

images. Another type is the predicted frames which are predicted by the most recently 

reconstructed intra or predictive frames. Finally there are bidirectional frames which are 

predicted directly by two frames, the previous and the next one. Because the MPEG 

standard is intended for applications in which many rapid scene changes may occur, it 
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specifically requires that every 15th frame be encoded without reference to any preced­

ing frames. This requirement is also helpful in video editing applications. 

In general, MPEG is an asymmetric compression technique. The overall compression 

process described above can be computationally very intensive whereas the decom­

pression process normally requires considerably smaller time to be implemented. 

2.4.3. H.261 Codec 

Unlike the MPEG standards which were designed to cover the growing need of 

generic coding methods for moving images in a wider scope of applications the H.261 

standard was specifically designed to meet the needs for the compression of moving 

images in video conferencing systems. The standard describes the video coding and 

decoding methods for the moving picture component of an audiovisual service at rates 

of p*64 Kbps where p is in the range of 1 to 30. It basically aims and is really suitable 

for applications using circuit switched networks as their transmission channels. 

The H.261 standard · '-~ !s similar 1:-o · the MPEG DCT -based compression mechan­

ism but differs in the manner in which motion estimation is handled. In the H.261 each 

frame is compared to a single preceding frame. The encoder consists of three main 

operations these being the prediction the block transform and the quantization. The 

prediction operation is used for the inter coding frames only which are encoded with 

respect to another reference frame using a prediction error calculated between the 

corresponding 16x16 pixel regions of two successive frames. The intra coding frames in 

which blocks of 8x8 pixels are encoded with respect to themselves are sent directly to 

the block transformation process. 

Similarly with the MPEG standard, in this step each block is processed by a forward 

DCT function and then the produced DCT coefficients will be quantized in order to 

represent them more coarsely. Further compression is achieved by applying Huffman 

coding as the entropy coding technique. 
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H.261 is usually used in conjunction with other control, multiplexing and framing 

standards such as H.221, H.230, H.242 and H.320. It is a compression standard com­

monly implemented in hardware to reduce its computational complexity. PC cards of 

this kind for video, audio and ISDN do exist. 

2.4.4. Compression Techniques Under Investigation 

Furthermore to the compression standards and techniques that were described in the 

previous sections, some other less popular ones have been used in many applications 

such as Intel's Digital Video Interactive (DVI) scheme and Apple's Quicktime and 

Microsoft's Video for Windows standards which do not specify a particular video 

format but instead a framework to accommodate many video formats. Furthermore 

researchers continue to investigate several other compression techniques. We will short­

ly describe some of them: 

• A novel approach on Image compressors I decompressors is based on the wavelets 

transform[9][11][17]. The research on the wavelets has made a tremendous progress 

in the last few years resulting on symmetrical image compression schemes with many 

advantages. For example these schemes seems to overcome the capabilities of the 

JPEG in terms of quality of the reconstructed image specially on large compression 

ratios. However the transformation (forward and reverse) is computationally very 

expensive this being its major disadvantage. Some experiments that have been made 

to compress image sequences were based on the compression of the coarse image of 

the difference between two consecutive frames but even though it still is far from a 

real-time encoding or decoding. 

• Neural Network Image Compression. Several kinds of neural networks have been 

used to provide image compression such as feed-forward or random neural net­

works[ 18] [ 19]. In some cases the neural network was used to find the coefficients of a 

transformation (2-D Gabor transform). However in most cases in order to perform 
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image compression the image is first divided into 8x8 blocks and each block is scaled 

to serve as an input to the network. The network is then trained to produce the same 

output as seen in the input. Because of the less neurons in the hidden layer than in the 

input and output layer the image is finally compressed. For the compression of image 

sequences a motion detection technique is applied by comparing the blocks from two 

successive frames. The algorithm has the main advantage of being fast and in some 

cases the compression and decompression process can be carried out in real-time. 

However the resulted compression ratios are far smaller from the ones in more con­

ventional methods. 

• Another common image compression method is the vector quantization[16]. The 

vector quantizer is in practise a mapper which maps a stream of analogue or very high 

rate discrete data into a sequence of low rate data. This methods can achieve high 

compression ratios but suffer from edge degradation and high computational com­

plexity. 

Through the bibliography some other compression techniques can be seen some of 

them based on the Gabor transformation [12] or the 3-D segmentation of sequences. 

However ·· · -. ~ the most promising recent ' compression schemes are the ones based 

on fractals. These techniques consider the existence of a self-similar structure on 

natural images which enables them to be modelled by a relatively simple mathematical 

model. They are based on the measure of deviation between a given image and its 

approximation which is constructed as attractor by an IFS (Iterated Function System) 

code. Details on the methodology and the basic principles of the fractal image compres­

sion process will be described in the next chapter. 
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2.5. Summary and Conclusions 

The basic conclusion that can be extracted is that there is a plethora of activities in 

the area of image and video compression nowadays. Many different approaches and 

many different standards compose the total effort for the provision of compression 

which will combine large compression ratios, high-quality of the reconstructed image 

as well as fast implementation. However none of the compression techniques combine 

efficiently all these three aspects of the image compression. 

In practice it seems that most people converge to the usage of the well known and 

internationally established compression standards such as the JPEG, H.261 and MPEG. 

Although these standards provide a good solution to the problem of the small network 

band-width they still have some disadvantages including the fact that the encoding 

process is computationally intensive, the image quality is very poor at high compression 

ratios, they are not resolution independent and that normally there is a trade off between 

the degree of compression, the quality of the resultant image and the time needed to be 

implemented. 

Amongst the other compression methods which are under continuous investigation, 

most of them provide superior performance from the establish standards at some image 
~Q.Vt, 

compression issues but they are inferior to some others. In this project we~ chosen to 

examine fractal based compression techniques. 

These techniques for still images gained a rapidly increased interest in the last few 

years due to the numerous advantages they provide. Some of the strengths of the fractal 

techniques is that they provide very high compression ratios with a little loss in detail, 

that the images can be recovered in any resolution and relatively fast; they are also 

ideally suited to real world image compression, and the compression ratio does not 

increase linearly with the original image size. On the other hand the major disadvan-
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tage is that the compression times are considerably long unless powerful hardware 

assists the execution of the process. 

Because of the later weakness of the algorithm only very few efforts have been 

made to apply fractal compression on distributed systems. However as the Fractal 

compression is a recently discovered method and has already been patented much 

information on how it works is hidden and many techniques are expected to be devel­

oped in the near future to improve its performance. In the following chapters we will 

describe in detail the fractal compression algorithm and several improvements in order 

to make it capable for video compression. 
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Chapter3 

FRACTAL IMAGE COMPRESSION 

As mentioned in the previous chapter fractal compression of digital images has 

recently attracted much attention. It is a very promising technique in terms of compres­

sion ratios, providing in addition some other advantages such as the resolution indepen­

dence of the reconstructed image and the asymmetry of the compression I decom­

pression time needed. The purpose of this chapter is to present a concise description of 

the theoretical background of the fractal image compression technique and introduce 

the terminology and other requirements for a better understanding of the encoding and 

decoding implementations. 

3.1. Fractals and Geometry in Nature 

A fractal is a mathematical object, a chaotic fractured structure, possessing similar 

forms at various sizes (self-similar). In other words fractals are geometric patterns 

generated from simple formulas by starting from an initial arbitrary shape and infinitely 

adding new shapes created by repeating simple transformations such as shrink, rotate, 

move and flip, until it grows larger than a certain boundary. Fractals are infinitely 

complex, the closer you look the more detail you see. 
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Fractals were not discovered in a single instant, but knowledge on them grew 

quickly in the computer age. The first real fractals were discovered by a French 

mathematician named Gaston Julia. In his time there were no computers, so serious 

study of fractal objects was impractical. His studies were later re-discovered by the 

mathematician Benoit Mandelbrot who was the first that introduced the term fractal. 

He was the one that furthermore observed the existence of a geometry in nature [3]. 

Indeed many naturally occurring objects exhibit at smaller scales of detail this 

self-similarity found in fractals. For instance a tree has large limbs branching out in all 

directions and each of these limbs has smaller limbs branching out in a similar way. 

Through experimentation, certain fractal codes have been developed which can success­

fully model landscapes or other natural effects such as clouds, snowflakes, mountains 

and forests [4]. Fractal objects produced in this way have the intrinsic property of 

having extremely high visual complexity while being very' low in information content 

as they can be described and generated by these algorithms. 

The later property became the basis for the development of fractal image compres­

sion. In order to introduce some basic terminology and help the non-specialist to 

understand more clearly the way fractal image compression works we will demonstrate 

some simple forms of fractal objects such as the Sierpinski triangle. 

3.2. Attractors and affine transformations 

The Sierpinski triangle can be generated from an arbitrary image, by reducing the 

size of this input image by a half and reproducing it three times at different locations to 

form· the output image as shown in figure 3.1. If this process is repeated indefinitely, 

feeding back each time as the next input image the output of the previous step, than a 

convergence to the same final image is observed. This final image is known as attractor 
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(a) initial image 

(d) 3rd iteration 

~---~ 
(b) 1st iteration 

(e) 4th iteration 

Fractal Image Comrpession 

(c) 2nd iteration 

(f) lOth iteration 

Figure 3.1: The Sierpinski triangle 

and has the important property of not being affected from the initial image thus being 

unique for every different set of transformations applied. 

The only limitation we have to set is that the transformations must be contractive. A 

transformation is said to be contractive if and only if, applied to any two points of a 

given image forces them to get closer to each other. In more mathematical terms the 

contractivity theorem says that: 

d(W(j), W(g)) s; s d(f,g), 0 s; s < 1 , 'Vf,g E R2 

where W denotes the applied transformation and f,g are functions representing images 

of the real world and R2 denotes the image space. The contractivity condition comes 

very naturally since in any other case the attractor would have been of infinite size. 

Originally it was thought that in order to ensure that in order t~ ~nsuL contractivity 

in the intensity direction it was required that lskl for every range domain mapping. 

However it was found later [26] that this requirement is far too strong. In practice we 

can only consider the average of the s values to be less than 1 and therefore we are 
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allowed to choose some of them being greater than 1 without necessarily creating 

instability because the transformation will be expansive. In most cases a choice of 

lsk1.5 gives the best performance in terms of finding good mappings while the trans-

formatioll5 are still contractive. 

Although the transformations can have any form, in practice we deal with those 

having the form: 

which are sufficient for handling an input image in many different ways (i.e. rotate, 

scale, move). These transformations are known as affine transformations. 

(a) Initial image (b) 1st iteration (c) 2nd iteration (d) 3rd iteration 

(e) 4th iteration (f) 5th iteration (g) 6th iteration (h) lOth iteration 

Figure 3.2: Reconstruction of a fractal object (attract or) by qpplying iterateve­
ly fractal transformations 

26 



Chapter 3 Fractal Image Comrpession 

a b c d e f 

0.00 0.53 -0.48 0.00 118.00 150.0 

0.50 0.00 0.00 0.50 24.00 0.0 

0.50 0.00 0.00 0.50 24.00 64.0 

Table 3.1: IFS codes for the attractor of figure 3.2 

In the case of the Sierpinski triangle described above supposing that the size of the 

image was 256x256 pixels, then the following three affine transformation were used: 

(3.2) 

[X] [0.5 0 ][X] [128] w2 Y = 0 0.5 Y + 0 (3.3) 

(3.4) 

If we change at least one of the parameters to any of the affine transformations then 

a different attractor will result. The second example shown in figure 3.2 was created by 

three transformations using the parameters of table 3.1. The union of the contractive 

transformations, w; is referred to as an Iterated Function System (IFS) code. If for 

instance A is a set representing an input image then the IFS code is defined as: 

n 

W(A) = U wi(A) (3.5) 
i=l 

The contraction mapping theorem states that any given IFS code consisting of 

contractive affine transformations can be used to describe a unique and independent 

from the initial image attractor. This means that if we let: 

Xw = lim W0 n(A) (3.6) 
n-+oo 
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represent the attractor of an IFS code W then: 

W(xw) = xw ( 3. 7) 

Attractors formed in such way have detail in every scale therefore theyt_considered to be 

forms of fractals. 

The use of the process described above, for image compression, was first proposed 

by M.Bamsley. He suggested that storing natural images as collections of transform-

ations could lead to large image compression. For instance for the image of the attractor 

in figure 3 .2.( e) only the six parameters for each transformation presented in table 3.1 

have to be stored in order to be correctly reproduced. 

Similarly in the case of any arbitrary image, this could be again stored compactly if a 

relatively small number of transformations capable to recreate the original image could 

be found. The main questions that remain however is if a typical image exceeds the 

self-similarity of the fractals thus containing affine transformations of itself and how 

these can be found. 

In first view such an image does not seem to be self-similar but in practise it 

contains a different kind of self-similarity. As shown in figure 3.3 sample regions of the 

image are similar with others in different scales. Thus, while the fractal objects de-

scribed above were formed with copies of their whole selfs, a natural image can be 

formed as properly transformed parts of itself. Bamsley developed a method based on 

the previous notation, called the Fractal Transform which provides an automated way 

for calculating a set of IFS coefficients that define a given digital image. 

3.3. The Collage Theorem 

The fractal transform is based on the collage theorem. The latter states that the union 

of contractive affine transformations on an image space defines a map (or IFS code) W 

on the space. Given an input set (or image) A, a new set or attractor W(A) is described 
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Figure 3.3: Self-similarity on a natural image 

by the union (collage) of sub-images, each of which is formed by applying a contrac­

tive affine transformation w; on A. This theorem is used to define the IFS code for the 

examples of figures 3.1 and 3.2 as the union of the transformations w 1, w2 and w3• 

The collage theorem is also important because it suggests a method of simplifying an 

image before determining its IFS code. The collage theorem describes an image attrac­

tor as the union of one or more sub-images, each of which is formed by applying a 

contractive affine transformation on an arbitrary image. Therefore when a given digital 

image is modelled as an attractor, it may be partitioned into sub-images (referred as 

range blocks), each of which can also be treated as an attractor with its own set of 

contractive transformations that comprise a local iterated function system or local IFS. 

The advantage produced by this partitioning is that the smaller range blocks are less 

complex and can therefore be described by a simpler local IFS. The union of these 

simplified local IFS codes then forms the original image's Partitioned Iterated Function 

System or PIPS. 
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As stated, the target sub-images are referred to as range blocks. Each range block is 

an attractor that results when a given set of local IFS transformations is applied 

repeatedly to an arbitrary sub-image of specific size and location. The union of those 

range blocks form the original image. The source sub-images to which the transform­

ations are applied to form range blocks are referred to as domain blocks. The only 

restriction in the choice of domain blocks is that these have to be larger than the range 

blocks it models so that the local IFS transformation will be contractive. 

3.4. A Note on Metrics 

An important factor in the implementation of the fractal code algorithm is the choice 

of the metric space and the metric itself. Generally speaking a metric space is a set X of 

points on which a real-valued function d :XxX - R is defined, called a metric. The 

latter function takes two elements of the set X and measures the distance between 

them. The metric obeys the following axioms: 

a) d(x,y) = d(y,x), 'Vx,y E X 

b) d(x,y) = 0, if and only if x=y, 'Vx,y E X 

c) 0 < d(x,y) < oo, 'Vx,y E X and x=j:.y 

d) d(x,y) :s; d(x,z) + d(z,y), 'Vx,y,z E X 

The metric set described can be a set of points as well as a set of images. Suppose 

that we deal with a set of images containing for example all the subsets of the plane. In 

general the axioms above permit the definition of more than one metric for a given 

space. Some examples of metrics in the plane are the following [21][22][5]: 

• The standard Euclidean metric which gives the distance between the points (x1,y1) 

and (x2,y2): 
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• Another metric between these points is: 

• The Euclidian plane with the Manhattan metric. 

For the functions f,g : lR.2--+lR. , which describe natural images, the following metrics 

can be defined: 

• The supremum metric which finds the position (x,y) where two imagesfand g 

differ the ~ost and sets this value as the distance between! and g : 

dsup(f, g) = sup I f(x) - g(x) I 
xEIFF 

• The RMS (root mean square) metric: 

drms(j, g) = I ( f(x,y) - g(x,y) )2 

J2 

The choice of metric is very important because it determines whether a transform-

ation is contractive or not. In a general metric space the continuously applied trans-

formations are not necessarily convergent [20]. As stated from the Banach's fixed point 

theorem, in order to ensure that each contractive mapping is associated with a unique 

fixed point (attractor) the metric has to be complete. The later means that every Cauchy 

sequence of points from the metric space converges to a point of the same metric space 

[20]. A sequence of points in a metric space is said to be a Cauchy sequence if for any 

s>O there exists an integer N such that: 
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d(Xm,Xn) < c 'tln,m > N 

The metric spaces of the natural image functions that we described above are all 

complete therefore they can be used for the implementation of the fractal compression 

algorithm [22] [20]. However the RMS metric will be used since it is more convenient 

in practice as we will see [21]. 

3.5. Description of the algorithm 

3.5.1. Compression 

After explaining the terminology and all the principals of fractal image compression 

we will now present step by step the algorithm. We will follow in general the algorithm 

presented by Fisher in [21] and by Barnsley in [22], both implementing the forward and 

inverse fractal transform. A flow diagram for the compression is shown in figure 3.6. 

• • • 

Figure 3.4: Range block partitioning 

Suppose we have to compress a gray-scaled image of size 256x256 pixels. The 

image is initially partitioned into a several number of small non-overlapping portions 
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Figure 3.5: Domain block partitioning 

which serve as the range blocks (i.e. 1024 range blocks each of size 8x8 pixels) as 

shown in figure 3.4. In addition the image is partitioned into overlapping domain blocks 

double in size (i.e. 16x16 pixels) which cover every possible region of the image as 

shown in figure 3.5. Thus the total number of domain blocks reaches 58081. Now every 

range block can be compared with all the sub-images of the proper size to determine an 

acceptable match. 

We have to note here that in practice the possible comparisons for each range block 

are much more than the total number of domain blocks referred above due to the 

existence of eight different ways for mapping one square onto another. These different 

ways are referred to as isometric transformations or symmetries and are analytically 
0. 

described on table 3.2. The existence of these symmetries 1ses the total number of all 

possible comparisons to 8x58081=464648 squares for each one of the 1024 range 

squares. 
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Symmetry Description Graph 
No 

1 Identity b 
2 Reflection in y-axis d 
3 Reflection in x-axis F 
4 180° rotation I 
5 Reflection in line x=y lL 
6 90° rotation fl 
7 270° rotation _jJ 

8 Reflection in line x=-y 11 
Table 3.2: The eight isometric transformations 

Before we proceed with the comparisons a method for mapping a Domain block into 

a range block has to be introduced. Previously we explained that an affine transform-

ation on the plane had a form of equation (1) where the coefficients ai , bi , ci , di 

determine scale rotation and skew and ei ,fi determine translation. However this 

equation would prove appropriate only for binary images (black and white). Since we. 

are dealing with gray scaled images the pixel intensities have to be transformed in 

addition in order to match domains with ranges. The latter can be accomplished by 

representing the image in the three dimensional space where the third axis will repre-

34 



Chapter 3 Fractal Image Comrpession 

sent the intensity. The matrix of transformation is then of the form: 

[x] [ai hi O][x] [ei] 
W; ~ = ~ ~ ~ ~ + ~i (3.8) 

where si controls the contrast and oi the brightness. By using equation (3.8) we ensure 

that the x-y spatial data is not influenced from the intensity data although the later is 

incorporated as a spatial dimension, since si is multiplied only to z, and oi is added 

only to z. 

After the definition of the transformation in equation (3.8) we are able to compare a 

domain block with a range block by mapping their geometries and pixel intensities. One 

of the metrics defined in the previous section have to be used. in order to measure the 

distance between the two sub-images. One of the most convenient to use metric is one 

similar to the RMS metric between a scaled by one-half domain block, possessing 

pixel intensities D1, ... , Dn, and a range block on its normal size possessing pixel 

intensities R1o ... , Rn where n is the total number of pixels for both blocks (i.e. 8x8=64 

pixels) defined as[21]: 

n 2 

R = I[cs Dj + o)- Rj] (3.9) 
j=l 

where R is RMS2. In order to calculate this quantity the variables s and o have to be 

determined. This can be done by taking the partial derivatives of the quantity with 

respect of the two variables and setting them equal to zero in order to minimize the 

distance. This produces the following relations: 

n n n 

To avoid redundant computations all the different sums, I Rj , I Dj , I Dj 
2 

are 
j=l j=l j=l 

calculated once as each new range and decimated domain block is extracted. The 
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(3.10) 

(3.11) 

distance R can then be written on the following more computationally efficient from : 

i R/ + s [s t D/ - 2 i DJ RJ + 2 o i DJ] + o [o n2 
- 2 i RJ] 

j=l j=l j=l j=l j=l 
R =--------------------------~------------------------

n2 

Once a range block has been extracted the first pre-computed decimated domain 

block is taken from the domain pool for comparison. As we notice for each comparison 

n 

between a domain and a range block only the sum "" D. R. has to be computed. The L J J 
)=I 

process of extracting a different domain block and comparing it with the range block is 

repeated until one of the comparisons result in a mean square distance less than a 

specified tolerance. The information describing the local IFS transformations that sue-

cessfully mapped the domain block to the given range block is than stored as an affine 

map. In practice these maps consist of some parameters defining the orientation, size 

and the position of the domain block as well as the scale s and offset o parameters. If 

no match is found then the affine map of the domain block that most closely matched 

the given range block is stored. 

The whole process is repeated until we find one affine map for every range block of 

the image, constructing in such way the PIFS information for the image. 
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Figure 3.6: Flow chart of the basic compression algorithm 
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3.5.2. Decompression 

The decompression is a much simpler process. An arbitrary image serves initially as 

an input (normally a black box) and is tiled in the same way as in the compression 

process to define non-overlapping sub-images in the size of the range block. For each 

of these range regions the corresponding position and size of the domain block and the 

coefficients of the affine map is read. Then the specified domain block is extracted from 

the initial image and mapped into the associate range region. In such way the homo­

geneous black background in the range region is now replaced by a completely new 

image. The process will continue until the whole image is created. Afterwards the 

newly created image will serve as input and the whole process will be repeated for a 

few iterations. 

3.6. Summary 

In this chapter we introduced the basic concepts of the fractal image compression 

technique. The terminology was defined and the mathematical background was ex­

plained. The fractal block coding is based on the collage theorem and the contraction 

mapping theorem. Another important aspect of the fractal compression technique is the 

definition of an appropriate metric space. The RMS metric was analysed in more detail 

since this was found to have many advantages such as the easy calculation of the 

scaling and offset parameters. Finally the description of the basic form of both the 

compression and decompression algorithms was given. 
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Chapter4 

IMPROVING THE FRACTAL 
CODING I DECODING 

As mentioned in the preceding chapter in order to implement the fractal compres­

sion algorithm, the set of all possible domain blocks must be searched for each range 

block in order to find the best match. This process is very time consuming. Since the 

number of comparisons determines the execution speed, methods for reducing the 

search time, or even eliminate the search, have been the subject of much recent research 

[21][31][32]. In this chapter we will investigate some of these improvements to the 

block oriented fractal compression algorithm in terms of compression time and image 

quality. In addition some novel schemes will be examined in order to further reduce the 

compression time without significant loss of image quality. 

4.1. Quantizing the Coefficients of the Affine Transform 

The quantization process can play a crucial role in the efficient implementation of 

the fractal compression algorithm. The parameters which describe the affine transform­

ation (i.e. the scaling and the offset factors) are generally quantized and stored compact-
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ly, as a constant number of bits. The number of bits directly affects both the compres­

sion ratio and the image quality. 

In practise, the quantized values of the scale and offset parameters will be used 

during the range-domain comparison, as well as for the calculation of the RMS error 

because it has been shown that this gives better results than using exact values and 

quantizing them later [26]. 

4.2. Quadtree partitioning 

The simple partitioning scheme with a fixed block size illustrated in figures 3.5 and 

3.6 is image independent which means that the partitioning time is independent of 

image complexity. The common geometry and size of range and domain blocks sim­

plifies the whole process of encoding and decoding. Furthermore the storage require­

ments for the output of the compression is reduced since the size and location of the 

range blocks can be easily calculated by the decompression program. Nevertheless this 

scheme has some limitations and does not generally produce optimal compression 

ratios. 

For instance, we can easily observe that real world images are not uniform and 

therefore they usually possess different complexity from region to region. This means 

that the distance of the approximation from the original image, might vary radically 

from one block to another depending on the availability of a matching transformation. 

In other words some regions of an image might be too complex to be partitioned into 

8x8 pixel squares because there might not be a suitable domain block of size 16x 16 to 

closely match the region (for example the eyes of Lena in figure 3.3). On the other hand 

some larger regions of the image include less detail and they can be covered by larger 

ranges (i.e. the background of an image) which leads to a reduction of the total number 

of maps needed. 
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In order to overcome this limitation an adaptive partitioning scheme is used. The 

most common of these schemes is called quadtree partitioning. Assuming the image 

size is 256x256 pixels the algorithm initially partitions the image into four equally sized 

segments (32x32 pixels each). Each of these segments is recursively subdivided into 

another four equally sized segments, until the quarters are small enough to serve as 

range blocks (normally of size smaller than 16x16 pixels). 

Figure 4.1: Quadtree partitioning of Lena 

Once the image has been partitioned, the best possible transformation for each block 

is found and compared with the original block using a distance metric. If the distance 

between the blocks is lower than a predefined threshold value than the transformation is 

accepted and stored to the output file. Otherwise the transformation is discarded and the 

range block is again recurrently divided into four sub-blocks, and the search for each of 

these quadrants is initiated. This scheme can be continued until either all blocks are 

covered with an acceptable transformation or until a certain minimum range block size 

is reached for which the best matching transformation is used. 

In figure 4.1 the subdivision of the Lena image is shown using the above partitioning 

scheme. It is clear that areas with more detail are generally covered by smaller range 
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blocks than those with less detail. It should be noted here that since the quadtree method 

repeatedly divides the images in quadrants, it works best with images whose dimensions 

are equal to a power of 2. 

Although with this algorithm some additional parameters for each affine transform­

ation have to be stored, such as the dimension of the range and domain blocks and the 

quadtree partitioning level, it produces an increased compression ratio and fidelity of 

the image due to the fewer affine transformations needed to describe the whole image, 

especially when the image contains large uniform regions. 

As far as the compression time is concerned we would normally expect this to be 

significantly reduced because of the fewer comparisons needed. However the compres­

sion time generally increases because the algorithm used in this research initially 

assumes that a given image region can be encoded with a large range block. Therefore 

in the case of complex regions these are unsuccessfully compared with the whole set of 

domain blocks before the region is subdivided to smaller sub-blocks. As each range­

domain comparison is computational expensive these unnecessary comparisons produce 

a significant impact on the fractal image compression time. 

More advanced schemes using not only different sizes but also different partition 

geometries have been implemented. In one of these partition schemes an attempt to 

select the domain pool in a content dependent way is made (this is called the BY-parti­

tioning). Other approaches consider the use of triangles and other polygons instead of 

rectangles. All partitioning schemes possess several advantages and disadvantages. 

For our experiments the choice of the quadtree partitioning is made, because it is 

simple to implement in a recursive and compact way and has been fully developed and 

explored. In addition to this partitioning scheme, the use of non-overlapping domain 
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blocks is adopted because our experiments showed a very small impact in the image 

quality while the improvement in terms of time is significant. 

4.3. Classification Schemes 

Regardless of the type of partitioning that is used to generate the domains and 

ranges, the number of comparisons needed to find a good mapping is the most signifi­

cant factor that determines the execution speed. The first fractal compression schemes 

were time consuming because they were trying all the possible comparisons between 

range and domain blocks and the best matches were used. This is not the case any more. 

Many efficient methods for reducing the number of comparisons are widely used to 

implement good encoding algorithms and decreased execution times. Most of these 

fractal compression algorithms employ a classification scheme. This means that each 

domain and range block is classified to certain categories according to their characteris­

tics. Each range block is then compared only with domain blocks possessing the same 

characteristics. 

Several types of classification schemes have been proposed [6],[26],[31],[35],[41]. 

Notably we mention the classification of Jacquin [6] that classifies a sub-image into 

edge, flat and texture regions. The edge blocks are blocks which contain a distinct edge, 

the flat blocks contain no distinctive features and textured blocks posses some structure 

although no specific edge is present. This classification into the three categories con­

siderably reduces the encoding time but the latter still remains very large since the 

number of the categories is not very large. 

A better approach which permits the classification of the blocks into more categories 

is the one proposed by Fisher [21] [26]. Since this method will be used for the 

implementation of our experiments it will be described in more detail. The scheme first 

classifies the blocks into three categories by the distribution of their quadrant's bright-
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Figure 4.2: The three canonical positions for the brightness level of the quadrants 
of a square sub-image [21] 

ness. More specifically the algorithm takes each sub-image (range or domain) and 

subdivides it into four quadrants, numbered sequentially as shown in figure 4.2. If the 

pixel values for each of these quadrants i for i=1, ... ,4 are r; , ... , r~ where n is the total 

number of pixels, then the average and the variance values are computed using the 

following relations respectively: 

n 

A- = ""r~ I L J 
j=l 

The average Ai represents the brightness level whereas the variance V; the contrast of 

the sub-image. As can be seen, a square image can always be oriented in such a way so 

that its quadrants will fall into one of the canonical positions shown in figure 4.2 [21]. 

These canonical positions define the three major classes which are: 

Furthermore, every sub-image within each of the major classes is sub-classified into 

24 sub-classes depending on the 24 possible different orderings of the variations in 
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intensity (contrast) within each quadrant. This results in the creation of a total of 72 

classes that can be searched or avoided, depending on speed and quality requirements. 

Classifying the sub-images (blocks) by their brightness has the additional advantage 

of reducing the number of the symmetry operations that have to be tested when we 

compare one block to another. Indeed, up to seven tests are eliminated as it is no longer 

necessary to take into account the eight different orientations shown in table 3.2. It is 

only required to test two classes, one for positive and one for negative scaling because 

if the scaling value si is negative the orderings in the classes shown above are rear-

ranged. 

Experiments showed that in practice the consideration of these two different 

orientations, one for positive and one for negative scaling values, lead to a significant 

increase in the compression time. Therefore we can simplify the algorithm even more 

by rejecting the negative Si and only taking its positive values. This was found to have 

little effect on the quality of the image. Results for three different test images are shown 

on the following table: 

Positive and negative scaling Only Positive scaling values 

Image values 

name Compression RMS PSNR Compression RMS PSNR 
time (db) time (db) 

Lena 24.90 9.13 28.91 14.51 10.07 28.06 

Collie 23.99 8.88 29.16 14.49 8.70 29.34 

S .Fransisco 32.25 11.02 27.28 18.41 12.30 26.33 

Table 4.1: Compression efficiency for several test images when we consider only 

positive scaling values or both positive and negative. 

As with any form of classification, it is desirable for a range block to find its best 

match within the same class so that only one class would have to be searched. Unfortu-

nately results show that when we increase the number of classes searched, we also 
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increase both the compression time and the quality of the image, because the optimal 

match is not always in the same class. However, considering the fact that in a real-time 

distributed video system the loss of the image quality in each frame does not signifi-

cantly affect the visual outcome whereas the matter of time is very important we will in 

practice follow the simplified classification scheme described above. 

4.4. A Note on Local Self-Similarity 

Some of the efforts made to further reduce the number of comparisons and decrease 

the execution complexity of the compression algorithm concerned the restriction of the 

distance in the image between the range block and the domain blocks that were tested. 

This was based on the assumption that a range block is more likely to be similar to a 

domain block within its neighbourhood due to the existence of some kind of local 

self-similarity. 

However, our experiments have shown this is not the case. Figure 4.3 shows the 

distribution of the best matched range-domain distance in the image of Lena and the 
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Figure 4.3: Range-Domain distance distribution for Lena image 
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theoretical distribution of the distance for two randomly chosen points in the unit square 

as given by Fisher [21]. The figure shows a good match between the two curves, 

although there is a slight shift of the experimental curve to the right (possibly because 

the range and domain blocks are not just points). The conclusion that derives from this 

is that restricting the search to near neighbours will reduce the possibility to find the 

domain block which best matches to the range block. 

1.5- Domain;16x16 
Range;8x8 

0.5 

0 

RMSerror 

250 200 
300 

350 Range-Domain Eucledian Distance 

Figure 4.4: 3-D distribution of Lena image, partitioned into ranges of size 8x8. 

Despite the previous conclusion it can not be said that a local search scheme doesn't 

work at all. Maybe the best possible mapping within the image is not found, but another 

matching can always be found, good enough to _produce an acceptable approximation of 

the original. In figure 4.4. a 3-D distribution of the range-domain distance can be seen 

for different RMS error values. It can be observed that although the highest possibility 

of finding the best matching is somewhere in the middle of the range-domain distance, 

there is still a great probability to find a reasonable match locally with only a slightly 

larger RMS error. On the other hand this probability tends to be negligible for the very 
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large distances. Considering furthermore the benefit of the significant reduction in the 

number of comparisons, we propose the scheme described in the next section which is 

based on the partitioning of the whole image into large sections and their autonomous 

compression as separate images. 

4.5. Images as Unions of their Compressed Sections 

One of the basic properties of the natural images is that they are closed under the 

clipping operation [5]. This means that if we choose any rectangular region within such 

an image, the sub-image that is created is another real world image. Thus it can be 

compressed separately using the fractal image compression algorithm described above, 

by partitioning it into range blocks and comparing each of them with only those 

domains extracted from this sub-image . 

• f::: I-.. 
1-
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.... 

... p:=.a 
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Figure 4.5: Partition of the image into sections to reduce the number of 
comparisons 

In this scheme as a means of speeding up fractal compression, we are using the 

above property of real world images. The given image is subdivided into several major 

sections (i.e 4 as shown in figure 4.5) and these are compressed independently as if they 

were completely unrelated. For each of them we apply a quadtree fractal compression 

scheme of 3 levels which means that range and domain blocks of three different sizes 

are used to cover the image depending on the detail provided from region to region. In 
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addition a classification scheme, such as the one described in the previous section is 

used. 

This segmentation of the image results in a reduction of the number of domain 

blocks to be compared, since the pool of domain blocks for each part of the image 

consists of all of the overlapped blocks within the section. By using this algorithm, 

each of the range blocks are compared with domain blocks in a smaller neighbourhood, 

thus significantly reducing the number of inefficient comparisons. 

The algorithm was tested by partitioning an image repeatedly, producing 4, 16 and 

64 major sub-images. The size of the domain blocks varied from 32x32 pixels at the 

minimum quadtree level up to 8x8 at the maximum quadtree level for each case. The 

sizes for the range blocks varied respectively from 16x16 down to 4x4. The results of 

this partitioning are given in tables 4.2 and 4.3 and show significant decrease on 

compression time. This decrease is not proportional to the number of sections as 

illustrated on figure 4.6. 

Number of Size of Compression RMS PSNR 
sections section time 

1 256x256 14.51 sec 10.07 28.06 

4 128x128 6.54 sec 11.76 26.72 

16 64x64 4.49 sec 13.61 25.45 

64 32x32 4.43 sec 14.32 25.01 

Table 4.2: The resulting compression time for different partitioning of Lena image 

Number of Size of Compression RMS PSNR 
sections section time 

1 256x256 14.49 sec 8.70 29.34 

4 128x128 6.50 sec 9.68 28.41 

16 64x64 4.56 sec 9.98 28.14 

64 32x32 4.46 sec 9.60 28.47 

Table 4.3: The resulting compression time for different partitioning of collie image 
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Figure 4.6: Number of sections versus compression time. 

It seems that after the second partitioning into 16 sections the compression time 

remains constant. This is because we have already reached a point where only an 

extremely small number of domain blocks have to be compared with each range block 

and most of the delay in the execution of the program is caused by the additional 

comparisons needed for the quadtree partition scheme (as explained above) as well as 

by the initial decimation and classification of the domain and range blocks. In addition 

although we have considerably reduced the number of comparisons, each is computa­

tionally intensive due to the use of the RMS metric. 

Tables 4.2 and 4.3 show that the partitioning also affects the quality of the final 

image since there are fewer domains available to find a good match. This phenomenon 

was expected by the analysis of the diagrams in the previous section. However, the rate 

at which the scheme affects the image quality for three different images, can be seen 

more clearly in figure 4.7. In this figure the x-axis is a logarithmic scale. It can be seen 

that the RMS error increases approximately logarithmicaly with the number of sections. 

This can be explain if we consider the 3-D distribution in figure 4.4. We can see that 

when we restrict the searching in a very small region around the range block (very 
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Figure 4.7: Number of sections versus RMS error 

small euclidean distance), the probability to find a good range-domain match is de-

creasing significantly. 

The images that result when this scheme is applied to the original Lena image (figure 

4.8) using a partitioning of the whole image with a different number of sections, is 

shown in figures 4.9, 4.10, 4.11. Visually there is not a significant loss in detail when 

comparing the uniformly compressed image of figure 4.9, to the image of figure 4.10 

which is the union of the four independently compressed sub-sections. The gain in 

terms of compression time however is very large since the time needed for the 

compression is reduced by more than 50%. Similar conclusions can be drawn from a 

comparison of figures 4.9 and 4.11, although the loss in image quality is now more 

obvious and the decrease in compression time is not so great. 

Another benefit of the scheme is that larger compression ratios can be achieved since 

a smaller number of bits is needed for the storing of the information related to the 

location of the domain block. More over and most important for this work, this method 

can be readily parallelized as we can compress each section on separate processors 

sharing the same memory. 
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A similar scheme has been proposed in the literature by Dudbridge in [24]. His aim 

was to greatly reduce the coding time of an image. In order to achieve this he only uses 

blocks that are directly adjacent, but complexity is added by using a higher order 

Figure 4.8: Original image 

Figure 4.10: Compressed as 4 
independent sections 
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Figure 4.9: Compressed as one image 

Figure 4.11: Compressed as 16 
independent sections 
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intensity scaling function. His results are encodings in less then one second but there is 

a great cost for the compression ratio and also the image quality is poor. 

4.6. Resolution and Hierarchy 

As mentioned before the Iterated Function System (IFS) describes the relations 

between different sub-blocks of the image, namely domain blocks and range blocks. In 

order to efficiently describe this relation the IFS does not need to contain any particular 

information on the size of these blocks. Instead the ratio of the domain to range size, 

DIR, and the total number of range blocks, NR, fitted in the image must be known. The 

ratio is defined in most of the cases to be 2 which means that the domain block size is 

taken to be double the size of the range in order to ensure contraction. Therefore, 

decoding an IFS code can result on different sizes of the final image depending on the 

size of the range block that will be considered. 

For example, let the size of each side of the range blocks to be R = N I MR where 

N is a physical number and MR is the number of range blocks on which the image was 

partitioned. In this case the resulting image will be of size NxN. On the other hand if the 

range size is chosen to be R = N I 2MR the resulting image will be half the size of the 

previous one. If the size of the range block is chosen to be larger than the size of the 

range blocks on which the original image was tiled in order to produce the IFS code 

then a the fractal algorithm creates artificial information. This advantage of the fractal 

algorithm which occurs when a magnified copy of the image is produced is demon­

strated in figure 4.12. The pixelisation phenomenon is easily observed when the image 

is normally magnified. On the other hand the fractal scheme smooths the previous 

phenomenon producing a magnification of higher quality. 

The previous results might seem to be contradictory to the contraction mapping 

theorem which states that in a complete metric space, for every IFS there is only one 
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(a) Normal Zoom (b) Fractal Zoom 

Figure 4.12: A magnified region of the baboo image. 

and unique corresponding attractor. However the different attractors (in size) shown in 
~ 

figure 4.13 ( a),(b) and (c) can be consider~ to be attractors on different spaces, for 

instance IR64, lR 128 and R256 respectively. Assuming for simplicity that the different 

image attractors are one dimensional fixed point vectors, we can define in more mathe-

matical terms the relation amongst them as follows[23]: 

Definition: Assume f E L oo [0,1}. Than we can define a function fr(i) such that: 

4 

f ,(I) ~ r J f(x)dx 

(i -I)} 

where fr(i) is said to be the function f(x) at resolution r and i=l, ... ,r. The function 

fr1(i) is said to have a higher resolution than the function fr2(i) when r1>r2. 
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Theorem: For every IFS code, there is a unique functionf(x) such that an image vector 

serves as the attractor of the IFS if it is equal to the function f(x) at resolution r = 

j = l, ... ,N 

The proof of the this theorem [25] produces the following corollary: 

(a) 

(b) 

Figure 4.13. Decoding of the same IFS on different spaces 
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Corollary: Let VN be a fixed-point of a given IFS code in the JRN space. Then the VN 
2 

will be a fixed point of the same IFS but in the JRN!2 space if the following equation is 

in effect [23]: 

v~(l) = !cv~2z- t) + v~2Z)), l = 1, ...• ~ (4.1) 

Proof: 

l(~) 

VN(l) = JN(l) = N I f(x)dx = 
2 2 2 

(l-1)(~) 

2l(~) 

~ ~ I f(x)dx ~ 
( (2l-1 )-1 )(~) 

- l N I f(x)dx + N I f(x)dx ~ 
[ 

(2l-l)(~) 2l(~) l 
-

2 ((2l-l)-l)(~) (2l-l)(~) 

= !if~2l-1) + !~21)) = 

= !(V~2l-1) + V~2l)) 

The final equation denotes the relation of a coarser resolution image vector to its finer 

resolution one (zoom out) and in practice states that in order to compute an element of 

VN/2 from a given vector VN the average of two adjacent elements of VN have to be 

taken. On the other hand when we want to calculate the finer resolution vector VN by a 

coarser one (zoom in) the following equation has to be applied: 

where k = l, ... ,MR and n = l, ... ,RN 
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The RN and MR parameters define the size and the number of the range blocks 

respectively whereas the oD~ :: 0~N = ~N defines the shift between consecutive do­

main blocks and lrlk indicates the domain block which best mapped the k-th range 

block. The parameters sk and Ok are the scaling and offset factors. The above equation 

is proved in [25]. We can easily observe that the above equation is very similar to the 

transformation WN which is used to create the fixed-point VN iteratively by domain 

blocks taken from an initially arbitrary image of the same resolution as described in 

chapter 3. The difference is that with transformation (4.2) each iteration produces 

vectors of a higher resolution 

Both equations ( 4.1) and ( 4.2) can be used to describe the relation not only between 

the aforementioned vectors but also between the vectors VN/2 and VN/4 and so on. Thus 

a hierarchical structure is created which derives naturally due to the self-similarity 

property of the fractal structures. An example of this hierarchy is shown in figure 4.13 

where the decoded images (a), (b) and (c) are derived for different sizes of range 

blocks. In this hierarchical structure the higher level is considered to be the image with 

the coarsest resolution (figure 4.13 (a)). In order to find the smallest possible attractor 

size which can serve as the top level, all we have to take into account is that the 

smallest range block size is at least 2x2 pixels. Therefore the baboooimage in figure 

4.13 (a) is the smallest possible one. 

4.7. Speeding Up the Decompression 

Although the process of decompression for a fractal coder is relatively fast there are 

several techniques that can be applied in order to speed it up even more and therefore 

approach real-time execution on a typical Personal Computer or workstation. One of 

the most efficient algorithms is attributed to Z.Baharav et al. [23][25] and is based on 
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the previously described fractal characteristic of resolution independence and the 

hierarchical structure which derives from this. 

In particular the main idea is to apply the iterations needed for the decompression in 

such a way that a reduced version, of the original image is produced which can be 

resized to its original size simply by using the two dimensional equivalent of equation 

4.2. Indeed as shown in figure 4.14 the time needed for the reconstruction of the image 

is almost proportional to the size of the reconstructed image. Thus if we could apply the 

computationally highly demanding iterations needed for the decompression to a reduced 

version of the image and then rescale it to its original size, this could considerably 

reduce the number of calculations needed and the execution of the algorithm could be 

made much faster. 

-
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Figure 4.14. Decoding time versus size of the reconstructed image 
using the conventional decompression algorithm. 

The resulting improvement in the speed of execution of the decompression algorithm 

is shown in figure 4.15. The execution time is reduced significantly and becomes less 

than one second for image sizes up to 256x256. This gain becomes greater as the size of 

the reconstructed image increases. The rescaling from the top level attractor in the 
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Figure 4.15. Decoding time versus size of the reconstructed image 
using the hierarchy based decompression algorithm. 

hierarchy to the desirable final size achieved in such a way occurs without any further 

loss of detail as shown in figure 4.16. 

4.8. Choosing a different metric 

As we mentioned before the choice of the metric is of great importance for fractal 

compression. Depending on the metric, a more rapid contraction, or no contraction at 
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Figure 4.16. Comparison of the PSNR versus size of the recon­
structed image diagram for both hierarchical and conventional 
decompression algorithms. 
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all, of the transformations can be determined. Until now the RMS error has been used 

because of the several advantages it provides. A significant advantage is that the scale s 

and offset o parameters can be easily calculated as part of the range-domain compari-

son process using the equations (3.10) and (3.11) of chapter 3. 

However the calculation of the RMS error contributes significantly to the execution 

time of the algorithm since the routine that compares the range-domain blocks has been 

found to be by far the most time consuming process. Therefore a different metric is 

proposed in order to overcome the computational complexity of the RMS error. This 

metric was the median metric which is inherited from the 0 norms and is defined as 

follows: 

N N 

d(j,g) = L Llf(x,y)-g(x,y) I (4.3) 
x=ly=l 

where N is the total number of pixels vertically and horizontally and f and g denote 

functions representing the sub-images to be compared. 

This metric derives from the generic form of the LP metrics [22]: 

1 

dp(f.g) ~II f-g 11, ~ u~ f -g ~pr 
when p=l, whereas the L2 metric (for p=2) corresponds to the RMS error. 

In order to calculate the complexity of the new metric we will define S as the 

computation time of one summation/subtraction and M the time of one multiplication. 

Than the total computation time needed for the calculation of the RMS error will be: 

whereas for the median metric the same , quantity will be only: 
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tmed = Nzs 

However when we use the metric of equation (4.3) to make the comparisons between 

the range and domain blocks the problem of calculating the offset and scaling para-

meters arises. It is obvious that since the equation is of first order there is no minimum 

and therefore we can not minimize the partial derivatives with respect to s and o as we 

did with the RMS metric in chapter 3. 

In order to solve this problem, the use of a predefined constant value for the contrast 

setting was proposed. The contrast is represented by the scaling parameter such that 

O<s<l in order to ensure contraction. In practice a value of s=0.25 has been found to 

be a reasonable value to use, as for larger scaling values the reconstructed image is 

darker than the normal one and vice versa for smaller scaling values. The offset 

parameter represents the brightness setting and thus the difference in the brightness of 

the two blocks that are compared can be considered to be the difference of their average 

pixel intensities, as shown in equation 4.4: 

N N N N 

I IJcx,y) I I g(x,y) 
(4.4) 0 = l------,--

lf2 
x=Iy=I x=·I y= 1 

where the f(x,y) and g(x,y) represent the range block and the decimated domain block 

which has the same size with the range respectively. Again the o parameter is quantized 

in order to be stored more compactly. 

Unfortunately, in practice the process did not appear to perform well. The major 

problem was that the reconstructed image contained pixelisation artifacts as can be seen 

on the Lena image of figure 4.17(a). This phenomenon is a natural consequence of the 

choice of constant s parameter. In order· to eliminate this, very small range blocks 

should be considered to tile the image (2x2, which is the smallest possible). In this case \ 
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(a) Minimum Range size 4x4 (b) Minimum Range size 2x2 

Figure 4.17. Lena encoded using the median metric. 

the quality of the reconstructed image becomes extremely high as can be seen in figure 

4.17 (b), and the pixelisation phenomenon becomes negligible. However, with such 

small range blocks the compression ratio is very low and the compression time becomes 

large. 

A further problem is that in order to use the median metric we have to calculate the 

absolute value of the image difference and this process appears to be almost as com­

putationally demanding as the multiplication process. Thus we don't finally expect any 

considerable improvement in terms of compression time. 

Comparative results between the RMS metric and the median metric can be seen in 

table 4.4. for different image tiling. The choice of the tolerance for both metrics did not 

seem to influence significantly the quality of the final image, thus a relatively large 

tolerance value was chosen for both cases, in order to improve the compression time 

and compression ratio. The table shows that the fractal compression algorithm based on 

the RMS metric can achieve higher compression ratios and better quality even at 

coarser tiling of the image. 
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RMS metric Median metric 
Size of Ranges 

Comp. Comp. PSNR Comp. Comp. PSNR 
Min Max Time Ratio Time Ratio 

32x32 8x8 7.53 s 26.71 24.19 5.93 s 28.89 20.91 

8x8 8x8 9.44 s 22.33 25.28 6.11 s 27.38 21.31 

16x16 4x4 26.08 s 9.10 28.91 19.63 s 6.36 23.97 

4x4 4x4 36.59 s 5.12 29.57 20.88 s 6.39 23.98 

8x8 2x2 219.49 s 3.97 34.49 234.27s 1.68 27.17 

2x2 2x2 889.36 s 1.18 42.13 257.52 s 1.50 28.06 

Table 4.4: RMS-Median metric comparison for different partitionings. 

The superiority of the RMS metric becomes apparent in figures 4.18 and 4.19. 

Figure 4.18 shows the compression time versus PSNR for the two metrics. The vertical 

axis is in logarithmic scale in order to illustrate more efficiently the difference of the 

two curves. It can be seen that better signal to noise ratios can be obtained for the same 

compression time when the RMS metric is used. On the other hand, figure 4.19 shows 

the compression ratio versus PSNR for both metrics. Again, larger compression ratios 

for the same signal to noise ratio are achieved with the RMS metric. Therefore the RMS 

metric appears to be the better choice of metric for fractal algorithm. 

---Median Metric 

RMS Metric 

1L-----~~----_.----------------------~ 

20 25 30 35 40 

PSNR (db) 

Figure 4.18: PSNR versus compression time for both 
median and RMS metrics. 
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Figure 4.19: PSNR versus compression ratio for both 
median and RMS metrics. 

4.9. Summary 

In this chapter, several improvements of the fractal compression and decompression 

algorithms were introduced. The first improvement was the quantizing of the coeffi­

cients of the affine transform, in order to obtain more compact storing, using less bits 

per coefficient. In addition, several adaptive partitioning schemes were discussed in 

order to improve the image quality and the compression ratio. Amongst them the 

quadtree partitioning was chosen for our implementation since it is relatively simple to 

implement in a recursive way and performs well. At this stage, the use of non-overlap­

ping domain blocks was adopted, since this was found to have a small impact in the 

image quality while the decrease of the encoding time was significant. 

In order to reduce the number of range-domain comparisons, which greatly m­

fluences the execution time, a classification scheme was considered. This scheme was 

classifying the range and domain blocks into 72 classes according to the average pixel 

intensity and the variance of their quadrants. Furthermore, a scheme where the image 

was considered the union of its compressed sections was proposed. In this scheme the 
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image was partitioned into a certain number of sections (4, 16 or 64) and each section 

was compressed individually as if they were individual images. The results showed 

significant decrease in the execution time but this also influenced the image quality. The 

image quality was reduced significantly specially when a large number of sections (64) 

was considered, since (as it was proved) images do not imply local self-similarity. 

The hierarchical interpretation of the image resolution was represented in the next 

stage. This property was used to speed up the decompression process. The time con­

suming IFS iterations on an arbitrary image were applied to produce a reduced version 

of the image and then this version was rescaled without any loss in detail at its normal 

size. The latter resulted in significant decrease of the execution time. 

Finally the use of the median metric as an alternative to the RMS was investigated. 

Results showed that the RMS metric significantly outperformed the median metric, 

therefore the RMS was finally adopted for the implementation of the fractal compres­

sion algorithm. 

Despite the significant improvement obtained using the above techniques in image 

quality, compression ratio and execution time (for both compression and decom­

pression), the compression time remains relatively long. Therefore, in the current 

implementation it can not be used to encode video frames in real-time and other 

techniques have to be considered to further reduce it. Such techniques are investigated 

in the next chapter. 
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Chapter5 

FRACTAL CODING OF IMAGE 
SEQUENCES 

Having examined several techniques to improve the fractal image compression algo­

rithm we will now attempt to apply and optimise these techniques for image sequences, 

namely video. As mentioned in the previous sections the fractal coding of still images 

has proven to be promising and efficient. Even more, its properties seem to satisfy 

many of the requirements for video streams. It provides for example fast and hierarchi­

cal decompression by progressively improving the images as part of the basic algorithm 

and it is scalable to arbitrary image sizes with good results. 

Considering these advantages and the c()ntinuously increased demand for video 

coding we can explain the efforts that have been developed recently to extend the 

algorithm for compressing image sequences. It is the aim of this chapter to investigate 

several of these efforts in order to implement the video encoding as applied in distrib­

uted systems more efficiently, whereas the decoding process will approach as much as 

possible the real time execution. 

5.1. Volume Fractal Coding of Video Frames 

Three major types of fractal video coding have been reported in the literature. The 

simplest one is to encode every frame individually. This means that similar to the 
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Motion-JPEG compression method, every frame is considered to be an intra-frame. 

However, this technique is inefficient because the correlation between the consecutive 

frames is not taken into consideration. Therefore the temporal redundancy remains and 

the very low bit-rates demanded by the video applications cannot usually be met. 

Furthermore the fast compression of each frame needed for real-time applications is 

almost impossible to achieve by this approach. 

Another method for fractal video compression involves the extension of the algo­

rithm into three dimensions where the third dimension is considered to be time. The 

video sequence is then compressed and decompressed as one large volumetric data. Not 

many approaches of this type have been reported in the literature but one method is 

reported by Lazar et al [27]. This true three dimensional compression implies a set of 

3D domain cubes being mapped onto 3D range cubes. The whole process is based on a 

three dimensional transform which can be specified using only a few more bits than its 

two dimensional equivalent. Furthermore it allows the encoding of a large number of 

2D range blocks using the same transformation. Essentially the algorithm is using 

prediction to find the best mapping, not necessarily for the current frame but instead for 

a series of frames. 

In particular the algorithm of Lazar [27] operates on what he has termed R-frames 

and takes domain blocks from the D-frames. The range cubes are portions of the 

R-frame area while the domain cubes do exist within the D-frame area. The R-frame 

and D-frame areas have to end on the same frame but the D-frame area may begin 

before of the R-frame area as shown in figure 5.1. 

An adaptive partitioning scheme appropriate for 3D video blocks is also represented 

by Lazar et al.[27]. This scheme is summarized in figure 5.2. In essence when the 

algorithm can not find a good mapping, instead of splitting the range cube into eight 

identical smaller cubes it splits it either spatially into 4 smaller blocks or temporally 
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Domain Cubes 

Frame 

D-Frame (t) 

Figure 5.1: Tiling of the Video Signal into Domain and Range Cubes [27] 

into 2 blocks. The choice of partitioning is determined by the error, if it is evenly or 

unevenly distributed along the block respectively. 

These fractal video schemes which treat the video signal as a volume data and the 

time domain as a third spatial dimension have several disadvantages. First of all such 

6) 
• ~~:-Y_E_S--tiJt• 
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YES IJt 
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6) No Splitting 

Splitting 
Spatially 

~ Splitting 
~ Temporarily 

Figure 5.2: 3-D adaptive partitioning [27] 
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schemes demand huge amounts of memory to serve as a frame store since during the 

decoding several frames have to be stored in order to create the necessary volume data. 

Furthermore the results of the early investigations are not encouraging with regards to 

image quality and computational requirements. 

For instance, the additional third dimension increases significantly the number of the 

possible orientations and as a consequence the complexity of the algorithms becomes 

very large. Some efforts have been made to reduce these orientations by considering 

that in most of the natural video sequences many of these orientations do not make 

sense. Therefore it can be beneficial to restrict to separate spatial and temporal trans­

formations. However the problem of the high complexity still remains in comparison to 

the 2D scheme. The decompression process might require as well multiple iterations to 

achieve convergence. 

A real-time distributed video through a telecommunication network system requires 

for the signal to be continuously compressed and decompressed and not transmitted as a 

whole. Therefore other schemes based on the still fractal image coding will be exam­

ined in more detail. 

5.2. Still Fractal Image Coding for Image Sequences 

The most commonly used type of video coding involves the application of fractal 

techniques such as the ones already described in the previous chapters for the coding of 

still images, to the video stream. Unlike the simple fractal coding described above, 

which considers each frame individually, the approaches of this type take into account 

the correlation between the consecutive frames and apply several techniques in order to 

reduce the temporal redundancy. 

For instance, in [28] Reusens suggests a tri-dimensional fractal video compression 

technique. This approach is based on an appropriately extended affine transformation 
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defined as the composition of a geometric (spatial) part and a massic (temporal) part. 

The temporal part of the transformation has the following form: 

where the s and o parameters represent again the contrast and the brightness shift 

respectively. A three-dimensional adaptive partitioning of the sequence, similar to the 

one used in [27], is adopted in order to enable one to vary in an optimal way the size of 

the blocks according to their temporal and spatial statistical properties. 

Another, simpler attempt, to reduce the temporal redundancy is called conditional 

block replenishment. This scheme uses constant blocks for those areas that can be 

sufficiently covered by them and transmits mappings only for those blocks that are 

sufficiently complex. 

Such a simple scheme was investigated in order to implement our video system. 

Each original frame was tiled adaptively using a common partitioning scheme such as 

the quadtree partitioning. Before we start searching for the best range-domain mapping, 

every range block is compared to the corresponding range block of the previous original 

frame. The comparison is made by calculating the RMS distance of the two blocks. If 

this distance is found to be small enough (less than a predefined tolerance value) then a 

specific character is stored which will inform the decompressor that this range block 

can just be copied from the previously reconstructed frame. Otherwise the algorithm 

continues and searches for best range-domain mappings where the pool of domains is 

created by domains of the previous original frame. This can be considered as a crude 

form of motion detection. 
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Figure 5.3: Comparison of corresponding range blocks to reduce 
temporal redundancy 

The scheme is represented graphically in figure 5.3. If the algorithm can not find a 

good range-domain mapping, the range block is subdivided into four quadrants and for 

each one of them the previous process is repeated (quadtree partitioning). Although the 

basic scheme has been already described there are still several points that require some 

more discussion. One of them regards the image reconstruction process. 

Generally, as mentioned in the previous chapters, a standard number of iterations has 

to be used for the reconstruction. This must be large enough to ensure convergence 

since the cost of testing for convergence would outweigh the savings of having fewer 

iterations. Therefore the process suffers from relatively long decompression times 

unless we use hierarchical representation or other complex algorithms which speed it 

up. In order to overcome the problem in a more natural way we will consider the use of 

the previously decompressed frame as the initial image. When this is done, each frame 

can be decoded successfully, and in most cases after just one iteration since the con-

secutive frames have a high correlation. This speeds up the decompression process even 

more and makes unnecessary the hierarchical reconstruction described in the previous 

chapter. 
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Another point that has to be discussed regards the first frame in the sequence. This 

image can not be encoded as described above, or reconstructed in the normal way 

because its predecessor in both cases is an empty, uniformly black image. In practice 

there are two possible options that can be applied: 

• The first frame can be compressed as a still image, using a conventional still 

image compression technique. 

• Alternatively we can just consider as initial input image in the decompressor, 

the first frame of the image sequence which will be distributed together with the 

IFS code of the first frame. 

Although the latter method has the advantage of starting the process from an original 

reference frame, which will positively influence the quality of the next frames, it 

decreases the total compression ratio of the video signal. Furthermore, the resolution 

independence property of the algorithm is lost since the reconstruction can only be 

made at the size of the original image. 

In practice we will implement both of these schemes in order to extract useful 

conclusions regarding the compression and decompression time, and the quality of the 

reconstructed frames. 

5.3. Implementation and Results 

Experiments were performed on two different image sequences, namely the "Tre­

vor" and "Miss America" sequences, both of them being talking heads. The choice of 

these sequences was made because of the relatively small motion they provide, the large 

uniform background areas they include and also because these kind of video frames 

dominate on a video-conferencing system. 

The video sequences are considered in practice as sequences of functions jj, .f2, ... ,fn 

where n is the total number of frames. These functions have the form described in 
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section 2.1. At each stage, the current original frame ii is tiled into range blocks using a 

quadtree partitioning scheme of two levels. Consequently the block size may vary from 

16x16 to 4x4. The range blocks are then characterized as static and dynamic: 

• The static range blocks are those blocks which remained almost identical com-

pared with the corresponding area in the previous frame ii-I; therefore we just 

copy this area directly from the predecessor. 

• The dynamic range blocks are those blocks which have changed significantly 

compared with the corresponding blocks of the predecessor ii-I, due to the 

motion of an object. For these ranges, a good range-domain mapping, for which 

the rms error is below a certain encoding threshold tr, has to be found. The pool of 

domains is constructed from domain blocks in the previous frame ii-I, which are 

twice the range size. In order to reduce the comparisons both the ranges in frame 

ii and domains in ii-I are classified in the 72 classes as described in the previous 

chapter. 

The characterization of the range blocks is based on the calculation of the Mean 

Square error between the corresponding ranges in consecutive frames: 

Mx My 

iJR; = M:MrL L(~k(x,y)- ~k-I(x,y) f (5.1) 
x=l y=l 

where Mx and My are the numbers of pixels of the range block horizontally and 

vertically, and .fk and fk-I represents the kth and (k-l)th frame respectively. If the iJRi 

error is below a certain threshold, q, then the range block is static otherwise it is taken 

as dynamic. We will refer to the q threshold as the temporal tolerance and its choice 

will be set empirically throughout our experiments. On the other hand, the encoding 

threshold 1f will be set in a constant value 1f=64 for most of our experiments in order to 

evaluate the contribution of the temporal tolerance on the results. 
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The scheme which compresses and decompresses the first frame taking into account 

the first original one was initially considered. In figure 5.4 and 5.5 we can see the 

fluctuation of the PSNR by frame for both the Trevor and Miss America sequences 

respectively. The three curves in the same diagram represent the fluctuation for differ-

ent compression ratios which resulted for various temporal tolerance settings. The 

PSNR seems to be highly correlated to the value of the tolerance. 

40~----------------------------------~ 

35 

20~--------------------------------------~ 

0 10 20 30 40 50 60 70 80 90 100 
Frame 

Figure 5.4: PSNRfluctuation by frame of the Trevor sequence 
for different compression ratios. As first frame is taken the first 
original one. 

Large tolerance settings, result on smaller average PSNR and vice versa. In addition 

it can be seen that for large values of the tolerance setting, the first few frames have 

high image quality due to the original first frame which was used as reference point. 

However the image quality is significantly reduced until around the lOth frame. After 

that point the image quality continues to decrease, although sudden increases may be 

observed as well, depending on the motion of the talking head. Particularly in the case 

of many sudden movements this problem becomes even more intensive and the method 

suffers by the drawback of unpleasant visual artifacts. When a block that was being 

encoded with a constant block suddenly needs a mapped block, then there is an obvious 
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40~------------------------------------~ 
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Frame 

Figure 5.5: PSNRfluctuation by frame of Miss America se­
quence for different compression ratios. As first frame is 
taken the first original one. 

change in the visual appearance of the decoded block. Such intensive phenomena result 

in unacceptable video signals. 

On the other hand when we set very small temporal tolerance values the areas of the 

frame that are covered by static ranges are very small and each frame is in fact 

decompressed as a still image. This results on an almost constant quality throughout the 

decompressed signal and the considered original first frame does not seem to have any 

effect .'Onthe signal quality. The visual artifacts described above are not intensive 

anymore and they tend to be completely eliminated as we approach tolerance values 

close to zero. 

The disadvantage of setting a very small temporal tolerance value however is that 

this results in relatively larger compression and decompressiQn times as can be seen in 

figures 5.6 and 5.7 respectively. These figures show results for the two different video 

sequences mentioned above. In figure 5.8 the variation of the compression ratio with 

respect to the temporal tolerance value is shown whereas in figure 5.9 the average 

PSNR of the 100 first frames of the sequences versus the temporal tolerance can be 
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seen. In every case the value of the temporal tolerance seems to influence significantly 

these parameters. 
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Figure 5.6: Compression Time versus 
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Figure 5.9: Average PSNR versus Temporal 
Tolerance. 

The latter can be explained if we compare the total area (white area) of the frames 

that is covered by static ranges, for different tolerance settings. This is shown in figure 

5.10. For small tolerance values this area is negligible and the frames are almost 

encoded as still images whereas for large tolerance values only a small portion of the 

frame has to be encoded. 

As we have seen the distribution and use of the first, original frame only influences 

the quality of the first few frames. It is therefore necessary to distribute one original 

frame in a regular basis in order to keep the quality of the whole video signal at 
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[ 

(a) Tolerance 4 (b) Tolerance 16 (c) Tolerance 50 

(d) Tolerance 4 (e) Tolerance 16 (j) Tolerance 30 

Figure 5.10: Frame 15 of Miss America and Trevor Sequence for different 
temporal tolerance settings. The white area is covered by static range blocks. 

acceptable standards. However the latter may affect the efficiency of a distributed video 

system especially when we deal with images of larger size or colour images which 

require a large number of bits for their representation. 

5.3.1. Compressing Every Tenth Frame as Still Image. 

In order to overcome the problem of the significant loss of image quality after a few 

frames a scheme which compresses as a still image every tenth frame including the first 

one, was adopted. This scheme is inspired by the MPEG standard and aims to limit the 

transferring of the produced artifacts from frame to frame through the static range 

blocks. 
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The first frame is compressed as a still image because the quality of this frame will 

influence the resulting quality of the following ten frames. Doing this allows a 

uniform implementation of the algorithm and it makes the resulting signal completely 

independent to the original one since there is no need to distribute any original frame. 

However it is now necessary to apply several iterations on an arbitrary image in order to 

successfully reconstruct the first frame which is very important for the quality of the 

following ten frames. Since this process is time consuming we used a hybrid scheme. In 

this scheme the first frame was decoded by an hierarchical method while the remaining 

frames were decoded by simply applying the IFS code on the predecessor frame, once. 

As a result of this approach, the total quality of the video signal is significantly 

improved for both Trevor and Miss America sequences as can be seen in figures 5.11 

and 5.12 respectively. The intensive decline observed on the previous scheme after the 

first few frames is now missing. Instead we can observe some steep fluctuations 

especially for higher tolerance values. This is because the technique that was used to 

detect the motion is naive and at high tolerance values it can not always provide 
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Figure 5.11: PSNRfluctuation by frame of the Trevor se­
quence for different compression ratios. Every tenth frame 
is compressed as a still image. 
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Figure 5.12: PSNRfluctuation by frame of Miss America 
sequence for different compression ratios. Every tenth 
frame is compressed as a still image. 

satisfactory motion detection, resulting at a steep decrease of image quality immediately 

after the frame that was fully compressed. 

Furthermore, in figures 5.11 and 5.12 there are some points where the fluctuations 

become even steeper and the recovery of the quality when we have a fully compressed 

frame is not so complete. This phenomenon is due to the sudden movement of the 

talking head at points which result in a large difference image between the consecutive 

frames. Therefore, it might be inadequate to apply the transformations only once on the 

previous frame, in order to reconstruct the next one at high quality. 

Another point that has to be discussed regards the execution time for both the 

compression and decompression processes. In figures 5.13 and 5.14 the curves of the 

compression and decompression time, versus the temporal tolerance, can be seen and 

compared with the corresponding curves of the previous scheme as shown in figures 5.6 

and 5.7. It is obvious that both processes need more time to execute but this increase is 

not too significant when the improvement in signal quality is taken into account, as 

shown in figure 5.15. 
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the results of the previous scheme. 
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Figure 5.14: Decompression Time versus 
Tolerance when compressing as still images 
every tenth frame. The dashed lines show the 
results of the previous scheme. 

Furthermore, although figure 5.16 appears to show that the compression ratio is 

smaller than before, this is not the case. In practice the uncompressed first original 

frame has to be included in the decompressed signal of the previous scheme (narrow 

dashes) which decreases significantly the compression ratio depending on the total 

number of frames. 

It can be concluded then that this scheme considerably improves the efficiency of the 

fractal video compressor and decompressor compared to the previous one as the unac-

ceptable artifacts have been now eliminated. However, it still suffers from the drawback 
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Figure 5.15: Average PSNR versus Temporal 
Tolerance when compressing as still images 
every tenth frame. The dashed lines show the 
results of the previous scheme. 
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Figure 5.16: Compression Ratio versus 
Temporal Tolerance when compressing as 
still images every tenth frame. The dashed 
lines show the results of the previous 
scheme. 
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of relatively high compression and decompression times. Another disadvantage is that 

these times are not the same for every frame since some of the frames are fully 

compressed. This results on a non continues video signal which pauses at intervals 

(equal to the number of the partially encoded frames) between two consecutive fully 

compressed ones (currently 10). 

5.4. Encoding Video Frames with Regard to the Encoded Predecessor 

An alternative scheme to that described in the previous section was examined in 

order to provide more efficient fractal video compression and decompression and to 

eliminate the drawbacks described above. This scheme is similar to the previous one 

but instead of comparing the range blocks at each frame with ranges or domains in its 

original predecessor it makes the comparisons needed with the previously encoded · 

frame. 

We will now consider this in more detail. Assume that fi represents the ith original 

frame and gi the corresponding encoded frame such that gi fi. Then, the frame fi is 

quadtree partitioned into range blocks of different sizes, ranging from 16x16 to 4x4. 

Each of these range blocks are first compared with the corresponding blocks in the 

previously encoded frame gi-l which have the same size with the ranges and sit in the 

same x and y position. 

For the comparisons, the Mean Square Error as defined in equation (5.1) is used. If 

this is below a predefined temporal tolerance value then the range block is characterized 

as a static block and it is copied from the &-1 frame. Assuming that the affine trans­

formation has the general form: 

w(f(x)) = s(x)f(m(x)) + o(x) 

the latter is equivalent with the above affine transformation, if we take the scaling 

parameter to be s(x)=l and the offset parameter o(x)=O. The corresponding blocks in 
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the previously encoded gi-l frame can be considered as domain blocks of the same with 

the range block size, and at position m(x)=x. 

If on the other hand the Mean Square Error is found to be above a certain temporal 

tolerance the range block is encoded in the standard way using domain blocks from the 

gi-l frame which are twice the size of the range blocks to find the best match. In order 

to reduce the search both the ranges and the domains are classified into 72 categories 

using the classification scheme described in the previous chapter. 

The mapping of static range blocks with domain blocks of the same size might seem 

to contradict the contraction theorem. However, since each image is encoded in terms of 

its encoded predecessor, there is no need for the contractivity condition. Using contrac­

tive transformations will only result in reduced errors because the artifacts of the 

previous frame will be reduced in size[33]. 

For instance, suppose that the union of these mappings define an IFS. Then each 

affine transformation satisfies the following relation: wd.fi-1) .fi where Wi is now a 

more general transformation which includes motion compensation and some type of 

spatial encoding,.fi is the ith frame of the original sequence andfo=O. Assuming every 

wi is contractive then the contraction theorem states that there is a positive number s<l 

such that: 

d(wj(f), wi(h)) < s d(f, h) 't/f, h E R2 

where d defines a metric. In addition, if g,h are encoded image functions they will 

satisfy the equation wdgi-1 )=gi .fi and go=fo. Considering all the above the following 

can be extracted [33]: 

d(gi, hj) = d(wi(gi-1), wi(hi-1)) 

< s d(gi-1•hi-d 

< si d(go, ho) 
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From this we can see that if i --+ oo then d(gj4) --+ 0, which means that the errors on 

the frames will disappear when the transformations are contractive. 

Based on this latter property the problem of the first frame can be ignored and it may 

reconstructed by applying the transformations only once. This results on a first frame of 

low quality and blocking effects. However, the initial problem of blocking will disap­

pear rapidly in the following frames since domain blocks that are twice the size of the 

range blocks are used to map the dynamic ranges. This phenomenon can be seen in 

figure 5.17 for Miss America sequence. For large temporal tolerance settings the 

elimination of the initial blockness is slower than for smaller settings. The latter can be 

observed in figures 5.18 and 5.19 which shows the PSNR fluctuation for different 

compression ratios. The image quality is low for the first few frames but it soon 

improves up to an almost constant value which depends on the compression ratio. 

Therefore it is not necessary any more to fully compress frames in a regular basis as we 

did with the previous scheme. The process of the encoding and decoding needs almost 

the same time to be implemented for every frame. The decoding time is only slightly 

influenced if there is sudden motion. 

(a) first frame (b) second frame (c) third frame 

Figure 5.17: The reconstructed first three frame of the Miss America 
sequence. The elimination of the initial blackness is obvious. 
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Figure 5.18: PSNRfluctuation by frame of the Trevor sequence 
for different compression ratios. We consider comparisons with 
the previous encoded frame. 

In practice there are many significant advantages of this scheme. The increase of the 

image quality due to the minimisation of the errors in the previous frames allows us to 

set even larger temporal values thus improving both the compression ratio and the 

encoding and decoding time. In figures 5.20, 5.21 and 5.22 the variation of the average 

PSNR, the compression time and the decompression time with respect to the compres-
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Figure 5.19: PSNRfluctuation by frame of the Miss America 
sequence for different compression ratios. We consider com­
parisons with the previous encoded frame. 
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Figure 5.20: Average PSNR versus Compression Ratio when compressing 
with respect to the previous encoded frame. The dashed lines show the re­
sults of the previous scheme. 
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Figure 5.21: Compression Time versus Compression Ratio when 
compressing with respect to the previous encoded frame. The 
dashed lines show the results of the previous scheme. 

sion ratio are shown respectively and compared with the corresponding variations of the 

previous scheme (dashed lines). 

In particular, figure 5.20 shows that the decrease of the image quality for larger 

compression ratios is not as steep as before. Therefore compression ratios of over 200: 1 

can be achieved for acceptable image quality. On the other hand figures 5.21 and 5.22 

show that the compression and decompression times are larger for small compression 

ratios. However faster implementation of the algorithms can be achieved in fact, if we 

consider higher compression ratios. For example, on a modest workstation, we achieved 
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Figure 5.22: Decompression Time versus Compression Ratio 
when compressing with respect to the previous encoded frame. 
The dashed lines show the results of the previous scheme. 

almost 4 frames per second for the decompression and 2.5 seconds per frame for the 

compressiOn. 

The above scheme is similar to the one accredited to Fisher et al[33]. Fisher's 

scheme also encodes each frame using image peaces from its encoded predecessor. The 

difference is that instead of searching static areas, it considers a pool of domains on the 

previously encoded frame which have the same size with the range block. Then his 

algorithm tries to find an appropriate transformation by searching throughout this 

domain pool, the best range-domain mapping. 

5.5. Summary 

In order to efficiently implement fractal compression techniques on a video signal 

the temporal redundancy has to be removed. Compression schemes that implement 

three-dimensional fractal compression have been described and found to be inappropri-

ate for a real-time video distribution system since they handle many video frames at 

once and the decoding process requires all of these frames to be considered simulta-

neously. 
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Three different schemes which extend the still fractal compression techniques to 

include the temporal redundancy were investigated. All of them were based in the 

quadtree partitioning of each frame into ranges and the characterization of these blocks 

as static and dynamic, depending on the difference of this block with its corresponding 

predecessor. The main difference between these schemes was the way in which they 

handled the first frame, which has no predecessor. In the first scheme, the original 

frame was considered while the second one implemented a full encoding and decoding 

on an arbitrary frame. In addition in this scheme, implementation of a full compression 

in a regular basis (every 10 frames) was used, in order to improve the quality of the 

signal which was contained many artifacts in the first scheme. 

In the last scheme, the comparison of each frame with its encoded predecessor was 

considered. Although it may appear that this will increase the execution time of the 

encoding since it requires that the frames are decoded at the same time, in practice the 

scheme performs much better than the previous ones, as far as the encoding and 

decoding time needed and the resulting image quality for the same compression ratios. 

However, this performance is still some distance from a real-time implementation on 

the SUN microsystem IPC station which was used for our experiments. The decom­

pression process has to be speeded up only by a factor of 6 which is surely achievable 

with an improved workstation, while the encoding has to be speeded up almost 70 times 

to achieve real-time execution. Therefore more optimal algorithms for fractal compres­

sion and other hardware topologies (i.e. parallel DSPs) have to be considered in order to 

integrate a video conferencing system based on the fractal block coding method. 

87 



Chapter 6 Data Distribution and Networks 

Chapter6 

DATA DISTRIBUTION AND 
NETWORKS 

We have already investigated several techniques for implementing fractal video com­

pression and examined ways for improving its efficiency in terms of execution time, image 

quality and compression ratio. The need for efficient distribution of the compressed signal 

now arises, since this is an essential parameter of a video distribution system. We will there­

fore introduce the basic concepts of data communication and networking principles by de­

fining the terminology and examining several network topologies, in order to identify the 

advantages and disadvantages of each telecommunication system. 

6.1. Information and Communication 

Distributed computing systems are generally dealing with two different terms, these 

being the information and the communication. Information is a concept which is quite intu­

itive for most people. It is a fundamental quantity which can be transmitted using a small 

amount of energy. The most valuable property of information is that it can be duplicated 

without degrading. The video or audio signals and the text documents are some examples of 

this quantity. 
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Communication on the other hand is defined as information moving in space. It is an 

essential process in all organized systems. As our society is developing, the communica­

tion is becoming more and more rich thanks to the introduction of technological infrastruc­

tures which allowed, for example, the development of the telephone network or the intro­

duction of the television and other telecommunication systems. 

All communication processes need a sender and a receiver. The sender transmits a mess­

age (which is a sequence of information symbols) to the receiver, along a channel or me­

dium, which is common for both of them. It is necessary for the sender and the receiver to 

use the same code for transmitting the message along the communication channel and ex­

tracting the information from the message. 

A factor that is always present and influences negatively the transmission process, is 

noise. Sometimes it can be negligible, but if the signal to noise ratio is small, the incoming 

messages can be distorted and become intelligible, or can be interpreted in a wrong way by 

the receiver. Since the primary aim in data communication is to achieve reliable message 

transfers, at a given time, from location A to location B, several transmission techniques 

are used to protect the signal from the noise, validate the incoming messages and recover 

the corrupted messages. Usually it is not economically feasible to completely eliminate the 

noise from a channel, but fortunately there are ways to cope with it and reduce it to an ac­

ceptable level which almost do not interfere with the communication process. 

The model for data transmission is quite complex as several factors are involved. It is 

possible to select for instance, the physical configurations of the channel (such as point­

to-point, multipoint, star, ring, e.t.c) or the media used (wire, satellite, optical fibre). Fur­

thermore the rules used for coding the message and the protocols, (which are procedures 

for error detection and recovery, flow control and management) have to be defined. 
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Generally speaking, when a communication system is designed it is necessary to con­

sider three different components which are involved in the transmission: the hardware 

used, the processing software and the structure of the messages. 

6.2. Transmission media 

One of the most important hardware component on a data communication system, is the 

transmission media. As transmission media, the following can be used [47] [49] [50]: 

• Twisted pair: It consists of two insulated conductors which are twisted together. It is 

the least expensive solution, but it has a limited transmission rate and it is susceptible 

to interferences. 

• Coaxial cable: It surrounds the inner conductor with a dielectric, and a coaxial tube of 

solid or braided metal surrounds the dielectric. Electrical interference is extremely 

low if the outer shield does not have gaps. Typically a bandwidth of 10-20 Mbits per 

second over several hundred meters of coaxial cable can be achieved. 

• Optical fibres: They transfer light waves instead of electrical signals. Fibre optic 

cable cores are made from glass or plastic. They have the higher transmission speed 

and capacity. They have no problems correlated with electromagnetic interference, 

thus, they provide very low error rates. They are general smaller and more flexible 

than electrical cables. The cost, when medium and long distance fibre optic-links are 

considered, is less than the one for electrical cables. 

• Satellites: Instead of using a physical line for the transmission, electromagnetic 

waves can be used through free space. For instance a microwave beam is directed to 

the satellite, and the satellite redirects it towards another place. It is usually used for 

long distance data transmissions or when it is impractical to use a physical line. 

The most widely used media, even today, is the coaxial cable. However the optical fibres 

are getting more and more popular, especially when we deal with Local Area Networks. 
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Video distribution systems involve the communication of devices in both local and wide 

area networks. Therefore, we will present these networks in more detail, in order to acquire 

a global view of the various network topologies. 

6.3. Local area networks 

Local area networks (LAN) allow a group of independent computers, spread over a 

local geographic area (normally less than 1 Km), to share information and resources via 

interconnection, which allows high transmission and low error rate. LANs are serial bus 

systems. Some of the elements which qualify a local area network are the network topology, 

the transmission techniques and the medium access methods. 

6.3.1. Network topology 

The topology of the LAN refers to the way in which the computer and devices are con­

nected to the physical cable. Today three forms of topology are used for communication 

networks[2][47][50]: 

• Star network: This topology requires that each system is interconnected with a central 

station or hub which controls the flow of information between the elements of the 

network. It is usually used to interconnect local terminals to mainframe computers.lf 

the central hub fails it produces the complete breakdown of the network. Single cable 

failures affect only single stations. The installation of new elements in the star system 

requires an intervention on the hub which is not always possible. 

• Bus network: This solution employs a single cable to interconnect all the systems. 

The communication between two systems can be established without involving a 

central controlling station. The total throughput capability generally decreases as the 

number of stations increases. New stations can be added without reconfiguration of 
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the network until the performance of the network is acceptable. The failure of a single 

device (if a central system is not used) should not prevent the other systems from 

communicating. The disadvantage of this topology is that failure of the bus cable 

makes communication between nodes impossible. 

• Ring networks: This topology creates a loop by connecting each system or device to 

its neighbour. The interface which is part of the system is responsible of relaying the 

information around the ring. The number of nodes is limited to by the system design, 

and any additional node produces system disruption and reduces performances. A 

ring is vulnerable to a single break in any link or node repeater. 

6.3.2. Transmission techniques 

In order to allow more stations to share a communication channel two techniques are 

used [47]: 

• Time division multiplexing (TDM): Using this technique, the channel is divided in 

periodic time slots and users can only transfer data on the bus only one after another, 

making rules for bus access necessary. This method can be easily implemented and it 

is the most frequently used in network busses. 

• Frequency division multiplexing (FDM): In this case, the channel bandwidth is di­

vided into frequency bands, each allocated to one virtual channel. 

The two types of multiplexing are equivalent in practice as they require that the data is 

processed at both ends of the transmission channel. However TDM does not require high 

frequency equipment, and if a user do not need the channel, its empty slot can be allocated 

to someone else. 
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6.3.3. Medium access methods 

Medium access is controlled according to rules which every station on the bus should 

observe for transmitting and receiving messages. The access methods which are usually 

employed in LANs are [46][50]: 

• Polling: If the polling technique is used, a master station interrogates sequentially the 

nodes connected to the network giving the access right to the transmitting media to 

the stations which need to transmit. The weak point of this architecture is the polling 

station; if it breaks down all the system fails. 

• Random access: In the random access technique there is no master station, and the 

access of the medium is determined by chance. When a station wants to transmit a 

message it waits until the transmitting medium is free from traffic and it sends its 

message. If another station starts the transmission at the same time a collision is gen­

erated and the conflict is resolved by different algorithms. Ethernet is the best known 

example of application of this method. 

• Token passing: No master station exists when a token passing technique is used. A 

token is circulated among the nodes which retains it for up to a stated interval of time. 

Token ring and token bus are two examples of token passing networks. 

6.4. LAN Standard Protocols 

The diverse LAN approaches have begun to settle down into standardized categories. 

The most comprehensive documentation and specification of LAN has been defined by the 

professional engineering society IEEE which has published a set of documents known as 

"IEEE 802" standard, which describe both general principles and particular types of 

LANs. These documents have been adopted by ISO as Standard ISO 8802. 

The committee intended to create a unique standard for local area networks, but there 

were three major technologies mutually incompatible supported by powerful companies. 
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As no agreement was reached among the parties supporting the different technologies dif­

ferent standards were developed. They are: 

• IEEE 802.3 (Ethernet); 

• IEEE 802.4 (Token Bus); 

• IEEE 802.5 (Token Ring). 

An overview about the main characteristics of theses standards follows. 

6.4.1. IEEE 802.3 (Ethernet) 

Ethernet is a widely used local area network for both industrial and office applications.lt 

uses a serial bus topology with random access and a protocol called CSMA/CD (Carrier­

sensing Multiple Access/Collision Detection) for the medium access coordination. If a sta­

tion wants to send a message it waits until there is no traffic on the bus and then transmits its 

information along the communication channel. If another station does the same a collision 

is generated and both stations detecting that their signals are garbed stop transmitting (see 

fig 6.1 ). After every collision each of the stations involved in the event use an exponential 

back off algorithm which randomly decides when each system can try again to use the bus to 

complete its activity. If on the new attempt of gaining control of the bus another collision is 

detected the waiting time is doubled. If a station is not able to gain access to the bus after a 

certain number of attempts it assumes that the problem has a different nature and reports the 

situation to the higher layer [46]. 

The data transmission rate is 1, 10, 20 and 100 Mbit/s, whereas the maximum length 

between the most remotely connected points is about 2500 m. Ethernet architecture is flex­

ible and open. There are a lot of suppliers of Ethernet devices. The medium used is coaxial 

cable and it has not active part in the network control. 
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Figure 6.1: Ethernet operating principle£48]. 

A disadvantage of this type of approach is that when the load of the network increases 

collisions are more frequent degrading the performance of the network[46]. 

6.4.2. IEEE 802.4 (Token Bus) 

Token bus was developed for factory automation activities. All the nodes are connected 

to the same bus.lt uses a token passing technique for accessing the communication channel. 

Only one unit at the time can use the bus for transmitting messages. A node is entitled to 

forward data over the medium only if it retains the token, which allow the holder to transmit 

up to a specified amount of time. When a station has completed its transmissions or the time 

at its disposal is expired it passes the token to the next station in the logical ring, thus each 

station has the opportunity of transmitting (see figure 6.2). The way in which the token is 

passed makes the token bus a logical ring. If the token is lost one station, which is in charge 

of the task, will replace it [ 46]. 
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Figure 6.2: Token bus operating principle. The stations A-F 
circulate the token and can communicate when they hold it. 

This system does not allow the possibility of collisions as the access to the bus is granted 

by the possession of the token.lf a new node is added to the bus it is necessary a reconfigura­

tion of the system to include the new station in token passing mechanism. 

The data rate is in the range 1, 10 Mbit/s. The worst-case delay for a node to gain access 

to the bus is computable, and can be designed to meet the real-time requirements. The in­

creasing of the number of stations on the bus decreases the performance of the system [50]. 

6.4.3. IEEE 802.5 (Token ring) 

Token Ring was introduced by mM. The nodes are connected together in a ring topology 

and the operating principle is similar to the one used for the Token Bus (see figure 6.3). The 

token is circulated and each station receives it; the station holds the token if it wants to trans-

mit a message. the ring transmits data in only one direction. The message is sent by passing 

it onto the ring instead of the token or can be appended to the token itself. The message is 

passed from one station to the next one until it reaches the destination node where it is re-

tained. The successor and the predecessor of a node are uniquely chosen by their physical 

arrangement within the ring [46][50]. 

For introducing a new node the system has to be shut down, in order to connect the new 

station in the rink topology. The data rate is of 1 and 4 Mbit/s. Even in this case the worst-
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Figure 6.3: Token ring operating principle. The token is circulated among the sta­
tions. A station can send messages only when it holds the token. The stations con­
nected identify and collect the messages directed to them and forward the others. 

case delay can be calculated, but it is generally greater than the one produced by a Token 

Bus system with similar characteristics. 

6.4.4. Comparisons 

A comparison among the different LAN systems defined in the previous sections can 

underlying the advantages and the disadvantages of the single approaches [46]. As the 

Token Ring and Token Bus have quite similar properties they are treated together. 

• CSMA/CD (Ethernet): It has a very good performance in lightly loaded, random, 

environment. As there is no medium access control the implementation of the system 

results simplified, and there is no need for monitor or token requirement functions. 

Stations can be easily added or deleted simply activation or deactivating them. Sta­

tions operate following the principle "every user for itself". A station need only to 

wait for the bus to be available: once a frame is sent it can continue using the bus until 

a collision is detected. A station throughput depends only on the activity of the other 

stations when it attempts to transmit, while the number of the connected stations in 

not important. When the load increases a delay in completing operation appears due 
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to the greater number of collisions on the bus. As the behaviour of Ethernet is not 

predictable on a small time scale, and therefore it is not possible to guarantee a certain 

level of performance. A minimum frame length is required to assure accurate colli­

sion detection. A fault on one of the stations do not compromise the functionality of 

the network. Only the bus itself is the weak point of the system and if it is interrupted 

all the system fails. 

• Token Approaches: These have completely different properties in comparison with 

the CSMA/CD. The token passing protocols require transmission capacity and time 

delays for protocol related information exchange. They are more expensive than the 

Ethernet solutions as they have to generate and process medium access control proto­

col data units. Token Passing requires additional procedures for adding and deleting 

nodes. In the Token Bus it is necessary to add or delete via software the involved sta­

tions form the logical ring. In the Token Ring if a new station is introduced the net­

work had to be disabled to insert the new node in the ring. It is possible to predict the 

response time, and the token holding time can be adjusted to tune the performance. 

Token passing performance is a function of the number of active participants. In­

creasing the number of stations involved in the passing of the token has as a result the 

increase of the delay and the reduction of the throughput for everyone. The station 

throughput is directly related to the rate at which it can obtain the token. In the ring the 

token returns after traversing all the connected systems. The minimum waiting time 

is equal to the sum of the propagation delay and processing delay of all the other sys­

tem, while the maximum interval is equal to the sum of all the time interval used by 

the other system to transfer their information. Finally, in the Token Bus, if the logical 

order do not resemble the physical order of the nodes, propagation delays can grow 

very quickly. In both systems if there is a fault in a single node all the systems fails. 
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6.5. Wide Area Networks 

The Wide Area Networks (WAN) are networks serving at a large geographic area vary­

ing from a city to an international zone. They are used as a backbone to interconnect auton­

omous local as well as smaller wide area networks. TheW ANs are generally based on trans­

mission lines which interconnect switching nodes using several transfer mediums such as 

satellites and leased or analogue telephone lines. They can be very tolerant to hardware and 

software failures and thus very reliable. 

The Internet can be considered an example of WAN. In fact it is the ultimate WAN since 

it consists of many networks all over the world, built in a hierarchy. These include the 

ARPA network, NSF network as well as sections of the JANET and other military and aca­

demic WANs and LANs. 

6.5.1. Connecting to the WAN. 

The main drawback of theW AN technology is the data transfer rates available. A typical 

connection to a WAN which uses modems2 and transfers analogue signal through the tradi­

tional telephone network (circuit switched), may operate at transfer rates of up to 28800 bits 

per second which is far from the competition in the LAN technologies. However, this situ­

ation is changing, as digital service WAN technologies are improving and becoming more 

and more faster and dynamic. The dominant technologies in the digital connection are the 

following[ 53] [54] [55]: 

• ISDN (Integrated Services Digital Network) which integrates voice (telephony) and 

data (i.e. packet switching) into one unified line. It is a multiple-channel service 

composed of three different types of information channels into a single physical set of 

wires (the B channel which operates at 64Kbps, the D channel at 16Kbps and H chan­

nel for much higher transfer rates). The ISDN basic interface has been designed so 

2. MOdulator -DEModulator 
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that existing telephone wiring wiii be able to support the new digital service (it has a 

built-in packet capability).lt promises fast line speed since since it can achieve up to 

128Kbits per second transfer rate and high line quality. 

• ATM (Asynchronous Transfer Mode) service is a less commercialized technology 

which handles traditional as well as multimedia data at throughput speeds that scale 

from 50 Mbps to 622 Mbps. In ATM, data whether it be voice, video or anything else 

is broken up into packets of 48 bytes plus 5 bytes dedicated to the protocol. Each 

packet carries the destination address and is free to choose the path across the WAN 

that is faster to the intended receiver. When all the packets arrive the receiver reas­

sembles the data into its original form. Although the ATM is a promising WAN tech­

nology which can efficiently link remote sites via videoconferencing, however it still 

is on its early stage of development and a few more years will be needed before its 

implementation on commercial hardware. 

Despite the performance advantages of the above digital technologies it is not always 

possible to obtain small price/performance ratios, therefore the conventional technologies 

are still used more usually. 

6.6. Network Architectures and Protocols 

After discussing the various types of data communication systems it is necessary to de­

fine the network architectures (protocol architectures) and outline the different types of 

communication protocols that are used in distributed programming. A network architec­

ture is the set of rules which govern the connection and the interaction of the network com­

ponents.lt includes the data format, protocols and logical structures for the functions which 

provide effective communication between data processing systems connected to the neV 

work [47]. The layering activity of the transmission system separates the functions into dis­

tinct levels which can communicate individually. 
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The existing communication systems can be classified into the following architectures 

[49][48]: 

• The Closed System Interconnections (CSI). These are local networks in which all the 

components come from and are designed by the same vendor. The user is therefore 

forced to buy complete solutions and future extensions from one vendor. If devices of 

different vendors have to be connected, special solutions, usually expensive and 

complicated, have to be customized. 

• The Open System Interconnections (OSI). In order to overcome the incompatibility 

problem and give some structure to the area where digital transmissions are per-

formed the Open System Interconnection has been introduced. The OSI architectures 

try to develop vendor independent architectures, allowing communication between 

application systems which are usually not compatible with one another. This requires 

extensive standardization work which concerns the communication interface and the 

way in which the messages are exchanged. 

6.6.1. The ISO I OSI model 

In 1983 the International Organization for standards defined its Open System lntercon-

nection ISO I OSI reference model (ISO 7498) [51]. OSI itself is not a standard but offers a 

framework to identify and separate the different conceptual parts of the communication 

process.lt introduces a conceptual model for communication which is similar to the differ­

ent levels of operating systems, where the operations have different abstractions, ranging 

from machine code and assembler programming to high level languages and applications. 

The multi-layered structure of the communication process is essential for providing ser-

vices while hiding their implementation details from the higher layers. 

Seven functional layers are defined in OSI. Every layer provides services to the next 

higher layer and uses services to the next lower layer to execute its task. Therefore each 
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layer exchanges information only with the adjacent ones [50]. OSI service calls are similar 

to operating system calls: the requesting layer passes data and parameters to the layer below 

and it waits for an answer ignoring the details of how the request is carried out [ 46]. 

The layered approach ensures modularity and the facility for networking software to be 

upgraded without affecting the other layers of the communication system. The modularity, 

as already mentioned, makes it possible to use multi-vendor hardware and software in the 

same system. 

Modules located at the same layer but in different position in the network are called 

peers; they communicate via protocols that define conventions for exchanging information 

between two users of the same information. The services (what to do) are strictly separated 

from the protocols (the actual implementation). The layers defined in OSI are the follow­

ing[ 48][ 49][50]: 

• The physical link layer: this layer is the lowest layer of the model and is concerned 

with all aspects· of the physical interconnection of the interface to the cable. For 

example the standards will define the mechanical aspects such as the type of con­

nector to be used, the electrical signals levels used for transmission and reception via 

the cable, and functional and procedural aspects such as the type of handshaking to be 

used. The reference model does not extend down to the physical medium itself so 

does not include a specification of the type of cable to be used. The physical layer is 

the only real connection between two communicating nodes. 

• The data link layer: this layer provides the functional and procedural means to estab­

lish, maintain and interrupt a data link over the network. It defines the way the serial 

data is organized and the detection and possibly correction of errors occurring during 

the packet transmission. 
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• The network layer: this layer has the task to do the routing, the selection of a path 

through a network node, on which data transfer takes place. As the paths should be 

never overloaded the most efficient path must be found. 

• The transport layer: this layer provides an end-to-end communication control and it 

is the interface between the application software that requests data communication, 

and the external network. It has the responsibility of verifying that the data from one 

machine to another is transmitted and received correctly. 

• The session layer: this layer is involved with establishing the interactions between 

two users applications on different systems connected to each other by the network. 

• The presentation layer: the main function of this layer is to provide an independence 

to the user application from differences in the presentation of data. Thus differences 

in the way that computers talk to one another and the actual data can be resolved. 

• The application layer: this layer provides application specific protocols. It provides a 

set of services which can be directly called by application programs. 

The first four layers are called network oriented protocols whereas the remaining three 

are called application oriented protocols. As data moves downwards to the physical layer 

two major things happen to it. Additional protocol-related information is appended to the 

original message and the latter may be segmented into smaller pieces (packets)[46]. 

The OSI standards appear to be one of the leading forces for the future of the inter-net­

working. However OSI model is not exempt from criticism. Efficient implementation has 

not been explicitly addressed at all. Moreover some aspects of the implementation may re­

quire to use excessive resources of the system, and may produce performance degradation. 

Several times has been pointed out that the division of the layers 4-7 is somehow academic. 

Even if there is the implicit requirement that all layers should be involved in each applica­

tion process activity, OSI in usually not implemented in its entirety, but computer manufac-
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turers implement only the necessary layers avoiding all the features that are not necessary 

for the specific application. The most important faults in the OSI system is that it does not 

include important functions as network management and security (data encryption): these 

omissions may cause in future the development of incompatible standards [46]. 

6.6.2. Alternative Network Architectures: TCP I IP 

While most manufacturer of computer communications systems and equipment vendors 

are evolving products following the directives provided by the ISO/OSI model, there are a 

variety of alternative network architectures and protocol layers currently in use. It is unlike­

ly that in the next near future all of them will be abandoned, but in many cases it will be 

necessary to provide gateways between systems which comply with the ISO or other stan­

dards. Amongst others, alternative network architectures include: 

• The Systems Network Architecture (SNA) by IBM. 

• The Distributed Network Architecture (DNA) by DEC. 

• The Xerox Network Systems (XNS) by Xerox. 

• The Transmission Control Protocol I Internet Protocol (TCP/IP) by DARPA. 

The most important of the alternative architecture is TCP/IP. Its developing started from 

the early '70s by the US Department of Defense Advanced Research Projects Agency 

(DARPA), and it was included in the Berkeley Unix version 4.2 operating system [1]. The 

Unix-TCP/IP is becoming the most widely spread system used in local as well as in wide 

area networks for interconnecting computers together. Although its aims are similar to the 

OSI, it however provides a smaller level of functionality then the latter. The main advan­

tage of this architecture is that it is non-proprietary, and due to their popularity there is 

abundance of software written that use these protocols. 
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In figure 6.4 a comparison between the TCPIIP layers and the OSI ones is shown. The 

bottom layer includes in fact the physical and data link layer and it is called network access 

layer. It embraces those protocols, such as the X.25 protocol, that are necessary to interface 

to the network being used whatever the medium may be (Ethernet, fibre-optic cable or sat-

ellite link). 

The OSI network layer corresponds to the Internet Protocol ( IP ); this protocol address-

es messages, routes them across the network and exchanges data between systems in de pen-

dent of the network topology and the media used. It is a connectionless protocol which 

means that it handles every data package separately. The IP protocol uses for the routing of 

the messages not a physical address as in the previous layer but instead is a 32-bit number 

which is written as four decimalS-bit numbers (i.e. 129.234.207.112) and is called the in-

ternet or IP address. The data transmission at this level is not reliable. An additional internet 

control message protocol (ICMP) provides network layer management and control func-

tions. 

The OSI transport layer corresponds to the Transmission Control Protocol (TCP) which 

is a connection-oriented protocol. The latter means that several functions are provided for 

OSI TCP/IP 
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Figure 6.4: Comparison of the TCPIIP protocol architecture with the OS! one. 
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establishing a connection as well as closing it down. It is responsible to ensure that the data 

arrived on the other end, it keeps track of what has been already sent and retransmits any­

thing required. In order to handle the data more efficiently it breaks it into datagrams which 

are data packages of a convenient for transmission size (normally 128-bytes per datagram). 

TCP generally ensures the reliable data transmission and the correct sequencing ofthe data 

string without repeats. 

In fact there is an alternative transport layer in UNIX which is also commonly used, this 

being the User Datagram Protocol (UDP). In contrast to the TCP this protocol is connec­

tionless, therefore every datagram is handled independently and it is needed for each one of 

them to include a header which identifies amongst others, the port number of the transport 

endpoint. In addition UDP preserves the message boundaries but it does not confirm the 

correct distribution and sequencing of the data string. 

In the TCP/IP architecture there are not application-oriented layers. Instead the func­

tions associated with these layers have to be written into the user processes. However a 

number of application processes have been written to provide specific services, similar to 

those provided by the specific application service in the OSI application layer. Some of the 

most commonly used are the following: 

o The Telnet protocol which corresponds to the session and the presentation layer and 

allows a user on one machine to log on to another machine by establishing remotely a 

virtual terminal. 

o The File Transfer Protocol ( FTP) which corresponds roughly to the presentation and 

the application layer and provides file transfer services between dissimilar machines 

and operative systems. It supports a variety of transfer modes, file store structures and 

data types, including ASCII and binary. 

:,1-----------------------------------
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• The Simple Mail Transfer Protocol (SMTP) or as most commonly referred, elec­

tronic mail which allows the user to send and receive messages from specific remote 

sites. 

The TCPIIP architecture assumes that there are many independent networks connected 

via gateways and the user is able to access network nodes to any of these networks. The 

Internet is based upon this architecture and it is the above application processes which are 

commonly used to access it [56]. 

6. 7. Distributed Programming 

6.7.1. Sockets 

Sockets is a set of system calls which give · . ·!-.programmers access to the networking 

services ofTCPIIP and UDPIIP protocols. It is an end-point of communication which fills 

the gap between the application program and the underlying transport protocol. A pair of 

sockets can be used to establish client-server communication and manage the flow of data 

between two machines. 

The basic issue of sockets is how they are addressed. There are two different ways, the 

first one being the so-called UNIX addressing where sockets are named as UNIX path 

names and the second one the internet addressing. The internet addressing is the one that is 

most widely used as a data communication mechanism on a network and is mainly con­

sisted of two numbers. The first one is the 32-bit IP address of the host which was described 

above and the second is a 16-bit port number. The use of a port number is necessary because 

many socket-type communication processes between the same machines might run con­

currently and any of these processes might have many individual connections open. 

In general two types of sockets can be created: 
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• The listening sockets which wait passively for a connection request. These are 

usually the sockets created to the servers. 

• The connection-seeking sockets which are requesting connection to a remote listen-

ing socket at a specific host and socket address. These sockets are created to the eli-

ents. 

The connection can be established between pairs of one socket at the server and one at 

the client as illustrated in figure 6.5. However after the connection both sockets are handled 

in the same manner and serve as logical descriptors for file transfers using common read 

and write commands. 

A drawback of the socket programming is that it is needed for a client to know the com­

plete address of the listening socket at the remote server, therefore the port number has to be 

notified in addition to the machine's IP address. For system programs this· drawback is 

overcome: . since they have standard, reserved port addresses. For instance the FTP pro-

SERVER 

Bind a specific port 
number to the socket 

Set the socket in the 
Listening Mode 

CLIENT 

Create a Socket 

------ Connect to a server's port 
"------------- ------------------------ ... ------- ---------------- -· 

Read from the connection ---- Write to the connection 

Read from the connection 

Figure 6.5: Client- Server Communication using Sockets[ 1]. 
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gram will always connect to socket port number 21 and the sendmail server always listens 

on port 25. When a user is connected to one of these sockets, a child socket is created on a 

new port number, thus the reserved port number remains free and waits for new comiec-

tions. However this utility is not provided for user programs. In this case a fixed address has 

to be used which might be already in use somewhere else in the system 

6.7.2. Remote Procedure Calls (RPC) 

Alternative methods for writing distributed applications are those using Remote Pro­

cedure Calls ( RPC) or Transport Level Interface (TU). The TLI offers much the same faci-

lities with the sockets but sockets existed long before TLI and there is already a lot of socket 

code written around the world. Although sockets do n/offer as much flexibility as TLI, 

they are easier to handle and they are better integrated on the UNIX operating system. 

RPC calls on the other hand is a higher-level protocol which uses specialized procedure 

calls to establish communication and transfer data. In this case, the client calls a local pro-

cedure which sends, via the network transport provider, service request messages to are-

mote machine. These messages include arguments and additional data denoting an existing 

procedure that needs to be called. When the message arrives to the server, a dispatch routine 

retrieves the parameters from the message and passes them to the denoted procedure. The 

data outputed from the procedure is again routed towards the client. 

In such way the interprocess communication is established via ordinary function calls, 

using the same mechanism as it is used for local procedure calls. Only the IP address is 

needed for the client's RPC calls in order to identify the machine running the server process. 

Although it seems that ·_. distributed programming using RPCs has nothing to do with 

sockets, in fact socket-based communication is still taking place beneath the RPC protocol. 

However the socket port address is not needed to indentify the remote endpoint. Instead 
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numbers indentifying a program (a group of related procedures), its version and the pro­

cedure is all that is needed. 

Although RPC have several advantages compared with sockets, it is not always possible 

to obtain fast interconnection[57] and therefore acceptable performance may only be ob­

tained using sockets. 

6.8. Summary 

The basic concepts of networks and data distribution where presented in this chapter and 

the network terminology was defined. We can conclude that since the Internet, the largest 

and best known WAN is based on the TCPIIP model this is more likely to be used as the 

protocol architecture for video distribution and conferencing. The TCPIIP model also 

offers a large number of application processes like the FfP, Telnet, Electronic Mail and a 

relatively easy, from the programmer's point of view, way to create new applications by 

establishing communication and transferring data using sockets or RPCs. 

On the other hand, having examined several LAN topologies and standards we can con­

clude that at the bottom level of the TCPIIP model the Ethernet protocol is B)' Re meetts the= 

dominant and is used in most of the applications. Although this protocol is not excess of 

judgment it provides a good performance to price ratio. As for the interconnection of the 

individual users or LANs to a WAN two novel technologies, the ISDN and ATM, which 

uses digital signals instead of the traditional apalogue ones promise real-time implementa­

tion of video conferencing through the extremely high bandwidth they provide. However, 

they are still, more or less, on their early stage of development and the need for data com­

pression will still remain even with these technologies. 
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Chapter 7 

SYSTEM ARCHITECTURE 

In the previous chapters we have examined various methods for improving the 

software implementation of a fractal video encoder and decoder, as well as the basic 

concepts of networking and data distribution. In this chapter we consider the real-time 

implementation of these algorithms and their integration into a video-conferencing 

system. We will therefore describe the different hardware sub-systems that are likely to 

be involved on such a fractal video conferencing system. In addition the X window 

interface will be introduced and several X applications made for experimental purposes 

will be presented. Finally we will describe the architecture of the system. 

7.1. State-of-the-art of distributed video systems 

Before we proceed to describe the hardware and software sub-systems of video-con­

ferencing systems it is necessary to briefly review the state of the art of these applica­

tions. Many desktop distributed video systems have been developed in academia and 

industry and more are under investigation. Most of these systems perform relatively 

well although problems of speed and image quality do exist. 
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"In particular the industrial products provide many features such as TCP!IP multi-cast 

capability for multiple broadcasting to many viewers over modem, ISDN, Internet and 

Ethernet connections. They also support video e-mail, video answering machine and 

other recording options and collaboration tools for conferencing which make the prod­

ucts attractive solutions to the market. Most of these systems are based on the H.261 

video compression standard which is usually implemented on special video compres­

sion hardware boards with application specific VLSI circuitry so that it won't burden 

the host at all. 

In academia researchers are concentrating in the provision of audio and video signal 

across the internet by developing advanced protocols for data handling. This is because 

the research community has a different environment and requirements which usually 

can not be fulfilled by the commercial services. The most common compression tech­

nique used for the video signal is the H.261 standard. It is only recently that the MPEG 

standard [61] has become more popular for such projects and its use is being investi­

gated. We will briefly present some of these systems starting from the Pandora system. 

The Pandora system [60] was one of the early efforts to produce a network of 

multimedia workstations able to manipulate and distribute in real-time video and audio 

signals. It was designed as a local area network and was based on a central box (the 

pandora box) which consisted of a video capture card, the compression hardware and 

software, the server and the mixer sub-systems. The compression algorithm that was 

used exploited the property of images that adjacent pixels very often have similar 

values and instead of sending the actual values of the pixels the difference from the 

previous pixel was sent. 

The Multimedia Integrated Conferencing for European Researchers (MICE) and the 

MBone systems [62] are more recent efforts which aim to provide multi-media inte-
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grated conferencing service between different European sites. The H.261 standard was 

used for the compression of the video in both cases. 

Finally distributed, real-time, MPEG video and audio players across the Internet 

have recently appeared providing effective mechanisms for client/server synchroniz-

ation and good performance. In some cases distributed movie systems support many 

different compression techniques (MPEG, H.261, Motion JPEG) simultaneously. 

We can see from the above that there is currently significant activity in the area of 

distributed video and sound for wide and local area networks. Many different ap­

proaches and products compose the total effort for the provision of reliable and high­

quality real-time distributed multi-media. Although most of these efforts are based on 

the established video compression standards, the philosophy and architecture of these 

system is similar to the fractal video-conferencing system that we propose. It is reason-

able therefore that our system will include similar hardware components and use a 

similar software interface. 

7.2. Image processing hardware 

Electronic imaging has been dependent to a great extent upon sub-systems specifi­

cally developed for processing large amounts of data. These sub-systems typically have 

been board-oriented to address the tasks of grabbing, processing, storage, displaying 

and in some instances transmitting the high data content of all varieties of real world 

images (both grayscale and colour) in a timely and cost effective manner. Such a 

board-oriented image processing system, produced by Imaging Technology, is used for 
•' 

our project. It is based on the VME-bus and consists of three cards: 

• The ADI-150 analogue to digital converter. This is a device that converts the 

electrical output of the physical sensing device (such as a camera) into digital 

form. It has four separate camera inputs which are software selectable. A mono-
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chrome video signal can be digitized in real time and routed to the frame buffer 

for interim storing. 

• The FB-150 frame buffer. This is used for the specialised digital storage that is 

usually required by the image processing system. In order to meet these needs the 

frame buffer has to be able to store one or more entire digital images and be 

accessed at the digitisation rate of the analogue to digital converter (normally 30 

complete images per second). The amount of storage in the frame buffer is limited 

by the physical size of the card and by the storage density of the memory chips 

used. In our case the frame buffer contains two sixteen-bit frame stores which 

give the capability to store four different images simultaneously. 

• The ALU-150 arithmetic logic unit. This is the basic processing unit whose 

function is to perform arithmetic and logic operations in parallel, typically at 

video frame rates (for European standard video this means an arithmetic or logic 

operation between two images in 1/25 sec). In order to be able to process the large 

amount of video data in real-time a high bandwidth connection is required 

between the the frame buffer and the ALU. Usually the simple image processing 

operations such as thresholding, convolution and image addition/subtraction that 

are performed on it are considered to be limited compared with the complexity of 

some novel image processing algorithms. Thus complex algorithms can be more 

efficiently implemented on a general-purpose computer. 

The above system which is known as the ltex system, has been interfaced to a 

Personal Computer (PC), based on the Intel's 80286 processor which is running the 

Linux operating system. The interfacing was made using a PC-bus to VME converter 

card. In our project the above hardware will only be used as a frame grabber following 

the steps below: 
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• The system initially acquires real world, gray scale, images via monochrome 

CCD3 digital cameras which are used as the acquisition medium. These cameras 

are connected to the camera input ports of the itex system; 

• The images are then digitised in the analogue to digital converter; 

• Finally they are stored in the frame buffer and wait to be processed. 

The arithmetic and logic unit will not be considered at all since its signal processing 

ability is limited compared to the complexity of the fractal compression algorithm. For 

the implementation of this algorithm special programmable digital signal processing 

hardware has to be used. 

7 .3. The TMS320C40 Parallel Digital Signal Processor. 

In the last few years the performance of processors has increased dramatically, 

allowing the implementation of an increasing number of applications particularly in the 

areas of imaging, graphics and multi-media, where time consuming data processing 

algorithms are needed. However in many cases the need for even faster processors is 

pressing and a situation in which a single processor is not able to serve the application 

needs becomes more and more common especially in the area of digital signal proces­

sing. 

As a solution to the problem, the use of multiple processors to execute a single task 

1s adopted by many researchers. This can be achieved in two ways: 

• The first one is to partition the application into several tasks and for each one of 

the processors to work independently and simultaneously on different tasks or 

groups of tasks. 

3. Charge-Coupled Detector Camera 
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• The second deals with the concurrent execution of portions of a single applica­

tion. 

Since the fractal video compression algorithm examined in chapter 5 is still far from 

a real - time implementation on a Sun Spare IPC workstation we will investigate the 

use of a parallel DSP in order to speed it up. The Texas Instruments TMS320C40 

floating-point processor is considered for this, since it offers a parallel architecture with 

high performance. The processor can be programmed in a high level language (C) and 

it is provided with libraries supporting multiple processor systems. The latter feature 

enables the easy extension of the system with added processors for more computational 

power which will guarantee video coding in real-time[58]. 

In more detail, the TMS320C40 processor provides both on-chip and off-chip 

parallelism. The on-chip parallelism relies on architectural enhancements for improved 

performance. The TMS320C40 uses a superscaling architecture which means that in­

stead of breaking the instruction pipeline into its distinct stages as in the superpipelining 

architecture or using multiple CPUs as in the multi-CPU integration, it includes mul­

tiple pipelines within a processor allowing the CPU to execute multiple instructions 

simultaneously[ 58]. 

The off-chip parallelism incorporates the linking of several processors together via 

parallel or serial communication ports (links). TMS320C40 uses six parallel ports to 

create topologies (theoretically of any size) consisting of many processors in order to 

meet the needs of any application. In addition the TMS320C40 has an on-chip, six­

channel DMA4 coprocessor which supports very fast (20Mbyte/s) transfers at each 

communication port [59]. The DMA can be used to handle I/0 operations from external 

memory and peripherals, allowing in such way the CPU to focus its entire performance 

on other computational tasks. 

4. Direct Memory Access 
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Input TMS320C40 Output 

Figure 7.1: Von Neuman (SISD) computer with C40. 

In order to roughly evaluate the TMS320C40 potential as a node for a multi-pro-

cessor system suitable for video applications using fractal compression, the algorithms 

were tested on a single C40 processor board. This board was interfaced to an 80486 

based PC which was running DOS. As the development software for the TMS320C40 

board, including the drivers for the interfacing and the C compiler, runs on DOS 

systems, the frame grabber, whose drivers were written for a different operating system, 

had to be connected to a different PC. 

In these experiments the TMS320C40 was used in a Single-Instruction I Single­

Data stream (SISD) topology (Von Neuman computer), as illustrated in figure 7 .1. 

Although the C compiler allows the implementation of parallel programs using threads 

and tasks, we decided to implement the algorithms in a sequential manner to avoid the 

communication overheads between parallel processes, since there was only a single 

processor available. 
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Figure 7.2: Comparison of the time needed to en­
code 100 frames of the 'Miss America' sequence 
on the SUN /PC station and on the TMS320C40 . 
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Results of these experiments can be seen in figure 7 .2. In this diagram the time 

needed to execute 100 frames of the 'Miss America' sequence in the TMS320C40, for 

different compression ratios, are illustrated and compared to the corresponding results 

in the Sun IPC SPARC station as described in chapter 5. We can see that the algorithm 

runs considerably faster on the TMS320C40 hardware. The average decrease in the 

execution time is more than 2 times, allowing the encoding of a frame in less than one 

second (1.02 frames per second) in the best case. The decrease on the execution time is 

expected to be even larger if the algorithm optimisation was improved. In particular, 

some of the routines which play a major role in the efficiency of the algorithm (i.e. for 

matrix multiplication), could be coded in the TMS320C40 low-level assembly lan­

guage rather than the standard parallel C avoiding the inefficient code produced by the 

C compiler. 

7 .4. The X Windows Protocol 

The X Windows system is a windowing graphical environment which allows the 

execution of multiple applications in different rectangular windows. It provides faci­

lities to generate text and two-dimensional monochrome or colour graphics on bit­

mapped displays. In these displays each pixel corresponds to one or more bits in 

memory and is controlled independently. 

The above functionality can be found in other windowing systems. However it was 

the X Windows environment which became a standard because of a special functional­

ity that it offers: the network transparency. This means that users are able to run 

application programs on remote machines throughout the network, as if they were on 

their local machines. A direct consequence of this is that X Windows applications can 

be implemented on different computer architectures and operating systems in a device 

independent way allowing cooperation between a network of different computers. For 
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example, a computationally intensive application may take input from a workstation, 

run on a super-computer and return the results across the network to be printed or 

plotted back on the workstation's display. 

In order to provide this functionality, the X Windows system was designed as a 

network protocol, based on the client/server concept. In this case the program that 

controls each display is considered as the server since this makes the displays accessible 

to other systems across the networks, passes user input to the clients and is responsible 

for the drawing of the graphics and text. Clients, on the other hand, are considered to 

be the application programs that run using the network services of the window system. 

Clients can connect to any display on which they are allowed to. 

One such client with special authority is the window manager. This program IS 

responsible for the screen layout and appearance. It allows the user to manipulate client 

windows by moving, resizing or iconifying them and to start new applications. 

In practise, for the creation of new X applications, it is common to utilize some 

object-oriented toolkits. These toolkits allow the programmer to build the interface of 

his application, using configurable user interface components such as buttons, sliders 

and pull-down menus, which are known as widgets. There are several X Windows 

toolkits available, including XView and Motif. The XView toolkit was chosen for this 

work, since it is distributed in public domain, and provides a good functionality. 

The design of the toolkit encourages event-driven programming [64]. This means 

that the program remains inactive unless the user generates an event by pressing for 

instance a button or moving the mouse cursor. In this way the user controls more 

directly the execution flow. 

While experimenting with the XView toolkit some examples of X applications, were 

developed. These are shown in figures 7.3 and 7 .4. The first application implements 

graphically the decoding of a simple IFS code after a certain number of iterations using 
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Figure 7.3: X Windows application which graphical represents on two can­
vases, the iterative decoding process of an IFS using the photocopy machine 
algorithm. 

the photocopier machine algorithm. The two canvases on the single frame were used to 

illustrate in every case two consecutive iterations of the same IFS and therefore 

understand in a better way the convergence of the IFS on the same attractor after a few 

iterations. 

The second figure shows a sun raster (bitmap format) image viewer which was 

created as a first step for the XVideo application which follows. This viewer consists of 

two windows. In figure 7.4. (a) the first window (parent) is illustrated. This window 

recognizes and presents on the left and right menus all the subdirectories below the 

current directory, as well as all the image files of sun raster format in the current 

directory. If the user wants to move one directory up, the two dots character (' .. ') at the 

beginning of the first menu have to be pressed. By choosing an image file and pressing 

the 'Load' button a sub-window (child window) like the one illustrated in figure 7.4 (b) 
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(a) Parent Window 

(b) Child Window 

Figure 7.4: X Viewer for Sun Raster format images. 

will appear which shows the image in a canvas. There are two important points regard­

ing both applications that need to be discussed in more detail. 

The first one is that for the manipulation of the pixels, calls to special Xlib [63] 

procedures are used. The Xlib is a library which contains easy to use routines for 

drawing points, lines, rectangles, circles, strings and other objects as well as combina­

tions of objects. These routines need only a few arguments which denote the object's 

size and coordinates as well as the Graphics Context (GC) which is the essential 
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controller of the appearance of the object within a window. The use of the library is 

essential to ensure portability of code between XWindows systems. 

The second point concerns, the colourmap of the image files which is in fact a colour 

lookup table. When we are dealing with black and white displays, each pixel can only 

have two states and therefore it is represented by a single bit. The value of that bit 

defines the state of the pixel. If we are dealing, with monochrome (gray scale) or colour 

systems, then each pixel is represented by multiple bits which do not directly control 

the pixel value (colour) but instead they define an index to the colourmap as illustrated 

in figure 7.5. 
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Figure 7.5: Mapping of Pixel value to Colour using colourmaps. 

On a colour display this is an array of Red, Green and Blue (RGB) intensity values 

since the combination of these three colours is enough to create all the known colours. 

For instance, suppose that the pixel at x,y position is assigned by a bit set of value 20. 

Then the RGB values of the colourmap that correspond on this cell (called colourcell) 

are displayed on the screen at that location. All bitmapped displays have at least one 

hardware colourmap, although in the case of a single-plane monochrome screen it may 

consist of only two colourcells. 

In general, there is a very large number of possible RGB combinations; a typical 

' 
display might have 8 bits assigned to every pixel, while its colourmap entries are 24 bits 

long, 8 bits to describe each of the red, green and blue intensities. This means that a 
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total of more than 16 million (2563) colours are supported. In practice it is often not 

possible to display more than 256 colours simultaneously and so a small subset of the 

colourmap will be displayed at a time. 

The use of a colourmap may present a significant problem when two clients share 

the same display screen since they must use the same hardware colourmap. For 

example, suppose there is an application running on the display, that requires the use of 

a gray scale monochrome colourmap. If at the same time and on the same display 

another application requires green and blue colours then strange artifacts and wrong 

colour allocations may occur resulting at images such as the one shown in figure 

7.4.(b). In practice, the different applications use certain mechanisms to communicate 

and decide to allocate a common entry in the hardware colourmap which is visually 

close to their requirements. Alternatively, the use of private colourmaps is possible. In 

this case the colourmap of the application is swapped in only when the application 

window is selected by the mouse pointer. In this case the other applications on the 

screen would appear in unusual colours. For our applications the first solution was 

adopted. 

Initial experimentation with the XWindows environment indicated that the imple­

mentation of an XVideo application should be possible. In our XVideo application 

fractally encoded frame sequences were loaded one by one, then decoded and finally 

displayed as fast as possible on the same canvas in order to give the illusion of motion 

on the object. The window of this application is shown in figure 7.6. The current frame 

number is displayed between the two buttons 'Start' and 'Quit'. It can be seen that 

while the program is running the 'Stop' button becomes gray which means that it is 

inactive. 
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Figure 7.6: X Video: It decodesfractally encoded frames and 
displays them as fast as possible on the canvas. 

7.5. System Implementation and Discussion 

Considering all the individual software and hardware components that were dis­

cussed above we can propose that a hypothetical fractal video conferencing system, 

which uses these components would look like the one shown in figure 7.7. A CCD 

camera would be connected in the input ports of a frame grabber, such as the one 

described, which converts the analogue signal into digital and stores it into a buffer at 

normal video frame rates. 

The frame grabber system would be interfaced on a PC running Linux since the 

latter operating system provides the TCPIIP protocol and the libraries needed to create 

sockets, which allows the easy interconnection of the PC to a local or wide area 

network. Alternatively a UNIX workstation with an attached frame grabbing device can 

be used instead of the PC, since this provides higher bandwidth data bus which would 

allow the faster transfer of image data into the server computer memory. 

In order to speed up the encoding process, a parallel topology consisting of an 

adequate number of parallel processors, such as the TMS320C40 DSP, could be used. 
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ETHERNET 

Figure 7. 7: Architecture of the Fractal Video Distribution system 

The number of processors needed for a real-time operation, depends on the parallel 

implementation of the algorithm on a suitable topology. Therefore, the exact number of 

processors can only be estimated through experimentation. However, if we consider in a 

very simplistic way the results obtained from the execution of the fractal compression 

algorithm on the single processor, we can estimate that around 30 processors are needed 

for a real-time implementation, since interprocess communication latency exists. Al­

though this is a relatively large number of processors which clearly increases the cost of 

such system, it is not completely unrealistic, as high performance computers are becom­

ing more and more common and available at low cost. 

The parallel hardware topology has to be attached to the same PC or workstation box 

and be able to communicate with the buffer of the frame grabber in order to transfer the 

stored images. In both cases the appropriate drivers have to be designed to enable the 

interfacing of the new hardware. For best input/output results the built-in DMA co­

processor of the TMS320C40 processor can be used. In this case the frames are 

transferred from and into memory using different channels, without interfering with the 
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operation of the CPU. Therefore interfacing to slow external memories and peripherals 

is allowed without reducing the performance of the CPU. 

Since standard Ethernet is a common network medium for TCPIIP connection, we 

will consider that the remote machines are interconnected on the same Ethernet net­

work. The Ethernet network has a lOMBit/sec bandwidth. For the interconnection of 

the PC to such a network, an Ethernet card is needed in the PC. A server would be 

developed and run on this PC which would be able to store and replay encoded frames 

while listening for connection requests by a client in remote hosts such as the two Sun 

Spare stations on which our experiments have been conducted. These workstations run 

SunOS 4.1.2 and are also interconnected on the 10 MBit/sec Ethernet network. 

The system will then operate as follows: The ITEX system captures frames which 

are sent to the DSP for compression, via the DSPs DMA 110 coprocessor's channels. 

The image frames are then sent back to the PC and stored in memory. Simultaneously 

the PC waits for connection requests through the network. Normally more than one 

image frames is stored in memory before transmission. When such a client request is 

received connection between the PC and the remote host is established and the last 

fully downloaded and compressed frame is transferred via the network to the worksta­

tion using the TCPIIP or UDPIIP protocols. 

In the X window environment, a window showing the decompressed images that are 

received is produced. The X client periodically connects to the PC and receives the 

frame data into memory. The data is then decompressed and converted into X image 

format before being sent to the display server. 

If we consider gray-scale frames of 256x256 size, these would need a bandwidth of 

more than 13MBit/sec to be transferred in real-time (25 frames per second) while the 

bandwidth of the current Ethernet network is an absolute maximum of only 1 OMBit/sec. 

In the current implementation of the fractal video compression algorithm, the compres-
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sion ratios that can be achieved while the image quality remains acceptable, can be 

more than 150 and a typical value for the compression ratio is more than 60. The latter 

means that the bandwidth needed to transfer in real-time the compressed images ranges 

from 87.4KBit/sec up to 200KBit/sec. In other words by applying the fractal video 

compression technique only an 1.5% of the available bandwidth is used in average. 

Therefore, a large bandwidth remains, which could be used to transfer audio files or 

other information. 

7 .6. Summary 

In this chapter we described the hardware and software components that are needed 

for the implementation of a fractal video conferencing system and we presented experi­

ments which investigated the capabilities of them. The first component was the image 

processing hardware which includes the camera, an ND converter and a buffer. This 

component serves as a frame grabbing device in the system. 

The second one was the TMS320C40 parallel DSP which could be used to speed-up 

the encoding process of the frames as part of a parallel topology. Although results 

showed a significant increase in the performance of the fractal compression it can be 

concluded that a parallel topology consisting of a relatively large number of processors 

would be needed for implementing the algorithm in real-time. 

The third component, the X protocol, was also introduced as the graphical interface 

of the video conferencing system. Several applications which were developed while 

experimenting with it are presented. The final application, the XVideo, was implement­

ing a fractal video decompressor and viewer on the X display. 

Finally a hypothetical fractal video conferencing system based on the above compo­

nents and other existing hardware such as workstations, PCs and Ethernet network was 

described. One of the major conclusions that can be extracted is that a fractal video 
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conferencing system can be implemented on a local area Ethernet network. The en­

coded video frames can be transmitted in real-time since they are compressed at very 

low compression ratios and only occupy a very small part (1 %-2%) of the total 

bandwidth. However tks ws~ ~ a large number of processors has to be used to imple­

ment the fractal compression technique in real-time and clearly cost will increase in 

this case. 
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ChapterS 

CONCLUDING REMARKS 

In this thesis, we have investigated the use of fractal compression technique for a 

real-time video distribution system through telecommunication networks (currently 

Ethernet). The current activity in the field of image and video compression has been 

described. Much of this work aims to provide compression techniques which combine 

large compression ratios, high quality reconstructed images and real-time implementa­

tions. We have shown that most of the state-of-the-art compression techniques do not 

efficiently combine all of these aspects of image compression. 

The fractal compression technique has been considered as an alternative to existing 

standards. Fractal block coding has some useful properties which satisfy many of the 

requirements for video streams. These properties include the scaling of image to arbit­

rary sizes, large compression ratios and fast, hierarchical decompression. The basic 

algorithm upon which all the fractal compression schemes are based was initially 

described. We have shown that the fractal technique performs quite well for arbitrary 

gray scale images but suffers from long execution times. Several schemes for improv­

ing the algorithm have been proposed and examined for both still images and image 

sequences. 
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Most of the fractal schemes examined in this thesis aimed at the reduction of 

execution time, in order to make the fractal compression method suitable for use in a 

video--conferencing system. Amongst these, two novel concepts in the context of still 

fractal image compression have been presented. In the first, the image was partitioned 

into sections and each section was encoded independently. The results obtained were 

very encouraging, but the compression time remained relatively long in the final imple­

mentation. Another effort that produced unsatisfactory results was the use of the median 

metric as an alternative to the RMS. The RMS metric was finally preferred over the 

median metric as a more efficient implementation. In addition, the hierarchical recon­

struction of the encoded image was presented in order to reduce the decompression 

time. 

The extension of the improved fractal compression scheme to video sequences was 

then considered. Three schemes were examined which all involved the compression of 

frames with respect to their predecessor, in order to reduce the temporal redundancy. In 

the final and most efficient implementation, significant improvement in performance 

was obtained but, even in this case, real-time execution was not achieved. In particular 

the compression process has to be speeded up almost 70 times to achieve real-time 

execution while the decompression process has to be speeded up by a factor of 7. The 

latter should be achievable on more powerful workstations than those used in this work. 

We can conclude therefore, that in the current implementation, the fractal video 

compression technique can not compete with the state-of-the-art video coding algo­

rithms (i.e. MPEG or H261 standards). Its major drawback, which is that the execution 

of the compression process is time consuming, still remains although not to the same 

extent as in the early implementations of the algorithm. 

Data distribution and networks were also introduced as an essential element of a 

video distribution system. The use of the TCPIIP and UDPIIP protocol architectures 
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were considered as they are the most widely used. These are generally used on UNIX 

machines and they provide an efficient way to create new applications using sockets or 

RPCs. 

Other hardware and software components of a vide~onferencing system were also 

examined separately and experiments described in this thesis demonstrate that these 

components can be implemented in an XWindows environment. These components 

were the frame grabber hardware, the XWindows protocol and a single TMS320C40 

parallel processor. The latter was considered in order to evaluate the speed improve-

ments of the compression algorithm on a powerful hardware system which may consist 

of many parallel processors. Although the use of the DSP processor significantly 

reduced the compression time, a relatively large number of processors would be needed 

to implement the current algorithm in real-time. 

The experiments reported in this thesis indicate that a compression speed of 1 frame 

per second can be achieved using a single TMS320C40 processor. A very simplistic 

extrapolation of this result suggests that around 30 such processors could achieve 

real-time compression of a video signal. This estimate does not take into account 
0. 

communication overheads in suc~parallel system. However, this is not considered to be 

too significant in such a computationally intensive process. Furthermore, more sophisti-

cated parallel architectures and the use of image partitioning as described, could reduce 

the number of processors below this estimate. Clearly, a system of 30 TMS320C40 

processors is not commercially viable but further development of dedicated hardware 

may improve this situation in the near future. 

Generally speaking, the fractal block coding method has great potential. It is a 

recently developed technique with many advantages. The only major disadvantage is 

the relatively long execution times. However, there is a promise for improved perform­

ance in the near future given further investigation and research Into the technique. High 
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performance computer systems are becoming more common as very powerful pro­

cessors become available at lower cost. Therefore, if further consideration is given to 

optimisation of the software code, and other schemes for improving the efficiency of 

the fractal compression methods are investigated, real-time execution of the compres­

sion and decompression process using fractal compression techniques may be achieved 

in the near future. 
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